WO2019003725A1 - パワーモジュール用基板およびパワーモジュール - Google Patents

パワーモジュール用基板およびパワーモジュール Download PDF

Info

Publication number
WO2019003725A1
WO2019003725A1 PCT/JP2018/019679 JP2018019679W WO2019003725A1 WO 2019003725 A1 WO2019003725 A1 WO 2019003725A1 JP 2018019679 W JP2018019679 W JP 2018019679W WO 2019003725 A1 WO2019003725 A1 WO 2019003725A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
corner
power module
surface roughness
insulating substrate
Prior art date
Application number
PCT/JP2018/019679
Other languages
English (en)
French (fr)
Inventor
芳紀 小西
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to EP18824890.0A priority Critical patent/EP3648557B1/en
Priority to US16/627,099 priority patent/US11195776B2/en
Priority to JP2019526691A priority patent/JP6832426B2/ja
Priority to CN201880041644.1A priority patent/CN110809910B/zh
Publication of WO2019003725A1 publication Critical patent/WO2019003725A1/ja
Priority to US17/501,539 priority patent/US20220037226A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/121Metallic interlayers based on aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/127The active component for bonding being a refractory metal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/126Metallic interlayers wherein the active component for bonding is not the largest fraction of the interlayer
    • C04B2237/128The active component for bonding being silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/704Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the ceramic layers or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/86Joining of two substrates at their largest surfaces, one surface being complete joined and covered, the other surface not, e.g. a small plate joined at it's largest surface on top of a larger plate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/88Joining of two substrates, where a substantial part of the joining material is present outside of the joint, leading to an outside joining of the joint
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85439Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85455Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85463Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/85464Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass

Definitions

  • the present disclosure relates to a power module substrate and a power module in which a metal plate is bonded to an insulating substrate.
  • an insulating substrate made of ceramic sintered body or the like is made of metal material such as copper
  • a power module substrate having a metal plate bonded thereto is used.
  • the distance between the metal plates can be reduced by producing a metal plate by punching and forming a metal plate having side surfaces perpendicular to the insulating substrate. (See, for example, Patent Document 1).
  • the power module substrate includes an insulating substrate and a metal plate bonded to the insulating substrate via a brazing material, and the surface roughness in the thickness direction of the side surface of the metal plate is The surface roughness of the corner farthest from the center of the metal plate at least in plan view is larger than the surface roughness of the plane portion sandwiching the corner.
  • a power module according to one aspect of the present disclosure includes the power module substrate of the above configuration, and an electronic component mounted on the metal plate of the power module substrate.
  • the power module substrate of the present disclosure with the above configuration, creeping-up of the brazing material is suppressed at the corner portions where thermal stress is likely to be concentrated, and spreading of the brazing material from the corners to the insulating substrate
  • the power module substrate is excellent in the reliability of bonding between the metal plate and the insulating substrate.
  • the power module substrate configured as described above since the power module substrate configured as described above is provided, the power module is improved in reliability.
  • FIG. 2 is a cross-sectional view taken along the line BB in FIG. It is a bottom view of FIG. It is a top view which shows the other example of the substrate for power modules of this indication.
  • FIG. 5 is a cross-sectional view taken along the line BB of FIG. 4;
  • FIG. 5 is a bottom view of FIG. 4;
  • An example of the enlarged view of the A section of FIG. 1 and FIG. 4 is shown.
  • the other example of the enlarged view of the A section of FIG. 1 and FIG. 4 is shown.
  • An example of the enlarged view of the C section of FIG. 4 is shown.
  • It is a perspective view of FIG. It is a top view showing an example of a power module of this indication.
  • FIG. 13 is a cross-sectional view taken along the line BB in FIG. 12;
  • a power module substrate and a power module according to an embodiment of the present disclosure will be described with reference to the drawings.
  • the distinction between the upper and lower sides in the following description is for convenience, and does not limit the upper and lower sides when the power module substrate, the power module, and the like are actually used.
  • FIG. 1 is a top view showing an example of a power module substrate according to the present disclosure.
  • FIG. 2 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 3 is a bottom view of FIG.
  • FIG. 4 is a top view showing another example of the power module substrate of the present disclosure.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 6 is a bottom view of FIG. 7 and 8 are each an example of the enlarged view of the A part of FIG. 1 and FIG.
  • FIG. 9 is a perspective view of FIG.
  • the power module substrate 10 includes an insulating substrate 1 and a metal plate 2 joined to the main surfaces (upper and lower surfaces) of the insulating substrate 1 via a brazing material 3.
  • the surface roughness of the side surface of the metal plate 2 in the thickness direction is at least the surface roughness of the corner 2a most distant from the center of the metal plate 2 in plan view is larger than the surface roughness of the plane 2b sandwiching the corner 2a. .
  • the distance between the metal plates when the distance between the metal plates is reduced, the distance between the brazing materials for joining the metal plates must also be reduced. Therefore, from the side surface of the metal plate to the surface of the insulating substrate The spread was also small. However, when the spread of the brazing material is reduced, there is a possibility that the bonding reliability between the metal plate and the insulating substrate may be reduced.
  • the thermal expansion difference between the metal plate and the insulating substrate generates a thermal stress, and a crack is generated in the brazing material or the insulating substrate in the vicinity of the corner of the metal plate where the thermal stress tends to be concentrated.
  • the side surface of the metal plate 2 is located between both main surfaces (upper and lower surfaces) of the metal plate 2 and is a surface substantially perpendicular to both main surfaces (upper and lower surfaces). Thereby, the space
  • the metal plate 2 is joined to the insulating substrate 1 by the brazing material 3, and the brazing material 3 is interposed between the metal plate 2 and the insulating substrate 1.
  • the brazing material 3 extends from the side surface of the metal plate 2 to the surface of the insulating substrate 1 to form a so-called meniscus shaped fillet.
  • the fillet portion of the brazing material 3 is a portion protruding from the outer edge of the metal plate 2 in plan view. In order to reduce the distance between the metal plates 2, it is necessary to reduce the amount of protrusion of the brazing material 3.
  • a power module substrate for example, when a semiconductor element is mounted and operated as a power module, thermal stress is generated due to the thermal expansion difference between the metal plate and the insulating substrate due to the heat generated in the semiconductor element .
  • thermal stress tends to be concentrated at the edge of the metal plate, particularly directly below the corner and the outer edge of the brazing material at the corner.
  • thermal stress is more likely to be concentrated because the corners of the metal plate and the end of the brazing material are close to each other. Therefore, in the conventional power module substrate, the bonding reliability between the metal plate and the insulating substrate is likely to be lowered.
  • the surface roughness of the side surface of the metal plate 2 in the thickness direction is such that the surface roughness of the corner portion 2a of the metal plate 2 is the surface roughness of the flat portion 2b sandwiching the corner portion 2a. Because of the larger size, the wettability of the brazing material 3 becomes worse at the corner 2a than at the flat portion 2b. The rising edge of the brazing material 3 on the side surface of the metal plate 2 is smaller at the corner 2a than at the flat portion 2b. As a result, the spread of the brazing material from the corner 2 a onto the insulating substrate 1 becomes large.
  • the spread of the brazing material on the insulating substrate in the vicinity of the corner of the conventional power module substrate, which has no difference in surface roughness, is as shown by the two-dot chain line in the example shown in FIGS. It becomes.
  • the distance between the corner of the metal plate 2 and the end of the brazing material 3 located outside thereof is larger. Therefore, the thermal stress is dispersed, and the bonding reliability between the metal plate 2 and the insulating substrate 1 is improved.
  • the corner 2a referred to here is a convex corner.
  • the three metal plates 2 (21, 22) of the small metal plate 2 (22) are joined, and one metal plate 2 (23) is joined to the lower surface.
  • the shapes of these three metal plates 2 (21, 22) in plan view are all rectangular.
  • the metal plate 2 (21) disposed at the center of the upper surface of the insulating substrate 1 has a shape in which a pair of rectangular shapes is cut off.
  • the corner 2c of the notch in the portion C surrounded by the broken line in FIG. 4 is a concave corner.
  • the shapes of the two metal plates 22 respectively located in the two notches including the concave corner 2c are rectangular.
  • the surface roughness of all the convex corner portions may not be larger than the surface roughness of the flat portion, and at least the surface roughness of the corner portion 2a farthest from the center of the metal plate 2 in plan view What is necessary is just to be larger than the surface roughness of the flat part 2b to clamp.
  • the metal plate 2 (21) having a large size and the metal plate 2 (22) having a large size are joined to the upper surface.
  • the electronic component is mounted on the large metal plate 2 (21), and the electrode of the electronic component and the small metal plate 2 (22) are electrically connected by bonding wires.
  • the above-described thermal stress increases as the bonding length between the metal plate 2 and the insulating substrate 1 increases. Therefore, the rectangular and large-sized metal plate 2 (21) as in the example illustrated in FIGS. 1 to 3. At the four corners 2a, the thermal stress becomes large. Further, in the case of the example shown in FIGS. 4 to 6, the not-cut-off diagonal in the large-sized metal plate 2 (21) becomes the convex corner 2a having a large thermal stress. Further, since the rectangular metal plate 2 (23) joined to the lower surface of the insulating substrate 1 is also large in size, the four corners of the metal plate 2 (23) also have a large thermal stress. It is. These corner portions 2a are all farthest from the center of the metal plate 2 in plan view.
  • the center of the metal plate 2 in plan view can also be referred to as a centroid of the shape of the metal plate 2 in plan view.
  • a corner of the metal plate 2 (21) having a large size among the metal plates 2 joined to the main surface (upper surface and lower surface) of the insulating substrate 1 as described above, the corner most distant from the center of the metal plate 2 (21) It is effective for improving the bonding reliability to suppress the thermal stress in the portion 2a. Therefore, the surface roughness of at least such a corner 2a should be greater than the surface roughness of the flat portion 2b sandwiching the corner 2a.
  • the corner 22a of the small metal plate 2 (22) is close to the other metal plate 2 (21), the surface roughness is not increased so that the spread of the brazing material 3 does not increase. Good.
  • the two convex corner portions 21a which are present outside one notch and adjacent to the concave corner portion 2c are also farthest from the center of the metal plate 2 The surface roughness does not have to be large because it is close to the other metal plate 2 (21). In the example shown in FIGS.
  • the size of the notch is the same, and the smaller metal plate 22 is smaller, and the convex corner 21a of the notch of the larger metal plate 21 and the smaller metal plate 22 are sufficiently In the case of separation, the surface roughness of the convex corner 21a of the notch can also be increased.
  • the surface roughness of the side surface of the metal plate 2 is measured in the thickness direction of the metal plate 2. It is because the thickness direction of the metal plate 2 which is the rising direction of the brazing material 3 that affects the degree of the rising of the brazing material 3 on the side surface of the metal plate 2.
  • the surface roughness of the corner 2a does not have to be the surface roughness at the vertex of the corner, but is the surface roughness of the corner which is a range having a predetermined width including the vertex of the corner. This corner is a portion from the vertex of the corner to about 0.5 mm in the direction of the two flat portions 2b. As in the example shown in FIG.
  • the portion where the two flat portions 2b are extended and intersect in plan view is regarded as the vertex of the corner, and the direction of the flat portion 2b from there
  • the part is up to about 0.5 mm.
  • the surface roughness of the flat portion 2b is measured at a portion 2 mm or more away from the corner.
  • the corner 2a is a curved surface and the radius is larger than 0.5 mm
  • the surface roughness of the flat surface 2b is measured at a position 1.5 mm or more away from the end of the curved surface.
  • the surface roughness is an arithmetic mean roughness Ra and can be measured using a laser microscope.
  • a laser microscope KV9510 manufactured by Keyence Corporation, measurement can be performed under the conditions of a measurement range of 100 ⁇ m, a cutoff of 0.08 mm, and a measurement pitch of 0.01 ⁇ m.
  • an average value measured at a plurality of places is taken as the surface roughness of the corner portion 2a and the surface roughness of the plane portion 2b.
  • the surface roughness is, for example, that the metal plate 2 is a copper plate and has a side surface (a side surface additionally formed by punching with a general die), and the brazing material 3 is silver-copper.
  • the surface roughness of the flat portion 2b is 0.3 to 1.0 ⁇ m
  • the surface roughness of the corner portion 2a is 0.5 ⁇ m to 1.5 ⁇ m. it can. If there is a difference of, for example, 0.1 ⁇ m or more between the surface roughness of the flat surface portion 2b and the surface roughness of the corner portion 2a at this time, the above-described effects can be obtained.
  • the brazing material 3 creeps up to about 1/5 to 1/2 of the thickness of the metal plate 2 also at the corner 2 a, and the insulating substrate 1 from the side surface of the metal plate 2
  • the concave-curved meniscus-shaped fillet portion is formed in the brazing material 3 to the upper surface of the upper surface of the solder, and the stress is easily relieved.
  • the power module substrate 10 may have a surface roughness gradually increasing from the flat portion 2b to the corner portion 2a. In other words, the surface roughness may be smaller as it is separated from the corner 2a toward the flat portion 2b.
  • the change in the wettability of the brazing material on the side surface of the metal plate 2 becomes gentle, and the change in the height of the brazing material 3 on the side surface of the metal plate 2 becomes gentle as in the example shown in FIG. .
  • the spread length (protruding width) of the brazing material 3 on the insulating substrate 1 does not change extremely between the flat portion 2 b and the corner portion 2 a. Therefore, a portion where the spread length in the brazing material 3 changes does not have a shape in which a thermal stress or the like tends to be concentrated, so that the bonding reliability of the metal plate 2 to the insulating substrate 1 is improved.
  • the change of the surface roughness from the flat surface portion 2b to the corner portion 2a is confirmed by measuring the surface roughness of the corner portion 2a and the flat surface portion 2b at regular intervals (for example, 1 mm). be able to.
  • the surface roughness may not necessarily decrease as it goes away from the corner 2a due to processing variations or measurement variations, but in the approximate curve of the graph showing the relationship between the surface roughness and the measurement position (distance from the corner 2a), The surface roughness may be reduced as it is separated from the corner 2a.
  • confirmation can be made as follows.
  • the plane portion 2b may be divided into a plurality of regions at equal intervals, the surface roughness may be measured at a plurality of locations in each region, and the average surface roughness in each region may be compared.
  • the corner 2a can be a convex curved surface in plan view.
  • the corner 2a can be, for example, a curved surface with a radius of about 0.1 mm to 3 mm in a plan view.
  • a convex curved surface can also be formed at corner portions other than the corner portion 2a having the surface roughness as described above.
  • the convex corner 22a of the small-sized metal plate 22 and the convex corner 21a formed in the notch in the example shown in FIG. Assuming that the corner adjacent to such another metal plate 2 is a convex curved surface, the possibility of a discharge occurring between this corner and the adjacent metal plate 2 and a decrease in insulation is reduced. .
  • the concave corner 2c When the metal plate 2 has a concave corner 2c as in the example shown in FIG. 4 and another metal plate 2 (22) is located in the vicinity of this concave corner 2c, the concave corner
  • the planar roughness of the portion 2c can be smaller than that of the planar portion 2b.
  • the rising of the brazing material 3 at the concave corner 2c becomes large. Therefore, as compared with the spread of the brazing material 3 on the insulating substrate 1 in the case where the surface roughness of the concave corner 2c is large (two-dot chain line shown in FIG. 10), The spread of the brazing filler metal 3 is small.
  • FIG. 10 shows an example of the enlarged view of the part C of FIG. 4 (a).
  • FIG. 11 is a perspective view of FIG.
  • the concave corner 2c can be a concave surface in plan view. In this case, it is easy to make the crawling height of the brazing material 3 at the concave corner 2c higher. In addition, since the concave corner 2c does not have a corner and has a shape in which stress is not easily concentrated, it is difficult to generate a crack or the like starting from the vicinity of the concave corner 2c, resulting in high reliability.
  • the concave corner 2c can be, for example, a concave surface having a radius of about 0.1 mm to 3 mm in a plan view.
  • the measurement position of the surface roughness of the concave corner portion 2c may be a portion up to about 0.5 mm in the direction from the top of the corner to the two plane portions 2b (21b).
  • the corner is a curved surface in a plan view as in the example shown in FIGS. 10 and 11, the portion where the two flat portions 2b (21b) are extended and intersect in a plan view is regarded as the vertex of the corner and To about 0.5 mm in the direction of the flat portion 2b (21b). More specifically, as in the example shown in FIG.
  • the straight portion of the outer peripheral end of the brazing material 3 which spreads outward from the flat portion 2b (21b) of the metal plate 2 (21) having the concave corner 2c A range (the range shown in FIGS. 10 and 11) in which a virtual extension line (two straight lines L shown in FIG. 10) extended in the direction is sandwiched by the portion intersecting with the side surface of metal plate 2 (21) having concave corner 2c. c) can be used as the concave corner 2c of the metal plate 21.
  • the range of the concave corner 2c is the range of the width of the brazing material 3 outside the flat portion 2b (21b) from the corner apex.
  • the surface roughness can be gradually increased from the concave corner 2c to the flat portion 2b (21b).
  • the change in the wettability of the brazing material on the side surface of the metal plate 2 becomes gentle even in the vicinity of the corner 2c of the concave, and as shown in FIG. Changes in height at the side of 21) will be gradual.
  • the spread length of the brazing material 3 on the insulating substrate 1 does not change extremely between the flat portion 2b (21b) and the concave corner 2c. Therefore, a portion where the spread length in the brazing material 3 changes does not have a shape in which a thermal stress or the like tends to be concentrated, so that the bonding reliability of the metal plate 2 (21) to the insulating substrate 1 is improved.
  • the surface roughness may be gradually increased from the concave corner portion 2c to the plane portion 2b and the corner portion 2a. it can.
  • FIG. 12 is a top view showing an example of the power module of the present disclosure.
  • FIG. 13 is a cross-sectional view taken along the line BB in FIG.
  • the power module 100 includes the power module substrate 10 as described above and the electronic component 40 mounted on the metal plate 2 (21) of the power module substrate 10 as shown in FIGS. 12 and 13. Prepare. According to the power module 100 as described above, since the power module substrate 10 having the above configuration is provided, the bonding reliability between the metal plate 2 and the insulating substrate 1 is improved.
  • the power module substrate 10 in the example shown in FIGS. 12 and 13 is the same as the power module substrate 10 in the example shown in FIGS. 1 to 3 and one large metal plate 2 (21) on the upper surface of the insulating substrate 1 And two small metal plates 2 (22).
  • the electronic component 40 is mounted on a large metal plate 2 (21), and the electronic component 40 and the small metal plate 2 (22) are electrically connected by a connecting material such as a bonding wire 41 or the like.
  • the metal plate 21 functions as a mounting and heat radiation for the electronic component 40
  • the metal plate 22 electrically connects the electronic component 40 to an external electric circuit (not shown). It functions as a connecting terminal for connecting.
  • the metal plate 22 may protrude from the outer edge of the insulating substrate 1 in plan view.
  • the metal plate 23 is also bonded to the lower surface of the insulating substrate 1 by the brazing material 3.
  • the metal plate 23 is in the form of a square which is slightly smaller than the lower surface of the insulating substrate 1.
  • Such a metal plate 23 can function as a heat sink for releasing the heat generated by the electronic component 40 to the outside of the power module 100. As a result, the heat radiation performance of the power module 100 is improved, and the long-term operation reliability of the electronic component 40 is improved.
  • the metal plate 23 joined to the lower surface of the insulating substrate 1 may function as a circuit board for mounting the electronic component 40 or connecting to an external circuit.
  • the insulating substrate 1 is a base portion for fixing and supporting the metal plate 2 in the power module substrate 10.
  • the insulating substrate 1 electrically insulates the metal plate 21 on the upper surface of the insulating substrate 1 from the metal plate 22 or the metal plates 21 and 22 on the upper surface of the insulating substrate 1 from the metal plate 23 on the lower surface of the insulating substrate 1. It functions as an insulation member for
  • the insulating substrate 1 is preferably made of a ceramic sintered body and has characteristics such as high mechanical strength and high heat transfer characteristics (cooling characteristics).
  • the ceramic sintered body known materials can be used.
  • AlN aluminum nitride
  • Si 3 N 4 silicon nitride
  • a solid body and a silicon carbide (SiC) -based sintered body can be used.
  • a rectangular plate having a length of 10 to 120 mm and a width of 10 to 120 mm and a thickness of 0.2 to 3.0 mm can be used.
  • Such an insulating substrate 1 can be manufactured by a known manufacturing method, and for example, an organic binder is added to raw material powder obtained by adding a sintering aid to alumina powder, and the mixture is kneaded to form a substrate. It can be manufactured by firing.
  • the metal plate 2 has the electronic component 40 mounted thereon, and heat generated in the electronic component 40 as a circuit conductor for electrically connecting the electronic component 40 to an external electric circuit. It functions as a heat sink for radiating heat. Therefore, the shape is not particularly determined, and is set according to the wiring design in the power module 100.
  • the thickness of the metal plate 2 can be set to, for example, 0.2 mm to 2.0 mm in consideration of electric resistance, strength, and heat dissipation. Further, the number and arrangement of the metal plates 2 are not limited to the examples shown in FIGS. 1 to 3 and 4 to 6.
  • the metal plate 2 is formed of, for example, a metal material such as copper (Cu) or a copper alloy or aluminum (Al) or an aluminum alloy. When the so-called 99% or more pure copper or pure aluminum is used, the electric resistance is small and the thermal conductivity is also excellent. When oxygen is contained as a component of the metal plate 2, the smaller the content in the metal plate 2 is advantageous for improving the bonding strength between the bonding wire 41 and the metal plate 2.
  • the metal plate 2 can be manufactured, for example, by punching a metal mother substrate into a predetermined shape, and further performing additional processing to adjust the surface roughness of the side surface. It is possible to obtain the metal plate 2 in which the angle between the side surface and the main surface is substantially at right angles by a normal punching process using a mold. Therefore, in the power module substrate 10, the distance between the metal plates 2 can be reduced, and the size can be reduced.
  • the shape of the metal plate 2 can be set according to the shape of the die at the time of punching, and the shapes of the corner portion 2a and the corner portion 2c of the recess may be convexly curved and concavely curved in plan view, respectively. is there.
  • the metal plate 2 having the corner 2a of The surface roughness can also be made different by making the degree of the additional processing after the punching process different for each of the corner portion 2a, the flat portion 2b and the recessed corner portion 2c.
  • additional processing for example, barrel polishing or blast processing can be used. In the blasting, the time for applying the abrasive may be increased in the order of the concave corner 2c, the flat portion 2b, and the convex corner 2a.
  • the time for applying the abrasive can be adjusted in the following manner in both barrel polishing and blasting. For example, after barrel polishing or blasting in a state in which a protective film made of resin or the like is provided on flat portion 2b and concave corner 2c, the protective film is removed and barrel polishing or blasting is performed again.
  • the surface roughness of 2a can also be increased. Since the concave corner 2c is more difficult to contact with the flat corner 2b than the flat corner 2c, the machining time can be made the same between the flat corner 2b and the concave corner 2c. In addition, such additional machining can remove burrs generated by punching.
  • the corner between the upper surface and the side surface of the metal plate 2 can be chamfered to be an R surface by punching and additional machining, and the discharge from this corner can be suppressed.
  • the size of the medium (abrasive stone, abrasive) used for barrel polishing is adjusted to make the concave
  • a method can be used to make it difficult for the abrasive to hit the corner 2c of. For example, when a medium having a diameter of 0.6 mm is used, the medium is difficult to hit up to about 0.3 mm from the apex of the corner at the concave corner 2c at right angles, so it is difficult to polish, and the other area is easily polished.
  • the surface roughness of the concave corner portion 2c which is difficult to be polished remains the same, and the surface roughness of the flat portion 2b which is easily polished and the convex corner portion 2a is large. Become. At this time, since the convex corner 2a is more easily hit by the abrasive than the flat portion 2b, the surface roughness of the convex corner 2a can be made larger than the surface roughness of the flat portion 2b by adjusting the processing time. This is the same as in the case of blasting, and the size of the abrasive may be adjusted.
  • the side surface of the small metal plate 22 does not have to change the surface roughness depending on the part, but the degree of creeping up to the side surface of the brazing material 3 between the small metal plate 22 and the flat portion 2b (21b) of the large metal plate 21;
  • the small metal plate 22 can be manufactured by the same additional processing as that applied to the flat portion 2 b (21 b) of the large metal plate 21.
  • barrel polishing or blast processing can also be performed using the above-described protective film.
  • barrel polishing or blast processing is performed in a state in which flat portion 2b is covered with a protective film, only the protective film in the vicinity of corner 2a is removed and barrel polishing or blasting is performed again.
  • the amount of processing (the degree of polishing) can be varied depending on the part.
  • the first medium and the first medium are It becomes difficult to hit both media, and the first media is easy to hit in the part from 0.3 mm to 1.5 mm from the top of the corner, and the second media is hard to hit, and in the part at least 1.5 mm from the top of the corner It becomes easy to hit both the first media and the second media.
  • the surface roughness can be gradually increased. The state of the change in surface roughness can be adjusted by the size of the media to be combined, the number of types of sizes, the mixing ratio, and the like. Also, media of different shapes and media of different materials can be mixed and used. The same applies to blasting.
  • the metal plate 2 is joined (braded) to the insulating substrate 1 by the brazing material 3.
  • the brazing material 3 for example, when the metal plate 2 is made of copper (Cu) or a copper alloy, a silver-copper (Ag-Cu) alloy brazing material, titanium (Ti), hafnium (Hf), zirconium ( An active metal wax containing an active metal such as Zr) can be used.
  • a brazing material of aluminum-silicon (Al-Si) alloy or aluminum-germanium (Al-Ge) alloy can be used.
  • the brazing material paste is applied to the insulating substrate 1 by a method such as screen printing, and the metal plate 2 is bonded to the insulating substrate 1 by heating in a state where the metal plate 2 is placed thereon and pressurized. Attached.
  • the brazing material 3 extends from the outer edge of the metal plate 2 onto the insulating substrate 1 in plan view, and the spread width of the brazing material 3, ie, the distance from the outer edge of the metal plate 2 to the outer edge of the brazing material 3 in plan view is For example, it can be about 0.05 mm to 0.5 mm. Further, the distance between the metal plate 2 (21) and the other metal plate 2 (22) can be, for example, about 0.8 mm to 2.0 mm. The distance (distance) between the outer edges of the brazing material 3 can be 0.5 mm to 1.0 mm between the adjacent metal plates 2. If the distance between the brazing material 3 and the metal plates 2 is this degree, the possibility of insulation failure between the adjacent metal plates 2 can be reduced, and the substrate for the power module 10 and the power module 100 are sufficiently small. Can be small.
  • the size of the metal plate 23 on the lower surface is, for example, the metal plate 2 (21 and 22) on the upper surface in plan view. It can be set to be equal to or larger than the entire size and smaller than the insulating substrate 1.
  • the metal plate 23 on the lower surface has the same size as the size connecting the outer edges of the plurality of metal plates 2 (21 and 22) on the upper surface, the difference in thermal stress between the upper and lower sides of the insulating substrate 1 is reduced. Therefore, it is advantageous with respect to suppressing the curvature of the board
  • the metal plate 23 on the lower surface can be made larger than the insulating substrate 1.
  • the metal plates 2 (21 and 22) on the upper surface can be joined so as to be inside the outer edge of the insulating substrate 1 so as to ensure insulation with the metal plate 23 on the lower surface.
  • a plated layer may be provided on the surface of the metal plate 2 (21, 22, 23) in order to protect the surface or to improve the bonding property of the brazing material 3 or the bonding wire 41 or the like.
  • the plating layer can be a metal plating layer of palladium, nickel, silver or the like.
  • the power module substrate 10 can also be manufactured by preparing it in a so-called multi-piece form and dividing it.
  • the electronic component 40 is, for example, a power semiconductor device such as an IGBT.
  • the electronic component 40 is fixed on the metal plate 2 by, for example, soldering or brazing or diffusion bonding.
  • the electronic component 40 is fixed on the large metal plate 21 joined to the upper surface of the insulating substrate 1, and the electronic component 40 and the small metal plate 22 on the upper surface are made of aluminum or gold (Au Etc.) are electrically connected by bonding wires 41.
  • the power module 100 may be housed, for example, in a case, or may be housed in a case and further covered with a resin.
  • a heat sink may be disposed at the bottom of the case, and the metal plate 23 on the lower surface of the power module substrate 10 and the heat sink may be joined with a heat conductive material, such as a heat transfer grease, to enhance heat dissipation.
  • the power module substrate 10 and the power module 100 are not limited to the examples described in the above embodiment, and various modifications are possible within the scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

絶縁基板1と、該絶縁基板1にろう材3を介して接合された金属板2とを備えており、該金属板2の側面における厚み方向の表面粗さは、少なくとも平面視における前記金属板2の中心から最も離れた角部2aの表面粗さが、該角部を挟む平面部2bの表面粗さより大きいパワーモジュール用基板10である。また、このパワーモジュール用基板10に電子部品40を搭載したパワーモジュール100である。

Description

パワーモジュール用基板およびパワーモジュール
 本開示は、金属板が絶縁基板に接合されたパワーモジュール用基板およびパワーモジュールに関するものである。
 従来、IGBT(Insulated Gate Bipolar Transistor)等の電子部品が搭載されたパワーモジュールのような電子装置に用いられる回路基板として、例えば、セラミック焼結体等からなる絶縁基板に銅等の金属材料からなる金属板が接合されたパワーモジュール用基板が用いられている。
 パワーモジュールを小型化するために、打ち抜き加工で金属板を作製して、絶縁基板に対して垂直な側面を有する金属板とすることで、金属板(の側面)同士の間隔を小さくすることが行なわれている(例えば、特許文献1を参照。)。
特開2007-53349号公報
 本開示の1つの態様のパワーモジュール用基板は、絶縁基板と、該絶縁基板にろう材を介して接合された金属板とを備えており、該金属板の側面における厚み方向の表面粗さは、少なくとも平面視における前記金属板の中心から最も離れた角部の表面粗さは、該角部を挟む平面部の表面粗さより大きい。
 本開示の1つの態様のパワーモジュールは、上記構成のパワーモジュール用基板と、該パワーモジュール用基板の前記金属板上に搭載された電子部品とを備える。
 本開示のパワーモジュール用基板によれば、上記構成であることから、熱応力が集中しやすい角部においては、ろう材の這い上がりが抑えられ、角部から絶縁基板上へのろう材の広がりが大きくなりやすいので、金属板と絶縁基板と間の接合信頼性に優れたパワーモジュール用基板となる。
 本開示のパワーモジュールによれば、上記構成のパワーモジュール用基板を備えていることから、信頼性が向上したパワーモジュールとなる。
本開示のパワーモジュール用基板の一例を示す上面図である。 図1のB-B線における断面図である。 図1の下面図である。 本開示のパワーモジュール用基板の他の例を示す上面図である。 図4のB-B線における断面図である。 図4の下面図である。 図1および図4のA部の拡大図の一例を示す。 図1および図4のA部の拡大図の他の例を示す。 図8の斜視図である。 図4のC部の拡大図の一例を示す。 図10の斜視図である。 本開示のパワーモジュールの一例を示す上面図である。 図12のB-B線における断面図である。
 本開示の実施形態のパワーモジュール用基板およびパワーモジュールについて図面を参照して説明する。なお、以下の説明における上下の区別は便宜的なものであり、実際にパワーモジュール用基板およびパワーモジュール等が使用される際の上下を限定するものではない。
 図1は本開示のパワーモジュール用基板の一例を示す上面図である。図2は図1のB-B線における断面図である。図3は図1の下面図である。図4は本開示のパワーモジュール用基板の他の例を示す上面図である。図5は図4のB-B線における断面図である。図6は図4の下面図である。また、図7および図8は、いずれも図1および図4のA部の拡大図の一例である。図9は図8の斜視図である。
 パワーモジュール用基板10は、絶縁基板1と、絶縁基板1の主面(上下面)にろう材3を介して接合された金属板2とを備えている。金属板2の側面における厚み方向の表面粗さは、少なくとも平面視における前記金属板2の中心から最も離れた角部2aの表面粗さが、角部2aを挟む平面部2bの表面粗さより大きい。
 従来のパワーモジュール用基板においては、金属板同士の間隔を小さくする場合には、金属板を接合するろう材同士の間隔も小さくしなければならず、そのために金属板の側面から絶縁基板の表面への広がりも小さくしていた。しかしながら、ろう材の広がりを小さくすると、金属板と絶縁基板との接合信頼性が低下してしまうおそれがあった。金属板と絶縁基板との間の熱膨脹差によって熱応力が発生し、この熱応力が集中しやすい金属板の角部近傍において、ろう材あるいは絶縁基板に亀裂が発生してしまうことによるものであった。
 金属板2の側面は、金属板2の両主面(上下面)の間に位置し、両主面(上下面)に対して略垂直な面である。これにより、金属板2同士の間の間隔を小さくして、より小型のパワーモジュール用基板10とすることができる。金属板2は、ろう材3によって絶縁基板1に接合されており、金属板2と絶縁基板1との間にろう材3が介在している。ろう材3は金属板2の側面から絶縁基板1の表面にかけて広がっており、いわゆるメニスカス形状のフィレット部を形成している。このろう材3のフィレット部は平面視で金属板2の外縁からはみ出た部分である。金属板2同士の間隔を小さくするには、ろう材3のはみ出し量を小さくする必要がある。
 パワーモジュール用基板においては、例えば、半導体素子を搭載してパワーモジュールとして動作させた際の、半導体素子に発生する熱によって、金属板と絶縁基板との間の熱膨張差による熱応力が発生する。例えば、金属板の平面視の形状は矩形状であることが多いが、熱応力は金属板の端、特に角部の直下および角部のろう材の外側の端部に集中しやすい。ろう材のはみ出し量が小さいと、金属板の角部とろう材の端とが近くなることで熱応力がさらに集中しやすくなる。そのため、従来のパワーモジュール用基板は、金属板と絶縁基板との接合信頼性が低下しやすくなるものであった。
 本開示のパワーモジュール用基板10によれば、金属板2の側面における厚み方向の表面粗さは、金属板2の角部2aの表面粗さが、角部2aを挟む平面部2bの表面粗さより大きいことから、角部2aの方が平面部2bよりもろう材3の濡れ性が悪くなる。、金属板2の側面におけるろう材3の這い上がりは、平面部2bより角部2aの方が小さくなる。これにより、角部2aから絶縁基板1上へのろう材の広がりが大きいものとなる。例えば、表面粗さに違いのない、従来のパワーモジュール用基板における角部近傍における絶縁基板上へのろう材の広がりは、図7および図8に示す例において、二点鎖線で示すようなものとなる。従来に比較して、金属板2の角部と、その外側に位置するろう材3の端部との距離が大きくなっている。そのため、熱応力が分散され、金属板2と絶縁基板1との接合信頼性が向上する。
 ここでいう角部2aは、凸の角部である。図1~図3に示す例および図4~図6に示す例においては、いずれも絶縁基板1の上面に1つの比較的大きい金属板2(21)とそれを挟むように配置された2つの小さい金属板2(22)の3つの金属板2(21,22)が接合され、下面に1つの金属板2(23)が接合ざれている。図1~図3に示す例では、これら3つの金属板2(21,22)の平面視の形状は全て矩形状である。これに対して、図4~図6に示す例では、絶縁基板1の上面の中央部に配置された金属板2(21)は、矩形状の一対の対角を切欠いたような形状であり、図4において破線で囲んだC部内の切欠き部の角部2cは凹の角となっている。この凹の角部2cを含む2つの切欠き部内にそれぞれ位置する2つの金属板22の形状は矩形状である。
 全ての凸の角部の表面粗さが平面部の表面粗さより大きくなくてもよく、少なくとも平面視における金属板2の中心から最も離れた角部2aの表面粗さが、この角部2aを挟む平面部2bの表面粗さより大きいものであればよい。上述したように、図1~図3に示す例および図4~図6に示す例においては、上面には大きさの大きい金属板2(21)と小さい金属板2(22)が接合されている。例えば、大きさの大きい金属板2(21)には電子部品が搭載され、電子部品の電極と小さい金属板2(22)とがボンディングワイヤで電気的に接続される。上述した熱応力は、金属板2と絶縁基板1との接合長さが長いほど大きくなるので、図1~図3に示す例のような、矩形状で大きさの大きい金属板2(21)においては4つの角部2aにおいて熱応力が大きくなる。また、図4~図6に示す例のような場合は、大きさの大きい金属板2(21)における切欠かれていない対角が熱応力の大きい凸の角部2aとなる。また、絶縁基板1の下面に接合された矩形状の金属板2(23)もまた、大きさが大きいので、この金属板2(23)の4つの角もまた熱応力が大きくなる角部2aである。これら角部2aは、いずれも平面視における金属板2の中心から最も離れているものである。平面視における金属板2の中心とは、金属板2の平面視における形状の図心ともいうことができる。このような、絶縁基板1の主面(上面および下面)に接合された金属板2のうち、大きさの大きい金属板2(21)における、金属板2(21)の中心から最も離れた角部2aにおける熱応力を抑えるのが接合信頼性向上には効果的である。そのため、少なくともこのような角部2aにおける表面粗さが、この角部2aを挟む平面部2bの表面粗さより大きければよい。
 なお、小さい金属板2(22)の角部22aは、他の金属板2(21)と近接しているので、ろう材3の広がりが大きくならないように、表面粗さを大きくしなくてもよい。また、図4~図6に示す例における、1つの切欠き部の外側に存在し、凹の角部2cに隣接する2つの凸の角部21aについても、金属板2の中心から最も離れているものではなく、他の金属板2(21)と近接しているので、表面粗さを大きくしなくてもよい。図4~図6に示す例において、切欠きの大きさが同じで、小さい金属板22がより小さく、大きい金属板21の切欠き部の凸の角部21aと小さい金属板22とが十分に離れている場合には、切欠き部の凸の角部21aの表面粗さも大きくすることができる。
 ここで、金属板2の側面の表面粗さの測定は、金属板2の厚み方向に測定する。ろう材3の金属板2の側面における這い上がりの程度に影響を与えるのは、ろう材3の這い上がり方向である金属板2の厚み方向であるからである。角部2aの表面粗さは、角の頂点での表面粗さある必要はなく、角の頂点を含む所定の幅を有する範囲である角部の表面粗さである。この角部は角の頂点から2つの平面部2bの方向へ0.5mm程度までの部分である。図8に示す例のように角が平面視で曲面である場合には、平面視において2つの平面部2bを延長して交差する部分を角の頂点とみなして、そこから平面部2bの方向へ0.5mm程度までの部分である。平面部2bの表面粗さは、角から2mm以上離れた部分で測定する。角部2aが曲面であって、その半径が0.5mmより大きい場合は、平面部2bの表面粗さの測定は、曲面部分の端から1.5mm以上離れた位置で行なう。
 表面粗さは、算術平均粗さRaであり、レーザー顕微鏡を用いて測定することができる。例えば、キーエンス社製のレーザー顕微鏡(KV9510)を用いて、測定レンジが100μm、カットオフが0.08mm、測定ピッチが0.01μmの条件で測定することができる。上記で定義した角部2aおよび平面部2bのそれぞれにおいて、複数箇所(例えば3箇所)で測定した平均値を、それぞれ角部2aの表面粗さおよび平面部2bの表面粗さとする。表面粗さは、例えば、金属板2が銅板であり、一般的な金型による打ち抜き加工によって形成された側面(をさらに追加工した側面)を有するものであって、ろう材3が銀-銅合金を主成分とするものである場合であれば、平面部2bの表面粗さが0.3~1.0μmで、角部2aの表面粗さが0.5μm~1.5μmとすることができる。このときの平面部2bの表面粗さと角部2aの表面粗さとで、例えば0.1μm以上の差があれば、上記のような効果を奏するものとなる。また、この程度の表面粗さであれば、角部2aにおいても、金属板2の厚みの1/5~1/2程度までろう材3が這い上がって、金属板2の側面から絶縁基板1の上面にかけてろう材3に凹曲面のメニスカス形状のフィレット部が形成され、応力を緩和しやすくなる。
 平面部2bから角部2aにかけて、表面粗さが徐々に大きくなっているパワーモジュール用基板10であってもよい。言い換えれば、角部2aから平面部2bの方へ離れるにつれて表面粗さが小さくなっているものであってもよい。この場合には、金属板2の側面におけるろう材の濡れ性の変化が緩やかになり、図9に示す例のように、金属板2の側面におけるろう材3の高さの変化が緩やかになる。そして、絶縁基板1上へのろう材3の広がり長さ(はみ出し幅)も平面部2bと角部2aとの間で極端に変化することがない。そのため、ろう材3における広がり長さが変化する部分は熱応力等が集中しやすい形状とはならないので、金属板2の絶縁基板1への接合信頼性が向上したものとなる。
 この場合の平面部2bから角部2aにかけての表面粗さの変化は、角部2aおよび平面部2bの表面粗さの測定を、一定の間隔(例えば、1mm)をあけて行なうことで確認することができる。加工上のバラツキや測定バラツキにより、必ずしも角部2aから離れるにつれて表面粗さが小さくならない場合もあるが、表面粗さと測定位置(角部2aからの距離)の関係を示すグラフの近似曲線において、角部2aから離れるにつれて表面粗さが小さくなっていればよい。あるいは、以下のようにして確認することもできる。平面部2bを等間隔に複数の領域に分けて、各領域において複数箇所で表面粗さを測定し、各領域における平均の表面粗さを比較すればよい。
 上述したが、図8および図9に示す例のように、角部2aは平面視で凸曲面とすることができる。この場合には、角部2aが角を有さない、応力が集中し難い形状となるので、角部2aの近傍を起点として、ろう材3および絶縁基板1にクラック等が発生し難く、信頼性の高いものとなる。角部2aは、例えば、平面視で半径0.1mm~3mm程度の曲面とすることができる。上記のような表面粗さとする角部2a以外の角部においても凸曲面とすることができる。例えば、大きさの小さい金属板22の凸の角部22a、図4に示す例における切欠き部に形成される凸の角部21aである。このような別の金属板2に隣接する角部を凸曲面とすると、この角部と隣接する金属板2との間において放電が発生して絶縁性が低下してしまう可能性が低減される。
 図4に示す例のように、金属板2が凹の角部2cを有し、この凹の角部2cの近傍に他の金属板2(22)が位置している場合は、凹の角部2cの平面粗さは平面部2bより小さくすることができる。このようにすると、図11に示す例のように、凹の角部2cにおけるろう材3の這い上がりが大きくなる。そのため、凹の角部2cの表面粗さが大きい場合の絶縁基板1上へのろう材3の広がり(図10に示す二点鎖線)に比較して、凹の角部2cから絶縁基板1上へのろう材3の広がりが小さいものとなる。これにより、凹の角部2cに近接して配置された他の金属板2(22)との距離が小さくなって絶縁性が低下してしまう可能性が低減される。ここで、図10は、図4(a)のC部の拡大図の一例を示し。図11は図10の斜視図である。
 なお、図10および図11に示す例のように、凹の角部2cは、平面視で凹曲面とすることができる。この場合には、凹の角部2cにおけるろう材3の這い上がり高さをより高いものとしやすくなる。また、凹の角部2cが角を有さない、応力が集中し難い形状となるので、凹の角部2cの近傍を起点としたクラック等が発生し難く、信頼性の高いものとなる。凹の角部2cは、例えば、平面視で半径0.1mm~3mm程度の凹曲面とすることができる。
 凹の角部2cの表面粗さの測定位置は、角の頂点から2つの平面部2b(21b)の方向へ0.5mm程度までの部分であればよい。図10および図11に示す例のように角が平面視で曲面である場合には、平面視において2つの平面部2b(21b)を延長して交差する部分を角の頂点とみなして、そこから平面部2b(21b)の方向へ0.5mm程度までの部分である。より明確には、図10に示す例のように、凹の角部2cを有する金属板2(21)の平面部2b(21b)から外側に広がったろう材3の外周端の直線部分を角の方向へ延長した仮想延長線(図10に示す2つの直線L)が凹の角部2cを有する金属板2(21)の側面と交差する部分に挟まれる範囲(図10および図11に示す範囲c)を金属板21の凹の角部2cとすることができる。言い換えれば、凹の角部2cの範囲は、角の頂点から平面部2b(21b)の外側のろう材3の幅の範囲である。
 凹の角部2cから平面部2b(21b)にかけて表面粗さが徐々に大きくなるものとすることができる。この場合には、金属板2の側面におけるろう材の濡れ性の変化が、凹の角部2cの近傍においても緩やかになり、図11に示す例のように、ろう材3の金属板2(21)の側面における高さの変化が緩やかになる。そして、絶縁基板1上へのろう材3の広がり長さも平面部2b(21b)と凹の角部2cとの間で極端に変化することがない。そのため、ろう材3における広がり長さが変化する部分は熱応力等が集中しやすい形状とはならないので、金属板2(21)の絶縁基板1への接合信頼性が向上したものとなる。上述したように、平面部2bから角部2aにかけて表面粗さを徐々に大きくするのと組み合わせて、凹の角部2cから平面部2b、角部2aと徐々に表面粗さを大きくすることができる。
 図12は、本開示のパワーモジュールの一例を示す上面図である。図13は図12のB-B線における断面図である。パワーモジュール100は、図12および図13に示す例のように、上述したようなパワーモジュール用基板10と、パワーモジュール用基板10の金属板2(21)上に搭載された電子部品40とを備える。このようなパワーモジュール100によれば、上記構成のパワーモジュール用基板10を備えていることから、金属板2と絶縁基板1との接合信頼性が向上したものとなる。
 図12および図13に示す例におけるパワーモジュール用基板10は、図1~図3に示す例のパワーモジュール用基板10と同じであり、絶縁基板1の上面に1つの大きい金属板2(21)と2つの小さい金属板2(22)とを備えている。大きい金属板2(21)に電子部品40が搭載されており、電子部品40と小さい金属板2(22)とは、ボンディングワイヤ41等の接続材によって電気的に接続されている。図12および図13に示す例においては、例えば、金属板21は、電子部品40の搭載用かつ放熱用として機能し、金属板22は、電子部品40を外部電気回路(図示せず)に電気的に接続するための接続する端子として機能する。この場合、金属板22は、平面視で絶縁基板1の外縁から突出していてもよい。また、図1~図3および図4~図6に示す例においては、絶縁基板1の下面にも金属板23がろう材3によって接合されている。図1~図3および図4~図6に示す例の場合は、金属板23は絶縁基板1の下面より一回り小さい四角形状のものである。このような金属板23は、電子部品40で発生した熱をパワーモジュール100外に放出するための放熱板として機能させることができる。これによって、パワーモジュール100としての放熱性が向上し、電子部品40の長期の作動信頼性が向上する。この絶縁基板1の下面に接合された金属板23は、電子部品40を搭載したり、外部回路と接続したりするための回路板として機能するものであってもよい。
 絶縁基板1は、パワーモジュール用基板10において、金属板2を固定して支持するための基体部分である。また、絶縁基板1は、絶縁基板1の上面における金属板21と金属板22あるいは絶縁基板1の上面の金属板21,22と絶縁基板1の下面の金属板23とを互いに電気的に絶縁させるための絶縁部材として機能する。
 絶縁基板1は、セラミック焼結体からなり、高い機械的強度および高い伝熱特性(冷却特性)などの特性を有するものがよい。セラミック焼結体としては、公知の材料を用いることができ、例えば、アルミナ(Al23)質焼結体、窒化アルミニウム(AlN)質焼結体、窒化ケイ素(Si34)質焼結体および炭化珪素(SiC)質焼結体などを用いることができる。絶縁基板1は、例えば、縦が10~120mm、横が10~120mm厚さが0.2~3.0mmの矩形板状のものを用いることができる。このような絶縁基板1は、公知の製造方法によって製造することができ、例えば、アルミナ粉末に焼結助剤を添加した原料粉末に有機バインダー等を加えて混練して、基板状に成形したのち、焼成することで製造することができる。
 金属板2は、上述したように、パワーモジュール100において、電子部品40が搭載され、電子部品40を外部電気回路に電気的に接続するための回路導体として、あるいは電子部品40に発生する熱を放熱するための放熱板として機能する。そのため、その形状は特に定まったものはなく、パワーモジュール100における配線設計に応じて設定されるものである。金属板2の厚みは、電気抵抗や強度、放熱性を考慮して、例えば、0.2mm~2.0mmに設定することができる。また、金属板2の数および配置もまた図1~図3および図4~図6に示す例に限られるものではない。
 金属板2は、例えば銅(Cu)または銅合金あるいはアルミニウム(Al)またはアルミニウム合金等の金属材料によって形成されている。いわゆる99%以上の純銅や純アルミニウムであると電気抵抗が小さく、熱伝導性にも優れている。また金属板2の成分として酸素が含有される場合には、金属板2における含有量が少ない方が、ボンディングワイヤ41と金属板2との接合強度の向上に関して有利である。
 金属板2は、例えば、金属母基板を打ち抜き加工して所定の形状とし、さらに側面の表面粗さを調整するための追加工をすることで作製することができる。金型を用いた、通常の打ち抜き加工により、側面と主面との間の角度がほぼ直角である金属板2とすることができる。そのため、パワーモジュール用基板10においては、金属板2間の距離を小さくすることができ、小型化することができる。金属板2の形状は、打ち抜き加工の際の金型の形状によって設定することができ、角部2aおよび凹の角部2cの形状をそれぞれ平面視で凸曲面および凹曲面とするのも同様である。
 そして、打ち抜き加工によって形成された、比較的表面粗さの小さい側面を追加工することで、凹の角部2cより表面粗さの大きい平面部2b、さらに平面部2bより表面粗さの大きい凸の角部2aを有する金属板2を形成することができる。打ち抜き加工後の追加工の程度を、角部2a、平面部2bおよび凹の角部2cのそれぞれで異ならせることで表面粗さも異ならせることができる。追加工としては、例えば、バレル研磨あるいはブラスト加工を用いることができる。ブラスト加工においては、研磨材を当てる時間を凹の角部2c、平面部2b、凸の角部2aの順で長くすればよい。バレル研磨においてもブラスト加工においても以下のようにすれば、研磨材を当てる時間を調整することができる。例えば、平面部2bおよび凹の角部2cに樹脂等からなる保護膜を設けた状態でバレル研磨またはブラスト加工した後、保護膜を除去して再度バレル研磨またはブラスト加工をすることで、角部2aの表面粗さを大きくすることもできる。平面部2bより凹の角部2cの方が研磨材が当たり難いので、平面部2bと凹の角部2cとでは加工時間を同じにすることができる。また、このような追加工によって、打ち抜き加工で発生するバリを除去することもできる。さらには、打ち抜き加工および追加工によって、金属板2の上面と側面の間の角を面取りしてR面とすることができ、この角からの放電を抑えることができる。
 あるいは、追加工で凹の角部2cの表面粗さを平面部2bの表面粗さより小さくするには、例えば、バレル研磨に用いるメディア(研磨石、研磨材)の大きさを調整して、凹の角部2cに研磨材が当たり難くする方法を用いることができる。例えば、直径0.6mmのメディアを用いると、直角の凹の角部2cにおいては角の頂点から0.3mm程度まではメディアが当たり難くなるので研磨され難く、この部分以外が研磨されやすくなる。研磨によって表面粗さが大きくなるようにすれば、研磨され難い凹の角部2cの表面粗さは元のままで、研磨されやすい平面部2bおよび凸の角部2a等の表面粗さは大きくなる。このとき、凸の角部2aは平面部2bより研磨材が当たりやすいので、加工時間を調整することで凸の角部2aの表面粗さを平面部2bの表面粗さより大きくすることができる。これは、ブラスト加工の場合でも同様で、研磨材の大きさを調整すればよい。
 小さい金属板22の側面は、部位によって表面粗さを変える必要はないが、小さい金属板22と大きい金属板21の平面部2b(21b)とでろう材3の側面への這い上がりの程度、絶縁基板1上への広がりの程度を同程度にするために、小さい金属板22についても大きい金属板21の平面部2b(21b)に施すのと同じ追加工をして作製することができる。
 金属板2の側面において、平面部2bから角部2aにかけて表面粗さが徐々に大きくなるようにするためには、例えば、上述した保護膜を用いてバレル研磨またはブラスト加工することもできる。例えば、平面部2bを保護膜で覆った状態でバレル研磨またはブラスト加工を施した後、角部2aの近傍の保護膜だけを除去して再度バレル研磨またはブラスト加工を施すことで、追加工の加工量(研磨の程度)を部位によって異ならせることができる。
 凹の角部2cから平面部2b(21b)、角部2a(21a)と徐々に表面粗さを大きくするには、凹の角部2cおよび平面部2b(21b)を保護膜で覆って追加工し、保護膜の角部2a(21a)側の一部を除去して再度追加工することを繰り返すればよい。あるいは、上述したバレル研磨において、複数種類の大きさを有するメディアを用いることができる。例えば、上記の直径0.6mmの第1メディアに加えて、直径3mmの第2メディアを用いることで、凹の角部2cの角の頂点から0.3mm程度までの部分では第1メディアおよび第2メディアともに当たり難くなり、角の頂点から0.3mm~1.5mm程度までの部分では第1メディアは当たりやすく、第2メディアは当たり難くなり、角の頂点から1.5mm以上離れた部分では第1メディア、第2メディアともに当たりやすくなる。凹の角部2cから離れるにつれて多くのメディアが当たって研磨されるので、表面粗さを徐々に大きくすることができる。組み合わせるメディアの大きさ、大きさの種類の数、混合比率等により、表面粗さの変化の状態を調整することができる。また、形状の異なるメディア、材質の異なるメディアを混合して用いることもできる。ブラスト加工の場合でも同様である。
 金属板2は、ろう材3によって絶縁基板1に接合され(ろう付けされ)ている。ろう材3としては、例えば、金属板2が銅(Cu)または銅合金からなる場合であれば、銀-銅(Ag-Cu)合金ろうに、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)等の活性金属を含む活性金属ろうを用いることができる。金属板2がアルミニウム(Al)またはアルミニウム合金からなる場合は、アルミニウム-シリコン(Al-Si)系合金またはアルミニウム-ゲルマニウム(Al-Ge)系合金のろう材を用いることができる。絶縁基板1に、スクリーン印刷等の方法でろう材ペーストを塗布して、その上に金属板2を載置して加圧した状態で加熱することで金属板2は絶縁基板1に接合(ろう付け)される。
 ろう材3は、平面視で金属板2の外縁から絶縁基板1上に広がっており、ろう材3の広がり幅、すなわち、平面視で金属板2の外縁からろう材3の外縁までの距離は、例えば、0.05mm~0.5mm程度とすることができる。また、金属板2(21)と他の金属板2(22)との間隔は、例えば、0.8mm~2.0mm程度とすることができる。隣接する金属板2同士の間において、ろう材3の外縁間の距離(間隔)は0.5mm~1.0mmとすることができる。ろう材3および金属板2同士の間隔がこの程度であれば、隣接する金属板2間において絶縁不良となる可能性を小さくすることができるとともに、十分小さいのでパワーモジュール用基板10およびパワーモジュール100を小型のものとすることができる。
 絶縁基板1の下面の金属板23が上述した放熱板として機能するものである場合には、平面視において、下面の金属板23の大きさは、例えば、上面の金属板2(21および22)全体の大きさと同じかそれよりも大きく、絶縁基板1よりも小さいものに設定することができる。下面の金属板23が上面の複数の金属板2(21および22)の外縁を結ぶ大きさと同程度の大きさである場合には、絶縁基板1の上下での熱応力の相違が低減されるため、パワーモジュール用基板10の反りを抑制することに関して有利である。また下面の金属板23を絶縁基板1よりも小さくすることで、下面の金属板23と上面の金属板2(21および22)との間の電気絶縁性を向上させることができる。また、下面の金属板23が上面の金属板2(21および22)よりも大きい、言い換えれば平面透視で金属板23の外縁の位置が上面の金属板2(21および22)の外縁より外側に位置する場合には、パワーモジュール100の使用時に発生する熱を下面の金属板23の水平方向に効果的に拡散することができ、放熱性を向上させることに関しては有利である。より放熱性を向上させたい場合には、下面の金属板23を絶縁基板1よりも大きくすることができる。この場合、上面の金属板2(21および22)は絶縁基板1の外縁より内側になるように接合して、下面の金属板23との絶縁性を確保するようにすることができる。
 金属板2(21,22、23)の表面には、その表面の保護のため、あるいはろう材3またはボンディングワイヤ41等の接合性の向上のためにめっき層をもうけてもよい。めっき層は、パラジウム、ニッケル、銀等の金属めっき層とすることができる。
 なお、パワーモジュール用基板10は、いわゆる多数個取りの形態で作製してこれを分割することで作製することもできる。
 このようなパワーモジュール用基板10に電子部品40を搭載することで、図12および図13に示す例のような、パワーモジュール100となる。電子部品40は、例えばIGBT等のパワー半導体素子である。電子部品40は、金属板2の上に、例えば、はんだ付けまたはろう付けあるいは拡散接合で接合されて固定される。図12および図13に示す例では、電子部品40は絶縁基板1の上面に接合された大きい金属板21の上に固定され、電子部品40と上面の小さい金属板22とがアルミニウムや金(Au)等のボンディングワイヤ41で電気的に接続されている。なお、パワーモジュール100は、例えば、ケースに収納されていてもよいし、ケースに収納してさらに樹脂で覆うこともできる。ケースの底にヒートシンクを配置して、パワーモジュール用基板10の下面の金属板23とヒートシンクとを伝熱性の材料、例えば伝熱グリースで接合して放熱性を高めることもできる。
 なお、パワーモジュール用基板10およびパワーモジュール100は、上記実施形態に記載された例に限定されるものではなく、本開示の要旨の範囲内で種々の変更は可能である。
1・・・・絶縁基板
2(21,22,23)・・・・金属板
2a(21a,22a)・・・角部
2b(21b,22b)・・・平面部
2c・・・凹の角部
3・・・・ろう材
10・・・パワーモジュール用基板
40・・・・電子部品
41・・・・ボンディングワイヤ
100・・・パワーモジュール

Claims (4)

  1. 絶縁基板と、該絶縁基板にろう材を介して接合された金属板とを備えており、
    該金属板の側面における厚み方向の表面粗さは、少なくとも平面視における前記金属板の中心から最も離れた角部の表面粗さが、該角部を挟む平面部の表面粗さより大きいパワーモジュール用基板。
  2. 前記平面部から前記角部にかけて、前記表面粗さは徐々に大きくなっている請求項1に記載のパワーモジュール用基板。
  3. 前記角部は平面視で凸曲面である請求項1または請求項2に記載のパワーモジュール用基板。
  4.  請求項1乃至請求項3のいずれかに記載のパワーモジュール用基板と、
    該パワーモジュール用基板の前記金属板上に搭載された電子部品とを備えるパワーモジュール。
PCT/JP2018/019679 2017-06-28 2018-05-22 パワーモジュール用基板およびパワーモジュール WO2019003725A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18824890.0A EP3648557B1 (en) 2017-06-28 2018-05-22 Power module substrate and power module
US16/627,099 US11195776B2 (en) 2017-06-28 2018-05-22 Power module substrate and power module
JP2019526691A JP6832426B2 (ja) 2017-06-28 2018-05-22 パワーモジュール用基板およびパワーモジュール
CN201880041644.1A CN110809910B (zh) 2017-06-28 2018-05-22 功率模块用基板以及功率模块
US17/501,539 US20220037226A1 (en) 2017-06-28 2021-10-14 Power module substrate and power module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126375 2017-06-28
JP2017126375 2017-06-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/627,099 A-371-Of-International US11195776B2 (en) 2017-06-28 2018-05-22 Power module substrate and power module
US17/501,539 Continuation US20220037226A1 (en) 2017-06-28 2021-10-14 Power module substrate and power module

Publications (1)

Publication Number Publication Date
WO2019003725A1 true WO2019003725A1 (ja) 2019-01-03

Family

ID=64741364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019679 WO2019003725A1 (ja) 2017-06-28 2018-05-22 パワーモジュール用基板およびパワーモジュール

Country Status (5)

Country Link
US (2) US11195776B2 (ja)
EP (1) EP3648557B1 (ja)
JP (1) JP6832426B2 (ja)
CN (1) CN110809910B (ja)
WO (1) WO2019003725A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190255A1 (ja) * 2022-03-31 2023-10-05 デンカ株式会社 回路基板及びその製造方法、並びにパワーモジュール

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6832426B2 (ja) * 2017-06-28 2021-02-24 京セラ株式会社 パワーモジュール用基板およびパワーモジュール

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236666A (ja) * 1995-02-23 1996-09-13 Nec Corp 放熱用金属板付半導体装置
JP2001110953A (ja) * 1999-10-07 2001-04-20 Sumitomo Metal Electronics Devices Inc 半導体モジュール用基板及びその製造方法
JP2007053349A (ja) 2005-07-20 2007-03-01 Mitsubishi Materials Corp 絶縁基板および絶縁基板の製造方法並びにパワーモジュール用基板およびパワーモジュール
JP2010010561A (ja) * 2008-06-30 2010-01-14 Mitsubishi Materials Corp パワーモジュール用基板及びその製造方法
WO2015019602A1 (ja) * 2013-08-08 2015-02-12 株式会社 東芝 回路基板および半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139469A (en) * 1981-02-24 1982-08-28 Mitsubishi Electric Corp Manufacture of die for press forming
JP2001148438A (ja) * 1999-11-22 2001-05-29 Ngk Spark Plug Co Ltd 金属蓋及びパッケージ
US6921971B2 (en) * 2003-01-15 2005-07-26 Kyocera Corporation Heat releasing member, package for accommodating semiconductor element and semiconductor device
US20100068552A1 (en) * 2008-03-31 2010-03-18 Infineon Technologies Ag Module including a stable solder joint
US7821130B2 (en) * 2008-03-31 2010-10-26 Infineon Technologies Ag Module including a rough solder joint
JP5291376B2 (ja) * 2008-04-28 2013-09-18 京セラケミカル株式会社 複合防弾板
JP5400447B2 (ja) * 2009-03-31 2014-01-29 三井金属鉱業株式会社 粗化処理銅箔、粗化処理銅箔の製造方法及び銅張積層板
WO2011027418A1 (ja) * 2009-09-01 2011-03-10 株式会社 東芝 半導体発光素子及び半導体発光装置
JP5614423B2 (ja) * 2012-03-29 2014-10-29 三菱マテリアル株式会社 パワーモジュール用基板及びその製造方法
JP5954371B2 (ja) * 2014-08-05 2016-07-20 三菱マテリアル株式会社 パワーモジュール用基板及びその製造方法
US10157753B2 (en) * 2014-09-26 2018-12-18 Kyocera Corporation Wiring board, electronic device, and electronic module
JP6642146B2 (ja) * 2015-03-31 2020-02-05 日立金属株式会社 窒化珪素系セラミックス集合基板及びその製造方法
JP6832426B2 (ja) * 2017-06-28 2021-02-24 京セラ株式会社 パワーモジュール用基板およびパワーモジュール

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236666A (ja) * 1995-02-23 1996-09-13 Nec Corp 放熱用金属板付半導体装置
JP2001110953A (ja) * 1999-10-07 2001-04-20 Sumitomo Metal Electronics Devices Inc 半導体モジュール用基板及びその製造方法
JP2007053349A (ja) 2005-07-20 2007-03-01 Mitsubishi Materials Corp 絶縁基板および絶縁基板の製造方法並びにパワーモジュール用基板およびパワーモジュール
JP2010010561A (ja) * 2008-06-30 2010-01-14 Mitsubishi Materials Corp パワーモジュール用基板及びその製造方法
WO2015019602A1 (ja) * 2013-08-08 2015-02-12 株式会社 東芝 回路基板および半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190255A1 (ja) * 2022-03-31 2023-10-05 デンカ株式会社 回路基板及びその製造方法、並びにパワーモジュール

Also Published As

Publication number Publication date
EP3648557A1 (en) 2020-05-06
EP3648557A4 (en) 2021-03-24
EP3648557B1 (en) 2023-08-30
JPWO2019003725A1 (ja) 2020-04-02
US20220037226A1 (en) 2022-02-03
US11195776B2 (en) 2021-12-07
CN110809910B (zh) 2022-11-25
JP6832426B2 (ja) 2021-02-24
CN110809910A (zh) 2020-02-18
US20200135612A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
US20220037226A1 (en) Power module substrate and power module
JP7204962B2 (ja) セラミックス回路基板および半導体モジュール
JP2014127678A (ja) 配線基板および電子装置
US11935811B2 (en) Baseplate for a semiconductor module and method for producing a baseplate
JP4124040B2 (ja) 半導体装置
WO2016031440A1 (ja) チップ抵抗器およびその実装構造
CN108028232B (zh) 布线基板、电子装置以及电子模块
JP4132043B2 (ja) 発光素子収納用パッケージおよび発光装置
JP6271867B2 (ja) 電子部品搭載用基板
JP6046421B2 (ja) 配線基板および電子装置
JP5855822B2 (ja) 多数個取り配線基板
JPWO2019039258A1 (ja) 電子部品搭載用パッケージおよび電子装置
JP6744488B2 (ja) パワーモジュール用基板およびパワーモジュール
JP6317178B2 (ja) 回路基板および電子装置
WO2019163941A1 (ja) パワーモジュール用基板およびパワーモジュール
JP6983119B2 (ja) 放熱板、半導体パッケージおよび半導体装置
JP4812516B2 (ja) 複数個取り配線基板
JP5004837B2 (ja) 構造体及び電子装置
JP2007042848A (ja) 配線基板、電気素子装置並びに複合基板
JP2015146383A (ja) 配線基板、電子装置および電子モジュール
JP6608728B2 (ja) 回路基板および電子装置
JPWO2016152905A1 (ja) 配線基板、電子装置および電子モジュール
JP2023089928A (ja) パッケージ
JP2019041086A (ja) 半導体パッケージおよび半導体装置
JP5679827B2 (ja) 配線基板および多数個取り配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824890

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018824890

Country of ref document: EP

Effective date: 20200128