WO2018235901A1 - ろ過膜モジュール及びろ過処理方法 - Google Patents
ろ過膜モジュール及びろ過処理方法 Download PDFInfo
- Publication number
- WO2018235901A1 WO2018235901A1 PCT/JP2018/023641 JP2018023641W WO2018235901A1 WO 2018235901 A1 WO2018235901 A1 WO 2018235901A1 JP 2018023641 W JP2018023641 W JP 2018023641W WO 2018235901 A1 WO2018235901 A1 WO 2018235901A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filtration
- flow
- membrane element
- membrane module
- channel
- Prior art date
Links
- 238000001914 filtration Methods 0.000 title claims abstract description 247
- 239000012528 membrane Substances 0.000 title claims abstract description 226
- 238000004140 cleaning Methods 0.000 claims abstract description 42
- 230000002093 peripheral effect Effects 0.000 claims abstract description 26
- 239000012530 fluid Substances 0.000 claims description 145
- 238000012545 processing Methods 0.000 claims description 105
- 239000002245 particle Substances 0.000 claims description 93
- 238000009295 crossflow filtration Methods 0.000 claims description 53
- 238000000034 method Methods 0.000 claims description 46
- 230000008569 process Effects 0.000 claims description 28
- 238000011001 backwashing Methods 0.000 claims description 27
- 239000010419 fine particle Substances 0.000 claims description 16
- 238000004381 surface treatment Methods 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- 238000010979 pH adjustment Methods 0.000 claims description 6
- 238000000746 purification Methods 0.000 claims description 6
- 239000002904 solvent Substances 0.000 claims description 6
- 238000006467 substitution reaction Methods 0.000 claims description 6
- 230000001133 acceleration Effects 0.000 claims description 5
- 230000000694 effects Effects 0.000 abstract description 16
- 238000000926 separation method Methods 0.000 abstract description 8
- 238000009825 accumulation Methods 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 58
- 239000000243 solution Substances 0.000 description 13
- 230000008859 change Effects 0.000 description 11
- 239000000919 ceramic Substances 0.000 description 10
- 239000000706 filtrate Substances 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 10
- 230000003068 static effect Effects 0.000 description 10
- 230000009471 action Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 238000005070 sampling Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000003756 stirring Methods 0.000 description 6
- 238000005265 energy consumption Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000001471 micro-filtration Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- IUVCFHHAEHNCFT-INIZCTEOSA-N 2-[(1s)-1-[4-amino-3-(3-fluoro-4-propan-2-yloxyphenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-6-fluoro-3-(3-fluorophenyl)chromen-4-one Chemical compound C1=C(F)C(OC(C)C)=CC=C1C(C1=C(N)N=CN=C11)=NN1[C@@H](C)C1=C(C=2C=C(F)C=CC=2)C(=O)C2=CC(F)=CC=C2O1 IUVCFHHAEHNCFT-INIZCTEOSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- -1 polyethylene, tetrafluoroethylene Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 239000013076 target substance Substances 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/062—Tubular membrane modules with membranes on a surface of a support tube
- B01D63/065—Tubular membrane modules with membranes on a surface of a support tube on the outer surface thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/062—Tubular membrane modules with membranes on a surface of a support tube
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/062—Tubular membrane modules with membranes on a surface of a support tube
- B01D63/063—Tubular membrane modules with membranes on a surface of a support tube on the inner surface thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/066—Tubular membrane modules with a porous block having membrane coated passages
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/06—Tubular membrane modules
- B01D63/067—Tubular membrane modules with pleated membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/02—Membrane cleaning or sterilisation ; Membrane regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/08—Prevention of membrane fouling or of concentration polarisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/08—Flow guidance means within the module or the apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2313/00—Details relating to membrane modules or apparatus
- B01D2313/19—Specific flow restrictors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2315/00—Details relating to the membrane module operation
- B01D2315/10—Cross-flow filtration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/04—Backflushing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2321/00—Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
- B01D2321/20—By influencing the flow
- B01D2321/2008—By influencing the flow statically
- B01D2321/2016—Static mixers; Turbulence generators
Definitions
- the present invention relates to a filtration membrane module and a filtration method, and more particularly to a filtration membrane module and a filtration method particularly suitable for a cross flow filtration method using a ceramic filter.
- a ceramic filter is a microfiltration device using a ceramic membrane as a filter, and is a filtration membrane such as an MF membrane (Micro filtration) having a pore diameter of several ⁇ m, UF membrane (Ultra filtration), NF membrane (Nano filtration), etc.
- the type and mesh size are selected according to the physical properties and purpose of the object to be treated and used for filtration (Patent Documents 1 to 6).
- filtration The purpose of filtration is separation, concentration, purification, solvent substitution, pH adjustment, conductivity adjustment, fine particle surface treatment, fine particle surface treatment, classification, etc. of the material to be treated. It also helps protect the environment.
- the filtration process is roughly divided into two types, a total amount filtration method and a cross flow filtration method, but usually, the ceramic filter is operated in the cross flow method.
- the cross flow filtration method is capable of always washing away the filtration membrane surface by creating a flow substantially parallel to the membrane surface, and deposited substances such as suspended substances and colloids in the treatment fluid are deposited on the filtration membrane surface. It filters while suppressing clogging.
- the cross flow filtration method is a method of performing filtration while suppressing clogging, generally, the higher the membrane surface flow rate (the flow rate of the region along the membrane surface of the filtration membrane in the flow of treatment fluid) is higher It is known that the deposition of adhesion substances on the film surface is suppressed. That is, it is known that the flow rate and flow rate of the treatment fluid on the filtration membrane greatly affect the filtration characteristics and the washing of the deposit.
- the present condition is that the filtration process is performed by designing an economical membrane surface flow rate in relation to the required amount of treatment and the cleaning effect.
- the entire ceramic filter has a substantially cylindrical shape, and has a form in which several tubular channels pass through in the cylindrical shape, and from the one end side of the tubular channel to the other end
- the filtration is performed by circulating the pressurized processing fluid to the side.
- the inner diameter of the tubular flow channel is about several mm to several cm, and the flow velocity of the processing fluid is usually calculated with respect to this inner diameter to carry out filtration.
- the fluid flowing through the tubular channel has a higher flow velocity toward the center and a lower flow velocity (membrane surface flow velocity) toward the outside with the filtration surface. Therefore, simply increasing the average flow velocity of the fluid in the tubular flow channel can not efficiently increase the film surface flow velocity and does not lead to the effective use of energy. In the case of a slurry containing fine particles, it is difficult to wash the cleaning object contained in the aggregates because the fine particles form aggregates.
- the cross flow filtration method is a method of performing filtration while suppressing clogging, when used to a certain extent, clogging may occur due to deposition of deposits on pores, and the like. Therefore, clogging is eliminated by performing backwashing in which the cleaning fluid is passed from the outside of the ceramic filter to the inner tubular flow passage.
- the cleaning fluid to be backwashed is an organic solvent, various types of cleaning fluid or pure water, but also in this case a long time or a large amount of cleaning fluid is required, so It was rare.
- Patent Document 7 proposes a rotary filter plate type filter which adopts a cross flow filtration system and can efficiently remove solid components continuously for a long time.
- a pair of disc-shaped chamber plates fixed to a rotating shaft, and a cake layer disposed in the filtration chamber and deposited on the filtration surfaces of the pair of filter plates are scraped off.
- a scraper fixed to a housing is provided, and such a dynamic removal means is provided with a hollow cylindrical filtration membrane which carries out filtration processing with cross flow by pressure-feeding the processing fluid to the primary side. It was difficult to apply to filtration membrane modules.
- Patent documents 8 and 9 are filtration membrane modules provided with a hollow cylindrical filtration surface which carries out pressurized liquid feed of processing fluid on the primary side, and performs filtration processing by cross flow, and are arranged in the above-mentioned primary side channel A flow regulator is provided, and the flow regulator changes the flow of the processing fluid passing through the primary side channel without driving itself, and the flow regulator is passing through the primary side channel.
- An invention relating to a filtration membrane module is disclosed, which is configured to give a circumferential component of the primary side flow path to the flow of the processing fluid.
- a plate called a rotating element is spirally processed into a plate and installed in a module.
- Patent Document 9 describes that a helically-shaped member called “turbulence inducing body” is held by a support pipe to forcibly and automatically impart turbulent flow to inflow liquid. However, it has not been described that the “turbulence inducer” held by the support pipe imparts a centrifugal effect to the influent.
- the present invention relates to the treatment conditions of the filtration process (the primary channel in the filtration membrane module and the channel diameter in the outer annular channel between the membrane element and the inner peripheral surface of the housing, the channel length,
- the filtration conditions such as fluid density and viscosity are set the same, compared with the conventional filtration device and filtration method, the centrifugal effect and the membrane surface flow rate (filtration)
- filtration It is an object of the present invention to provide a filtration membrane module and a filtration treatment method which can increase the flow velocity of the region along the membrane surface and can improve the filtration efficiency while suppressing the deposition of attached substances on the membrane surface.
- Another object of the present invention is to provide a filtration membrane module and a filtration process method capable of reducing the energy consumption necessary for the filtration process.
- the processing conditions for backwashing are set to be the same, compared with the conventional filtration apparatus and filtration method, the centrifugal effect and the surface flow velocity (of the flow of the processing fluid)
- Another object of the present invention is to provide a filtration membrane module and a filtration method capable of reducing energy consumption required for backwashing.
- the present invention relates to a filtration membrane module including a cylindrical filtration surface in which a processing fluid is pressurized and fed to a primary side flow path and filtration processing is performed by cross flow, wherein the primary side flow path is the hollow cylindrical filtration.
- the processing fluid which is outside the surface and changes the flow of the processing fluid passing through the inside of the primary side channel without driving by itself, and which flows along the filtering surface in the primary side channel
- the flow regulator which is configured to exhibit the centrifugal ability, is disposed in the primary flow passage of the filtration membrane module.
- the present invention can be practiced as a filtration membrane module suitable for cross flow filtration. That is, it comprises a membrane element provided with at least one tubular channel defined by a hollow cylindrical filtration surface, and a cylindrical housing disposed outside the membrane element, and the primary side channel is the membrane It is comprised from the outer annular flow path between an element and the inner skin of the above-mentioned housing, and the secondary side flow path is constituted from the above-mentioned tubular flow path, and it applies to the filtration membrane module which performs crossflow filtration processing.
- the flow regulator is a spiral fin installed in the tubular flow channel, and the flow regulator is capable of processing the processing fluid in a region along the filtration surface in the primary channel. Are configured to be
- the present invention can be practiced as a filtration membrane module suitable for external pressure crossflow filtration. That is, it comprises a membrane element provided with at least one tubular channel defined by a hollow cylindrical filtration surface, and a cylindrical housing disposed outside the membrane element, and the primary side channel is the membrane An external pressure type filtration membrane configured to filter the external pressure cross flow by being constituted of an outer annular flow passage between the element and the inner peripheral surface of the housing and the secondary side flow passage being constituted by the tubular flow passage. It can be applied to modules.
- the flow regulator is a spiral fin installed in the outer annular flow channel, and guides the flow of the processing fluid passing through the outer annular flow channel in a spiral shape, A centrifugal force is applied to the processing fluid passing through the outer annular flow channel.
- the spiral fin may be a pipe or a round bar formed in a coil shape, or a strip-shaped flat plate may be formed in a screw (auger) shape.
- the present invention can also be implemented as having a backwashing flow regulator disposed in the outer annular flow channel.
- the backwashing flow regulator changes the flow of the cleaning fluid passing through the outer annular flow channel without driving itself.
- the flow velocity in the region along the surface can be configured to exhibit a wall fluid acceleration function that increases the flow velocity in the region along the outer peripheral surface when the backwashing flow regulator is not disposed.
- the backwashing flow regulator may be implemented as a spiral fin laid in the outer annular flow channel.
- the spiral fin of the flow controller for backwashing may be a pipe or a round bar formed in a coil shape, or a strip-shaped flat plate may be formed in a screw (auger) shape. .
- the present invention aims at at least one or more of concentration, purification, solvent substitution, pH adjustment, conductivity adjustment, fine particle washing, fine particle surface treatment, classification using the above-mentioned filtration membrane module.
- the present invention provides a filtration treatment method characterized in that cross flow filtration treatment of the treatment fluid is performed.
- the present invention can increase the film surface flow rate as compared with the conventional filtration device and filtration method, and can improve the filtration efficiency while suppressing the deposition of attached substances on the film surface and the filtration process It is possible to provide a method.
- the present invention is also able to provide a filtration membrane module and a filtration process method capable of reducing the energy consumption necessary for the filtration process.
- the present invention can provide a filtration membrane module and a filtration method that can increase the membrane surface flow rate on the filtration surface of the membrane element and can improve the efficiency of the backwashing treatment as compared with the conventional filtration device and filtration method. It was possible to do.
- the present invention is also able to provide a filtration membrane module and a filtration treatment method capable of reducing the energy consumption required for the backwash treatment.
- FIG. 1 is a circuit diagram of a filtration device to which a filtration membrane module according to first to third embodiments of the present invention is applied.
- A is principal part cross-section explanatory drawing of the filtration membrane module to which the 1st-3rd embodiment of this invention is applied.
- B is a cross-sectional view of the main parts showing the relationship of the components of the filtration membrane module in the case of internal pressure crossflow filtration, and
- C) is the main part showing the relationship of the components of the filtration membrane module in the case of external pressure crossflow filtration FIG.
- (A) is principal part cross-section explanatory drawing of the filtration membrane module which concerns on the 2nd Embodiment of this invention
- (B) is principal part cross-section explanatory drawing of the filtration membrane module concerning other embodiment of this invention It is. It is principal part cross-section explanatory drawing of the filtration membrane module which concerns on the 1st Embodiment of this invention. It is principal part cross-sectional explanatory drawing of the filtration membrane module which concerns on the 3rd Embodiment of this invention. It is a circuit diagram of a filtration device to which a filtration membrane module concerning a 4th embodiment of the present invention is applied.
- (A) is principal part cross-section explanatory drawing of the filtration membrane module which concerns on the 4th Embodiment of this invention
- (B) is principal part cross-section explanatory drawing which shows the example of a change of the filtration membrane module concerning the embodiment. It is.
- (A) (B) (C) (D) is principal part sectional drawing which shows the example of a change of the spiral fin of the filtration membrane module which concerns on the embodiment, respectively.
- It is a perspective view which shows the example of a change of the membrane element of the filtration membrane module which concerns on the embodiment.
- Cross flow filtration is roughly classified into internal pressure cross flow filtration and external pressure cross flow filtration.
- the filtrate generated by the filtration process is allowed to pass to the outer secondary side flow path through the processing fluid pressurized to the membrane element having the tubular flow path as the primary side flow path inside. It is a processing method.
- the tubular flow passage inside the membrane element is used as the secondary flow passage, and the outer side of the membrane element is treated as the primary flow passage, and the outer primary flow passage is treated
- It is a treatment system in which the filtrate produced by the filtration process is passed through the fluid to the inner secondary flow passage of the membrane element.
- the membrane element is provided with a filtration membrane that constitutes the filtration surface and a support 19 that supports the filtration membrane, and the filtration membrane is usually provided on the surface where the membrane element and the primary channel are in contact.
- the support 19 used is one that does not inhibit the process by the filtration membrane. More specifically, in the case of internal pressure cross flow filtration, as shown in FIG. 2 (B), a filtration membrane is provided along the inner wall surface of the tubular flow passage inside the membrane element, and the external pressure cross flow In the case of the filtration process, as shown in FIG. 2C, it is provided along the outer peripheral surface of the membrane element.
- FIGS. 1 to 5 Three embodiments of a filtration apparatus suitable for internal pressure crossflow filtration process with reference to FIGS. 1 to 5 (first to third embodiments) An embodiment of the filtration apparatus suitable for the external pressure cross flow filtration process is shown with reference to FIG.
- FIG. 1 shows an example of the basic configuration of an apparatus for performing filtration processing on various processing fluids such as a fine particle dispersion, and a plurality of filtration membrane modules 11 are used or a stirring apparatus is used.
- the filtration apparatus includes a filtration membrane module 11 having a housing 12 and a membrane element 13, and a treatment liquid tank 55 connected to the primary side inlet 51 of the filtration membrane module 11 via a liquid feed pump 56.
- the processing fluid in the processing liquid tank 55 is pressure-fed by the liquid feed pump 56 into the filtration membrane module 11.
- the pumped processing fluid passes through the primary side flow passage 14 (see FIG. 2A) in the membrane element 13 and is returned from the primary side discharge port 52 to the treatment liquid tank 55 through the return valve 61.
- a processing fluid or the like is supplied from the liquid supply source 57 to the processing liquid tank 55 as necessary.
- the liquid supplied from the liquid supply source 57 may be a cleaning liquid or a dilution liquid in addition to the processing fluid, and may be supplied from a plurality of supply sources to the processing liquid tank 55 through different paths. It does not matter.
- the presence or absence of the supply of the liquid from the liquid supply source 57 and the type and amount of the liquid can be changed and implemented depending on the purpose of the filtration and the like.
- Cross-flow filtration is performed by passing the pumped processing fluid through the primary flow passage 14 in the membrane element 13. Although this filtration process may be one pass, it may be repeatedly performed by a circulation path connecting the filtration membrane module 11 and the treatment liquid tank 55.
- the filtrate produced by the filtration process is discharged to the outside of the membrane element 13 and discharged from the secondary side discharge port 54 provided in the housing 12 to the filtrate discharge destination 59 via the filtrate valve 62.
- the processing fluid for which the filtration processing has been completed is discharged to a processing material discharge destination 58 from a path provided at an appropriate position of the circulation path.
- the cleaning fluid organic solvent, cleaning fluid, pure water, etc.
- the cleaning fluid supply source 60 is the housing
- the solution is pressure-fed to the secondary side inlet 53 provided at 12 via the cleaning solution valve 63.
- the cleaning fluid introduced into the housing 12 is introduced from the outer peripheral surface of the membrane element 13 into the inner primary flow passage 14 and discharged from the primary inlet 51 and the primary outlet 52 to the treatment liquid tank 55 or the like. Be done.
- the cleaning solution may be circulated.
- the filtration membrane module 11 includes a membrane element 13 and a cylindrical housing 12 disposed outside the membrane element 13.
- the membrane element 13 is provided with at least one (four in FIG. 2) primary side flow paths 14 which are tubular flow paths defined by the hollow cylindrical filtration surface 15. Both ends of the membrane element 13 are respectively connected to the primary side inlet 51 and the primary side outlet 52 described above, and are connected to an external circuit through the primary side inlet 51 and the primary side outlet 52, and the primary side inlet is introduced.
- the processing fluid pressurized from the port 51 is introduced into the primary flow passage 14, and the processing fluid after the crossflow filtration treatment is discharged from the primary discharge port 52.
- Ceramic-based materials such as aluminum oxide, zirconium oxide, and titanium oxide are mainly used for the filtration membrane that constitutes the filtration surface 15, but stainless steel or glass membranes, polyethylene, tetrafluoroethylene, polypropylene, acetic acid Organic films of cellulose, polyacrylonitrile, polyimide, polysulfone, polyethersulfone, etc. may be used. These are used for filtration processing by selecting the type and size according to the physical properties of the material to be treated such as MF membrane (Micro filtration), UF membrane (Ultra filtration), NF membrane (Nano filtration) and filtration treatment. Ru.
- the ceramic filter is particularly advantageous because it is made of ceramic and has many advantages such as corrosion resistance, heat resistance, pressure resistance, back pressure resistance, durability, and cleaning properties.
- the support 19 supporting the filtration membrane of the filtration surface 15 is generally a porous ceramic material, but may be a stainless steel tube or a porous resin tube.
- the housing 12 is a hollow cylindrical body and is made of a material having liquid tightness and pressure resistance, such as metal or synthetic resin.
- the space between the inner wall of the housing 12 and the outer wall of the membrane element 13 constitutes a secondary side flow passage 16 which is an outer annular flow passage.
- both ends of the housing 12 and the membrane element 13 are supported by support members, and other constituent members such as the secondary side inlet 53 and the secondary side outlet 54 provided in the housing 12 are used.
- One filtration membrane module 11 is comprised including.
- FIG. 2B shows the filtration membrane module 11, the housing 12, the membrane element 13, the primary flow path 14, the filtration surface (filtration membrane) 15, the secondary flow path 16 and the support in internal pressure cross flow filtration treatment.
- FIG. 2C illustrates the relationship of 19 and FIG. 2C illustrates the relationship of each element in the external pressure cross flow process.
- the flow regulator 17 shown in FIGS. 3 and 4 is disposed inside the primary side flow path 14.
- a backwashing flow regulator 18 shown in FIG. 5 is disposed inside the secondary side flow passage 16 which is an outer annular flow passage.
- the flow regulator 17 and the backwashing flow regulator 18 may be used in combination, or only one of them may be disposed.
- the flow regulator 17 is implemented as a static mixer 21.
- the static mixer 21 is formed by arranging a plurality of elements 22 in a form in which rectangular blades are twisted 180 degrees in the axial direction of the primary channel 14, and the elements 22 have right and left elements different in twisting direction.
- the conversion effect of is important. That is, as the process fluid changes its flow direction along the streamlined surface of the twisting surface of the element 22, an axially rotating flow occurs in the process fluid.
- the fluid flowing in the central portion of the tubular primary side flow path 14 of the processing fluid moves to the inner peripheral surface, and the fluid flowing in the inner peripheral surface is pushed by the moved fluid and the central portion Move to
- the fluid rotates in the flow passage having a semicircular cross section divided by the element 22, and the flow velocity in the region along the filtration surface 15 in the primary flow passage 14 is compared with the case where the static mixer 21 is not provided.
- a fluid acceleration function that can be enhanced. Therefore, although the element 22 may be one in which right and left elements having different twist directions are alternately arranged, one of the right and left elements is continuously disposed. It does not matter if it is.
- the processing fluid is a slurry containing fine particles
- the processing fluid is a slurry containing fine particles
- the effect of removing the target substance contained in the aggregate by filtration is promoted.
- the static mixer 21 may be provided over the entire length of the primary side flow path 14, may be provided in a part, or may be provided intermittently.
- the structure in which the static mixer 21 is disposed in the primary side flow path 14 is a structure in which both ends or one end of the static mixer 21 are fixed to supporting members at both ends of the filtration membrane module 11 or both ends or one end of the static mixer 21
- a structure can be exemplified in which both ends or one end of the element 13 are directly or indirectly supported.
- the outer periphery of the element 22 may be in contact with or fixed to the filtration surface 15 of the primary flow passage 14, or may be slightly spaced.
- the flow regulator 17 is implemented as a spiral fin 31.
- the spiral fins 31 are spirally extended in the axial direction of the primary side flow passage 14 and become a spiral flow flowing along the spiral flow passage defined by the spiral fins 31, and A fluid acceleration function is exhibited which can increase the flow velocity in the region along the filtration surface 15 in the flow channel 14.
- the effect of centrifugal force works, and there is also a classification effect in which large particles are preferentially transferred in the direction of the filter surface and small particles are transferred in the direction away from the filter surface. As a result, clogging is less likely to occur, which has the advantage of increasing the throughput of the filter itself.
- the direction of twisting of the spiral fin 31 may be a right or left spiral, or both spirals may be changed in the axial direction of the primary side flow passage 14. By providing a plurality of spiral fins 31, a double or more double spiral structure may be used.
- the spiral fins 31 may be provided over the entire length of the primary side flow path 14, may be provided in a part, or may be provided intermittently.
- the structure in which the spiral fin 31 is disposed in the primary side flow path 14 has a structure in which both ends or one end of the spiral fin 31 are fixed to supporting members at both ends of the filtration membrane module 11 or both ends or one end of the spiral fin 31 May be supported directly or indirectly at both ends or one end of the membrane element 13.
- the outer periphery of the spiral fin 31 may be in contact with or fixed to the filtration surface 15 of the primary side flow passage 14, or may be slightly spaced.
- the flow regulator 17 may be any device as long as it can increase the flow velocity in the region along the filtration surface 15 in the primary side flow passage 14, and therefore, may be implemented in a form other than the static mixer 21 or the spiral fin 31.
- a round bar or a circular tube 32 into the primary side flow passage 14 the fluid flowing in the central portion of the primary side flow passage 14 is moved to a region along the filtration surface 15 in the primary side flow passage 14. Can be shown form.
- the flow velocity in the region along the filtration surface 15 in the primary side flow passage 14 should be reduced in reverse. It can be implemented by setting the number and the number.
- an inclined plate or a conical body may be provided on a support rod extending in the axial direction of the primary side flow passage 14 to filter the fluid flowing in the central portion of the primary side flow passage 14 in the primary side flow passage 14
- the configuration can be shown to create a flow that is moved into the area along the surface 15.
- the static mixer 21, the spiral fin 31, the inclined plate and the conical body serve as flow resistances as long as they change the flow direction of the fluid.
- the flow velocity in the region along the filtration surface 15 in the primary side flow passage 14 should not be reduced in reverse. It is appropriate to set the angle of inclination, the value of the lead angle, the size and the number, and to carry out.
- the third embodiment relates to an embodiment of the backwashing flow regulator 18.
- the backwashing flow regulator 18 is embodied as a spiral fin 41.
- the spiral fins 41 are spirally extended in the axial direction of the secondary side flow passage 16 which is an outer annular flow passage, and the cleaning fluid for backwashing is a spiral defined by the spiral fins 41.
- the wall surface fluid acceleration function is exhibited, which can increase the flow velocity of the region along the outer peripheral surface of the membrane element 13 in the secondary side flow passage 16 as a spiral flow flowing along the inside of the flow passage.
- the direction of twisting of the spiral fin 41 may be right or left spiral, and the direction of the spiral may be changed in the axial direction of the secondary side flow passage 16. .
- the spiral fin 41 may be provided over the entire length of the secondary side flow passage 16, may be provided in a part, or may be provided intermittently. By providing a plurality of spiral fins 41, a double or more multiple spiral structure may be used.
- the structure in which the spiral fin 41 is disposed in the secondary side flow path 16 is a structure in which both ends or one end of the spiral fin 41 are fixed to supporting members at both ends of the filtration membrane module 11 or both ends of the spiral fin 41 or It is possible to exemplify a structure in which one end is supported directly or indirectly at either or both ends of the housing 12 or the membrane element 13.
- the outer periphery of the spiral fin 41 may be in contact with or fixed to the outer peripheral surface or the inner peripheral surface of the secondary side flow passage 16, or may be slightly spaced.
- the backwashing flow regulator 18 can increase the flow velocity in the region along the outer peripheral surface of the membrane element 13 in the secondary flow passage 16 Any configuration can be used, and embodiments other than the spiral fins 41 can be implemented.
- a member such as an inclined plate is provided on a support rod extending in the axial direction of the secondary flow passage 16 or an inclined projection is provided on the inner peripheral surface of the housing 12 to flow through the central portion of the secondary flow passage 16 It can be shown that the fluid is moved to a region along the outer peripheral surface of the membrane element 13 in the secondary flow passage 16.
- the members such as the spiral fins 41, the inclined plate, and the projections serve as flow resistances as long as they change the flow direction of the fluid.
- the flow velocity in the region along the outer peripheral surface of the membrane element 13 in the secondary side flow passage 16 should not be lowered. It is appropriate to set and execute the shape, the value of the inclination angle and the lead angle, the size and the number.
- the circuit diagram shown in FIG. 6 shows an example of the basic configuration of an apparatus for performing filtration processing on various processing fluids such as a fine particle dispersion, and a plurality of filtration membrane modules 111 may be used or a stirrer may be used.
- processing fluids such as a fine particle dispersion
- a plurality of filtration membrane modules 111 may be used or a stirrer may be used.
- a stirrer may be used.
- This filtration apparatus includes a filtration membrane module 111 having a housing 112 and a membrane element 113 as shown in FIGS. 7 (A) and 7 (B), and the outer annular flow path between the housing 112 and the membrane element 113 is It becomes the primary side channel 114, and the tubular channel in the membrane element 113 becomes the secondary side channel 116.
- the treatment liquid tank 155 is connected to the primary side inlet 151 of the filtration membrane module 111 via the liquid feed pump 156, and the treatment fluid in the treatment liquid tank 155 is transferred to the filtration membrane module 111 by the liquid feed pump 156. It is pumped to The pumped processing fluid passes through the primary side channel 114, which is an outer annular channel between the housing 112 and the membrane element 113, and is returned to the processing liquid tank 155 from the primary side outlet 152 through the return valve 161. .
- a processing fluid or the like is supplied from the liquid supply source 157 to the processing liquid tank 155 as necessary.
- the stirring device 153 is disposed in the treatment liquid tank 155 in order to suppress the aggregation or sedimentation, and the treatment fluid in the treatment liquid tank 155 is agitated.
- the liquid supplied from the liquid supply source 157 may be a cleaning liquid or a dilution liquid in addition to the processing fluid, and may be supplied to the processing liquid tank 155 from a plurality of supply sources through different paths. It does not matter. The presence or absence of the supply of the liquid from the liquid supply source 157 and the type and amount of the liquid can be changed and implemented depending on the purpose of the filtration and the like.
- Cross-flow filtration is performed with the outer peripheral surface of the membrane element 113 as the filtration surface 115 by passing the pumped processing fluid through the primary channel 114.
- this filtration process may be one pass, it may be repeatedly performed by a circulation path connecting the filtration membrane module 111 and the treatment liquid tank 155.
- the filtrate generated by the filtration process is discharged to the inside of the membrane element 113, and the filtrate discharge destination 159 through the filtrate valve 162 from the secondary side discharge port 154 connected to the secondary side flow passage 116 which is a tubular flow passage.
- Discharged into The processing fluid for which the filtration processing has been completed is discharged to a processing product discharge destination 158 from a path provided at an appropriate position of the circulation path.
- the above is the flow of the circuit and fluid used in the ordinary filtration process, but when the membrane element 113 is cleaned, the cleaning fluid (organic solvent, cleaning fluid, pure water, etc.) from the cleaning fluid supply source 160 is filtered.
- the solution is pressure-fed to the secondary flow passage 116 of the membrane module 111 via the cleaning solution valve 163.
- the cleaning fluid introduced into the filtration membrane module 111 flows from the inner peripheral surface of the secondary flow passage 116 which is a tubular flow passage of the membrane element 113 to the outer peripheral surface of the membrane element 113 and passes through the primary flow passage 114,
- the solution is discharged from the primary side inlet 151 and the primary side outlet 152 to the treatment liquid tank 155 or the like.
- the cleaning liquid may be circulated.
- the filtration membrane module 111 includes a membrane element 113 and a cylindrical housing 112 disposed outside the membrane element 113.
- An outer annular channel between the inner peripheral surface of the cylindrical housing 112 and the membrane element 113 constitutes the primary side channel 114, and at least one (four in FIG. 2) tubular channels passing through the membrane element 113 Constitute the secondary side flow passage 116.
- Both ends of the filtration membrane module 111 are respectively connected to the primary side inlet 151 and the primary side outlet 152 described above, and are connected to an external circuit through the primary side inlet 151 and the primary side outlet 152, and the primary side
- the processing fluid pressurized from the inlet 151 is introduced into the primary channel 114, and the processing fluid after the crossflow filtration is discharged from the primary outlet 152.
- the membrane element 113 constituting the filtration surface 115 the same one as the filtration membrane of the internal pressure crossflow filtration process can be adopted.
- the support for supporting the filtration membrane is generally a porous ceramic material, but may be a stainless steel tube or a porous resin tube.
- the housing 112 is a hollow cylindrical body and is made of a material having liquid tightness and pressure resistance, such as metal or synthetic resin.
- both ends of the housing 112 and the membrane element 113 are supported by support members, and one filtration membrane module 111 including other components such as an inlet and an outlet provided in the housing 112. Is configured.
- the flow regulator 117 shown in FIG.
- the flow regulator 117 according to this embodiment is implemented as a spiral fin 131.
- the spiral fins 131 are spirally extended in the axial direction of the primary side flow passage 114 and extend.
- the spiral fin 131 changes the flow of the processing fluid flowing in the axial direction of the primary side flow passage 114 without driving it (changes so as to give a circumferential component).
- the processing fluid flowing along the spiral flow path defined by the spiral fins 131 becomes a spiral flow, and a centrifugal force acts.
- the large particles move relatively in the radially outward direction (ie away from the filtering surface 115) while the small particles in the radially inward direction (ie approaching the filtering surface 115).
- the process fluid is passed through the primary side flow path 14 which is a tubular flow path in the membrane element 13.
- the centrifugal flow acts on the processing fluid by the spiral flow by the spiral fins 31 in the tubular flow channel.
- the filtration surface 115 is located inside the primary side flow passage 114.
- the centrifugal force acts in the direction of improving the efficiency of the classification process.
- the classification speed is increased by setting the flow rate so that particles larger than the classification size move to the outer side (housing side) of the flow channel.
- the classification speed is increased by setting the flow rate so that particles larger than the classification size move to the outer side (housing side) of the flow channel.
- the form of the spiral fin 131 is not particularly limited as long as centrifugal force can be generated by creating a spiral flow in the processing fluid.
- a plate-like fin as shown in FIG. 7 (B) may be used, or two kinds of fins of large and small as shown in FIG. 7 (A) may be used.
- 7A shows that the two fins of a small diameter portion 132 with a small diameter and a large diameter portion 133 with a large diameter in the cross-sectional shape are arranged without being connected, and the small diameter portion 132 is a large diameter portion 133.
- the cross-sectional shape along the axial center of the primary side flow passage 114 of the spiral fin 131 has a smaller cross-sectional area in the near region than in the far region when divided into a region near the filter surface 115 and a far region.
- the direction of twisting of the spiral fin 131 may be a right or left spiral, or both spirals may be changed in the axial direction of the primary channel 114.
- a double or more double spiral structure may be used.
- the spiral fins 131 may be disposed in contact with the housing 112 and the membrane element 113 as shown in FIG. 8A, and as shown in FIG. 8B, the inner periphery of the housing 112 It may be disposed close to the surface, or may be disposed closer to the outer peripheral surface of the membrane element 113 as shown in FIG. 8C, or as shown in FIG. In this case, one spiral fin 131 may be disposed closer to the inner circumferential surface of the housing 112, and the other spiral fin 131 may be disposed closer to the outer circumferential surface of the membrane element 113.
- the spiral fins 131 may be provided over the entire length of the primary side flow path 114, may be provided in a part, or may be provided intermittently.
- the structure in which the spiral fin 131 is disposed in the primary side flow path 114 is a structure in which both ends or one end of the spiral fin 131 are fixed to supporting members at both ends of the filtration membrane module 111, or both ends or one end of the spiral fin 131 May be supported directly or indirectly at both ends or one end of the membrane element 113.
- the inner periphery of the spiral fin 131 may be in contact with or fixed to the filtration surface 115 of the primary side flow passage 114, or may be slightly spaced apart, but it may be slightly spaced apart. It is more preferable to use those that have been emptied.
- the outer periphery of the spiral fin 131 may be in contact with or fixed to the housing 112, or may be slightly spaced apart.
- the main purpose is to eliminate clogging of the membrane element 113, and it can be backwashed as usual.
- the cleaning fluid from the cleaning solution supply source 160 flows out from the inner peripheral surface of the secondary side flow passage 116 which is a tubular flow passage of the membrane element 113 to the outer peripheral surface of the membrane element 113 It passes to the road 114 and is discharged.
- the clogged particles of the membrane element 113 are discharged to the primary channel 114, and the clogging is eliminated.
- This cleaning may be performed periodically, or may be performed irregularly.
- the membrane element 113 can also be variously modified, and in addition to changing the number and size of the secondary side flow paths 116, a large number of cross sectional shapes of the membrane element 113 are shown in FIG.
- the filtration area can also be increased by changing to a pleated type provided with pleats.
- the flow regulator 117 may be anything that can generate a centrifugal force by creating a spiral flow in the processing fluid, and may be implemented in a form other than the spiral fin 131.
- a form of providing a component for moving the fluid flowing in the primary side channel 114 in the circumferential direction such as providing an inclined plate or a cone in a space extending in the axial direction of the primary side channel 114.
- the spiral fins 131, the inclined plate and the cone change the flow direction of the fluid, the flow becomes resistance.
- the flow regulator 17 shown in the first to third embodiments may be used in combination inside the secondary side flow passage 116 which is a tubular flow passage.
- concentration and purification of the treatment fluid, solvent substitution, pH adjustment, conductivity adjustment, fine particle washing, fine particles, both in the internal pressure crossflow filtration process and the external pressure crossflow filtration process, as in the conventional filtration membrane module It can be applied to cross flow filtration methods for various purposes such as surface treatment, classification and the like.
- MF membranes, UF membranes, NF membranes, etc. can be selected and implemented according to the purpose and the type and mode of the treatment fluid, and the circuit of the filtration device should be modified.
- the cross flow filtration treatment can be performed by the circulation path without supplying the cleaning liquid etc. to the treatment liquid tank during the treatment, and the pH of the treatment fluid
- Example A1 to A5 shown in Tables 1 and 2 a filtration membrane module provided with the flow regulator 17 shown in FIG. 3A is manufactured and it is assumed that internal pressure cross flow filtration is performed.
- Examples B1 to B6 shown in Table 3 filtration membrane modules provided with the flow regulator 117 shown in FIG. 7A were produced, and Comparative Example B1 was provided with the flow regulator 117 for Example B1. There is no filtration membrane module.
- concentration of 1 wt% was used.
- the particle size distribution of PLGA particles in the untreated processing fluid after mixing is as shown in FIG. 10 (A).
- Examples A1 to A2 In the example shown in Table 1, assuming internal pressure cross flow filtration, when the spiral shaped fins of different sizes are inserted into the ceramic filter having an inner diameter of 6 mm, the change in the flow velocity of the processing fluid and the time until the filter becomes clogged I have confirmed.
- Comparative Example A1 shows the flow velocity inside the filter in the state where the spiral fin is not inserted. When spiral fins are inserted, the flow velocity inside the filter is increased due to the centrifugal effect generated by the spiral fins as compared with Comparative Example A1 in which the spiral fins are not inserted, and the spiral is inserted. When the size of the fins is large, the surface flow velocity inside the filter is high.
- the time until the filter is clogged becomes longer with the increase of the centrifugal effect and the membrane surface flow rate. That is, in the case where the internal pressure cross flow filtration treatment is performed continuously, if the time until the filter is clogged is long, the number / frequency of performing the backwashing is reduced, which leads to the improvement of the filtration efficiency as a whole.
- Filter size Outer diameter ⁇ 10 mm, inner diameter ⁇ 6 mm, length 250 mm Housing size: outer diameter ⁇ 16 mm, inner diameter ⁇ 14 mm, length 254 mm Size of spiral fin inserted (outer diameter of spiral fin): ⁇ 3 mm, ⁇ 4 mm Processing fluid flow rate: 5 L / min
- Examples A3 to A5 The example shown in Table 2 assumes internal pressure cross flow filtration and confirms the change in flow velocity of the processing fluid and the time until the filter is clogged when the spiral fin is inserted into the SUS filter with the inner diameter of 50.5 mm. doing. Comparative example A2 shows the flow velocity inside the filter in the state where the spiral fin is not inserted. Similar to the example according to the above Table 1, when any of the spiral shaped fins is inserted, the inside of the filter is formed by the centrifugal separation effect that the spiral shaped fins are generated as compared with Comparative Example A2 in which the spiral shaped fins are not inserted.
- the flow velocity increases, and the film surface flow velocity inside the filter is larger when the size of the spiral fin to be inserted is larger. It can be seen that the time until the filter is clogged becomes longer with the increase of the centrifugal effect and the membrane surface flow rate. That is, in the case where the internal pressure cross flow filtration treatment is performed continuously, if the time until the filter is clogged is long, the number / frequency of performing the backwashing is reduced, which leads to the improvement of the filtration efficiency as a whole.
- the processing fluid used what mixed PLGA particle
- Filter size Outer diameter ⁇ 58.5 mm, inner diameter ⁇ 50.5 mm, length 241.5 mm Housing size: Outer diameter ⁇ 88.9 mm, inner diameter ⁇ 84 mm, length 341 mm Size of spiral fin inserted: ⁇ 35 mm, ⁇ 40 mm, ⁇ 45 mm Processing fluid flow rate: 30 L / min
- Table 1 shows the results of classification by external pressure cross flow filtration using each filtration membrane module.
- the filter area indicates the total area of the filtration surface 115 of the membrane element 113
- the mesh size indicates the opening size of the filtration surface 115 of the membrane element 113
- experiments were performed to classify (remove) 15 ⁇ m or less .
- the inner diameter of the housing 112 was 84 mm
- the outer diameter of the membrane element 113 was 58.5 mm (in the case of a cylindrical type)
- the distance between the two was 12.75 mm in the radial direction.
- the spiral fins 131 were disposed over substantially the entire length of the membrane element 113, the diameter of the small diameter portion 132 was 3 mm, the diameter of the large diameter portion 133 was 9 mm, and the lead angle was 22 degrees.
- the processing liquid used what mixed PLGA particle
- classification speed was calculated
- the secondary side discharge liquid was sampled every predetermined time shown in Table 3, and the amount of particles contained in the sampled secondary side discharge liquid was measured by weight.
- the maximum particle permeation amount is obtained by sampling the secondary side discharge liquid at predetermined time intervals and measuring the amount of particles contained in the sampled secondary side discharge liquid by weight as the particle transmission amount, and a plurality of sampling results Table 3 shows the maximum value of.
- classification speed particle transmission amount / sampling time for each of the above samplings, and the maximum value among the plurality of sampling results is shown in Table 3.
- FIG. 10 is a graph showing the particle size distribution of PLGA particles, and (A) shows the particle size distribution of PLGA particles in an untreated processing fluid (ie, the processing fluid from the liquid supply source 157 to the processing liquid tank 155). And (B) shows the particle size distribution of PLGA particles in the treatment fluid after the treatment of Example B3 (that is, the treatment fluid discharged to the treatment product discharge destination 158 after treatment), and (C) shows the Example 17 shows the particle size distribution of PLGA particles in the treatment fluid after the treatment of B6 (ie, the treatment fluid discharged to the treatment product discharge destination 158 after treatment).
- Example B4 and Example B5 the largest particle concentration exceeded comparative example B1.
- the maximum classification speed exceeded Comparative Example B1.
- the maximum classification speed was lower than Comparative Example B1, but as shown in Table 3, the time until the filter (membrane element 113) was clogged exceeded the Comparative Example B1. From the above contents, according to the processing conditions and purpose, the classification efficiency is good or bad with high / low classification speed, high / low particle concentration of secondary side discharge liquid, and long / short elapsed time until clogging occurs. It can be comprehensively judged and implemented.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Filtration Of Liquid (AREA)
Abstract
Description
一般的にろ過処理は、全量ろ過方式とクロスフローろ過方式の2種類に大別されるが、通常、セラミックフィルターはクロスフロー形式で運転される。
このように、クロスフローろ過方式は、目詰りを抑制しながらろ過を行う方式であるため、一般に膜面流速(処理流体の流れのうち、ろ過膜の膜面に沿う領域の流速)が高いほど膜面への付着物質の堆積が抑制されることが知られている。すなわちろ過膜上の処理流体の流量や流速がろ過特性と付着物の洗い流しに大きく影響することが知られている。
また微細粒子を含むスラリーの場合、微細粒子は凝集体を形成しているので凝集体の内部に包含されている洗浄目的物を洗うことは難しい。
特許文献8及び9には、一次側に処理流体を加圧送液しクロスフローにてろ過処理を行う中空筒状のろ過面を備えたろ過膜モジュールにおいて、前記一次側流路内に配置された流れ調整器を備え、前記流れ調整器は、前記一次側流路内を通過中の前記処理流体の流れを、自らが駆動することなく変化させるものであり前記一次側流路内を通過中の前記処理流体の流れに前記一次側流路の周方向成分を与えるように構成されたことを特徴とするろ過膜モジュールに係る発明が開示されている。
ところが、特許文献8では、例えば回転素子と称される板体を螺旋状にねじり加工したものがモジュール内に設置されるが、乱流を発生する効果については記載されるものの、処理流体に対して遠心分離効果を付与するものではない。また、特許文献9では、「乱流誘起体」と称される螺旋形状の部材が支持パイプによって保持され、流入液に乱流を強制的かつ自動的に付与することが記載されている。しかしながら、支持パイプで保持された「乱流誘起体」が流入液に対して遠心分離効果を付与することは記載していない。
本発明は、逆洗時の処理の条件を同一に設定した場合において、従来のろ過装置及びろ過方法に比べて、膜エレメントの外周面における遠心分離効果や膜面流速(処理流体の流れのうち、膜エレメントの外周面に沿う領域の流速)を高めることができ、逆洗処理の効率を向上させることができるろ過膜モジュール及びろ過処理方法を提供することを課題とする。
前記スパイラル状フィンは、パイプや丸棒をコイル状に形成したものであっても構わないし、帯状平板をスクリュー(オーガー)状に形成したものであっても構わない。
前記外環状流路内を通過中の前記洗浄用流体の流れを前記逆洗用流れ調整器にて変化させることにより、前記洗浄用流体のうち前記外環状流路内の前記膜エレメントの前記外周面に沿う領域における流速を、前記逆洗用流れ調整器を配置しない場合における前記外周面に沿う領域における流速に比べて、増大させる壁面流体加速機能が発揮されるように構成されることができる。
前記逆洗用流れ調整器は、前記外環状流路内に敷設されたスパイラル状フィンとして実施することができる。前記逆洗用流れ調整器の前記スパイラル状フィンは、パイプや丸棒をコイル状に形成したものであっても構わないし、帯状平板をスクリュー(オーガー)状に形成したものであっても構わない。
また本発明は、ろ過処理に必要な消費エネルギーを低減することができるろ過膜モジュール及びろ過処理方法を提供することができたものである。
また本発明は、逆洗処理に必要な消費エネルギーを低減することができるろ過膜モジュール及びろ過処理方法を提供することができたものである。
以下、図面に基づき本発明の実施の形態を説明する。
クロスフローろ過処理は、内圧クロスフローろ過処理と外圧クロスフローろ過処理とに大別される。内圧クロスフローろ過処理は、内部に管状の流路を一次側流路として備えた膜エレメントに加圧された処理流体を通して、ろ過処理によって生じたろ過液を外側の二次側流路へ通過させる処理方式である。他方、外圧クロスフローろ過処理は、膜エレメントの内部の管状の流路を二次側流路として用いるものであり、膜エレメントの外側を一次側流路として、この外側の一次側流路に処理流体を通して、ろ過処理によって生じたろ過液を膜エレメントの内側の二次側流路へ通過させる処理方式である。膜エレメントはろ過面を構成するろ過膜及びろ過膜を支持する支持体19を備え、ろ過膜は通常膜エレメントと一次側流路が接する面に設けられる。支持体19はろ過膜による処理を阻害しないものが用いられる。より具体的に言うと、内圧クロスフローろ過処理の場合は、図2(B)で示すように、ろ過膜が膜エレメントの内部の管状の流路の内壁面に沿って設けられ、外圧クロスフローろ過処理の場合は、図2(C)で示すように、膜エレメントの外周面に沿って設けられる。
まず図1を主に参照して、内圧クロスフローろ過処理に適するろ過装置の概要を説明する。図1に示す回路図は、微粒子分散液などの各種の処理流体に対してろ過処理用を行う装置の基本構成の一例を示すものであり、ろ過膜モジュール11を複数用いたり、攪拌装置を用いたりするなど、種々の変更を加えて実施することができる。このろ過装置は、ハウジング12と膜エレメント13を備えたろ過膜モジュール11と、ろ過膜モジュール11の一次側導入口51に対して送液ポンプ56を介して接続された処理液タンク55を備え、処理液タンク55の内部の処理流体が、送液ポンプ56によってろ過膜モジュール11内に圧送される。圧送された処理流体は、膜エレメント13内の一次側流路14(図2(A)参照)を通過し、一次側排出口52から戻しバルブ61を経て処理液タンク55に戻される。処理液タンク55に対しては、液供給源57から処理流体などが必要に応じて供給される。液供給源57から供給される液は、処理流体の他、洗浄液であったり、希釈液であったりしても構わないし、複数の供給源から異なる経路を通じて処理液タンク55に供給されるものであっても構わない。液供給源57からの液の供給の有無及び液の種類や量はろ過の目的などに応じて変更して実施することができる。
ろ過処理が完了した処理流体は、循環経路の適宜箇所に設けられた経路から処理物排出先58に排出される。
次に、主として図2を参照して、ろ過膜モジュール11の概要について説明する。ろ過膜モジュール11は、膜エレメント13と、膜エレメント13の外側に配置された筒状のハウジング12とを備えている。膜エレメント13は、中空筒状のろ過面15によって規定される管状流路である一次側流路14を少なくとも1つ(図2では4つ)備える。膜エレメント13の両端は、前述の一次側導入口51と一次側排出口52にそれぞれ繋がっており、一次側導入口51と一次側排出口52を介して外部の回路と接続され、一次側導入口51から加圧された処理流体が一次側流路14内に導入されて、クロスフローろ過処理後の処理流体が、一次側排出口52から排出される。
ハウジング12は、中空の筒状体で金属や合成樹脂などの液密性と耐圧性を備えた素材で構成されている。ハウジング12の内壁と膜エレメント13の外壁の間の空間が外環状流路である二次側流路16を構成するものである。図示は省略するが、ハウジング12と膜エレメント13との両端は支持部材によって支持されており、ハウジング12に設けられた二次側導入口53や二次側排出口54などの他の構成部材を含めて一つのろ過膜モジュール11が構成されている。
なお、図2(B)は内圧クロスフローろ過処理における、ろ過膜モジュール11、ハウジング12、膜エレメント13、一次側流路14、ろ過面(ろ過膜)15、二次側流路16及び支持体19の関係を図示したもので、図2(C)は外圧クロスフロー処理における各要素の関係を図示したものである。
この実施の形態に係る流れ調整器17は、スタティックミキサー21として実施されている。スタティックミキサー21は、矩形のブレードを180度ねじった形態の複数のエレメント22を一次側流路14の軸方向に配列したものであり、エレメント22は、ねじれの方向の異なる右エレメントと左エレメントとが交互に配列されているのが一般的であるが、流れ調整器17として適用する場合には、その流体の分割作用や反転作用による攪拌混合、分散作用も有効であるが、エレメント22による流体の転換作用が重要である。即ち、処理流体は、エレメント22のねじれ面の流線形状面に沿って流れの方向が変化する際に、処理流体には軸方向に回転する流れが生じる。これにより処理流体のうち管状の一次側流路14の中心部を流れている流体は内周面へ移動し、この移動した流体によって押されるようにして内周面を流れている流体は中心部へ移動する。その結果、エレメント22によって仕切られた断面半円形の流路内で流体が回転する流れとなり、一次側流路14内のろ過面15に沿う領域の流速を、スタティックミキサー21を設けない場合に比べて、高めることができる流体加速機能が発揮される。したがって、エレメント22は、ねじれの方向の異なる右エレメントと左エレメントとが交互に配列されているものであっても構わないが、右エレメントと左エレメントのいずれか一方のエレメントが、連続的に配置されているものであっても構わない。
スタティックミキサー21を一次側流路14内に配置する構造は、スタティックミキサー21の両端または一端を、ろ過膜モジュール11の両端の支持部材に固定する構造や、スタティックミキサー21の両端または一端を、膜エレメント13の両端または一端に直接または間接的に支持させる構造を例示することができる。なお、エレメント22の外周は一次側流路14のろ過面15に接触あるいは固定されていても構わないし、若干の間隔が空けられたものであっても構わない。
この実施の形態に係る流れ調整器17は、スパイラル状フィン31として実施されている。スパイラル状フィン31は、一次側流路14の軸方向へ螺旋状に旋回しながら伸びるものであり、スパイラル状フィン31によって規定された螺旋状の流路内に沿って流れる螺旋流となり、一次側流路14内のろ過面15に沿う領域の流速を高めることができる流体加速機能が発揮される。また螺旋流では遠心力の効果が働き、大きな微粒子がろ過面の方向に優先的に移行し小さな微粒子はろ過面から離れる方向に移行される分級効果も生まれる。その結果目詰まりが起こりにくいのでフィルター自体の処理能力が増加する利点が生じる。なおスパイラル状フィン31のねじれの方向は右螺旋でも構わないし左螺旋であっても構わないし、両螺旋が、一次側流路14の軸方向において変化されているものであっても構わない。スパイラル状フィン31を複数設けることによって、2重以上の多重の螺旋構造としても構わない。
スパイラル状フィン31を一次側流路14内に配置する構造は、スパイラル状フィン31の両端または一端を、ろ過膜モジュール11の両端の支持部材に固定する構造や、スパイラル状フィン31の両端または一端を、膜エレメント13の両端または一端に直接または間接的に支持させる構造を例示することができる。なお、スパイラル状フィン31の外周は一次側流路14のろ過面15に接触あるいは固定されていても構わないし、若干の間隔が空けられたものであっても構わない。
流れ調整器17は、一次側流路14内のろ過面15に沿う領域の流速を高めるものであればよいので、スタティックミキサー21やスパイラル状フィン31以外の形態でも実施することができる。例えば、一次側流路14内に丸棒あるいは円管32を挿入することによって、一次側流路14の中央部分を流れる流体を一次側流路14内のろ過面15に沿う領域に移動する流れを作る形態を示すことができる。なお、円管を使用する場合は、その両端を適宜の手段で閉鎖する必要がある。
但し、これらの丸棒あるいは円管は、流体の流れ方向を変更するものである以上、その流れの抵抗となる。従ってこの抵抗によって、処理流体の全体の流速が低下する結果、一次側流路14内のろ過面15に沿う領域の流速を逆に低くするものであってはならない点を考慮しつつ、その直径や本数を設定して実施することができる。
また図示はしないが、例えば、一次側流路14の軸方向に伸びる支持棒に傾斜板や円錐体を設けるなど、一次側流路14の中央部分を流れる流体を一次側流路14内のろ過面15に沿う領域に移動される流れを作る形態を示すことができる。但し、これらのスタティックミキサー21、スパイラル状フィン31、傾斜板及び円錐体は、流体の流れ方向を変更するものである以上、その流れの抵抗となる。従ってこの抵抗によって、処理流体の全体の流速が低下する結果、一次側流路14内のろ過面15に沿う領域の流速を逆に低くするものであってはならない点を考慮しつつ、その形状や、傾斜角度やリード角の値や、大きさや個数を設定して実施することが適当である。
第3の実施の形態は、逆洗用流れ調整器18の実施の形態に関するものである。この例では、逆洗用流れ調整器18はスパイラル状フィン41として実施されている。スパイラル状フィン41は、外環状流路である二次側流路16の軸方向へ螺旋状に旋回しながら伸びるものであり、逆洗用の洗浄用流体はスパイラル状フィン41によって規定された螺旋状の流路内に沿って流れる螺旋流となり、二次側流路16内の膜エレメント13の外周面に沿う領域の流速を高めることができる壁面流体加速機能が発揮される。また洗浄液の使用量を低減する目的で洗浄液を循環し使用する場合、螺旋流では洗浄液中の異物が遠心力の働きでハウジング側へ移行し清澄な洗浄液が優先的にフィルター側へ供給できることも大きな利点である。なおスパイラル状フィン41のねじれの方向は右螺旋でも構わないし左螺旋であっても構わないし、螺旋の方向が、二次側流路16の軸方向において変化しているものであっても構わない。このスパイラル状フィン41は、二次側流路16の全長にわたって設けても構わないし、一部分に設けても構わないし、断続的に設けても構わない。スパイラル状フィン41は複数設けることによって、2重以上の多重の螺旋構造としても構わない。
次に図6及び図7を参照して、外圧クロスフローろ過処理に適するろ過装置の概要を説明する。
なお液供給源157から供給される液は、処理流体の他、洗浄液であったり、希釈液であったりしても構わないし、複数の供給源から異なる経路を通じて処理液タンク155に供給されるものであっても構わない。液供給源157からの液の供給の有無及び液の種類や量はろ過の目的などに応じて変更して実施することができる。
ろ過処理が完了した処理流体は、循環経路の適宜箇所に設けられた経路から処理物排出先158に排出される。
次に、図7を参照して、ろ過膜モジュール111の概要について説明する。ろ過膜モジュール111は、膜エレメント113と、膜エレメント113の外側に配置された筒状のハウジング112とを備えている。筒状のハウジング112の内周面と膜エレメント113の間の外環状流路が一次側流路114を構成し、膜エレメント113を貫通する少なくとも1つ(図2では4つ)の管状流路が二次側流路116を構成する。
ハウジング112は、中空の筒状体で金属や合成樹脂などの液密性と耐圧性を備えた素材で構成されている。
本発明においては、一次側流路114の内部に図7に示す流れ調整器117が配置される。
この実施の形態に係る流れ調整器117は、スパイラル状フィン131として実施されている。スパイラル状フィン131は、一次側流路114の軸方向へ螺旋状に旋回しながら伸びるものである。このスパイラル状フィン131は、一次側流路114の軸方向に流れる処理流体の流れを、自らが駆動することなく変化させる(周方向成分を与えるように変化させる)ものである。これにより、スパイラル状フィン131によって規定された螺旋状の流路内に沿って流れる処理流体は螺旋流となり、遠心力が作用する。その結果、大きな微粒子が半径方向の外側への方向(すなわちろ過面115から離れる方向)に相対的に移行する一方、小さな微粒子が半径方向の内側への方向(すなわちろ過面115に近づく方向)へ相対的に移行する。従って、処理流体中の粒子のうち粒子径の小さなもののみを、ろ過面115を経て二次側流路116へ通過させる一方、処理流体中の粒子径の大きなもののみを、一次側流路114へ残す処理が促される。よって、この実施の形態に係るろ過膜モジュール111は、分級作用を処理流体に与える必要がある流体処理に適用するのに有利である。
先に示した第1ないし第3の実施の形態に係る内圧クロスフローろ過処理にあっては、膜エレメント13内の管状流路である一次側流路14に、処理流体が通される。管状流路内のスパイラル状フィン31による螺旋状の流れによって遠心力が処理流体に働く。
その際、遠心力が働くと、比較的大きな粒子は管状流路の内壁面のろ過面15に相対的に近づき、比較的小さな粒子は管状流路の内壁面のろ過面15から相対的に遠ざかる。ここで、比較的小さな粒子は、ろ過面15のろ過開口に比較的に近い大きさであり、ろ過面15の目詰まりの原因となるため、これがろ過面15から相対的に遠ざかることによって、ろ過面15の目詰まりの発生を抑制することができる。
この実施の形態に係るろ過膜モジュール111を用いて分級を行う場合、目的の分級サイズに応じて一次側流路114の流量(一次側流量)を変更して実施することが好ましい。
スパイラル状フィン131の形態は、処理流体にスパイラル状の流れを作り出すことで遠心力を発生させることができるものであれば特に限定はされない。具体的には、図7(B)に示すような板状のフィンであっても構わないし、図7(A)に示す大小2種類のフィンであっても構わない。図7(A)に示すものは、断面形状において径の小さな小径部132と径の大きな大径部133との2つのフィンを繋げずに並べて配置したもので、小径部132が大径部133の内側に配置されている。このようにスパイラル状フィン131の一次側流路114の軸心に沿う断面形状に関して、ろ過面115に近い領域と遠い領域とに二分した際に、近い領域では遠い領域に比べて断面積を小さくすることによって、ろ過面115に近い領域では十分な流路面積を確保するとともに、ろ過面115から遠い領域では流路面積を制限することで、ろ過面115に近い領域へ処理流体全体を近づけて処理効率の向上を図ることができるようにしたものである。
スパイラル状フィン131を一次側流路114内に配置する構造は、スパイラル状フィン131の両端または一端を、ろ過膜モジュール111の両端の支持部材に固定する構造や、スパイラル状フィン131の両端または一端を、膜エレメント113の両端または一端に直接または間接的に支持させる構造を例示することができる。なお、スパイラル状フィン131の内周は一次側流路114のろ過面115に接触あるいは固定されていても構わないし、若干の間隔が空けられたものであっても構わないが、若干の間隔が空けられたものの方がより好ましい。同様に、スパイラル状フィン131の外周はハウジング112に接触あるいは固定されていても構わないし、若干の間隔が空けられたものであっても構わない。
膜エレメント113の目詰まりを解消することを主な目的として、常に従って逆洗することができる。
洗浄する場合には、洗浄液供給源160からの洗浄用流体が、膜エレメント113の管状流路である二次側流路116の内周面から膜エレメント113の外周面へ流出して一次側流路114へ経て、排出される。これによって、膜エレメント113の目に詰まった粒子が、一次側流路114へ排出され、目詰まりが解消される。この洗浄は、定期的に行うようにしても構わないし、不定期に行うものであっても構わない。
実施に際しては、二次側の濾過液バルブ162の開度を変更し、二次側排出量を調整することが好ましい。二次側排出量を小さくするに従って膜エレメント113のろ過面115に目詰まりが生じにくくなる反面、分級速度は遅くなる傾向を示す。他方、二次側排出量を大きくするに従って分級速度は早くなるがろ過面115に目詰まりが生じ易くなるため逆洗の回数を多くする必要が生じる。ろ過面115の目詰まりが早い場合、初期の粒子透過量が多くても、全体的な粒子透過量は少なくなり、最終的に分級時間が長くなる場合がある。
従って、総合的な分級効率を考慮して二次側排出量を調整することが好ましい。
膜エレメント113に関しても、種々変更して実施することができるものであり、二次側流路116の本数や大きさを変更する他、膜エレメント113の断面形状を図9に示すような多数のプリーツを備えたプリーツ型のものに変更することによってろ過面積を大きくして実施することもできる。
流れ調整器117は、処理流体にスパイラル状の流れを作り出すことで遠心力を発生させることができるものあればよく、スパイラル状フィン131以外の形態でも実施することができる。例えば、一次側流路114の軸方向に伸びる空間に傾斜板や円錐体を設けるなど、一次側流路114を流れる流体を周方向に移動させる成分を与える形態を示すことができる。但し、スパイラル状フィン131、傾斜板及び円錐体は、流体の流れ方向を変更するものである以上、その流れの抵抗となる。従ってこの抵抗によって、処理流体の全体の流速が低下して処理効率が低下する点を考慮しつつ、その形状や、傾斜角度やリード角の値や、大きさや個数を設定して実施することが適当である。なお、管状流路である二次側流路116の内部に第1ないし第3の実施の形態に示す流れ調整器17を併用しても構わない。
本発明のろ過膜モジュールは、内圧クロスフローろ過処理と外圧クロスフローろ過処理共に、従来のろ過膜モジュールと同様、処理流体の濃縮、精製、溶媒置換、pH調整、導電率調整、微粒子洗浄、微粒子表面処理、分級などの様々な目的のためのクロスフローろ過処理方法に適用することができる。前述の通り、その目的や処理流体の種類や態様に応じて、MF膜、UF膜、NF膜などを選択して実施することができるとともに、ろ過装置の回路を変更するなどして実施することができる。例えば、処理流体の濃縮を目的とする処理にあっては、処理液タンクに対して処理中に洗浄液などを供給せずに循環経路によってクロスフローろ過処理を行うことができるし、処理流体のpH調整や導電率調整を目的とする処理にあっては、本願出願人にかかる特許第6144447号や特許第6151469号に係る発明を適用して実施することも可能である。
表1及び表2に示す実施例A1ないしA5は、図3(A)に示す流れ調整器17を備えたろ過膜モジュールを作製し、内圧クロスフローろ過を想定したものである。
表3に示す実施例B1ないしB6は、図7(A)に示す流れ調整器117を備えたろ過膜モジュールを作成したものであり、比較例B1は、実施例B1について流れ調整器117を設けないろ過膜モジュールを作成したものである。
それぞれの実施例では、濃度1wt%のポリビニルアルコール水溶液4kgに対してPLGA粒子を110g混合したものを用いた。混合後の未処理の処理流体中のPLGA粒子の粒度分布は図10(A)に示したとおりである。
表1に示す実施例は、内圧クロスフローろ過を想定し、内径6mmのセラミックフィルターにサイズの異なるスパイラル状のフィンを挿入した際の処理流体の流速の変化及びフィルターが目詰まりするまでの時間を確認している。比較例A1は、スパイラル状のフィンを挿入しない状態でのフィルター内部の流速を示す。
何れもスパイラル状のフィンを挿入した場合は、スパイラル状のフィンを挿入しない比較例A1に比べて、スパイラル状のフィンが発生する遠心分離効果によってフィルター内部の流速が増加し、挿入するスパイラル状のフィンのサイズが大きい場合の方がフィルター内部の膜面流速が大きくなっている。遠心分離効果と膜面流速の増加に伴い、フィルターが目詰まりするまでの時間が長くなっていることがわかる。つまり、連続で内圧クロスフローろ過処理を行う場合、フィルターが目詰まりするまでの時間が長くなると、逆洗を実施する回数/頻度が減少するので、全体としてろ過効率の向上に繋がる。なお、処理流体は、ポリビニルアルコール水溶液に対してPLGA粒子を混合したものを使用した。
フィルターのサイズ:外径φ10mm、内径φ6mm、長さ250mm
ハウジングのサイズ:外径φ16mm、内径φ14mm、長さ254mm
挿入したスパイラル状のフィンのサイズ(スパイラル状フィンの外径):φ3mm、φ4mm
処理流体の流量:5L/min
表2に示す実施例は、内圧クロスフローろ過を想定し、内径50.5mmのSUSフィルターにスパイラル状のフィンを挿入した際の処理流体の流速の変化及びフィルターが目詰まりするまでの時間を確認している。比較例A2は、スパイラル状のフィンを挿入しない状態でのフィルター内部の流速を示す。
上記表1による実施例と同様に、何れもスパイラル状のフィンを挿入した場合は、スパイラル状のフィンを挿入しない比較例A2に比べて、スパイラル状のフィンが発生する遠心分離効果によってフィルター内部の流速が増加し、挿入するスパイラル状のフィンのサイズが大きい場合の方がフィルター内部の膜面流速が大きくなっている。遠心分離効果と膜面流速の増加に伴い、フィルターが目詰まりするまでの時間が長くなっていることがわかる。つまり、連続で内圧クロスフローろ過処理を行う場合、フィルターが目詰まりするまでの時間が長くなると、逆洗を実施する回数/頻度が減少するので、全体としてろ過効率の向上に繋がる。なお、処理流体は、ポリビニルアルコール水溶液に対してPLGA粒子を混合したものを使用した。
フィルターのサイズ:外径φ58.5mm、内径φ50.5mm、長さ241.5mm
ハウジングのサイズ:外径φ88.9mm、内径φ84mm、長さ341mm
挿入したスパイラル状のフィンのサイズ:φ35mm、φ40mm、φ45mm
処理流体の流量:30L/min
各ろ過膜モジュールを用いて外圧クロスフローろ過処理により分級処理を行った結果を表1に示す。
表1において、フィルター面積は膜エレメント113のろ過面115の総面積を示し、メッシュサイズは膜エレメント113のろ過面115の開口大きさを示し、15μm以下を分級(除去)処理する実験を行なった。
ハウジング112の内径は84mmであり、膜エレメント113の外径は58.5mm(円筒型の場合)であり、両者間の間隔は半径方向において12.75mmであった。スパイラル状フィン131は、膜エレメント113の略全長にわたって配置されたもので、小径部132の直径が3mmであり、大径部133の直径が9mmであり、リード角が22度であった。処理液は、ポリビニルアルコール水溶液に対してPLGA粒子を混合したものを用いた。
最大粒子濃度は、上記のサンプリングごとに、粒子濃度=粒子透過量÷サンプリング量×1000として粒子濃度を求め、複数のサンプリング結果のうちの最大値を表3に示した。
分級結果を図10に示す。図10はPLGA粒子の粒度分布を示すグラフであり、(A)は未処理の処理流体(即ち、処理液タンク155に液供給源157からの処理流体)中のPLGA粒子の粒度分布を示すもので、(B)は実施例B3の処理後の処理流体(即ち、処理後に処理物排出先158に排出される処理流体)中のPLGA粒子の粒度分布を示すもので、(C)は実施例B6の処理後の処理流体(即ち、処理後に処理物排出先158に排出される処理流体)中のPLGA粒子の粒度分布を示すものである。これらのグラフから明らかな通り、実施例B3及びB6の処理流体にあっては15μm以下の粒子が確実に分級(除去)されたことが確認された。処理流体を外環状流路内に通過させる際、粒子のうち粒子径の小さな粒子に対する遠心力よりも粒子径の大きな粒子に対する遠心力の方が大きくなり、粒子径の大きな粒子がハウジング側へ移動することにより膜エレメントから離れるため、粒子径の小さな粒子の膜エレメントの通過が阻害されにくくなっている。
上記内容から、分級速度の速い/遅い、二次側排出液の粒子濃度の高い/低い及び目詰まり発生までの経過時間の長い/短いをもって、処理の条件や目的に応じて分級効率の良否を総合的に判断して実施することができる。
12,112 ハウジング
13,113 膜エレメント
14,114 一次側流路
15,115 ろ過面(ろ過膜)
16,116 二次側流路
17,18,117 流れ調整器
19 支持体
21 スタティックミキサー
22 エレメント
31,41,131 スパイラル状フィン
32 丸棒または円管
51,151 一次側導入口
52,152 一次側排出口
53 二次側導入口
54,154 二次側排出口
55,155 処理液タンク
56,156 送液ポンプ
57,157 液供給源
58,158 処理物排出先
59,159 濾過液排出先
60,160 洗浄液供給源
61,161 戻しバルブ
62,162 濾過液バルブ
63,163 洗浄液バルブ
132 小径部
133 大径部
153 撹拌装置
Claims (7)
- 一次側流路に処理流体を加圧送液し、クロスフローにてろ過処理を行う中空筒状のろ過面を備えたろ過膜モジュールにおいて、
前記一次側流路は前記中空円筒のろ過面の外側であり、
前記ろ過膜モジュールの一次側流路内を通過中の前記処理流体の流れを、自らが駆動することなく変化させるとともに、
前記一次側流路内のろ過面に沿って流動する前記処理流体に遠心分離機能が発揮されるように構成された流れ調整器を、前記ろ過膜モジュールの一次側流路内に配置したことを特徴とするろ過膜モジュール。 - 中空筒状のろ過面によって規定される管状流路を少なくとも1つ備えた膜エレメントと、前記膜エレメントの外側に配置された筒状のハウジングとを備え、
前記一次側流路が前記膜エレメントと前記ハウジングの内周面との間の外環状流路から構成され、
二次側流路が前記管状流路から構成されることにより、クロスフローろ過処理を行うろ過膜モジュールであって、
前記流れ調整器は、前記外環状流路内に配置されたスパイラル状フィンで構成されたことを特徴とする請求項1記載のろ過膜モジュール。 - 中空筒状のろ過面によって規定される管状流路を少なくとも1つ備えた膜エレメントと、前記膜エレメントの外側に配置された筒状のハウジングとを備え、
前記一次側流路が前記膜エレメントと前記ハウジングの内周面との間の外環状流路から構成され、
前記二次側流路が前記管状流路から構成されることにより、外圧クロスフローのろ過処理を行う外圧式ろ過膜モジュールであって、
前記流れ調整器は、前記外環状流路内に敷設されたスパイラル状フィンであり、前記外環状流路内を通過中の前記処理流体の流れをスパイラル状となるように導き、前記外環状流路内を通過中の前記処理流体に遠心力が作用するように構成されたことを特徴とする請求項1記載のろ過膜モジュール。 - 中空筒状のろ過面によって規定される管状流路を少なくとも1つ備えた膜エレメントと、
前記膜エレメントの外側に配置された筒状のハウジングとを備え、
前記管状流路内に加圧された処理流体を通過させる一方、前記膜エレメントと前記ハウジングの内周面との間の外環状流路内に逆洗時には、洗浄用流体を前記膜エレメントの外周面から前記管状流路へ前記膜エレメント内を通過させるよう構成された内圧クロスフローろ過処理を行う内圧式のろ過膜モジュールにおいて、
前記外環状流路内に配置された逆洗用流れ調整器を備え、
前記逆洗用流れ調整器は、前記外環状流路内を通過中の前記洗浄用流体の流れを、自らが駆動することなく変化させるものであり、
前記外環状流路内を通過中の前記洗浄用流体の流れを前記逆洗用流れ調整器にて変化させることにより、前記洗浄用流体のうち前記外環状流路内の前記膜エレメントの前記外周面に沿う領域における流速を、前記逆洗用流れ調整器を配置しない場合における前記外周面に沿う領域における流速に比べて、増大させる壁面流体加速機能が発揮されるように構成されたことを特徴とするろ過膜モジュール。 - 前記逆洗用流れ調整器は、前記外環状流路内に敷設されたスパイラル状フィンであることを特徴とする請求項5記載のろ過膜モジュール。
- 請求項1~5のいずれかに記載の前記ろ過膜モジュールを用いて、前記処理流体の濃縮、精製、溶媒置換、pH調整、導電率調整、微粒子洗浄、微粒子表面処理、分級のうち少なくとも1以上を目的とした前記処理流体のクロスフローろ過処理を行うことを特徴とするろ過処理方法。
- 請求項3に記載の前記ろ過膜モジュールを用いて、粒子径の異なる複数の粒子を含む前記処理流体をろ過処理する方法であって、
前記処理流体を前記外環状流路内に通過させる際、前記粒子のうち粒子径の小さな粒子に対する遠心力よりも粒子径の大きな粒子に対する遠心力の方が大きくなり、粒子径の大きな粒子が前記ハウジング側へ移動することにより前記膜エレメントから離れるため、前記粒子径の小さな粒子の前記膜エレメントの通過が阻害されにくくなるようにした処理を含み、
前記処理流体の濃縮、精製、溶媒置換、pH調整、導電率調整、微粒子洗浄、微粒子表面処理、分級のうち少なくとも1以上を目的とした前記処理流体のクロスフローろ過処理を行うことを特徴とするろ過処理方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019525685A JP7150231B2 (ja) | 2017-06-21 | 2018-06-21 | ろ過膜モジュール及びろ過処理方法 |
US16/624,687 US11161079B2 (en) | 2017-06-21 | 2018-06-21 | Filtration membrane module and filtration processing method |
EP18820914.2A EP3643385A4 (en) | 2017-06-21 | 2018-06-21 | FILTRATION MEMBRANE MODULE AND FILTRATION PROCESS |
KR1020197034442A KR102571969B1 (ko) | 2017-06-21 | 2018-06-21 | 여과막 모듈 및 여과 처리 방법 |
CN201880039379.3A CN110740799B (zh) | 2017-06-21 | 2018-06-21 | 过滤膜模块及过滤处理方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/022919 WO2018235210A1 (ja) | 2017-06-21 | 2017-06-21 | ろ過膜モジュール及びろ過処理方法 |
JPPCT/JP2017/022919 | 2017-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018235901A1 true WO2018235901A1 (ja) | 2018-12-27 |
Family
ID=64735979
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022919 WO2018235210A1 (ja) | 2017-06-21 | 2017-06-21 | ろ過膜モジュール及びろ過処理方法 |
PCT/JP2018/023641 WO2018235901A1 (ja) | 2017-06-21 | 2018-06-21 | ろ過膜モジュール及びろ過処理方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/022919 WO2018235210A1 (ja) | 2017-06-21 | 2017-06-21 | ろ過膜モジュール及びろ過処理方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11161079B2 (ja) |
EP (1) | EP3643385A4 (ja) |
JP (1) | JP7150231B2 (ja) |
KR (1) | KR102571969B1 (ja) |
CN (1) | CN110740799B (ja) |
WO (2) | WO2018235210A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021074235A1 (en) * | 2019-10-16 | 2021-04-22 | Dwi - Leibniz-Institut Für Interaktive Materialien E.V. | Membrane system, spinneret for manufacturing the membrane system, device including the spinneret and method for forming the membrane system |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112512670B (zh) * | 2018-06-26 | 2023-07-28 | 三菱化学株式会社 | 分离膜模块 |
KR102457238B1 (ko) * | 2020-08-07 | 2022-10-20 | 가람환경기술(주) | 세척이 용이한 배관 스트레이너 |
CN114588783B (zh) * | 2022-03-21 | 2023-08-01 | 山东水利建设集团有限公司 | 一种泵房多级反冲洗系统 |
US11772025B1 (en) | 2022-08-02 | 2023-10-03 | W. L. Gore & Associates, Inc. | Industrial filter assembly enhancement |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4896460A (ja) * | 1972-02-14 | 1973-12-10 | ||
JPS5249353U (ja) * | 1975-10-03 | 1977-04-08 | ||
JPS5249353A (en) | 1975-10-16 | 1977-04-20 | Unitika Ltd | Manufacture of flame bonding processed yarn |
JPS52133238U (ja) | 1976-04-06 | 1977-10-11 | ||
JPS53142383A (en) * | 1977-05-17 | 1978-12-12 | Kobe Steel Ltd | Method and apparatus for sterilizing tubular-membrane separator of internal pressure type |
JPH1157355A (ja) | 1997-08-25 | 1999-03-02 | Ngk Insulators Ltd | セラミックフィルタおよびその製造方法 |
WO1999056851A1 (fr) | 1998-05-07 | 1999-11-11 | Ngk Insulators, Ltd. | Filtre en ceramique |
JP2000015012A (ja) * | 1998-07-07 | 2000-01-18 | Japan Science & Technology Corp | 高剪断流による高能率濾過方法及びその装置 |
JP2003183019A (ja) * | 2001-12-18 | 2003-07-03 | Catalysts & Chem Ind Co Ltd | ゼオライトの濾過分離方法 |
JP2006263640A (ja) | 2005-03-25 | 2006-10-05 | Ngk Insulators Ltd | セラミック膜浄水製造方法 |
JP2006263517A (ja) | 2005-03-22 | 2006-10-05 | Ngk Insulators Ltd | セラミックフィルタ及びその製造方法 |
JP2011016037A (ja) | 2009-07-07 | 2011-01-27 | Mitsubishi Kakoki Kaisha Ltd | 回転濾板式濾過機 |
WO2013147272A1 (ja) | 2012-03-30 | 2013-10-03 | 日本碍子株式会社 | ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体 |
JP2014184362A (ja) | 2013-03-22 | 2014-10-02 | Ngk Insulators Ltd | セラミックフィルタを用いたろ過方法およびセラミックフィルタ |
JP2015066495A (ja) * | 2013-09-30 | 2015-04-13 | 三菱化工機株式会社 | ディスク回転式膜ろ過装置を使用したろ過方法 |
JP2017064689A (ja) * | 2015-10-02 | 2017-04-06 | エス・ピー・ジーテクノ株式会社 | 均一細孔分布を有する多孔質ガラス膜を用いたろ過方法とその装置 |
JP6129389B1 (ja) * | 2016-07-26 | 2017-05-17 | 株式会社リテラ | ろ過装置 |
JP6151469B1 (ja) | 2016-02-02 | 2017-06-21 | エム・テクニック株式会社 | 微粒子分散液の精密改質方法 |
JP6144447B1 (ja) | 2016-02-02 | 2017-07-05 | エム・テクニック株式会社 | 微粒子分散液の精密改質方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3754658A (en) * | 1970-10-19 | 1973-08-28 | H Messing | Pulp thickener having two vertical perforated screens with nonmoving spirally wrapped blades therebetween |
NL52674C (ja) | 1973-11-02 | |||
JPS5944576B2 (ja) | 1976-05-01 | 1984-10-30 | エヌ・テ−・エヌ東洋ベアリング株式会社 | 円錐コロ軸受の組立幅測定装置 |
US4107048A (en) * | 1977-02-04 | 1978-08-15 | The Weatherhead Company | Turbulence amplifier baffle |
CH670573A5 (ja) * | 1985-11-22 | 1989-06-30 | Sulzer Ag | |
JPS62273008A (ja) * | 1986-05-22 | 1987-11-27 | Kubota Ltd | 膜モジユ−ル |
US5024771A (en) * | 1990-02-14 | 1991-06-18 | Everfilt Corporation | Liquid filter and methods of filtration and cleaning of filter |
EP0592698B1 (de) * | 1991-04-15 | 1995-12-20 | Klaus Jörgens | Ultrafiltrationsseparator |
GB9305788D0 (en) * | 1993-03-19 | 1993-05-05 | Bellhouse Brian John | Filter |
JP3557655B2 (ja) * | 1994-07-12 | 2004-08-25 | 栗田工業株式会社 | 内圧型管状膜モジュールによる膜分離装置 |
US6077436A (en) * | 1997-01-06 | 2000-06-20 | Corning Incorporated | Device for altering a feed stock and method for using same |
US20070163942A1 (en) * | 2006-01-19 | 2007-07-19 | Toray Industries, Inc. | Hollow fiber membrane module |
CN102164657B (zh) * | 2008-09-26 | 2014-01-29 | 旭化成化学株式会社 | 多孔中空纤维膜在用于制造澄清化的生物药物培养液中的用途 |
KR101320467B1 (ko) * | 2011-10-26 | 2013-10-22 | 주식회사 부강테크 | 고정형 카오스 유동 유도체를 구비하는 여과장치 |
FR3024664B1 (fr) * | 2014-08-11 | 2020-05-08 | Technologies Avancees Et Membranes Industrielles | Nouvelles geometries d'elements tubulaires multicanaux de separation par flux tangentiel integrant des promoteurs de turbulences et procede de fabrication |
CN105833569B (zh) * | 2016-04-27 | 2018-05-11 | 长春工业大学 | 外旋流限流道膜分离器及其用于乳状液膜破乳的方法 |
-
2017
- 2017-06-21 WO PCT/JP2017/022919 patent/WO2018235210A1/ja active Application Filing
-
2018
- 2018-06-21 JP JP2019525685A patent/JP7150231B2/ja active Active
- 2018-06-21 US US16/624,687 patent/US11161079B2/en active Active
- 2018-06-21 EP EP18820914.2A patent/EP3643385A4/en active Pending
- 2018-06-21 WO PCT/JP2018/023641 patent/WO2018235901A1/ja unknown
- 2018-06-21 KR KR1020197034442A patent/KR102571969B1/ko active IP Right Grant
- 2018-06-21 CN CN201880039379.3A patent/CN110740799B/zh active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4896460A (ja) * | 1972-02-14 | 1973-12-10 | ||
JPS5249353U (ja) * | 1975-10-03 | 1977-04-08 | ||
JPS5249353A (en) | 1975-10-16 | 1977-04-20 | Unitika Ltd | Manufacture of flame bonding processed yarn |
JPS52133238U (ja) | 1976-04-06 | 1977-10-11 | ||
JPS53142383A (en) * | 1977-05-17 | 1978-12-12 | Kobe Steel Ltd | Method and apparatus for sterilizing tubular-membrane separator of internal pressure type |
JPH1157355A (ja) | 1997-08-25 | 1999-03-02 | Ngk Insulators Ltd | セラミックフィルタおよびその製造方法 |
WO1999056851A1 (fr) | 1998-05-07 | 1999-11-11 | Ngk Insulators, Ltd. | Filtre en ceramique |
JP2000015012A (ja) * | 1998-07-07 | 2000-01-18 | Japan Science & Technology Corp | 高剪断流による高能率濾過方法及びその装置 |
JP2003183019A (ja) * | 2001-12-18 | 2003-07-03 | Catalysts & Chem Ind Co Ltd | ゼオライトの濾過分離方法 |
JP2006263517A (ja) | 2005-03-22 | 2006-10-05 | Ngk Insulators Ltd | セラミックフィルタ及びその製造方法 |
JP2006263640A (ja) | 2005-03-25 | 2006-10-05 | Ngk Insulators Ltd | セラミック膜浄水製造方法 |
JP2011016037A (ja) | 2009-07-07 | 2011-01-27 | Mitsubishi Kakoki Kaisha Ltd | 回転濾板式濾過機 |
WO2013147272A1 (ja) | 2012-03-30 | 2013-10-03 | 日本碍子株式会社 | ハニカム形状セラミック多孔質体、その製造方法、及びハニカム形状セラミック分離膜構造体 |
JP2014184362A (ja) | 2013-03-22 | 2014-10-02 | Ngk Insulators Ltd | セラミックフィルタを用いたろ過方法およびセラミックフィルタ |
JP2015066495A (ja) * | 2013-09-30 | 2015-04-13 | 三菱化工機株式会社 | ディスク回転式膜ろ過装置を使用したろ過方法 |
JP2017064689A (ja) * | 2015-10-02 | 2017-04-06 | エス・ピー・ジーテクノ株式会社 | 均一細孔分布を有する多孔質ガラス膜を用いたろ過方法とその装置 |
JP6151469B1 (ja) | 2016-02-02 | 2017-06-21 | エム・テクニック株式会社 | 微粒子分散液の精密改質方法 |
JP6144447B1 (ja) | 2016-02-02 | 2017-07-05 | エム・テクニック株式会社 | 微粒子分散液の精密改質方法 |
JP6129389B1 (ja) * | 2016-07-26 | 2017-05-17 | 株式会社リテラ | ろ過装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021074235A1 (en) * | 2019-10-16 | 2021-04-22 | Dwi - Leibniz-Institut Für Interaktive Materialien E.V. | Membrane system, spinneret for manufacturing the membrane system, device including the spinneret and method for forming the membrane system |
Also Published As
Publication number | Publication date |
---|---|
CN110740799A (zh) | 2020-01-31 |
CN110740799B (zh) | 2022-12-27 |
EP3643385A4 (en) | 2021-04-28 |
US11161079B2 (en) | 2021-11-02 |
JPWO2018235901A1 (ja) | 2020-04-23 |
KR102571969B1 (ko) | 2023-08-29 |
EP3643385A1 (en) | 2020-04-29 |
WO2018235210A1 (ja) | 2018-12-27 |
KR20200020680A (ko) | 2020-02-26 |
JP7150231B2 (ja) | 2022-10-11 |
US20200108350A1 (en) | 2020-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018235901A1 (ja) | ろ過膜モジュール及びろ過処理方法 | |
Wakeman et al. | Additional techniques to improve microfiltration | |
US5500134A (en) | Microfiltration system with swirling flow around filter medium | |
US9486743B2 (en) | Apparatus and method for removing finely divided solids from a liquid flow | |
Noor et al. | Performance of flexible membrane using kaolin dynamic membrane in treating domestic wastewater | |
CN101785973B (zh) | 管式复合膜超、微滤膜组件 | |
JP5269749B2 (ja) | 濾過装置の洗浄方法 | |
JPH03154620A (ja) | 膜分離装置 | |
JP2011083764A (ja) | 水浄化システムの運転方法及び水浄化システム | |
US20170259212A1 (en) | Cyclic Filtration System | |
JP5614644B2 (ja) | 膜ろ過方法 | |
FI106614B (fi) | Menetelmä ja laitteisto hienojakoista kiintoainesta sisältävän nestevirtauksen kirkastamiseksi | |
EP2435173A1 (en) | Fluid handling system and uses thereof | |
JP3758371B2 (ja) | 高剪断流による高能率濾過装置 | |
JP2017094310A (ja) | 被処理流体の分離処理方法 | |
WO2019191472A1 (en) | Method and apparatus for improved filtration by a ceramic membrane | |
CN110078247A (zh) | 一种锗加工废水的处理系统以及处理方法 | |
KR102339096B1 (ko) | 하이드로싸이크론 및 이를 이용한 폐수처리장치 | |
KR101984553B1 (ko) | 가압식 막분리 모듈의 유입부에 부설되는 유량균등배분장치 | |
KR100854933B1 (ko) | 필터 내에서 양 방향으로 침전물 세척이 가능한 세척필터 | |
Ahmad et al. | Reduction of membrane fouling using a helical baffle for cross flow microfiltration | |
KR20230001382A (ko) | 연마 슬러리액 필터링 장치 | |
US20180345223A1 (en) | Multi-stage filtration system for heterogeneous food mixtures | |
JP2008043863A (ja) | 汚濁水処理システムプラント | |
JP2023002895A (ja) | クロスフローろ過に用いられる分離膜を用いたスラリー濃縮装置の洗浄方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18820914 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019525685 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20197034442 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018820914 Country of ref document: EP Effective date: 20200121 |