WO2018235458A1 - ばね用銅合金極細線及びその製造方法 - Google Patents

ばね用銅合金極細線及びその製造方法 Download PDF

Info

Publication number
WO2018235458A1
WO2018235458A1 PCT/JP2018/018714 JP2018018714W WO2018235458A1 WO 2018235458 A1 WO2018235458 A1 WO 2018235458A1 JP 2018018714 W JP2018018714 W JP 2018018714W WO 2018235458 A1 WO2018235458 A1 WO 2018235458A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
wire
alloy wire
less
springs
Prior art date
Application number
PCT/JP2018/018714
Other languages
English (en)
French (fr)
Inventor
尚之 瀬尾
孝之 秋月
丸山 徹
Original Assignee
日本精線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精線株式会社 filed Critical 日本精線株式会社
Priority to KR1020197019865A priority Critical patent/KR102450302B1/ko
Priority to JP2018525640A priority patent/JP7145070B2/ja
Priority to CN201880001912.7A priority patent/CN109429497B/zh
Publication of WO2018235458A1 publication Critical patent/WO2018235458A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/02Drawing metal wire or like flexible metallic material by drawing machines or apparatus in which the drawing action is effected by drums
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy wire for springs and a method of manufacturing the same, for example, a copper alloy wire for springs having electrical conductivity incorporated in precision electronic devices and the like and a method of manufacturing the wire.
  • springs made of ultrafine wires are widely used in various types of small-sized precision electronic devices and the like (for example, suspension springs of camera modules). This type of spring is required to have high conductivity as well as excellent strength.
  • Various copper alloys with low electrical resistance have been proposed as materials that meet both strength and conductivity requirements.
  • Patent Document 1 Ni: 3.0 to 29.5 mass%, Al: 0.5 to 7.0 mass%, Si: 0.1 to 1.5 mass%, and the balance is Cu.
  • a copper alloy of the FCC structure comprising the unavoidable impurities, wherein ⁇ 'phase of the FCC structure is precipitated in the L12 structure of Ni 3 Al containing Si in the matrix of the copper alloy, and A high strength copper alloy having a conductivity of at least 8.5 IACS and a Vickers hardness of at least 220 Hv is described.
  • Patent No. 5743165 gazette
  • Ni 3 Si which is one of the chemical components, has a property of being easily bonded to Ni as compared with Al, and tends to preferentially form a Ni 3 Si compound.
  • the melting point of Cu is 1085 ° C., which is lower than the precipitation temperature of about 1300 ° C. of Ni 3 Si. For this reason, the heat treatment of the copper alloy needs to be performed at less than 1085 ° C.
  • Ni 3 Si can not form a solid solution, and a Ni 3 Si compound having a large particle size tends to precipitate in the base material.
  • FIG. 2 shows an example of the Ni 3 Si compound in this kind of Cu-Ni-Si alloy.
  • An object of the present invention is to manufacture a copper alloy extremely thin wire for springs having excellent strength and high electrical conductivity with high yield while suppressing disconnection and cracking during wire drawing.
  • the present invention is a copper alloy wire for springs with a wire diameter of 100 ⁇ m or less, and in mass%, 6.0% ⁇ Ni ⁇ 15.0%, Sn ⁇ 6.0%, Al ⁇ 1.2%, The balance is composed of Cu and unavoidable impurities, the tensile strength is 1350 MPa or more, the conductivity is 4.0% IACS or more, and the relative ratio of Ni, Sn and Al is 0.20 ⁇ (2 Sn + Al) / 3 Ni ⁇ It is a copper alloy wire for springs which satisfies 0.37.
  • the above copper alloy is, by mass%, 10.0% ⁇ Ni ⁇ 14.0%, 2.0% ⁇ Sn ⁇ 5.9%, 0.5% ⁇ Al ⁇ 1.2 %,
  • the balance may be composed of Cu and unavoidable impurities.
  • the copper alloy may be configured such that the relative ratio of Ni, Sn, and Al satisfies 0.24 ⁇ (2Sn + Al) /3Ni ⁇ 0.31.
  • the copper alloy may further contain B ⁇ 0.05%.
  • the copper alloy is further selected from the group of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu.
  • the metal of more than species can be included at 0.005% or more and 0.1% or less.
  • the copper alloy may further contain 0.05% ⁇ Mg ⁇ 0.2%.
  • the copper alloy may further contain 0.05% ⁇ Ti ⁇ 0.2%.
  • the copper alloy may further contain 0.005% ⁇ Ca ⁇ 0.1%.
  • a copper alloy wire In the method for producing a copper alloy wire according to the present invention, 6.0% ⁇ Ni ⁇ 15.0%, Sn ⁇ 6.0%, Al ⁇ 1.2%, balance Cu, in mass%.
  • the copper alloy ultrafine wire for springs which has the outstanding intensity
  • FIG. I a photograph of SEM showing an example of the Cu-Ni-Si-based Ni 3 Si compound in the alloy. It is an apparatus schematic explaining the process from heat processing to cooling. It is a photograph of SEM which shows the state which the hole has produced in the places of the comparison material 15.
  • FIG. I a photograph of SEM showing an example of the Cu-Ni-Si-based Ni 3 Si compound in the alloy. It is an apparatus schematic explaining the process from heat processing to cooling. It is a photograph of SEM which shows the state which the hole has produced in the places of the comparison material 15.
  • the copper alloy wire for springs according to the present invention has a wire diameter of 100 ⁇ m or less, and 6.0% ⁇ Ni ⁇ 15.0%, Sn ⁇ 6.0%, Al ⁇ 1.2%, the balance is Cu and Composed of unavoidable impurities, having a tensile strength of 1350 MPa or more, a conductivity of 4.0% IACS or more, and a relative ratio of Ni, Sn and Al of 0.20 ⁇ (2Sn + Al) / 3Ni ⁇ 0. Satisfy 37. Details of these configurations will be described below.
  • the copper alloy wire for springs of the present invention is incorporated, for example, as a suspension spring or a contact spring in a precision electronic device, and is provided as an extremely thin wire having a wire diameter of 100 ⁇ m or less from such a requirement.
  • the cross section of the wire may be flat as well as true circular. In the latter case, the major axis may be 100 ⁇ m or less. Since the copper alloy wire for springs of the present invention is mainly composed of Cu, it can be adjusted to a desired wire diameter of 100 ⁇ m or less by, for example, cold drawing using a hole die.
  • Ni is added to Sn and Al to improve the strength and spring characteristics of the copper alloy material. Therefore, if the content of Ni is 6.0% or less, the amount of the compound with Sn or Al also decreases, and a sufficient strength can not be obtained. From such a viewpoint, Ni is preferably 10.0% or more, more preferably 11.0% or more. On the other hand, when Ni is 15.0% or more, it is added in a range exceeding the amount bound to Sn and Al, and although high strength is possible, a large amount of compounds are formed. The toughness is reduced, which leads to the deterioration of workability and spring characteristics and the reduction of conductivity. From such a viewpoint, Ni is preferably 14.0% or less, more preferably 13.0% or less.
  • the present invention adopts Sn in place of Si added to the Cu-Ni-Si alloy disclosed in the conventional Patent Document 1 to improve the strength and spring characteristics of the copper alloy material.
  • the precipitation temperature of the Ni—Sn-based compound is in the range of 700 to 800 ° C., which is lower than the melting point of Cu (1085 ° C.). Therefore, according to the copper alloy of the present invention, heat treatment can be performed at a temperature higher than the precipitation temperature of the Ni-Sn-based compound and lower than the melting point of Cu, so Ni-Sn can be melted without melting Cu. Precipitates can be solid-solved.
  • Sn combines with Ni to improve the strength and spring characteristics of the copper alloy material. Since the diffusion of Sn in the copper alloy is slow, even if a compound of Sn is formed in the alloy, the growth rate is slow, and it is possible to maintain the solid solution in supersaturation. Therefore, in the present invention, it is possible to improve the strength of the copper alloy by solid solution strengthening by supersaturated solid solution of Sn. In addition, Sn in the form of supersaturated solid solution is precipitated as a compound by wire drawing, and the conductivity of the ultrafine wire after wire drawing is improved. Moreover, the supersaturated solid solution of Sn increases the work hardening coefficient of the copper alloy and has an advantage of increasing the work hardening at the time of wire drawing.
  • the atomic radius of Sn is 1.2 times or more that of Cu, and segregates at the interface between the Cu matrix and the Ni-Al based intermetallic compound, thereby suppressing the growth of the Ni-Al based compound by the drag effect, It is presumed that it contributes to the miniaturization of Ni-Al based compounds.
  • the content of Sn when the content of Sn is increased, the excess Sn may lower the strength of the grain boundaries and cause cracking of the material during wire drawing and forging. From such a viewpoint, the content of Sn needs to be less than 6.0%, preferably 5.9% or less, more preferably 5.0% or less. In addition, when there is little content of Sn, there exists a possibility that improvement of sufficient intensity
  • Al ⁇ 1.2% Al is also an essential element to improve the strength and spring characteristics of the copper alloy material by combining it with Ni, but when the content of Al is increased, an excessive Ni3Al-based compound is formed, so the alloy hardness As a result, there is a possibility that the wire may be broken at the time of wire drawing due to a decrease in toughness. From such a viewpoint, the content of Al is set to 1.2% or less, more preferably to 1.1% or less. In addition, when there is little content of Al, there exists a possibility that improvement of sufficient intensity
  • the parameter (2Sn + Al) / 3Ni which specifies the amount of Sn and Al to the above Ni exceeds 0.37, the amount of Sn and the amount of Al becomes relatively large compared to the amount of Ni It was found that cracking and breakage occurred during forging and wire drawing, and the yield decreased.
  • the parameter (2 Sn + Al) / 3 Ni which defines the amount of Sn and Al to the above Ni is less than 0.20, the amount of Ni becomes relatively excessive, and the necessary strength as a spring material targeted by the present invention is secured. I also know that I can not do it. From these viewpoints, the parameter (2Sn + Al) / 3Ni is desirably 0.24 or more, and desirably 0.31 or less.
  • B may be further added as an optional element at less than 0.05%.
  • the element B By the addition of the element B, the crystal grains in the alloy are refined and higher strength can be obtained.
  • the content of B increases, there is a possibility that holes (so-called “nests”) may be generated in parts of the material, so the content of B is less than 0.05%, preferably 0.02% or less. .
  • the copper alloy wire of the present invention further includes, as an optional element, a group of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu (hereinafter referred to as “lanthanoid Or more may be added by 0.005% or more and 0.1% or less.
  • lanthanoid Or more may be added by 0.005% or more and 0.1% or less. The addition of the lanthanoid suppresses intergranular oxidation in the high temperature range of the copper alloy and improves the hot workability.
  • the content of the lanthanoid (the total content of the lanthanides is the same in the following) is less than 0.005%, the grain boundary oxidation in the high temperature range of the copper alloy can not be sufficiently suppressed.
  • the content of the lanthanoid is desirably 0.005% or more, preferably 0.01% or more.
  • the content of lanthanoid is 0.1% or less , Preferably 0.08% or less.
  • the metal which belongs to lanthanoid has the chemical property which approximated respectively, if the said content is obtained combining any one sort in these or two sorts or more, the above-mentioned action can be exhibited.
  • an alloy containing the above lanthanoid in any combination may be added as in misch metal.
  • Mg may be further added as an optional element at 0.05% or more and 0.2% or less.
  • the addition of the element of Mg makes the crystal grains finer and improves the tensile strength.
  • the content of Mg is desirably 0.05% or more, preferably 0.1% or more.
  • the drawability may be inhibited by the formation of inclusions, so the content of Mg is 0.2% or less, preferably 0.15% or less.
  • Ti may be further added as an optional element at 0.05% or more and 0.2% or less.
  • the element of Ti By the addition of the element of Ti, Ti is precipitated as fine precipitates, and the tensile strength is improved.
  • the content of Ti is desirably 0.05% or more, preferably 0.1% or more.
  • the content of Ti increases, the conductivity decreases, so the content of Ti is 0.2% or less, preferably 0.15% or less.
  • Ca may be further added as an optional element at 0.005% or more and 0.1% or less.
  • the deoxidizing action of the element of Ca improves the degree of cleanliness and the processability.
  • the content of Ca is desirably 0.005% or more, preferably 0.008% or more.
  • holes sin-called “nests” as internal defects may be generated in parts of the material at the time of casting. 0.1% or less, preferably 0.012% or less is more desirable.
  • Unavoidable impurities The present invention is a copper alloy wire composed of the component elements as described above, with the balance being composed of unavoidable impurities and Cu.
  • unavoidable impurities O, Zn, Mn, Si, Fe, S etc. can be mentioned, for example.
  • O forms an oxide to deteriorate the plastic formability and lower the conductivity, and also causes S and Fe to form harmful coarse inclusions, so that the total of them becomes 0.20% or less It is desirable to be managed by
  • the content of each impurity is about 0.10% or less.
  • the copper alloy wire for springs of the present invention is adjusted to have a tensile strength of 1350 MPa or more, and more preferably to 1400 MPa or more, in order to exhibit sufficient strength.
  • the tensile strength of the ultrafine wire is measured in accordance with JIS-Z2241 "Metal material tensile test method".
  • the copper alloy wire for springs of the present invention has a conductivity of 4.0% IACS or more. Thereby, for example, it can be suitably used as a suspension spring for a camera module, and various other conductive springs.
  • the copper alloy wire for springs of the present embodiment has a very small wire diameter of 100 ⁇ m or less and a small electrical resistance, and it is sufficient if the electrical characteristics have a conductivity of 4.0% IACS or more. is there.
  • the conductivity is set to 6.0% IACS or more and 8.5% IACS or less.
  • the conductivity is measured by a four-terminal method (sample length 100 mm) in a thermostat at 20 ° C. in accordance with JIS-C3002 “Test method for copper wire and aluminum wire for electricity”.
  • the ultra thin wire of the present invention is a solid wire of a copper alloy wire (base wire) having a predetermined wire diameter having the above-mentioned chemical components at a temperature of 700 ° C. or more and less than 1085 ° C.
  • Heat treatment by solubilization solubilization.
  • the Ni-A1 based compound and the Ni-Sn based compound in the wire can be solid-solved in Cu.
  • cold drawing is performed in a state where the particle diameter of the Ni—Al based compound precipitated in the copper alloy wire is 50 nm or less and the total working ratio exceeds 95%.
  • the temperature of the solution heat treatment is less than 700 ° C., there is a problem that the compound generated at the time of casting does not decompose / solve, it is not preferable.
  • the temperature of the solution treatment exceeds 1085 ° C., Cu, which is a base material element, melts and thus can not be adopted.
  • the heat treatment time is less than 0.5 minutes, sufficient solution formation can not be performed, and conversely, when it exceeds 120 minutes, coarsening of the aged and precipitated compound becomes remarkable, and the processability is deteriorated. is there.
  • heat treatment unit 100 includes a furnace main body 102 and a stainless steel pipe 104 such as SUS 316 extending therethrough.
  • the inside of the pipe 104 is filled with a gas such as hydrogen or argon to provide a non-oxidizing atmosphere.
  • the copper alloy wire 300 travels inside the pipe 104 in the furnace body 102 to the right in the figure, whereby heat treatment is performed while preventing the surface of the wire from being oxidized.
  • the cooling unit 200 includes a water tank 202 to which temperature-controlled cooling water is supplied.
  • the pipe 104 is cooled by the water tank 202.
  • the copper alloy wire 300 in the pipe 104 is cooled via the pipe 104 (indirect cooling).
  • the protrusion length of the pipe 104, the feeding speed of the copper alloy wire, and the like are appropriately adjusted, and the temperature of the copper alloy wire exposed from the pipe 104 can be controlled to be lower than the oxidation temperature.
  • the process as described above is useful not only to suppress surface oxidation of the copper alloy wire, but also to suppress large growth of the particle diameter of the Sn compound inside.
  • the grain size of the Ni-Al based compound precipitated in the copper alloy wire is 50 nm or less, cold drawing with a total working ratio exceeding 95%, more preferably 98% or more Is done.
  • the processing rate is 95% or less, the strength improvement due to work hardening is insufficient, and it is difficult to obtain the desired strength.
  • whether or not the particle diameter of the compound is 50 nm or less can be determined by inspecting at least the particle diameter of the compound of the wire immediately before cold wire drawing. This is because the grain size does not grow significantly during cold drawing (that is, it does not grow to affect cold drawing in a very fine wire region).
  • Copper alloy materials (Inventive materials 1 to 11, Comparative materials 12 to 15) having the chemical composition shown in Table 1 are melted at 1250 ° C. using a continuous caster, and continuously cast to a diameter of 9.5 mm. A cast rod (base wire) was manufactured.
  • Inventive materials 1 to 5 are Cu-Ni-Sn-Al materials
  • inventive materials 6 and 7 are Cu-Ni-Sn-Al-B materials.
  • Inventive materials 8 to 11 are obtained by adding La + Ce, Mg, Ti and Ca as a lanthanoid to a base material of Cu—Ni—Sn—Al, respectively.
  • the comparative material 12 has a higher content of Al than the inventive material
  • the comparative materials 13 and 14 have a higher content of Sn than the inventive material
  • the comparative material 15 has a higher content.
  • the B content is higher than that of the inventive material.
  • the diameter of the cast rod is reduced to a wire diameter of 0.5 to 2.0 mm, and a temperature of 850 to 900 ° C. ⁇ 0 .5 to 10.0 min.
  • Heat treatment under the following conditions to form a soft wire and then this soft wire is subjected to cold drawing at a working ratio of 95% with a continuous drawing machine to obtain a hard copper alloy wire with a final finished wire diameter of 50 ⁇ m. I got
  • inventive materials 1 to 11 With respect to inventive materials 1 to 11, none of them were broken or broken at the time of wire drawing, and it was confirmed that the inventive materials 1 to 11 had better workability than the comparative materials 12 to 15. It was also confirmed that the spring material had the required tensile strength and conductivity.
  • FIG. 1 the SEM image of the invention material 1 is shown.
  • La and Ce were added as lanthanoids, but other metals of lanthanoids such as Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb or Even when Lu is added, similar effects can be obtained because these have similar chemical properties.
  • the comparative material 12 had a large content of Al, had high hardness and low toughness even after heat treatment, and was broken at the time of wire drawing to a very thin wire region (wire diameter of 100 ⁇ m or less).
  • the comparative material 13 had much content of Sn, it is guessed that the crack generate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Wire Processing (AREA)
  • Metal Extraction Processes (AREA)

Abstract

優れた強度と高い導電率を有するばね用銅合金極細線及びその製造方法を提供する。 線径が100μm以下のばね用銅合金極細線であって、質量%で、6.0%<Ni<15.0%、Sn<6.0%、Al<1.2%、残部がCu及び不可避不純物で構成され、引張強さが1350MPa以上であり、導電率が4.0%IACS以上であり、Ni、Sn及びAlの関係比率が0.20≦(2Sn+Al)/3Ni≦0.37を充足する、ばね用銅合金極細線である。

Description

ばね用銅合金極細線及びその製造方法
 本発明は、ばね用銅合金極細線及びその製造方法に関し、例えば、精密電子機器等に組み入れられる導電性を有したばね用銅合金極細線及びその製造方法に関する。
 近年、各種の小型精密電子機器等に、極細線からなるばねが多用されている(例えば、カメラモジュールのサスペンションばね等)。この種のばねは、優れた強度のみならず、高い導電性が求められている。強度と導電性の両方の要求を満たす材料として、電気抵抗の小さい銅合金が種々提案されている。
 例えば、下記特許文献1には、Ni:3.0~29.5質量%、Al:0.5~7.0質量%、Si:0.1~1.5質量%を含み、残部がCu及び不可避的不純物とからなるFCC構造の銅合金であって、前記銅合金の母相中に、Siを含むNiAlのL12構造で、FCC構造のγ’相が析出していて、かつ、導電率が8.5IACS%以上で、ビッカース硬さが220Hv以上である高強度銅合金が記載されている。
特許第5743165号公報
 上記銅合金において、その化学成分の一つであるSiは、Alと比較してNiと結びつきやすい性質を有し、優先的にNiSi化合物を生成する傾向がある。また、Cuの融点は1085℃であり、NiSiの析出温度約1300℃よりも低い。このため、上記銅合金の熱処理は、1085℃未満で行なう必要があるが、それではNiSiの固溶ができず、母材中に粒径の大きなNiSi化合物が析出する傾向がある。図2には、この種のCu-Ni-Si系合金中のNiSi化合物の一例を示す。このような銅合金からなる線材を伸線加工によって、例えば100μm以下程度まで極細化を試みると、粒径の大きなNiSi化合物の存在によって断線や割れが生じやすく、歩留まりが低下するという問題があった。
 本発明の課題は、優れた強度及び高い導電率を有するばね用銅合金極細線を、伸線加工時の断線や割れを抑制して、歩留まり良く製造することにある。
 本発明は、線径が100μm以下のばね用銅合金極細線であって、質量%で、6.0%<Ni<15.0%、Sn<6.0%、Al<1.2%、残部がCu及び不可避不純物で構成され、引張強さが1350MPa以上であり、導電率が4.0%IACS以上であり、Ni、Sn及びAlの関係比率が0.20≦(2Sn+Al)/3Ni≦0.37を充足する、ばね用銅合金極細線である。
 本発明の好ましい態様では、上記銅合金は、質量%で、10.0%<Ni<14.0%、2.0%<Sn<5.9%、0.5%<Al<1.2%、残部がCu及び不可避不純物で構成されても良い。
 本発明の好ましい態様では、上記銅合金は、Ni、Sn及びAlの関係比率が0.24≦(2Sn+Al)/3Ni≦0.31を充足するように構成されても良い。
 本発明の他の態様では、上記銅合金は、さらに、B<0.05%を含むことができる。
本発明の他の態様では、上記銅合金は、さらに、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの群から選ばれる1種以上の金属を0.005%以上0.1%以下で含むことができる。
 本発明の他の態様では、上記銅合金は、さらに、0.05%≦Mg≦0.2%を含むことができる。
 本発明の他の態様では、上記銅合金は、さらに、0.05%≦Ti≦0.2%を含むことができる。
 本発明の他の態様では、上記銅合金は、さらに、0.005%≦Ca≦0.1%を含むことができる。
 また、本発明のばね用銅合金極細線の製造方法は、質量%で、6.0%<Ni<15.0%、Sn<6.0%、Al<1.2%、残部がCu及び不可避不純物で構成され、かつ、Ni、Sn及びAlの関係比率が0.20≦(2Sn+Al)/3Ni≦0.37を充足する銅合金の線材を準備する工程と、前記線材を700℃以上かつ1085℃未満の温度で0.5分以上かつ120分以下の時間で熱処理する工程と、前記熱処理後、線材中に析出されるNi-Al系化合物の析出物の粒径が50nm以下の状態で総加工率が95%を超える冷間伸線する工程と、を含むことができる。
 本発明によれば、優れた強度及び高い導電率を有するばね用銅合金極細線を、伸線加工時の断線や割れを抑制して、歩留まり良く製造することができる。
発明材1の析出物の状態を示すSEMの写真である。 Cu-Ni-Si系合金中のNiSi化合物の一例を示すSEMの写真である。 熱処理から冷却までの工程を説明する装置概略図である。 比較材15の所々に孔が発生している状態を示すSEMの写真である。
 以下、本発明の好ましい実施形態について説明するが、本明細書では、特に指定する場合を除き、各構成元素の含有量の単位「%」は「質量%」を意味していることに注意されたい。
 本発明のばね用銅合金極細線は、線径が100μm以下であって、6.0%<Ni<15.0%、Sn<6.0%、Al<1.2%、残部がCu及び不可避不純物で構成され、引張強さが1350MPa以上であり、導電率が4.0%IACS以上であり、しかも、Ni、Sn及びAlの関係比率が0.20≦(2Sn+Al)/3Ni≦0.37を充足する。以下、これらの構成について、詳細について説明する。
[線径100μm以下]
 本発明のばね用銅合金線は、例えば、精密電子機器において、例えば、サスペンションばねや接点ばねとして組み込まれるもので、そのような要請から、線径が100μm以下の極細線として提供される。線材の横断面は、真円状の他、扁平状でも良い。後者の場合、長径が100μm以下であれば良い。本発明のばね用銅合金線は、主成分がCuであるため、例えば、孔ダイスを用いた冷間伸線加工によって100μm以下の所望の線径に調整することができる。
 本発明で各元素を前記分量に制限する理由は次による。
[6.0%<Ni<15.0%]
 Niは、SnやAlと化合し、銅合金材料の強度及びばね特性を向上させるために添加される。したがって、Niの含有量が6.0%以下では、SnやAlとの化合量も減少し、十分な強度が得られない。このような観点から、Niは、好ましくは10.0%以上、さらに好ましくは11.0%以上とされる。逆に、Niが15.0%以上になると、SnやAlと結合する量を超えた範囲で添加されることになり、高強度化は可能であるが、多量の化合物が形成されることから靭性が低下し、それに伴なって加工性及びばね特性の低下や導電率の低下を招く。このような観点から、Niは、好ましくは14.0%以下、さらに好ましくは13.0%以下とされる。
[Sn<6.0%]
 本発明は、銅合金材料の強度及びばね特性を向上させるために、従来の特許文献1に開示されていたCu-Ni-Si系合金で添加されていたSiに変えて、Snを採用している。Ni-Sn系化合物の析出温度は、700~800℃の範囲であり、これはCuの融点(1085℃)よりも低い。したがって、本発明の銅合金によれば、Ni-Sn系化合物の析出温度よりも高温で、かつ、Cuの融点よりも低い温度で熱処理することができるため、Cuを融解させることなくNi-Snの析出物を固溶することができる。
 Snは、Niと化合して銅合金材料の強度及びばね特性を向上させる。銅合金中のSnの拡散は遅いため、合金中にSnの化合物が生成したとしてもその成長速度は遅く、過飽和に固溶した状態を維持することが可能である。したがって、本発明では、Snの過飽和固溶による固溶強化により銅合金の強度を向上させることが可能である。加えて、伸線加工により、過飽和固溶しているSnが化合物として析出し、伸線加工後の極細線の導電率は向上する。また、Snの過飽和固溶は、銅合金の加工硬化係数を大きくし、伸線加工時の加工硬化を増大させる利点を有する。さらに、Snの原子半径はCuの1.2倍以上であり、CuのマトリックスとNi-Al系金属間化合物の界面に偏析し、ドラッグ効果によりNi-Al系化合物の成長を抑制することで、Ni-Al系化合物の微細化に寄与すると推察される。
 一方、Snの含有量が多くなると、過剰なSnが結晶粒界の強度を低下させ、伸線加工時や鍛造時に材料の割れを発生させるおそれがある。このような観点より、Snの含有量は、6.0%未満とされる必要があり、好ましくは5.9%以下、より好ましくは5.0%以下とされる。なお、Snの含有量が少ないと、十分な強度の向上が期待できないおそれがある。このような観点より、Snの含有量は、好ましくは2.0%以上、さらに好ましくは3.0%以上、特に好ましくは4.0%以上とされる。
[Al<1.2%]
 Alも、Niと化合して銅合金材料の強度及びばね特性を向上させるために必須の元素であるが、Alの含有量が多くなると、過剰なNi3Al系化合物が生成されることにより、合金硬度が上昇し、ひいては、靭性低下による伸線加工時の断線を招くおそれがある。このような観点より、Alの含有量は1.2%以下とされるが、より好ましくは1.1%以下とされる。なお、Alの含有量が少ないと、十分な強度の向上が期待できないおそれがある。このような観点から、Alの含有量は0.5%以上が好ましく、より好ましくは1.0%以上とされる。
[0.20≦(2Sn+Al)/3Ni≦0.37]
 銅合金の導電率及び加工性を高めるためには、Cuの重量%を大きくすれば良い。一方、本発明の銅合金中には、化合物としてNiAlとNiSnが析出され、これらが強度向上に寄与する。発明者らは、以上の点から、ばね用銅合金極細線として必要な強度及び加工性を満足させるために、Niに対するSn及びAlの適した比率を規定した。そして、種々の実験の結果、上記Niに対するSn及びAl量を規定するパラメータ(2Sn+Al)/3Niが0.37を超える場合、Ni量に比してSn量やAl量が相対的に多くなるため、鍛造や伸線時に割れや断線が発生し、歩留まりが低下することが判明した。逆に、上記Niに対するSn及びAl量を規定するパラメータ(2Sn+Al)/3Niが0.20を下回ると、Ni量が相対的に過多となり、本発明の対象とするばね材として必要な強度が確保できないことも判明している。これらの観点より、パラメータ(2Sn+Al)/3Niは、0.24以上が望ましく、また、0.31以下が望ましい。
[B<0.05%]
 本発明の銅合金線は、任意元素として、さらに、0.05%未満でBが添加されても良い。Bの元素の添加によって、合金中の結晶粒が微細化され、さらに高い強度を得ることができる。一方、Bの含有量が多くなると、材料の所々に孔(いわゆる「巣」)が発生するおそれがあるので、Bの含有量は0.05%未満、好ましくは0.02%以下がより望ましい。
[La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの群から選ばれる1種以上の金属が0.005%~0.1%]
 本発明の銅合金線は、任意元素として、さらに、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの群(以下、「ランタノイド」という。)から選ばれる1種以上の金属を0.005%以上0.1%以下で添加されても良い。ランタノイドの添加によって、銅合金の高温域における粒界酸化が抑制され、熱間加工性が向上する。ここで、ランタノイドの含有量(ランタノイドの合計の含有量で以下同様である。)が0.005%未満では、銅合金の高温域における粒界酸化を十分に抑制することができない。このような観点から、ランタノイドの含有量は0.005%以上、好ましくは0.01%以上が望ましい。一方、ランタノイドの含有量が多くなると、余分なコストがかかる上、銅合金の粒界に過剰に偏析して熱間加工性を阻害するおそれがあるので、ランタノイドの含有量は0.1%以下、好ましくは0.08%以下がより望ましい。なお、ランタノイドに属する金属は、それぞれ近似した化学的性質を持つため、これらの中からいずれか1種又は2種以上を組合せて上記含有量が得られれば、上述の作用を発揮させることができる。また、ミッシュメタルのように、上記ランタノイドを任意の組合せで含む合金が添加されても良い。
[0.05%≦Mg≦0.2%]
 本発明の銅合金線の他の態様では、任意元素として、さらに、0.05%以上0.2%以下でMgが添加されても良い。Mgの元素の添加によって、結晶粒が微細化し、引張強さが向上する。ここで、Mgの含有量が0.05%未満では、十分な結晶粒の微細化効果が得られない。このような観点から、Mgの含有量は0.05%以上、好ましくは0.1%以上が望ましい。一方、Mgの含有量が多くなると、介在物の生成によって伸線性が阻害されるおそれがあるので、Mgの含有量は0.2%以下、好ましくは0.15%以下がより望ましい。
[0.05%≦Ti≦0.2%]
 本発明の銅合金線の他の態様では、任意元素として、さらに、0.05%以上0.2%以下でTiが添加されても良い。Tiの元素の添加によって、Tiが微細析出物として析出し、引張強さが向上する。ここで、Tiの含有量が0.05%未満では、十分な微細析出物としての析出の効果が得られない。このような観点から、Tiの含有量は0.05%以上、好ましくは0.1%以上が望ましい。一方、Tiの含有量が多くなると、導電性が低下するので、Tiの含有量は0.2%以下、好ましくは0.15%以下がより望ましい。
[0.005%≦Ca≦0.1%]
 本発明の銅合金線の他の態様では、任意元素として、さらに、0.005%以上0.1%以下でCaが添加されても良い。Caの元素の脱酸作用により、清浄度が向上し、加工性が向上する。ここで、Caの含有量が0.005%未満では、十分な脱酸作
用効果が得られない。このような観点から、Caの含有量は0.005%以上、好ましくは0.008%以上が望ましい。一方、Caは添加そのものが困難であるが、Caの含有量が多くなると、鋳造時に材料の所々に内部欠陥としての孔(いわゆる「巣」)が発生するおそれがあるので、Caの含有量は0.1%以下、好ましくは0.012%以下がより望ましい。
[不可避不純物]
 本発明は、以上のような成分元素で構成され、残部が不可避的不純物とCuでなる銅合金線である。不可避的不純物としては、例えば、O、Zn、Mn、Si、Fe、Sなどを挙げることができる。特にOは酸化物を作って塑性加工性を悪化させるとともに導電性を低下させ、また、S及びFeも有害な粗大介在物を形成させることから、それらの合計は0.20%以下となるように管理されることが望ましい。また、個々の不純物の含有量は、0.10%以下程度とされる。
[引張強さ]
 本発明のばね用銅合金極細線は、充分な強度を発揮するために、引張強さが1350MPa以上に調整されるが、より好ましくは1400MPa以上に調整される。本明細書において、極細線の引張強さは、JIS-Z2241「金属材料引張試験方法」に準じて測定される。
[導電率]
 本発明のばね用銅合金極細線は、導電率が4.0%IACS以上とされる。これにより、例えば、カメラモジュール用のサスペンションばねや、その他、種々の導電性ばねとして好適に利用できる。本実施形態のばね用銅合金極細線は、線径が100μm以下と非常に小さく、電気抵抗も小さいことから、その電気特性として導電率が4.0%IACS以上を有するものであれば十分である。好ましくは、導電率は、6.0%IACS以上8.5%IACS以下とされる。本明細書において、導電率はJIS-C3002「電気用銅線及びアルミニウム線試験方法」に準拠した20℃の恒温槽中での4端子法(試料長さ100mm)により測定される。
[銅合金極細線の製造方法]
 本発明の極細線は、上記化学成分を有する所定の線径を有する銅合金線(母材線)が700℃以上かつ1085℃未満の温度で0.5分以上かつ120分以下の時間で固溶化熱処理される。これにより、線材中のNi-A1系化合物及びNi-Sn系化合物をCu中に固溶することができる。次に、熱処理後、銅合金線中に析出したNi-Al系化合物の粒径が50nm以下の状態で、総加工率が95%を超える冷間伸線加工が行われる。
 上記固溶化熱処理の温度が700℃未満の場合、鋳造時に生成した化合物が分解・固溶せず残存するという問題があり好ましくない。逆に、上記固溶化熱処理の温度が1085℃を超えると、母材元素であるCuが融解するため採用できない。また、熱処理時間が0.5分未満では、充分な固溶化を行なうことができず、逆に120分を超えると、時効析出した化合物の粗大化が顕著となり、加工性が低下するという不具合がある。
 上記固溶化熱処理の後、例えば、銅合金線の冷却が行われる。熱処理後の銅合金線が高温状態のまま空気に触れると表面が酸化するため、表面のスケールを除去する処理工程が別途必要になる。本実施形態では、これらの工程を不要とすべく、図3に示されるような設備を用い、無酸化性雰囲気での熱処理(光輝焼鈍)が行われる。この設備は、例えば、熱処理部100と、冷却部200とを含む。熱処理部100は、炉本体102と、その中を貫通して延びるSUS316等のステンレス製のパイプ104とを含む。パイプ104の内部には、水素やアルゴン等のガスが充填されることで、無酸化雰囲気とされる。銅合金線300は、炉本体102内のパイプ104の内部を図において右側へ走行することにより、線材表面の酸化を防止しつつ熱処理がなされる。
 パイプ104の下流側の一部は、炉本体102からはみ出している。パイプ104のはみ出し部分は、冷却部200で冷却される。冷却部200は、温調された冷却水が供給される水槽202を含んでいる。この水槽202でパイプ104が冷却される。これにより、パイプ104内の銅合金線300は、パイプ104を介して冷却される(間接冷却)。パイプ104のはみ出し長や銅合金線の送り速度等が適宜調整され、パイプ104から露出した銅合金線の温度を、酸化温度よりも低く制御することができる。以上のような工程は、銅合金線の表面酸化を抑制するとともに、内部でSn化合物の粒径が大きく成長するのを抑制するのにも役立つ。
 また、銅合金線中に析出したNi-Al系化合物の粒径が50nm以下の状態で、総加工率が95%を超える冷間伸線加工、より好ましくは98%以上の冷間伸線加工が行われる。これにより、本実施形態では、粒径の大きなNi-Al系化合物の析出物に起因した伸線時の断線や割れを抑制することができる。この際、加工率が95%以下では、加工硬化による強度向上が不十分で、目的とする強度を得ることが困難という不具合がある。なお、冷間伸線加工時において上記化合物の粒径が50nm以下であるか否かは、少なくとも冷間伸線加工直前の線材の上記化合物の粒径を検査することで判別することができる。なぜなら、それ以後、冷間伸線加工中に粒径が著しく成長することがない(即ち、極細線領域での冷間伸線加工に影響を及ぼすまでには成長しない)ためである。
 以下、本発明のより詳細な実施例が説明されるが、本発明は、以下の実施例に限定して解釈されるものではない。
 表1に示す化学成分組成を有する銅合金材料(発明材1~11、比較材12~15)を、連続鋳造機を用いて、各々1250℃で溶解し、連続鋳造して直径9.5mmの鋳造ロッド(母材線)を製造した。発明材1~5はCu-Ni-Sn-Al材であり、発明材6及び7は、Cu-Ni-Sn-Al-B材である。発明材8ないし11は、Cu-Ni-Sn-Alのベース材に、ランタノイドとしてのLa+Ce、Mg、Ti及びCaをそれぞれ添加したものである。比較材12は、発明材に比してAlの含有量を高めたものであり、比較材13及び14は、発明材に比してSnの含有量を高めたものであり、比較材15は、発明材に比してBの含有量を高めたものである。
Figure JPOXMLDOC01-appb-T000001
 次に、上記鋳造ロッドを冷間伸線加工と温度800~950℃での中間熱処理を繰返し行ないながら線径0.5~2.0mmに細径化して、さらに、温度850~900℃×0.5~10.0min.の条件で熱処理を行なって軟質素線とし、そして、この軟質素線を連続伸線機で各々加工率95%の冷間伸線加工を行なうことで、最終仕上げ線径50μmの硬質銅合金線を得た。
 発明材1ないし11については、いずれも伸線加工時に断線や割れが発生せず、比較材12ないし15に比べても良好な加工性を有することが確認された。また、ばね材として要求される引張強さと導電率を具えることも確認できた。図1には、発明材1のSEM画像を示す。なお、発明材8については、ランタノイドとして、La及びCeを添加したが、ランタノイドの他の金属であるPr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb又はLuを添加した場合でも、これらが互いによく似た化学的性質を持つことから、同様の効果が奏される。
 一方、比較材12は、Alの含有量が多く、熱処理後であっても硬度が大きくかつ靭性が低いために極細線領域(100μm以下の線径)への伸線加工時に断線した。また、比較材13は、Snの含有量が多かったため、過剰なSnの偏析により結晶粒界の強度を低下させたことで、鍛造時及び伸線加工時に割れが発生したと推察される。さらに、比較材14については、比較材12及び13の不具合の両方が発生した。加えて、比較材15は、図4に示されるように、材料の所々に孔が発生していることが確認された。これらの比較材12ないし15については、いずれも引張強さと導電率の測定は行なわなかった。
 
 

Claims (9)

  1.  線径が100μm以下のばね用銅合金極細線であって、
     質量%で、6.0%<Ni<15.0%、Sn<6.0%、Al<1.2%、残部がCu及び不可避不純物で構成され、
     引張強さが1350MPa以上であり、
     導電率が4.0%IACS以上であり、
     Ni、Sn及びAlの関係比率が0.20≦(2Sn+Al)/3Ni≦0.37を充足する、
     ばね用銅合金極細線。
  2.  質量%で、10.0%<Ni<14.0%、2.0%<Sn<5.9%、0.5%<Al<1.2%、残部がCu及び不可避不純物で構成されている請求項1記載のばね用銅合金極細線。
  3.  Ni、Sn及びAlの関係比率が0.24≦(2Sn+Al)/3Ni≦0.31を充足する請求項2記載のばね用銅合金極細線。
  4.  さらに、B<0.05%を含む請求項1ないし3のいずれかに記載のばね用銅合金極細線。
  5.  さらに、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb及びLuの群から選ばれる1種以上の金属を0.005%以上0.1%以下で含む、請求項1ないし3のいずれかに記載のばね用銅合金極細線。
  6.  さらに、0.05%≦Mg≦0.2%を含む請求項1ないし3のいずれかに記載のばね用銅合金極細線。
  7.  さらに、0.05%≦Ti≦0.2%を含む請求項1ないし3のいずれかに記載のばね用銅合金極細線。
  8.  さらに、0.005%≦Ca≦0.1%を含む請求項1ないし3のいずれかに記載のばね用銅合金極細線。
  9.  ばね用銅合金極細線の製造方法であって、
     質量%で、6.0%<Ni<15.0%、Sn<6.0%、Al<1.2%、残部がCu及び不可避不純物で構成され、かつ、Ni、Sn及びAlの関係比率が0.20≦(2Sn+Al)/3Ni≦0.37を充足する銅合金の線材を準備する工程と、
     前記線材を700℃以上かつ1085℃未満の温度で0.5分以上かつ120分以下の時間で熱処理する工程と、
     前記熱処理後、線材中に析出されるNi-Al系化合物の析出物の粒径が50nm以下の状態で総加工率が95%を超える冷間伸線する工程と、
     を含むばね用銅合金極細線の製造方法。
     
PCT/JP2018/018714 2017-06-22 2018-05-15 ばね用銅合金極細線及びその製造方法 WO2018235458A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197019865A KR102450302B1 (ko) 2017-06-22 2018-05-15 스프링용 구리 합금 극세선 및 그 제조 방법
JP2018525640A JP7145070B2 (ja) 2017-06-22 2018-05-15 ばね用銅合金極細線及びその製造方法
CN201880001912.7A CN109429497B (zh) 2017-06-22 2018-05-15 弹簧用铜合金极细线及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-122086 2017-06-22
JP2017122086 2017-06-22

Publications (1)

Publication Number Publication Date
WO2018235458A1 true WO2018235458A1 (ja) 2018-12-27

Family

ID=64737066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018714 WO2018235458A1 (ja) 2017-06-22 2018-05-15 ばね用銅合金極細線及びその製造方法

Country Status (5)

Country Link
JP (1) JP7145070B2 (ja)
KR (1) KR102450302B1 (ja)
CN (1) CN109429497B (ja)
TW (1) TWI746855B (ja)
WO (1) WO2018235458A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114507794A (zh) * 2022-02-11 2022-05-17 无锡日月合金材料有限公司 一种高弹性元件用铜镍锡合金材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311297A (ja) * 1992-05-06 1993-11-22 Dowa Mining Co Ltd コネクタ用銅基合金およびその製造方法
JP2009242895A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 曲げ加工性に優れた高強度銅合金
WO2014196563A1 (ja) * 2013-06-04 2014-12-11 日本碍子株式会社 銅合金の製造方法および銅合金
WO2016181684A1 (ja) * 2015-05-11 2016-11-17 東京特殊電線株式会社 サスペンションワイヤ

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5558217A (en) 1978-10-24 1980-04-30 Asahi Glass Co Ltd Production of hard polyurethane foam
JPS60230949A (ja) * 1984-04-27 1985-11-16 Kobe Steel Ltd 水晶振動子ケ−ス用材料
CN1025794C (zh) * 1991-08-08 1994-08-31 中国有色金属工业总公司昆明贵金属研究所 高强度弹性材料铜基合金
JP2594250B2 (ja) * 1992-05-13 1997-03-26 同和鉱業株式会社 コネクタ用銅基合金およびその製造法
JPH06220557A (ja) * 1993-01-22 1994-08-09 Nikko Kinzoku Kk 高力高導電性銅合金
KR100371128B1 (ko) * 2000-07-25 2003-02-05 한국통산주식회사 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-주석(Sn)-알루미늄(Al), 실리콘(Si), 스트론튬(Sr), 티타늄(Ti), 보론(B) 합금
KR101576715B1 (ko) * 2010-12-13 2015-12-10 니폰 세이센 가부시키가이샤 구리 합금 및 구리 합금의 제조 방법
CN103173647B (zh) * 2011-12-20 2015-05-13 北京有色金属与稀土应用研究所 一种用于眼镜框架的铜合金弹性片材的制备方法
EP3085799B1 (en) * 2015-04-22 2018-01-17 NGK Insulators, Ltd. Copper alloy and method for manufacturing the same
CN106222485A (zh) * 2016-08-22 2016-12-14 吴雅萍 一种导线用的铜合金材料

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05311297A (ja) * 1992-05-06 1993-11-22 Dowa Mining Co Ltd コネクタ用銅基合金およびその製造方法
JP2009242895A (ja) * 2008-03-31 2009-10-22 Nippon Mining & Metals Co Ltd 曲げ加工性に優れた高強度銅合金
WO2014196563A1 (ja) * 2013-06-04 2014-12-11 日本碍子株式会社 銅合金の製造方法および銅合金
WO2016181684A1 (ja) * 2015-05-11 2016-11-17 東京特殊電線株式会社 サスペンションワイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAITO T. ET. AL.: "Regarding mechanical property of Cu-Ni- Sn alloy", LECTURE PROCEEDINGS AND GENERAL LECTURE SUMMARIES OF SYMPOSIUM OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, vol. 83, October 1978 (1978-10-01), pages 212 *

Also Published As

Publication number Publication date
TWI746855B (zh) 2021-11-21
TW201907019A (zh) 2019-02-16
JPWO2018235458A1 (ja) 2020-04-16
KR102450302B1 (ko) 2022-09-30
CN109429497A (zh) 2019-03-05
KR20200021441A (ko) 2020-02-28
CN109429497B (zh) 2021-07-09
JP7145070B2 (ja) 2022-09-30

Similar Documents

Publication Publication Date Title
JP6039999B2 (ja) Cu−Ni−Co−Si系銅合金板材およびその製造法
KR101161597B1 (ko) 전자 재료용 Cu-Ni-Si-Co계 구리합금 및 그 제조 방법
JP4937815B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP5319700B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
KR101576715B1 (ko) 구리 합금 및 구리 합금의 제조 방법
JP5097970B2 (ja) 銅合金板材及びその製造方法
JP4959141B2 (ja) 高強度銅合金
JP5506806B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP2009263784A (ja) 導電性ばね材に用いられるCu−Ni−Si系合金
JP3977376B2 (ja) 銅合金
TWI429768B (zh) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP2010236071A (ja) 電子材料用Cu−Co−Si系銅合金及びその製造方法
KR20130109209A (ko) 전자 재료용 Cu-Si-Co 계 구리 합금 및 그 제조 방법
JP6222885B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP7145070B2 (ja) ばね用銅合金極細線及びその製造方法
JP2012229467A (ja) 電子材料用Cu−Ni−Si系銅合金
JP5988794B2 (ja) 銅合金板材およびその製造方法
JP5524901B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金
JP5638357B2 (ja) 電気・電子部品用銅合金およびその製造方法
JP2015187308A (ja) 銅合金板材の製造方法
JP2010236029A (ja) 電子材料用Cu−Si−Co系合金及びその製造方法
JP2012229469A (ja) 電子材料用Cu−Si−Co系銅合金及びその製造方法
JP2016183418A (ja) 電子材料用Cu−Ni−Si−Co系銅合金
KR20230077876A (ko) G-Phase을 포함하는 구리-니켈-규소-망간 합금 및 이의 제조방법
JP2023513664A (ja) G相を含む銅-ニッケル-ケイ素-マンガン(Cu-Ni-Si-Mn)合金及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018525640

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197019865

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18820817

Country of ref document: EP

Kind code of ref document: A1