WO2018233440A1 - 预应力装配式混凝土框架节点连接结构及其施工方法 - Google Patents

预应力装配式混凝土框架节点连接结构及其施工方法 Download PDF

Info

Publication number
WO2018233440A1
WO2018233440A1 PCT/CN2018/088161 CN2018088161W WO2018233440A1 WO 2018233440 A1 WO2018233440 A1 WO 2018233440A1 CN 2018088161 W CN2018088161 W CN 2018088161W WO 2018233440 A1 WO2018233440 A1 WO 2018233440A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
precast concrete
steel bar
post
bending
Prior art date
Application number
PCT/CN2018/088161
Other languages
English (en)
French (fr)
Inventor
郭海山
齐虎
刘康
王冬雁
李黎明
田力达
耿娇
李明
张海涛
李桐
杨晓杰
范昕
侯学颖
曾涛
蒋立红
Original Assignee
中国建筑股份有限公司
中建工程研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建筑股份有限公司, 中建工程研究院有限公司 filed Critical 中国建筑股份有限公司
Priority to DE212018000245.2U priority Critical patent/DE212018000245U1/de
Publication of WO2018233440A1 publication Critical patent/WO2018233440A1/zh
Priority to US16/724,332 priority patent/US10865557B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • E04B1/22Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material with parts being prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • E04B1/21Connections specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/20Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of concrete, e.g. reinforced concrete, or other stonelike material
    • E04B1/21Connections specially adapted therefor
    • E04B1/215Connections specially adapted therefor comprising metallic plates or parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • E04B1/5825Connections for building structures in general of bar-shaped building elements with a closed cross-section
    • E04B1/5831Connections for building structures in general of bar-shaped building elements with a closed cross-section of substantially rectangular form
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/20Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members
    • E04C3/26Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of concrete or other stone-like material, e.g. with reinforcements or tensioning members prestressed
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/12Mounting of reinforcing inserts; Prestressing
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the invention relates to the technical field of fabricated concrete frame structures, in particular to a prestressed assembled concrete frame joint structure and a construction method thereof.
  • Assembling concrete frame structure system is widely used due to its high construction speed and good social and environmental benefits. Its seismic performance is mainly determined by the connection nodes between prefabricated components.
  • the domestic fabricated concrete frame structure system mainly adopts two methods, one is semi-dry type, the beam and column are disconnected at the joint of the node, the prefabricated beam-column member is segmented, and the connection node area of the beam-column is at the construction site.
  • Cast-in-place forming an integrated structural system the connection structure of such a node is complicated and difficult to operate; one is dry, mainly used in the structure of the plant, and the cow legs supporting the precast beam are arranged on the prefabricated column, prefabricated Between the column and the prefabricated beam, the steel plate is welded or ribbed by the embedded parts.
  • the joint structure of the joint transmits the bending moment of the beam end and the seismic resistance of the joint is poor.
  • the invention provides a prestressed prefabricated concrete frame joint structure and a construction method thereof, which can be effectively constructed, has good seismic performance and good continuous collapse resistance, and is convenient for post-earthquake repair.
  • the technical problem to be solved is that the construction process of the existing semi-dry assembled concrete frame structure connecting node is complicated and difficult, the construction of the dry connecting node is difficult, the structural integrity is poor, and the seismic performance is poor.
  • the prestressed prefabricated concrete frame joint structure of the invention comprises a precast concrete column, a precast concrete composite beam and a laminated floor board, and is characterized in that: the temporary support and the joint precast concrete column and the precast concrete superstructure are arranged under the joint.
  • the precast concrete composite beam comprises a lower precast beam and an upper beam post-casting layer, and the precast beam cross section is in the middle to the lower 1/3 range and along the The length direction and the length of the length are provided with a beam prestressing rib hole;
  • the precast concrete column is horizontally provided with a column prestressing rib hole, which is matched with the beam prestressing rib hole and correspondingly arranged;
  • the post tensile prestressed tendon beam is sequentially worn
  • the beam prestressing rib hole and the column prestressing rib hole are tensioned by the external anchor head of the prestressed rib; the column prestressing rib holes not on the same straight line are staggered in the column height direction.
  • the prestressed assembled concrete frame joint structure of the present invention further, the width of the joint between the precast concrete composite beam and the precast concrete column is 10-30 mm.
  • the prestressed assembled concrete frame joint structure of the invention further, the high-strength jointing bonding material adopts a high-strength fast-hardening cement-based grouting material, a fiber fast-hardening cement-based grouting material or a polymer mortar with a compressive strength of 45 MPa or more One or several.
  • the prestressed assembled concrete frame joint structure of the present invention further, one end of the shear-resistant high-strength steel bar is inserted into the precast concrete column and connected to the anchoring steel bar in the column through a mechanical joint, and one end is poured in the post-casting layer of the beam.
  • the diameter of the steel bar in which the shear high strength steel bar is poured in the post-beam casting layer is not less than 15 times.
  • the prestressed assembled concrete frame joint structure of the present invention further, the bending and energy-consuming steel bar is arranged in an unbonded form in the column, and the energy-conducting steel hole is arranged horizontally in the precast concrete column, and the bending energy-consuming steel bar is Through the energy-consuming steel hole, one end protrudes from the outer side of the precast concrete column and is connected to the precast concrete column through the extra-column anchor plate, and the other end is poured into the post-casting layer.
  • the prestressed assembled concrete frame joint structure of the invention further, the bending and energy-consuming steel bar is arranged by the outer part of the column, and one end of the bending and energy-consuming steel bar is inserted into the precast concrete column through the mechanical joint and the column.
  • the anchoring steel bar is connected, and the other end of the bending and energy-consuming steel bar is poured in the post-casting layer of the beam; the bending-resistant energy-consuming steel bar is sleeved on the upper sleeve, and one end of the sleeve is closely attached to the outer side wall of the precast concrete column, and the length of the casing is set It is 4-23 times the diameter of the steel rod for bending resistance; the bending energy-consuming steel bar in the casing is the necking section, and the sectional area of the necking section is 50-90% of the sectional area of the bending-resistant energy-consuming steel bar, necking
  • the segment extends from the diameter of the 1-3 times the flexural energy-consuming reinforcement from the mechanical joint to the end of the casing.
  • the cross-sectional shape of the necking section is circular or irregular, and the irregular shape is formed by two parallel lines and two symmetrically arranged arcs.
  • the radius of the circle where the arc is located is consistent with the radius of the bending-resistant energy-consuming steel bar, and the central angle of the arc is 50-70°.
  • the prestressed assembled concrete frame joint structure of the invention further comprises: the bending-resistant energy-consuming steel bar is arranged in the form of a full-column joint, and one end of the bending-resistant energy-saving steel bar extends into the precast concrete column through the mechanical joint and the column. Anchored steel bars are joined and the other end is poured into the post-beam cast.
  • the construction method of the prestressed assembled concrete frame joint structure of the invention comprises the following steps:
  • Step 1 Install temporary support: Install temporary support on the precast concrete column according to the design plan;
  • Step 2 Install the precast concrete column: during the hoisting process, adjust the verticality of the precast concrete column by temporary support;
  • Step 3 Install the precast concrete composite beam: hoist the precast beam and fix it above the temporary support;
  • Step 4 Install the laminated slab: hoist the prefabricated slab of the laminated slab and fix it with the prefabricated beam;
  • Step 5 Post-tensioned prestressed tendons: post-tensioned prestressed tendons in prefabricated beams of precast concrete columns and precast concrete composite beams;
  • Step 6 Filling the joints between the beams and columns: the joints between the precast concrete composite beams and the precast concrete columns are filled with high-strength jointing bonding materials, and the joint width of the beams and columns is 10-30mm;
  • Step 7 Tensioning and prestressing tendons: After the bonding materials in the joints of the beams and columns reach the required strength, the prestressed tendons are tensioned and fixed, and fixed;
  • Step 8 Laying flexural energy-consuming steel bars and shear-resistant high-strength steel bars: laying bending-resistant energy-consuming steel bars and shear-resistant high-strength steel bars in the post-casting layer of precast concrete laminated beams to be poured, bending energy-consuming steel bars and shearing high strength One end of the steel bar is connected to the precast concrete column;
  • Step 9 Post-casting layer: The post-casting layer of the precast concrete composite beam and the post-casting layer of the laminated slab are integrally cast at the site, and the concrete structure to be poured is cured after reaching the required strength.
  • the prestressed prefabricated concrete frame node connecting structure of the invention has the following beneficial effects:
  • the prestressed prefabricated concrete frame joint structure of the invention uses precast concrete composite beams and laminated floor slabs, and the subsequent pouring layer is integrally poured, and the bending energy-consuming steel bars and the shear high-strength steel bars are poured therein to form a whole and improved.
  • the integrity of the structure ensures that the floor has good waterproof performance, which is convenient for the installation of the rear reinforcement, which greatly reduces the construction difficulty; the pre-stressed beam and the pre-formed column are provided with a straight prestressing rib hole, which is inside
  • the post-tensioned prestressed tendon can be used in a bonded or unbonded form, combined with the upper flexural energy-consuming steel bars and shear-resistant high-strength steel bars to connect the beams and columns to form a complete force system, effectively improving the structure.
  • the energy consumption enhances the seismic performance of the structure and the ability to resist continuous collapse.
  • the casing is used to achieve partial bonding, and the bending-resistant energy-consuming steel bar in the casing is provided with a necking section, and the yield of the upper steel bar is concentrated in none.
  • the neck-constriction section ensures that the non-adhesive necking section will not yield deformation after the reinforcing steel and concrete bonding parts, thereby reducing the damage of the steel bars and concrete outside the necking section; and the deformation can ensure the neck evenly distributed in the neck section of the steel bar.
  • the constricted section should not be destroyed if the deformation is too concentrated.
  • the upper part of the section of the invention is provided with bending-resistant energy-consuming steel bars and shear-resistant high-strength steel bars.
  • the shear-resistant high-strength steel bars improve the shear resistance of the joints, and ensure that the joints of the structure after the failure of the prestressed tendons still have strong shearing resistance. Thereby improving the structural resistance to continuous collapse.
  • the setting of ordinary steel bars in the lower part of the node is cancelled, and the convenience of node construction is improved.
  • the construction method of the invention is simple and easy to operate, and temporary support is set on the precast concrete column, and the prefabricated beam and the laminated plate are supported in the construction stage, and then the pre-tensioned beam is pre-formed in the prestressed beam and the pre-formed column
  • the stress tendons are bundled, and the prestressed tendons are tensioned after the beam and column are filled, and a stable bearing system is initially formed; the grooves of the post-casting layer of the beam to be poured are left between the prefabricated slabs of the prefabricated beams.
  • the bending energy-consuming steel bars and the shear-resistant high-strength steel bars can be directly laid therein, thereby avoiding the arrangement of the construction grooves on the beams, greatly reducing the construction difficulty and the construction workload, improving the construction efficiency and shortening the construction period.
  • FIG. 1 is a schematic structural view of a prestressed assembled concrete frame joint structure of Embodiment 1 and Embodiment 3;
  • FIG. 2 is a plan view showing a joint structure of a prestressed assembled concrete frame node of Embodiment 1 and Embodiment 3;
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2 of Embodiment 1;
  • Embodiment 4 is a schematic structural view of a prestressed assembled concrete frame joint structure of Embodiment 2;
  • Figure 5 is a plan view showing the joint structure of the prestressed concrete frame joint of the second embodiment
  • Figure 6 is a schematic view of a section B-B of Figure 5;
  • Figure 7 is a schematic view of the C-C section of Figure 5;
  • Figure 8 is a schematic view showing the detailed structure of the necking section of Embodiment 2;
  • Figure 9 is a schematic cross-sectional view of the necking section of Embodiment 2.
  • Fig. 10 is a cross-sectional view taken along line A-A of Fig. 2 of the third embodiment.
  • the prestressed assembled concrete frame joint structure of the present invention comprises a precast concrete column 1, a precast concrete composite beam 2, a laminated floor panel 3, a joint precast concrete column 1 and a precast concrete composite beam 2
  • the post-cast layer 32 of the plate is integrally cast.
  • the precast concrete column 1 is a side column, and the side wall of the precast concrete column 1 is provided with a temporary support 4, the temporary support 4 is a cow leg, and the other side is supported on the beam bottom of the precast concrete composite beam 2.
  • the precast concrete composite beam 2 includes a lower precast beam 21 and an upper beam post-cast layer 22, and the prefabricated beam 21 is provided with a beam along the length direction and the length of the section from the middle to the lower 1/3 of the section.
  • Prestressed tendon hole 52 precast concrete column 1 is horizontally provided with column prestressing rib hole 51, which is matched with the beam prestressing rib hole 52, correspondingly arranged, and the column prestressing rib hole 51 not on the same straight line is in the column height direction Staggered setting;
  • the post-tensioned prestressed tendon 5 passes through the beam prestressing rib hole 52 and the column prestressing rib hole 51 in sequence, and the beam and column are tensioned and tightened by the prestressing rib outer anchor head 53;
  • the width of the beam-column joint between the precast concrete columns 1 is 10-30mm, and the high-strength jointing bonding material 8 is filled therein.
  • the high-strength jointing bonding material 8 is made of high-strength and fast-hardening cement base with compressive strength of 45MPa or more.
  • Grout steel fiber fast hard cement based grout or polymer mortar.
  • the bending-resistant energy-consuming steel bar 6 adopts an unbonded form in the column.
  • an energy-consuming steel bar hole 61 is horizontally disposed, and the bending-resistant energy-consuming steel bar 6 passes through the energy-consuming steel bar hole 61.
  • One end extends out of the outer side of the precast concrete column 1 and is connected to the precast concrete column 1 through the extra-column anchoring plate 62, and the other end is poured in the post-casting layer 22, and the bending-resistant energy-consuming steel bar 6 is welded to the outer column anchoring plate 62. Or mechanical connection.
  • the shear-resistant high-strength steel bar 7 is located below the bending-resistant energy-consuming steel bar 6, is poured in the post-beam pouring layer 22, and one end is extended into the precast concrete column 1 and connected to the column anchoring steel bar 91 through the mechanical joint 92, and the shear high-strength steel bar 7
  • the length of the steel bar to be poured in the post-beam pouring layer 22 is not less than 15 times, and the shear-resistant high-strength steel bar 7 is made of HRB400, HRB500 or HRB600.
  • the construction method of the prestressed assembled concrete frame joint structure of the invention comprises the following construction steps:
  • Step 1 Install temporary support: According to the design scheme, the temporary support 4 is installed on the precast concrete column 1. The top surface of the temporary support 4 requires the top support to be installed at the beam bottom of the precast concrete composite beam 2;
  • Step 2 Installing the precast concrete column: during the hoisting process, adjusting the verticality of the precast concrete column 1 by the temporary support 4;
  • Step 3 Install the precast concrete composite beam 2: hoist the prefabricated beam 21, place it above the temporary support 4, and temporarily fix it;
  • Step 4 installing the laminated floor 3: lifting the prefabricated plate 31 of the laminated floor 3 and fixing it to the prefabricated beam 21;
  • Step 5 After installing the prestressed tendon bundle: the post-tensioned prestressed tendon bundle 5 is sequentially passed through the column prestressing tendon hole 51 and the beam prestressing tendon hole 52;
  • Step 6 Filling the beam-column joints: the high-strength jointing bonding material 8 is filled in the joint between the precast concrete composite beam 2 and the precast concrete column 1 , and the joint width of the beam and column is 10-30 mm;
  • Step 7 After tensioning and tensioning the prestressed tendon bundle: after the bonding material in the joint of the beam and column reaches the required strength, the prestressed tendon bundle 5 is stretched by the outer anchor head 53 of the prestressed tendon and fixed;
  • Step 8 Laying the bending-resistant energy-saving steel bar 6 and the shear-resistant high-strength steel bar: one end of the shear-resistant high-strength steel bar 7 is inserted into the precast concrete column 1 and connected to the column anchoring steel bar 91 through the mechanical joint 92, and the other end is laid above the precast beam 21.
  • Step 9 Post-casting layer: The post-casting layer 22 of the precast concrete composite beam 2 and the post-casting layer 32 of the laminated slab 3 are integrally cast at the site, and the concrete structure to be poured is cured after the required strength is reached.
  • the prestressed assembled concrete frame joint structure of the present invention comprises a precast concrete column 1, a precast concrete composite beam 2, a laminated floor panel 3, a joint precast concrete column 1 and a precast concrete composite beam 2
  • the post-cast layer 32 of the plate is integrally cast.
  • the precast concrete column 1 is a middle column, and the side wall of the precast concrete column 1 is provided with a temporary support 4, the temporary support 4 is a cow leg, and the other side is supported on the beam bottom of the precast concrete composite beam 2.
  • the precast concrete composite beam 2 includes a lower precast beam 21 and an upper beam post-cast layer 22, and the precast beam 21 is disposed in the middle to the lower 1/3 of the section, along the length direction thereof, and the length of the beam.
  • the precast concrete column 1 is horizontally provided with a column prestressing rib hole 51, which is matched with the beam prestressing rib hole 52, correspondingly arranged, and the column prestressing rib hole 51 not on the same straight line is at the column height Staggered in the direction;
  • the post-tensioned prestressed tendon 5 passes through the beam prestressing ribs 52 and the column prestressing ribs 51 in sequence, and the beam and column are tensioned and tightened by the prestressed rib outer anchor head 53;
  • the precast concrete composite beam 2
  • the width of the beam-column joint between the precast concrete column 1 is 10-30mm, and the high-strength jointing bonding material 8 is filled therein.
  • the high-strength jointing bonding material 8 is made of high-strength and fast-hardening with a compressive strength of 45MPa or more.
  • the bending-resistant energy-consuming steel bar 6 adopts the outer part of the column, and one end extends into the precast concrete column 1 and is connected with the column anchoring steel bar 91 through the mechanical joint 92, and the bending-resistant energy-saving steel bar 6
  • the upper sleeve is provided with a sleeve 63, and one end of the sleeve 63 is closely attached to the outer side wall of the precast concrete column 1.
  • the length of the sleeve 63 is 4-23 times the diameter of the bending-resistant energy-consuming steel bar 6; the other end of the bending-resistant energy-consuming steel bar 6 is Casting in the post-beam pouring layer 22; the column inner anchoring bar 91 is provided with an energy-consuming steel column inner anchor plate 93; as shown in Fig. 8, the bending-resistant energy-consuming steel bar 6 in the casing 63 is a necking section 64, neck The cross-sectional area of the constricted section 64 is 50-90% of the cross-sectional area of the flexural energy-consuming steel bar.
  • the necking section 64 extends from the diameter of the mechanically-connected joint 921-3 times the bending-resistant energy-consuming steel bar 6 to the end of the casing 63.
  • the cross-sectional shape of the neck portion 64 is circular or irregular. As shown in FIG. 9, the irregular shape is formed by two parallel lines and two symmetrically arranged arcs, and the radius of the circle where the arc is located is resistant to bending. The radius of the energy-consuming steel bars 6 is uniform, and the central angle of the arc is 50-70°.
  • the shear-resistant high-strength steel bar 7 is located below the bending-resistant energy-consuming steel bar 6, is poured in the post-beam pouring layer 22, and one end is extended into the precast concrete column 1 and connected to the column anchoring steel bar 91 through the mechanical joint 92, and the shear high-strength steel bar 7
  • the length of the steel bar to be poured in the post-beam pouring layer 22 is not less than 15 times, and the shear-resistant high-strength steel bar 7 is made of HRB400, HRB500 or HRB600.
  • the construction method of the prestressed assembled concrete frame joint structure of the present embodiment is similar, and the difference lies in the eighth step.
  • the specific method is as follows:
  • Step 8 Laying the bending energy-consuming steel bar 6 and the shearing high-strength steel bar 7: One end of the shear-resistant high-strength steel bar 7 is inserted into the precast concrete column 1 and connected to the column anchoring steel bar 91 through the mechanical joint 92, and the other end is laid on the precast beam 21 The position of the post-casting layer 22 of the beam to be poured is placed on the upper side; the end of the anti-bending energy-consuming steel bar 6 is sleeved into the precast concrete column 1 and connected to the in-column anchoring bar 91 through the mechanical joint 92, and the other end is laid in the anti-bending Cut the position of the post-casting layer 22 above the high-strength steel bar 7 to be poured.
  • the prestressed prefabricated concrete frame joint structure of the present invention comprises a precast concrete column 1, a precast concrete composite beam 2, a laminated floor panel 3, a joint precast concrete column 1 and a precast concrete stack.
  • the post-cast layer 32 of the laminated floor panel 3 is integrally cast.
  • the precast concrete column 1 is a side column, and the side wall of the precast concrete column 1 is provided with a temporary support 4, the temporary support 4 is a cow leg, and the other side is supported on the beam bottom of the precast concrete composite beam 2.
  • the precast concrete composite beam 2 comprises a lower prefabricated beam 21 and an upper beam post-casting layer 22, the prefabricated beam 21 is provided with a beam prestressing rib hole 52 in the middle of the section from the middle to the lower 1/3, along the length direction thereof;
  • the precast concrete column 1 is horizontally provided with column prestressing rib holes 51, which are matched with the beam prestressing rib holes 52 and correspondingly arranged, and the column prestressing rib holes 51 which are not on the same straight line are staggered in the column height direction;
  • the stress tendon bundle 5 passes through the beam prestressing rib hole 52 and the column prestressing rib hole 51 in sequence, and the beam and column are tensioned and tightened by the prestressing rib outer anchor head 53; the beam prestressing rib hole 52 and the column prestressing rib hole 51
  • the high-strength jointing bonding material 8 is filled in the interior; the width of the beam-column joint between the precast concrete composite beam 2 and the precast concrete column
  • the bending-resistant energy-consuming steel bar 6 adopts the extra-column full-bonding form, and one end of the bending-resistant energy-saving steel bar 6 is inserted into the precast concrete column 1 and connected to the column anchoring steel bar 91 through the mechanical joint 92, and the other end is poured into the post-beam pouring layer. 22; inside the column anchoring steel 91 is provided with an energy-saving steel column inner anchor plate 93.
  • the shear-resistant high-strength steel bar 7 is located below the bending-resistant energy-consuming steel bar 6, is poured in the post-beam pouring layer 22, and one end is extended into the precast concrete column 1 and connected to the column anchoring steel bar 91 through the mechanical joint 92, and the shear high-strength steel bar 7
  • the length of the steel bar to be poured in the post-beam pouring layer 22 is not less than 15 times, and the shear-resistant high-strength steel bar 7 is made of HRB400, HRB500 or HRB600.
  • the construction method of the prestressed assembled concrete frame joint structure of the present embodiment is similar, and the difference lies in steps 7 and 8.
  • the specific method is as follows:
  • Step 7 Tensioning and prestressing tendons: firstly injecting high-strength jointing bonding material 8 into the beam prestressing ribs 52 and the column prestressing ribs 51, and after reaching the required strength, passing the prestressed ribs outside the anchor head 53 sheets of post-tensioned prestressed tendons 5 are pulled and fixed;
  • Step 8 Laying the bending energy-consuming steel bar 6 and the shearing high-strength steel bar 7: One end of the shear-resistant high-strength steel bar 7 is inserted into the precast concrete column 1 and connected to the column anchoring steel bar 91 through the mechanical joint 92, and the other end is laid on the precast beam 21 The position of the post-casting layer 22 to be poured above; the end of the bending-resistant energy-reinforcing steel 6 extends into the precast concrete column 1 and is connected to the in-column anchoring steel 91 through a mechanical joint 92, and the other end is laid over the shear-resistant high-strength steel 7 The position of the post-casting layer 22 of the poured beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

一种预应力装配式混凝土框架节点连接结构,包括预制混凝土柱(1)、预制混凝土叠合梁(2)和叠合楼板(3),还包括设置在节点下方的临时支撑(4)和连接预制混凝土柱(1)和预制混凝土叠合梁(2)的后张预应力钢筋束(5)、抗弯耗能钢筋(6)与抗剪高强钢筋(7);预制混凝土叠合梁(2)的梁后浇层(22)与叠合楼板(3)的板后浇层(32)一体浇筑而成;预制混凝土叠合梁(2)与预制混凝土柱(1)之间的梁柱接缝内填筑高强灌缝粘结材料(8);抗弯耗能钢筋(6)和抗剪高强钢筋(7)铺设在预制混凝土叠合梁(2)上部的梁后浇层(22)内,抗弯耗能钢筋(6)位于抗剪高强钢筋(7)上方。一种预应力装配式混凝土框架节点连接结构的施工方法。该节点连接结构可高效施工,具有良好的抗震性能和抗连续倒塌能力,便于震后修复。

Description

预应力装配式混凝土框架节点连接结构及其施工方法 技术领域
本发明涉及装配式混凝土框架结构技术领域,特别是涉及一种预应力装配式混凝土框架节点连接结构及其施工方法。
背景技术
装配式混凝土框架结构体系由于其施工速度快、社会环境效益好等优点被广泛应用,其抗震性能主要有预制构件之间的连接节点决定。
目前,国内的装配式混凝土框架结构体系主要采用两种方式,一种是半干式的,梁柱在节点连接处断开,分段预制梁柱构件,而梁柱的连接节点区域在施工现场现浇形成装配整体式的结构体系,这种节点的连接结构施工复杂,难度较大;一种是干式的,主要应用在厂房结构中,在预制柱上设置支撑预制梁的牛腿,预制柱与预制梁之间通过钢板预埋件焊接或者插筋连接,这种节点的连接结构传递梁端弯矩的能力较差,节点抗震性能差。
关于装配式混凝土框架结构体系的干式连接节点,美国和日本不设置牛腿,将其应用于民用建筑中,一般有以下几种方式:一种是在梁的上下部均设置耗能钢筋,虽然大地震下耗能能力好,但导致节点施工复杂,尤其是梁下部的耗能钢筋,安装不方便;一种是梁柱仅通过后张预应力钢筋连接,这种结构在大地震下耗能性能差,抗震性能不理想;一种是在预制梁的上部预留孔洞,孔洞内设置耗能钢筋,需要在梁上设置较长的施工槽用于现场铺设耗能钢筋,施工过程复杂、难度大,同时耗能钢筋兼做抗剪钢筋,应用数量大,难以在预制截面内布设,且在边柱内的锚固长度经常会出现不足,导致这种节点抗剪性能差特别是当预应力筋失效时节点抗连续倒塌能力较差;这种干式的连接节点,虽然现场湿作业更少,但结构楼板整体性差、且楼层间的防水性能难以保证。
发明内容
本发明提供一种可高效施工,抗震性能和抗连续倒塌能力良好,便于震后修复的的预应力装配式混凝土框架节点连接结构及其施工方法。
解决的技术问题是:现有的半干式装配式混凝土框架结构连接节点施工过程复杂、难度大,干式连接节点施工难度大,结构整体性差,抗震性能差。
为解决上述技术问题,本发明采用如下技术方案:
本发明预应力装配式混凝土框架节点连接结构,包括预制混凝土柱、预制混凝土叠合梁和叠合楼板,其特征在于:还包括设置在节点下方的临时支撑和连接预制混凝土柱和预制混凝土 叠合梁的后张预应力钢筋束、抗弯耗能钢筋与抗剪高强钢筋;预制混凝土叠合梁的梁后浇层与叠合楼板的板后浇层一体浇筑而成;预制混凝土叠合梁与预制混凝土柱之间的梁柱接缝内填筑高强灌缝粘结材料;所述抗弯耗能钢筋和抗剪高强钢筋铺设在预制混凝土叠合梁上部的梁后浇层内,抗弯耗能钢筋位于抗剪高强钢筋上方。
本发明预应力装配式混凝土框架节点连接结构,进一步的,所述预制混凝土叠合梁包括下部的预制梁和上部的梁后浇层,所述预制梁截面中部至下部1/3范围内、沿其长度方向、通长设置有梁预应力筋孔道;所述预制混凝土柱上水平设置有柱预应力筋孔道,与梁预应力筋孔道配合、对应设置;所述后张预应力钢筋束依次穿过梁预应力筋孔道和柱预应力筋孔道,通过预应力筋外锚头将梁柱张拉紧固;不在同一条直线上的柱预应力筋孔道在柱高度方向上交错设置。
本发明预应力装配式混凝土框架节点连接结构,进一步的,所述预制混凝土叠合梁与预制混凝土柱之间的梁柱接缝的宽度为10-30mm。
本发明预应力装配式混凝土框架节点连接结构,进一步的,所述高强灌缝粘结材料采用抗压强度45MPa以上的高强快硬水泥基灌浆料、纤维快硬水泥基灌浆料或聚合物砂浆中的一种或几种。
本发明预应力装配式混凝土框架节点连接结构,进一步的,所述抗剪高强钢筋一端伸入预制混凝土柱内通过机械连接接头与柱内锚固钢筋连接,一端被浇筑在梁后浇层内,所述抗剪高强钢筋被浇筑在梁后浇层内的长度不小于15倍的钢筋直径。
本发明预应力装配式混凝土框架节点连接结构,进一步的,所述抗弯耗能钢筋采用柱内无粘结形式设置,所述预制混凝土柱内水平设置有耗能钢筋孔道,抗弯耗能钢筋穿过耗能钢筋孔道,一端伸出预制混凝土柱的外侧边通过柱外锚固板与预制混凝土柱连接,另一端被浇筑在梁后浇层内。
本发明预应力装配式混凝土框架节点连接结构,进一步的,所述抗弯耗能钢筋采用柱外部分粘结形式设置,抗弯耗能钢筋一端伸入预制混凝土柱内通过机械连接接头与柱内锚固钢筋连接,抗弯耗能钢筋另一端被浇筑在梁后浇层内;所述抗弯耗能钢筋上套设有套管,套管一端紧贴预制混凝土柱外侧壁设置,套管的长度为抗弯耗能钢筋直径的4-23倍;所述套管内的抗弯耗能钢筋为颈缩段,颈缩段的截面积为抗弯耗能钢筋截面积的50-90%,颈缩段从距离机械连接接头1-3倍抗弯耗能钢筋直径处开始延伸至套管尾端。
本发明预应力装配式混凝土框架节点连接结构,进一步的,所述颈缩段的截面形状为圆形或异形,异形由两条相互平行的直线与两条对称设置的圆弧围合而成,圆弧所在圆的 半径与抗弯耗能钢筋的半径一致,圆弧的圆心角为50-70°。
本发明预应力装配式混凝土框架节点连接结构,进一步的,所述抗弯耗能钢筋采用柱外全粘结形式设置,抗弯耗能钢筋一端伸入预制混凝土柱内通过机械连接接头与柱内锚固钢筋连接,另一端被浇筑在梁后浇层内。
本发明预应力装配式混凝土框架节点连接结构的施工方法,包括以下步骤:
步骤一、安装临时支撑:根据设计方案,在预制混凝土柱上安装临时支撑;
步骤二、安装预制混凝土柱:吊装过程中,通过临时支撑调整预制混凝土柱的垂直度;
步骤三、安装预制混凝土叠合梁:吊装预制梁,将其固定在临时支撑上方;
步骤四、安装叠合楼板:吊装叠合楼板的预制板,将其与预制梁固定;
步骤五、安装后张预应力钢筋束:在预制混凝土柱和预制混凝土叠合梁的预制梁内铺设后张预应力钢筋束;
步骤六、填筑梁柱接缝:预制混凝土叠合梁与预制混凝土柱之间的梁柱接缝内填筑高强灌缝粘结材料,梁柱接缝宽度为10-30mm;
步骤七、张拉后张预应力钢筋束:待梁柱接缝内的粘结材料达到要求强度后,张拉后张预应力钢筋束,并进行固定;
步骤八、铺设抗弯耗能钢筋和抗剪高强钢筋:在预制混凝土叠合梁待浇筑的梁后浇层位置铺设抗弯耗能钢筋和抗剪高强钢筋,抗弯耗能钢筋和抗剪高强钢筋的一端分别与预制混凝土柱连接;
步骤九、浇筑后浇层:预制混凝土叠合梁的梁后浇层与叠合楼板的板后浇层现场一体浇筑而成,待浇筑混凝土结构达到要求强度后进行养护。
本发明预应力装配式混凝土框架节点连接结构与现有技术相比,具有如下有益效果:
本发明预应力装配式混凝土框架节点连接结构使用预制混凝土叠合梁和叠合楼板,其后浇筑层一体浇筑,将抗弯耗能钢筋和抗剪高强钢筋浇筑在其中,形成一个整体,提高了结构的整体性,保证了楼层具有较好的防水性性能,便于后装钢筋的设置,大大降低了施工难度;在预制梁与预制柱内通长设置有直线型的预应力筋孔道,其内穿设后张预应力钢筋束,可采用粘结或无粘结形式,与上方的抗弯耗能钢筋和抗剪高强钢筋相结合,连接梁柱,形成完整的受力体系,有效提高了结构的耗能性,增强了结构的抗震性能和抗连续倒塌的能力。
本发明中的抗弯耗能钢筋采用柱外部分粘结形式时,采用套管实现部分粘结,并将套管内的抗弯耗能钢筋设置了颈缩段,上部钢筋的屈服会集中在无粘颈缩段,保证了无粘颈 缩段外钢筋与混凝土粘结部分不会发生屈服破坏,从而降低颈缩段外钢筋及混凝土的破坏;而变形在钢筋颈缩段均匀分布也能保证颈缩段不会应为变形过于集中而发生破坏。
本发明节点的截面上部同时设置了抗弯耗能钢筋和抗剪高强钢筋,抗剪高强钢筋提高了节点抗剪能力,保证结构当预应力钢筋束失效后的节点仍然具有较强抗剪能力,从而提高结构抗连续倒塌能力。同时取消了节点下部的普通钢筋的设置,提高了节点施工的便捷性。
本发明施工方法简单、易操作,在预制混凝土柱上事先设置临时支撑,在施工阶段支撑预制梁和叠合板,然后在预制梁和预制柱内预留的预应力筋孔道内穿设后张预应力钢筋束,填筑梁柱缝隙后张拉预应力钢筋束,初步形成稳定的承载体系;预制梁上方搭接的两叠合楼板预制板之间留有待浇筑的梁后浇层的凹槽,可直接在其中铺设抗弯耗能钢筋和抗剪高强钢筋,避免了在梁上布置施工槽,大大降低了施工难度和施工工作量,提高了施工效率,缩短了施工周期。
下面结合附图对本发明的预应力装配式混凝土框架节点连接结构及其施工方法作进一步说明。
附图说明
图1为实施例1和实施例3的预应力装配式混凝土框架节点连接结构的结构示意图;
图2为实施例1和实施例3的预应力装配式混凝土框架节点连接结构的俯视图;
图3为实施例1的图2中的A-A截面示意图;
图4为实施例2的预应力装配式混凝土框架节点连接结构的结构示意图;
图5为实施例2的预应力装配式混凝土框架节点连接结构的俯视图;
图6为图5中B-B截面的示意图;
图7为图5中C-C截面的示意图;
图8为实施例2的颈缩段的细节结构示意图;
图9为实施例2中颈缩段的截面示意图;
图10为实施例3的图2中的A-A截面示意图。
附图标记:
1-预制混凝土柱;2-预制混凝土叠合梁;21-预制梁;22-梁后浇层;3-叠合楼板;31-预制板;32-板后浇层;4-临时支撑;5-后张预应力钢筋束;51-柱预应力筋孔道;52-梁预应力筋孔道;53-预应力筋外锚头;6-抗弯耗能钢筋;61-耗能钢筋孔道;62-柱外锚固板;63-套 管;64-颈缩段;7-抗剪高强钢筋;8-高强灌缝粘结材料;91-柱内锚固钢筋;92-机械连接接头;93-耗能钢筋柱内锚板。
具体实施方式
实施例1
如图1至图3所示,本发明预应力装配式混凝土框架节点连接结构包括预制混凝土柱1、预制混凝土叠合梁2、叠合楼板3、连接预制混凝土柱1与预制混凝土叠合梁2的后张预应力钢筋束5、位于预制混凝土叠合梁2上部后浇层的抗弯耗能钢筋6和抗剪高强钢筋7,预制混凝土叠合梁2的梁后浇层22与叠合楼板3的板后浇层32一体浇筑而成。预制混凝土柱1为边柱,预制混凝土柱1侧壁上设置有临时支撑4,临时支撑4为牛腿,另一侧顶撑在预制混凝土叠合梁2的梁底。
如图1所示,预制混凝土叠合梁2包括下部的预制梁21和上部的梁后浇层22,预制梁21截面中部至下部1/3范围内、沿其长度方向、通长设置有梁预应力筋孔道52;预制混凝土柱1上水平设置有柱预应力筋孔道51,与梁预应力筋孔道52配合、对应设置,不在同一条直线上的柱预应力筋孔道51在柱高度方向上交错设置;后张预应力钢筋束5依次穿过梁预应力筋孔道52和柱预应力筋孔道51,通过预应力筋外锚头53将梁柱张拉紧固;预制混凝土叠合梁2与预制混凝土柱1之间的梁柱接缝的宽度为10-30mm,其内填筑有高强灌缝粘结材料8,高强灌缝粘结材料8采用抗压强度45MPa以上的高强快硬水泥基灌浆料、钢纤维快硬水泥基灌浆料或聚合物砂浆。如图3所示,抗弯耗能钢筋6采用柱内无粘结形式,柱预应力筋孔道51上方、水平设置有耗能钢筋孔道61,抗弯耗能钢筋6穿过耗能钢筋孔道61,一端伸出预制混凝土柱1的外侧边通过柱外锚固板62与预制混凝土柱1连接,另一端被浇筑在梁后浇层22内,抗弯耗能钢筋6与柱外锚固板62焊接或机械连接。
抗剪高强钢筋7位于抗弯耗能钢筋6下方,被浇筑在梁后浇层22内,一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,抗剪高强钢筋7被浇筑在梁后浇层22内的长度不小于15倍的钢筋直径,抗剪高强钢筋7采用HRB400、HRB500或HRB600制成。
本发明预应力装配式混凝土框架节点连接结构的施工方法,包括以下施工步骤:
步骤一、安装临时支撑:根据设计方案,在预制混凝土柱1上安装临时支撑4,临时支撑4的顶面要求顶托在预计安装的预制混凝土叠合梁2的梁底;
步骤二、安装预制混凝土柱:吊装过程中,通过临时支撑4调整预制混凝土柱1的垂直度;
步骤三、安装预制混凝土叠合梁2:吊装预制梁21,将其放置在临时支撑4上方,并做临时 固定;
步骤四、安装叠合楼板3:吊装叠合楼板3的预制板31,将其与预制梁21固定;
步骤五、安装后张预应力钢筋束:将后张预应力钢筋束5依次穿过柱预应力筋孔道51和梁预应力筋孔道52;
步骤六、填筑梁柱接缝:预制混凝土叠合梁2与预制混凝土柱1之间的梁柱接缝内填筑高强灌缝粘结材料8,梁柱接缝宽度为10-30mm;
步骤七、张拉后张预应力钢筋束:待梁柱接缝内的粘结材料达到要求强度后,通过预应力筋外锚头53张拉后张预应力钢筋束5,并进行固定;
步骤八、铺设抗弯耗能钢筋6和抗剪高强钢筋:抗剪高强钢筋7一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,另一端铺设在预制梁21上方待浇筑的梁后浇层22位置;抗弯耗能钢筋6一端穿过预制混凝土柱1上的耗能钢筋孔道61,伸出预制混凝土柱1外、通过柱外锚固板62与预制混凝土柱1连接,另一端铺设在抗剪高强钢筋7上方、待浇筑的梁后浇层22位置;
步骤九、浇筑后浇层:预制混凝土叠合梁2的梁后浇层22与叠合楼板3的板后浇层32现场一体浇筑而成,待浇筑混凝土结构达到要求强度后进行养护。
实施例2
如图4至图9所示,本发明预应力装配式混凝土框架节点连接结构包括预制混凝土柱1、预制混凝土叠合梁2、叠合楼板3、连接预制混凝土柱1与预制混凝土叠合梁2的后张预应力钢筋束5、位于预制混凝土叠合梁2上部后浇层的抗弯耗能钢筋6和抗剪高强钢筋7,预制混凝土叠合梁2的梁后浇层22与叠合楼板3的板后浇层32一体浇筑而成。预制混凝土柱1为中柱,预制混凝土柱1侧壁上设置有临时支撑4,临时支撑4为牛腿,另一侧顶撑在预制混凝土叠合梁2的梁底。
如图4和图6所示预制混凝土叠合梁2包括下部的预制梁21和上部的梁后浇层22,预制梁21截面中部至下部1/3范围内、沿其长度方向、通长设置有梁预应力筋孔道52;预制混凝土柱1上水平设置有柱预应力筋孔道51,与梁预应力筋孔道52配合、对应设置,不在同一条直线上的柱预应力筋孔道51在柱高度方向上交错设置;后张预应力钢筋束5依次穿过梁预应力筋孔道52和柱预应力筋孔道51,通过预应力筋外锚头53将梁柱张拉紧固;预制混凝土叠合梁2与预制混凝土柱1之间的梁柱接缝的宽度为10-30mm,其内填筑有高强灌缝粘结材料8,高强灌缝粘结材料8采用抗压强度45MPa以上的高强快硬水泥基灌浆料、碳纤维快硬水泥基灌浆料或聚合物砂浆。
如图6和图7所示,抗弯耗能钢筋6采用柱外部分粘结形式,一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,抗弯耗能钢筋6上套设有套管63,套管63一端紧贴预制混凝土柱1外侧壁设置,套管63的长度为抗弯耗能钢筋6直径的4-23倍;抗弯耗能钢筋6另一端被浇筑在梁后浇层22内;柱内锚固钢筋91上设置有耗能钢筋柱内锚板93;如图8所示,套管63内的抗弯耗能钢筋6为颈缩段64,颈缩段64的截面积为抗弯耗能钢筋6截面积的50-90%,颈缩段64从距离机械连接接头921-3倍抗弯耗能钢筋6直径处开始延伸至套管63尾端;颈缩段64的截面形状为圆形或异形,如图9所示,异形由两条相互平行的直线与两条对称设置的圆弧围合而成,圆弧所在圆的半径与抗弯耗能钢筋6的半径一致,圆弧的圆心角为50-70°。
抗剪高强钢筋7位于抗弯耗能钢筋6下方,被浇筑在梁后浇层22内,一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,抗剪高强钢筋7被浇筑在梁后浇层22内的长度不小于15倍的钢筋直径,抗剪高强钢筋7采用HRB400、HRB500或HRB600制成。
本实施例预应力装配式混凝土框架节点连接结构的施工方法相似,区别点在于步骤八,具体方法如下:
步骤八、铺设抗弯耗能钢筋6和抗剪高强钢筋7:抗剪高强钢筋7一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,另一端铺设在预制梁21上方待浇筑的梁后浇层22位置;抗弯耗能钢筋6上套设套管63后一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,另一端铺设在抗剪高强钢筋7上方、待浇筑的梁后浇层22位置。
实施例3
如图1、图2和图10所示,本发明预应力装配式混凝土框架节点连接结构包括预制混凝土柱1、预制混凝土叠合梁2、叠合楼板3、连接预制混凝土柱1与预制混凝土叠合梁2的后张预应力钢筋束5、位于预制混凝土叠合梁2上部后浇层的抗弯耗能钢筋6和抗剪高强钢筋7,预制混凝土叠合梁2的梁后浇层22与叠合楼板3的板后浇层32一体浇筑而成。预制混凝土柱1为边柱,预制混凝土柱1侧壁上设置有临时支撑4,临时支撑4为牛腿,另一侧顶撑在预制混凝土叠合梁2的梁底。
预制混凝土叠合梁2包括下部的预制梁21和上部的梁后浇层22,预制梁21截面中部至下部1/3范围内、沿其长度方向、通长设置有梁预应力筋孔道52;预制混凝土柱1上水平设置有柱预应力筋孔道51,与梁预应力筋孔道52配合、对应设置,不在同一条直线上的 柱预应力筋孔道51在柱高度方向上交错设置;后张预应力钢筋束5依次穿过梁预应力筋孔道52和柱预应力筋孔道51,通过预应力筋外锚头53将梁柱张拉紧固;梁预应力筋孔道52和柱预应力筋孔道51内灌注有高强灌缝粘结材料8;预制混凝土叠合梁2与预制混凝土柱1之间的梁柱接缝的宽度为10-30mm,其内填筑有高强灌缝粘结材料8;高强灌缝粘结材料8采用抗压强度45MPa以上的高强快硬水泥基灌浆料、钢纤维快硬水泥基灌浆料或聚合物砂浆。
抗弯耗能钢筋6采用柱外全粘结形式,抗弯耗能钢筋6一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,另一端被浇筑在梁后浇层22内;柱内锚固钢筋91上设置有耗能钢筋柱内锚板93。
抗剪高强钢筋7位于抗弯耗能钢筋6下方,被浇筑在梁后浇层22内,一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,抗剪高强钢筋7被浇筑在梁后浇层22内的长度不小于15倍的钢筋直径,抗剪高强钢筋7采用HRB400、HRB500或HRB600制成。
本实施例预应力装配式混凝土框架节点连接结构的施工方法相似,区别点在于步骤七和步骤八,具体方法如下:
步骤七、张拉后张预应力钢筋束:先在梁预应力筋孔道52和柱预应力筋孔道51内灌注高强灌缝粘结材料8,待达到要求强度后,通过预应力筋外锚头53张拉后张预应力钢筋束5,并进行固定;
步骤八、铺设抗弯耗能钢筋6和抗剪高强钢筋7:抗剪高强钢筋7一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,另一端铺设在预制梁21上方待浇筑的梁后浇层22位置;抗弯耗能钢筋6一端伸入预制混凝土柱1内通过机械连接接头92与柱内锚固钢筋91连接,另一端铺设在抗剪高强钢筋7上方、待浇筑的梁后浇层22位置。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (10)

  1. 预应力装配式混凝土框架节点连接结构,包括预制混凝土柱(1)、预制混凝土叠合梁(2)和叠合楼板(3),其特征在于:还包括设置在节点下方的临时支撑(4)和连接预制混凝土柱(1)和预制混凝土叠合梁(2)的后张预应力钢筋束(5)、抗弯耗能钢筋(6)与抗剪高强钢筋(7);预制混凝土叠合梁(2)的梁后浇层(22)与叠合楼板(3)的板后浇层(32)一体浇筑而成;预制混凝土叠合梁(2)与预制混凝土柱(1)之间的梁柱接缝内填筑高强灌缝粘结材料(8);所述抗弯耗能钢筋(6)和抗剪高强钢筋(7)铺设在预制混凝土叠合梁(2)上部的梁后浇层(22)内,抗弯耗能钢筋(6)位于抗剪高强钢筋(7)上方。
  2. 根据权利要求1所述的预应力装配式混凝土框架节点连接结构,其特征在于:所述预制混凝土叠合梁(2)包括下部的预制梁(21)和上部的梁后浇层(22),所述预制梁(21)截面中部至下部1/3范围内、沿其长度方向、通长设置有梁预应力筋孔道(52);所述预制混凝土柱(1)上水平设置有柱预应力筋孔道(51),与梁预应力筋孔道(52)配合、对应设置;所述后张预应力钢筋束(5)依次穿过梁预应力筋孔道(52)和柱预应力筋孔道(51),通过预应力筋外锚头(53)将梁柱张拉紧固;不在同一条直线上的柱预应力筋孔道(51)在柱高度方向上交错设置。
  3. 根据权利要求1所述的预应力装配式混凝土框架节点连接结构,其特征在于:所述预制混凝土叠合梁(2)与预制混凝土柱(1)之间的梁柱接缝的宽度为10-30mm。
  4. 根据权利要求1所述的预应力装配式混凝土框架节点连接结构,其特征在于:所述高强灌缝粘结材料(8)采用抗压强度45MPa以上的高强快硬水泥基灌浆料、纤维快硬水泥基灌浆料或聚合物砂浆中的一种或几种。
  5. 根据权利要求1所述的预应力装配式混凝土框架节点连接结构,其特征在于:所述抗剪高强钢筋(7)一端伸入预制混凝土柱(1)内通过机械连接接头(92)与柱内锚固钢筋(91)连接,一端被浇筑在梁后浇层(22)内,所述抗剪高强钢筋(7)被浇筑在梁后浇层(22)内的长度不小于15倍的钢筋直径。
  6. 根据权利要求1所述的预应力装配式混凝土框架节点连接结构,其特征在于:所述抗弯耗能钢筋(6)采用柱内无粘结形式设置,所述预制混凝土柱(1)内水平设置有耗能钢筋孔道(61),抗弯耗能钢筋(6)穿过耗能钢筋孔道(61),一端伸出预制混凝土柱(1)的外侧边通过柱外锚固板(62)与预制混凝土柱(1)连接,另一端被浇筑在梁后浇层(22)内。
  7. 根据权利要求1所述的预应力装配式混凝土框架节点连接结构,其特征在于:所述抗弯耗能钢筋(6)采用柱外部分粘结形式设置,抗弯耗能钢筋(6)一端伸入预制混凝土柱(1)内通过机械连接接头(92)与柱内锚固钢筋(91)连接,另一端被浇筑在梁后浇层 (22)内;所述抗弯耗能钢筋(6)上套设有套管(63),套管(63)一端紧贴预制混凝土柱(1)外侧壁设置,套管(63)的长度为抗弯耗能钢筋(6)直径的4-23倍;所述套管(63)内的抗弯耗能钢筋(6)为颈缩段(64),颈缩段(64)的截面积为抗弯耗能钢筋(6)截面积的50-90%,颈缩段(64)从距离机械连接接头(92)1-3倍抗弯耗能钢筋(6)直径处开始延伸至套管(63)尾端。
  8. 根据权利要求7所述的预应力装配式混凝土框架节点连接结构,其特征在于:所述颈缩段(64)的截面形状为圆形或异形,异形由两条相互平行的直线与两条对称设置的圆弧围合而成,圆弧所在圆的半径与抗弯耗能钢筋(6)的半径一致,圆弧的圆心角为50-70°。
  9. 根据权利要求1所述的预应力装配式混凝土框架节点连接结构,其特征在于:所述抗弯耗能钢筋(6)采用柱外全粘结形式设置,抗弯耗能钢筋(6)一端伸入预制混凝土柱(1)内通过机械连接接头(92)与柱内锚固钢筋(91)连接,另一端被浇筑在梁后浇层(22)内。
  10. 权利要求1-9任意一项所述的预应力装配式混凝土框架节点连接结构的施工方法,其特征在于:包括以下步骤:
    步骤一、安装临时支撑:根据设计方案,在预制混凝土柱(1)上安装临时支撑(4);
    步骤二、安装预制混凝土柱:吊装过程中,通过临时支撑(4)调整预制混凝土柱(1)的垂直度;
    步骤三、安装预制混凝土叠合梁:吊装预制梁(21),将其固定在临时支撑(4)上方;
    步骤四、安装叠合楼板:吊装叠合楼板(3)的预制板(31),将其与预制梁(21)固定;
    步骤五、安装后张预应力钢筋束:在预制混凝土柱(1)和预制混凝土叠合梁(2)的预制梁(21)内铺设后张预应力钢筋束(5);
    步骤六、填筑梁柱接缝:预制混凝土叠合梁(2)与预制混凝土柱(1)之间的梁柱接缝内填筑高强灌缝粘结材料(8),梁柱接缝宽度为10-30mm;
    步骤七、张拉后张预应力钢筋束:待梁柱接缝内的粘结材料达到要求强度后,张拉后张预应力钢筋束(5),并进行固定;
    步骤八、铺设抗弯耗能钢筋和抗剪高强钢筋:在预制混凝土叠合梁(2)待浇筑的梁后浇层(22)位置铺设抗弯耗能钢筋(6)和抗剪高强钢筋(7),抗弯耗能钢筋(6)和抗剪高强钢筋(7)的一端分别与预制混凝土柱(1)连接;
    步骤九、浇筑后浇层:预制混凝土叠合梁(2)的梁后浇层(22)与叠合楼板(3)的板后浇层(32)现场一体浇筑而成,待浇筑混凝土结构达到要求强度后进行养护。
PCT/CN2018/088161 2017-06-22 2018-05-24 预应力装配式混凝土框架节点连接结构及其施工方法 WO2018233440A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE212018000245.2U DE212018000245U1 (de) 2017-06-22 2018-05-24 Verbindungsstruktur von Vorspannmontagebetonrahmenknoten
US16/724,332 US10865557B2 (en) 2017-06-22 2019-12-22 Prestressed assembled concrete frame-joint connecting structure and constructing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710482150.4A CN107165272B (zh) 2017-06-22 2017-06-22 预应力装配式混凝土框架节点连接结构及其施工方法
CN201710482150.4 2017-06-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/724,332 Continuation US10865557B2 (en) 2017-06-22 2019-12-22 Prestressed assembled concrete frame-joint connecting structure and constructing method thereof

Publications (1)

Publication Number Publication Date
WO2018233440A1 true WO2018233440A1 (zh) 2018-12-27

Family

ID=59819620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088161 WO2018233440A1 (zh) 2017-06-22 2018-05-24 预应力装配式混凝土框架节点连接结构及其施工方法

Country Status (4)

Country Link
US (1) US10865557B2 (zh)
CN (1) CN107165272B (zh)
DE (1) DE212018000245U1 (zh)
WO (1) WO2018233440A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109914697A (zh) * 2019-04-18 2019-06-21 中民筑友房屋科技集团有限公司 一种装配式框架结构建筑用预制柱
CN109930689A (zh) * 2019-04-13 2019-06-25 蚌埠学院 自复位预制梁柱抗震节点结构
CN110485570A (zh) * 2019-08-07 2019-11-22 杨秀敏 支顶循环系统及立体预制全装配式混凝土结构方法
CN110821188A (zh) * 2019-11-21 2020-02-21 湖北大成空间科技股份有限公司 一种用于安装预制构件的辅助装置
CN111552999A (zh) * 2020-03-20 2020-08-18 广联达科技股份有限公司 装配式预制柱钢筋测算方法、系统和介质
CN113136948A (zh) * 2021-06-04 2021-07-20 沈阳建筑大学 一种带抗剪键的装配式混凝土梁柱浆锚连接结构及拼装方法
CN113585623A (zh) * 2021-09-13 2021-11-02 湖南大学 一种自复位可修复高性能预制rc柱
CN114482400A (zh) * 2022-01-10 2022-05-13 中国建筑标准设计研究院有限公司 一种与预制竖向构件相连的叠合梁
CN114687445A (zh) * 2020-12-31 2022-07-01 上海浦东建筑设计研究院有限公司 一种适用于装配式梁柱连接的干式铰接节点
CN116220199A (zh) * 2023-03-17 2023-06-06 江苏科技大学 一种预应力空腹梁柱连接结构及其施工方法
CN116427954A (zh) * 2023-06-09 2023-07-14 湖南大学 基于预制uhpc构件和磷酸镁水泥的盾构快速修复方法

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107165272B (zh) 2017-06-22 2024-01-30 中国建筑股份有限公司 预应力装配式混凝土框架节点连接结构及其施工方法
CN107700653B (zh) * 2017-09-20 2023-08-01 中国建筑股份有限公司 一种混合连接后张预应力装配砼框架体系及其施工方法
CN107503553B (zh) * 2017-09-21 2023-07-21 中国建筑股份有限公司 全装配式预应力砼框架抗震耗能构件体系及施工方法
CN107460954A (zh) * 2017-09-21 2017-12-12 中国建筑股份有限公司 一种后张预应力装配砼框架抗震耗能构件体系及施工方法
CN108060746B (zh) * 2017-10-30 2023-08-01 中国建筑股份有限公司 一种装配式预应力混凝土大跨度框架体系及其施工方法
CN108005304B (zh) * 2017-10-30 2023-08-01 中国建筑股份有限公司 一种装配式预应力混凝土框架体系及其施工方法
CN109868937B (zh) * 2017-12-05 2021-11-05 上海同吉建筑工程设计有限公司 后张无粘结的预应力混凝土叠合梁及其设计、施工方法
CN109868936B (zh) * 2017-12-05 2021-11-05 上海同吉建筑工程设计有限公司 后张缓粘结的预应力混凝土叠合梁及其设计、施工方法
US10895071B2 (en) * 2017-12-29 2021-01-19 Envision Integrated Building Technologies Inc. Structural frame for a building and method of constructing the same
CN108086471A (zh) * 2018-01-19 2018-05-29 华侨大学 可拆卸预制装配式方钢管混凝土柱和钢梁组合节点
CN108277880A (zh) * 2018-01-24 2018-07-13 南京工业大学 一种改进型的自控耗能无粘结预应力混凝土框架
CN108179807A (zh) * 2018-01-25 2018-06-19 中国建筑股份有限公司 一种预制梁柱压接节点加强结构及其施工方法
CN108179808A (zh) * 2018-01-25 2018-06-19 中国建筑股份有限公司 一种预制梁柱压接节点加强箍筋构造及其施工方法
CN108412038A (zh) * 2018-03-06 2018-08-17 南京工业大学 利用锚固支座耗能的无粘结预应力混凝土框架
GB201804422D0 (en) * 2018-03-20 2018-05-02 Bersche Rolt Ltd Building reinforcement and insulation
CN108487461A (zh) * 2018-03-20 2018-09-04 东南大学 带有附加钢筋和套筒的预制预应力混凝土框架梁柱节点
CN108797795A (zh) * 2018-03-30 2018-11-13 魏萍 一种叠合预制梁部分和现浇柱组合装配结构及施工工艺
CN108532749A (zh) * 2018-04-04 2018-09-14 湖南大学 高延性预应力装配式混凝土梁柱连接节点及其施工方法
CN108266036B (zh) * 2018-04-16 2023-04-18 中建一局集团第三建筑有限公司 一种混凝土筒仓顶板结构的施工方法
CN108867859B (zh) * 2018-06-08 2023-10-10 中国建筑股份有限公司 预应力装配式梁柱节点梁端环扣箍筋构造及安装方法
CN108867858A (zh) * 2018-06-08 2018-11-23 中国建筑股份有限公司 预应力装配式梁柱节点梁端焊接箍筋构造及安装方法
CN108894334B (zh) * 2018-07-20 2020-06-23 孟凡林 装配式混凝土梁板节点及其建造方法
CN108867885B (zh) * 2018-09-10 2023-08-25 西北民族大学 预制柱与一体预制梁板的阻尼耗能装配节点及其施工方法
CN109797848A (zh) * 2018-10-30 2019-05-24 中国建筑股份有限公司 带附加筋的梁柱节点及其施工方法
CN109577553A (zh) * 2018-12-11 2019-04-05 郑鹏 一种新式装配式结构预制柱构件及梁柱节点施工方法
CN109610876A (zh) * 2019-02-01 2019-04-12 上海应用技术大学 一种抗震能力提升的钢筋混凝土框架节点及制作方法
CN110258789B (zh) * 2019-06-13 2024-04-09 中国建筑股份有限公司 一种耗能钢棒可更换的梁柱连接节点及其施工方法
CN110258788B (zh) * 2019-06-13 2024-04-16 中国建筑股份有限公司 一种框架梁与柱的半干式连接节点及其施工方法
CN110439109B (zh) * 2019-07-26 2024-04-16 中国建筑股份有限公司 一种预应力装配式混凝土梁柱连接节点及工法
CN111364681B (zh) * 2020-03-17 2021-09-21 刘荣春 一种端部柱梁节点预应力筋交错张拉锚固构造及施工方法
CN113565206A (zh) * 2020-04-29 2021-10-29 上海大学 一种预制柱与叠合梁节点处的连接结构及施工方法
CN111502123A (zh) * 2020-05-08 2020-08-07 中国建筑第八工程局有限公司 倒插灌浆式预制混凝土柱结构及其施工方法
CN111561060B (zh) * 2020-06-22 2024-09-03 宁波优造建筑科技有限公司 一种叠合梁与薄壁钢管砼柱刚铰接联结节点
CN112012356B (zh) * 2020-09-03 2022-08-05 东南大学 一种内埋式抗剪-耗能双功能套筒钢筋梁柱节点
CN112031230B (zh) * 2020-09-04 2023-03-07 中建研科技股份有限公司 一种预制钢筋混凝土楼板与预制混凝土梁界面抗剪键连接构造
CN112523339A (zh) * 2020-11-04 2021-03-19 上海建工二建集团有限公司 一种装配式结构体系及其施工方法
CN112443040A (zh) * 2020-11-13 2021-03-05 中建四局第六建设有限公司 一种多层装配式工业厂房预制梁分步吊装施工方法
CN112411842B (zh) * 2020-11-26 2024-07-23 华侨大学 一种预制装配式无筋混凝土剪力墙-楼板节点及施工方法
CN113006272B (zh) * 2021-02-01 2022-06-07 中建科技集团有限公司 一种装配式预应力混凝土框架系统及施工方法
CN113006576A (zh) * 2021-02-05 2021-06-22 中建科技集团有限公司 一种装配式预应力钢-混凝土组合框架体系及其施工方法
CN112854438A (zh) * 2021-03-15 2021-05-28 重庆大学 一种外露平板网架楼板和外露桁架梁的装配式混凝土框架体系
CN113638491A (zh) * 2021-06-25 2021-11-12 中建五局华东建设有限公司 一种装配式梁柱连接节点及其施工方法
CN113737960A (zh) * 2021-08-06 2021-12-03 水利部交通运输部国家能源局南京水利科学研究院 一种具有组合固定板墙角牛腿
CN114856062A (zh) * 2021-09-06 2022-08-05 广州越秀城开房地产开发有限公司 一种加强梁板拼缝处承载力的节点构造及方法
CN114135000B (zh) * 2021-09-26 2023-12-22 重庆大学 一种装配式局部外包u型钢的梁柱连接节点及其施工方法
CN114319579A (zh) * 2021-12-20 2022-04-12 中国建筑股份有限公司 一种装配式组合结构梁柱连接节点及施工方法
CN114396118A (zh) * 2021-12-21 2022-04-26 中国建筑技术集团有限公司 一种预应力压接连接的装配式混凝土框架结构及施工方法
CN114293658A (zh) * 2021-12-28 2022-04-08 安徽省建筑科学研究设计院 一种含耗能段钢筋的框架结构梁柱节点施工方法
CN114541576B (zh) * 2022-02-16 2024-07-02 浙江大学建筑设计研究院有限公司 装配式钢筋混凝土主梁与次梁的连接结构及施工方法
CN114658097A (zh) * 2022-03-31 2022-06-24 上海市机械施工集团有限公司 一种组合结构及其建造方法
CN115233812B (zh) * 2022-07-05 2023-12-05 上海港城建筑安装工程有限公司 一种预制梁与预制板的节点及其施工方法
CN115059024B (zh) * 2022-07-09 2023-07-04 水利部交通运输部国家能源局南京水利科学研究院 采用互锁连接的简支箱型输调水组合结构及施工方法
CN115370070B (zh) * 2022-09-07 2023-08-08 华侨大学 一种预制装配式混凝土与方钢管的组合柱及其施工方法
CN115370068A (zh) * 2022-09-27 2022-11-22 三峡大学 采用先张法的预应力bfrp筋t型叠合梁及其设计方法
CN116220213A (zh) * 2023-03-12 2023-06-06 北京市地震局 一种装配式密肋板节点
CN115977245B (zh) * 2023-03-21 2023-05-12 湖南大学 一种高耗能高承载力自复位梁柱节点
CN116517188B (zh) * 2023-07-03 2023-09-19 中冶检测认证有限公司 一种异形梁及其制作方法
CN117051966A (zh) * 2023-09-21 2023-11-14 汇通建设集团股份有限公司 一种装配式钢筋混凝土框架的梁柱节点连接装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309669A (ja) * 2001-04-12 2002-10-23 Kurosawa Construction Co Ltd 柱と梁の接合構造
CN201738455U (zh) * 2010-08-04 2011-02-09 中冶建筑研究总院有限公司 预制预应力混凝土梁和柱框架节点防局压组件
JP2012046960A (ja) * 2010-08-26 2012-03-08 Takenaka Komuten Co Ltd プレキャストコンクリート部材の接合構造、構造物
CN103924677A (zh) * 2014-04-14 2014-07-16 北京工业大学 无粘结预应力与普通钢筋连接混凝土梁方矩形钢管混凝土柱组合节点
CN106499051A (zh) * 2016-11-21 2017-03-15 中国建筑股份有限公司 一种柱贯通装配式预应力混凝土框架体系及其施工方法
CN107165272A (zh) * 2017-06-22 2017-09-15 中国建筑股份有限公司 预应力装配式混凝土框架节点连接结构及其施工方法
CN207194146U (zh) * 2017-06-22 2018-04-06 中国建筑股份有限公司 预应力装配式混凝土框架节点连接结构

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613325A (en) * 1969-07-10 1971-10-19 Yee Alfred A Concrete construction
CU34518A (es) * 1976-05-15 1980-10-30 Ministerio De La Construccion Estructura de elementos resistentes alargados prefabricados y sus uniones
DE19952594B4 (de) * 1999-11-02 2008-11-27 Halfen Gmbh Auflager für ein Stahlbeton-Fertigbauteil
AT414247B (de) * 2002-12-04 2006-10-15 Maba Fertigteilind Gmbh Bauwerk
CN201087480Y (zh) * 2007-08-16 2008-07-16 同济大学 预应力混凝土叠合梁
CN102433959B (zh) * 2011-08-30 2013-10-02 张吉华 装配式房屋建筑用预制钢筋砼结构梁
EP2951364B1 (en) * 2013-01-29 2018-03-14 Building Service di Cenzon Francesco e Pomini Giorgio S.n.c. Building system for the construction industry
KR101520002B1 (ko) * 2015-01-05 2015-05-14 (주)세종알앤디 조립식 플레이트와 정착 채널을 구비한 프리캐스트 콘크리트 부재
WO2017187452A1 (en) * 2016-04-28 2017-11-02 Precast India Infrastructures Pvt Ltd System for connecting a precast column to a precast beam and method therefor
CN205894291U (zh) * 2016-05-23 2017-01-18 河北合创建筑节能科技有限责任公司 装配整体式预制预应力钢筋混凝土梁与框架柱连接构造
US10837167B2 (en) * 2016-05-25 2020-11-17 Libere NITUNGA Construction of the prefabricated column and beam type
JP6171070B1 (ja) * 2016-11-04 2017-07-26 黒沢建設株式会社 コンクリート製柱と鉄骨梁との接合方法
KR101995496B1 (ko) * 2017-05-02 2019-10-01 경희대학교 산학협력단 상하 pc기둥 간 강접합 결합구조 및 이를 이용한 pc보의 강접합 결합구조
WO2019055818A1 (en) * 2017-09-14 2019-03-21 South Dakota Board Of Regents APPARATUS, SYSTEMS, AND METHODS FOR REPAIRABLE REPEATABLE REPRESENTATIVE BUILDINGS WHICH ARE RESISTANT AT THE MOMENT

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002309669A (ja) * 2001-04-12 2002-10-23 Kurosawa Construction Co Ltd 柱と梁の接合構造
CN201738455U (zh) * 2010-08-04 2011-02-09 中冶建筑研究总院有限公司 预制预应力混凝土梁和柱框架节点防局压组件
JP2012046960A (ja) * 2010-08-26 2012-03-08 Takenaka Komuten Co Ltd プレキャストコンクリート部材の接合構造、構造物
CN103924677A (zh) * 2014-04-14 2014-07-16 北京工业大学 无粘结预应力与普通钢筋连接混凝土梁方矩形钢管混凝土柱组合节点
CN106499051A (zh) * 2016-11-21 2017-03-15 中国建筑股份有限公司 一种柱贯通装配式预应力混凝土框架体系及其施工方法
CN107165272A (zh) * 2017-06-22 2017-09-15 中国建筑股份有限公司 预应力装配式混凝土框架节点连接结构及其施工方法
CN207194146U (zh) * 2017-06-22 2018-04-06 中国建筑股份有限公司 预应力装配式混凝土框架节点连接结构

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109930689A (zh) * 2019-04-13 2019-06-25 蚌埠学院 自复位预制梁柱抗震节点结构
CN109914697A (zh) * 2019-04-18 2019-06-21 中民筑友房屋科技集团有限公司 一种装配式框架结构建筑用预制柱
CN109914697B (zh) * 2019-04-18 2023-07-14 中民筑友房屋科技集团有限公司 一种装配式框架结构建筑用预制柱
CN110485570A (zh) * 2019-08-07 2019-11-22 杨秀敏 支顶循环系统及立体预制全装配式混凝土结构方法
CN110821188A (zh) * 2019-11-21 2020-02-21 湖北大成空间科技股份有限公司 一种用于安装预制构件的辅助装置
CN111552999A (zh) * 2020-03-20 2020-08-18 广联达科技股份有限公司 装配式预制柱钢筋测算方法、系统和介质
CN114687445A (zh) * 2020-12-31 2022-07-01 上海浦东建筑设计研究院有限公司 一种适用于装配式梁柱连接的干式铰接节点
CN113136948A (zh) * 2021-06-04 2021-07-20 沈阳建筑大学 一种带抗剪键的装配式混凝土梁柱浆锚连接结构及拼装方法
CN113585623A (zh) * 2021-09-13 2021-11-02 湖南大学 一种自复位可修复高性能预制rc柱
CN113585623B (zh) * 2021-09-13 2024-06-07 湖南大学 一种自复位可修复高性能预制rc柱
CN114482400A (zh) * 2022-01-10 2022-05-13 中国建筑标准设计研究院有限公司 一种与预制竖向构件相连的叠合梁
CN116220199A (zh) * 2023-03-17 2023-06-06 江苏科技大学 一种预应力空腹梁柱连接结构及其施工方法
CN116427954A (zh) * 2023-06-09 2023-07-14 湖南大学 基于预制uhpc构件和磷酸镁水泥的盾构快速修复方法
CN116427954B (zh) * 2023-06-09 2023-09-08 湖南大学 基于预制uhpc构件和磷酸镁水泥的盾构快速修复方法

Also Published As

Publication number Publication date
CN107165272A (zh) 2017-09-15
DE212018000245U1 (de) 2020-03-09
US20200141110A1 (en) 2020-05-07
US10865557B2 (en) 2020-12-15
CN107165272B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2018233440A1 (zh) 预应力装配式混凝土框架节点连接结构及其施工方法
AU2015409344B2 (en) Assembled type pier column member with steel-concrete composite structure
WO2019056715A1 (zh) 一种混合连接后张预应力装配砼框架体系及其施工方法
WO2019056717A1 (zh) 一种后张预应力装配砼框架抗震耗能构件体系及施工方法
CN207194146U (zh) 预应力装配式混凝土框架节点连接结构
CN108005304B (zh) 一种装配式预应力混凝土框架体系及其施工方法
JP2007247401A (ja) 弾性繊維補強複合構造部材
CN105220808A (zh) 大跨度预应力拱板现场预制安装施工方法
CN114197753B (zh) Uhpc模壳型钢混凝土复合圆柱-型钢梁组合框架及施工方法
CN216920891U (zh) 一种装配楼板及具有装配楼板的建筑结构
CN115045181A (zh) 一种中高烈度区预制墩柱-承台承插式节点连接方法与构造
CN110805144B (zh) 全装配式高层/超高层混凝土框支结构体系及其施工方法
CN111877140A (zh) 一种用于节段预制拼装式桥墩组合的连接结构及施工方法
CN206769200U (zh) 先穿式后张法竖向预应力现浇混凝土柱结构
CN206769199U (zh) 后穿式后张法竖向预应力现浇混凝土柱结构
CN110258788B (zh) 一种框架梁与柱的半干式连接节点及其施工方法
CN204940652U (zh) 大跨度预应力现场预制拱板
CN208472958U (zh) 一种部分预制装配式型钢混凝土巨型框架结构
CN107100322A (zh) 后张法竖向预应力现浇混凝土柱结构及施工方法
KR101576865B1 (ko) 역 t형 주형보를 이용한 교량 슬래브의 무지보 시공 방법
KR100860592B1 (ko) Pc블럭 적층시공용 가설구조
CN210421403U (zh) 一种框架梁与柱的半干式连接节点
CN210529929U (zh) 一种耗能钢棒可更换的梁柱连接节点
CN206769198U (zh) 分离组合式钢筋混凝土预制块锚固端支撑结构
CN218292242U (zh) 牛腿外伸型预应力压接装配式混凝土框架

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819770

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18819770

Country of ref document: EP

Kind code of ref document: A1