WO2018230438A1 - 黒色混合酸化物材料及びその製造方法 - Google Patents

黒色混合酸化物材料及びその製造方法 Download PDF

Info

Publication number
WO2018230438A1
WO2018230438A1 PCT/JP2018/021875 JP2018021875W WO2018230438A1 WO 2018230438 A1 WO2018230438 A1 WO 2018230438A1 JP 2018021875 W JP2018021875 W JP 2018021875W WO 2018230438 A1 WO2018230438 A1 WO 2018230438A1
Authority
WO
WIPO (PCT)
Prior art keywords
mixed oxide
oxide
black
weight
oxide material
Prior art date
Application number
PCT/JP2018/021875
Other languages
English (en)
French (fr)
Inventor
中島 幹夫
隆 加東
Original Assignee
中島産業株式会社
奥野製薬工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018021124A external-priority patent/JP6592125B2/ja
Application filed by 中島産業株式会社, 奥野製薬工業株式会社 filed Critical 中島産業株式会社
Priority to KR1020197036093A priority Critical patent/KR102127605B1/ko
Priority to EP18816653.2A priority patent/EP3640225A4/en
Priority to CN202310374657.3A priority patent/CN116409991A/zh
Priority to CN201880036637.2A priority patent/CN110730766A/zh
Priority to US16/622,115 priority patent/US10759943B2/en
Publication of WO2018230438A1 publication Critical patent/WO2018230438A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/04Opacifiers, e.g. fluorides or phosphates; Pigments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/62Metallic pigments or fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/32Three-dimensional structures spinel-type (AB2O4)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3256Molybdenum oxides, molybdates or oxide forming salts thereof, e.g. cadmium molybdate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3258Tungsten oxides, tungstates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3263Mn3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Definitions

  • the present invention relates to a black mixed oxide material not containing chromium and cobalt as a main component, a method for producing the same, and a product using the black mixed oxide material.
  • Inorganic black pigments are used in various fields such as ceramics, paints, resin coloring, and glass paste pigment components.
  • a glass paste using a black pigment is used as a ceramic paste (see Patent Document 1) that constitutes a coating film on the periphery of an automobile window glass, an insulating paste for an insulating barrier of a plasma display, and the like ( Patent Document 2).
  • Most of the black pigments so far contain chromium (Cr) as a constituent component.
  • the chromium compound Cr 2 O 3 has been widely used as one of the raw material oxides indispensable for the production of black pigments, for example, for the purpose of improving the heat resistance of the pigment and adjusting the color tone.
  • Cr contained as a pigment raw material oxide changes to highly toxic hexavalent chromium (Cr 6+ ) by heating or the like.
  • the water washing process is performed as necessary, the produced hexavalent chromium is removed.
  • the black pigment which is a product itself may be a problem.
  • the current Rose Directive only targets hexavalent chromium.
  • a product using a chromium-containing black pigment is discarded, safety associated with a change in valence has begun to be regarded as a problem.
  • the black pigment of Patent Document 3 uses a strontium compound and iron oxide as its main components. Since the solubility of strontium in water is high, practical production methods are limited to non-aqueous liquids or alcohols. Therefore, there is a possibility that the pigment production cost increases and the use range and application are very limited.
  • the black pigment of Patent Document 4 is a pigment mainly composed of oxides of Mn, Co, Ni, and Fe.
  • the black pigment of Patent Document 5 is a pigment mainly composed of Mn, Fe, Cu, and Co oxides. In particular, the black pigment of Patent Document 5 has resulted in a good quality black color.
  • JP-A-6-340447 Japanese Patent Laid-Open No. 6-144871 Japanese Patent Laid-Open No. 2000-264639 JP 2007-217544 A Japanese Patent No. 5131664
  • the inventors reviewed the main component of the black pigment and proceeded with intensive studies. As a result, it was finally possible to develop a black pigment having a main component composition containing neither chromium nor cobalt as main components. Furthermore, it was confirmed that other physical properties were provided in addition to the performance desired as a black pigment.
  • the present invention has been made in view of the above points, and does not contain chromium itself as a main component regardless of the valence of chromium, and further does not contain cobalt as a main component.
  • a black mixed oxide material having economic efficiency and a method for producing the same, and various products in view of physical properties of the black mixed oxide material.
  • the black mixed oxide material is characterized in that it contains an oxide mainly composed of La, Mn, and Cu and is a mixed oxide not containing Cr and Co as the main components.
  • the black mixed oxide material has a diffraction peak with the maximum intensity in the range of the diffraction angle 2 ⁇ of 31 ° to 34 ° in the X-ray diffraction measurement using CuK ⁇ ray as the X-ray source.
  • the mixed oxide contains Mn 3 O 4 having a spinel structure as an oxide of Mn.
  • the black mixed oxide material includes La, Mn, and Cu in the mixed oxide as an oxide equivalent amount in which the total weight is 100% by weight as the next oxide, and La is La 2 O. 3 to 35 to 70% by weight, Mn to MnO 2 to 25 to 60% by weight, and Cu to CuO to 0.5 to 10% by weight.
  • the black mixed oxide material further includes an oxide of Mo as the main component, wherein the mixed oxide is La 2 O 3 , Mn is MnO 2 , Cu is CuO, 3
  • the mixed oxide has a ratio of Mo of MoO 3 to 5% by weight or less with respect to 100% by weight of the oxide equivalent amount. It is characterized by containing.
  • the mixed oxide includes Li, B, Na, Mg, Al, Si, P, K, Ca, Ti, V, Fe, Zn, Contains one or more of Sr, Y, Zr, Nb, Sn, Sb, Ba, Ta, W, Bi, Ce, Pr, Nd, or Er, La is La 2 O 3, and Mn is MnO 2 , Cu as CuO, and an oxide equivalent amount in which the total weight of the three kinds of oxides is 100% by weight, the mixed oxide is the subcomponent with respect to 100% by weight of the oxide equivalent amount.
  • the black mixed oxide material is characterized in that the mixed oxide is a black pigment.
  • the black mixed oxide material is characterized in that the mixed oxide is a nonmagnetic material.
  • the black mixed oxide material is characterized in that the mixed oxide is an insulating material.
  • a method for producing a black mixed oxide material includes a primary pulverization step in which La, Mn, and Cu oxide raw materials are mixed and pulverized to obtain a primary pulverized product having an average particle size of 5 ⁇ m or less; A raw material firing step of firing a raw material fired at 700 to 1200 ° C. and a secondary grinding step of grinding the raw material fired to an average particle size of 50 ⁇ m or less to obtain a mixed oxide, To do.
  • the method for producing a black mixed oxide material is such that the oxide content of La, Mn, and Cu in the mixed oxide is an oxide equivalent amount in which the total weight is 100% by weight as the next oxide. Characterized by satisfying the following ratios: 35 to 70% by weight of La as La 2 O 3 , 25 to 60% by weight of Mn as MnO 2 and 0.5 to 10% by weight of Cu as CuO To do.
  • the method for producing a black mixed oxide material is such that the mixed oxide further contains an oxide of Mo as the main component, La is La 2 O 3 , Mn is MnO 2, and Cu is In the oxide conversion amount in which the total weight of the three types of oxides is 100% by weight as CuO, the mixed oxide is 5% by weight or less with MoO 3 as MoO 3 with respect to 100% by weight of the oxide conversion amount. It is characterized by being contained at a ratio of
  • a method for producing a black mixed oxide material includes a first pulverization step of mixing and pulverizing oxide raw materials of La, Mn, and Cu to obtain a first pulverized product having an average particle size of 5 ⁇ m or less, A first firing step of firing one ground product at 700 to 1200 ° C. to obtain a first fired product, a second grinding step for grinding the first fired product to obtain a second ground product having an average particle size of 50 ⁇ m or less, A second baking step of baking the second pulverized product at 600 to 1100 ° C. to obtain a second baked product, and a third pulverizing step of pulverizing the second baked product to an average particle size of 20 ⁇ m or less. To obtain a mixed oxide.
  • the method for producing a black mixed oxide material is characterized in that the oxide content of La, Mn, and Cu in the mixed oxide is an oxide equivalent amount in which the total weight is 100% by weight as the next oxide.
  • the proportions satisfying the following conditions are satisfied: 35 to 70% by weight of La as La 2 O 3 , 25 to 60% by weight as MnO 2 and 0.5 to 10% by weight of Cu as CuO
  • the proportions satisfying the following conditions are satisfied: 35 to 70% by weight of La as La 2 O 3 , 25 to 60% by weight as MnO 2 and 0.5 to 10% by weight of Cu as CuO
  • the oxide content of La, Mn, and Cu in the mixed oxide is an oxide equivalent amount in which the total weight is 100% by weight as the next oxide.
  • the method for producing a black mixed oxide material is such that the mixed oxide further contains an oxide of Mo as the main component, La is La 2 O 3 , Mn is MnO 2, and Cu is In the oxide conversion amount in which the total weight of the three types of oxides is 100% by weight as CuO, the mixed oxide is 5% by weight or less with MoO 3 as MoO 3 with respect to 100% by weight of the oxide conversion amount. It is characterized by being contained at a ratio of
  • the inorganic ceramic material is characterized by containing a black mixed oxide material and a ceramic agent.
  • the inorganic glass paste is characterized by containing a black mixed oxide material and a glass agent.
  • a baked product is characterized in that an inorganic glass paste is baked on a glass member, metal member, earthenware, or porcelain.
  • the resin paste is characterized by containing a black mixed oxide material and a resin agent.
  • a coated product is characterized in that a resin paste is coated on a support.
  • the coated product is characterized in that the support is glass, metal, ceramic, porcelain, resin product, or carbon material.
  • the resin member is characterized by containing a black mixed oxide material and a resin agent.
  • the black mixed oxide material contains an oxide mainly composed of La, Mn, and Cu, and is a mixed oxide not containing Cr and Co as the main component. Chromium itself is not contained as a main component, and cobalt is not contained as a main component, and high safety, good color tone, and economical efficiency are achieved.
  • the mixed oxide has a perovskite phase exhibiting a maximum intensity diffraction peak in a range of 31 ° to 34 ° of a diffraction angle 2 ⁇ in X-ray diffraction measurement using CuK ⁇ ray as an X-ray source, and Since the mixed oxide contains Mn 3 O 4 having a spinel structure as an oxide of Mn, it is in the form of a mixed oxide that has undergone sintering.
  • La, Mn, and Cu content in the mixed oxide is 35 to 70% by weight with La as La 2 O 3 and 35 to 70% by weight as an oxide equivalent amount with the total weight as the next oxide, Mn
  • the ratio is 25 to 60% by weight as MnO 2 and 0.5 to 10% by weight as Cu is CuO, so chromium is not included in the main component and cobalt is also included in the main component. Without exhibiting a good black color.
  • the mixed oxide further contains an oxide of Mo as the main component, La is La 2 O 3 , Mn is MnO 2 , Cu is CuO, and the total weight of the three kinds of oxides is 100 wt. %,
  • the mixed oxide contains Mo in an amount of 5% by weight or less as MoO 3 with respect to 100% by weight of the oxide equivalent.
  • the mixed oxide includes Li, B, Na, Mg, Al, Si, P, K, Ca, Ti, V, Fe, Zn, Sr, Y, Zr, Nb, Sn, It contains at least one of Sb, Ba, Ta, W, Bi, Ce, Pr, Nd, or Er, La is La 2 O 3 , Mn is MnO 2 , Cu is CuO, and 3
  • the oxide equivalent amount in which the total weight of the types of oxides is 100% by weight, the mixed oxide is Li 2 O, B 2 O 3 , and the subcomponent is 100% by weight of the oxide equivalent amount.
  • the mixed oxide is a black pigment, nonmagnetic material, or insulating material, the use of the black mixed oxide material is expanded.
  • a mixed oxide comprising a raw material firing step of firing a raw material fired at 1200 ° C. and a secondary grinding step of grinding the raw material fired to an average particle size of 50 ⁇ m or less, the valence of chromium Regardless, chromium itself is not contained in the main component, and cobalt is not contained in the main component, so that high safety, good color tone, and economical efficiency are achieved.
  • the content of oxides of La, Mn, and Cu in the mixed oxide is 35 to 70% by weight when La is La 2 O 3 as an oxide equivalent amount in which the total weight is 100% by weight as the next oxide.
  • Mn is 25 to 60% by weight as MnO 2 and Cu is 0.5 to 10% by weight as CuO. Therefore, chromium is not contained as a main component, and cobalt is also a main component. It exhibits a good black color without being contained.
  • the mixed oxide further contains an oxide of Mo as the main component, La is La 2 O 3 , Mn is MnO 2 , Cu is CuO, and the total weight of the three kinds of oxides is 100 wt. %,
  • the mixed oxide contains Mo in an amount of 5% by weight or less as MoO 3 with respect to 100% by weight of the oxide equivalent.
  • the first pulverized product obtained by mixing and pulverizing La, Mn, and Cu oxide raw materials to obtain a first pulverized product having an average particle size of 5 ⁇ m or less; Calcination at 700 to 1200 ° C. to obtain a first baked product, a second pulverizing step for pulverizing the first baked product to obtain a second pulverized product having an average particle size of 50 ⁇ m or less,
  • a mixed oxidation process comprising: a second baking step of baking the pulverized product at 600 to 1100 ° C. to obtain a second baked product; and a third pulverizing step of pulverizing the second baked product to an average particle size of 20 ⁇ m or less.
  • the content of oxides of La, Mn, and Cu in the mixed oxide is 35 to 70% by weight when La is La 2 O 3 as an oxide equivalent amount in which the total weight is 100% by weight as the next oxide.
  • Mn is 25 to 60% by weight as MnO 2 and Cu is 0.5 to 10% by weight as CuO. Therefore, chromium is not contained as a main component, and cobalt is also a main component. It exhibits a good black color without being contained.
  • the mixed oxide further contains an oxide of Mo as the main component, La is La 2 O 3 , Mn is MnO 2 , Cu is CuO, and the total weight of the three kinds of oxides is 100 wt. %,
  • the mixed oxide contains Mo in an amount of 5% by weight or less as MoO 3 with respect to 100% by weight of the oxide equivalent. Can be obtained.
  • the black mixed oxide material can be used for a wide range of products by applying to black inorganic ceramic materials, black inorganic glass paste, and black resin paste. This makes it possible to replace existing materials as materials that do not contain chromium or cobalt.
  • FIG. 4 is an enlarged view of a main part of FIG. 3. It is an X-ray diffraction pattern of Prototype Example 29. It is an X-ray diffraction pattern of Prototype Example 35. It is an X-ray diffraction pattern of Prototype Example 51. It is a graph of the magnetization curve of the prototype 51. It is the graph which expanded the graph of FIG. 8 partially.
  • the black mixed oxide material of the present invention is a component black mixed oxide material that does not contain Cr itself as a main component and does not contain Co as a main component regardless of the valence of Cr. That is, the black mixed oxide material is mainly composed of three types of La, Mn, and Cu. However, Cr and Co are not contained as main components. And it is a mixed oxide containing the oxide of the metal element of 3 types of main components. Further, since the black mixed oxide material enhances good color development as a black pigment, Mo is mixed with the main components of the three metal elements to prepare a mixed oxide. In addition to the performance as a pigment, it also has the properties of a non-magnetic material and an insulating material, as will be described later.
  • the mixed oxide is shown, for example, as the X-ray diffraction patterns of FIGS. This corresponds to the following prototype examples 29, 35, and 51 in the order of FIGS.
  • XRD X-ray diffraction
  • the mixed oxide is assumed to have a perovskite phase. From the position of the black square in the illustrated pattern, the mixed oxide is assumed to contain Mn 3 O 4 having a spinel structure as an oxide of Mn.
  • the raw material forms of La, Mn, and Cu as main components are not particularly limited, and metal compounds such as carbonates and hydroxides can be used in addition to each metal oxide.
  • metal compounds such as carbonates and hydroxides
  • Mo metal compounds such as carbonates and hydroxides
  • the black mixed oxide material shows the peak of the illustrated X-ray diffraction pattern and is also confirmed to be in the form of a mixed oxide that has undergone sintering. Therefore, the blending amount established between the main components La, Mn, and Cu of the mixed oxide can be expressed by a relative ratio by the oxide conversion amount when each metal element is in the form of the following oxide. .
  • the mixing ratio of oxides of La, Mn, and Cu, which are main components, is derived from the triangular diagram of FIG.
  • the triangular diagram shows the balance of the amount established between the oxides of the black pigment, which is a mixed oxide of a prototype example described later.
  • La is understood as La 2 O 3 , Mn as MnO 2 , and Cu as CuO oxide form.
  • the total total weight of the three kinds of oxides is converted to 100% by weight.
  • La 2 O 3 is in the range of 35 to 70% by weight
  • MnO 2 is in the range of 25 to 60% by weight
  • CuO is in the range of 0.5 to 10% by weight.
  • the ratio of each main component metal element is a calculated value for convenience of setting the type of the oxide. For this reason, in reality, the sum of the weight percentages of the oxides of the main components La, Mn, and Cu may exceed 100 or less than 100. This is because the purity of the raw material that is the source of the main component element, the inclusion of subcomponents described later, changes in the oxidation number (number of oxygen elements) in the pigment, and the like are considered.
  • the main component metal element By converting the main component metal element into the weight of the oxide once, it becomes easy to grasp the balance between black quality and the blending amount between the metal elements. In addition, it becomes easy to grasp the amount and ratio when other components are further added.
  • La 2 O 3 is preferably blended in an amount of 35 to 70% by weight, more preferably 40 to 70% by weight.
  • MnO 2 which is an oxide of Mn
  • concentration increases and the blackness as a black pigment increases.
  • MnO 2 is preferably 25 to 60% by weight.
  • CuO which is an oxide of Cu can obtain a good black color together with the La and Mn oxides.
  • the converted weight of CuO is less than 0.5% by weight, the color tone other than black increases, and the pigment concentration and blackness are less likely to occur.
  • the converted weight of CuO exceeds 10% by weight, redness increases when the use of the black pigment is assumed from the relationship with other components, and the concentration cannot be obtained.
  • the fusing temperature of the ceramic paste containing the mixed oxide material increases. Furthermore, acid resistance is also reduced. Therefore, Cu is added from the balance of various conditions, and CuO is preferably 0.5 to 10% by weight.
  • an oxide of Mo is further contained as one kind of main component (four kinds of main component system).
  • Mo is the reduced weight of MoO 3, MoO 3, the total weight of La 2 O 3, MnO 2, and the three kinds of oxides to CuO (La 2 O 3 , the sum of MnO 2 and CuO) is 100% by weight, and is contained at a ratio of 5% by weight or less.
  • the lower limit of the converted weight of MoO 3 is not particularly limited. However, 0.01% by weight or more is preferable from the viewpoint of clarifying the effect of Mo addition.
  • the black mixed oxide material of mixed oxide (three types of main component system) containing La, Mn, and Cu as main components or mixed oxide (four types of main component system) also containing Mo is used as a main component.
  • the content of secondary components listed are, La 2 O 3, MnO 2 , and the total weight of the three oxides to CuO (La 2 O 3, MnO 2, and the sum of CuO) to 100 wt% Li 2 O, B 2 O 3 , Na 2 O, MgO, Al 2 O 3 , SiO 2 , P 2 O 5 , K 2 O, CaO, TiO 2 , V 2 O 5 , Fe with respect to the oxide equivalent amount 3 O 3 , ZnO, SrO, Y 2 O 3 , ZrO 2 , Nb 2 O 3 , SnO 2 , Sb 2 O 3 , BaO, Ta 2 O 5 , WO 3 , Bi 2 O 3 , CeO 2 , Pr 6 O In the oxide equivalent amount of 11 , Nd 2 O 5 , or Er 2 O 3 , it is defined as 20 wt% or less.
  • the oxide raw material M of La, Mn, and Cu (Mo can be included) that satisfies the above-mentioned oxide equivalent amount is prepared.
  • the oxide raw material M is mixed and pulverized to obtain a primary pulverized product 11 having an average particle size of 5 ⁇ m or less (S11: primary pulverization step).
  • the primary pulverized product 11 is fired in an oxidizing atmosphere at 700 to 1200 ° C. to obtain a raw material fired product 12 (S12: raw material firing step).
  • the raw material fired product 12 is again pulverized to an average particle size of 50 ⁇ m or less to prepare a mixed oxide P1 of a black mixed oxide material (S13: secondary pulverization step).
  • An oxide raw material M of La, Mn, and Cu (which can include Mo) that satisfies the above-described oxide equivalent amount is prepared.
  • the oxide raw material M is mixed and pulverized to obtain a first pulverized product 21 having an average particle size of 5 ⁇ m or less (S21: first pulverizing step).
  • the first pulverized product 21 is baked in an oxidizing atmosphere at 700 to 1200 ° C. to obtain a first baked product 22 (S22: first baking step).
  • the first fired product 22 is pulverized to an average particle size of 50 ⁇ m or less to obtain a second pulverized product 23 (S23: second pulverizing step).
  • the second pulverized product 23 is baked in an oxidizing atmosphere at 600 to 1100 ° C. to obtain a second baked product 24 (S24: second baking step).
  • the second fired product 24 is pulverized to an average particle size of 5 ⁇ m or less to prepare a mixed oxide P2 of a black mixed oxide material (S25: third pulverizing step).
  • pulverization (S11, S13, S21, S23, S25) shown in the schematic process diagrams of FIGS. 1 and 2, ball mill, vibration mill, attritor, bead mill, jet mill, tube mill, atomizer, fine mill, pulverizer, etc.
  • a grinding device is used. Since the pulverization can be performed by wet or dry mixing, the productivity is high and the processing cost is advantageous. For example, a wet mixing and pulverizing method in a ball mill will be described. An oxide raw material, water, balls, a pulverizing aid (dispersant, antifoaming agent, etc.) and the like are charged into the ball mill and mixed and pulverized.
  • the antifoaming agent and dispersing agent which are pulverization aids, known ones can be appropriately selected and used so that the raw material oxide is uniformly mixed and pulverized.
  • the compounding quantity is adjusted according to an oxide raw material.
  • Lining materials such as alumina, zirconia, rubber, urethane, nylon and silica stone are laid on the inner surface of the ball mill.
  • Alumina and zirconia are preferable because they have higher hardness than other lining materials, can reduce the mixing of the lining material into the pigment, and can shorten the pulverization time.
  • zirconia balls are used for the grinding balls.
  • zirconia balls can be used for urethane or nylon lining. This is because urethane and nylon are carbonized and disappear during firing, so that there is little risk of contamination.
  • the particle size of the pulverized ball is appropriately changed according to the particle size of the raw material oxide.
  • dispersants that are one of the grinding aids include sodium polycarboxylate and sulfonic acid polymers (sodium). Salt) and the like.
  • the grinding aid By suitably adding the grinding aid, the dispersibility of the raw material oxide in the liquid becomes good, and the grinding can be performed in a relatively short time.
  • the specific gravity varies depending on the raw material oxide. For this reason, it is necessary to uniformly grind all the components while preventing the unevenness of the grind.
  • poly (ammonium acrylate) is preferably used because it is substantially decomposed by firing and does not have a sodium content as compared with other grinding aids.
  • the average particle diameter of the raw material oxide after pulverization is pulverized to 5 ⁇ m or less, further 2 ⁇ m or less, preferably 1 ⁇ m or less, more preferably 0.7 ⁇ m or less. This is because the average particle size is made as small as possible to promote particle growth by sintering the mixed oxide produced during firing. Further, the smaller the average particle size, the higher the reactivity of the oxide raw material, and the easier it is to obtain a mixed oxide having a preferred crystal structure. Since the pulverization time increases as the average particle size decreases, the average particle size is defined in consideration of the performance required for the pigment, the firing time, and the like.
  • the “average particle size” means the integrated value of 50% in the particle size distribution obtained by the laser diffraction / scattering method using the laser diffraction / scattering type particle size / particle size distribution measuring apparatus of the examples described later. It means the particle size (cumulative average diameter).
  • the pulverized product obtained through wet pulverization is put into a slurry tank and dried by a spray dryer, a filter press (dehydration dryer), a decanter (centrifugal dehydration dryer) or the like.
  • the water content is 1.0% or less, preferably 0.5% or less.
  • a filter press, a decanter or the like is used for drying, it is necessary to dry and pulverize it again. Therefore, it is preferable to use a spray dryer for the convenience of the production method.
  • the drying step may be omitted depending on the water content after mixing and grinding.
  • the average particle size is pulverized to 50 ⁇ m or less.
  • the particle size at the time of pulverization may be finer than 50 ⁇ m if necessary.
  • the pulverization of S13 is completed. Therefore, in the pulverization of S13, an average particle size is selected according to the application.
  • the pulverization (S23) of FIG. 2 (second embodiment) heat exposure during subsequent firing is taken into consideration, and the crystals of the mixed oxide are intentionally adjusted to be large.
  • the average particle size is 20 ⁇ m or less, more preferably 5 to 10 ⁇ m, preferably the average particle size is 0.5 to 2 ⁇ m, more preferably the average particle size is 0.8 to 1 ⁇ m. It is crushed.
  • the average particle size of the black mixed oxide material is reduced by pulverization after firing. As a result, the specific surface area is increased, the density is increased, and the color tone is more uniform, so that a pigment having good reproducibility can be produced.
  • a pulverizer is used in the same manner as the above pulverization.
  • the pigment When performing ball mill pulverization or the like by a wet method, it may be dried by a spray dryer or the like, if necessary.
  • the pigment When the pigment is aggregated by drying, it can be pulverized using an impact pulverizer such as a jet mill, a vibration mill, or a hammer mill.
  • the firing of S12, S22, and S24 in the process diagrams 1 and 2 is also referred to as calcination.
  • the oxide raw material (pulverized product) is put in a mortar made of mullite, cordierite, alumina or the like.
  • a mixed oxide is produced from the oxide raw material.
  • the color tone and concentration of the black mixed oxide material change.
  • the firing temperature and the firing time are appropriately selected depending on the raw material oxides to be contained, taking into account its use and performance.
  • firing (S12, S22) in the method for producing the black mixed oxide material of the first and second embodiments relatively large firings such as a tunnel kiln, a roller hearth kiln, a rotary kiln, a shuttle kiln, etc. for mass production.
  • a device is also used.
  • the firing step can be performed under an oxidizing atmosphere. For this reason, it is convenient when producing a black pigment having a uniform quality at a low price and in large quantities.
  • the mixed pulverized product is directly put into the kiln.
  • the firing is performed in a temperature range of 700 to 1200 ° C. for 1 to 8 hours, depending on the scale of the firing apparatus and the amount of the raw material oxide.
  • the firing time is the maximum temperature maintenance time.
  • a temperature gradient may be provided in the firing apparatus.
  • an electric furnace is also used for firing (S24) on the raw material oxide in the black mixed oxide material manufacturing method of the second embodiment. Since the temperature control of the electric furnace is easier than the above kilns, the amount of heat applied to the oxide raw material during firing can be accurately controlled. For example, when a raw material metal oxide is sintered to grow a mixed oxide crystal, it is convenient to adjust the thermal history (heating temperature, heating time) of the raw material. When an electric furnace is used, the oxide raw material and the like are heated in a stationary state. For this reason, since the contact amount of a raw material and oxygen may become non-uniform
  • the manufacturing method of the second embodiment is used. Is desirable.
  • the first baking step is performed at a temperature range of 600 to 1200 ° C. for 1 to 6 hours, and the second baking step is performed at a temperature range of 600 to 1100 ° C. for 1 to 4 hours.
  • the composition of the oxide raw material to be produced, the sintering performance accompanying the composition, and the like are taken into consideration.
  • the time of a 1st baking process and a 2nd baking process is a maintenance time of each maximum temperature.
  • the black mixed oxide material does not contain chromium itself as the main component regardless of the valence of chromium, and is very economical and safe. Very good.
  • the conventional process for producing pigments and the like it was necessary to provide a water washing step in order to remove the produced hexavalent chromium (Cr 6+ ), but this water washing step can be omitted.
  • the accompanying drying and grinding steps can be omitted. Therefore, the manufacturing time can be greatly shortened, and the manufacturing cost can be significantly reduced.
  • a black mixed oxide material that does not contain a chromium component and a cobalt component as a main component is a non-magnetic material and an insulating material, and is therefore a harmful substance due to its use and usage environment. There is no risk that valent chromium will be produced. Furthermore, it is possible to reduce the onset of allergy caused by cobalt.
  • Applications of such black mixed oxide materials include, for example, resin pigments, paint pigments, colored pigments for ceramics (including automotive window glass ultraviolet absorption / reflection pigments, etc.), thermal radiation pigments, infrared reflective pigments, and colored ceramics. And various other products.
  • the black mixed oxide material is a black pigment
  • an inorganic glass paste black inorganic glass paste
  • the inorganic glass paste is baked on the surface of the plate glass to form a plate glass product.
  • Specific plate glass products include window glass such as an automobile windshield, rear glass, and sunroof glass.
  • Inorganic glass paste is applied to the surface of these glasses. The inorganic glass paste protects the adhesive and the buffer resin body interposed between the plate glass product and the vehicle body from ultraviolet rays, and avoids deterioration of the adhesive and the buffer resin body over time.
  • the inorganic glass paste is used not only for automobiles but also for window glass (sheet glass products) of various transport machines such as heavy machinery, ships and aircraft, and also for sheet glass products for display panels.
  • window glass sheet glass products
  • sheet glass products for display panels.
  • it can also be used for painting and coating metal surfaces. It is also possible to paint on ceramic or porcelain products and process cloisonne.
  • the composition of the inorganic glass paste is SiO 2 , B 2 O 3 , ZnO, TiO 2 , Li 2 O, Na 2 O, K, as disclosed in Japanese Patent Application Laid-Open No. 2002-20140 and Japanese Patent No. 4035673.
  • a glassy material composed of 2 O, ZrO 2 or the like is a main component.
  • the vitreous is previously pulverized to an average particle size of 0.1 to 30 ⁇ m, preferably 0.5 to 20 ⁇ m, and finished into a powder form.
  • thermally decomposable resin such as cellulose resin and acrylic resin, solvent oil and fat with high boiling point such as pine oil, the above-mentioned black mixed oxide material (black pigment), and other inorganic fillers are added and sufficient Kneaded into a paste.
  • the resulting black mixed oxide material (black pigment) -containing inorganic glass paste is applied to, for example, an edge portion of a plate glass cut into an appropriate shape.
  • the inorganic glass paste can be applied to the surface of the plate glass by screen printing, spray coating, roll coating, or the like. Of these, screen printing is relatively simple.
  • the plate glass after the application of the inorganic glass paste is fixed to the surface of the plate glass by baking after drying.
  • the window glass for automobiles is formed by a method of bending a glass sheet by pressing it between the molds in a furnace or a method of bending a glass sheet by vacuum suction in the furnace.
  • Sheet glass is formed by connecting a preheated tunnel furnace from room temperature to about 660 ° C. and a batch furnace for bending forming at 640 to 720 ° C. and passing through both furnaces.
  • the inorganic glass paste is baked on the plate glass surface in the preheating stage. Therefore, in the molding from sheet glass, it is possible to obtain a sheet glass product coated with an aspheric inorganic glass paste such as window glass.
  • An inorganic ceramic material can be obtained by mixing a black mixed oxide material with a ceramic agent instead of the glass agent described above.
  • the ceramic agent include known ceramic materials such as aluminum oxide (alumina), partially stabilized zirconia, and stabilized zirconia.
  • the partially stabilized zirconia and the components contained in the stabilized zirconia are calcium oxide (calcia), magnesium oxide (magnesia), cerium oxide (ceria), aluminum oxide (alumina), yttrium oxide (yttria), and the like. .
  • a black ceramic material can be obtained.
  • a resin paste can be prepared by adding a resin agent to the black mixed oxide material.
  • This resin paste is applied to the surface of a support such as glass, metal, earthenware, porcelain, resin product, or carbon material.
  • a black color or pattern can be drawn on the surface of the listed support. The usage is the same as that of a general black pigment.
  • a black mixed oxide material-containing resin can also be prepared by mixing a black mixed oxide material and a resin agent. This is so-called resin coloring. The blackness of the resin product is adjusted according to the amount added. Further, the color tone of the resin can be controlled with the addition to the transparent resin.
  • Resin used for resin paste and black mixed oxide material containing resin is well-known resin, such as a thermoplastic resin and a thermosetting resin, and is not specifically limited. Appropriate selection is made in consideration of the application, place of use, durability, etc.
  • the black mixed oxide material-containing resin is processed into pellets and used as a raw material for molded products such as injection molding and extrusion molding. As described above, the black pigment of the present invention can replace the existing black material as a mixed oxide material containing neither chromium nor cobalt.
  • the mixed oxide described so far also has a function as a nonmagnetic material. Therefore, the mixed oxide can be a black mixed oxide material having a nonmagnetic function.
  • the mixed oxide is preferably used for the purpose of avoiding excitation or the like due to non-magnetism and shielding of magnetic force. For example, protection applications for electronic parts and the like are assumed.
  • the mixed oxide since the mixed oxide itself exhibits a black color, it can be used for a wide range of products.
  • the mixed oxide also has a function as an insulating material. Therefore, the mixed oxide can be a black mixed oxide material having an insulating function. An electrical shielding effect is expected when the mixed oxide is insulative. For example, protection applications for electronic parts and the like are assumed. In addition, since the mixed oxide itself exhibits a black color, it can be used for a wide range of products.
  • the raw materials prepared for each trial example were put into a ball mill and mixed and pulverized.
  • the total weight of each raw material oxide is 100 parts by weight
  • the water 150 parts by weight and the water reducing agent (polyammonium acrylate, manufactured by Toagosei Co., Ltd .: “A-6114”) was 0.5 to 2 parts by weight based on the total weight of each raw material oxide.
  • the mixed pulverization was performed for 15 to 20 hours with a ball mill to obtain a mixed pulverized product.
  • the mixed pulverized product was dried with a spray dryer at a hot air temperature of 280 ° C., and then fired with a tunnel kiln at about 1000 ° C. for 2 to 3 hours (first firing). After the first firing, dry pulverization was performed to an average particle size of 20 to 30 ⁇ m using an atomizer. Subsequently, it was fired at about 900 ° C. for 2 to 3 hours in a tunnel kiln (second firing), and dry pulverized to an average particle diameter of 1 to 1.2 ⁇ m using a fine mill and a steel ball (diameter 2 to 5 mm).
  • a black mixed oxide material that is, a black pigment, a nonmagnetic material, and an insulating material
  • the average particle size was measured using a laser diffraction / scattering particle size distribution measuring device (manufactured by Horiba, Ltd .: “LA-920”) after each pulverization.
  • Tables 1 to 5 show the results of the black mixed oxide materials (three kinds of main component systems) of prototype examples 1 to 25 manufactured while changing the blending ratio in the mixed oxides of La, Mn, and Cu.
  • Prototype Examples 1 to 14 were good evaluations (A) of blackness.
  • Prototype Examples 15 to 25 were insufficient evaluation (F).
  • the weight percentages of La 2 O 3 , Mn 3 O 4 , and CuO in Prototype Examples 1 to 25 were plotted in a triangular diagram.
  • FIG. 3 is an overall triangular view
  • FIG. 4 is an enlarged view of the main part.
  • the numbers in parentheses in the triangle are the numbers of the prototypes.
  • the blackness / defectiveness evaluation was repeated at the plot positions of the three principal component systems of the prototype example. And the area
  • the gray part in FIG. 4 is a suitable region of the black mixed oxide material (three main component system) of mixed oxides of La, Mn, and Cu.
  • the black mixed oxide material three main component system
  • La La
  • Mn MnO 2
  • Cu Cu
  • the boundary at which these quality evaluations are switched can be considered as a blending limit. Therefore, in the oxide equivalent amount with the total weight being 100% by weight, the range in which La 2 O 3 is 35 to 70% by weight, the range in which MnO 2 is 25 to 60% by weight, and the CuO is 0.5 to 10%. It was derived that the area surrounded by the weight percent range was optimal.
  • the amount of subcomponents was defined as 20% by weight or less with respect to 100% by weight of the oxide conversion amount.
  • the raw materials prepared for each trial example were put into a ball mill and mixed and pulverized.
  • the total weight of each raw material oxide is 100 parts by weight
  • the water 150 parts by weight and the water reducing agent (polyammonium acrylate, manufactured by Toagosei Co., Ltd .: “A-6114”) was 0.5 to 2 parts by weight based on the total weight of each raw material oxide.
  • the mixed pulverization was performed for 15 to 20 hours with a ball mill to obtain a mixed pulverized product.
  • the mixed pulverized product was dried with a spray dryer at a hot air temperature of 280 ° C.
  • a pulverizer was used to dry pulverize to an average particle size of 8 to 20 ⁇ m and classify particles of 2 ⁇ m or less.
  • the black mixed oxide material of each prototype was obtained from a series of operations.
  • FIG. 5 is an X-ray of a black mixed oxide material of Prototype Example 29 (four-component main component system)
  • FIG. 6 is a Prototype Example 35 (Mo and auxiliary component combination)
  • FIG. It is a diffraction pattern. In any of the diffraction patterns, there is a maximum intensity diffraction peak in the range of 31 ° to 34 ° of the diffraction angle 2 ⁇ .
  • the mixed oxide is assumed to contain Mn 3 O 4 having a spinel structure as an oxide of Mn.
  • the L value was remarkably poor at the firing temperature of 650 ° C. in Prototype Example 64. It is considered that the sintering was insufficient and the crystal structure did not occur.
  • the L value significantly improved at the baking temperature of 700 ° C. in the prototype 65.
  • the L value increased between the firing temperature of the prototype 70 and 1200 ° C. and that of the prototype 71 of 1250 ° C. Accordingly, when the conditions are for obtaining a black color (L value of 25 or less) that is favorable for pigment applications, the firing temperature can be derived as a range of 700 to 1200 ° C.
  • the black mixed oxide materials of prototype examples 72 to 79 in Tables 14 and 15 were produced. did. After production, the L value and the like were measured.
  • the L value was remarkably poor in the case where the first firing temperature was lower than 700 ° C. This tendency is considered to be the same as in the prototype example 64. Subsequently, from trial example 79, even if the first and second firing temperatures were 1200 ° C. or less, an increase in the L value was confirmed when the second firing temperature was higher than the first firing temperature. Therefore, in the manufacturing method of performing the second firing in the second embodiment, the first first firing temperature is in the range of 700 to 1200 ° C., and the subsequent second firing temperature is in the range of 600 to 1100 ° C. Is desirable.
  • Inorganic glass paste A glass color composition powder comprising 25 parts by weight of the black mixed oxide material (black pigment) of Trial Example 29 and 75 parts by weight of glass powder was obtained. 30 parts by weight of the added oil was added to 100 parts by weight of the glass color composition powder, and the mixture was kneaded with a three-roll kneader to finish a paste.
  • the additive oil is composed of 93 parts by weight of pine oil, 4 parts by weight of ethyl cellulose (manufactured by Dow Chemical Co., Ltd.), and 3 parts by weight of isobutyl methacrylate resin (manufactured by Lucite Japan Co., Ltd .: “Elbasite # 2045”).
  • the composition (indication of the blending amount) of the above glass powder was as follows, and the average particle size of the glass powder was 3.3 ⁇ m.
  • the prepared black inorganic glass paste was printed on a 37 mm ⁇ 50 mm glass plate using a 180 mesh polyester fiber woven screen. After drying, it was baked for 4 minutes in an electric furnace set at 680 ° C. Thus, an inorganic glass paste (black inorganic glass paste) was baked on the surface of the support of the glass plate to obtain a baked product.
  • the resin paste was applied to the surface of a glass plate support. A bar coater was used for coating. Thereafter, the resin was cured by standing at room temperature to obtain a black resin and its coated product.
  • Inorganic ceramic materials As a ceramic agent, 5 parts by weight of the black mixed oxide material (black pigment) of Trial Example 51 was added to 95 parts by weight of yttria partially stabilized zirconia to make 100 parts by weight of an inorganic mixture. 100 parts by weight of the inorganic mixture, 300 parts by weight of zirconia balls (diameter 3 to 10 mm) and 150 parts by weight of water were charged into a ball mill and mixed and ground for 20 hours to obtain a mixed ground product.
  • black mixed oxide material black pigment
  • yttria partially stabilized zirconia 100 parts by weight of an inorganic mixture.
  • 100 parts by weight of the inorganic mixture, 300 parts by weight of zirconia balls (diameter 3 to 10 mm) and 150 parts by weight of water were charged into a ball mill and mixed and ground for 20 hours to obtain a mixed ground product.
  • An acrylic resin-based organic binder is added to the mixed pulverized product, the mixed pulverized product is dried by spray drying, the mixed pulverized product after drying is press-molded to form a molded product, and the molded product is carried into an electric furnace and 1500. The whole was sintered by baking at 2 ° C. for 2 hours. After the cooling, the molded body was taken out from the electric furnace, appropriately ground and polished, and a sintered inorganic ceramic material (black inorganic ceramic material) was obtained.
  • the black mixed oxide material As a result of the application of the black mixed oxide material, various products exhibiting a good black color were obtained for the three types using the black mixed oxide material as the black pigment.
  • the particle size is fine, the application range is wide. Therefore, it can be used in the same manner as existing black pigments.
  • inorganic glass paste black inorganic glass paste
  • the resin paste black resin paste
  • the resin paste can be used for all existing resin processed products colored black.
  • Various types of molded products that are currently widely manufactured are assumed.
  • it since it can also be applied to inorganic ceramic materials (black inorganic ceramic materials), it can be expected to produce ceramic processed products exhibiting a black color other than glass.
  • the inventors have attempted measurements on magnetism to further investigate the properties of black mixed oxide materials. Using the black mixed oxide material “Prototype 51”, saturation magnetization [Ms] (emu / g), residual magnetization [Mr] (emu / g), and coercive force [Hc] (Oe) were measured. The weight magnetic susceptibility (emu / (g ⁇ Oe)) was determined.
  • a vibrating sample type magnetometer manufactured by Toei Kogyo Co., Ltd., VSM-5 type was used as the measuring device, the measurement temperature was room temperature, the magnetic field range was 10 kOe, and the sample weight was 163.66 mg. When measuring the saturation magnetization, the applied magnetic field was a value at 10 kOe. Table 19 shows the result of each measurement value.
  • graphs of magnetization curves with the magnetic field (Oe) as the X axis and the magnetization (emu / g) as the Y axis are also presented in FIGS.
  • the graph of FIG. 9 is an enlarged graph of FIG.
  • the black mixed oxide material was not easily magnetized. Therefore, the black mixed oxide material is considered suitable for magnetic shielding applications. For example, it is covering of electronic parts. The effect of external magnetic fields on electronic boards, processors, etc. will be reduced, and it will be considered effective in suppressing malfunctions.
  • the evaluation of insulation was measured as the applied voltage when dielectric breakdown occurred.
  • the dielectric breakdown was “8.8 kV”.
  • the insulating property of the mixed oxide material could be confirmed. Therefore, the black mixed oxide material is, for example, a coating of an electronic component, a housing, etc. from the viewpoint of insulation performance. Combined with the above-mentioned property of being hard to be magnetized, the influence on electronic substrates, processors, etc. is reduced, and it is considered effective in suppressing malfunctions.
  • the black mixed oxide material has not only the use as a black pigment, but also the performance as a non-magnetic material and an insulating material from the viewpoint of magnetic shielding and insulation performance. Moreover, since the black mixed oxide material can be easily mixed into a ceramic agent, a glass agent, and a resin agent, it can flexibly cope with various product developments.
  • the black mixed oxide material of the present invention has a high safety and good quality because it does not contain chromium itself as a main component regardless of the valence of chromium, and further does not contain cobalt as a main component. It has color and economy, and also has non-magnetic and insulating properties. Therefore, magnetic shielding and insulation applications are possible, not to mention replacement for existing black pigments. In addition, a wide range of product development is possible regardless of whether inorganic or organic.

Abstract

クロムの価数に関わらずクロムそのものを主成分に含有せず、さらにコバルトも主成分に含有することなく、高い安全性、良好な色調及び経済性を具備した黒色混合酸化物材料及びその製造方法を提供するとともに、当該黒色混合酸化物材料を用いた各種製品を提供する。 La、Mn、及びCuを主成分とする酸化物を含有するとともに、主成分としてCr及びCoを含有しない混合酸化物であり、混合酸化物におけるLa、Mn、及びCuの含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、LaをLa2O3として35ないし70重量%と、MnをMnO2として25ないし60重量%と、CuをCuOとして0.5ないし10重量%とする割合を満たす。

Description

黒色混合酸化物材料及びその製造方法
 本発明は、クロム及びコバルトを主成分に含有しない黒色混合酸化物材料及びその製造方法、並びに当該黒色混合酸化物材料を用いた製品に関する。
 無機系の黒色顔料は窯業、塗料、樹脂の着色、ガラスペーストの顔料成分等の各種分野で使用されている。例えば、黒色顔料を使用したガラスペーストは、自動車用ウインドウガラスの周縁部の塗膜を構成するセラミックペースト(特許文献1参照)、プラズマディスプレイの絶縁物障壁用の絶縁ペースト等に用いられている(特許文献2参照)。これまでの黒色顔料の大半は、その構成成分にクロム(Cr)を含有している。クロム化合物のCrは、顔料の耐熱性の向上、色調の調整のために含有させるなど、黒色顔料の製造には欠かせない原料酸化物の1つとして多用されてきた。
 しかしながら、現在、EU域内では電気・電子機器の生産から処分に至る全ての段階で、環境や人体に及ぼす危険性を最小化することを目的として、「電気・電子機器に含まれる特定有害物質の使用制限に関する欧州議会及び理事会指令」が施行されている。通常、これはローズ指令(RoHS:Restriction of Hazardous Substancesの略)と呼ばれる。このローズ指令では、危険物質の使用が原則的に禁止されており、指定されている6物質は、鉛(Pb)、水銀(Hg)、カドミウム(Cd)、6価クロム(Cr6+)、ポリ臭化ビフェニル(PBB)、ポリ臭化ジフェニルエーテル(PBDE)である。
 ローズ指令に準拠した製品開発を行う場合、使用が禁止された前記の6物質が製品に含有しないように、製品を構成する部品、材料等についてまで使用する原料成分の管理を徹底しなくてはならない。このような環境問題に配慮した有害化学物質の規制については、EU諸国だけではなく、世界各国で広がりを見せている。
 一般に顔料の原料酸化物として含有されるCrは、加熱等が加わることにより、毒性の強い6価クロム(Cr6+)に変化する。顔料の製造工程においては、必要に応じて水洗処理等を行っているため、生成された6価クロムは除去される。しかし、180℃前後の乾燥工程を経ることにより部分的に再び6価クロムに変化するおそれがある。このため、製品である黒色顔料そのものが問題となる場合がある。その上、顔料の用途によっては、その使用条件により加熱や紫外線曝露があり得る。このような場合、経時的変化により黒色顔料に含まれるCrが3価(Cr3+)から6価(Cr6+)に変化するおそれを完全に否定できない。
 現行のローズ指令は6価クロムのみを規制の対象としている。しかし、クロム含有の黒色顔料が使用された製品を廃棄するような場合、価数の変化に伴う安全性が問題視されはじめている。究極的には、クロム成分そのものを含有しない黒色顔料(特許文献3参照)への着目が高まっている。特許文献3の黒色顔料は、その主成分としてストロンチウム化合物と鉄酸化物を用いている。ストロンチウムの水に対する溶解性は高いため、実質的な製造方法は非水系液体、またはアルコールと限られる。従って、顔料製造コストが嵩むと共に、使用範囲及び用途もごく限定されるおそれがある。
 さらに、黒色顔料の製造に用いる配合、手法に改良を重ね、クロム自体を含有しない新たな黒色顔料が提案されている(特許文献4,5参照)。特許文献4の黒色顔料は、Mn、Co、Ni及びFeの酸化物を主成分とした顔料である。特許文献5の黒色顔料は、Mn、Fe、Cu及びCoの酸化物を主成分とした顔料である。特に、特許文献5の黒色顔料により良質な黒色を得るに至った。
 前掲のとおり、製品に含有される有害化学物質管理の必要性に伴い、クロムを含有しない成分系の顔料を得ることができた。ただし、当該主成分のとおり、コバルトが主成分のひとつとして含有されている。コバルトはアレルギー症状の原因として知られ、主成分の組成中から極力低減することが望まれる。そこで、黒色顔料に求められる良好な黒色を呈することを前提に、環境対応の点からクロムを主成分に含有せず、かつ、コバルトも含有しない新規な成分系が切望されてきた。
特開平6-340447号公報 特開平6-144871号公報 特開2000-264639公報 特開2007-217544号公報 特許第5131664号公報
 このような経緯を踏まえ、発明者らは、黒色顔料の主成分を見直して鋭意検討を進めた。結果、ついにクロムもコバルトも主成分として含有しない主成分組成の黒色顔料を開発することができた。さらに、黒色顔料として所望される性能に加えて他の物性を備えることも確認した。
 本発明は前記の点に鑑みなされたものであり、クロムの価数に関わらずクロムそのものを主成分に含有せず、さらにコバルトも主成分に含有することなく、高い安全性、良好な色調及び経済性を具備した黒色混合酸化物材料及びその製造方法を提供するとともに、当該黒色混合酸化物材料の有する物性に鑑みた各種製品を提供する。
 第一、黒色混合酸化物材料は、La、Mn、及びCuを主成分とする酸化物を含有するとともに、前記主成分としてCr及びCoを含有しない混合酸化物であることを特徴とする。
 第二、黒色混合酸化物材料は、前記混合酸化物は、X線源としてCuKα線を使用したX線回折測定に際し回折角2θの31°ないし34°とする範囲に最大強度の回折のピークを示すペロブスカイト相を有し、かつ、前記混合酸化物はMnの酸化物としてスピネル構造を有するMnを含有することを特徴とする。
 第三、黒色混合酸化物材料は、前記混合酸化物におけるLa、Mn、及びCuの含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、LaをLaとして35ないし70重量%と、MnをMnOとして25ないし60重量%と、CuをCuOとして0.5ないし10重量%とする、割合を満たしていることを特徴とする。
 第四、黒色混合酸化物材料は、前記混合酸化物がさらにMoの酸化物を前記主成分として含有しており、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、前記混合酸化物が、前記酸化物換算量の100重量%に対してMoをMoOとして5重量%以下とする割合で含有していることを特徴とする。
 第五、黒色混合酸化物材料は、前記混合酸化物が前記主成分の他に副成分としてLi、B、Na、Mg、Al、Si、P、K、Ca、Ti、V、Fe、Zn、Sr、Y、Zr、Nb、Sn、Sb、Ba、Ta、W、Bi、Ce、Pr、Nd、またはErのいずれか1種以上を含有しており、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、前記混合酸化物が、前記酸化物換算量の100重量%に対して前記副成分をLiO、B、NaO、MgO、Al、SiO、P、KO、CaO、TiO、V、Fe、ZnO、SrO、Y、ZrO、Nb、SnO、Sb、BaO、Ta、WO、Bi、CeO、Pr11、Nd、またはErとして20重量%以下とする割合で含有していることを特徴とする。
 第六、黒色混合酸化物材料は、前記混合酸化物が黒色顔料であることを特徴とする。
 第七、黒色混合酸化物材料は、前記混合酸化物が非磁性材料であることを特徴とする。
 第八、黒色混合酸化物材料は、前記混合酸化物が絶縁性材料であることを特徴とする。
 第九、黒色混合酸化物材料の製造方法は、La、Mn、及びCuの酸化物原料を混合して粉砕し平均粒径5μm以下の一次粉砕物を得る一次粉砕工程と、前記一次粉砕物を700ないし1200℃にて焼成して原料焼成物を得る原料焼成工程と、前記原料焼成物を平均粒径50μm以下に粉砕する二次粉砕工程と、を備えて混合酸化物を得ることを特徴とする。
 第十、黒色混合酸化物材料の製造方法は、前記混合酸化物におけるLa、Mn、及びCuの酸化物の含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、LaをLaとして35ないし70重量%と、MnをMnOとして25ないし60重量%と、CuをCuOとして0.5ないし10重量%とする、割合を満たしていることを特徴とする。
 第十一、黒色混合酸化物材料の製造方法は、前記混合酸化物がさらにMoの酸化物を前記主成分として含有しており、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、前記混合酸化物が、前記酸化物換算量の100重量%に対してMoをMoOとして5重量%以下とする割合で含有していることを特徴とする。
 第十二、黒色混合酸化物材料の製造方法は、La、Mn、及びCuの酸化物原料を混合して粉砕し平均粒径5μm以下の第1粉砕物を得る第1粉砕工程と、前記第1粉砕物を700ないし1200℃にて焼成して第1焼成物を得る第1焼成工程と、前記第1焼成物を粉砕し平均粒径50μm以下の第2粉砕物を得る第2粉砕工程と、前記第2粉砕物を600ないし1100℃にて焼成して第2焼成物を得る第2焼成工程と、前記第2焼成物を平均粒径20μm以下に粉砕する第3粉砕工程と、を備えて混合酸化物を得ることを特徴とする。
 第十三、黒色混合酸化物材料の製造方法は、前記混合酸化物におけるLa、Mn、及びCuの酸化物の含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、LaをLaとして35ないし70重量%と、MnをMnOとして25ないし60重量%と、CuをCuOとして0.5ないし10重量%とする、割合を満たしていることを特徴とする。
 第十四、黒色混合酸化物材料の製造方法は、前記混合酸化物がさらにMoの酸化物を前記主成分として含有しており、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、前記混合酸化物が、前記酸化物換算量の100重量%に対してMoをMoOとして5重量%以下とする割合で含有していることを特徴とする。
 第十五、無機セラミックス材は、黒色混合酸化物材料とセラミックス剤を含有したことを特徴とする。
 第十六、無機ガラスペーストは、黒色混合酸化物材料とガラス剤を含有したことを特徴とする。
 第十七、焼付け製品は、無機ガラスペーストをガラス部材、金属部材、陶器、または磁器に焼き付けてなることを特徴とする。
 第十八、樹脂ペーストは、黒色混合酸化物材料と樹脂剤を含有したことを特徴とする。
 第十九、塗工製品は、樹脂ペーストを支持体に塗工してなることを特徴とする。
 第二十、塗工製品は、前記支持体が、ガラス、金属、陶器、磁器、樹脂製品、または炭素材であることを特徴とする。
 第二十一、樹脂部材は、黒色混合酸化物材料と樹脂剤を含有してなることを特徴とする。
 黒色混合酸化物材料によると、La、Mn、及びCuを主成分とする酸化物を含有するとともに、前記主成分としてCr及びCoを含有しない混合酸化物であるため、クロムの価数に関わらずクロムそのものを主成分に含有せず、さらにコバルトも主成分に含有することなく、高い安全性、良好な色調及び経済性を具備する。
 前記混合酸化物は、X線源としてCuKα線を使用したX線回折測定に際し回折角2θの31°ないし34°とする範囲に最大強度の回折のピークを示すペロブスカイト相を有し、かつ、前記混合酸化物はMnの酸化物としてスピネル構造を有するMnを含有するため、焼結を経た混合酸化物の形態である。
 前記混合酸化物におけるLa、Mn、及びCuの含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、LaをLaとして35ないし70重量%と、MnをMnOとして25ないし60重量%と、CuをCuOとして0.5ないし10重量%とする、割合を満たしているため、クロムそのものを主成分に含有せず、さらにコバルトも主成分に含有することなく、良好な黒色を呈する。
 前記混合酸化物がさらにMoの酸化物を前記主成分として含有しており、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、前記混合酸化物が、前記酸化物換算量の100重量%に対してMoをMoOとして5重量%以下とする割合で含有しているため、より良質な黒色を呈する。
 前記混合酸化物が前記主成分の他に副成分としてLi、B、Na、Mg、Al、Si、P、K、Ca、Ti、V、Fe、Zn、Sr、Y、Zr、Nb、Sn、Sb、Ba、Ta、W、Bi、Ce、Pr、Nd、またはErのいずれか1種以上を含有しており、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、前記混合酸化物が、前記酸化物換算量の100重量%に対して前記副成分をLiO、B、NaO、MgO、Al、SiO、P、KO、CaO、TiO、V、Fe、ZnO、SrO、Y、ZrO、Nb、SnO、Sb、BaO、Ta、WO、Bi、CeO、Pr11、Nd、またはErとして20重量%以下とする割合で含有しているため、高純度の原料を用いたり、不純物の混入を避けるための特別な製造管理や方法を用いたりする必要がなく、原料や製造コストを比較的安価とすることができる。
 前記混合酸化物が黒色顔料、非磁性材料、または絶縁性材料であるため、黒色混合酸化物材料の用途が広がる。
 黒色混合酸化物材料の製造方法によると、La、Mn、及びCuの酸化物原料を混合して粉砕し平均粒径5μm以下の一次粉砕物を得る一次粉砕工程と、前記一次粉砕物を700ないし1200℃にて焼成して原料焼成物を得る原料焼成工程と、前記原料焼成物を平均粒径50μm以下に粉砕する二次粉砕工程と、を備えて混合酸化物を得るため、クロムの価数に関わらずクロムそのものを主成分に含有せず、さらにコバルトも主成分に含有することなく、高い安全性、良好な色調及び経済性を具備する。
 前記混合酸化物におけるLa、Mn、及びCuの酸化物の含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、LaをLaとして35ないし70重量%と、MnをMnOとして25ないし60重量%と、CuをCuOとして0.5ないし10重量%とする、割合を満たしているため、クロムそのものを主成分に含有せず、さらにコバルトも主成分に含有することなく、良好な黒色を呈する。
 前記混合酸化物がさらにMoの酸化物を前記主成分として含有しており、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、前記混合酸化物が、前記酸化物換算量の100重量%に対してMoをMoOとして5重量%以下とする割合で含有しているため、より良質な黒色を呈する。
 黒色混合酸化物材料の製造方法によると、La、Mn、及びCuの酸化物原料を混合して粉砕し平均粒径5μm以下の第1粉砕物を得る第1粉砕工程と、前記第1粉砕物を700ないし1200℃にて焼成して第1焼成物を得る第1焼成工程と、前記第1焼成物を粉砕し平均粒径50μm以下の第2粉砕物を得る第2粉砕工程と、前記第2粉砕物を600ないし1100℃にて焼成して第2焼成物を得る第2焼成工程と、前記第2焼成物を平均粒径20μm以下に粉砕する第3粉砕工程と、を備えて混合酸化物を得るため、クロムの価数に関わらずクロムそのものを主成分に含有せず、さらにコバルトも主成分に含有することなく、高い安全性、良好な色調及び経済性を具備する。
 前記混合酸化物におけるLa、Mn、及びCuの酸化物の含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、LaをLaとして35ないし70重量%と、MnをMnOとして25ないし60重量%と、CuをCuOとして0.5ないし10重量%とする、割合を満たしているため、クロムそのものを主成分に含有せず、さらにコバルトも主成分に含有することなく、良好な黒色を呈する。
 前記混合酸化物がさらにMoの酸化物を前記主成分として含有しており、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、前記混合酸化物が、前記酸化物換算量の100重量%に対してMoをMoOとして5重量%以下とする割合で含有しているため、より良質な黒色を得ることができる。
 黒色混合酸化物材料は、黒色無機セラミックス材、黒色無機ガラスペースト、及び黒色樹脂ペーストへの応用により広範な製品に用いることができる。このことから、クロムもコバルトも含有しない材料として、既存材料の代替が可能である。
第1実施形態の黒色混合酸化物材料の製造方法の概略工程図である。 第2実施形態の黒色混合酸化物材料の製造方法の概略工程図である。 黒色混合酸化物材料中の主成分を酸化物換算量としたときの三角図である。 図3の主要部分の拡大図である。 試作例29のX線回折パターンである。 試作例35のX線回折パターンである。 試作例51のX線回折パターンである。 試作例51の磁化曲線のグラフである。 図8のグラフを部分拡大したグラフである。
 本発明の黒色混合酸化物材料とは、Crの価数に関わらず主成分としてCr自体を含有せず、かつ、Coも主成分として含有しない成分系の黒色の混合酸化物材料である。すなわち、当該黒色混合酸化物材料は、La、Mn、及びCuの3種類を主成分とする。ただし、Cr及びCoを主成分に含有しない。そして、3種の主成分の金属元素の酸化物を含有する混合酸化物である。さらに、黒色混合酸化物材料が黒色顔料としての用途として良好な発色を高めるため、3種類の金属元素の主成分にMoも配合され混合酸化物に調製される。また、後述の実施例のとおり、顔料としての性能に加え、非磁性材料及び絶縁性材料の性質も備える。
 混合酸化物は、X線源としてCuKα線を使用したX線回折(XRD)測定において、例えば、後記実施例の図5ないし図7のX線回折パターンとして示される。図5、6、7の順に、後出の試作例29、35、51と対応する。図示のパターンから把握されるように、混合酸化物には特有のピークが確認される。回折角2θの31°ないし34°とする範囲に最大強度の回折のピークが存在する。同ピーク等を勘案すると、混合酸化物はペロブスカイト相を有すると想定される。また、図示のパターン中の黒塗り四角の位置より、混合酸化物には、Mnの酸化物としてスピネル構造を有するMnの含有も想定される。
 主成分となるLa、Mn、及びCuの原料形態は特に限定されず、各金属酸化物に加えて、炭酸塩、水酸化物等の金属化合物も使用可能である。具体的には、La、La(OH)、La(CO、MnO、Mn、MnCO、Mn(OH)、天然の二酸化マンガン粉砕品(MnO+Feを含む)、CuO、Cu、CuCO、Cu(OH)、等から適宜選択される。主成分にMoを含有する組成では、MoO、MoO、Mo(CO)等から適宜選択される。なお、これらは必要に応じて組み合わせられる。
 黒色混合酸化物材料は図示のX線回折パターンのピークを示すとともに、焼結を経た混合酸化物の形態であることも確認される。そこで、混合酸化物の主成分La、Mn、及びCuの間に成立する配合量は、各金属元素を次の酸化物の形態とした際の酸化物換算量により、相対比により表現可能である。
 酸化物換算量において、主成分であるLa、Mn、及びCuの酸化物の混合割合は、後出の実施例における図3の三角図から導き出される。三角図は、後記の試作例の混合酸化物である黒色顔料の各酸化物間に成立する量の均衡を示す。具体的には、LaはLaに、MnはMnOに、CuはCuOの酸化物形態として把握される。そして、当該3種の酸化物の合計の全体重量は100重量%に換算される。その上で、Laは35ないし70重量%の範囲であり、MnOは25ないし60重量%の範囲であり、CuOは0.5ないし10重量%の範囲の割合になる。各金属元素の酸化物が前掲の範囲に収束すると、良好な黒色を呈する。従って、黒色混合酸化物材料の顔料用途は最有力である。
 各主成分金属元素の割合は前記の酸化物の種類とする便宜上の計算値である。このため、現実には、主成分La、Mn、及びCuの酸化物の重量パーセントの総和が100を超える場合や100を下回る場合もあり得る。これは、主成分元素のもととなる原料の純度、後述する副成分の混入、顔料中の酸化数(酸素元素数)の変化等が考えられるためである。主成分金属元素をいったん酸化物の重量に換算することにより、黒色の良否と各金属元素の相互間の配合量の均衡の把握が容易となる。加えて、他の成分がさらに加わる場合の量、割合の把握も容易となる。
 Laの酸化物であるLaの配合量が多くなるほど濃度は濃くなり、黒さは増す。Laの換算重量が35重量%を下回る場合、所望の黒さは低下する。Laの換算重量が70重量%を上回る場合、La以外の原料配合量が少なくなり、他の成分による品質の安定性が保持できなくなる。そこで、Laは好ましくは35ないし70重量%の配合割合であり、さらに好ましくは40ないし70重量%の配合割合である。
 Mnの酸化物であるMnOの配合量が多くなるほど濃度は濃くなり、黒色顔料としての黒さが増す。MnOの換算重量が25重量%を下回る場合、Laと同様に良好な黒色を得ることができない。MnOの換算重量が60重量%を上回る場合、MnO以外の原料配合量が少なくなり、他の成分による品質の安定性が保持できなくなる。そこで、MnOは好ましくは25ないし60重量%となる。
 Cuの酸化物であるCuOは前記のLa及びMnの酸化物とともに良好な黒色の発色を得ることができる。CuOの換算重量が0.5重量%を下回る場合、黒以外の色調が増し顔料の濃度、黒色味が生じにくくなる。CuOの換算重量が10重量%を上回る場合、他の成分との関係から黒色顔料の用途を想定すると赤みが増し、濃度が得られなくなる。また、当該混合酸化物材料を含むセラミックペーストの融着温度は上昇する。さらには、耐酸性も低下する。そこで、諸条件の均衡からCuは添加され、CuOは好ましくは0.5ないし10重量%となる。
 La、Mn、及びCuの混合酸化物(3種主成分系)に対し、さらにMoの酸化物も主成分の一種として含有される(4種主成分系)。Moの添加に伴い、混合酸化物はより良質な黒色顔料となり得る。4種主成分系の混合酸化物において、MoはMoOの換算重量とされ、MoOは、La、MnO、及びCuOとする当該3種類の酸化物の全体重量(La、MnO、及びCuOの総和)を100重量%とする酸化物換算量に対し、5重量%以下の割合で含有される。MoOの換算重量が5重量%を上回る場合、逆に黒色の濃度が低下し始める。よって、5重量%が上限となる。MoOの換算重量の下限については特段限定されない。ただし、Mo添加の効果を明らかにする点から0.01重量%以上が好ましい。
 La、Mn、及びCuを主成分とする混合酸化物(3種主成分系)、またはこれらにMoも含有する混合酸化物(4種主成分系)の黒色混合酸化物材料には、主成分の他に副成分としてLi、B、Na、Mg、Al、Si、P、K、Ca、Ti、V、Fe、Zn、Sr、Y、Zr、Nb、Sn、Sb、Ba、Ta、W、Bi、Ce、Pr、Nd、またはErのいずれか1種以上が選択的に含有される。
 列記の副成分の含有量は、La、MnO、及びCuOとする当該3種類の酸化物の全体重量(La、MnO、及びCuOの総和)を100重量%とする酸化物換算量に対し、LiO、B、NaO、MgO、Al、SiO、P、KO、CaO、TiO、V、Fe、ZnO、SrO、Y、ZrO、Nb、SnO、Sb、BaO、Ta、WO、Bi、CeO、Pr11、Nd、またはErとした酸化物換算量において、20重量%以下に規定される。
 これらの副成分の含有により、原料の酸化物の反応により生成される混合酸化物の結晶成長を促進させる効果等が期待される。さらに、焼結温度の調整、顔料の色合いの安定等にも寄与すると考えられる。従って、極めて高純度の原料の使用、不純物の混入を避けるための特別な製造管理や方法も軽減される。そのため、原料や製造コストは比較的安価に抑えられる。現実問題、量産規模の生産時の副原料の混入排除は極めて困難である。副成分が20重量%を超えるような場合、所望の黒色顔料の性質を低下させるため好ましくなく、できるだけ副成分の含有量は少ないほど良い。しかし、副成分が寄与する作用は不明ではあるものの、後記の実施例から明らかであるように、添加による性能向上も認められる例もある。
 これより、第1実施形態の黒色混合酸化物材料の製造方法について図1の概略工程図を用い説明する。はじめに、前述の酸化物換算量を充足するLa、Mn、及びCu(Moを含めることもできる)の酸化物原料Mが用意される。酸化物原料Mは混合、粉砕され、平均粒径5μm以下の一次粉砕物11が得られる(S11:一次粉砕工程)。一次粉砕物11は700ないし1200℃の酸化雰囲気下において焼成され、原料焼成物12が得られる(S12:原料焼成工程)。原料焼成物12は再度平均粒径50μm以下に粉砕されて黒色混合酸化物材料の混合酸化物P1が調製される(S13:二次粉砕工程)。
 次に、第2実施形態の黒色混合酸化物材料の製造方法についても図2の概略工程図を用い説明する。前述の酸化物換算量を充足するLa、Mn、及びCu(Moを含めることができる)の酸化物原料Mが用意される。酸化物原料Mは混合、粉砕され、平均粒径5μm以下の第1粉砕物21が得られる(S21:第1粉砕工程)。第1粉砕物21は700ないし1200℃の酸化雰囲気下において焼成され、第1焼成物22が得られる(S22:第1焼成工程)。第1焼成物22は平均粒径50μm以下に粉砕され、第2粉砕物23が得られる(S23:第2粉砕工程)。第2粉砕物23は600ないし1100℃の酸化雰囲気下において焼成され、第2焼成物24が得られる(S24:第2焼成工程)。その後、第2焼成物24は平均粒径5μm以下に粉砕されて黒色混合酸化物材料の混合酸化物P2が調製される(S25:第3粉砕工程)。
 図1並びに図2の概略工程図に示した粉砕(S11,S13,S21,S23,S25)では、ボールミル、振動ミル、アトライター、ビーズミル、ジェットミル、チューブミル、アトマイザー、ファインミル、パルベライザー等の粉砕装置が用いられる。粉砕に際し、湿式または乾式どちらによっても混合粉砕が可能であるため、生産性が高く、処理経費的にも有利である。例えば、ボールミルにおける湿式の混合粉砕方法について説明すると、酸化物原料、水、ボール及び粉砕助剤(分散剤、消泡剤等)等がボールミルに投入されて混合粉砕が行われる。粉砕助剤である消泡剤及び分散剤等は、原料酸化物が均一に混合粉砕されるように、公知のものを適宜選択して用いることができる。また、酸化物原料に応じて、その配合量が調節される。
 ボールミルの内表面には、アルミナ、ジルコニア、ゴム、ウレタン、ナイロン、珪石等のライニング材が敷設される。アルミナ及びジルコニアは、他のライニング材と比較して硬度が高く、顔料中へのライニング材の混入を減少させることができ、また、粉砕時間の短縮が可能であるため好ましい。
 粉砕ボールには、アルミナボール、ジルコニアボール、磁器ボール、鋼鉄ボール等が使用される。また、ウレタンまたはナイロンのライニングに、ジルコニアボールを使用することもできる。焼成時にウレタン、ナイロンは炭化、消失するため、不純物の混入のおそれが少ないためである。なお、粉砕ボールの粒径は、原料酸化物の粒径の大きさに合わせて適宜変更される。
 粉砕助剤の一つである分散剤は、ポリカルボン酸系化合物、並びにポリアクリル酸系化合物であるポリアクリル酸アンモニウム、ポリアクリル酸ナトリウムに加え、ポリカルボン酸ナトリウム、スルホン酸系重合体(ナトリウム塩)等から選択される。粉砕助剤を好適に添加することにより、原料酸化物の液中での分散性が良好になり、比較的短時間で小さく粉砕することができる。自明なとおり、主成分の原料酸化物毎に比重が異なる。このため、粉砕の偏りを防いでいずれの成分も均等に粉砕する必要がある。とりわけ、ポリアクリル酸アンモニウムは、焼成によりほぼ分解され、他の粉砕助剤と比してナトリウム分の残存もないため、好ましく用いられる。
 粉砕(S11,S13)において、粉砕後の原料酸化物の平均粒径は、5μm以下、さらには2μm以下、好ましくは1μm以下、より好ましくは0.7μm以下に粉砕される。平均粒径を可能な限り小さくすることにより、焼成時生成される混合酸化物の焼結による粒子成長を促すためである。また、平均粒径が小さい方が酸化物原料の反応性が高まり、好ましい結晶構造を有する混合酸化物が得られやすくなるためである。なお、平均粒径を小さくするほど粉砕時間は伸びるため、顔料に求める性能、焼成時間等を勘案して平均粒径は規定される。
 本明細書における「平均粒径」とは、後出の実施例のレーザ回折・散乱式 粒子径・粒度分布測定装置を用いてレーザ回折・散乱法によって求めた粒度分布における積算値50%での粒径(累積平均径)を意味する。
 湿式による粉砕を経て得られた粉砕物はスラリータンクに投入され、スプレードライヤー、フィルタープレス(脱水乾燥機)、デカンター(遠心分離脱水乾燥機)等により乾燥される。水分含有量は1.0%以下、好ましくは0.5%以下とされる。乾燥に際してフィルタープレス、デカンター等を用いる場合には、あらためて乾燥、粉砕が必要となるため、製法の便宜上、スプレードライヤーの使用が好ましい。なお、乾燥工程は混合粉砕後の水分量の状態いかん等により省略されることもある。
 工程図1,2中の焼成後の粉砕(S13,S23)では、平均粒径50μm以下に粉砕される。むろん、粉砕時の粒径は必要に応じて50μmよりも細かくしても良い。第1実施形態ではS13の粉砕を終えて完成する。そこで、S13の粉砕では用途等に応じた平均粒径が選択される。図2(第2実施形態)の粉砕(S23)については、続く焼成時の熱曝露が考慮され、意図的に混合酸化物の結晶は大きくして調整される。
 工程図2中の焼成後の粉砕(S25)では、平均粒径20μm以下、さらには5ないし10μm以下、好ましくは平均粒径0.5ないし2μm、さらに好ましくは平均粒径0.8ないし1μmに粉砕される。焼成後の粉砕により黒色混合酸化物材料の平均粒径は小さくなる。結果、比表面積は大きくなり、濃度が濃くなると共に、色調がより均一となるため再現性の良好な顔料を製造することができる。焼成後の粉砕には、前記の粉砕と同様の手法により粉砕装置が用いられる。湿式法によるボールミル粉砕等を行うときは、必要により、スプレードライヤー等により乾燥しても構わない。乾燥により、顔料が凝集した場合には、ジェットミル、振動ミル、ハンマーミル等の衝撃粉砕装置を用いて粉砕することができる。
 工程図1,2中におけるS12,S22,S24の焼成は、か焼(calcination)とも称される。当該焼成に際し、酸化物原料(粉砕物)はムライト質、コージライト質、アルミナ質等からなる匣鉢に入れられる。焼成を経ることにより、酸化物原料から混合酸化物が生成される。その混合酸化物の結晶成長、緻密化の程度いかんにより、黒色混合酸化物材料の色調や濃度は変化する。黒色混合酸化物材料が黒色顔料である場合、その用途、性能を加味したうえで、焼成温度及び焼成時間等は含有される各原料酸化物に応じて、適宜選択される。
 加えて、第1及び第2実施形態の黒色混合酸化物材料の製造方法における焼成(S12,S22)に際し、量産化のためトンネルキルン、ローラーハースキルン、ロータリーキルン、シャットルキルン等の比較的大型の焼成装置も用いられる。一般に大型の焼成装置を用いる場合には酸化物原料の焼結にむらが生じやすい。そこで加熱空気、加熱酸素ガス等を前記の各キルン内に導入することによって、焼成段階を酸化雰囲気下とすることができる。このため、安価かつ大量に、品質の揃った黒色顔料を製造する際に都合がよい。なお、ロータリーキルンを用いる際には、混合粉砕物は直接にキルン内に投入される。当該焼成は、焼成装置の規模、原料酸化物の量によるものの、700ないし1200℃の温度域において1ないし8時間かけて行われる。焼成時間は最高温度の維持時間である。一度の焼成により処理を完結させるため、焼成装置内に温度勾配を設けてもよい。
 第2実施形態の黒色混合酸化物材料の製造方法における原料酸化物に対する焼成(S24)には、トンネルキルン等の他に電気炉も用いられる。電気炉の温度制御は前記の各キルンよりも容易であることから、焼成時に酸化物原料に加わる熱量を正確に制御することができる。例えば、原料の金属酸化物を焼結させて、混合酸化物の結晶を成長させる場合、原料の熱履歴(加熱温度、加熱時間)を調整するうえで都合がよい。電気炉を用いる場合、酸化物原料等は静置された状態で加熱される。このため、原料と酸素との接触量が不均一となるおそれもあるため、2回の焼成を重ねることにより酸化を十分とするためである。
 黒色混合酸化物材料が黒色顔料である場合、その品質は焼結時に発達する結晶構造に左右されることから、性質の安定化を優先する場合には、第2実施形態の製造方法とする方が望ましい。第1焼成工程は温度域600ないし1200℃にて1ないし6時間、第2焼成工程は温度域600ないし1100℃にて1ないし4時間かけて行われ、それぞれの温度域、時間は焼成に供される酸化物原料の組成、組成に伴う焼結性能等が勘案される。第1焼成工程、第2焼成工程の時間は、それぞれの最高温度の維持時間である。
 これまでの主成分の説明から理解されるように、黒色混合酸化物材料はクロムの価数に関わりなくクロム自体を主成分に含有しておらず、非常に経済的であるとともに、安全性に極めて優れている。従来の顔料等の製造工程においては、生成される6価クロム(Cr6+)を除去するために、水洗工程を設けることが必要であったが、この水洗工程を省くことが可能である。さらに、付随する乾燥、粉砕工程も省くことができる。そのため、製造時間を非常に短縮できると共に、大幅な製造コストの削減が実現できる。加えて、原料酸化物についても極めて高純度で高価な原料を用いる必要がなく、比較的安価な原料を使用することができるため、原料コスト的に大変有利である。
 加えて、主成分にクロム成分及びコバルト成分も含有しない黒色混合酸化物材料(黒色顔料)は、非磁性材料、及び絶縁性材料であるため、用途や使用環境に起因して有害物質である6価クロムが生成されるおそれもない。さらに、コバルトに起因するアレルギー発症についても低減可能である。このような黒色混合酸化物材料の用途としては、例えば、樹脂顔料、塗料顔料、セラミック用着色顔料(自動車用窓ガラス紫外線吸収・反射顔料等を含む)、熱放射顔料、赤外線反射顔料、着色セラミックス、その他各種の製品が挙げられる。
 これまでに詳述した黒色混合酸化物材料について、黒色混合酸化物材料が黒色顔料である場合、黒色混合酸化物材料(黒色顔料)とガラス剤を含有した無機ガラスペースト(黒色無機ガラスペースト)として利用される。例えば、無機ガラスペーストは板ガラスの表面に焼き付けされ、板ガラス製品となる。具体的な板ガラス製品として、自動車のフロントガラス、リアガラス、サンルーフガラス等のウインドウガラスが含まれる。無機ガラスペーストはこれらのガラスの表面に塗着される。無機ガラスペーストは前記の板ガラス製品と車体との間に介在される接着剤や緩衝樹脂体を紫外線から保護し、接着剤や緩衝樹脂体の経時劣化は回避される。むろん、無機ガラスペーストは、自動車以外にも重機、船舶、航空機等の各種輸送機械のウインドウガラス(板ガラス製品)に用いられ、さらに、ディスプレイパネル用の板ガラス製品にも用いられる。他に、金属表面の塗装、コーティングにも使用できる。また、陶器または磁器製品への絵付け、七宝の加工も可能である。
 無機ガラスペーストの組成は、特開2002-20140号公報、特許第4035673号公報に開示されているように、SiO、B、ZnO、TiO、LiO、NaO、KO、ZrO等からなるガラス質が主成分である。ガラス質は予め、0.1ないし30μm、好ましくは0.5ないし20μmの平均粒径に粉砕され、粉末状に仕上げられている。ここに、セルロース樹脂、アクリル樹脂等の熱分解性の樹脂と、パインオイル等の高沸点の溶剤油脂と、前述の黒色混合酸化物材料(黒色顔料)と、その他の無機フィラーが添加され、十分に混練されてペースト状に仕上げられる。
 出来上がった黒色混合酸化物材料(黒色顔料)含有の無機ガラスペーストは、適宜の形状に切り出された板ガラスの例えば縁部分等に塗布される。無機ガラスペーストの板ガラス表面への塗布は、スクリーン印刷、スプレー塗装、ロールコート法等とすることができる。このうち、スクリーン印刷が比較的簡便である。無機ガラスペースト塗着後の板ガラスは、乾燥後、焼き付けにより板ガラス表面に固着される。
 前記の自動車用のウインドウガラスの成形には、炉内で板ガラスをモールドとモールドとの間に圧着して曲げ加工する方法や、炉内で板ガラスをモールドに真空吸引して曲げ加工する方法が採用されている。板ガラスの成形加工は常温より660℃程度までの予備加熱のトンネル炉と640ないし720℃の曲げ加工成形のバッチ炉が連結され、ここの両炉を通過するうちに行われる。無機ガラスペーストは予備加熱段階で板ガラス表面に焼き付けられる。従って、板状ガラスからの成形において、ウインドウガラス等の非球面の無機ガラスペースト塗装の板ガラス製品を得ることができる。
 前述のガラス剤の代わりにセラミックス剤に黒色混合酸化物材料を配合して無機セラミックス材を得ることができる。セラミックス剤としては、例えば、酸化アルミニウム(アルミナ)、部分安定化ジルコニア、安定化ジルコニア等の公知のセラミックス材料である。前記の部分安定化ジルコニア及び安定化ジルコニアに含有される成分は、酸化カルシウム(カルシア)、酸化マグネシウム(マグネシア)、酸化セリウム(セリア)、酸化アルミニウム(アルミナ)、または酸化イットリウム(イットリア)等である。この結果、黒色を呈するセラミックス材ができる。
 加えて、黒色混合酸化物材料に樹脂剤を添加して樹脂ペーストに調製することができる。この樹脂ペーストは、ガラス、金属、陶器、磁器、樹脂製品、または炭素材等の支持体の表面に塗工される。結果、列記の支持体の表面に黒色の色や模様を描画できる。当該用法は一般的な黒色顔料と同様である。
 さらに、黒色混合酸化物材料と樹脂剤との混合によって、黒色混合酸化物材料含有樹脂も調製可能である。いわゆる樹脂の着色である。添加量に応じ樹脂製品の黒色の程度が調整される。また、透明な樹脂への添加に伴い、樹脂の色調も制御可能である。樹脂ペーストや黒色混合酸化物材料含有樹脂に用いる樹脂は、熱可塑性樹脂、熱硬化性樹脂等の公知の樹脂であり特段限定されない。製品の用途、使用場所、耐久性等が考慮され適宜選択される。黒色混合酸化物材料含有樹脂はペレットに加工され、射出成型、押出成型等の成型品の原料に用いられる。以上のとおり、本発明の黒色顔料はクロムもコバルトも含有しない混合酸化物材料として、既存の黒色の材料の代替が可能である。
 これまでに述べてきた混合酸化物はさらに非磁性材料としての機能も有する。そこで、混合酸化物は、非磁性の機能を備えた黒色混合酸化物材料となり得る。混合酸化物が非磁性を帯びることにより励磁等を避ける用途、磁力の遮蔽に好ましく用いられる。例えば、電子部品等の保護用途が想定される。また、混合酸化物自体も黒色を呈するため、製品応用用途も広い。
 加えて、混合酸化物はさらに絶縁性材料としての機能も有する。そこで、混合酸化物は、絶縁性の機能を備えた黒色混合酸化物材料となり得る。混合酸化物が絶縁性を帯びることにより電気的な遮蔽効果が期待される。例えば、電子部品等の保護用途が想定される。また、混合酸化物自体も黒色を呈するため、製品応用用途も広い。
  [使用原料]
 各試作例の黒色混合酸化物材料の作製に際し、La、Mn、及びCuの3種類の主成分について「La、Mn、及びCuO」を原料として使用した。Moについては「MoO」を使用した。副成分については「FeOOH、MgO、Al、SiO、CaCO、V、ZnO、SrCO、Y、ZrO、BaCO、Ta、Bi、CeO、Pr11、Nd」を使用した。
  [黒色混合酸化物材料の作製(I)]
 La、Mn、及びCuの混合酸化物中の配合割合を変えながら試作例1ないし25の黒色顔料(3種主成分系)を図2に開示の第2実施形態の製造方法に則して作製した。後出の表1ないし5に各成分の相対重量比(重量%)を示す。
 ボールミルに試作例毎の配合に調製した原料を投入して混合・粉砕した。混合粉砕における配合は、各原料酸化物の総重量100重量部、鋼鉄ボール(直径2ないし5mm)300重量部、水150重量部、また、減水剤(ポリアクリル酸アンモニウム、東亜合成株式会社製:「A-6114」)を各原料酸化物の総重量に対して0.5ないし2重量部とした。ボールミルにて混合粉砕を15ないし20時間行い、混合粉砕物を得た。
 混合粉砕物をスプレードライヤーにより熱風温度280℃にて乾燥後、トンネルキルンにより約1000℃、2ないし3時間焼成した(第1焼成)。第1焼成後、アトマイザーを使用して平均粒子径20ないし30μmに乾式粉砕した。続いてトンネルキルンにより約900℃、2ないし3時間焼成し(第2焼成)、ファインミルと鋼鉄ボール(直径2ないし5mm)を使用して平均粒子径1ないし1.2μmに乾式粉砕した。一連の操作を経て各試作例の黒色混合酸化物材料(すなわち、黒色顔料、非磁性材料、絶縁性材料に相当)を得た。試作例の作製に際し、粉砕後毎にレーザ回折/散乱式粒度分布測定装置(株式会社堀場製作所製:「LA-920」)を用い平均粒子径を測定した。
  [黒色度の評価]
 前述の工程を経て作製した各試作例の黒色混合酸化物材料を内径40mm、厚さ5mmのアルミナ製のリング内に入れて押圧した。そして、偏平な円筒状の測定ピースを得た。無色透明のガラス板を測定ピースの上に配置し、ガラス板に色彩色差計(コニカミノルタホールディング株式会社製:「CR-3500d」)を接触させてL表色系(JIS-Z-8729に準拠)における黒色度(L値)を測定した。測定は正反射処理(SEC方式:正反射光を除去)とした。黒色度の良否評価に際し、「L値」は25.0以下の試作例を良品として「A」の評価とし、25.0を上回る試作例を不十分の「F」の評価とした。
 表1ないし5に、La、Mn、及びCuの3種類の主成分について「La、Mn、及びCuO」の各重量%、「L値、a値、及びb値」、第1焼成温度及び第2焼成温度(℃)、最終平均粒子径(μm)、良否評価(AまたはF)を記した。

Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002

Figure JPOXMLDOC01-appb-T000003

Figure JPOXMLDOC01-appb-T000004


Figure JPOXMLDOC01-appb-T000005

  [黒色混合酸化物材料の作製(I)の結果と考察]
 La、Mn、及びCuの混合酸化物中の配合割合を変えながら作製した試作例1ないし25の黒色混合酸化物材料(3種主成分系)の結果は表1ないし5である。試作例1ないし14は黒色度の良評価(A)であった。試作例15ないし25は不十分の評価(F)であった。加えて、試作例1ないし25のLa、Mn、及びCuOの重量%を三角図にプロットした。図3は全体の三角図であり、図4は主要部分の拡大図である。三角図中のかっこ囲みの番号は試作例の番号である。図4に詳しく示すとおり、試作例の3種主成分系のプロット位置に黒色度の良否評価を重ねた。そして、良否評価に基づいた配合割合(重量%)により囲まれた領域を求めた。
 図4中の灰色部分がLa、Mn、及びCuの混合酸化物の黒色混合酸化物材料(3種主成分系)の好適な領域である。具体的に、La(La)について、試作例16は少なく、試作例23は多い。Mn(MnO)について、試作例22,23は少なく、試作例15は多い。Cu(CuO)について、試作例24,25は少なく、試作例17ないし21は多い。これらの良否評価の切り換わる境界を配合上の限界と考えることができる。そこで、全体重量を100重量%とする酸化物換算量において、Laを35ないし70重量%とする範囲、MnOを25ないし60重量%とする範囲、及びCuOを0.5ないし10重量%とする範囲により囲まれた領域が最適であると導き出した。
  [黒色混合酸化物材料の作製(II)]
 前述の黒色混合酸化物材料の作製(I)より、3種主成分系の黒色混合酸化物材料における各成分の好適な配合割合を見出した。次に、3種主成分系の黒色混合酸化物材料にMoも追加して4種主成分系の黒色混合酸化物材料を作製した。併せて、黒色度の良否評価を試みた。表6,7の試作例26ないし34の配合とし、順にMoの配合を増やして黒色度を測定した。Mo(MoO)の配合量の把握を容易にするため、3成分合計を100重量%とし、この100重量%を基準にMoOを配合した。試作例26ないし34の黒色混合酸化物材料の作製方法は前述の黒色混合酸化物材料の作製(I)と同一の条件にて行った。また、黒色度の良否評価も同作製(I)と同一の基準とした。

Figure JPOXMLDOC01-appb-T000006

Figure JPOXMLDOC01-appb-T000007
  [黒色混合酸化物材料の作製(II)の結果と考察]
 試作例26ないし34について、Mo(MoO)を配合する前段階の3種主成分系の組成は前出の試作例3と共通である。試作例26以降の黒色度(L値)の傾向は、Mo(MoO)の配合量に比例して黒色度は増した。しかしながら、試作例32を境に試作例33以降は黒色度の低下が顕著となった。この結果を踏まえ、4種主成分系の黒色混合酸化物材料の調製に際し、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、Moを酸化物換算量の100重量%に対しMoOとして5重量%以下の割合での含有が望ましいと結論した。なお、Moの換算重量の下限については、Mo添加の効果を明らかにする点から0.01重量%以上を妥当とした。
  [黒色混合酸化物材料の作製(III)]
 黒色混合酸化物材料の混合酸化物中に配合可能な副成分とその配合割合について、試作例35ないし58を作製して黒色度を測定し検証した。試作例26ないし34の黒色混合酸化物材料の作製方法は前述の黒色混合酸化物材料の作製(I)と同一の条件にて行った。また、黒色度の良否評価も同作製(I)と同一の基準とした。副成分の配合量の把握を容易にするため、3成分合計を100重量%とし、この100重量%を基準に副成分(前出の酸化物の換算量)を配合した。結果は表8ないし12である。

Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009

Figure JPOXMLDOC01-appb-T000010

Figure JPOXMLDOC01-appb-T000011

Figure JPOXMLDOC01-appb-T000012
  [黒色混合酸化物材料の作製(III)の結果と考察]
 副成分の種類は、表中に示した試作例35ないし50の結果よりいずれも配合可能であった。種類ごとのばらつきは生じるものの、概ね黒色度(L値)の低下に寄与することを確認した。試作例49,58の副成分の量を20重量%まで拡張した例であっても十分な黒色度を得た。むろん、副成分の量(酸化物換算量)をさらに20重量%以上まで広げることは可能である。しかしながら、副成分量の過剰な増加は黒色度の呈色への影響も懸念され、また、混合酸化物の純度低下、混合酸化物の結晶構造、黒色混合酸化物材料を黒色顔料として用いる際の安定性への影響も無視できなくなる。このため、試作例の結果を踏まえ、一応の基準として、LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、副成分の量(酸化物換算量)は、酸化物換算量の100重量%に対して20重量%以下と規定した。
  [黒色混合酸化物材料の作製(IV)]
 これまでの説明の第2実施形態の製造方法の代わりに、より簡便な図1に開示の第1実施形態の製造方法に則して試作例59ないし63の黒色混合酸化物材料を作製し、黒色度の評価を試みた。表13に各成分の相対重量比(重量%)を示す。
 ボールミルに試作例毎の配合に調製した原料を投入して混合・粉砕した。混合粉砕における配合は、各原料酸化物の総重量100重量部、鋼鉄ボール(直径2ないし5mm)300重量部、水150重量部、また、減水剤(ポリアクリル酸アンモニウム、東亜合成株式会社製:「A-6114」)を各原料酸化物の総重量に対して0.5ないし2重量部とした。ボールミルにて混合粉砕を15ないし20時間行い、混合粉砕物を得た。混合粉砕物をスプレードライヤーにより熱風温度280℃にて乾燥後、トンネルキルンにより約1000℃、2ないし3時間焼成した。焼成後、パルベライザーを使用して平均粒子径8ないし20μmに乾式粉砕するとともに2μm以下の粒子を分級した。一連の操作から各試作例の黒色混合酸化物材料を得た。

Figure JPOXMLDOC01-appb-T000013
  [黒色混合酸化物材料の作製(IV)の結果と考察]
 第1実施形態の製造方法に則した各試作例においても、十分な黒色度(L値)を確認した。試作例59、60、61、62、63は、前出の試作例1、2、3、4、7と3種主成分系の組成は同一であり、製造方法のみの変更である。相互の比較から、焼成回数が増えたことによりL値は低下し、黒色度の増加が判明した。従って、黒色混合酸化物材料を黒色顔料として用いる際に求められる用途に応じた品質と製造原価等との兼ね合いから、いずれかの製造方法を選択することができる。
  [黒色混合酸化物材料の構造解析]
 試作例の黒色混合酸化物材料について、X線回折(XRD)測定を試みた。PANalytical社製,X線回折装置「X’Pert Powder」、X線源:CuKα線を使用した。図5は試作例29(4種主成分系)、図6は試作例35(Mo及び副成分配合)、図7は試作例51(Mo及び副成分配合)の黒色混合酸化物材料のX線回折パターンである。いずれの図の回折パターン中においても回折角2θの31°ないし34°とする範囲に最大強度の回折のピークが存在する。そして、菱面体晶系(空間群R3-c)のペロブスカイト構造を有する相を主相として含まれると推察される。また、図示のパターン中の黒塗り四角の位置より、混合酸化物には、Mnの酸化物としてスピネル構造を有するMnの含有も想定される。
 試作例の黒色混合酸化物材料におけるペロブスカイトの相には、格子定数をa=b<cとする六方単位格子に対応したミラー指数(ミラー面指数)を付与することができる。具体的には、(012)面、(110)面、(104)面、(113)面、(202)面、(006)面、(024)面、(122)面、(116)面、(030)面、(214)面、(018)面等である(図示参照)。なお、図5の試作例29について、格子定数のa=0.552nm、c=1.33nmであった。
  [焼成温度の検討]
 黒色混合酸化物材料の作製時の最適な焼成温度について、温度を変更しながら試作した。表14及び15の試作例64ないし71は、前述の黒色混合酸化物材料の作製(IV)の作製方法(図1参照の第1実施形態)に準じ、表中の各成分の相対重量比(重量%)に基づいて作製した黒色顔料である。作製後、L値等を測定した。

Figure JPOXMLDOC01-appb-T000014

Figure JPOXMLDOC01-appb-T000015
 表14及び15の結果から、試作例64の焼成温度650℃ではL値は著しく不良であった。焼結が不十分であり結晶構造が生じなかったと考えられる。これに対し、試作例65の焼成温度700℃ではL値は大きく好転した。試作例70の焼成温度1200℃と試作例71の焼成温度1250℃の間においてL値は上昇した。従って、顔料用途として良好な黒色(L値が25以下)を得るための条件で区切ると、焼成温度は700ないし1200℃の範囲として導き出すことができる。
 さらに、副成分を含有した黒色混合酸化物材料の作製(III)の作製(図2参照の第2実施形態)に準じ、表14及び15の試作例72ないし79の黒色混合酸化物材料を作製した。作製後、L値等を測定した。

Figure JPOXMLDOC01-appb-T000016

Figure JPOXMLDOC01-appb-T000017
 試作例72ないし75のとおり、第1焼成温度が700℃を下回る例ではL値は著しく不良であった。この傾向は試作例64と同様と考える。続いて、試作例79より、第1及び第2焼成温度は1200℃以下であっても第2焼成温度を第1焼成温度よりも高温にすると、L値の上昇を確認した。従って、第2実施形態の2回の焼成を実施する製造方法にあっては、最初の第1焼成温度を700ないし1200℃の範囲とし、続く第2焼成温度を600ないし1100℃の範囲であることが望ましいといえる。
  [黒色混合酸化物材料の応用]
   〈1.無機ガラスペースト〉
 試作例29の黒色混合酸化物材料(黒色顔料)25重量部、ガラス粉末75重量部の配合からなるガラスカラー組成物粉末とした。同ガラスカラー組成物粉末100重量部に対し、添加油分を30重量部添加し3本ロールのニーダーにより混練してペースト状に仕上げた。添加油分は、パインオイル93重量部、エチルセルロース(ダウケミカル社製)4重量部、イソブチルメタアクリレート樹脂(ルーサイト・ジャパン株式会社製:「エルバサイト#2045」)3重量部の配合割合からなる。前出のガラス粉末の組成(配合量表示)は次のとおりであり、同ガラス粉末の平均粒径は3.3μmであった。

Figure JPOXMLDOC01-appb-T000018

 前記の調製済みの黒色無機ガラスペーストを37mm×50mmのガラス板に180メッシュのポリエステル繊維織布のスクリーンを用いて印刷した。乾燥後、680℃に設定した電気炉に入れて4分間焼成した。こうして、無機ガラスペースト(黒色無機ガラスペースト)をガラス板の支持体の表面に焼き付けて焼付け製品を得た。
   〈2.樹脂ペースト〉
 ポリプロピレン99重量部を160度に加熱溶融し、ここに試作例36の黒色混合酸化物材料(黒色顔料)4重量部を投入して全体を均一になるまで混練し、樹脂ペースト(黒色樹脂ペースト)とした。当該樹脂ペーストをガラス板の支持体の表面に塗工した。塗工に際しバーコーターを用いた。その後、室温下にて静置して樹脂を硬化して黒色樹脂とその塗工製品を得た。
   〈3.無機セラミックス材〉
 セラミックス剤として、イットリア部分安定化ジルコニア95重量部に、試作例51の黒色混合酸化物材料(黒色顔料)5重量部を添加して無機混合物100重量部とした。無機混合物100重量部、ジルコニアボール(直径3ないし10mm)300重量部、水150重量部をボールミルに投入して混合粉砕を20時間行い、混合粉砕物を得た。混合粉砕物にアクリル樹脂系の有機バインダーを添加し、スプレードライにより混合粉砕物を乾燥し、乾燥後の混合粉砕物をプレス成形して成形体とし、当該成形体を電気炉内に搬入し1500℃、2時間焼成して全体を焼結した。除冷後に成形体を電気炉から取り出し、適宜研削、研磨し、焼結体の無機セラミック材(黒色無機セラミック材)を得た。
 黒色混合酸化物材料の応用の結果のとおり、黒色混合酸化物材料を黒色顔料として使用した3種類について、いずれも良好な黒色を呈する各種製品を得ることができた。特に、粒径が細かいことから、応用範囲は広い。従って、既存の黒色顔料と同様の使用が可能である。例えば、無機ガラスペースト(黒色無機ガラスペースト)は車両等の窓ガラスの塗工用途等である。樹脂ペースト(黒色樹脂ペースト)は、既存の黒色に着色した樹脂加工品全般を対象とすることができる。現在広範に製造される各種の成型品を想定する。さらに、無機セラミックス材(黒色無機セラミックス材)にも展開できるため、ガラス以外の黒色を呈するセラミック加工品の製造も期待できる。
  [非磁性の測定・結果]
 発明者らは、黒色混合酸化物材料の性質をさらに調査するべく、磁性に関する測定を試みた。前出の黒色混合酸化物材料「試作例51」を使用し、飽和磁化[Ms](emu/g)、残留磁化[Mr](emu/g)、保持力[Hc](Oe)を測定し、重量磁化率(emu/(g・Oe))を求めた。
 測定装置に、振動試料型磁力計(東英工業株式会社製,VSM-5型)を使用し、測定温度を室温、磁界レンジを10kOe、試料重量163.66mgとした。飽和磁化の測定に際し、印加磁界を10kOeにおける値とした。表19に各測定値の結果を示す。併せて、磁界(Oe)をX軸とし、磁化(emu/g)をY軸とする磁化曲線のグラフも図8、図9に提示する。図9のグラフは図8を拡大したグラフである。

Figure JPOXMLDOC01-appb-T000019

 表19、図8及び図9より、黒色混合酸化物材料は磁性を帯びにくいことを確認した。従って、黒色混合酸化物材料は磁気遮蔽の用途に好適であると考えられる。例えば、電子部品の被覆等である。外部の磁場による電子基板、プロセッサー等への影響を軽減し、誤作動等の抑制に効果的と勘案する。
  [絶縁性の測定・結果]
 続いて、発明者らは黒色混合酸化物材料の性質として絶縁性の測定を試みた。内径31mm、外径38mm、厚さ5mmのアルミニウム製リングを用意した。同リング内径の内側に、前出の黒色混合酸化物材料「試作例51」を7g封入した。これを上下方向からプレスし、試料をペレット化しテストピースとした。次に、前出のリングと同じ厚さのシリコーンゴム板を絶縁目的で用意した。このシリコーンゴム板に前出のリングの同じ外径38mmの穴を開け、このアルミニウム製リングの周りに重ねて同リングの周りを覆った。そして、2枚のステンレス鋼板を用意し、両鋼板の間にリング、テストピース、及びシリコーンゴム板を挟み込んだ。下側のステンレス鋼板に負極、上側のステンレス鋼板に正極を接続し通電した。
 すなわち、絶縁性の評価は絶縁破壊が生じた時点の印加電圧として計測した。通電の結果、絶縁破壊は「8.8kV」であった。これを1mmあたりに換算すると、「1.76kV/mm」となる。当該数値より、混合酸化物材料の絶縁性を確認することができた。従って、黒色混合酸化物材料は絶縁性能から、例えば、電子部品の被覆、筐体等である。前掲の磁化されにくい性質と合わせて電子基板、プロセッサー等への影響を軽減し、誤作動等の抑制に効果的と勘案する。
 一連の測定に基づく経緯から、黒色混合酸化物材料は黒色顔料としての用途に加え、磁気の遮蔽、絶縁性の性能から、非磁性材料、絶縁性材料としての性能も備える。また、黒色混合酸化物材料は、セラミックス剤、ガラス剤、樹脂剤への混入が容易であるため、種々の製品展開にも柔軟に対応可能である。
 本発明の黒色混合酸化物材料は、クロムの価数に関わらずクロムそのものを主成分に含有せず、さらにコバルトも主成分に含有しない組成であるため、高い安全性を有し、しかも良好な色調及び経済性を具備し、さらには非磁性及び絶縁性も具備する。それゆえ、既存の黒色顔料との代替は言うに及ばず、磁気遮蔽及び絶縁用途も可能となる。しかも、無機系、有機系を問わず広範な製品展開が可能である。
   M 酸化物原料
  P1,P2 混合酸化物(黒色混合酸化物材料)
  11 一次粉砕物
  12 原料焼成物
  21 第1粉砕物
  22 第1焼成物
  23 第2粉砕物
  24 第2焼成物

Claims (21)

  1.  La、Mn、及びCuを主成分とする酸化物を含有するとともに、前記主成分としてCr及びCoを含有しない混合酸化物であることを特徴とする黒色混合酸化物材料。
  2.  前記混合酸化物は、X線源としてCuKα線を使用したX線回折測定に際し回折角2θの31°ないし34°とする範囲に最大強度の回折のピークを示すペロブスカイト相を有し、かつ、
     前記混合酸化物はMnの酸化物としてスピネル構造を有するMnを含有する請求項1に記載の黒色混合酸化物材料。
  3.  前記混合酸化物におけるLa、Mn、及びCuの含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、
     LaをLaとして35ないし70重量%と、
     MnをMnOとして25ないし60重量%と、
     CuをCuOとして0.5ないし10重量%とする、
     割合を満たしている請求項1に記載の黒色混合酸化物材料。
  4.  前記混合酸化物がさらにMoの酸化物を前記主成分として含有しており、
     LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、
     前記混合酸化物が、前記酸化物換算量の100重量%に対してMoをMoOとして5重量%以下とする割合で含有している請求項1に記載の黒色混合酸化物材料。
  5.  前記混合酸化物が前記主成分の他に副成分としてLi、B、Na、Mg、Al、Si、P、K、Ca、Ti、V、Fe、Zn、Sr、Y、Zr、Nb、Sn、Sb、Ba、Ta、W、Bi、Ce、Pr、Nd、またはErのいずれか1種以上を含有しており、
     LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、
     前記混合酸化物が、前記酸化物換算量の100重量%に対して前記副成分をLiO、B、NaO、MgO、Al、SiO、P、KO、CaO、TiO、V、Fe、ZnO、SrO、Y、ZrO、Nb、SnO、Sb、BaO、Ta、WO、Bi、CeO、Pr11、Nd、またはErとして20重量%以下とする割合で含有している請求項1に記載の黒色混合酸化物材料。
  6.  前記混合酸化物が黒色顔料である請求項1に記載の黒色混合酸化物材料。
  7.  前記混合酸化物が非磁性材料である請求項1に記載の黒色混合酸化物材料。
  8.  前記混合酸化物が絶縁性材料である請求項1に記載の黒色混合酸化物材料。
  9.  請求項1に記載の黒色混合酸化物材料の製造方法であって、
     La、Mn、及びCuの酸化物原料を混合して粉砕し平均粒径5μm以下の一次粉砕物を得る一次粉砕工程と、
     前記一次粉砕物を700ないし1200℃にて焼成して原料焼成物を得る原料焼成工程と、
     前記原料焼成物を平均粒径50μm以下に粉砕する二次粉砕工程と、を備えて混合酸化物を得る
     ことを特徴とする黒色混合酸化物材料の製造方法。
  10.  前記混合酸化物におけるLa、Mn、及びCuの酸化物の含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、
     LaをLaとして35ないし70重量%と、
     MnをMnOとして25ないし60重量%と、
     CuをCuOとして0.5ないし10重量%とする、
     割合を満たしている請求項9に記載の黒色混合酸化物材料の製造方法。
  11.  前記混合酸化物がさらにMoの酸化物を前記主成分として含有しており、
     LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、
     前記混合酸化物が、前記酸化物換算量の100重量%に対してMoをMoOとして5重量%以下とする割合で含有している請求項9に記載の黒色混合酸化物材料の製造方法。
  12.  請求項1に記載の黒色混合酸化物材料の製造方法であって、
     La、Mn、及びCuの酸化物原料を混合して粉砕し平均粒径5μm以下の第1粉砕物を得る第1粉砕工程と、
     前記第1粉砕物を700ないし1200℃にて焼成して第1焼成物を得る第1焼成工程と、
     前記第1焼成物を粉砕し平均粒径50μm以下の第2粉砕物を得る第2粉砕工程と、
     前記第2粉砕物を600ないし1100℃にて焼成して第2焼成物を得る第2焼成工程と、
     前記第2焼成物を平均粒径20μm以下に粉砕する第3粉砕工程と、を備えて混合酸化物を得る
     ことを特徴とする黒色混合酸化物材料の製造方法。
  13.  前記混合酸化物におけるLa、Mn、及びCuの酸化物の含有量が、次の酸化物として全体重量を100重量%とする酸化物換算量として、
     LaをLaとして35ないし70重量%と、
     MnをMnOとして25ないし60重量%と、
     CuをCuOとして0.5ないし10重量%とする、
     割合を満たしている請求項12に記載の黒色混合酸化物材料の製造方法。
  14.  前記混合酸化物がさらにMoの酸化物を前記主成分として含有しており、
     LaをLaとし、MnをMnOとし、CuをCuOとし当該3種類の酸化物の全体重量を100重量%とする酸化物換算量において、
     前記混合酸化物が、前記酸化物換算量の100重量%に対してMoをMoOとして5重量%以下とする割合で含有している請求項12に記載の黒色混合酸化物材料の製造方法。
  15.  請求項1に記載の黒色混合酸化物材料とセラミックス剤を含有したことを特徴とする無機セラミックス材。
  16.  請求項1に記載の黒色混合酸化物材料とガラス剤を含有したことを特徴とする無機ガラスペースト。
  17.  請求項16に記載の無機ガラスペーストをガラス部材、金属部材、陶器、または磁器に焼き付けてなることを特徴とする焼付け製品。
  18.  請求項1に記載の黒色混合酸化物材料と樹脂剤を含有したことを特徴とする樹脂ペースト。
  19.  請求項18に記載の樹脂ペーストを支持体に塗工してなることを特徴とする塗工製品。
  20.  前記支持体が、ガラス、金属、陶器、磁器、樹脂製品、または炭素材である請求項19に記載の塗工製品。
  21.  請求項1に記載の黒色混合酸化物材料と樹脂剤を含有してなることを特徴とする樹脂部材。
PCT/JP2018/021875 2017-06-15 2018-06-07 黒色混合酸化物材料及びその製造方法 WO2018230438A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020197036093A KR102127605B1 (ko) 2017-06-15 2018-06-07 흑색 혼합 산화물 재료 및 그 제조 방법
EP18816653.2A EP3640225A4 (en) 2017-06-15 2018-06-07 BLACK MIXED OXIDE MATERIAL AND MANUFACTURING METHOD THEREOF
CN202310374657.3A CN116409991A (zh) 2017-06-15 2018-06-07 黑色混合氧化物材料及其制造方法
CN201880036637.2A CN110730766A (zh) 2017-06-15 2018-06-07 黑色混合氧化物材料及其制造方法
US16/622,115 US10759943B2 (en) 2017-06-15 2018-06-07 Black mixed oxide material and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017117760 2017-06-15
JP2017-117760 2017-06-15
JP2018021124A JP6592125B2 (ja) 2017-06-15 2018-02-08 黒色顔料及びその製造方法
JP2018-021124 2018-02-08

Publications (1)

Publication Number Publication Date
WO2018230438A1 true WO2018230438A1 (ja) 2018-12-20

Family

ID=64660391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021875 WO2018230438A1 (ja) 2017-06-15 2018-06-07 黒色混合酸化物材料及びその製造方法

Country Status (2)

Country Link
CN (1) CN116409991A (ja)
WO (1) WO2018230438A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131664B2 (ja) 1972-03-29 1976-09-08
JPH04254419A (ja) * 1991-02-07 1992-09-09 Colloid Res:Kk 複合酸化物前駆体の製造方法
JPH06144871A (ja) 1992-10-30 1994-05-24 Sumitomo Kinzoku Ceramics:Kk ガラスペースト
JPH06340447A (ja) 1993-02-05 1994-12-13 Nippon Sheet Glass Co Ltd セラミックペースト組成物
JPH08113754A (ja) * 1994-10-17 1996-05-07 Dainichiseika Color & Chem Mfg Co Ltd 顔料水分散組成物
JP2000264639A (ja) 1999-03-12 2000-09-26 Toda Kogyo Corp ストロンチウム鉄酸化物粒子粉末及びその製造方法
JP2002020140A (ja) 2000-06-29 2002-01-23 Okuno Chem Ind Co Ltd セラミックカラー組成物及び板ガラスの曲げ加工方法
JP2002038048A (ja) * 2000-06-07 2002-02-06 Dmc 2 Degussa Metals Catalysts Cerdec Ag 希土類酸化マンガンを含む顔料、該顔料を含有するコーティング組成物又はエナメル組成物、コーティングされた製品、該顔料の製造法及び製品の着色法
JP2007217544A (ja) 2006-02-16 2007-08-30 Nakajima Sangyo Kk 黒色顔料及びその製造方法
JP4035673B2 (ja) 1997-11-28 2008-01-23 奥野製薬工業株式会社 セラミックカラー組成物、成形板ガラス及びその成形方法
JP5131664B2 (ja) * 2008-09-24 2013-01-30 中島産業株式会社 黒色顔料及びその製造方法、並びにこれを用いた黒色セラミックペースト及びそれを用いた板ガラス製品
JP2015098509A (ja) * 2013-11-18 2015-05-28 大日精化工業株式会社 複合酸化物黒色顔料及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032570A (en) * 1987-08-04 1991-07-16 Hitachi Metals, Ltd. Method for producing ceramic superconducting material using intermediate products
DE4432459A1 (de) * 1994-09-12 1996-03-14 Basf Ag Verfahren zur Herstellung mehrfarbiger Keramikformteile
JP2006195156A (ja) * 2005-01-13 2006-07-27 Canon Inc トナー及び画像形成方法
FR2969601A1 (fr) * 2010-12-22 2012-06-29 Saint Gobain Ct Recherches Piece frittee coloree.
CN102989448A (zh) * 2012-12-18 2013-03-27 天津大学 一种镧锰钙钛矿型脱NOx催化剂的制备方法及应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5131664B2 (ja) 1972-03-29 1976-09-08
JPH04254419A (ja) * 1991-02-07 1992-09-09 Colloid Res:Kk 複合酸化物前駆体の製造方法
JPH06144871A (ja) 1992-10-30 1994-05-24 Sumitomo Kinzoku Ceramics:Kk ガラスペースト
JPH06340447A (ja) 1993-02-05 1994-12-13 Nippon Sheet Glass Co Ltd セラミックペースト組成物
JPH08113754A (ja) * 1994-10-17 1996-05-07 Dainichiseika Color & Chem Mfg Co Ltd 顔料水分散組成物
JP4035673B2 (ja) 1997-11-28 2008-01-23 奥野製薬工業株式会社 セラミックカラー組成物、成形板ガラス及びその成形方法
JP2000264639A (ja) 1999-03-12 2000-09-26 Toda Kogyo Corp ストロンチウム鉄酸化物粒子粉末及びその製造方法
JP2002038048A (ja) * 2000-06-07 2002-02-06 Dmc 2 Degussa Metals Catalysts Cerdec Ag 希土類酸化マンガンを含む顔料、該顔料を含有するコーティング組成物又はエナメル組成物、コーティングされた製品、該顔料の製造法及び製品の着色法
JP2002020140A (ja) 2000-06-29 2002-01-23 Okuno Chem Ind Co Ltd セラミックカラー組成物及び板ガラスの曲げ加工方法
JP2007217544A (ja) 2006-02-16 2007-08-30 Nakajima Sangyo Kk 黒色顔料及びその製造方法
JP5131664B2 (ja) * 2008-09-24 2013-01-30 中島産業株式会社 黒色顔料及びその製造方法、並びにこれを用いた黒色セラミックペースト及びそれを用いた板ガラス製品
JP2015098509A (ja) * 2013-11-18 2015-05-28 大日精化工業株式会社 複合酸化物黒色顔料及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETROV ET AL.: "PHASE RELATIONS IN THE La (Sr) -Mn-Cu-0 SYSTEM AND OXYGEN NONSTOICHIOMETRY OF COPPER-SUBSTITUTED LANTHANUM MANGANATES", ELECTROCHEMICAL PROCEEDINGS, vol. 97, no. 18, 1 January 1997 (1997-01-01), pages 927 - 936, XP055653360, ISSN: 0161-6374, DOI: 10.1149/199740.0927PV *

Also Published As

Publication number Publication date
CN116409991A (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6592125B2 (ja) 黒色顔料及びその製造方法
JP5131664B2 (ja) 黒色顔料及びその製造方法、並びにこれを用いた黒色セラミックペースト及びそれを用いた板ガラス製品
CN101265084B (zh) (1-x)(Ba,Bi,Na)TiO3-xCoFe2O4复合多铁陶瓷及其制备方法
JP2007217544A (ja) 黒色顔料及びその製造方法
CN104137199B (zh) 铁氧体烧结磁铁以及具备该铁氧体烧结磁铁的发动机
CN104230323A (zh) M型钙镧钴永磁铁氧体及其制备方法
WO2017061403A1 (ja) 負熱膨張材及びそれを含む複合材料
US6616744B1 (en) Method of forming inorganic pigments
US9238735B2 (en) Copper containing infrared reflective pigment compositions
CN104230321A (zh) M型钙永磁铁氧体及其制备方法
CN104230322A (zh) M型钙永磁铁氧体及其制备方法
WO2018230438A1 (ja) 黒色混合酸化物材料及びその製造方法
CN106882956A (zh) 一种陶瓷材料及其加工方法
JP2000351625A (ja) Mn−Znフェライトの製造方法
WO2023145766A1 (ja) 粉末及びその製造方法
CN115536377B (zh) 一种黑滑石矿质微波介质陶瓷材料及其制备方法
CN111466000B (zh) 铁氧体预烧体、铁氧体烧结磁体及其制造方法
Liu et al. Electrical and photoluminescence properties of (Bi 0.5− x/0.94 Er x/0.94 Na 0.5) 0.94 Ba 0.06 TiO 3 lead-free ceramics
JP7367582B2 (ja) フェライト焼結磁石
JP7367581B2 (ja) フェライト焼結磁石
WO2022070634A1 (ja) MnZn系フェライト、及びその製造方法
JP2007217545A (ja) 黄色顔料及びその製造方法
Wang et al. Unlocking long-lasting green luminescence in manganese-doped magnesium gallate
JP7322321B1 (ja) マンガン酸化物、マンガン酸化物粒子、近赤外線透過材料、及び近赤外線透過膜
JPH0725618A (ja) ソフトフェライトの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816653

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197036093

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018816653

Country of ref document: EP

Effective date: 20200115