WO2018230255A1 - 車両用クリーナシステムおよび車両用クリーナシステムを備える車両 - Google Patents
車両用クリーナシステムおよび車両用クリーナシステムを備える車両 Download PDFInfo
- Publication number
- WO2018230255A1 WO2018230255A1 PCT/JP2018/019254 JP2018019254W WO2018230255A1 WO 2018230255 A1 WO2018230255 A1 WO 2018230255A1 JP 2018019254 W JP2018019254 W JP 2018019254W WO 2018230255 A1 WO2018230255 A1 WO 2018230255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cleaner
- vehicle
- cleaning
- nozzle
- sensor
- Prior art date
Links
- 238000004140 cleaning Methods 0.000 claims abstract description 358
- 238000000034 method Methods 0.000 claims abstract description 52
- 239000007788 liquid Substances 0.000 claims description 176
- 238000002347 injection Methods 0.000 claims description 57
- 239000007924 injection Substances 0.000 claims description 57
- 238000005507 spraying Methods 0.000 claims description 26
- 239000007921 spray Substances 0.000 claims description 21
- 238000001514 detection method Methods 0.000 claims description 18
- 230000004044 response Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 5
- 230000007246 mechanism Effects 0.000 claims description 3
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 description 33
- 238000010586 diagram Methods 0.000 description 31
- 230000003749 cleanliness Effects 0.000 description 22
- 238000011109 contamination Methods 0.000 description 21
- 238000005406 washing Methods 0.000 description 10
- 230000010355 oscillation Effects 0.000 description 9
- 239000007858 starting material Substances 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 4
- 238000007664 blowing Methods 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000012530 fluid Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/56—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/46—Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
- B60S1/48—Liquid supply therefor
- B60S1/481—Liquid supply therefor the operation of at least part of the liquid supply being controlled by electric means
- B60S1/485—Liquid supply therefor the operation of at least part of the liquid supply being controlled by electric means including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/46—Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
- B60S1/48—Liquid supply therefor
- B60S1/52—Arrangement of nozzles; Liquid spreading means
- B60S1/522—Arrangement of nozzles; Liquid spreading means moving liquid spreading means, e.g. arranged in wiper arms
- B60S1/526—Arrangement of nozzles; Liquid spreading means moving liquid spreading means, e.g. arranged in wiper arms according to vehicle movement characteristics, e.g. speed, or climatic conditions, e.g. wind
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/56—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
- B60S1/58—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for rear windows
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/56—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
- B60S1/60—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for signalling devices, e.g. reflectors
- B60S1/603—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for signalling devices, e.g. reflectors the operation of at least a part of the cleaning means being controlled by electric means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/46—Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
- B60S1/48—Liquid supply therefor
- B60S1/481—Liquid supply therefor the operation of at least part of the liquid supply being controlled by electric means
- B60S1/486—Liquid supply therefor the operation of at least part of the liquid supply being controlled by electric means including control systems responsive to a vehicle driving condition, e.g. speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/46—Cleaning windscreens, windows or optical devices using liquid; Windscreen washers
- B60S1/48—Liquid supply therefor
- B60S1/52—Arrangement of nozzles; Liquid spreading means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60S—SERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
- B60S1/00—Cleaning of vehicles
- B60S1/02—Cleaning windscreens, windows or optical devices
- B60S1/56—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens
- B60S1/60—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for signalling devices, e.g. reflectors
- B60S1/603—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for signalling devices, e.g. reflectors the operation of at least a part of the cleaning means being controlled by electric means
- B60S1/606—Cleaning windscreens, windows or optical devices specially adapted for cleaning other parts or devices than front windows or windscreens for signalling devices, e.g. reflectors the operation of at least a part of the cleaning means being controlled by electric means combined with the operation of windscreen or front window cleaning means
Definitions
- the present invention relates to a vehicle cleaner system for cleaning an object to be cleaned and a vehicle including the vehicle cleaner system.
- a vehicle headlamp cleaner is known in Patent Document 1 and the like.
- the present inventor has studied a cleaner that cleans an object to be cleaned by spraying a cleaning liquid and cleaning an object to be cleaned by spraying air.
- An object of the present invention is to provide a vehicle cleaner system and a vehicle equipped with a vehicle cleaner system that can be cleaned by an appropriate cleaning method for each object to be cleaned while suppressing costs.
- Another object of the present invention is to provide a cleaner system capable of maintaining the cleanliness of an object to be cleaned while suppressing the amount of cleaning medium used.
- Another object of the present invention is to provide an easy-to-use vehicle cleaner system that can inject cleaning liquid and air.
- a vehicle cleaner system of the present invention comprises: With a single pump, A plurality of cleaners, each connected to the single pump, for cleaning different objects to be cleaned including a sensor for detecting information outside the vehicle with a cleaning medium; A cleaner control unit that operates the plurality of cleaners in response to an input of a signal, The cleaner control unit is configured to be able to operate the plurality of cleaners such that cleaning methods of the plurality of cleaners are different from each other.
- the cleaning method is different for each cleaner. For this reason, compared with the case where a separate pump is used for every washing
- the cleaning method at least one of the number of operation times of the plurality of cleaners according to the input of the signal a predetermined number of times, the injection time of the cleaning medium, the injection amount, the injection pressure, and the injection area may be different.
- the cleaner includes a sensor cleaner that cleans the sensor, and at least one of a window washer that cleans the window shield of the vehicle and a lamp cleaner that cleans the lamp of the vehicle.
- the cleaner control unit may be configured to change a magnitude relationship between the number of operations of the sensor cleaner and the number of operations of at least one of the window washer and the lamp cleaner.
- the cleaner includes a sensor cleaner for cleaning the sensor, and a lamp cleaner for cleaning a lamp of the vehicle.
- An injection pressure of the cleaning medium in the sensor cleaner may be higher than an injection pressure of the cleaning medium in the lamp cleaner.
- a cleaning liquid and air may be supplied to the sensor cleaner as the cleaning medium.
- the remaining of the cleaning liquid on the sensor surface can be reliably prevented by injecting air separately from the cleaning liquid for the sensor where the remaining cleaning liquid tends to be a problem.
- the cleaner includes a plurality of sensor cleaners that respectively wash a plurality of the sensors in which at least one of a detection method or a mounting position in the vehicle is different from each other,
- the cleaner control unit may operate the plurality of sensor cleaners such that cleaning methods of the plurality of sensor cleaners are different from each other.
- sensors with different detection methods such as LiDAR and camera often require different scenes.
- the contamination differs depending on the sensor mounting position. Therefore, by changing the cleaning method for each type of sensor, it becomes easy to maintain the cleanliness for each sensor corresponding to a specific scene.
- a vehicle cleaner system includes: With a single pump, A plurality of cleaners, each connected to the single pump, for cleaning different objects to be cleaned including a sensor for detecting information outside the vehicle with a cleaning medium; At least one of the type of the cleaning medium, the injection shape of the cleaning medium, the nozzle shape of the plurality of cleaners, the presence / absence of a wiper, the presence / absence of a check valve, and the location of the cleaning object are different.
- the cleaner includes a sensor cleaner for cleaning the sensor,
- the sensor cleaner may include a fluidic mechanism that changes a flow path of the cleaning medium.
- a vehicle cleaner system includes: A window washer for cleaning the vehicle window shield with a cleaning medium; A first pump for supplying the cleaning medium to the window washer; A sensor cleaner for cleaning a sensor for detecting information outside the vehicle with the cleaning medium; A second pump for supplying the cleaning medium to the sensor cleaner, A first pipe that connects between the window washer and the first pump and supplies the cleaning medium to the window washer connects between the sensor cleaner and the second pump, and the cleaning medium. This is different from the second pipe for supplying to the sensor cleaner.
- the cleaning method such as the injection pressure of the cleaning medium, the injection time, and the number of injections can be changed according to the object to be cleaned. Can do. Therefore, it becomes possible to clean each object to be cleaned by an appropriate cleaning method.
- the cleaner control process is facilitated by controlling each pump in a unified manner.
- the first pump and the second pump may be controlled such that an injection pressure of the cleaning medium from the sensor cleaner is higher than an injection pressure of the cleaning medium from the window washer.
- the second conduit may be thicker than the first conduit.
- the second conduit may be shorter than the first conduit.
- a vehicle cleaner system of the present invention comprises: A vehicle cleaner system for cleaning an object to be cleaned, A cleaner that sprays a cleaning medium onto a surface to be cleaned of the object to be cleaned to clean the surface to be cleaned; And a cleaner control unit that operates the cleaner so that the cleaning strength for at least one of the plurality of regions differs from the cleaning strength for other regions on the surface to be cleaned including the plurality of regions.
- the cleaning medium can be efficiently ejected to the area to be cleaned in the surface to be cleaned, the cleanliness of the cleaning object is maintained while saving the cleaning medium. be able to.
- Differentiating the cleaning strength may include changing at least one of the number of injections, the injection time, the injection amount, the injection pressure, and the injection area of the cleaning medium.
- the cleaning efficiency can be increased by changing the cleaning method according to the region of the surface to be cleaned.
- a dirt detector for detecting which area of the plurality of areas is dirty may change the cleaning strength according to the output of the dirt detection unit.
- the cleaning medium can be sprayed only on the portion where the contamination is detected, it is possible to increase the spraying pressure of the cleaning medium to the region to be cleaned, for example, while saving the cleaning medium. Thereby, the cleaning efficiency can be improved and the cleanliness of the object to be cleaned can be maintained.
- the plurality of regions may be configured by regions divided in the left-right direction of the surface to be cleaned.
- the region to be cleaned is divided as described above.
- the cleaner has a nozzle having at least one opening for injecting the cleaning medium;
- the direction of the at least one opening may be changeable so as to face each of the plurality of regions.
- the cleaner has a nozzle having a plurality of openings for injecting the cleaning medium,
- the plurality of openings may be arranged corresponding to each of the plurality of regions.
- the cleaner has a plurality of nozzles for injecting the cleaning medium;
- Each of the plurality of nozzles may be disposed in at least three directions above and below the cleaning target.
- the region to be cleaned can be easily changed.
- a vehicle cleaner system includes: A cleaner that cleans a vehicle part that is at least one of a vehicle window, a lamp, and a sensor capable of acquiring outside information; A drive control unit for operating the cleaner; The cleaner is An air nozzle for injecting air into the vehicle parts; Having a liquid nozzle for injecting cleaning liquid onto the vehicle parts; The drive control unit is configured to receive only a first signal for operating the air nozzle and the liquid nozzle and a second signal for operating the air nozzle and not operating the liquid nozzle.
- a vehicle cleaner system having any one of the above configurations is provided.
- the cleanliness of the object to be cleaned can be maintained while suppressing the amount of the cleaning medium used.
- an appropriate cleaning method for each object to be cleaned can be achieved while suppressing costs compared to the case where a separate pump is used for each object to be cleaned. Can be washed with.
- the cleanliness of the object to be cleaned can be maintained while suppressing the amount of the cleaning medium used.
- an easy-to-use vehicle cleaner system that can inject cleaning liquid and air is provided.
- FIG. 1 It is a schematic diagram for demonstrating the injection system of the washing
- FIG. 1 It is a figure which shows the operation example of the sensor cleaner which concerns on an 11th Example. It is a top view of the vehicle carrying the cleaner system which concerns on a 12th Example and a 13th Example. It is a block diagram of the cleaner system of FIG. It is a block diagram of the cleaner system which concerns on a 12th Example. It is a flowchart of the cleaner system which concerns on a 12th Example. It is a block diagram of the cleaner system which concerns on a 13th Example. It is a flowchart of the cleaner system which concerns on a 13th Example. It is a block diagram of the cleaner system which concerns on a 14th Example.
- left-right direction is a direction including “upward direction” and “downward direction”.
- front-rear direction is a direction including “front direction” and “rear direction”.
- left / right direction is a direction including “left direction” and “right direction”.
- FIG. 1 is a top view of a vehicle 1 equipped with a vehicle cleaner system 100 (hereinafter referred to as cleaner system 100) according to the present embodiment.
- the vehicle 1 includes a cleaner system 100.
- the vehicle 1 is an automobile that can travel in the automatic driving mode.
- FIG. 2 shows a block diagram of the vehicle system 2.
- the vehicle system 2 includes a vehicle control unit 3, an internal sensor 5, an external sensor 6, a lamp 7, an HMI 8 (Human Machine Interface), a GPS 9 (Global Positioning System), and wireless communication.
- Unit 10 and map information storage unit 11.
- the vehicle system 2 includes a steering actuator 12, a steering device 13, a brake actuator 14, a brake device 15, an accelerator actuator 16, and an accelerator device 17.
- the vehicle control unit 3 is composed of an electronic control unit (ECU).
- the vehicle control unit 3 includes a processor such as a CPU (Central Processing Unit), a ROM (Read Only Memory) in which various vehicle control programs are stored, and a RAM (Random Access Memory) in which various vehicle control data are temporarily stored. It is comprised by.
- the processor is configured to develop a program designated from various vehicle control programs stored in the ROM on the RAM and execute various processes in cooperation with the RAM.
- the vehicle control unit 3 is configured to control the traveling of the vehicle 1.
- the internal sensor 5 is a sensor that can acquire information on the own vehicle.
- the internal sensor 5 is at least one of, for example, an acceleration sensor, a speed sensor, a wheel speed sensor, and a gyro sensor.
- the internal sensor 5 is configured to acquire information on the host vehicle including the traveling state of the vehicle 1 and output the information to the vehicle control unit 3.
- the internal sensor 5 is a seating sensor that detects whether the driver is sitting in the driver's seat, a face direction sensor that detects the direction of the driver's face, an external weather sensor that detects external weather conditions, and whether there is a person in the vehicle. You may further provide the human sensitive sensor etc. which detect this.
- the internal sensor 5 may include an illuminance sensor that detects the illuminance of the surrounding environment of the vehicle 1.
- the external sensor 6 is a sensor that can acquire information outside the host vehicle.
- the external sensor is at least one of a camera, radar, LiDAR, and the like, for example.
- the external sensor 6 acquires information outside the host vehicle including the surrounding environment of the vehicle 1 (other vehicles, pedestrians, road shapes, traffic signs, obstacles, etc.), and outputs the information to the vehicle control unit 3. It is configured.
- the camera is, for example, a camera including an image sensor such as a charge-coupled device (CCD) or a complementary MOS (CMOS).
- CMOS complementary MOS
- the camera is a camera that detects visible light or an infrared camera that detects infrared rays.
- the radar is a millimeter wave radar, a microwave radar, a laser radar, or the like.
- LiDAR is an abbreviation for Light Detection and Ranging or Laser Imaging Detection and Ranging.
- LiDAR is a sensor that generally emits invisible light in front of it and acquires information such as the distance to the object, the shape of the object, the material of the object, and the color of the object based on the emitted light and the return light.
- the lamp 7 includes a head lamp and a position lamp provided at the front of the vehicle 1, a rear combination lamp provided at the rear of the vehicle 1, a turn signal lamp provided at the front or side of the vehicle, a driver for pedestrians and other vehicles. It is at least one of various lamps that inform the vehicle status of the vehicle.
- the HMI 8 includes an input unit that receives an input operation from the driver, and an output unit that outputs traveling information and the like to the driver.
- the input unit includes a steering wheel, an accelerator pedal, a brake pedal, an operation mode switching switch for switching the operation mode of the vehicle 1, and the like.
- the output unit is a display that displays various travel information.
- the GPS 9 is configured to acquire the current position information of the vehicle 1 and output the acquired current position information to the vehicle control unit 3.
- the wireless communication unit 10 is configured to receive travel information of other vehicles around the vehicle 1 from other vehicles and to transmit the travel information of the vehicle 1 to other vehicles (inter-vehicle communication).
- the wireless communication unit 10 is configured to receive infrastructure information from infrastructure equipment such as traffic lights and beacon lights, and to transmit travel information of the vehicle 1 to the infrastructure equipment (road-to-vehicle communication).
- the map information storage unit 11 is an external storage device such as a hard disk drive in which map information is stored, and is configured to output the map information to the vehicle control unit 3.
- the vehicle control unit 3 determines at least one of the steering control signal, the accelerator control signal, and the brake control signal based on the traveling state information, the surrounding environment information, the current position information, the map information, and the like. Generate one automatically.
- the steering actuator 12 is configured to receive a steering control signal from the vehicle control unit 3 and control the steering device 13 based on the received steering control signal.
- the brake actuator 14 is configured to receive a brake control signal from the vehicle control unit 3 and control the brake device 15 based on the received brake control signal.
- the accelerator actuator 16 is configured to receive an accelerator control signal from the vehicle control unit 3 and to control the accelerator device 17 based on the received accelerator control signal.
- the vehicle system 2 automatically controls the traveling of the vehicle 1.
- the vehicle control unit 3 when the vehicle 1 travels in the manual operation mode, the vehicle control unit 3 generates a steering control signal, an accelerator control signal, and a brake control signal according to the manual operation of the driver with respect to the accelerator pedal, the brake pedal, and the steering wheel.
- the steering control signal, the accelerator control signal, and the brake control signal are generated by the driver's manual operation, so that the traveling of the vehicle 1 is controlled by the driver.
- the operation mode includes an automatic operation mode and a manual operation mode.
- the automatic driving mode includes a fully automatic driving mode, an advanced driving support mode, and a driving support mode.
- the vehicle system 2 In the fully automatic driving mode, the vehicle system 2 automatically performs all traveling control of steering control, brake control, and accelerator control, and the driver is not in a state where the vehicle 1 can be driven.
- the vehicle system 2 In the advanced driving support mode, the vehicle system 2 automatically performs all travel control of steering control, brake control, and accelerator control, and the driver does not drive the vehicle 1 although it is in a state where the vehicle 1 can be driven.
- the vehicle system 2 In the driving support mode, the vehicle system 2 automatically performs some traveling control among the steering control, the brake control, and the accelerator control, and the driver drives the vehicle 1 under the driving support of the vehicle system 2.
- the vehicle system 2 In the manual operation mode, the vehicle system 2 does not automatically perform traveling control, and the driver drives the vehicle 1 without driving assistance from the vehicle system 2.
- the operation mode of the vehicle 1 may be switched by operating an operation mode changeover switch.
- the vehicle control unit 3 changes the driving mode of the vehicle 1 into four driving modes (fully automatic driving mode, advanced driving support mode, driving support mode, manual driving mode) according to the driver's operation on the driving mode changeover switch. ).
- the driving mode of the vehicle 1 is automatically set based on information on a travelable section where the autonomous driving vehicle can travel, a travel prohibition section where travel of the autonomous driving vehicle is prohibited, or information on an external weather condition. It may be switched.
- the vehicle control unit 3 switches the operation mode of the vehicle 1 based on these pieces of information.
- the driving mode of the vehicle 1 may be automatically switched by using a seating sensor, a face direction sensor, or the like. In this case, the vehicle control unit 3 switches the operation mode of the vehicle 1 based on output signals from the seating sensor and the face direction sensor.
- the vehicle 1 has, as external sensors 6, a front LiDAR 6f, a rear LiDAR 6b, a right LiDAR 6r, and a left LiDAR 6l.
- the front LiDAR 6f is configured to acquire information ahead of the vehicle 1.
- the rear LiDAR 6b is configured to acquire information behind the vehicle 1.
- the right LiDAR 6r is configured to acquire information on the right side of the vehicle 1.
- the left LiDAR 61 is configured to acquire information on the left side of the vehicle 1.
- the front LiDAR 6 f is provided at the front part of the vehicle 1
- the rear LiDAR 6 b is provided at the rear part of the vehicle 1
- the right LiDAR 6 r is provided at the right part of the vehicle 1
- the left LiDAR 6 l is the vehicle 1.
- the present invention is not limited to this example.
- the front LiDAR, the rear LiDAR, the right LiDAR, and the left LiDAR may be collectively arranged on the ceiling of the vehicle 1.
- the vehicle 1 has a right head lamp 7r and a left head lamp 7l as the lamp 7.
- the right headlamp 7 r is provided at the right portion of the front portion of the vehicle 1, and the left headlamp 7 l is provided at the left portion of the front portion of the vehicle 1.
- the right headlamp 7r is provided on the right side of the left headlamp 7l.
- the vehicle 1 has a front window 1f and a rear window 1b as window shields.
- the vehicle 1 has a cleaner system 100.
- the cleaner system 100 is a system that cleans objects to be cleaned provided outside the passenger compartment, that is, removes foreign matters such as water droplets, mud, and dust attached to these objects to be cleaned using a cleaning medium.
- the cleaner system 100 includes a front window washer nozzle (hereinafter referred to as front WW nozzle) 101, a rear window washer nozzle (hereinafter referred to as rear WW nozzle) 102, a front LiDAR cleaner nozzle (hereinafter referred to as front LC nozzle).
- rear LiDAR cleaner nozzle hereinafter referred to as rear LC nozzle
- right LiDAR cleaner nozzle hereinafter referred to as right LC nozzle
- left LiDAR cleaner nozzle hereinafter referred to as left LC nozzle
- a right headlamp cleaner nozzle hereinafter referred to as a right HC nozzle
- a left headlamp cleaner nozzle hereinafter referred to as a left HC nozzle
- the front WW nozzle 101 can be used for cleaning the front window 1f.
- the rear WW nozzle 102 can be used for cleaning the rear window 1b.
- the front LC nozzle 103 can clean the front LiDAR 6f.
- the rear LC nozzle 104 can wash the rear LiDAR 6b.
- the right LC nozzle 105 can wash the right LiDAR 6r.
- the left LC nozzle 106 can wash the left LiDAR 61.
- the right HC nozzle 107 can wash the right headlamp 7r.
- the left HC nozzle 108 can wash the left headlamp 7l.
- FIG. 3 is a block diagram of the cleaner system 100.
- the cleaner system 100 includes a tank 111, a pump 112 (an example of a single pump), an operation unit 115, and a control unit 116 (an example of a cleaner control unit).
- each of the nozzles 101 to 108 is configured to be able to discharge the cleaning liquid toward the object to be cleaned.
- the nozzles 101 to 108 are connected to the tank 111 via the pump 112.
- the pump 112 sends the cleaning liquid stored in the tank 111 to the nozzles 101 to 108, respectively.
- the operation unit 115 is a device that can be operated by the user of the vehicle 1.
- the operation unit 115 outputs a signal in response to a user operation, and this signal is input to the control unit 116.
- the operation unit 115 can be configured by a switch or the like provided in the vehicle interior.
- Each of the nozzles 101 to 108 is provided with an actuator that opens the nozzle and discharges the cleaning liquid to the object to be cleaned.
- the actuators provided in each of the nozzles 101 to 108 are electrically connected to the control unit 116.
- the control unit 116 is also electrically connected to the pump 112, the operation unit 115, and the vehicle control unit 3.
- control unit 116 when a signal for cleaning the front window 1f is input to the control unit 116, the control unit 116 operates the pump 112 to send the cleaning liquid from the tank 111 to the front WW nozzle 101, and operates the actuator of the front WW nozzle 101. Then, the cleaning liquid is discharged from the front WW nozzle 101.
- control unit 116 is configured to be able to operate the nozzles 101 to 108 so that the cleaning methods of the nozzles 101 to 108 (a plurality of cleaners for cleaning different cleaning objects) are different from each other. .
- a method of making the cleaning methods in the nozzles 101 to 108 different under the control of the control unit 116 will be described below by exemplifying the first to fourth embodiments.
- FIG. 4 is a timing chart for explaining the operation (operation mode A) according to the first embodiment of the cleaner system 100.
- the control unit 116 operates the pump 112 to send the cleaning liquid from the tank 111 to the front WW nozzle 101, and operates the actuator of the front WW nozzle 101.
- the cleaning liquid is discharged from the front WW nozzle 101, and the cleaning liquid is sent from the tank 111 to the LC nozzles 103 to 105 and the HC nozzles 107 and 108, and the actuators of these nozzles 103 to 108 are actuated to operate the nozzles 103.
- the cleaning liquid is discharged from ⁇ 108.
- control unit 116 discharges the cleaning liquid from the LC nozzles 103 to 106 and the HC nozzles 107 and 108 in conjunction with the discharge of the cleaning liquid from the front WW nozzle 101.
- the control unit 116 may cause the cleaning liquid to be discharged from the rear WW nozzle 102 together with the front WW nozzle 101.
- the control unit 116 operates the actuator of each nozzle so that the number of operations of the nozzles 101 to 108 with respect to the number of input operation signals (input number) differs depending on the type of the object to be cleaned.
- the operation mode A shown in FIG. 4 is an operation mode suitable for a case where the vehicle is operated in the fully automatic operation mode or the advanced operation support mode in the automatic operation mode.
- the control unit 116 operates the actuator of each nozzle so that the number of operations of the LC nozzles 103 to 106 is greater than the number of operations of the WW nozzles 101 and 102 and the HC nozzles 107 and 108 in response to the input of the operation signal.
- the control unit 116 operates the actuators of the LC nozzles 103 to 106 four times per four operation signals, while operating the actuators of the WW nozzles 101 and 102 and the actuators of the HC nozzles 107 and 108. Operate twice for every 4 signals.
- This operation mode A is particularly suitable when the vehicle is being driven automatically and the surroundings of the vehicle are bright (daytime).
- the number of operations of the LC nozzles 103 to 106 is controlled to be greater than the number of operations of the WW nozzles 101 and 102 and the HC nozzles 107 and 108 with respect to the input of the operation signal.
- the sensitivity of each LiDAR 6f, 6b, 6r, and 6l can be maintained while saving the cleaning liquid. it can.
- the number of operations of the LC nozzles 103 to 106 it is only necessary to control the number of operations of the LC nozzles 103 to 106 to be larger than the number of operations of the WW nozzles 101 and 102 and the HC nozzles 107 and 108.
- the number of operations is not limited to the example shown in FIG.
- the number of operations of the WW nozzles 101 and 102 may be different from the number of operations of the HC nozzles 107 and 108.
- the number of operations of the HC nozzles 107 and 108 is larger than the number of operations of the WW nozzles 101 and 102. Further, the number of operations of the front WW nozzle 101 and the number of operations of the rear WW nozzle 102 may be made different, and only one of the WW nozzles 101 and 102 may be operated in response to an operation signal input.
- FIG. 5 is a timing chart for explaining the operation (operation mode B) according to the second embodiment of the cleaner system 100.
- the operation mode B shown in FIG. 5 is an operation mode suitable when the vehicle is driven in the driving support mode.
- the control unit 116 increases the number of operations of the WW nozzles 101 and 102 more than the number of operations of the LC nozzles 103 to 106 in response to the input of the operation signal, and sets the number of operations of the LC nozzles 103 to 106 to the HC nozzle 107.
- 108 is controlled so that the operation of the actuator of each nozzle is increased.
- control unit 116 operates the actuators of the WW nozzles 101 and 102 four times per four actuation signals, operates the actuators of the LC nozzles 103 to 106 twice per four actuation signals, and sets the HC nozzle
- the actuators 107 and 108 are actuated once every four actuation signals.
- FIG. 6 is a timing chart for explaining the operation (operation mode C) according to the third embodiment of the cleaner system 100.
- the operation mode C shown in FIG. 6 is an operation mode suitable for the case where the vehicle is operated in the manual operation mode and in the daytime.
- the control unit 116 increases the number of times of operation of the WW nozzles 101 and 102 to the number of times of operation of the HC nozzles 107 and 108 with respect to the input of the operation signal, and sets the number of times of operation of the HC nozzles 107 and 108 to the LC nozzle 103.
- the operation of the actuator of each nozzle is controlled so as to be larger than the number of operations of .about.106.
- control unit 116 operates the actuators of the WW nozzles 101 and 102 four times per four actuation signals, operates the actuators of the HC nozzles 107 and 108 twice per four actuation signals, and sets the LC nozzle Actuators 103 to 106 are actuated once per four actuation signals.
- the number of operations of the WW nozzles 101 and 102 it is only necessary to control the number of operations of the WW nozzles 101 and 102 to be larger than the number of operations of the LC nozzles 103 to 106 and the HC nozzles 107 and 108. Is not limited to the example shown in FIG. For example, the number of operations of the LC nozzles 103 to 106 and the number of operations of the HC nozzles 107 and 108 may be the same.
- FIG. 7 is a timing chart for explaining the operation (operation mode D) according to the fourth embodiment of the cleaner system 100.
- the operation mode D shown in FIG. 7 is an operation mode suitable for the case where the vehicle is operated in the manual operation mode and at night.
- the control unit 116 increases the number of operations of the HC nozzles 107 and 108 more than the number of operations of the WW nozzles 101 and 102 with respect to the input of the operation signal, and sets the number of operations of the WW nozzles 101 and 102 to the LC nozzle 103.
- the operation of the actuator of each nozzle is controlled so as to be larger than the number of operations of .about.106.
- control unit 116 operates the actuators of the HC nozzles 107 and 108 four times per four actuation signals, operates the actuator of the WW nozzles 101 and 102 twice per four actuation signals, and sets the LC nozzle Actuators 103 to 106 are actuated once per four actuation signals.
- the highest priority is given to maintaining the illuminance of the light emitted from the left and right headlamps 7r and 7l in order to maintain a good front view of the vehicle.
- the It is also required to maintain the cleanliness of the front window 1f and the rear window 1b so that the driver can see the front view illuminated by the left and right headlamps 7r and 7l.
- the controller 116 controls the number of operations of the WW nozzles 101 and 102, the number of operations of the LC nozzles 103 to 106, and the HC. It is configured such that the magnitude relationship with the number of operations of the nozzles 107 and 108 can be changed. That is, in this cleaner system 100, a suitable magnitude relationship between the number of operations of the LC nozzles 103 to 106 and the number of operations of the WW nozzles 101 and 102 and / or the HC nozzles 107 and 108 corresponding to a plurality of operation modes is obtained. You can choose.
- the cleaner system 100 can be operated so as to be suitable for various scenes, the usability of the cleaner system 100 is improved.
- the single tank 111 and the single pump 112 can cause the cleaning liquid to be discharged to the WW nozzles 101 and 102, the LC nozzles 103 to 106, and the HC nozzles 107 and 108 having different cleaning objects, respectively. Can be simplified and the cost can be reduced.
- the method of making the cleaning methods different for the nozzles 101 to 108 is not limited to the method of making the number of operations different for the nozzles 101 to 108 as described in the first to fourth embodiments.
- the control unit 116 may vary the cleaning medium injection time, the injection amount, the injection pressure, the injection area, and the like in the nozzles 101 to 108. Specifically, for example, the control unit 116 determines that the ejection pressure of the cleaning medium from the front LC nozzle 103, the rear LC nozzle 104, the right LC nozzle 105, and the left LC nozzle 106 is the right HC nozzle 107 and the left HC nozzle 108. Is set to be higher than the jetting pressure of the cleaning medium.
- LiDAR 6f, 6b, 6r, and 6l are required to have a higher degree of cleanliness than left and right headlamps 7r and 7l. Therefore, it is preferable to clean the LiDAR 6f, 6b, 6r, and 6l by spraying a cleaning liquid at a higher pressure.
- the method of making the cleaning method different between the nozzles 101 to 108 is not limited to the method of making the cleaning method different by the control by the control unit 116 as described in the above embodiments.
- a method for different cleaning methods a method for different cleaning liquid injection methods from nozzles will be described with reference to FIGS.
- FIG. 8 and FIG. 9 are schematic diagrams for explaining a cleaning liquid injection method from a cleaner nozzle provided in the cleaner system 100.
- FIG. 8 is a diagram showing an injection method using HC nozzles
- FIG. 9 is a diagram showing an injection method using LC nozzles.
- FIG. 8 illustrates the right HC nozzle 107 of the HC nozzles 107 and 108.
- FIG. 9 illustrates the front LC nozzle 103 among the LCs 103 to 106.
- the right HC nozzle 107 includes a substantially fan-shaped opening 107a.
- the cleaning liquid is ejected radially from the opening 107a.
- the ejection width of the cleaning liquid at a distance L (mm) from the opening 107a to a predetermined position in the cleaning liquid ejection direction is ⁇ (mm).
- the front LC nozzle 103 shown in FIG. 9 is configured as a fluidic nozzle (diffusion spray nozzle).
- a fluidic nozzle is a nozzle that performs control by causing a fluid flow to interfere and deflecting its direction.
- the front LC nozzle 103 as a fluidic nozzle can change the jet direction of the cleaning liquid to the left and right by deflecting the flow path of the cleaning liquid.
- the front LC nozzle 103 has a configuration as a nozzle tip (diffusion fluid element) 130 therein.
- a flow path 131 In the nozzle chip 130, a flow path 131, an oscillation chamber 132, a pair of feedback flow paths 133 and 134, and a diffusion injection port 135 are formed.
- the oscillation chamber 132 is formed continuously with the flow path 131, and a cleaning liquid is supplied from the flow path 131.
- the pair of feedback flow paths 133 and 134 are provided on the left and right sides of the oscillation chamber 132, respectively.
- the feedback flow paths 133 and 134 have inlets 133A and 134A that open to the oscillation chamber 132 on the outlet side of the oscillation chamber 132, and outlets 133B and 134B that open to the oscillation chamber 132 on the inlet side of the oscillation chamber 132. .
- the feedback flow paths 133 and 134 branch and guide a part of the cleaning liquid fed from the flow path 131 to the oscillation chamber 132 from the respective inlets 133A and 134A to the respective outlets 133B and 134B, and oscillate again. It is configured to return to the chamber 132. That is, the cleaning liquid is fed back and distributed through the feedback flow paths 133 and 134, respectively.
- the cleaning liquid guided to the feedback flow paths 133 and 134 becomes a so-called “feedback control flow”, and the cleaning liquid flowing in the oscillation chamber 132 is self-oscillated, and the cleaning liquid is oscillated left and right from the diffusion injection port 135 to perform diffusion injection.
- the front LC nozzle 103 includes the fluidic nozzle tip 130, so that the cleaning liquid can be jetted at a high pressure while vibrating the LiDAR 6f from side to side.
- the cleaning liquid injection width at a distance L (mm) from the diffusion injection port 135 to a predetermined position in the cleaning liquid injection direction is ⁇ (mm).
- the ejection width ⁇ of the front LC nozzle 103 is preferably set to be shorter than the ejection width ⁇ of the right HC nozzle 107. Thereby, the front LC nozzle 103 can eject the cleaning liquid at a higher pressure than the right HC nozzle 107.
- FIG. 11 is a block diagram of a cleaner system 200 according to the sixth embodiment.
- the cleaner system 200 includes a front LiDAR cleaner air nozzle 203 (hereinafter referred to as a front LC air nozzle 203) and a rear LiDAR cleaner air nozzle 204 (hereinafter referred to as a rear LC air nozzle 204) in addition to the nozzles 101 to 108, the tank 111, the pump 112, and the like. ), A right LiDAR cleaner air nozzle 205 (hereinafter referred to as a right LC air nozzle 205), a left LiDAR cleaner air nozzle 206 (hereinafter referred to as a left LC air nozzle 206), and an air pump 212.
- a front LiDAR cleaner air nozzle 203 hereinafter referred to as a front LC air nozzle 203
- a rear LiDAR cleaner air nozzle 204 hereinafter referred to as a rear LC air nozzle 204
- the front LC air nozzle 203, the rear LC air nozzle 204, the right LC air nozzle 205, and the left LC air nozzle 206 are connected to a compressed air generation device 212.
- the compressed air generation device 212 compresses air (air) taken from the outside, and sends the compressed air to the LC air nozzles 203 to 206, respectively.
- the front LC air nozzle 203 is provided in the vicinity of the front LC nozzle 103 and can inject compressed air toward the front LiDAR 6f.
- the rear LC air nozzle 204 is provided in the vicinity of the rear LC nozzle 104 and can inject compressed air toward the rear LiDAR 6b.
- the right LC air nozzle 205 is provided in the vicinity of the right LC nozzle 105 and can inject compressed air toward the right LiDAR 6r.
- the left LC air nozzle 206 is provided in the vicinity of the left LC nozzle 106 and can inject compressed air toward the left LiDAR 6l.
- FIG. 12 is a timing chart for explaining the operation (operation mode E) of the cleaner system 200.
- the operation mode E shown in FIG. 12 is an operation mode suitable when the vehicle is driven in the fully automatic driving mode or the advanced driving support mode.
- the controller 116 operates the LC nozzles 103 to 104 more frequently than the WW nozzles 101 and 102 and the HC nozzles 107 and 108 as in the operation mode A according to the first embodiment.
- the LC air nozzles 203 to 206 are operated after the LC nozzles 103 to 106 are operated.
- the control unit 116 preferably operates the compressed air generating device 212 after the injection of the cleaning liquid by the LC nozzles 103 to 106 is completed, and starts the injection of compressed air by the LC air nozzles 203 to 206.
- the cleaner system 200 is configured so that compressed air can be supplied to the LiDARs 6f, 6b, 6r, and 6l together with the cleaning liquid. If the cleaning liquid remains in LiDAR 6f, 6b, 6r, 6l, information outside the vehicle cannot be acquired properly, and the safety during automatic driving may be impaired. Therefore, it is possible to reliably prevent the cleaning liquid from remaining on the sensor surface by injecting compressed air separately from the cleaning liquid to an external sensor such as LiDAR 6f, 6b, 6r, 6l, etc., where the cleaning liquid is likely to be a problem. it can.
- a method for changing the type of cleaning liquid, the presence or absence of a wiper, and the presence or absence of a check valve can be employed.
- FIG. 13 is a block diagram according to cleaner systems 100A and 100B according to the seventh embodiment.
- the cleaner system 100A includes a front WW nozzle 101, a front LC nozzle 103, a right LC nozzle 105, a left LC nozzle 106, a right HC nozzle 107, a left HC nozzle 108, a front tank 111A, a front pump 112A ( An example of a single pump) and a control unit 116A (an example of a cleaner control unit).
- the front WW nozzle 101, the front LC nozzle 103, the right LC nozzle 105, the left LC nozzle 106, the right HC nozzle 107, and the left HC nozzle 108 are connected to the front tank 111A via the front pump 112A.
- the front pump 112A sends the cleaning liquid stored in the front tank 111A to the nozzles 101, 103, and 105 to 108, respectively.
- the cleaner system 100B includes a rear WW nozzle 102, a rear LC nozzle 104, a rear tank 113, a rear pump 114 (an example of a single pump), and a control unit 116B (an example of a cleaner control unit).
- the rear WW nozzle 102 and the rear LC nozzle 104 are connected to a rear tank 113 via a rear pump 114.
- the rear pump 114 sends the cleaning liquid stored in the rear tank 113 to the rear WW nozzle 102 and the rear LC nozzle 104, respectively.
- the cleaner system may be divided into a front part and a rear part of the vehicle 1.
- the control unit 116A can change the magnitude relationship among the number of operations of the front WW nozzle 101, the number of operations of the LC nozzles 103 and 105 to 106, and the number of operations of the HC nozzles 107 and 108. It is configured.
- the control unit 116B is configured so that the magnitude relationship between the number of operations of the rear WW nozzle 102 and the number of operations of the rear LC nozzle 104 can be changed.
- each of the cleaner systems 100A and 100B each having a single pump 112A and 114 can be operated in a manner suitable for various scenes, thus simplifying the system and enhancing its usability. Yes.
- the nozzles 101 to 108 may be connected to different tanks. Alternatively, the nozzles 101 to 108 may be connected to a common tank for each type to be cleaned. For example, the LiDAR nozzles 105 to 108 may be connected to a common first tank, and the lamp nozzles 107 and 108 may be connected to a second tank different from the first tank. Alternatively, the nozzles 101 to 108 may be connected to a common tank for each position to be cleaned. For example, the front WW nozzle 101 and the front LC nozzle 103 are connected to a common front tank, the right LC nozzle 105 and the right HC nozzle 107 are connected to a common right tank, and the rear WW nozzle 102 and the rear LC nozzle 104 are common.
- the left LC nozzle 106 and the left HC nozzle 108 may be connected to a common left tank connected to the rear tank. Also in these cases, by using a single pump so that the nozzles 101 to 108 can be operated so that the cleaning methods of the nozzles 101 to 108 are different from each other according to the object to be cleaned, the usability is improved. A good cleaner system can be provided.
- the driving mode of the vehicle has been described as including the fully automatic driving mode, the advanced driving support mode, the driving support mode, and the manual driving mode.
- the driving mode of the vehicle includes these four modes. Should not be limited to.
- the driving mode of the vehicle may include at least one of these four modes.
- the driving mode of the vehicle may include only the fully automatic driving mode.
- the classification and display form of the driving mode of the vehicle may be changed as appropriate in accordance with laws and regulations concerning automatic driving in each country.
- the definitions of “fully automated driving mode”, “advanced driving support mode”, and “driving support mode” described in the description of the present embodiment are merely examples, and laws or regulations relating to automatic driving in each country or In accordance with the rules, these definitions may be changed as appropriate.
- the cleaner system 100 is mounted on a vehicle that can be automatically driven has been described.
- the cleaner system 100 may be mounted on a vehicle that cannot be automatically driven.
- the nozzles 103 to 106 for cleaning LiDAR have been described as nozzles for cleaning the external sensor, but the present invention is not limited to this.
- the cleaner system 100 may have a nozzle for cleaning the camera, a nozzle for cleaning the radar, or the like instead of the nozzles 103 to 106, or may be provided together with the nozzles 103 to 106.
- a plurality of sensor cleaners respectively corresponding to a plurality of external sensors (for example, LiDAR and camera) having different detection methods and a plurality of external sensors (for example, front LiDAR and rear LiDAR) having different mounting positions in the vehicle 1.
- the controller 116 may operate these sensor cleaners so that the cleaning methods of the plurality of sensor cleaners are different from each other.
- external sensors having different detection methods such as LiDAR and cameras require different scenes. Therefore, by changing the cleaning method for each type of external sensor, it becomes easy to maintain cleanliness for each sensor corresponding to a specific scene.
- an external sensor such as LiDAR may have a detection surface and a cover that covers the detection surface.
- the nozzle that cleans the external sensor may be configured to clean the detection surface, or may be configured to clean the cover that covers the sensor.
- the cleaning medium discharged by the cleaner system 100 includes air, water, or a cleaning liquid containing a detergent.
- the cleaning media discharged to the front / rear window, headlamp, and LiDAR may be different or the same.
- each of the nozzles 101 to 108 is provided with a normally closed valve, and the pump is operated so that the pressure between the tank and the nozzles 101 to 108 is always high, and the valves provided in the nozzles 101 to 108 are controlled.
- the cleaning medium may be discharged from the nozzles 101 to 108 by opening the part 116.
- the nozzles 101 to 108 are provided with one or more discharge holes for discharging the cleaning medium.
- the nozzles 101 to 108 may be provided with one or more discharge holes for discharging the cleaning liquid and one or more discharge holes for discharging the air.
- Each of the nozzles 101 to 108 may be provided individually, or a plurality of nozzles may be configured as a unit.
- the right LC nozzle 105 and the right HC nozzle 107 may be configured as a single unit.
- the right LC nozzle 105 and the right HC nozzle 107 may be configured as a single unit with respect to the aspect in which the right head lamp 7r and the right LiDAR 6r are integrated.
- the input of the operation signal to the control unit 116 is based on a signal output from the operation unit 115 such as a switch operated by the user.
- a dirt sensor mounted on each part of the vehicle A signal that is output when dirt is detected may be input to the control unit 116.
- a signal output when the dirt sensor detects dirt is input to the vehicle control unit 3 (ECU or automatic operation control unit), and a signal for operating at least one of the various cleaner nozzles from the vehicle control unit 3 It may be configured to be input to 116.
- a signal output when the sensor detects dirt may be input to the vehicle control unit 3, and a signal for operating at least one of the various cleaners may be input from the vehicle control unit 3 to the various cleaners.
- the control unit 116 is mounted as a part of the vehicle control unit 3.
- FIG. 14 is a block diagram of a cleaner system 1100 according to the eighth to eleventh embodiments.
- the cleaner system 1100 includes a front tank 1111, a front pump 1112, a rear tank 1113, a rear pump 1114, an operation unit 1115, and a control unit 1116 (an example of a cleaner control unit).
- each of the nozzles 1101 to 1108 is configured to be able to discharge the cleaning liquid toward the object to be cleaned.
- the front WW nozzle 1101, the front LC nozzle 1103, the right LC nozzle 1105, the left LC nozzle 1106, the right HC nozzle 1107, and the left HC nozzle 1108 are connected to the front tank 1111 via the front pump 1112.
- the front pump 1112 sends the cleaning liquid stored in the front tank 1111 to the front WW nozzle 1101, the front LC nozzle 1103, the right LC nozzle 1105, the left LC nozzle 1106, the right HC nozzle 1107, and the left HC nozzle 1108.
- the rear WW nozzle 1102 and the rear LC nozzle 1104 are connected to the rear tank 1113 via the rear pump 1114.
- the rear pump 1114 sends the cleaning liquid stored in the rear tank 1113 to the rear WW nozzle 1102 and the rear LC nozzle 1104.
- the operation unit 1115 is a device that can be operated by the user of the vehicle 1.
- the operation unit 1115 outputs a signal in response to a user operation, and this signal is input to the control unit 1116.
- the operation unit 1115 can be configured by a switch or the like provided in the vehicle interior.
- Each of the nozzles 1101 to 1108 is provided with an actuator that opens the nozzle and discharges the cleaning liquid to the object to be cleaned.
- the actuators provided in the respective nozzles 1101 to 1108 are electrically connected to the control unit 1116.
- the control unit 1116 is also electrically connected to the front pump 1112, the rear pump 1114, the operation unit 1115, and the vehicle control unit 3.
- control unit 1116 when a signal for cleaning the front window 1 f is input to the control unit 1116, the control unit 1116 operates the front pump 1112 to send cleaning liquid from the front tank 1111 to the front WW nozzle 1101, and the actuator of the front WW nozzle 1101. Is operated to discharge the cleaning liquid from the front WW nozzle 1101.
- FIG. 15 is a schematic diagram of a cleaner system 1100 according to the eighth embodiment.
- a plurality of pumps (WW front pump 1112A, LC / HC front pump 1112B) are attached to the front tank 1111 as an example of the front pump 1112.
- the WW front pump 1112A (an example of a first pump) is a pump for supplying the cleaning liquid to the front WW nozzle 1101, and is provided, for example, on the rear side of the front tank 1111.
- LC / HC front pump 1112B (an example of a second pump) is a pump for supplying cleaning liquid to front LC nozzle 1103, right LC nozzle 1105, left LC nozzle 1106, right HC nozzle 1107, and left HC nozzle 1108. For example, it is provided on the front side of the front tank 1111.
- the WW front pump 1112A and the front WW nozzle 1101 are connected by a pipe line 1120 (an example of a first pipe line). Also, between LC / HC front pump 1112B and front LC nozzle 1103, right LC nozzle 1105, left LC nozzle 1106, and between LC / HC front pump 1112B and right HC nozzle 1107, left HC nozzle 1108. Are connected to each other by a pipe line 1122 (an example of a second pipe line).
- a branch 1124 is provided in the middle of the pipe 1122 to branch the second pipe 1122 to the LC nozzles 1103, 1105, 1106 side and the HC nozzles 1107, 1108 side.
- a switching valve 1126 is provided inside the branch portion 1124.
- the switching valve 1126 is connected to the control unit 1116, receives a signal from the control unit 1116, and causes the cleaning liquid flowing through the pipeline 1122 to flow into the pipeline 1122 ⁇ / b> A on the LC nozzles 1103, 1105, 1106 side. And can be appropriately switched between the case of flowing into the pipe 1122B on the HC nozzles 1107 and 1108 side. In this case, while the cleaning liquid is ejected from the LC nozzles 1103, 1105, and 1106, the cleaning liquid is not ejected from the HC nozzles 1107 and 1108 (and vice versa).
- the LC nozzle 1103, 1105, 1106 side pipe line 1122A and the HC nozzle 1107, 1108 side pipe line 1122B are always provided. It is good also as a structure made to flow in.
- a pipeline 1122 (including 1122A and 1122B) for supplying the cleaning liquid from the front tank 1111 to the LC nozzles 1103, 1105, 1106 and the HC nozzles 1107, 1108 supplies the cleaning liquid from the front tank 1111 to the front WW nozzle 1101. It is preferably thicker than the pipe line 1120 to be supplied. Further, the LC nozzle side pipe line 1122 is preferably configured to be shorter than the WW nozzle side pipe line 1120. That is, the length of the conduit 1122 (specifically, the length from the LC / HC front pump 1112B to each of the LC nozzles 1103, 1105, 1106) is set to be shorter than the length of the conduit 1120. It is preferable.
- the WW front pump 1112A and LC / HC front pump 1112B are connected to the control unit 1116.
- the control unit 1116 includes the WW front pump 1112A and the WW front pump 1112A so that the spray pressure of the cleaning liquid sprayed from the LC nozzles 1103, 1105, and 1106 is higher than the spray pressure of the cleaning liquid sprayed from the front WW nozzle 1101.
- the LC / HC front pump 1112B is controlled.
- the control unit 1116 differs in the cleaning liquid injection time, the number of injections, and the like between the front WW nozzle 1101 and the LC nozzles 1103, 1105, and 1106.
- control the WW front pump 1112A and the LC / HC front pump 1112B It is also possible to control the WW front pump 1112A and the LC / HC front pump 1112B.
- the control unit 1116 makes the spraying time of the cleaning liquid sprayed from each LC nozzle 1103, 1105, 1106 longer than the spraying time of the cleaning liquid sprayed from the previous WW nozzle 1101, or the LC nozzles 1103, 1105, It is preferable that the number of times of cleaning liquid sprayed from 1106 is greater than the number of times of cleaning liquid sprayed from the previous WW nozzle 1101.
- a pump control unit that controls the WW front pump 1112A and the LC / HC front pump 1112B is provided separately from the control unit 1116, and receives a signal from the vehicle control unit 3 or the control unit 1116, thereby controlling the pump.
- the unit may control the injection pressure, the injection time, the number of injections, and the like of the cleaning liquid by the WW front pump 1112A and the LC / HC front pump 1112B.
- the rear pump 1114 includes a plurality of pumps (a WW rear pump and an LC rear pump), and the WW rear pump and the LC rear pump are attached to different positions of the rear tank 1113. Yes.
- the pipe connecting the rear pump for WW and the rear WW nozzle 1102 is provided separately from the pipe connecting the rear pump for LC and the rear LC nozzle 1104, and the rear LC nozzle 1104 side is provided.
- This pipe line is preferably configured to be thicker and / or shorter than the pipe line on the rear WW nozzle 1102 side.
- the WW post-pump and the LC post-pump are connected to the control unit 1116, and the control unit 1116 is configured so that the cleaning liquid injection pressure from the rear LC nozzle 1104 is higher than the cleaning liquid injection pressure from the rear WW nozzle 1102. Thus, it is preferable to control the WW post-pump and the LC post-pump.
- LiDAR 6f, 6b, 6r, and 6l require higher cleanliness than the front window 1f, rear window 1b, and headlamps 7r and 7l.
- a pipe 1120 for connecting the front WW nozzle 1101 and the WW front pump 1112A to supply the cleaning liquid from the front tank 1111 to the front WW nozzle 1101 is provided for each LC.
- the nozzles 1103, 1105, 1106 and the LC / HC front pump 1112B are connected to be different from the pipes 1122 for supplying the cleaning liquid from the front tank 1111 to the LC nozzles 1103, 1105, 1106 (provided separately). It is configured.
- a pipe for supplying the cleaning liquid from the rear tank 1113 to the rear WW nozzle 1102 by connecting the rear WW nozzle 1102 and the rear WW pump is connected between the rear LC nozzle 1104 and the rear LC pump.
- the cleaning liquid spraying pressure, spraying time, number of spraying, and the like can be made different between the WW nozzles 1101 and 1102 and the LC nozzles 1103 to 1106, so that each cleaning object can be cleaned with an appropriate cleaning method. It becomes.
- this cleaner system 1100 since it is not necessary to provide a tank for every cleaning object, the system can be simplified and the cost can be reduced.
- the cleaner system 1100 when the length L of the pipe line is long, the pressure loss ⁇ P increases. On the other hand, when the length L of the pipe line is short, the pressure loss ⁇ P becomes small. Further, when the pipe diameter d is large, the pressure loss ⁇ P is small, and when the pipe diameter d is small, the pressure loss ⁇ P is large. Therefore, in the cleaner system 1100, the pipes (for example, the pipe line 1122) for supplying the cleaning liquid to the LC nozzles 1103 to 1106 are connected to the WW nozzles 1101, 1102 and the like (for example, the pipe line (for example, the pipe line 1122)). It is thicker and / or shorter than the conduit 1120). As a result, the cleaning liquid can be ejected from the LC nozzles 1103 to 1106 at a higher pressure than the WW nozzles 1101 and 1102.
- control unit 1116 controls the front pump 1112 (WW front pump 1112A and LC / HC front pump 1112B) and the rear pump 1114 (WW rear pump and LC rear pump) to control each LC nozzle. It is also possible to inject the cleaning liquid from 1103 to 1106 to the LiDARs 6f, 6b, 6r, and 6l at a higher pressure.
- the nozzles 1101, 1103, 1105 to 1108 are connected to the front tank 1111 and the nozzles 1102, 1104 are connected to the rear tank 1113 .
- the nozzles 1101 to 1108 may be connected to a single tank.
- the pipes connecting the LC nozzles 1103 to 1106 and the tank are provided separately from the pipes connecting the WW nozzles 1101 and 1102 and the tank, and the pipes on the LC nozzle side are provided.
- the path is configured to be thicker and / or shorter than the pipe line on the WW nozzle side.
- the nozzles 1101 to 1108 may be connected to a common tank for each position to be cleaned.
- the front WW nozzle 1101 and the front LC nozzle 1103 are connected to a common front tank
- the right LC nozzle 1105 and the right HC nozzle 1107 are connected to a common right tank
- the rear WW nozzle 1102 and the rear LC nozzle 1104 are shared.
- the left LC nozzle 1106 and the left HC nozzle 1108 may be connected to a common left tank connected to the rear tank.
- the pipe connecting the common front tank and the front WW nozzle 1101 is different from the pipe connecting the common front tank and the front LC nozzle 1103, and the front The LC nozzle 1103 side pipe is configured to be thicker and / or shorter than the front WW nozzle 1101 side pipe.
- the pipe connecting the common rear tank and the rear WW nozzle 1102 is different from the pipe connecting the common rear tank and the rear LC nozzle 1104, and the rear LC nozzle 1104 side
- the pipe is configured to be thicker and / or shorter than the pipe on the rear WW nozzle 1102 side.
- each of the nozzles 1101 to 1108 is connected to an individual pump, and the controller 1116 controls each pump individually to control the discharge of the cleaning medium from the nozzles 1101 to 1108. May be.
- each of the nozzles 1101 to 1108 may be connected to different tanks, or may be connected to a common tank.
- the pipe connecting the pump and the WW nozzle is different from the pipe connecting the pump and the LC nozzle, and the LC nozzle side pipe is connected to the WW nozzle side pipe. It is preferable to configure it to be thicker and / or shorter.
- the nozzles 1103 to 1106 for cleaning LiDAR have been described as nozzles for cleaning the external sensor, but the present invention is not limited to this.
- the cleaner system 1100 may have a nozzle for cleaning the camera, a nozzle for cleaning the radar, or the like instead of the nozzles 1103 to 1106, or may have the nozzles 1103 to 1106.
- a plurality of sensor cleaners respectively corresponding to a plurality of external sensors (for example, LiDAR and camera) having different detection methods and a plurality of external sensors (for example, front LiDAR and rear LiDAR) having different mounting positions in the vehicle 1.
- control unit 1116 may make the pipe lines between the plurality of sensor cleaners and the pumps different from each other.
- external sensors having different detection methods such as LiDAR and cameras require different scenes. Therefore, by varying the pipe line for each type of external sensor, it is possible to vary the cleaning liquid spray pressure, spray time, number of sprays, etc., making it easier to maintain cleanliness for each sensor according to a specific scene. .
- FIG. 16 is a schematic diagram showing LiDAR and an example (a ninth example) of an LC nozzle that injects a cleaning liquid into LiDAR.
- the front LiDAR 6 f of the plurality of LiDARs 6 f, 6 b, 6 r, 6 l is illustrated and illustrated together with the front LC nozzle 2103.
- the front LiDAR 6f has, for example, a horizontally-long rectangular cleaning target surface P as shown in FIG.
- the front LC nozzle 2103 is attached so as to be movable with respect to the cleaning target surface P of the front LiDAR 6f.
- the front LC nozzle 2103 is configured to be rotatable within the rotation angle ⁇ about the rotation shaft 2103S by a movable device (not shown).
- the main body part of the front LC nozzle 2103 may be fixed, and only the part of the opening 2103A may be configured to be rotatable.
- a dirt sensor 2130 (an example of a dirt detection unit) for detecting the presence or absence of dirt on the surface P to be cleaned of the front LiDAR 6f is provided.
- the dirt sensor 2130 is connected to the control unit 2116, and transmits a dirt signal to the control unit 2116 when it detects the dirt on the surface P to be cleaned of the previous LiDAR 6f.
- the dirt sensor 2130 can divide the cleaning target surface P of the previous LiDAR 6f into a plurality of areas and detect which area is contaminated. Specifically, the surface P to be cleaned is partitioned into three regions, a right region R1, a central region R2, and a left region R3, in the left-right direction.
- the control unit 2116 Based on the dirt signal received from the dirt sensor 2130, the control unit 2116 opens the opening 2103A of the front LC nozzle 2103 in an area determined to be contaminated among the plurality of areas R1 to R3 of the surface P to be cleaned.
- the front LC nozzle 2103 is moved so that For example, when it is determined that the right region R1 is contaminated among the plurality of regions R1 to R3, as shown in FIG. 17A, the control unit 2116 has the opening 2103A of the front LC nozzle 2103 in the right region.
- the front LC nozzle 2103 is rotated around the rotation shaft 2103S so as to face R1, and the cleaning liquid is ejected from the front LC nozzle 2103 toward the right region R1.
- the control unit 2116 When it is determined that the right region R1 and the left region R3 are contaminated, the control unit 2116 first causes the front LC nozzle 2103 so that the opening 2103A of the front LC nozzle 2103 faces the right region R1. And the front LC nozzle 2103 is rotated so that the opening 2103A of the front LC nozzle 2103 faces the left region R3 as shown in FIG. 17B after the cleaning liquid is ejected from the front LC nozzle 2103 toward the right region R1. Then, the cleaning liquid is ejected from the front LC nozzle 2103 toward the left region R3.
- control unit 2116 can spray the cleaning liquid only on the region where the dirt is attached, that is, the region to be cleaned, among the plurality of regions R1 to R3 of the surface P to be cleaned of the previous LiDAR 6f. . That is, the control unit 2116 operates the movable front LC nozzle 2103 so that the cleaning strength for the region to be cleaned among the plurality of regions R1 to R3 is different from the cleaning strength for the region that is not the cleaning target. Accordingly, since the cleaning liquid can be efficiently ejected to the area to be cleaned in the surface P to be cleaned, the cleanness of the previous LiDAR 6f that is the cleaning target can be maintained while saving the cleaning liquid. .
- the dirt sensor 2130 can detect the degree of dirt (dirt degree) attached to the surface P to be cleaned, and can send a dirt signal including dirt degree information to the control unit 2116.
- the control unit 2116 receives the stain level information received from the stain sensor 2130. Based on the above, it is possible to vary the spraying pressure, spraying time, and spraying number of the cleaning liquid from the previous LC nozzle 2103 according to the degree of contamination in each region of the surface P to be cleaned.
- the control unit 2116 sets the ejection pressure of the cleaning liquid from the front LC nozzle 2103 to the right area R1. It can be made higher than the spraying pressure of the cleaning liquid for the left region R3. Similarly, the control unit 2116 can lengthen the cleaning liquid injection time to the right region R1 or increase the number of cleaning liquid injections.
- the controller 2116 causes the opening 2103A of the front LC nozzle 2103 to be in the right region R1, as shown in FIG. If the front LC nozzle 2103 is moved so as to face the central region R2 and the left region R3 in order, the cleaning liquid is sequentially sprayed toward the plurality of regions R1 to R3 so that the cleaning liquid is sprayed over the entire surface to be cleaned P. Good.
- FIG. 18 is a schematic diagram showing the front LiDAR 6f and the front LC nozzle 2203 according to the tenth embodiment.
- the front LC nozzle 2203 according to the tenth embodiment includes a plurality of (here, three) openings 2203A to 2203C.
- the openings 2203A to 2203C are arranged so as to face each of the plurality of regions R1 to R3 of the surface P to be cleaned of the front LiDAR 6f.
- the opening 2203A is provided in the direction toward the right region R1 of the surface to be cleaned P
- the opening 2203B is provided in the direction toward the center region R2 of the surface to be cleaned P
- the opening 2203C is It is provided in the direction toward the left region R3 of the surface P to be cleaned.
- the control unit 2116 opens the opening of the front LC nozzle 2203 corresponding to the area determined to be contaminated among the plurality of areas R 1 to R 3 of the surface P to be cleaned.
- the front LC nozzle 2203 can be actuated to spray the cleaning liquid from the nozzle.
- the control unit 2116 supplies the cleaning liquid from the opening 2203A of the front LC nozzle 2203 corresponding to the right region R1. Injected toward the right region R1. If it is determined that dirt is attached to the right region R1 and the left region R3, as shown in FIG.
- the control unit 2116 opens the opening 2203A and the left region R3 corresponding to the right region R1.
- the cleaning liquid is sprayed from the corresponding opening 2203C toward the right region R1 and the left region R3.
- the control unit 2116 can spray the cleaning liquid only on the region to be cleaned in the surface to be cleaned P of the previous LiDAR 6f. As a result, the cleaning liquid can be efficiently ejected onto the area to be cleaned of the surface P to be cleaned, and thus the cleanliness of the surface P to be cleaned can be maintained while saving the cleaning liquid.
- the control unit 2116 uses the contamination level information received from the contamination sensor 2130. Based on this, the spraying pressure, spraying time, and spraying number of the cleaning liquid from the openings 2203A to 2203C can be made different from each other according to the degree of contamination in each region of the cleaning target surface P. For example, when the dirt sensor 2130 determines that the degree of dirt in the right region R1 is higher than the degree of dirt in the left region R3, the control unit 2116 sets the jet pressure of the cleaning liquid from the opening 2203A to the right region R1 to the left. It is possible to increase the cleaning liquid spray pressure from the opening 2203C to the region R3, to increase the cleaning liquid spray time, or to increase the number of cleaning liquid sprays.
- control unit 2116 controls the corresponding regions R1 from the openings 2203A to 2203C of the front LC nozzle 2203 as shown in FIG. Each of the cleaning liquids may be sprayed toward ⁇ R3.
- FIG. 20 is a schematic diagram showing the front LiDAR 6f and a plurality of front LC nozzles according to the eleventh embodiment.
- the plurality of front LC nozzles 2303A to 2303C according to the eleventh embodiment are arranged corresponding to each of the plurality of regions R1 to R3 of the surface P to be cleaned of the front LiDAR 6f.
- the front LC nozzle 2303 ⁇ / b> A is disposed at a position corresponding to the right region R ⁇ b> 1 of the cleaning target surface P, for example, a position facing the left side surface of the cleaning target surface P.
- the front LC nozzle 2303B is arranged at a position corresponding to the central region R2 of the surface to be cleaned P, for example, a position facing the upper surface of the surface to be cleaned P.
- the front LC nozzle 2303C is disposed at a position corresponding to the left region R3 of the cleaning target surface P, for example, a position facing the right side surface of the cleaning target surface P.
- the control unit 2116 Based on the dirt signal from the dirt sensor 2130, the control unit 2116 receives from the previous LC nozzles 2303A to 2303C corresponding to the areas determined to be contaminated among the plurality of areas R1 to R3 of the surface P to be cleaned. Each front LC nozzle 2303A-2303C can be actuated to spray the cleaning liquid. For example, when it is determined that the right region R1 is contaminated among the plurality of regions R1 to R3, the control unit 2116 supplies the cleaning liquid from the front LC nozzle 2303A corresponding to the right region R1 to the right region R1. Inject towards. When it is determined that the right region R1 and the left region R3 are contaminated, as shown in FIG.
- the control unit 2116 controls the front LC nozzle 2303A and the left region R3 corresponding to the right region R1.
- the cleaning liquid is ejected from the front LC nozzle 2303C corresponding to the right region R1 and the left region R3, respectively.
- the control unit 2116 can spray the cleaning liquid only on the region to be cleaned in the cleaning target surface P of the previous LiDAR 6f. That is, the control unit 2116 controls the plurality of front LC nozzles 2303A to 2303C so that the cleaning strength for the region to be cleaned among the plurality of regions R1 to R3 of the previous LiDAR 6f is different from the cleaning strength for the region that is not the cleaning target. Spray the cleaning solution. Accordingly, since the cleaning liquid can be efficiently ejected to the area to be cleaned in the surface to be cleaned P, the cleanliness of the surface to be cleaned P can be maintained while saving the cleaning liquid.
- the control unit 2116 responds to the degree of contamination in each region R1 to R3 of the surface P to be cleaned based on the degree of contamination information received from the contamination sensor 2130.
- the spray pressure, spray time, and number of sprays of the cleaning liquid from the front LC nozzles 2303A to 2303C can be made different from each other.
- the control unit 2116 directs the front LC nozzles 2303A to 2303C toward the regions R1 to R3. What is necessary is just to inject a cleaning liquid, respectively.
- the surface P to be cleaned is divided into the three regions of the right region R1, the central region R2, and the left region R3 in the left-right direction, but is not limited to this example.
- the surface P to be cleaned may be divided into two or four or more, and each of the regions R1 to R3 divided into the left and right may be divided into two vertically, for example. If the nozzle configuration according to the above embodiment is used for each of these partitioned areas, the cleaning liquid injection method can be controlled so that the cleaning strength for the area to be cleaned differs from the cleaning intensity for the area that is not the cleaning target. Good.
- a plurality of sensor cleaners respectively corresponding to a plurality of external sensors (for example, LiDAR and camera) having different detection methods and a plurality of external sensors (for example, front LiDAR and rear LiDAR) having different mounting positions in the vehicle 1.
- the control unit 2116 may operate these sensor cleaners so that the cleaning strengths of the plurality of sensor cleaners are different from each other.
- external sensors having different detection methods such as LiDAR and cameras require different scenes.
- the contamination of the surface to be cleaned P of LiDAR 6f is detected by the contamination sensor 2130 disposed in the vicinity of the object to be cleaned (for example, LiDAR 6f), but is not limited to this example.
- the LiDAR 6f can also detect the contamination of its own surface P to be cleaned.
- LiDAR 6f itself can be used as a dirt detection unit without providing the dirt sensor 2130 separately.
- the signal output when the dirt sensor 2130 detects the dirt on the cleaning target surface P of the LiDAR 6f is configured to be input to the control unit 2116.
- a signal output when the dirt sensor 2130 detects dirt is input to the vehicle control unit 3 (ECU or automatic operation control unit), and a signal for operating at least one of the various cleaner nozzles is controlled from the vehicle control unit 3.
- the unit 2116 may be configured to be input.
- a signal output when the dirt sensor 2130 detects dirt is input to the vehicle control unit 3, and a signal for operating at least one of the various cleaners is input from the vehicle control unit 3 to the various cleaners.
- the control unit 2116 is mounted as a part of the vehicle control unit 3.
- FIG. 22 is a top view of the vehicle 1 on which the vehicle cleaner system 3100 (hereinafter referred to as the cleaner system 3100) according to the twelfth and thirteenth embodiments is mounted.
- the vehicle 1 has a cleaner system 3100 according to the twelfth and thirteenth embodiments of the present invention.
- the cleaner system 3100 is a system that removes foreign matters such as water droplets, mud, and dust adhering to the object to be cleaned using a cleaning medium.
- the cleaner system 3100 includes a front window washer (hereinafter referred to as front WW) 3101, a rear window washer (hereinafter referred to as rear WW) 3102, a front LiDAR cleaner (hereinafter referred to as front LC) 3103, and rear LiDAR cleaner (hereinafter referred to as rear LC) 3104, right LiDAR cleaner (hereinafter referred to as right LC) 3105, left LiDAR cleaner (hereinafter referred to as left LC) 3106, right headlamp cleaner (hereinafter referred to as right HC) 3107, a left head lamp cleaner (hereinafter referred to as a left HC) 3108, a front camera cleaner 3109a, and a rear camera cleaner 3109b.
- Each of the cleaners 3101 to 3109b has one or more nozzles, and discharges a cleaning medium such as cleaning liquid or air from the nozzles toward the object to be cleaned.
- the front WW 3101 can be used for cleaning the front window 1f.
- the rear WW 3102 can be used for cleaning the rear window 1b.
- the front LC 3103 can clean the front LiDAR 6f.
- the rear LC 3104 can wash the rear LiDAR 6b.
- the right LC 3105 can wash the right LiDAR 6r.
- the left LC 3106 can wash the left LiDAR 61.
- the right HC 3107 can wash the right headlamp 7r.
- the left HC 3108 can wash the left headlamp 7l.
- the front camera cleaner 3109a can clean the front camera 6c.
- the rear camera cleaner 3109b can clean the rear camera 6d.
- FIG. 23 is a block diagram of the cleaner system 3100.
- the cleaner system 3100 includes a front tank 3111, a front pump 3112, a rear tank 3113, a rear pump 3114, a cleaner switch 3115, a cleaner control unit 3116 (control unit), and a mode changeover switch 3117. Yes.
- the front WW 3101, the front LC 3103, the right LC 3105, the left LC 3106, the right HC 3107, the left HC 3108, and the camera cleaner 3109 are connected to the front tank 3111 via the front pump 3112.
- the front pump 3112 sends the cleaning liquid stored in the front tank 3111 to the front WW 3101, the front LC 3103, the right LC 3105, the left LC 3106, the right HC 3107, the left HC 3108, and the front camera cleaner 3109a.
- the rear WW 3102 and the rear LC 3104 are connected to the rear tank 3113 via the rear pump 3114.
- the rear pump 3114 sends the cleaning liquid stored in the rear tank 3113 to the rear WW 3102, the rear LC 3104, and the rear camera cleaner 3109b.
- Each of the cleaners 3101 to 3109b is provided with an actuator that opens the nozzle and discharges the cleaning liquid onto the object to be cleaned.
- the actuators provided in each of the cleaners 3101 to 3109b are electrically connected to the cleaner control unit 3116.
- the cleaner control unit 3116 is also electrically connected to the front pump 3112, the rear pump 3114, and the vehicle control unit 3.
- FIG. 24 is a more detailed block diagram of the cleaner system 3100 according to the twelfth embodiment of the present invention.
- the cleaner control unit 3116 includes a drive control unit 3121, a signal generation unit 3122, and a dirt determination unit 3123.
- the drive control unit 3121 outputs electric signals for operating the cleaners 3101 to 3109b to the cleaners 3101 to 3109b.
- the signal generation unit 3122 generates a signal to be input to the drive control unit 3121.
- the dirt determination unit 3123 determines whether or not the object to be cleaned is dirty, and outputs a dirt signal to the signal generation unit 3122 when it is determined that the object is dirty.
- the front LC 3103 includes a liquid nozzle 3103a and an air nozzle 3103b.
- the liquid nozzle 3103a discharges the cleaning liquid supplied from the front tank 3111 toward the front LiDAR 6f.
- an actuator provided in the liquid nozzle 3103a operates to discharge the cleaning liquid toward the front LiDAR 6f.
- the air nozzle 3103b takes in air from the surroundings and discharges the taken-in air toward the front LiDAR 6f.
- an actuator provided in the air nozzle 3103b is operated to discharge air toward the front LiDAR 6f.
- the liquid nozzles and air nozzles provided in the other cleaners 3101, 3102, 3104 to 3109b are omitted, but the other cleaners 3101, 3102, 3104 to 3109b are also shown as liquid nozzles and air nozzles, respectively. have.
- FIGS. In the following description, an example in which the cleaner control unit 3116 controls the operation of the front LC 3103 will be described, but the operations of the other cleaners 3101, 3102, 3104 to 3109b are controlled by the cleaner control unit 3116 in the same manner as the front LC 3103. .
- the drive control unit 3121 outputs electric signals for operating the various cleaners 3101 to 3109b.
- the drive control unit 3121 is configured to receive only one of a first signal for operating the air nozzle 3103a and the liquid nozzle 3103b and a second signal for operating the air nozzle 3103a and not operating the liquid nozzle 3103b.
- the cleaning liquid stored in the front tank 3111 or the like is limited, if the air is taken in from the surroundings, it can be used without limit.
- dirt attached to the object to be cleaned can be sufficiently removed by blowing air if it is mild dirt such as dust. Therefore, the cleaner system 3100 according to the twelfth embodiment is configured such that the signal input to the drive control unit 3121 is only the first signal or the second signal. In other words, when the drive control unit 3121 operates the front LC 3103, the liquid nozzle 3103b is not operated without operating the air nozzle 3103a. For this reason, the operation opportunity of the air nozzle 3103a is always the same as or more than the operation opportunity of the liquid nozzle 3103b.
- the opportunity of cleaning with air is the same as or more than the opportunity of cleaning with the cleaning liquid, it is easy to keep the object to be cleaned clean while reducing the amount of cleaning liquid used. Thereby, the replenishment frequency of the cleaning liquid can be reduced and the usability is enhanced.
- FIG. 25 is a flowchart of processing executed by the cleaner system 3100 according to the twelfth embodiment of the present invention.
- the cleaner system 3100 is configured to periodically and repeatedly execute the process shown in FIG. 25 at predetermined time intervals.
- the dirt determination unit 3123 first determines whether or not the previous LiDAR 6f is dirty (step S01).
- the contamination determination unit 3123 outputs a contamination signal to the signal generation unit 3122 if the previous LiDAR 6f is dirty, and does not output the contamination signal to the signal generation unit 3122 if it is not dirty.
- the signal generation unit 3122 determines whether a contamination signal is input from the contamination determination unit 3123 (step S02). If the dirt signal is not input (step S02: No), the signal generation unit 3122 outputs neither the first signal nor the second signal to the drive control unit 3121 and ends the process.
- the signal generation unit 3122 When the dirt signal is input to the signal generation unit 3122 (step S02: Yes), the signal generation unit 3122 generates a second signal and outputs it to the drive control unit 3121 (step S03).
- the drive control unit 3121 to which the second signal is input drives the front LC 3103 so that the air nozzle 3103a is operated and the liquid nozzle 3103b is not operated (step S04).
- the signal generation unit 3122 determines again whether the contamination signal is input from the contamination determination unit 3123 (step S05). If the dirt signal is not input after outputting the second signal (step S05: No), the signal generator 3122 outputs neither the first signal nor the second signal, and ends the process. If the dirt signal is input even after the second signal is output (step S05: Yes), the signal generation unit 3122 outputs the first signal to the drive control unit 3116 (step S06).
- the drive control unit 3121 to which the first signal is input drives the front LC 3103 so as to operate the air nozzle 3103a and the liquid nozzle 3103b.
- the drive control unit 3121 to which the first signal is input preferably operates the air nozzle 3103a after operating the liquid nozzle 3103b.
- the cleaner system 3100 of the twelfth embodiment A dirt determination unit 3123 that detects dirt on the vehicle parts 1f, 1b, 6f, 6b, 6r, 6l, 6c, 6d, 7r, and 7l, and outputs a dirt signal when at least one of the dirt is detected;
- a signal generation unit 3122 for generating a first signal or a second signal to be input to the drive control unit 3121;
- the signal generation unit 3122 outputs a second signal to the drive control unit 3121 according to the stain signal output from the stain determination unit 3123,
- the signal generation unit 3122 is configured to output the first signal to the drive control unit 3121 when receiving the dirt signal even after transmitting the second signal.
- the cleaner system 3100 having the above configuration, if the dirt is not removed even when the air is blown, the cleaning liquid can be blown to remove the dirt. In addition, since only the air is first blown to remove the dirt, the consumption of the washing liquid can be suppressed as compared with the case of using the washing liquid from the beginning to remove the dirt. Thereby, it is easy to keep the cleaning object clean while suppressing the consumption of the cleaning liquid.
- FIG. 26 is a block diagram of a cleaner system 3100A according to the thirteenth embodiment of the present invention.
- FIG. 27 is a flowchart of processing executed by the cleaner system 3100A of the thirteenth embodiment. Explanation of elements common to the cleaner system 3100 according to the twelfth embodiment described above is omitted.
- the cleaner switch 3115 is configured to output an electric signal to the signal generator 3122.
- the cleaner switch 3115 is provided in the passenger compartment and can be operated by the passenger. When the occupant operates the cleaner switch 3115, an operation signal is output to the signal generation unit 3122 according to the operation.
- the cleaner control unit 3116 is configured to periodically and repeatedly execute the processes of steps S11 to S15 shown in FIG.
- the signal generator 3122 determines whether or not an operation signal is input from the cleaner switch 3115 (step S11).
- the signal generation unit 3122 outputs the second signal to the drive control unit 3121 (step S14).
- the driving unit 3121 to which the second signal is input drives the front LC 3103 so as to operate the air nozzle 3103a and not operate the liquid nozzle 3103b. That is, unless the user operates the cleaner switch 3115, the signal generation unit 3122 of the cleaner system 3100A is configured to periodically output the second signal to the drive control unit 3121 at a predetermined time interval.
- step S11 when the operation signal is input (step S11: Yes), the signal generation unit 3122 outputs the first signal to the drive control unit 3121 (step S12).
- the drive control unit 3121 to which the first signal is input drives the front LC 3103 so as to operate the air nozzle 3103a and the liquid nozzle 3103b (step S13).
- the cleaner system 3100A of the thirteenth embodiment is A signal generation unit 3122 for generating a first signal or a second signal to be input to the drive control unit 3121;
- the signal generation unit 3122 is configured to periodically output the second signal to the drive control unit 3121 at a predetermined time interval,
- the signal generation unit 3122 is configured to output the first signal to the drive control unit 3121 when an operation signal output from the operation unit 3115 that outputs a signal in response to a user operation is input to the signal generation unit 3122. ing.
- the object to be cleaned is periodically cleaned, so that the object to be cleaned can be easily kept clean.
- the cleaning liquid is not consumed because the periodic cleaning is performed only with air.
- the cleaner switch 3115 is operated to perform cleaning using both air and cleaning liquid, so that the dirt can be effectively removed.
- the cleaner system 3100A can easily keep the object to be cleaned in a clean state while suppressing the consumption of the cleaning liquid, and can effectively remove the dirt when the user desires.
- the signal from the dirt determination unit 3123 described in the twelfth embodiment You may have the structure input into a signal generation part.
- FIG. 28 is a block diagram of a cleaner system 3100B according to the fourteenth embodiment of the present invention. Explanation of elements common to the cleaner system 3100A according to the thirteenth embodiment described above is omitted.
- the starter switch 3124 is configured to output an electrical signal to the signal generator 3122.
- the starter switch 3124 is a switch provided in the passenger compartment and operable by the occupant. When the occupant operates starter switch 3124, the engine is started in a vehicle equipped with the engine, or the vehicle system is turned on in the case of an electric vehicle. When the occupant operates the starter switch 3124, a starter signal is output to the signal generation unit 3122 in accordance with the operation.
- the cleaner system 3100B is configured to output a second signal to the drive control unit 3121 when the starter signal of the starter switch 3124 is input to the signal generation unit 3122. Further, the cleaner system 3100B is configured to output a first signal to the drive control unit 3121 when an operation signal output from the cleaner switch 3115 that outputs a signal in response to a user operation is input to the signal generation unit 3122. Has been. Further, the signal generation unit 3122 is configured to output the second signal to the drive control unit 3121 when a contamination signal is input from the contamination determination unit 3123 to the signal generation unit 3122.
- the signal generation unit 3122 is realized as a part of the vehicle control unit 3, and the drive control unit 3121 is realized as a part of the cleaner control unit 3116.
- the signal generation unit 3122 and the drive control unit 3121 can be realized as a part of the vehicle control unit 3 or as a part of the cleaner control unit 3116.
- the cleaner control unit 3116 may include all of the drive control unit 3121, the signal generation unit 3122, and the dirt determination unit 3123.
- the vehicle control unit 3 may include all of the drive control unit 3121, the signal generation unit 3122, and the dirt determination unit 3123.
- the cleaner system 3100B of the fourteenth embodiment since the object to be cleaned is always cleaned with air when the engine is started or when the vehicle system is turned on, use of the vehicle 1 is started with the object to be cleaned being clean. be able to. At this time, the object to be cleaned is cleaned only with air, and the cleaning liquid is not consumed. For this reason, the cleaning liquid is not consumed unnecessarily, for example, when the object to be cleaned is not dirty at the start of use of the vehicle 1.
- the cleaner control unit 3116 controls the operation of the front LC 3103 has been described. You may go. Alternatively, at least one of the cleaners 3101 to 3109b may be configured to perform the above control. However, the present invention is preferably applied to the drive control unit 3121 that controls the drive of the sensor cleaners 3103 to 3106, 3109a, and 3109b for cleaning the external sensor 6. In a vehicle traveling in the automatic operation mode, it is required to keep the external sensor 6 clean as compared with the front window 1f and the headlamp 7, and the number of times the external sensor 6 is cleaned increases. According to the present invention, the amount of cleaning liquid used can be reduced compared with the case where the external sensor 6 is cleaned only with the cleaning liquid, and the replenishment frequency of the cleaning liquid can be reduced.
- the configuration in which all the cleaners 3101 to 3109b have liquid nozzles and air nozzles has been described.
- at least one of the cleaners 3101 to 3109b has liquid nozzles and air nozzles.
- the other cleaners 3101 to 3109b may have only a liquid nozzle or only an air nozzle.
- the cleaner system 3100 is described as including the external sensor 6, but the cleaner system 3100 may be configured not to include the external sensor 6. However, it is preferable that the cleaner system 3100 is configured as an assembly including the external sensor 6 because the positioning accuracy of the cleaners 3103 to 3106, 3109a, and 3109b with respect to the external sensor 6 is easily increased. Further, since the external sensor 6 can be incorporated together when the cleaner system 3100 is mounted on the vehicle 1, the assembling property to the vehicle 1 is also improved.
- LiDARs 6f, 6b, 6r, and 6103 are cleaned as 3103 to 3106, the front camera 6c is cleaned 3109a, and the rear camera 6d is cleaned 3109b as cleaners for cleaning the external sensor 6.
- the present invention is not limited to this.
- the cleaner system 3100 may have a cleaner or the like for cleaning the radar instead of the sensor cleaners 3103 to 3106, 3109a, and 3109b, or may include a sensor cleaner 3103 to 3106, 3109a, and 3109b.
- the cleaners 3101, 3103, 3105 to 3109a are connected to the front tank 3111, and the cleaners 3102, 3104, 3109b are connected to the rear tank 3113.
- the cleaners 3101 to 3109b may be connected to a single tank.
- the cleaners 3101 to 3109b may be connected to different tanks.
- the cleaners 3101 to 3109b may be connected to a common tank for each type to be cleaned.
- the LCs 3103 to 3106 may be connected to a common first tank, and the HCs 3107 and 3108 may be connected to a second tank different from the first tank.
- the cleaners 3101 to 3109b may be connected to a common tank for each arrangement position of the cleaning object.
- the front WW 3101, the front LC 3103, and the front camera cleaner 3109a are connected to a common front tank
- the right LC 3105 and the right HC 3107 are connected to a common right tank
- the rear WW 3102, the rear LC 3104, and the rear camera cleaner 3109b are the same rear tank.
- the left LC 3106 and the left HC 3108 may be connected to a common left tank.
- each of the cleaners 3101 to 3109b is provided with a normally closed valve, and the pump is operated so that the pressure between the tank and the cleaners 3101 to 3109b is always high.
- the valves provided in the cleaners 3101 to 3109b are connected to the cleaners.
- the cleaning medium may be discharged from the cleaners 3101 to 3109b when the control unit 3116 is opened.
- each of the cleaners 3101 to 3109b is connected to an individual pump, and the cleaner control unit 3116 controls each pump individually to control the discharge of the cleaning medium from the cleaners 3101 to 3109b. It may be configured. In this case, the cleaners 3101 to 3109b may be connected to different tanks or may be connected to a common tank.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Water Supply & Treatment (AREA)
- Automation & Control Theory (AREA)
- Nozzles (AREA)
- Cleaning By Liquid Or Steam (AREA)
- Detergent Compositions (AREA)
- Vehicle Cleaning, Maintenance, Repair, Refitting, And Outriggers (AREA)
Abstract
車両用クリーナシステム100は、単一のポンプ112と、単一のポンプ112にそれぞれ接続され、車両の外部の情報を検出するセンサを含む異なる洗浄対象物を、洗浄媒体により洗浄する複数のクリーナ101~108と、信号の入力に応じて複数のクリーナ101~108を作動させるクリーナ制御部116と、を備えている。クリーナ制御部116は、複数のクリーナ101~108での洗浄方式が互いに異なるように、複数のクリーナ101~108を作動可能に構成されている。
Description
本発明は、洗浄対象物を洗浄する車両用クリーナシステムおよび車両用クリーナシステムを備える車両に関する。
車両用のヘッドランプクリーナが特許文献1などに知られている。
ところで、近年は自動運転可能な車両の開発が試みられている。自動運転を実現するにあたっては、LiDARやカメラなどの車載センサの感度を良好に維持することが求められる。そこで、これらの車載センサを洗浄するためのセンサクリーナが求められている。車載センサ等の洗浄対象物の配置場所や種類によって適した洗浄方式が異なるが、これら複数の洗浄対象物に対してそれぞれ別個でポンプを設けると、システムが複雑となりコスト増となる。
また、ヘッドランプやウィンドウシールドに加えて、各種センサを洗浄するために、多量の洗浄媒体が必要となるが、洗浄媒体の貯蔵量には限界がある。
また、ヘッドランプを洗浄する他に、これらセンサを洗浄するクリーナが求められている。そこで本発明者は、洗浄液を噴射して洗浄対象物を洗浄するとともに、空気を噴射して洗浄対象物を洗浄するクリーナを検討した。
本発明は、コストを抑えつつ、洗浄対象物ごとに適切な洗浄方式で洗浄可能な車両用クリーナシステムおよび車両用クリーナシステムを備える車両を提供することを目的とする。
また、本発明は、洗浄媒体の使用量を抑えつつ、洗浄対象物の清浄度を維持可能なクリーナシステムを提供することを目的とする。
また、本発明は、洗浄液と空気を噴射することができ、使い勝手の良い車両用クリーナシステムを提供することを目的とする。
上記目的を達成するために、本発明の車両用クリーナシステムは、
単一のポンプと、
前記単一のポンプにそれぞれ接続され、車両の外部の情報を検出するセンサを含む異なる洗浄対象物を、洗浄媒体により洗浄する複数のクリーナと、
信号の入力に応じて前記複数のクリーナを作動させるクリーナ制御部と、を備え、
前記クリーナ制御部は、前記複数のクリーナでの洗浄方式が互いに異なるように、前記複数のクリーナを作動可能に構成されている。
単一のポンプと、
前記単一のポンプにそれぞれ接続され、車両の外部の情報を検出するセンサを含む異なる洗浄対象物を、洗浄媒体により洗浄する複数のクリーナと、
信号の入力に応じて前記複数のクリーナを作動させるクリーナ制御部と、を備え、
前記クリーナ制御部は、前記複数のクリーナでの洗浄方式が互いに異なるように、前記複数のクリーナを作動可能に構成されている。
上記構成によれば、単一のポンプを用いて例えば配置場所や種類の異なる複数の洗浄対象物を洗浄する際に、クリーナごとに洗浄方式が異なる。このため、洗浄対象物ごとに別個のポンプを使用する場合に比べて、コストを抑えつつ、洗浄対象物ごとに適切な洗浄方式で洗浄することができる。
また、本発明の車両用クリーナシステムにおいて、
前記洗浄方式として、所定回数の前記信号の入力に応じた前記複数のクリーナの作動回数、前記洗浄媒体の噴射時間、噴射量、噴射圧、噴射面積の少なくとも一つが異なっていてもよい。
前記洗浄方式として、所定回数の前記信号の入力に応じた前記複数のクリーナの作動回数、前記洗浄媒体の噴射時間、噴射量、噴射圧、噴射面積の少なくとも一つが異なっていてもよい。
例えば、上記のようにクリーナ制御部において洗浄方式を異ならせることで、洗浄対象物ごとに適切な洗浄方式かつ低コストで洗浄することができる。
また、本発明の車両用クリーナシステムにおいて、
前記クリーナは、前記センサを洗浄するセンサクリーナと、前記車両のウィンドウシールドを洗浄するウィンドウォッシャおよび前記車両のランプを洗浄するランプクリーナの少なくとも一方と、を含み、
前記クリーナ制御部は、前記センサクリーナの作動回数と、前記ウィンドウォッシャおよび前記ランプクリーナの少なくとも一方の作動回数との大小関係が変更可能に構成されていてもよい。
前記クリーナは、前記センサを洗浄するセンサクリーナと、前記車両のウィンドウシールドを洗浄するウィンドウォッシャおよび前記車両のランプを洗浄するランプクリーナの少なくとも一方と、を含み、
前記クリーナ制御部は、前記センサクリーナの作動回数と、前記ウィンドウォッシャおよび前記ランプクリーナの少なくとも一方の作動回数との大小関係が変更可能に構成されていてもよい。
上記構成によれば、様々なシーンに対応して、センサクリーナの作動回数と、ウィンドウォッシャおよび/またはランプクリーナの作動回数との適した大小関係を選択することができる。
また、本発明の車両用クリーナシステムにおいて、
前記クリーナは、前記センサを洗浄するセンサクリーナと、前記車両のランプを洗浄するランプクリーナと、を含み、
前記センサクリーナでの前記洗浄媒体の噴射圧が前記ランプクリーナでの前記洗浄媒体の噴射圧よりも高くてもよい。
前記クリーナは、前記センサを洗浄するセンサクリーナと、前記車両のランプを洗浄するランプクリーナと、を含み、
前記センサクリーナでの前記洗浄媒体の噴射圧が前記ランプクリーナでの前記洗浄媒体の噴射圧よりも高くてもよい。
求められる清浄度がランプよりも高いセンサに対して洗浄媒体をより高圧で吹き付けて洗浄することが好ましい。
また、本発明の車両用クリーナシステムにおいて、
前記センサクリーナには、前記洗浄媒体として洗浄液およびエアが供給可能であってもよい。
前記センサクリーナには、前記洗浄媒体として洗浄液およびエアが供給可能であってもよい。
洗浄液の残留が問題となりやすいセンサに対して、洗浄液とは別途でエアを噴射させることで、センサ表面への洗浄液の残留を確実に防ぐことができる。
また、本発明の車両用クリーナシステムにおいて、
前記クリーナは、検出方法または前記車両における搭載位置の少なくとも一つが互いに異なる複数の前記センサをそれぞれ洗浄する複数のセンサクリーナを含み、
前記クリーナ制御部は、複数の前記センサクリーナでの洗浄方式が互いに異なるように、前記複数のセンサクリーナを作動させてもよい。
前記クリーナは、検出方法または前記車両における搭載位置の少なくとも一つが互いに異なる複数の前記センサをそれぞれ洗浄する複数のセンサクリーナを含み、
前記クリーナ制御部は、複数の前記センサクリーナでの洗浄方式が互いに異なるように、前記複数のセンサクリーナを作動させてもよい。
例えば、LiDARとカメラなど、検出方法が異なるセンサは求められるシーンが異なる場合が多い。また、センサの搭載位置によって汚れ方も異なる。そこで、センサの種類ごとに洗浄方式を異ならせることで、特定のシーンに応じたセンサごとに清浄度を維持しやすくなる。
また、本発明の別の例に係る車両用クリーナシステムは、
単一のポンプと、
前記単一のポンプにそれぞれ接続され、車両の外部の情報を検出するセンサを含む異なる洗浄対象物を、洗浄媒体により洗浄する複数のクリーナと、
前記洗浄媒体の種類、前記洗浄媒体の噴射形状、前記複数のクリーナのノズル形状、ワイパーの有無、チェックバルブの有無、前記洗浄対象物の配置場所の少なくとも一つが異なっている。
単一のポンプと、
前記単一のポンプにそれぞれ接続され、車両の外部の情報を検出するセンサを含む異なる洗浄対象物を、洗浄媒体により洗浄する複数のクリーナと、
前記洗浄媒体の種類、前記洗浄媒体の噴射形状、前記複数のクリーナのノズル形状、ワイパーの有無、チェックバルブの有無、前記洗浄対象物の配置場所の少なくとも一つが異なっている。
例えば、上記のように洗浄方式を異ならせることで、洗浄対象物ごとに適切な洗浄方式かつ低コストで洗浄することができる。
また、本発明の車両用クリーナシステムにおいて、
前記クリーナは、前記センサを洗浄するセンサクリーナを含み、
前記センサクリーナは、前記洗浄媒体の流路を変化させるフルイディクス機構を備えていてもよい。
前記クリーナは、前記センサを洗浄するセンサクリーナを含み、
前記センサクリーナは、前記洗浄媒体の流路を変化させるフルイディクス機構を備えていてもよい。
フルイディクス機構を備えることで、センサに対して高圧で洗浄媒体を噴射しつつ広範囲を洗浄することができる。
また、上記目的を達成するために、本発明の車両用クリーナシステムは、
車両のウィンドウシールドを洗浄媒体により洗浄するウィンドウウォッシャと、
前記ウィンドウウォッシャに前記洗浄媒体を供給するための第一のポンプと、
車両の外部の情報を検出するセンサを前記洗浄媒体により洗浄するセンサクリーナと、
前記センサクリーナに前記洗浄媒体を供給するための第二のポンプと、を有し、
前記ウィンドウウォッシャと前記第一のポンプとの間を接続し前記洗浄媒体を前記ウィンドウウォッシャへ供給する第一の管路が、前記センサクリーナと前記第二のポンプとの間を接続し前記洗浄媒体を前記センサクリーナへ供給する第二の管路とは異なっている。
車両のウィンドウシールドを洗浄媒体により洗浄するウィンドウウォッシャと、
前記ウィンドウウォッシャに前記洗浄媒体を供給するための第一のポンプと、
車両の外部の情報を検出するセンサを前記洗浄媒体により洗浄するセンサクリーナと、
前記センサクリーナに前記洗浄媒体を供給するための第二のポンプと、を有し、
前記ウィンドウウォッシャと前記第一のポンプとの間を接続し前記洗浄媒体を前記ウィンドウウォッシャへ供給する第一の管路が、前記センサクリーナと前記第二のポンプとの間を接続し前記洗浄媒体を前記センサクリーナへ供給する第二の管路とは異なっている。
本発明のクリーナシステムによれば、ウィンドウウォッシャとセンサクリーナとで管路を異ならせることにより、洗浄対象物に応じて例えば洗浄媒体の噴射圧や噴射時間、噴射回数等の洗浄方式を変更することができる。そのため、洗浄対象物ごとに適切な洗浄方式で洗浄可能となる。
また、本発明の車両用クリーナシステムにおいて、
前記第一のポンプおよび前記第二のポンプを制御可能なクリーナ制御部をさらに有してもよい。
前記第一のポンプおよび前記第二のポンプを制御可能なクリーナ制御部をさらに有してもよい。
この構成によれば、各ポンプを統一制御することで、クリーナ制御処理が容易となる。
また、本発明の車両用クリーナシステムにおいて、
前記センサクリーナからの前記洗浄媒体の噴射圧が、前記ウィンドウウォッシャからの前記洗浄媒体の噴射圧よりも高くなるように前記第一のポンプおよび前記第二のポンプが制御されてもよい。
前記センサクリーナからの前記洗浄媒体の噴射圧が、前記ウィンドウウォッシャからの前記洗浄媒体の噴射圧よりも高くなるように前記第一のポンプおよび前記第二のポンプが制御されてもよい。
求められる清浄度がウィンドウシールドよりも高いセンサに対して洗浄媒体をより高圧で吹き付けて洗浄することが好ましい。
また、本発明の車両用クリーナシステムにおいて、
前記第二の管路は、第一の管路よりも太くてもよい。
前記第二の管路は、第一の管路よりも太くてもよい。
この構成によれば、簡便な構成でセンサに対して洗浄媒体をより高圧で吹き付けて洗浄することができる。
また、本発明の車両用クリーナシステムにおいて、
前記第二の管路は、第一の管路よりも短くてもよい。
前記第二の管路は、第一の管路よりも短くてもよい。
この構成によれば、簡便な構成でセンサに対して洗浄媒体をより高圧で吹き付けて洗浄することができる。
上記目的を達成するために、本発明の車両用クリーナシステムは、
洗浄対象物を洗浄するための車両用クリーナシステムであって、
前記洗浄対象物の洗浄対象面に洗浄媒体を噴射して前記洗浄対象面を洗浄するクリーナと、
複数の領域を含む前記洗浄対象面において、前記複数の領域の少なくとも一つに対する洗浄強度と他の領域に対する洗浄強度とを異ならせるように、前記クリーナを作動するクリーナ制御部と、を有する。
洗浄対象物を洗浄するための車両用クリーナシステムであって、
前記洗浄対象物の洗浄対象面に洗浄媒体を噴射して前記洗浄対象面を洗浄するクリーナと、
複数の領域を含む前記洗浄対象面において、前記複数の領域の少なくとも一つに対する洗浄強度と他の領域に対する洗浄強度とを異ならせるように、前記クリーナを作動するクリーナ制御部と、を有する。
本開示のクリーナシステムによれば、洗浄対象面のうち洗浄すべき領域に対して効率的に洗浄媒体を噴射させることができるため、洗浄媒体を節約しつつ、洗浄対象物の清浄度を維持することができる。
また、本発明の車両用クリーナシステムにおいて、
前記洗浄強度を異ならせることは、前記洗浄媒体の噴射回数、噴射時間、噴射量、噴射圧、噴射面積の少なくとも一つを異ならせることを含んでもよい。
前記洗浄強度を異ならせることは、前記洗浄媒体の噴射回数、噴射時間、噴射量、噴射圧、噴射面積の少なくとも一つを異ならせることを含んでもよい。
この構成によれば、洗浄対象面の領域に応じて洗浄方式を異ならせることで、洗浄効率を高めることができる。
また、本発明の車両用クリーナシステムにおいて、
前記複数の領域のうちどの領域に汚れがあるかを検知する汚れ検知部を、さらに備え、
前記クリーナ制御部は、前記汚れ検知部の出力に応じて、前記洗浄強度を変更してもよい。
前記複数の領域のうちどの領域に汚れがあるかを検知する汚れ検知部を、さらに備え、
前記クリーナ制御部は、前記汚れ検知部の出力に応じて、前記洗浄強度を変更してもよい。
この構成によれば、汚れが検知された部分にのみ洗浄媒体を噴射させることができるため、洗浄媒体を節約しつつ、例えば洗浄対象の領域に対する洗浄媒体の噴射圧を高めることができる。これにより洗浄効率を向上させ、洗浄対象物の清浄度を維持することができる。
また、本発明の車両用クリーナシステムにおいて、
前記複数の領域は、前記洗浄対象面の左右方向において分割された各領域により構成されていてもよい。
前記複数の領域は、前記洗浄対象面の左右方向において分割された各領域により構成されていてもよい。
上記のように洗浄対象領域が分割されていることが好ましい。
また、本発明の車両用クリーナシステムにおいて、
前記クリーナは、前記洗浄媒体を噴射する少なくとも一つの開口部を備えたノズルを有し、
前記少なくとも一つの開口部は、前記複数の領域の各々に向くように、その向きが変更可能であってもよい。
前記クリーナは、前記洗浄媒体を噴射する少なくとも一つの開口部を備えたノズルを有し、
前記少なくとも一つの開口部は、前記複数の領域の各々に向くように、その向きが変更可能であってもよい。
また、本発明の車両用クリーナシステムにおいて、
前記クリーナは、前記洗浄媒体を噴射する複数の開口部を備えたノズルを有し、
前記複数の開口部は、前記複数の領域の各々に対応して配置されていてもよい。
前記クリーナは、前記洗浄媒体を噴射する複数の開口部を備えたノズルを有し、
前記複数の開口部は、前記複数の領域の各々に対応して配置されていてもよい。
また、本発明の車両用クリーナシステムにおいて、
前記クリーナは、前記洗浄媒体を噴射する複数のノズルを有し、
前記複数のノズルの各々は、前記洗浄対象物の左右方向と上方の少なくとも三方に配置されていてもよい。
前記クリーナは、前記洗浄媒体を噴射する複数のノズルを有し、
前記複数のノズルの各々は、前記洗浄対象物の左右方向と上方の少なくとも三方に配置されていてもよい。
これらの構成によれば、洗浄対象領域を簡便に変更することができる。
また、本発明の一側面に係る車両用クリーナシステムは、
車両のウィンドウ、ランプおよび車外情報を取得可能なセンサの少なくとも一つである車両部品を洗浄するクリーナと、
前記クリーナを作動させる駆動制御部を有し、
前記クリーナは、
空気を前記車両部品に噴射するエアノズルと、
洗浄液を前記車両部品に噴射するリキッドノズルを有し、
前記駆動制御部は、前記エアノズルと前記リキッドノズルを作動させる第一信号と、前記エアノズルを作動させて前記リキッドノズルを作動させない第二信号のみが入力されるように構成されている。
車両のウィンドウ、ランプおよび車外情報を取得可能なセンサの少なくとも一つである車両部品を洗浄するクリーナと、
前記クリーナを作動させる駆動制御部を有し、
前記クリーナは、
空気を前記車両部品に噴射するエアノズルと、
洗浄液を前記車両部品に噴射するリキッドノズルを有し、
前記駆動制御部は、前記エアノズルと前記リキッドノズルを作動させる第一信号と、前記エアノズルを作動させて前記リキッドノズルを作動させない第二信号のみが入力されるように構成されている。
また、本発明の車両用クリーナシステムを備える車両は、
上記いずれかの構成を有する車両用クリーナシステムを備えている。
上記いずれかの構成を有する車両用クリーナシステムを備えている。
上記構成によれば、車両に搭載された洗浄対象物ごとに別個のポンプを使用する場合に比べて、コストを抑えつつ、洗浄対象物ごとに適切な洗浄方式で洗浄することができる。
また、上記構成によれば、洗浄媒体の使用量を抑えつつ、洗浄対象物の清浄度を維持することができる。
本発明の車両用クリーナシステムおよび当該車両用クリーナシステムを備える車両によれば、洗浄対象物ごとに別個のポンプを使用する場合に比べて、コストを抑えつつ、洗浄対象物ごとに適切な洗浄方式で洗浄することができる。
本発明の車両用クリーナシステムおよび当該車両用クリーナシステムを備える車両によれば、洗浄媒体の使用量を抑えつつ、洗浄対象物の清浄度を維持することができる。
本発明の一側面によれば、洗浄液と空気を噴射することができ、使い勝手の良い車両用クリーナシステムが提供される。
以下、本発明の実施形態について図面を参照しながら説明する。尚、本実施形態の説明において既に説明された部材と同一の参照番号を有する部材については、説明の便宜上、その説明は省略する。また、本図面に示された各部材の寸法は、説明の便宜上、実際の各部材の寸法とは異なる場合がある。
また、本実施形態の説明では、説明の便宜上、「左右方向」、「前後方向」、「上下方向」について適宜言及する。これらの方向は、図1に示す車両1について設定された相対的な方向である。ここで、「上下方向」は、「上方向」及び「下方向」を含む方向である。「前後方向」は、「前方向」及び「後方向」を含む方向である。「左右方向」は、「左方向」及び「右方向」を含む方向である。
図1は、本実施形態に係る車両用クリーナシステム100(以降、クリーナシステム100と称す)が搭載された車両1の上面図である。車両1は、クリーナシステム100を備えている。本実施形態において、車両1は自動運転モードで走行可能な自動車である。
まず、図2を参照して車両1の車両システム2について説明する。図2は、車両システム2のブロック図を示している。図2に示すように、車両システム2は、車両制御部3と、内部センサ5と、外部センサ6と、ランプ7と、HMI8(Human Machine Interface)と、GPS9(Global Positioning System)と、無線通信部10と、地図情報記憶部11とを備えている。さらに、車両システム2は、ステアリングアクチュエータ12と、ステアリング装置13と、ブレーキアクチュエータ14と、ブレーキ装置15と、アクセルアクチュエータ16と、アクセル装置17とを備えている。
車両制御部3は、電子制御ユニット(ECU)により構成されている。車両制御部3は、CPU(Central Processing Unit)等のプロセッサと、各種車両制御プログラムが記憶されたROM(Read Only Memory)と、各種車両制御データが一時的に記憶されるRAM(Random Access Memory)とにより構成されている。プロセッサは、ROMに記憶された各種車両制御プログラムから指定されたプログラムをRAM上に展開し、RAMとの協働で各種処理を実行するように構成されている。車両制御部3は、車両1の走行を制御するように構成されている。
内部センサ5は、自車両の情報を取得可能なセンサである。内部センサ5は、例えば、加速度センサ、速度センサ、車輪速センサ及びジャイロセンサ等の少なくとも一つである。内部センサ5は、車両1の走行状態を含む自車両の情報を取得し、該情報を車両制御部3に出力するように構成されている。
内部センサ5は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。さらに、内部センサ5は、車両1の周辺環境の照度を検出する照度センサを備えていてもよい。
内部センサ5は、運転者が運転席に座っているかどうかを検出する着座センサ、運転者の顔の方向を検出する顔向きセンサ、外部天候状態を検出する外部天候センサ及び車内に人がいるかどうかを検出する人感センサ等をさらに備えてもよい。さらに、内部センサ5は、車両1の周辺環境の照度を検出する照度センサを備えていてもよい。
外部センサ6は、自車両の外部の情報を取得可能なセンサである。外部センサは、例えば、カメラ、レーダ、LiDAR等の少なくとも一つである。外部センサ6は、車両1の周辺環境(他車、歩行者、道路形状、交通標識、障害物等)を含む自車両の外部の情報を取得し、該情報を車両制御部3に出力するように構成されている。
カメラは、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS)等の撮像素子を含むカメラである。カメラは、可視光を検出するカメラや、赤外線を検出する赤外線カメラである。
レーダは、ミリ波レーダ、マイクロ波レーダ又はレーザーレーダ等である。
LiDARとは、Light Detection and RangingまたはLaser Imaging Detection and Rangingの略語である。LiDARは、一般にその前方に非可視光を出射し、出射光と戻り光とに基づいて、物体までの距離、物体の形状、物体の材質、物体の色などの情報を取得するセンサである。
カメラは、例えば、CCD(Charge-Coupled Device)やCMOS(相補型MOS)等の撮像素子を含むカメラである。カメラは、可視光を検出するカメラや、赤外線を検出する赤外線カメラである。
レーダは、ミリ波レーダ、マイクロ波レーダ又はレーザーレーダ等である。
LiDARとは、Light Detection and RangingまたはLaser Imaging Detection and Rangingの略語である。LiDARは、一般にその前方に非可視光を出射し、出射光と戻り光とに基づいて、物体までの距離、物体の形状、物体の材質、物体の色などの情報を取得するセンサである。
ランプ7は、車両1の前部に設けられるヘッドランプやポジションランプ、車両1の後部に設けられるリヤコンビネーションランプ、車両の前部または側部に設けられるターンシグナルランプ、歩行者や他車両のドライバーに自車両の状況を知らせる各種ランプなどの少なくとも一つである。
HMI8は、運転者からの入力操作を受付ける入力部と、走行情報等を運転者に向けて出力する出力部とから構成される。入力部は、ステアリングホイール、アクセルペダル、ブレーキペダル、車両1の運転モードを切替える運転モード切替スイッチ等を含む。出力部は、各種走行情報を表示するディスプレイである。
GPS9は、車両1の現在位置情報を取得し、当該取得された現在位置情報を車両制御部3に出力するように構成されている。無線通信部10は、車両1の周囲にいる他車の走行情報を他車から受信すると共に、車両1の走行情報を他車に送信するように構成されている(車車間通信)。また、無線通信部10は、信号機や標識灯等のインフラ設備からインフラ情報を受信すると共に、車両1の走行情報をインフラ設備に送信するように構成されている(路車間通信)。地図情報記憶部11は、地図情報が記憶されたハードディスクドライブ等の外部記憶装置であって、地図情報を車両制御部3に出力するように構成されている。
車両1が自動運転モードで走行する場合、車両制御部3は、走行状態情報、周辺環境情報、現在位置情報、地図情報等に基づいて、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号のうち少なくとも一つを自動的に生成する。ステアリングアクチュエータ12は、ステアリング制御信号を車両制御部3から受信して、受信したステアリング制御信号に基づいてステアリング装置13を制御するように構成されている。ブレーキアクチュエータ14は、ブレーキ制御信号を車両制御部3から受信して、受信したブレーキ制御信号に基づいてブレーキ装置15を制御するように構成されている。アクセルアクチュエータ16は、アクセル制御信号を車両制御部3から受信して、受信したアクセル制御信号に基づいてアクセル装置17を制御するように構成されている。このように、自動運転モードでは、車両1の走行は車両システム2により自動制御される。
一方、車両1が手動運転モードで走行する場合、車両制御部3は、アクセルペダル、ブレーキペダル及びステアリングホイールに対する運転者の手動操作に従って、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号を生成する。このように、手動運転モードでは、ステアリング制御信号、アクセル制御信号及びブレーキ制御信号が運転者の手動操作によって生成されるので、車両1の走行は運転者により制御される。
次に、車両1の運転モードについて説明する。運転モードは、自動運転モードと手動運転モードとからなる。自動運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードとからなる。完全自動運転モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはない。高度運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御の全ての走行制御を自動的に行うと共に、運転者は車両1を運転できる状態にはあるものの車両1を運転しない。運転支援モードでは、車両システム2がステアリング制御、ブレーキ制御及びアクセル制御のうち一部の走行制御を自動的に行うと共に、車両システム2の運転支援の下で運転者が車両1を運転する。一方、手動運転モードでは、車両システム2が走行制御を自動的に行わないと共に、車両システム2の運転支援なしに運転者が車両1を運転する。
また、車両1の運転モードは、運転モード切替スイッチを操作することで切り替えられてもよい。この場合、車両制御部3は、運転モード切替スイッチに対する運転者の操作に応じて、車両1の運転モードを4つの運転モード(完全自動運転モード、高度運転支援モード、運転支援モード、手動運転モード)の間で切り替える。また、車両1の運転モードは、自動運転車が走行可能である走行可能区間や自動運転車の走行が禁止されている走行禁止区間についての情報または外部天候状態についての情報に基づいて自動的に切り替えられてもよい。この場合、車両制御部3は、これらの情報に基づいて車両1の運転モードを切り替える。さらに、車両1の運転モードは、着座センサや顔向きセンサ等を用いることで自動的に切り替えられてもよい。この場合、車両制御部3は、着座センサや顔向きセンサからの出力信号に基づいて、車両1の運転モードを切り替える。
図1に戻り、車両1は、外部センサ6として、前LiDAR6f、後LiDAR6b、右LiDAR6r、左LiDAR6lを有している。前LiDAR6fは車両1の前方の情報を取得するように構成されている。後LiDAR6bは車両1の後方の情報を取得するように構成されている。右LiDAR6rは車両1の右方の情報を取得するように構成されている。左LiDAR6lは車両1の左方の情報を取得するように構成されている。
なお、図1に示した例では、前LiDAR6fは車両1の前部に設けられ、後LiDAR6bは車両1の後部に設けられ、右LiDAR6rは車両1の右部に設けられ、左LiDAR6lは車両1の左部に設けられた例を示しているが、本発明はこの例に限られない。例えば車両1の天井部に前LiDAR、後LiDAR、右LiDAR、左LiDARがまとめて配置されていてもよい。
車両1は、ランプ7として、右ヘッドランプ7rと左ヘッドランプ7lを有している。右ヘッドランプ7rは車両1の前部のうちの右部に設けられ、左ヘッドランプ7lは車両1の前部のうちの左部に設けられている。右ヘッドランプ7rは左ヘッドランプ7lよりも右方に設けられている。
車両1は、ウィンドウシールドとして、フロントウィンドウ1fとリヤウィンドウ1bを有している。
車両1は、クリーナシステム100を有している。クリーナシステム100は、車室の外に設けられた洗浄対象物を洗浄する、すなわち、これらの洗浄対象物に付着する水滴や泥や塵埃等の異物を、洗浄媒体を用いて除去するシステムである。本実施形態において、クリーナシステム100は、前ウィンドウウォッシャノズル(以降、前WWノズルと称す)101、後ウィンドウウォッシャノズル(以降、後WWノズルと称す)102、前LiDARクリーナノズル(以降、前LCノズルと称す)103、後LiDARクリーナノズル(以降、後LCノズルと称す)104、右LiDARクリーナノズル(以降、右LCノズルと称す)105、左LiDARクリーナノズル(以降、左LCノズルと称す)106、右ヘッドランプクリーナノズル(以降、右HCノズルと称す)107、左ヘッドランプクリーナノズル(以降、左HCノズルと称す)108を有する。
前WWノズル101は、フロントウィンドウ1fの洗浄に利用可能である。後WWノズル102は、リヤウィンドウ1bの洗浄に利用可能である。前LCノズル103は、前LiDAR6fを洗浄可能である。後LCノズル104は、後LiDAR6bを洗浄可能である。右LCノズル105は、右LiDAR6rを洗浄可能である。左LCノズル106は、左LiDAR6lを洗浄可能である。右HCノズル107は、右ヘッドランプ7rを洗浄可能である。左HCノズル108は、左ヘッドランプ7lを洗浄可能である。
図3は、クリーナシステム100のブロック図である。クリーナシステム100は、ノズル101~108の他に、タンク111、ポンプ112(単一のポンプの一例)、操作部115、制御部116(クリーナ制御部の一例)を有している。本実施形態において、各々のノズル101~108は洗浄液を洗浄対象に向かって吐出可能に構成されている。
ノズル101~108は、ポンプ112を介してタンク111に接続されている。ポンプ112は、タンク111に貯留された洗浄液を、ノズル101~108にそれぞれ送る。
操作部115は、車両1のユーザが操作可能な装置である。操作部115は、ユーザの操作に伴って信号を出力し、この信号は制御部116に入力される。例えば操作部115は、車室内部に設けられたスイッチなどで構成することができる。
各々のノズル101~108には、ノズルを開状態にさせて洗浄液を洗浄対象に吐出させるアクチュエータが設けられている。各々のノズル101~108に設けられたアクチュエータは、制御部116に電気的に接続されている。また、制御部116は、ポンプ112、操作部115、車両制御部3にも電気的に接続されている。
例えば制御部116にフロントウィンドウ1fを洗浄させる信号が入力された場合には、制御部116はポンプ112を作動させてタンク111から前WWノズル101に洗浄液を送り、前WWノズル101のアクチュエータを作動させて前WWノズル101から洗浄液を吐出させる。
本実施形態において、制御部116は、ノズル101~108(異なる洗浄対象物を洗浄するための複数のクリーナ)での洗浄方式が互いに異なるように、ノズル101~108を作動可能に構成されている。制御部116の制御によりノズル101~108における洗浄方式を相異らせる方法について、第1の実施例~第4の実施例を例示して以下説明する。
(第1の実施例)
図4は、クリーナシステム100の第1の実施例に係る動作(作動モードA)を説明するためのタイミングチャートである。
制御部116にフロントウィンドウ1fを洗浄させる信号が入力された場合には、制御部116は、ポンプ112を作動させてタンク111から前WWノズル101に洗浄液を送り、前WWノズル101のアクチュエータを作動させて前WWノズル101から洗浄液を吐出させるとともに、タンク111から各LCノズル103~105、および各HCノズル107,108に洗浄液を送り、これらのノズル103~108のアクチュエータを作動させて各ノズル103~108から洗浄液を吐出させる。すなわち、制御部116は、前WWノズル101から洗浄液を吐出させるのと連動して、各LCノズル103~106および各HCノズル107,108から洗浄液を吐出させる。なお、フロントウィンドウ1fを洗浄させる信号が入力された場合に、制御部116は、前WWノズル101とともに後WWノズル102から洗浄液を吐出させてもよい。このとき、制御部116は、入力された作動信号の回数(入力回数)に対するノズル101~108の作動回数が洗浄対象物の種類に応じて相異なるように各ノズルのアクチュエータを作動させる。
図4は、クリーナシステム100の第1の実施例に係る動作(作動モードA)を説明するためのタイミングチャートである。
制御部116にフロントウィンドウ1fを洗浄させる信号が入力された場合には、制御部116は、ポンプ112を作動させてタンク111から前WWノズル101に洗浄液を送り、前WWノズル101のアクチュエータを作動させて前WWノズル101から洗浄液を吐出させるとともに、タンク111から各LCノズル103~105、および各HCノズル107,108に洗浄液を送り、これらのノズル103~108のアクチュエータを作動させて各ノズル103~108から洗浄液を吐出させる。すなわち、制御部116は、前WWノズル101から洗浄液を吐出させるのと連動して、各LCノズル103~106および各HCノズル107,108から洗浄液を吐出させる。なお、フロントウィンドウ1fを洗浄させる信号が入力された場合に、制御部116は、前WWノズル101とともに後WWノズル102から洗浄液を吐出させてもよい。このとき、制御部116は、入力された作動信号の回数(入力回数)に対するノズル101~108の作動回数が洗浄対象物の種類に応じて相異なるように各ノズルのアクチュエータを作動させる。
例えば、図4に示す作動モードAは、車両が自動運転モードのうち完全自動運転モードや高度運転支援モードで運転されている場合に適した作動モードである。この場合、制御部116は、作動信号の入力に対してLCノズル103~106の作動回数をWWノズル101,102やHCノズル107,108の作動回数よりも多くするように各ノズルのアクチュエータの作動を制御する。具体的には、例えば、制御部116は、LCノズル103~106のアクチュエータを作動信号4回あたり4回作動させ、一方で、WWノズル101,102のアクチュエータおよびHCノズル107,108のアクチュエータを作動信号4回あたり2回作動させる。この作動モードAは、車両が自動運転で運転されており、且つ車両の周囲が明るい(昼間の)場合に特に適している。
車両が完全自動運転モードや高度運転支援モードで運転されている場合には、各LiDAR6f,6b,6r,6lの感度が落ちないように、これらのセンサの清浄度を保つことが重要となる。一方で、タンク111の容量には限界があり、洗浄液の使用量はできるだけ節約することが求められる。そこで、第1の実施例においては、作動信号の入力に対してLCノズル103~106の作動回数をWWノズル101,102やHCノズル107,108の作動回数よりも多くするように制御することで、WWノズル101,101、LCノズル103~106、HCノズル107,108を同じ作動回数で作動させた場合に比べて、洗浄液を節約しつつ各LiDAR6f,6b,6r,6lの感度を保つことができる。
なお、本実施例では、LCノズル103~106の作動回数がWWノズル101,102やHCノズル107,108の作動回数よりも多くなるように制御されればよく、作動信号の入力に対する各ノズルの作動回数は図4に示す例に限られない。例えば、WWノズル101,102の作動回数とHCノズル107,108の作動回数とを異ならせてもよい。車両が自動運転モード(完全自動運転モード、高度運転支援モード)で運転されており、且つ、車両の周囲が暗い(夜間の)場合には、左右のヘッドランプ7r,7lの点灯によりLiDAR(例えば、LiDAR6f,6r,6l)の感度を維持する必要がある場合がある。そのため、左右のヘッドランプ7r,7lについても比較的高い清浄度が求められる。したがって、この場合は、HCノズル107,108の作動回数をWWノズル101,102の作動回数よりも多くすることが好ましい。また、前WWノズル101の作動回数と後WWノズル102の作動回数とを異ならせてもよく、作動信号の入力に対してWWノズル101,102のうちいずれか一方のみを作動させてもよい。
(第2の実施例)
図5は、クリーナシステム100の第2の実施例に係る動作(作動モードB)を説明するためのタイミングチャートである。例えば、図5に示す作動モードBは、車両が運転支援モードで運転されている場合に適した作動モードである。この場合、制御部116は、作動信号の入力に対してWWノズル101,102の作動回数をLCノズル103~106の作動回数よりも多くするとともに、LCノズル103~106の作動回数をHCノズル107,108の作動回数よりも多くするように、各ノズルのアクチュエータの作動を制御する。具体的には、例えば、制御部116は、WWノズル101,102のアクチュエータを作動信号4回あたり4回作動させ、LCノズル103~106のアクチュエータを作動信号4回あたり2回作動させ、HCノズル107,108のアクチュエータを作動信号4回あたり1回作動させる。
図5は、クリーナシステム100の第2の実施例に係る動作(作動モードB)を説明するためのタイミングチャートである。例えば、図5に示す作動モードBは、車両が運転支援モードで運転されている場合に適した作動モードである。この場合、制御部116は、作動信号の入力に対してWWノズル101,102の作動回数をLCノズル103~106の作動回数よりも多くするとともに、LCノズル103~106の作動回数をHCノズル107,108の作動回数よりも多くするように、各ノズルのアクチュエータの作動を制御する。具体的には、例えば、制御部116は、WWノズル101,102のアクチュエータを作動信号4回あたり4回作動させ、LCノズル103~106のアクチュエータを作動信号4回あたり2回作動させ、HCノズル107,108のアクチュエータを作動信号4回あたり1回作動させる。
車両が運転支援モードで運転されている場合には、運転者の前方視界や後方視界を良好に保つために、フロントウィンドウ1fおよびリヤウィンドウ1bの清浄度を保つことが重要となる。また、運転者の視界を確保しつつ、各LiDAR6f,6b,6r,6lの感度を維持することも求められる。そのため、図5に示す例のような作動回数とすることで、洗浄液を節約しつつフロントウィンドウ1fおよびリヤウィンドウ1bの清浄度やLiDAR6f,6b,6r,6lの感度を保つことできる。
(第3の実施例)
図6は、クリーナシステム100の第3の実施例に係る動作(作動モードC)を説明するためのタイミングチャートである。例えば、図6に示す作動モードCは、車両が手動運転モードで運転されており、且つ昼間の場合に適した作動モードである。この場合、制御部116は、作動信号の入力に対してWWノズル101,102の作動回数をHCノズル107,108の作動回数よりも多くするとともに、HCノズル107,108の作動回数をLCノズル103~106の作動回数よりも多くするように、各ノズルのアクチュエータの作動を制御する。具体的には、例えば、制御部116は、WWノズル101,102のアクチュエータを作動信号4回あたり4回作動させ、HCノズル107,108のアクチュエータを作動信号4回あたり2回作動させ、LCノズル103~106のアクチュエータを作動信号4回あたり1回作動させる。
図6は、クリーナシステム100の第3の実施例に係る動作(作動モードC)を説明するためのタイミングチャートである。例えば、図6に示す作動モードCは、車両が手動運転モードで運転されており、且つ昼間の場合に適した作動モードである。この場合、制御部116は、作動信号の入力に対してWWノズル101,102の作動回数をHCノズル107,108の作動回数よりも多くするとともに、HCノズル107,108の作動回数をLCノズル103~106の作動回数よりも多くするように、各ノズルのアクチュエータの作動を制御する。具体的には、例えば、制御部116は、WWノズル101,102のアクチュエータを作動信号4回あたり4回作動させ、HCノズル107,108のアクチュエータを作動信号4回あたり2回作動させ、LCノズル103~106のアクチュエータを作動信号4回あたり1回作動させる。
車両が手動運転モードで運転されており、且つ昼間である場合には、運転者の前方視界や後方視界を良好に保つために、フロントウィンドウ1fと、リヤウィンドウ1bの清浄度を保つことが重要となる。一方で、左右ヘッドランプ7r,7lから出射される光の照度を保つ必要性は低く、また、LiDAR6f,6b,6r,6l等により車両の外部の情報を取得する必要はない。そのため、第2の実施例においては、図6に示す作動回数とすることで、洗浄液を節約しつつフロントウィンドウ1fおよびリヤウィンドウ1bや左右ヘッドランプ7r,7lの清浄度を保つことできる。
なお、本実施例においては、WWノズル101,102の作動回数がLCノズル103~106やHCノズル107,108の作動回数よりも多くなるように制御されればよく、作動信号の入力に対する各ノズルの作動回数は図6に示す例に限られない。例えば、LCノズル103~106の作動回数とHCノズル107,108の作動回数とは同一であっても良い。
(第4の実施例)
図7は、クリーナシステム100の第4の実施例に係る動作(作動モードD)を説明するためのタイミングチャートである。例えば、図7に示す作動モードDは、車両が手動運転モードで運転されており、且つ夜間の場合に適した作動モードである。この場合、制御部116は、作動信号の入力に対してHCノズル107,108の作動回数をWWノズル101,102の作動回数よりも多くするとともに、WWノズル101,102の作動回数をLCノズル103~106の作動回数よりも多くするように、各ノズルのアクチュエータの作動を制御する。具体的には、例えば、制御部116は、HCノズル107,108のアクチュエータを作動信号4回あたり4回作動させ、WWノズル101,102のアクチュエータを作動信号4回あたり2回作動させ、LCノズル103~106のアクチュエータを作動信号4回あたり1回作動させる。
図7は、クリーナシステム100の第4の実施例に係る動作(作動モードD)を説明するためのタイミングチャートである。例えば、図7に示す作動モードDは、車両が手動運転モードで運転されており、且つ夜間の場合に適した作動モードである。この場合、制御部116は、作動信号の入力に対してHCノズル107,108の作動回数をWWノズル101,102の作動回数よりも多くするとともに、WWノズル101,102の作動回数をLCノズル103~106の作動回数よりも多くするように、各ノズルのアクチュエータの作動を制御する。具体的には、例えば、制御部116は、HCノズル107,108のアクチュエータを作動信号4回あたり4回作動させ、WWノズル101,102のアクチュエータを作動信号4回あたり2回作動させ、LCノズル103~106のアクチュエータを作動信号4回あたり1回作動させる。
車両が手動運転モードで運転されており、且つ夜間である場合には、車両の前方視界を良好に保つために、左右ヘッドランプ7r,7lから出射される光の照度を保つことが最優先される。また、左右ヘッドランプ7r,7lにより照らされる前方視界を運転者が良好に視認可能とするためにフロントウィンドウ1fやリヤウィンドウ1bの清浄度を保つことも求められる。一方で、LiDAR6f,6b,6r,6l等により車両の外部の情報を取得する必要性はない。そのため、第2の実施例においては、図7に示す作動回数とすることで、洗浄液を節約しつつ左右ヘッドランプ7r,7lやフロントウィンドウ1fの清浄度を保つことできる。
上記第1の実施例から第4の実施例で説明したように、本クリーナシステム100において、制御部116は、WWノズル101,102の作動回数と、LCノズル103~106の作動回数と、HCノズル107,108の作動回数との大小関係が変更可能となるように構成されている。すなわち、本クリーナシステム100では、複数の運転モードに対応して、LCノズル103~106の作動回数と、WWノズル101,102および/またはHCノズル107,108の作動回数との適した大小関係を選択することができる。このように、様々なシーンに適したように本クリーナシステム100を作動させることができるため、本クリーナシステム100の使い勝手が高められている。また、単一のタンク111および単一のポンプ112により、洗浄対象物がそれぞれ異なるWWノズル101,102、LCノズル103~106、およびHCノズル107,108に洗浄液を吐出させることができるため、システムが簡便化されコストを抑えることができる。
なお、ノズル101~108で洗浄方式を相異ならせる方法としては、第1~第4の実施例において説明したようなノズル101~108で作動回数を異ならせる方法に限られない。例えば、制御部116は、ノズル101~108において、洗浄媒体の噴射時間、噴射量、噴射圧、噴射面積等を相異ならせても良い。具体的には、例えば、制御部116は、前LCノズル103、後LCノズル104、右LCノズル105、および左LCノズル106での洗浄媒体の噴射圧が、右HCノズル107および左HCノズル108での洗浄媒体の噴射圧よりも高くなるように設定する。自動運転モードの場合、LiDAR6f,6b,6r,6lの方が、左右ヘッドランプ7r,7lよりも高い清浄度が求められる。そのため、これらのLiDAR6f,6b,6r,6lに対して洗浄液をより高圧で吹き付けて洗浄することが好ましい。
(第5の実施例)
ノズル101~108で洗浄方式を相異ならせる方法としては、上記の各実施例において説明したような制御部116による制御により洗浄方式を異ならせる方法に限られない。以下、洗浄方式を相異ならせる方法の別の例として、ノズルからの洗浄液の噴射方式を異ならせる手法について図8~図10を参照して説明する。
ノズル101~108で洗浄方式を相異ならせる方法としては、上記の各実施例において説明したような制御部116による制御により洗浄方式を異ならせる方法に限られない。以下、洗浄方式を相異ならせる方法の別の例として、ノズルからの洗浄液の噴射方式を異ならせる手法について図8~図10を参照して説明する。
図8および図9は、クリーナシステム100が備えるクリーナノズルからの洗浄液の噴射方式を説明するための模式図である。図8は、HCノズルによる噴射方式を示す図であり、図9は、LCノズルによる噴射方式を示す図である。図8では、HCノズル107,108のうち右HCノズル107を例示している。また、図9ではLC103~106のうち前LCノズル103を例示している。
図8に示すように、例えば、右HCノズル107は、略扇状の開口部107aを備えている。この開口部107aからは、洗浄液が放射状に噴射される。ここで、開口部107aから洗浄液の噴射方向において所定の位置までの距離L(mm)における洗浄液の噴射幅をα(mm)とする。
一方、図9に示す前LCノズル103は、フルイディクス式ノズル(拡散噴射ノズル)として構成されている。フルイディクス式ノズルとは、流体の流れを干渉させてその方向を偏向させて制御を行うノズルである。フルイディクス式ノズルとしての前LCノズル103は、図9に示すように、洗浄液の流路を偏向させることで、洗浄液の噴射方向を左右に変化させることができる。
具体的には、図10に示すように、前LCノズル103は、その内部にノズルチップ(拡散流体素子)130としての構成を有している。ノズルチップ130には、流路131と、発振室132と、一対のフィードバック流路133,134と、拡散噴射口135とが形成されている。発振室132は流路131に連続して形成されており、流路131からの洗浄液が供給される。一対のフィードバック流路133,134は、発振室132の左右にそれぞれ設けられている。フィードバック流路133,134は、発振室132の出口側において発振室132に開口する入口133A,134Aと、発振室132の入口側において発振室132に開口する出口133B、134Bとを有している。これにより、フィードバック流路133,134は、流路131から発振室132へ送給された洗浄液の一部を、各入口133A、134Aから各出口133B、134Bへとそれぞれ分岐して案内し再び発振室132へ戻すように構成されている。すなわち、洗浄液はフィードバック流路133,134によりそれぞれフィードバックして流通される。これにより、フィードバック流路133,134に案内された洗浄液がいわゆる「フィードバック制御流」となって発振室132を流れる洗浄液を自励発振させ、拡散噴射口135から洗浄液を左右に振動させて拡散噴射させることができる。このように、前LCノズル103がフルイディクス式のノズルチップ130を備えることで、LiDAR6fに対して洗浄液を左右に振動させながら高圧で噴射することができる。
ここで、図9に示すように、拡散噴射口135から洗浄液の噴射方向において所定の位置までの距離L(mm)における洗浄液の噴射幅をβ(mm)とする。前LCノズル103の噴射幅βは、右HCノズル107の噴射幅αよりも短くなるように設定されていることが好ましい。これにより、前LCノズル103は、右HCノズル107に比べて、洗浄液をより高圧で噴射させることができる。
(第6の実施例)
図11は、第6の実施例に係るクリーナシステム200のブロック図である。クリーナシステム200は、ノズル101~108やタンク111、ポンプ112等の他に、前LiDARクリーナエアノズル203(以降、前LCエアノズル203と称す)、後LiDARクリーナエアノズル204(以降、後LCエアノズル204と称す)、右LiDARクリーナエアノズル205(以降、右LCエアノズル205と称す)、左LiDARクリーナエアノズル206(以降、左LCエアノズル206と称す)、エアポンプ212を有している。
図11は、第6の実施例に係るクリーナシステム200のブロック図である。クリーナシステム200は、ノズル101~108やタンク111、ポンプ112等の他に、前LiDARクリーナエアノズル203(以降、前LCエアノズル203と称す)、後LiDARクリーナエアノズル204(以降、後LCエアノズル204と称す)、右LiDARクリーナエアノズル205(以降、右LCエアノズル205と称す)、左LiDARクリーナエアノズル206(以降、左LCエアノズル206と称す)、エアポンプ212を有している。
前LCエアノズル203、後LCエアノズル204、右LCエアノズル205、左LCエアノズル206は、圧縮空気生成装置212に接続されている。圧縮空気生成装置212は外部から取り込んだ空気(エア)を圧縮し、圧縮空気を各LCエアノズル203~206にそれぞれ送る。
前LCエアノズル203は、前LCノズル103の近傍に設けられ、前LiDAR6fに向けて圧縮空気を噴射可能である。後LCエアノズル204は、後LCノズル104の近傍に設けられ、後LiDAR6bに向けて圧縮空気を噴射可能である。右LCエアノズル205は、右LCノズル105の近傍に設けられ、右LiDAR6rに向けて圧縮空気を噴射可能である。左LCエアノズル206は、左LCノズル106の近傍に設けられ、左LiDAR6lに向けて圧縮空気を噴射可能である。
図12は、クリーナシステム200の動作(作動モードE)を説明するためのタイミングチャートである。例えば、図12に示す作動モードEは、車両が完全自動運転モードや高度運転支援モードで運転されている場合に適した作動モードである。本実施例において、制御部116は、第1の実施例に係る作動モードAと同様に、LCノズル103~104の作動回数をWWノズル101,102やHCノズル107,108の作動回数よりも多くするとともに、LCノズル103~106の作動後にLCエアノズル203~206を作動させる。例えば、制御部116は、LCノズル103~106による洗浄液の噴射が完了した後に、圧縮空気生成装置212を作動させ、LCエアノズル203~206による圧縮空気の噴射を開始することが好ましい。
このように、クリーナシステム200は、LiDAR6f,6b,6r,6lには、洗浄液とともに圧縮空気が供給可能となるように構成されている。LiDAR6f,6b,6r,6lに洗浄液が残留した場合、車両外部の情報を適切に取得できなくなり、自動運転時の安全性が損なわれる可能性がある。そこで、洗浄液の残留が問題となりやすいLiDAR6f,6b,6r,6l等の外部センサに対して、洗浄液とは別途で圧縮空気を噴射させることで、センサ表面への洗浄液の残留を確実に防ぐことができる。
洗浄方式を相異させる手法としては、上記の実施例に挙げられた手法の他に、洗浄液の種類、ワイパーの有無、チェックバルブの有無を異ならせる手法を採用することができる。
(第7の実施例)
上述した実施形態では、ノズル101~108がタンク111に接続されている構成を例示したが、本実施形態はこれに限られない。
図13は、第7の実施例に係るクリーナシステム100A,100Bに係るブロック図である。
図13に示すように、クリーナシステム100Aは、前WWノズル101、前LCノズル103、右LCノズル105、左LCノズル106、右HCノズル107、左HCノズル108、前タンク111A、前ポンプ112A(単一のポンプの一例)、制御部116A(クリーナ制御部の一例)を有している。前WWノズル101、前LCノズル103、右LCノズル105、左LCノズル106、右HCノズル107、左HCノズル108は、前ポンプ112Aを介して前タンク111Aに接続されている。前ポンプ112Aは、前タンク111Aに貯留された洗浄液を、ノズル101,103,105~108にそれぞれ送る。
上述した実施形態では、ノズル101~108がタンク111に接続されている構成を例示したが、本実施形態はこれに限られない。
図13は、第7の実施例に係るクリーナシステム100A,100Bに係るブロック図である。
図13に示すように、クリーナシステム100Aは、前WWノズル101、前LCノズル103、右LCノズル105、左LCノズル106、右HCノズル107、左HCノズル108、前タンク111A、前ポンプ112A(単一のポンプの一例)、制御部116A(クリーナ制御部の一例)を有している。前WWノズル101、前LCノズル103、右LCノズル105、左LCノズル106、右HCノズル107、左HCノズル108は、前ポンプ112Aを介して前タンク111Aに接続されている。前ポンプ112Aは、前タンク111Aに貯留された洗浄液を、ノズル101,103,105~108にそれぞれ送る。
また、クリーナシステム100Bは、後WWノズル102、後LCノズル104、後タンク113、後ポンプ114(単一のポンプの一例)、制御部116B(クリーナ制御部の一例)を有している。後WWノズル102と後LCノズル104は、後ポンプ114を介して後タンク113に接続されている。後ポンプ114は、後タンク113に貯留された洗浄液を後WWノズル102と後LCノズル104にそれぞれ送る。
図13に示すように、車両1の前部と後部とでクリーナシステムを分けて構成してもよい。この場合にも、制御部116Aは、前WWノズル101の作動回数と、LCノズル103,105~106の作動回数と、HCノズル107,108の作動回数との大小関係が変更可能となるように構成されている。また、制御部116Bは、後WWノズル102の作動回数と、後LCノズル104の作動回数との大小関係が変更可能となるように構成されている。これにより、それぞれ単一のポンプ112A,114を備えた各クリーナシステム100A,100Bは、様々なシーンに適したように作動させることができるため、システムが簡素化されるとともにその使い勝手が高められている。
ノズル101~108がそれぞれ互いに異なるタンクに接続されていてもよい。あるいは、ノズル101~108が、その洗浄対象の種類ごとに共通のタンクに接続されていてもよい。例えば、LiDAR用のノズル105~108が共通の第一タンクに接続され、ランプ用のノズル107,108が、第一タンクと異なる第二タンクに接続されるように構成してもよい。
あるいは、ノズル101~108が、その洗浄対象の配置位置ごとに共通のタンクに接続されていてもよい。例えば、前WWノズル101と前LCノズル103が共通の前タンクに接続され、右LCノズル105と右HCノズル107が共通の右タンクに接続され、後WWノズル102と後LCノズル104が共通の後タンクに接続され、左LCノズル106と左HCノズル108が共通の左タンクに接続されるように構成してもよい。
これらの場合にも、単一のポンプにより、洗浄対象物に応じて各ノズル101~108での洗浄方式が互いに異なるように、これらのノズル101~108を作動可能に構成させることで、使い勝手の良いクリーナシステムを提供することができる。
あるいは、ノズル101~108が、その洗浄対象の配置位置ごとに共通のタンクに接続されていてもよい。例えば、前WWノズル101と前LCノズル103が共通の前タンクに接続され、右LCノズル105と右HCノズル107が共通の右タンクに接続され、後WWノズル102と後LCノズル104が共通の後タンクに接続され、左LCノズル106と左HCノズル108が共通の左タンクに接続されるように構成してもよい。
これらの場合にも、単一のポンプにより、洗浄対象物に応じて各ノズル101~108での洗浄方式が互いに異なるように、これらのノズル101~108を作動可能に構成させることで、使い勝手の良いクリーナシステムを提供することができる。
本実施形態では、車両の運転モードは、完全自動運転モードと、高度運転支援モードと、運転支援モードと、手動運転モードとを含むものとして説明したが、車両の運転モードは、これら4つのモードに限定されるべきではない。車両の運転モードは、これら4つのモードの少なくとも1つを含んでいてもよい。例えば、車両の運転モードは、完全自動運転モードのみを含んでいてもよい。
さらに、車両の運転モードの区分や表示形態は、各国における自動運転に係る法令又は規則に沿って適宜変更されてもよい。同様に、本実施形態の説明で記載された「完全自動運転モード」、「高度運転支援モード」、「運転支援モード」のそれぞれの定義はあくまでも一例であって、各国における自動運転に係る法令又は規則に沿って、これらの定義は適宜変更されてもよい。
上述した実施例では、クリーナシステム100を自動運転可能な車両に搭載した例を説明したが、クリーナシステム100は自動運転不可能な車両に搭載してもよい。
上述した実施例では、外部センサを洗浄するノズルとして、LiDARを洗浄するノズル103~106を説明したが、本発明はこれに限られない。クリーナシステム100は、カメラを洗浄するノズル、レーダを洗浄するノズルなどを、ノズル103~106の代わりに有していてもよいし、ノズル103~106とともに有していてもよい。また、検出方法の異なる複数の外部センサ(例えば、LiDARとカメラ)や車両1における搭載位置が互いに異なる複数の外部センサ(例えば、前LiDARと後LiDAR)に対して、それぞれ対応する複数のセンサクリーナ(センサクリーナノズル)を含んでいた場合に、制御部116は、複数のセンサクリーナでの洗浄方式が互いに異なるように、これらのセンサクリーナを作動させてもよい。LiDARとカメラなど、検出方法が異なる外部センサは求められるシーンが異なる場合が多い。そこで、外部センサの種類ごとに洗浄方式を異ならせることで、特定のシーンに応じたセンサごとに清浄度を維持しやすくなる。
なお、LiDARなどの外部センサは、検出面と、検出面を覆うカバーを有していることがある。外部センサを洗浄するノズルは、検出面を洗浄するように構成されていてもよいし、センサを覆うカバーを洗浄するように構成されていてもよい。
クリーナシステム100が吐出する洗浄媒体は、空気や水、あるいは洗剤を含む洗浄液などを含む。フロント・リヤウィンドウ、ヘッドランプ、LiDARのそれぞれに吐出する洗浄媒体は、相異なっていてもよいし、同じでもよい。
また上述した実施例では、ノズル101~108に設けられたアクチュエータを作動させることによりノズル101~108から洗浄媒体を吐出させる例を説明したが、本発明はこれに限られない。
ノズル101~108のそれぞれに常閉バルブが設けられており、タンクとノズル101~108との間が常に高圧となるようにポンプが作動されており、ノズル101~108に設けられたバルブを制御部116が開けることにより、ノズル101~108から洗浄媒体を吐出させるように構成してもよい。
ノズル101~108のそれぞれに常閉バルブが設けられており、タンクとノズル101~108との間が常に高圧となるようにポンプが作動されており、ノズル101~108に設けられたバルブを制御部116が開けることにより、ノズル101~108から洗浄媒体を吐出させるように構成してもよい。
ノズル101~108には、洗浄媒体を吐出する1つ以上の吐出穴が設けられている。ノズル101~108は、洗浄液を吐出する1つ以上の吐出穴と、空気を吐出する1つ以上の吐出穴とが設けられていてもよい。
各々のノズル101~108は、それぞれ個別に設けてもよいし、複数をユニット化して構成してもよい。例えば、右LCノズル105と右HCノズル107を単一のユニットとして構成してもよい。右ヘッドランプ7rと右LiDAR6rとが一体化された態様に対して、右LCノズル105と右HCノズル107を単一のユニットとして構成するとよい。
また、上記の実施例では、制御部116への作動信号の入力は、ユーザが操作するスイッチなどの操作部115から出力される信号に基づいているが、例えば車両の各部に搭載された汚れセンサが汚れを検出したときに出力する信号が制御部116に入力されるように構成されていてもよい。
あるいは、汚れセンサが汚れを検出したときに出力する信号が車両制御部3(ECUまたは自動運転制御部)に入力され、車両制御部3から各種クリーナノズルの少なくとも一つを作動させる信号が制御部116に入力されるように構成されていてもよい。
センサが汚れを検出したときに出力する信号が車両制御部3に入力され、車両制御部3から各種クリーナの少なくとも一つを作動させる信号が各種クリーナに入力されるように構成されていてもよい。この場合には、制御部116が車両制御部3の一部として実装される。
あるいは、汚れセンサが汚れを検出したときに出力する信号が車両制御部3(ECUまたは自動運転制御部)に入力され、車両制御部3から各種クリーナノズルの少なくとも一つを作動させる信号が制御部116に入力されるように構成されていてもよい。
センサが汚れを検出したときに出力する信号が車両制御部3に入力され、車両制御部3から各種クリーナの少なくとも一つを作動させる信号が各種クリーナに入力されるように構成されていてもよい。この場合には、制御部116が車両制御部3の一部として実装される。
図14は、第8の実施例から第11の実施例に係るクリーナシステム1100のブロック図である。クリーナシステム1100は、ノズル1101~1108の他に、前タンク1111、前ポンプ1112、後タンク1113、後ポンプ1114、操作部1115、制御部1116(クリーナ制御部の一例)、を有している。本実施例において、各々のノズル1101~1108は洗浄液を洗浄対象に向かって吐出可能に構成されている。
前WWノズル1101、前LCノズル1103、右LCノズル1105、左LCノズル1106、右HCノズル1107、左HCノズル1108は、前ポンプ1112を介して前タンク1111に接続されている。前ポンプ1112は前タンク1111に貯留された洗浄液を、前WWノズル1101、前LCノズル1103、右LCノズル1105、左LCノズル1106、右HCノズル1107、左HCノズル1108に送る。
後WWノズル1102と後LCノズル1104は、後ポンプ1114を介して後タンク1113に接続されている。後ポンプ1114は後タンク1113に貯留された洗浄液を後WWノズル1102と後LCノズル1104に送る。
操作部1115は、車両1のユーザが操作可能な装置である。操作部1115は、ユーザの操作に伴って信号を出力し、この信号は制御部1116に入力される。例えば操作部1115は、車室内部に設けられたスイッチなどで構成することができる。
各々のノズル1101~1108には、ノズルを開状態にさせて洗浄液を洗浄対象に吐出させるアクチュエータが設けられている。各々のノズル1101~1108に設けられたアクチュエータは、制御部1116に電気的に接続されている。また、制御部1116は、前ポンプ1112、後ポンプ1114、操作部1115、車両制御部3にも電気的に接続されている。
例えば制御部1116にフロントウィンドウ1fを洗浄させる信号が入力された場合には、制御部1116は前ポンプ1112を作動させて前タンク1111から前WWノズル1101に洗浄液を送り、前WWノズル1101のアクチュエータを作動させて前WWノズル1101から洗浄液を吐出させる。
(第8の実施例)
図15は、第8の実施例に係るクリーナシステム1100の模式図である。
図15に示すように、前タンク1111には、前ポンプ1112の例として、複数のポンプ(WW用前ポンプ1112A、LC・HC用前ポンプ1112B)が取り付けられている。WW用前ポンプ1112A(第一のポンプの一例)は、前WWノズル1101に洗浄液を供給するためのポンプであり、例えば、前タンク1111の後方側に設けられている。LC・HC用前ポンプ1112B(第二のポンプの一例)は、前LCノズル1103、右LCノズル1105、左LCノズル1106、右HCノズル1107、および左HCノズル1108に洗浄液を供給するためのポンプであり、例えば前タンク1111の前方側に設けられている。
図15は、第8の実施例に係るクリーナシステム1100の模式図である。
図15に示すように、前タンク1111には、前ポンプ1112の例として、複数のポンプ(WW用前ポンプ1112A、LC・HC用前ポンプ1112B)が取り付けられている。WW用前ポンプ1112A(第一のポンプの一例)は、前WWノズル1101に洗浄液を供給するためのポンプであり、例えば、前タンク1111の後方側に設けられている。LC・HC用前ポンプ1112B(第二のポンプの一例)は、前LCノズル1103、右LCノズル1105、左LCノズル1106、右HCノズル1107、および左HCノズル1108に洗浄液を供給するためのポンプであり、例えば前タンク1111の前方側に設けられている。
WW用前ポンプ1112Aと前WWノズル1101との間は、管路1120(第一の管路の一例)で接続されている。また、LC・HC用前ポンプ1112Bと前LCノズル1103、右LCノズル1105、左LCノズル1106との間、および、LC・HC用前ポンプ1112Bと右HCノズル1107、左HCノズル1108との間は管路1122(第二の管路の一例)でそれぞれ接続されている。管路1122の途中には、第二の管路1122をLCノズル1103,1105,1106側とHCノズル1107,1108側とに分岐させる分岐部1124が設けられている。分岐部1124の内部には切替弁1126が設けられている。切替弁1126は、制御部1116に接続されており、制御部1116からの信号を受信して、管路1122を流通する洗浄液を、LCノズル1103,1105,1106側の管路1122Aに流入させる場合と、HCノズル1107,1108側の管路1122Bに流入させる場合とで適宜切り替えることができる。この場合、LCノズル1103,1105,1106から洗浄液を噴射させている間は、HCノズル1107,1108からは洗浄液は噴射されない(逆も同様である)。なお、切替弁1126を設けず、LC・HC用前ポンプ1112Bが作動した場合には常にLCノズル1103,1105,1106側の管路1122AとHCノズル1107,1108側の管路1122Bとの双方に流入させる構成としてもよい。
ここで、前タンク1111から各LCノズル1103,1105,1106や各HCノズル1107,1108に洗浄液を供給する管路1122(1122A,1122Bを含む)は、前タンク1111から前WWノズル1101に洗浄液を供給する管路1120よりも太いものであることが好ましい。また、LCノズル側の管路1122は、WWノズル側の管路1120よりも短くなるように構成されていることが好ましい。すなわち、管路1120の長さよりも、管路1122の長さ(具体的には、LC・HC用前ポンプ1112Bから各LCノズル1103,1105,1106までの長さ)が短くなるように設定されていることが好ましい。
WW用前ポンプ1112AおよびLC・HC用前ポンプ1112Bは、制御部1116に接続されている。制御部1116は、例えば、各LCノズル1103,1105,1106から噴射される洗浄液の噴射圧が、前WWノズル1101から噴射される洗浄液の噴射圧よりも高くなるように、WW用前ポンプ1112AおよびLC・HC用前ポンプ1112Bを制御する。また、制御部1116は、噴射圧の制御に加えて、あるいは噴射圧の制御に代えて、洗浄液の噴射時間や噴射回数等などを前WWノズル1101と各LCノズル1103,1105,1106とで異ならせるように、WW用前ポンプ1112AおよびLC・HC用前ポンプ1112Bを制御することもできる。この場合、制御部1116は、各LCノズル1103,1105,1106から噴射される洗浄液の噴射時間を前WWノズル1101から噴射される洗浄液の噴射時間よりも長くしたり、各LCノズル1103,1105,1106から噴射される洗浄液の噴射回数を前WWノズル1101から噴射される洗浄液の噴射回数よりも多くすることが好ましい。
なお、WW用前ポンプ1112AおよびLC・HC用前ポンプ1112Bを制御するポンプ制御部を制御部1116とは別個で設け、車両制御部3または制御部1116からの信号を受信することにより、ポンプ制御部がWW用前ポンプ1112AおよびLC・HC用前ポンプ1112Bによる洗浄液の噴射圧や噴射時間、噴射回数等を制御することとしてもよい。
また、図示は省略するが、後ポンプ1114は、複数のポンプ(WW用後ポンプ、LC用後ポンプ)を含み、WW用後ポンプとLC用後ポンプは後タンク1113の異なる位置に取り付けられている。WW用後ポンプと後WWノズル1102との間を連結する管路は、LC用後ポンプと後LCノズル1104との間を連結する管路とは別個で設けられており、後LCノズル1104側の管路は、後WWノズル1102側の管路よりも太く、および/または、短くなるように構成されていることが好ましい。また、WW用後ポンプおよびLC用後ポンプは、制御部1116に接続され、制御部1116は、後LCノズル1104からの洗浄液の噴射圧が、後WWノズル1102からの洗浄液の噴射圧よりも高くなるように、WW用後ポンプおよびLC用後ポンプを制御することが好ましい。
ところで、車両が自動運転モード(特に、完全運転モードおよび高度運転支援モード)で運転される場合、各LiDAR6f,6b,6r,6lの感度を良好に維持することが求められる。従って、この場合は、LiDAR6f,6b,6r,6lの方がフロントウィンドウ1f、リヤウィンドウ1b、およびヘッドランプ7r,7lよりも求められる清浄度が高い。
そこで、第8の実施例のクリーナシステム1100においては、前WWノズル1101とWW用前ポンプ1112Aとの間を接続し洗浄液を前タンク1111から前WWノズル1101へ供給する管路1120を、各LCノズル1103,1105,1106とLC・HC用前ポンプ1112Bとの間を接続し洗浄液を前タンク1111から各LCノズル1103,1105,1106へ供給する管路1122と異ならせる(別個に設ける)ように構成されている。また、後WWノズル1102とWW用後ポンプとの間を接続し洗浄液を後タンク1113から後WWノズル1102へ供給する管路を、後LCノズル1104とLC用後ポンプとの間を接続し洗浄液を後タンク1113から後LCノズル1104へ供給する管路と異ならせるように構成されている。これにより、例えば、WWノズル1101,1102とLCノズル1103~1106とで洗浄液の噴射圧や、噴射時間、噴射回数等を異ならせることができるため、洗浄対象物ごとに適切な洗浄方式で洗浄可能となる。また、本クリーナシステム1100では、タンクを洗浄対象物ごとに設ける必要がないため、システムを簡素化できるとともにコストを削減することができる。
上記の式(1)によれば、管路の長さLが長いと圧力損失ΔPが大きくなる。一方、管路の長さLが短いと圧力損失ΔPが小さくなる。また、管径dが大きいと圧力損失ΔPが小さくなり、管径dが小さいと圧力損失ΔPが大きくなる。そこで、本クリーナシステム1100においては、各LCノズル1103~1106に洗浄液を供給する管路(例えば、管路1122)の方が、各WWノズル1101,1102等に洗浄液を供給する管路(例えば、管路1120)よりも太く、および/または、短くなるようにしている。これにより、各LCノズル1103~1106から、各WWノズル1101,1102よりも、洗浄液を高圧で噴射させることができる。
また、上述の通り、制御部1116による前ポンプ1112(WW用前ポンプ1112AおよびLC・HC用前ポンプ1112B)および後ポンプ1114(WW用後ポンプおよびLC用後ポンプ)の制御により、各LCノズル1103~1106からLiDAR6f,6b,6r,6lに対してより高圧で洗浄液を噴射させることもできる。
上述した第8から第11の実施例では、ノズル1101,1103,1105~1108が前タンク1111に接続され、ノズル1102,1104が後タンク1113に接続された構成を説明したが、この例に限られない。例えば、ノズル1101~1108が単一のタンクに接続されていてもよい。この場合にも、各LCノズル1103~1106とタンクとの間を接続する管路を、WWノズル1101,1102と当該タンクとの間を接続する管路とは別個に設け、LCノズル側の管路がWWノズル側の管路よりも太くおよび/または短くなるように構成する。
あるいは、ノズル1101~1108が、その洗浄対象の配置位置ごとに共通のタンクに接続されていてもよい。例えば、前WWノズル1101と前LCノズル1103が共通の前タンクに接続され、右LCノズル1105と右HCノズル1107が共通の右タンクに接続され、後WWノズル1102と後LCノズル1104が共通の後タンクに接続され、左LCノズル1106と左HCノズル1108が共通の左タンクに接続されるように構成してもよい。この場合にも、例えば、共通の前タンクと前WWノズル1101との間を接続する管路と、共通の前タンクと前LCノズル1103との間を接続する管路とを異ならせるとともに、前LCノズル1103側の管路が前WWノズル1101側の管路よりも太くおよび/または短くなるように構成する。さらに、共通の後タンクと後WWノズル1102との間を接続する管路と、共通の後タンクと後LCノズル1104との間を接続する管路とを異ならせるとともに、後LCノズル1104側の管路が後WWノズル1102側の管路よりも太くおよび/または短くなるように構成する。
あるいは、ノズル1101~1108のそれぞれがそれぞれ個別のポンプに接続されており、それぞれのポンプを個別に制御部1116が制御することにより、ノズル1101~1108からの洗浄媒体の吐出を制御するように構成してもよい。この場合、ノズル1101~1108のそれぞれが相異なるタンクに接続されていてもよいし、共通のタンクに接続されていてもよい。この場合にも、ポンプとWWノズルとの間を接続する管路と、ポンプとLCノズルとの間を接続する管路とを異ならせるとともに、LCノズル側の管路がWWノズル側の管路よりも太くおよび/または短くなるように構成することが好ましい。
上述した実施例では、外部センサを洗浄するノズルとして、LiDARを洗浄するノズル1103~1106を説明したが、本発明はこれに限られない。クリーナシステム1100は、カメラを洗浄するノズル、レーダを洗浄するノズルなどを、ノズル1103~1106の代わりに有していてもよいし、ノズル1103~1106とともに有していてもよい。また、検出方法の異なる複数の外部センサ(例えば、LiDARとカメラ)や車両1における搭載位置が互いに異なる複数の外部センサ(例えば、前LiDARと後LiDAR)に対して、それぞれ対応する複数のセンサクリーナ(センサクリーナノズル)を含んでいた場合に、制御部1116は、複数のセンサクリーナとポンプとの間の管路が互いに異なるようにしてもよい。LiDARとカメラなど、検出方法が異なる外部センサは求められるシーンが異なる場合が多い。そこで、外部センサの種類ごとに管路を異ならせることで、洗浄液の噴射圧や噴射時間、噴射回数などを異ならせることができ、特定のシーンに応じたセンサごとに清浄度を維持しやすくなる。
(第9の実施例)
図16は、LiDARと、LiDARに洗浄液を噴射するLCノズルの実施例(第9の実施例)とを示す模式図である。図16においては、複数のLiDAR6f,6b,6r,6lのうち前LiDAR6fを例示して、前LCノズル2103とともに図示する。
前LiDAR6fは、例えば、図16に示すような横長矩形状の洗浄対象面Pを有している。前LCノズル2103は、前LiDAR6fの洗浄対象面Pに対して可動式となるように取り付けられている。すなわち、前LCノズル2103は、不図示の可動装置により回転軸2103Sを中心に回転角θ内で回転可能に構成されている。なお、前LCノズル2103の本体部分は固定し、開口部2103Aの部分のみ回転可能に構成されていてもよい。
図16は、LiDARと、LiDARに洗浄液を噴射するLCノズルの実施例(第9の実施例)とを示す模式図である。図16においては、複数のLiDAR6f,6b,6r,6lのうち前LiDAR6fを例示して、前LCノズル2103とともに図示する。
前LiDAR6fは、例えば、図16に示すような横長矩形状の洗浄対象面Pを有している。前LCノズル2103は、前LiDAR6fの洗浄対象面Pに対して可動式となるように取り付けられている。すなわち、前LCノズル2103は、不図示の可動装置により回転軸2103Sを中心に回転角θ内で回転可能に構成されている。なお、前LCノズル2103の本体部分は固定し、開口部2103Aの部分のみ回転可能に構成されていてもよい。
前LiDAR6fの近傍には、前LiDAR6fの洗浄対象面Pの汚れの有無を検知するための汚れセンサ2130(汚れ検知部の一例)が設けられている。汚れセンサ2130は、制御部2116と接続されており、前LiDAR6fの洗浄対象面Pの汚れを検知した場合、制御部2116に対して汚れ信号を送信する。汚れセンサ2130は、前LiDAR6fの洗浄対象面Pを複数の領域に区画し、どの領域に汚れが付着しているかを検知することができる。具体的には、洗浄対象面Pは、その左右方向において、右領域R1、中央領域R2、左領域R3の3つの領域に区画されている。
制御部2116は、汚れセンサ2130から受信した汚れ信号に基づいて、洗浄対象面Pの複数の領域R1~R3のうち汚れが付着していると判定された領域に前LCノズル2103の開口部2103Aが向くように、前LCノズル2103を可動させる。例えば、複数の領域R1~R3のうち右領域R1に汚れが付着していると判定された場合には、図17Aに示すように、制御部2116は前LCノズル2103の開口部2103Aが右領域R1に向くように、前LCノズル2103を回転軸2103Sを中心に回転させ、前LCノズル2103から洗浄液を右領域R1に向けて噴射する。また、右領域R1および左領域R3に汚れが付着していると判定された場合には、制御部2116は、前LCノズル2103の開口部2103Aがまずは右領域R1に向くように前LCノズル2103を回転させて前LCノズル2103から洗浄液を右領域R1に向けて噴射した後に、図17Bに示すように、前LCノズル2103の開口部2103Aが左領域R3に向くように前LCノズル2103を回転させて、前LCノズル2103から洗浄液を左領域R3に向けて噴射する。このように、制御部2116は、前LiDAR6fの洗浄対象面Pの複数の領域R1~R3のうち汚れが付着していた領域、すなわち、洗浄すべき領域のみに対して洗浄液を噴射させることができる。すなわち、制御部2116は、複数の領域R1~R3のうち洗浄対象の領域に対する洗浄強度と洗浄対象ではない領域に対する洗浄強度とを異ならせるように、可動式の前LCノズル2103を作動させる。これにより、洗浄対象面Pのうち洗浄すべき領域に対して効率的に洗浄液を噴射させることができるため、洗浄液を節約しつつ、洗浄対象物である前LiDAR6fの清浄度を維持することができる。
また、汚れセンサ2130は、洗浄対象面Pに付着した汚れの度合い(汚れ度)を検知し、汚れ度情報を含む汚れ信号を制御部2116に送信することも可能である。この場合、複数の領域R1~R3のうち洗浄対象の領域に対する洗浄強度と洗浄対象ではない領域に対する洗浄強度とを異ならせる手法の一例として、制御部2116は、汚れセンサ2130から受信した汚れ度情報に基づいて、洗浄対象面Pの各領域における汚れ度に応じて、前LCノズル2103からの洗浄液の噴射圧や噴射時間、噴射回数を異ならせることもできる。例えば、汚れセンサ2130において右領域R1の汚れ度が左領域R3の汚れ度よりも高いと判定された場合には、制御部2116は、右領域R1に対する前LCノズル2103からの洗浄液の噴射圧を左領域R3に対する洗浄液の噴射圧よりも高くすることができる。同様に、制御部2116は、右領域R1への洗浄液の噴射時間を長くしたり、洗浄液の噴射回数を多くしたりすることもできる。
なお、複数の領域R1~R3のいずれにも汚れが付着していると判定された場合には、制御部2116は、図16に示すように、前LCノズル2103の開口部2103Aが右領域R1、中央領域R2、および左領域R3に順に向くように前LCノズル2103を動かし、洗浄液が洗浄対象面P全体に噴射されるように、複数の領域R1~R3に向けて洗浄液を順次噴射すればよい。
(第10の実施例)
図18は、前LiDAR6fと、第10の実施例にかかる前LCノズル2203を示す模式図である。
図18に示すように、第10の実施例にかかる前LCノズル2203は、複数の(ここでは、3つの)開口部2203A~2203Cを備えている。開口部2203A~2203Cは、前LiDAR6fの洗浄対象面Pの複数の領域R1~R3のそれぞれに対して向くように配置されている。具体的には、開口部2203Aは、洗浄対象面Pの右領域R1に向かう方向に設けられ、開口部2203Bは、洗浄対象面Pの中央領域R2に向かう方向に設けられ、開口部2203Cは、洗浄対象面Pの左領域R3に向かう方向に設けられている。
図18は、前LiDAR6fと、第10の実施例にかかる前LCノズル2203を示す模式図である。
図18に示すように、第10の実施例にかかる前LCノズル2203は、複数の(ここでは、3つの)開口部2203A~2203Cを備えている。開口部2203A~2203Cは、前LiDAR6fの洗浄対象面Pの複数の領域R1~R3のそれぞれに対して向くように配置されている。具体的には、開口部2203Aは、洗浄対象面Pの右領域R1に向かう方向に設けられ、開口部2203Bは、洗浄対象面Pの中央領域R2に向かう方向に設けられ、開口部2203Cは、洗浄対象面Pの左領域R3に向かう方向に設けられている。
制御部2116は、汚れセンサ2130からの汚れ信号に基づいて、洗浄対象面Pの複数の領域R1~R3のうち汚れが付着していると判定された領域に対応する前LCノズル2203の開口部から洗浄液を噴射するよう、前LCノズル2203を作動させることができる。例えば、複数の領域R1~R3のうち右領域R1に汚れが付着していると判定された場合には、制御部2116は、右領域R1に対応する前LCノズル2203の開口部2203Aから洗浄液を右領域R1に向けて噴射する。また、右領域R1および左領域R3に汚れが付着していると判定された場合には、図19に示すように、制御部2116は、右領域R1に対応する開口部2203Aおよび左領域R3に対応する開口部2203Cから洗浄液を右領域R1および左領域R3に向けてそれぞれ噴射する。このように、第10の実施例においても、制御部2116は、前LiDAR6fの洗浄対象面Pのうち洗浄すべき領域のみに対して洗浄液を噴射させることができる。これにより、洗浄対象面Pの洗浄すべき領域に対して効率的に洗浄液を噴射させることができるため、洗浄液を節約しつつ、洗浄対象面Pの清浄度を維持することができる。
また、複数の領域R1~R3のうち洗浄対象の領域に対する洗浄強度と洗浄対象ではない領域に対する洗浄強度とを異ならせる手法の一例として、制御部2116は、汚れセンサ2130から受信した汚れ度情報に基づいて、洗浄対象面Pの各領域における汚れ度に応じて、各開口部2203A~2203Cからの洗浄液の噴射圧や噴射時間、噴射回数を互いに異ならせることもできる。例えば、汚れセンサ2130において右領域R1の汚れ度が左領域R3の汚れ度よりも高いと判定された場合には、制御部2116は、右領域R1に対する開口部2203Aからの洗浄液の噴射圧を左領域R3に対する開口部2203Cからの洗浄液の噴射圧よりも高くしたり、洗浄液の噴射時間を長くしたり、洗浄液の噴射回数を多くしたりすることができる。
なお、洗浄対象面P全体に汚れが付着していると判定された場合には、図18に示すように、制御部2116は前LCノズル2203の各開口部2203A~2203Cから対応する各領域R1~R3に向けて洗浄液をそれぞれ噴射すればよい。
(第11の実施例)
図20は、前LiDAR6fと、第11の実施例にかかる複数の前LCノズルを示す模式図である。
図20に示すように、第11の実施例にかかる複数の前LCノズル2303A~2303Cは、前LiDAR6fの洗浄対象面Pの複数の領域R1~R3のそれぞれに対応して配置されている。具体的には、前LCノズル2303Aは、洗浄対象面Pの右領域R1に対応する位置、例えば、洗浄対象面Pの左側面に対向する位置に配置されている。前LCノズル2303Bは、洗浄対象面Pの中央領域R2に対応する位置、例えば、洗浄対象面Pの上面に対向する位置に配置されている。前LCノズル2303Cは、洗浄対象面Pの左領域R3に対応する位置、例えば、洗浄対象面Pの右側面に対向する位置に配置されている。
図20は、前LiDAR6fと、第11の実施例にかかる複数の前LCノズルを示す模式図である。
図20に示すように、第11の実施例にかかる複数の前LCノズル2303A~2303Cは、前LiDAR6fの洗浄対象面Pの複数の領域R1~R3のそれぞれに対応して配置されている。具体的には、前LCノズル2303Aは、洗浄対象面Pの右領域R1に対応する位置、例えば、洗浄対象面Pの左側面に対向する位置に配置されている。前LCノズル2303Bは、洗浄対象面Pの中央領域R2に対応する位置、例えば、洗浄対象面Pの上面に対向する位置に配置されている。前LCノズル2303Cは、洗浄対象面Pの左領域R3に対応する位置、例えば、洗浄対象面Pの右側面に対向する位置に配置されている。
制御部2116は、汚れセンサ2130からの汚れ信号に基づいて、洗浄対象面Pの複数の領域R1~R3のうち汚れが付着していると判定された領域に対応する前LCノズル2303A~2303Cから洗浄液を噴射するよう、各前LCノズル2303A~2303Cを作動させることができる。例えば、複数の領域R1~R3のうち右領域R1に汚れが付着していると判定された場合には、制御部2116は、右領域R1に対応する前LCノズル2303Aから洗浄液を右領域R1に向けて噴射する。また、右領域R1および左領域R3に汚れが付着していると判定された場合には、図21に示すように、制御部2116は、右領域R1に対応する前LCノズル2303Aおよび左領域R3に対応する前LCノズル2303Cからそれぞれ洗浄液を右領域R1および左領域R3に向けて噴射する。このように、第11の実施例においても、制御部2116は、前LiDAR6fの洗浄対象面Pのうち洗浄すべき領域のみに対して洗浄液を噴射させることができる。すなわち、制御部2116は、前LiDAR6fの複数の領域R1~R3のうち洗浄対象の領域に対する洗浄強度と洗浄対象ではない領域に対する洗浄強度とを異ならせるように、複数の前LCノズル2303A~2303Cから洗浄液を噴射させる。これにより、洗浄対象面Pのうち洗浄すべき領域に対して効率的に洗浄液を噴射させることができるため、洗浄液を節約しつつ、洗浄対象面Pの清浄度を維持することができる。
また、第9の実施例や第10の実施例と同様に、制御部2116は、汚れセンサ2130から受信した汚れ度情報に基づいて、洗浄対象面Pの各領域R1~R3における汚れ度に応じて、各前LCノズル2303A~2303Cからの洗浄液の噴射圧や噴射時間、噴射回数を互いに異ならせることもできる。また、洗浄対象面P全体に汚れが付着していると判定された場合には、図20に示すように、制御部2116は、各前LCノズル2303A~2303Cから各領域R1~R3に向けて洗浄液をそれぞれ噴射すればよい。
複数の領域R1~R3のうち洗浄対象の領域に対する洗浄強度と洗浄対象ではない領域に対する洗浄強度とを異ならせる手法としては、上記の実施例に挙げられた手法の他に、洗浄液の噴射量や噴射面積を洗浄対象面Pの領域R1~R3ごとに異ならせる手法を採用することができる。
上記の実施例では、洗浄対象面Pは、その左右方向において、右領域R1、中央領域R2、左領域R3の3つの領域に区画されているが、この例に限られない。洗浄対象面Pを2分割あるいは4分割以上に区画してもよく、また、左右に区画された領域R1~R3のそれぞれを上下に例えば2分割してもよい。これらの区画された領域ごとに、上記の実施例に係るノズル構成を用いて、洗浄対象の領域に対する洗浄強度と洗浄対象ではない領域に対する洗浄強度とを異ならせるように洗浄液の噴射方式を制御できればよい。
検出方法の異なる複数の外部センサ(例えば、LiDARとカメラ)や車両1における搭載位置が互いに異なる複数の外部センサ(例えば、前LiDARと後LiDAR)に対して、それぞれ対応する複数のセンサクリーナ(センサクリーナノズル)を含んでいた場合に、制御部2116は、複数のセンサクリーナでの洗浄強度が互いに異なるように、これらのセンサクリーナを作動させてもよい。LiDARとカメラなど、検出方法が異なる外部センサは求められるシーンが異なる場合が多い。そこで、外部センサの種類ごとに洗浄強度を異ならせることで、特定のシーンに応じたセンサごとに清浄度を維持しやすくなる。
上記の実施形態では、洗浄対象物(例えば、LiDAR6f)の近傍に配置された汚れセンサ2130により、LiDAR6fの洗浄対象面Pの汚れを検知しているが、この例に限られない。LiDAR6fが、それ自身の洗浄対象面Pの汚れを検知することもできる。この場合は、別途で汚れセンサ2130を設けずにLiDAR6f自身を汚れ検知部として用いることができる。
また、上記の実施形態では、汚れセンサ2130がLiDAR6fの洗浄対象面Pの汚れを検出したときに出力する信号が制御部2116に入力されるように構成されているがこの例に限られない。例えば、汚れセンサ2130が汚れを検出したときに出力する信号が車両制御部3(ECUまたは自動運転制御部)に入力され、車両制御部3から各種クリーナノズルの少なくとも一つを作動させる信号が制御部2116に入力されるように構成されていてもよい。
汚れセンサ2130が汚れを検出したときに出力する信号が車両制御部3に入力され、車両制御部3から各種クリーナの少なくとも一つを作動させる信号が各種クリーナに入力されるように構成されていてもよい。この場合には、制御部2116が車両制御部3の一部として実装される。
汚れセンサ2130が汚れを検出したときに出力する信号が車両制御部3に入力され、車両制御部3から各種クリーナの少なくとも一つを作動させる信号が各種クリーナに入力されるように構成されていてもよい。この場合には、制御部2116が車両制御部3の一部として実装される。
図22は、第12の実施例および第13の実施例に係る車両用クリーナシステム3100(以下、クリーナシステム3100と称す)が搭載された車両1の上面図である。図22に示すように、車両1は、本発明の第12の実施例および第13の実施例に係るクリーナシステム3100を有している。クリーナシステム3100は、洗浄対象物に付着する水滴や泥や塵埃等の異物を洗浄媒体を用いて除去するシステムである。本実施形態において、クリーナシステム3100は、前ウィンドウウォッシャ(以降、前WWと称す)3101、後ウィンドウウォッシャ(以降、後WWと称す)3102、前LiDARクリーナ(以降、前LCと称す)3103、後LiDARクリーナ(以降、後LCと称す)3104、右LiDARクリーナ(以降、右LCと称す)3105、左LiDARクリーナ(以降、左LCと称す)3106、右ヘッドランプクリーナ(以降、右HCと称す)3107、左ヘッドランプクリーナ(以降、左HCと称す)3108、前カメラクリーナ3109a、後カメラクリーナ3109bを有する。各々のクリーナ3101~3109bは一つ以上のノズルを有し、ノズルから洗浄液または空気といった洗浄媒体を洗浄対象物に向けて吐出する。
前WW3101は、フロントウィンドウ1fの洗浄に利用可能である。後WW3102は、リヤウィンドウ1bの洗浄に利用可能である。前LC3103は、前LiDAR6fを洗浄可能である。後LC3104は、後LiDAR6bを洗浄可能である。右LC3105は、右LiDAR6rを洗浄可能である。左LC3106は、左LiDAR6lを洗浄可能である。右HC3107は、右ヘッドランプ7rを洗浄可能である。左HC3108は、左ヘッドランプ7lを洗浄可能である。前カメラクリーナ3109aは、前カメラ6cを洗浄可能である。後カメラクリーナ3109bは、後カメラ6dを洗浄可能である。
図23は、クリーナシステム3100のブロック図である。クリーナシステム3100は、クリーナ3101~3109bの他に、前タンク3111、前ポンプ3112、後タンク3113、後ポンプ3114、クリーナスイッチ3115、クリーナ制御部3116(制御部)、モード切替スイッチ3117を有している。
前WW3101、前LC3103、右LC3105、左LC3106、右HC3107、左HC3108、カメラクリーナ3109は、前ポンプ3112を介して前タンク3111に接続されている。前ポンプ3112は前タンク3111に貯留された洗浄液を、前WW3101、前LC3103、右LC3105、左LC3106、右HC3107、左HC3108、前カメラクリーナ3109aに送る。
後WW3102と後LC3104は、後ポンプ3114を介して後タンク3113に接続されている。後ポンプ3114は後タンク3113に貯留された洗浄液を後WW3102と後LC3104と後カメラクリーナ3109bに送る。
各々のクリーナ3101~3109bには、ノズルを開状態にさせて洗浄液を洗浄対象物に吐出させるアクチュエータが設けられている。各々のクリーナ3101~3109bに設けられたアクチュエータは、クリーナ制御部3116に電気的に接続されている。また、クリーナ制御部3116は、前ポンプ3112、後ポンプ3114、車両制御部3にも電気的に接続されている。
(第12の実施例)
図24は、本発明の第12の実施例に係るクリーナシステム3100のより詳細なブロック図である。図24に示したようにクリーナ制御部3116は、駆動制御部3121と、信号生成部3122と、汚れ判定部3123を備えている。駆動制御部3121は、各クリーナ3101~3109bを作動させる電気信号を各クリーナ3101~3109bへ出力する。信号生成部3122は、駆動制御部3121へ入力する信号を生成する。汚れ判定部3123は、洗浄対象物が汚れているか否かを判定し、汚れていると判定した場合に汚れ信号を信号生成部3122へ出力する。
図24は、本発明の第12の実施例に係るクリーナシステム3100のより詳細なブロック図である。図24に示したようにクリーナ制御部3116は、駆動制御部3121と、信号生成部3122と、汚れ判定部3123を備えている。駆動制御部3121は、各クリーナ3101~3109bを作動させる電気信号を各クリーナ3101~3109bへ出力する。信号生成部3122は、駆動制御部3121へ入力する信号を生成する。汚れ判定部3123は、洗浄対象物が汚れているか否かを判定し、汚れていると判定した場合に汚れ信号を信号生成部3122へ出力する。
前LC3103は、リキッドノズル3103aと、エアノズル3103bを備えている。リキッドノズル3103aは、前タンク3111から供給される洗浄液を前LiDAR6fに向けて吐出する。駆動制御部3121がリキッドノズル3103aへ電気信号を出力すると、リキッドノズル3103aに設けられたアクチュエータが作動して洗浄液を前LiDAR6fに向けて吐出する。
エアノズル3103bは周囲から空気を取り込み、取り込んだ空気を前LiDAR6fに向けて吐出する。駆動制御部3121がエアノズル3103bへ電気信号を出力すると、エアノズル3103bに設けられたアクチュエータが作動して空気を前LiDAR6fに向けて吐出する。
エアノズル3103bは周囲から空気を取り込み、取り込んだ空気を前LiDAR6fに向けて吐出する。駆動制御部3121がエアノズル3103bへ電気信号を出力すると、エアノズル3103bに設けられたアクチュエータが作動して空気を前LiDAR6fに向けて吐出する。
なお、図24においては、他のクリーナ3101,3102,3104~3109bに設けられたリキッドノズルおよびエアノズルを省略して描いているが、他のクリーナ3101,3102,3104~3109bもそれぞれリキッドノズルおよびエアノズルを有している。図26,28についても同様である。以降の説明においては、クリーナ制御部3116が前LC3103の動作を制御する例を説明するが、他のクリーナ3101,3102,3104~3109bもクリーナ制御部3116によって前LC3103と同様に動作が制御される。
駆動制御部3121は、各種クリーナ3101~3109bを作動させる電気信号を出力する。駆動制御部3121は、エアノズル3103aとリキッドノズル3103bを作動させる第一信号と、エアノズル3103aを作動させてリキッドノズル3103bを作動させない第二信号のいずれかのみが入力されるように構成されている。
前タンク3111などに貯留された洗浄液は有限であるが、空気は周囲から取り込めば際限なく使うことができる。また、洗浄対象物に付着した汚れは、埃など軽度な汚れであれば空気を吹き付けることによって十分に除去することができる。
そこで第12の実施例に係るクリーナシステム3100は、駆動制御部3121に入力される信号が第一信号か第二信号のいずれかのみとなるように構成されている。つまり、駆動制御部3121が前LC3103を作動させる機会において、エアノズル3103aを作動させずにリキッドノズル3103bを作動させることがない。このため、エアノズル3103aの作動機会が常にリキッドノズル3103bの作動機会と同じか多くなる。空気による洗浄の機会が洗浄液による洗浄の機会と同じか多いので、洗浄液の使用量を抑えつつ洗浄対象物を清浄に保ちやすい。これにより、洗浄液の補充頻度を低減することができ、使い勝手が高められている。
そこで第12の実施例に係るクリーナシステム3100は、駆動制御部3121に入力される信号が第一信号か第二信号のいずれかのみとなるように構成されている。つまり、駆動制御部3121が前LC3103を作動させる機会において、エアノズル3103aを作動させずにリキッドノズル3103bを作動させることがない。このため、エアノズル3103aの作動機会が常にリキッドノズル3103bの作動機会と同じか多くなる。空気による洗浄の機会が洗浄液による洗浄の機会と同じか多いので、洗浄液の使用量を抑えつつ洗浄対象物を清浄に保ちやすい。これにより、洗浄液の補充頻度を低減することができ、使い勝手が高められている。
次に、上述のように構成されたクリーナシステム3100の動作を図25を用いて説明する。図25は、本発明の第12の実施例に係るクリーナシステム3100が実行する処理のフローチャートである。クリーナシステム3100は、図25に示した処理を所定時間おきに定期的に繰り返し実行するように構成されている。
図25に示すように、まず汚れ判定部3123が前LiDAR6fが汚れているか否かを判定する(ステップS01)。汚れ判定部3123は前LiDAR6fが汚れていれば汚れ信号を信号生成部3122へ出力し、汚れていなければ汚れ信号を信号生成部3122へ出力しない。
次に、信号生成部3122が汚れ判定部3123から汚れ信号が入力されているか否かを判定する(ステップS02)。汚れ信号が入力されていなければ(ステップS02:No)、信号生成部3122は第一信号および第二信号のいずれも駆動制御部3121へ出力せず、処理を終了する。
信号生成部3122に汚れ信号が入力されている場合(ステップS02:Yes)、信号生成部3122は第二信号を生成し駆動制御部3121へ出力する(ステップS03)。第二信号が入力された駆動制御部3121は、エアノズル3103aを作動させリキッドノズル3103bを作動させないように、前LC3103を駆動する(ステップS04)。
信号生成部3122は、第二信号を出力した後に再び汚れ判定部3123から汚れ信号が入力されているか否かを判定する(ステップS05)。第二信号を出力した後に汚れ信号が入力されていなければ(ステップS05:No)、信号生成部3122は第一信号および第二信号のいずれも出力せず、処理を終了する。
第二信号を出力した後も汚れ信号が入力されている場合には(ステップS05:Yes)、信号生成部3122は第一信号を駆動制御部3116へ出力する(ステップS06)。第一信号が入力された駆動制御部3121は、エアノズル3103aとリキッドノズル3103bを作動させるように、前LC3103を駆動する。
なお、第一信号が入力された駆動制御部3121は、リキッドノズル3103bを作動させた後にエアノズル3103aを作動させることが望ましい。洗浄液を吹き付けた後に空気を洗浄対象物に吹き付けることにより、洗浄対象物に付着した洗浄液の滴を空気で吹き飛ばし、洗浄対象物をより清浄に保ちやすい。
第二信号を出力した後も汚れ信号が入力されている場合には(ステップS05:Yes)、信号生成部3122は第一信号を駆動制御部3116へ出力する(ステップS06)。第一信号が入力された駆動制御部3121は、エアノズル3103aとリキッドノズル3103bを作動させるように、前LC3103を駆動する。
なお、第一信号が入力された駆動制御部3121は、リキッドノズル3103bを作動させた後にエアノズル3103aを作動させることが望ましい。洗浄液を吹き付けた後に空気を洗浄対象物に吹き付けることにより、洗浄対象物に付着した洗浄液の滴を空気で吹き飛ばし、洗浄対象物をより清浄に保ちやすい。
つまり、第12の実施例のクリーナシステム3100は、
車両部品1f,1b,6f,6b,6r,6l,6c,6d,7r,7lの汚れを検出し、少なくとも一つに汚れを検出したときに汚れ信号を出力する汚れ判定部3123と、
駆動制御部3121に入力する第一信号または第二信号を生成する信号生成部3122を有し、
信号生成部3122は、汚れ判定部3123の出力する汚れ信号に応じて第二信号を駆動制御部3121へ出力し、
信号生成部3122は、第二信号を送信した後も汚れ信号を受信したときに第一信号を駆動制御部3121へ出力するように構成されている。
車両部品1f,1b,6f,6b,6r,6l,6c,6d,7r,7lの汚れを検出し、少なくとも一つに汚れを検出したときに汚れ信号を出力する汚れ判定部3123と、
駆動制御部3121に入力する第一信号または第二信号を生成する信号生成部3122を有し、
信号生成部3122は、汚れ判定部3123の出力する汚れ信号に応じて第二信号を駆動制御部3121へ出力し、
信号生成部3122は、第二信号を送信した後も汚れ信号を受信したときに第一信号を駆動制御部3121へ出力するように構成されている。
上記構成のクリーナシステム3100によれば、空気を吹き付けても汚れが落ちなかった場合には洗浄液を吹き付けて汚れを落とすことができる。また、始めに空気のみを吹き付けて汚れを落とそうとするため、始めから洗浄液を使って汚れを落とそうとする場合に比べて、洗浄液の消費を抑えることができる。これにより、洗浄液の消費を抑えつつ洗浄対象物を清浄に保ちやすい。
(第13の実施例)
次に、本発明の第13の実施例に係るクリーナシステム3100Aを説明する。図26は、本発明の第13の実施例に係るクリーナシステム3100Aのブロック図である。図27は、第13の実施例のクリーナシステム3100Aが実行する処理のフローチャートである。上述した第12の実施例に係るクリーナシステム3100と共通する要素については説明を省略する。
次に、本発明の第13の実施例に係るクリーナシステム3100Aを説明する。図26は、本発明の第13の実施例に係るクリーナシステム3100Aのブロック図である。図27は、第13の実施例のクリーナシステム3100Aが実行する処理のフローチャートである。上述した第12の実施例に係るクリーナシステム3100と共通する要素については説明を省略する。
図26に示すように、クリーナシステム3100Aにおいて、クリーナスイッチ3115が信号生成部3122へ電気信号を出力できるように構成されている。クリーナスイッチ3115は車室内に設けられ、乗員に操作可能なスイッチである。乗員がクリーナスイッチ3115を操作すると、その操作に応じて操作信号が信号生成部3122へ出力される。
クリーナ制御部3116は、図27に示したステップS11~ステップS15の処理を所定時間をおいて定期的に繰り返し実行するように構成されている。
まず、信号生成部3122はクリーナスイッチ3115から操作信号が入力されているか否かを判定する(ステップS11)。
操作信号が入力されていない場合(ステップS11:No)、信号生成部3122は第二信号を駆動制御部3121へ出力する(ステップS14)。第二信号が入力された駆動部3121は、エアノズル3103aを作動させ、リキッドノズル3103bを作動させないように、前LC3103を駆動する。つまり、ユーザがクリーナスイッチ3115を操作しない限り、クリーナシステム3100Aの信号生成部3122は、所定時間の間隔をおいて第二信号を定期的に駆動制御部3121へ出力するように構成されている。
まず、信号生成部3122はクリーナスイッチ3115から操作信号が入力されているか否かを判定する(ステップS11)。
操作信号が入力されていない場合(ステップS11:No)、信号生成部3122は第二信号を駆動制御部3121へ出力する(ステップS14)。第二信号が入力された駆動部3121は、エアノズル3103aを作動させ、リキッドノズル3103bを作動させないように、前LC3103を駆動する。つまり、ユーザがクリーナスイッチ3115を操作しない限り、クリーナシステム3100Aの信号生成部3122は、所定時間の間隔をおいて第二信号を定期的に駆動制御部3121へ出力するように構成されている。
一方、操作信号が入力されている場合(ステップS11:Yes)、信号生成部3122は第一信号を駆動制御部3121へ出力する(ステップS12)。第一信号が入力された駆動制御部3121は、エアノズル3103aとリキッドノズル3103bを作動させるように、前LC3103を駆動する(ステップS13)。
つまり、第13の実施例のクリーナシステム3100Aは、
駆動制御部3121に入力する第一信号または第二信号を生成する信号生成部3122を有し、
信号生成部3122は、所定時間の間隔をおいて第二信号を定期的に駆動制御部3121へ出力するように構成され、
信号生成部3122は、ユーザの操作に応じて信号を出力する操作部3115の出力する操作信号が信号生成部3122に入力されたときに第一信号を駆動制御部3121へ出力するように構成されている。
駆動制御部3121に入力する第一信号または第二信号を生成する信号生成部3122を有し、
信号生成部3122は、所定時間の間隔をおいて第二信号を定期的に駆動制御部3121へ出力するように構成され、
信号生成部3122は、ユーザの操作に応じて信号を出力する操作部3115の出力する操作信号が信号生成部3122に入力されたときに第一信号を駆動制御部3121へ出力するように構成されている。
上記構成のクリーナシステム3100Aによれば、定期的に洗浄対象物が洗浄されるので洗浄対象物を清浄な状態に保ちやすい。このとき、定期的な洗浄が空気のみで行われるので洗浄液が消費されない。一方で、ユーザが洗浄対象物の汚れに気が付いたときにはクリーナスイッチ3115を操作して空気と洗浄液の両方を使って洗浄するので、汚れを効果的に落とすことができる。このように、クリーナシステム3100Aは、洗浄液の消費を抑えつつ洗浄対象物を清浄な状態に保ちやすく、かつ、ユーザが望んだ時に効果的に汚れを落とすことができる。
なお、クリーナシステム3100Aは、図26に示したように、上述したクリーナスイッチ3115による信号が信号生成部に入力される構成の他に、第12の実施例で説明した汚れ判定部3123による信号が信号生成部に入力される構成を有していてもよい。
(第14の実施例)
次に、本発明の第14の実施例に係るクリーナシステム3100Bを説明する。図28は、本発明の第14の実施例に係るクリーナシステム3100Bのブロック図である。上述した第13の実施例に係るクリーナシステム3100Aと共通する要素については説明を省略する。
次に、本発明の第14の実施例に係るクリーナシステム3100Bを説明する。図28は、本発明の第14の実施例に係るクリーナシステム3100Bのブロック図である。上述した第13の実施例に係るクリーナシステム3100Aと共通する要素については説明を省略する。
図28に示すように、クリーナシステム3100Bにおいて、スタータスイッチ3124が信号生成部3122へ電気信号を出力できるように構成されている。スタータスイッチ3124は車室内に設けられ、乗員に操作可能なスイッチである。乗員がスタータスイッチ3124を操作すると、エンジンを搭載した車両においてはエンジンが始動したり、あるいは、電気自動車の場合には車両システムがON状態になる。乗員がスタータスイッチ3124を操作すると、その操作に応じてスタータ信号が信号生成部3122へ出力される。
クリーナシステム3100Bは、スタータスイッチ3124のスタータ信号が信号生成部3122に入力されたときに第二信号を駆動制御部3121へ出力するように構成されている。また、クリーナシステム3100Bは、ユーザの操作に応じて信号を出力するクリーナスイッチ3115の出力する操作信号が信号生成部3122に入力されたときに第一信号を駆動制御部3121へ出力するように構成されている。さらに、汚れ判定部3123から信号生成部3122に汚れ信号が入力された場合に、信号生成部3122が第二信号を駆動制御部3121へ出力するように構成されている。
なお、信号生成部3122は車両制御部3の一部として実現されており、駆動制御部3121はクリーナ制御部3116の一部として実現されている。このように、信号生成部3122や駆動制御部3121は、車両制御部3の一部として実現したりクリーナ制御部3116の一部として実現することができる。あるいは、クリーナ制御部3116が駆動制御部3121,信号生成部3122および汚れ判定部3123のすべてを含むように構成してもよい。また、車両制御部3が駆動制御部3121,信号生成部3122および汚れ判定部3123のすべてを含むように構成してもよい。
第14の実施例のクリーナシステム3100Bによれば、エンジンの始動時あるいは車両システムのON時に必ず空気で洗浄対象物が洗浄されるため、洗浄対象物が清浄な状態で車両1の使用を開始することができる。また、この際には空気のみで洗浄対象物が洗浄され、洗浄液が消費されない。このため、車両1の使用開始時に洗浄対象物が汚れていなかった場合など洗浄液が無駄に消費されることがない。
なお、上述した第12の実施例~第14の実施例では、クリーナ制御部3116が前LC3103の動作を制御する例を説明したが、同様の制御を他のクリーナ3101,3102,3104~3109bに行ってもよい。あるいは、クリーナ3101~3109bの少なくとも一つに上記の制御を行うように構成してもよい。
もっとも、本発明は、外部センサ6を洗浄するセンサクリーナ3103~3106,3109a,3109bの駆動を制御する駆動制御部3121に適用することが望ましい。自動運転モードで走行する車両においては、フロントウィンドウ1fやヘッドランプ7と比較して外部センサ6を清浄に保つことが求められ、外部センサ6の洗浄回数が多くなる。本発明によれば、外部センサ6を洗浄液だけで洗浄する場合に比べて洗浄液の使用量を抑えることができ、洗浄液の補充頻度を低減できる。
もっとも、本発明は、外部センサ6を洗浄するセンサクリーナ3103~3106,3109a,3109bの駆動を制御する駆動制御部3121に適用することが望ましい。自動運転モードで走行する車両においては、フロントウィンドウ1fやヘッドランプ7と比較して外部センサ6を清浄に保つことが求められ、外部センサ6の洗浄回数が多くなる。本発明によれば、外部センサ6を洗浄液だけで洗浄する場合に比べて洗浄液の使用量を抑えることができ、洗浄液の補充頻度を低減できる。
また、上述した第12の実施例~第14の実施例では、全てのクリーナ3101~3109bがリキッドノズルとエアノズルを有する構成を説明したが、クリーナ3101~3109bの少なくとも一つがリキッドノズルとエアノズルを有し、他のクリーナ3101~3109bがリキッドノズルのみあるいはエアノズルのみを有する構成であってもよい。
また、上述した実施例では、クリーナシステム3100は、外部センサ6を含む構成として説明したが、クリーナシステム3100は、外部センサ6を含まない構成としてもよい。もっとも、クリーナシステム3100が外部センサ6を含んだアセンブリ体として構成されていると、外部センサ6に対するクリーナ3103~3106,3109a,3109bの位置決め精度を高めやすいので好ましい。また、クリーナシステム3100の車両1への搭載時に、外部センサ6も一緒に組み込むことができるので、車両1への組み付け性も高められる。
上述した実施例では、外部センサ6を洗浄するクリーナとして、LiDAR6f,6b,6r,6lを洗浄する3103~3106、および前カメラ6cを洗浄する3109a、後カメラ6dを洗浄する3109bを説明したが、本発明はこれに限られない。クリーナシステム3100は、レーダを洗浄するクリーナなどを、センサクリーナ3103~3106,3109a,3109bの代わりに有していてもよいし、センサクリーナ3103~3106,3109a,3109bとともに有していてもよい。
なお上述した実施例では、クリーナ3101,3103,3105~3109aが前タンク3111に接続され、クリーナ3102,3104,3109bが後タンク3113に接続された例を説明したが、本発明はこれに限られない。
クリーナ3101~3109bが単一のタンクに接続されていてもよい。クリーナ3101~3109bがそれぞれ互いに異なるタンクに接続されていてもよい。
あるいは、クリーナ3101~3109bが、その洗浄対象の種類ごとに共通のタンクに接続されていてもよい。例えば、LC3103~3106が共通の第一タンクに接続され、HC3107,3108が、第一タンクと異なる第二タンクに接続されるように構成してもよい。
あるいは、クリーナ3101~3109bが、その洗浄対象の配置位置ごとに共通のタンクに接続されていてもよい。例えば、前WW3101と前LC3103と前カメラクリーナ3109aが共通の前タンクに接続され、右LC3105と右HC3107が共通の右タンクに接続され、後WW3102と後LC3104と後カメラクリーナ3109bが共通の後タンクに接続され、左LC3106と左HC3108が共通の左タンクに接続されるように構成してもよい。
クリーナ3101~3109bが単一のタンクに接続されていてもよい。クリーナ3101~3109bがそれぞれ互いに異なるタンクに接続されていてもよい。
あるいは、クリーナ3101~3109bが、その洗浄対象の種類ごとに共通のタンクに接続されていてもよい。例えば、LC3103~3106が共通の第一タンクに接続され、HC3107,3108が、第一タンクと異なる第二タンクに接続されるように構成してもよい。
あるいは、クリーナ3101~3109bが、その洗浄対象の配置位置ごとに共通のタンクに接続されていてもよい。例えば、前WW3101と前LC3103と前カメラクリーナ3109aが共通の前タンクに接続され、右LC3105と右HC3107が共通の右タンクに接続され、後WW3102と後LC3104と後カメラクリーナ3109bが共通の後タンクに接続され、左LC3106と左HC3108が共通の左タンクに接続されるように構成してもよい。
また上述した実施例では、クリーナ3101~3109bに設けられたアクチュエータを作動させることによりクリーナ3101~3109bから洗浄媒体を吐出させる例を説明したが、本発明はこれに限られない。
クリーナ3101~3109bのそれぞれに常閉バルブが設けられており、タンクとクリーナ3101~3109bとの間が常に高圧となるようにポンプが作動されており、クリーナ3101~3109bに設けられたバルブをクリーナ制御部3116が開けることにより、クリーナ3101~3109bから洗浄媒体を吐出させるように構成してもよい。
あるいは、クリーナ3101~3109bのそれぞれがそれぞれ個別のポンプに接続されており、それぞれのポンプを個別にクリーナ制御部3116が制御することにより、クリーナ3101~3109bからの洗浄媒体の吐出を制御するように構成してもよい。この場合、クリーナ3101~3109bのそれぞれに相異なるタンクに接続されていてもよいし、共通のタンクに接続されていてもよい。
クリーナ3101~3109bのそれぞれに常閉バルブが設けられており、タンクとクリーナ3101~3109bとの間が常に高圧となるようにポンプが作動されており、クリーナ3101~3109bに設けられたバルブをクリーナ制御部3116が開けることにより、クリーナ3101~3109bから洗浄媒体を吐出させるように構成してもよい。
あるいは、クリーナ3101~3109bのそれぞれがそれぞれ個別のポンプに接続されており、それぞれのポンプを個別にクリーナ制御部3116が制御することにより、クリーナ3101~3109bからの洗浄媒体の吐出を制御するように構成してもよい。この場合、クリーナ3101~3109bのそれぞれに相異なるタンクに接続されていてもよいし、共通のタンクに接続されていてもよい。
以上、本発明の実施形態について説明をしたが、本発明の技術的範囲が本実施形態の説明によって限定的に解釈されるべきではないのは言うまでもない。本実施形態は単なる一例であって、請求の範囲に記載された発明の範囲内において、様々な実施形態の変更が可能であることが当業者によって理解されるところである。本発明の技術的範囲は請求の範囲に記載された発明の範囲及びその均等の範囲に基づいて定められるべきである。
本出願は、2017年6月13日出願の日本特許出願2017-115872号、2017年6月13日出願の日本特許出願2017-115873号、2017年6月13日出願の日本特許出願2017-115875号、および2017年6月13日出願の日本特許出願2017-115877号に基づくものであり、その内容はここに参照として取り込まれる。
Claims (22)
- 単一のポンプと、
前記単一のポンプにそれぞれ接続され、車両の外部の情報を検出するセンサを含む異なる洗浄対象物を、洗浄媒体により洗浄する複数のクリーナと、
信号の入力に応じて前記複数のクリーナを作動させるクリーナ制御部と、を備え、
前記クリーナ制御部は、前記複数のクリーナでの洗浄方式が互いに異なるように、前記複数のクリーナを作動可能に構成されている、車両用クリーナシステム。 - 前記洗浄方式として、所定回数の前記信号の入力に応じた前記複数のクリーナの作動回数、前記洗浄媒体の噴射時間、噴射量、噴射圧、噴射面積の少なくとも一つが異なっている、請求項1に記載の車両用クリーナシステム。
- 前記クリーナは、前記センサを洗浄するセンサクリーナと、前記車両のウィンドウシールドを洗浄するウィンドウォッシャおよび前記車両のランプを洗浄するランプクリーナの少なくとも一方と、を含み、
前記クリーナ制御部は、前記センサクリーナの作動回数と、前記ウィンドウォッシャおよび前記ランプクリーナの少なくとも一方の作動回数との大小関係が変更可能に構成されている、請求項2に記載の車両用クリーナシステム。 - 前記クリーナは、前記センサを洗浄するセンサクリーナと、前記車両のランプを洗浄するランプクリーナと、を含み、
前記センサクリーナでの前記洗浄媒体の噴射圧が前記ランプクリーナでの前記洗浄媒体の噴射圧よりも高い、請求項2または3に記載の車両用クリーナシステム。 - 前記センサクリーナには、前記洗浄媒体として洗浄液およびエアが供給可能である、請求項3または4に記載の車両用クリーナシステム。
- 前記クリーナは、検出方法または前記車両における搭載位置の少なくとも一つが互いに異なる複数の前記センサをそれぞれ洗浄する複数のセンサクリーナを含み、
前記クリーナ制御部は、複数の前記センサクリーナでの洗浄方式が互いに異なるように、前記複数のセンサクリーナを作動させる、請求項1から5のいずれか一項に記載の車両用クリーナシステム。 - 単一のポンプと、
前記単一のポンプにそれぞれ接続され、車両の外部の情報を検出するセンサを含む異なる洗浄対象物を、洗浄媒体により洗浄する複数のクリーナと、
前記洗浄媒体の種類、前記洗浄媒体の噴射形状、前記複数のクリーナのノズル形状、ワイパーの有無、チェックバルブの有無、前記洗浄対象物の配置場所の少なくとも一つが異なっている、車両用クリーナシステム。 - 前記クリーナは、前記センサを洗浄するセンサクリーナを含み、
前記センサクリーナは、前記洗浄媒体の流路を変化させるフルイディクス機構を備えている、請求項7に記載の車両用クリーナシステム。 - 車両のウィンドウシールドを洗浄媒体により洗浄するウィンドウウォッシャと、
前記ウィンドウウォッシャに前記洗浄媒体を供給するための第一のポンプと、
車両の外部の情報を検出するセンサを前記洗浄媒体により洗浄するセンサクリーナと、
前記センサクリーナに前記洗浄媒体を供給するための第二のポンプと、を有し、
前記ウィンドウウォッシャと前記第一のポンプとの間を接続し前記洗浄媒体を前記ウィンドウウォッシャへ供給する第一の管路が、前記センサクリーナと前記第二のポンプとの間を接続し前記洗浄媒体を前記センサクリーナへ供給する第二の管路とは異なっている、車両用クリーナシステム。 - 前記第一のポンプおよび前記第二のポンプを制御可能なクリーナ制御部をさらに有する、請求項9に記載の車両用クリーナシステム。
- 前記センサクリーナからの前記洗浄媒体の噴射圧が、前記ウィンドウウォッシャからの前記洗浄媒体の噴射圧よりも高くなるように前記第一のポンプおよび前記第二のポンプが制御される、請求項9または10に記載の車両用クリーナシステム。
- 前記第二の管路は、第一の管路よりも太い、請求項9から11のいずれか一項に記載の車両用クリーナシステム。
- 前記第二の管路は、第一の管路よりも短い、請求項9から12のいずれか一項に記載の車両用クリーナシステム。
- 洗浄対象物を洗浄するための車両用クリーナシステムであって、
前記洗浄対象物の洗浄対象面に洗浄媒体を噴射して前記洗浄対象面を洗浄するクリーナと、
複数の領域を含む前記洗浄対象面において、前記複数の領域の少なくとも一つに対する洗浄強度と他の領域に対する洗浄強度とを異ならせるように、前記クリーナを作動するクリーナ制御部と、を有する、車両用クリーナシステム。 - 前記洗浄強度を異ならせることは、前記洗浄媒体の噴射回数、噴射時間、噴射量、噴射圧、噴射面積の少なくとも一つを異ならせることを含む、請求項14に記載の車両用クリーナシステム。
- 前記複数の領域のうちどの領域に汚れがあるかを検知する汚れ検知部を、さらに備え、
前記クリーナ制御部は、前記汚れ検知部の出力に応じて、前記洗浄強度を変更する、請求項14または15に記載の車両用クリーナシステム。 - 前記複数の領域は、前記洗浄対象面の左右方向において分割された各領域により構成されている、請求項14から16のいずれか一項に記載の車両用クリーナシステム。
- 前記クリーナは、前記洗浄媒体を噴射する少なくとも一つの開口部を備えたノズルを有し、
前記少なくとも一つの開口部は、前記複数の領域の各々に向くように、その向きが変更可能である、請求項14から17のいずれか一項に記載の車両用クリーナシステム。 - 前記クリーナは、前記洗浄媒体を噴射する複数の開口部を備えたノズルを有し、
前記複数の開口部は、前記複数の領域の各々に対応して配置されている、請求項14から17のいずれか一項に記載の車両用クリーナシステム。 - 前記クリーナは、前記洗浄媒体を噴射する複数のノズルを有し、
前記複数のノズルの各々は、前記洗浄対象物の左右方向と上方の少なくとも三方に配置されている、請求項14から17のいずれか一項に記載の車両用クリーナシステム。 - 車両のウィンドウ、ランプおよび車外情報を取得可能なセンサの少なくとも一つである車両部品を洗浄するクリーナと、
前記クリーナを作動させる駆動制御部を有し、
前記クリーナは、
空気を前記車両部品に噴射するエアノズルと、
洗浄液を前記車両部品に噴射するリキッドノズルを有し、
前記駆動制御部は、前記エアノズルと前記リキッドノズルを作動させる第一信号と、前記エアノズルを作動させて前記リキッドノズルを作動させない第二信号のみが入力されるように構成されている、車両用クリーナシステム。 - 請求項1から請求項21のいずれか一項に記載の車両用クリーナシステムを備えている、車両。
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18817577.2A EP3640099B1 (en) | 2017-06-13 | 2018-05-18 | Vehicle cleaner system and vehicle provided with vehicle cleaner system |
CN201880039736.6A CN110770096B (zh) | 2017-06-13 | 2018-05-18 | 车辆用清洁系统及具有车辆用清洁系统的车辆 |
JP2019525239A JP7133550B2 (ja) | 2017-06-13 | 2018-05-18 | 車両用クリーナシステムおよび車両用クリーナシステムを備える車両 |
CN202310221656.5A CN116001730A (zh) | 2017-06-13 | 2018-05-18 | 车辆用清洁系统及具有车辆用清洁系统的车辆 |
US16/622,118 US11993230B2 (en) | 2017-06-13 | 2018-05-18 | Vehicle cleaner system and vehicle including vehicle cleaner system |
EP23203350.6A EP4282715A3 (en) | 2017-06-13 | 2018-05-18 | Vehicle cleaner system and vehicle provided with vehicle cleaner system |
JP2022136031A JP7367149B2 (ja) | 2017-06-13 | 2022-08-29 | 車両用クリーナシステムおよび車両用クリーナシステムを備える車両 |
JP2023175832A JP2023179658A (ja) | 2017-06-13 | 2023-10-11 | 車両用クリーナシステムおよび車両用クリーナシステムを備える車両 |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-115872 | 2017-06-13 | ||
JP2017115875 | 2017-06-13 | ||
JP2017115873 | 2017-06-13 | ||
JP2017115877 | 2017-06-13 | ||
JP2017-115873 | 2017-06-13 | ||
JP2017-115875 | 2017-06-13 | ||
JP2017-115877 | 2017-06-13 | ||
JP2017115872 | 2017-06-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018230255A1 true WO2018230255A1 (ja) | 2018-12-20 |
Family
ID=64660102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019254 WO2018230255A1 (ja) | 2017-06-13 | 2018-05-18 | 車両用クリーナシステムおよび車両用クリーナシステムを備える車両 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11993230B2 (ja) |
EP (2) | EP3640099B1 (ja) |
JP (4) | JP7133550B2 (ja) |
CN (2) | CN116001730A (ja) |
WO (1) | WO2018230255A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020255780A1 (ja) * | 2019-06-19 | 2020-12-24 | 株式会社小糸製作所 | 車両用エアカーテン装置、車両用クリーナシステム、車両用エアカーテンシステム |
CN113329920A (zh) * | 2019-01-23 | 2021-08-31 | 株式会社小糸制作所 | 车辆用清洁系统 |
DE102020114479A1 (de) | 2020-05-29 | 2021-12-02 | Webasto SE | Dach mit Umfeldsensor und Sensordurchsichtsbereich |
WO2022185885A1 (ja) * | 2021-03-05 | 2022-09-09 | 株式会社小糸製作所 | センサシステム |
JP2022554034A (ja) * | 2019-12-17 | 2022-12-27 | カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 洗浄システムのシステム挙動の系統的依存性を間接的に導出する方法、洗浄方法、系統的依存性の利用、洗浄システムおよび自動車 |
JP2022554032A (ja) * | 2019-12-17 | 2022-12-27 | カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 自動車の洗浄される表面を洗浄するための洗浄戦略を決定する方法、洗浄方法、洗浄戦略の使用、洗浄システムおよび自動車 |
US11550044B2 (en) | 2020-01-16 | 2023-01-10 | Infineon Technologies Ag | Dirt detector on a LIDAR sensor window |
WO2023068050A1 (ja) * | 2021-10-20 | 2023-04-27 | 株式会社小糸製作所 | クリーナシステム |
EP3947058B1 (fr) * | 2019-03-26 | 2023-12-13 | Valeo Systèmes d'Essuyage | Système de nettoyage d'au moins deux capteurs/émetteurs d'un véhicule automobile |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210197769A1 (en) * | 2017-10-10 | 2021-07-01 | Denso Corporation | Vehicle cleaning system |
JP7055619B2 (ja) * | 2017-11-14 | 2022-04-18 | 株式会社デンソーテン | 気体噴出装置および気体噴出方法 |
US10821942B2 (en) * | 2018-05-22 | 2020-11-03 | Ford Global Technologies, Llc | Lidar windscreen vibration control |
US10946838B2 (en) * | 2019-03-21 | 2021-03-16 | Ford Global Technologies, Llc | Cleaning apparatus for sensor |
US11453018B2 (en) * | 2019-06-17 | 2022-09-27 | Ford Global Technologies, Llc | Sensor assembly with movable nozzle |
EP3792535A1 (en) * | 2019-09-12 | 2021-03-17 | A. Raymond et Cie | Flow control valve and system for cleaning a vehicle surface |
US11548480B2 (en) * | 2019-12-13 | 2023-01-10 | Pony Ai Inc. | Sensor assembly cleaning apparatuses |
US11318914B2 (en) * | 2020-02-28 | 2022-05-03 | Ford Global Technologies, Llc | Manifold for vehicle sensor cleaning |
DE102020119473A1 (de) * | 2020-07-23 | 2022-01-27 | Zf Cv Systems Global Gmbh | Sensorreinigungssystem, Fahrzeug |
US11921208B2 (en) * | 2020-08-27 | 2024-03-05 | Ford Global Technologies, Llc | Sensor apparatus with cleaning |
FR3115253B1 (fr) * | 2020-10-20 | 2022-10-14 | Valeo Systemes Dessuyage | Système de nettoyage de pour véhicule automobile |
EP4015319B1 (de) * | 2020-12-21 | 2024-03-06 | ZKW Group GmbH | Selbstreinigendes fahrzeugsensorsystem |
FR3117970B3 (fr) * | 2020-12-23 | 2022-12-23 | Cie Plastic Omnium Se | Pièce de carrosserie de véhicule automobile muni d’un système de nettoyage |
JP7505416B2 (ja) * | 2021-02-15 | 2024-06-25 | トヨタ自動車株式会社 | 洗浄装置 |
DE102021115367B4 (de) * | 2021-06-14 | 2024-05-29 | Webasto SE | Dachmodul zur Bildung eines Fahrzeugdachs mit einer Reinigungseinrichtung |
CN113246916A (zh) * | 2021-07-02 | 2021-08-13 | 上汽通用汽车有限公司 | 一种车辆清洗控制方法、装置、系统及存储介质 |
US12030094B2 (en) * | 2021-12-23 | 2024-07-09 | Volkswagen Aktiengesellschaft | Acousto-vibratory sensor cleaning |
WO2023193926A1 (en) | 2022-04-08 | 2023-10-12 | Volvo Autonomous Solutions AB | System and method for fluid dispersion |
US12099147B2 (en) * | 2022-05-12 | 2024-09-24 | GM Global Technology Operations LLC | Surface cleaning system to clean lidar sensor of an autonomous vehicle |
CN115090592A (zh) * | 2022-06-29 | 2022-09-23 | 华域视觉科技(上海)有限公司 | 清洁器、清洗方法和载有传感器的车辆 |
DE102022121149B4 (de) | 2022-08-22 | 2024-07-04 | Webasto SE | Dachmodul und Kraftfahrzeug mit einem Dachmodul |
KR102682623B1 (ko) * | 2022-09-30 | 2024-07-08 | 에스엘 주식회사 | 자동차용 센서 또는 램프 클리닝 장치 및 이의 제어 방법 |
FR3143505A1 (fr) * | 2022-12-14 | 2024-06-21 | Valeo Systèmes D’Essuyage | Dispositif de nettoyage pour surface vitrée |
WO2024257050A1 (en) * | 2023-06-16 | 2024-12-19 | A. Raymond Et Cie | Sensor zone cleaning system |
CN117433803B (zh) * | 2023-11-29 | 2024-05-31 | 长春汽车检测中心有限责任公司 | 一种汽车洗涤器强度试验系统和试验方法 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006143150A (ja) * | 2004-11-24 | 2006-06-08 | Asmo Co Ltd | ワイパ装置 |
JP2013079002A (ja) * | 2011-10-04 | 2013-05-02 | Asmo Co Ltd | 車両用洗浄装置 |
JP2013144536A (ja) * | 2011-08-22 | 2013-07-25 | Asmo Co Ltd | 洗浄システム |
JP2013208991A (ja) * | 2012-03-30 | 2013-10-10 | Fuji Heavy Ind Ltd | ウインドウウォッシャ装置 |
WO2014010578A1 (ja) * | 2012-07-11 | 2014-01-16 | 日産自動車株式会社 | 車載カメラの洗浄装置及び車載カメラの洗浄方法 |
JP2015137070A (ja) * | 2014-01-24 | 2015-07-30 | アスモ株式会社 | 車載センサ洗浄装置 |
JP2015231765A (ja) * | 2014-06-09 | 2015-12-24 | アスモ株式会社 | 車両用洗浄装置 |
JP2016172486A (ja) * | 2015-03-17 | 2016-09-29 | アスモ株式会社 | ヘッドランプ洗浄装置 |
JP2016187990A (ja) | 2015-03-30 | 2016-11-04 | トヨタ自動車株式会社 | 車両用周辺情報検出構造 |
JP2017115872A (ja) | 2015-12-09 | 2017-06-29 | 新日鐵住金ステンレス株式会社 | 自動車用部材 |
JP2017115877A (ja) | 2015-12-22 | 2017-06-29 | ゼネラル・エレクトリック・カンパニイ | ガスタービンの燃焼システムにおける段階的な燃料および空気噴射 |
JP2017115873A (ja) | 2015-12-18 | 2017-06-29 | ゼネラル・エレクトリック・カンパニイ | ターボ機械およびそのためのタービンノズル |
JP2017115875A (ja) | 2015-12-21 | 2017-06-29 | ゼネラル・エレクトリック・カンパニイ | 多重壁ブレードのための冷却回路 |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57164845A (en) | 1981-04-03 | 1982-10-09 | Mazda Motor Corp | Window washer device for automobile |
JPS57200468U (ja) | 1981-06-17 | 1982-12-20 | ||
JPS58161756U (ja) | 1982-04-26 | 1983-10-27 | 自動車機器技術研究組合 | 車両用噴射式ヘツドランプクリ−ナ |
JPS6076557U (ja) | 1983-10-31 | 1985-05-29 | 矢崎総業株式会社 | 噴射角可変形ウインドオウツシヤ |
JPS61253249A (ja) | 1985-04-30 | 1986-11-11 | Mazda Motor Corp | 車両用ウオツシヤ−ノズル装置 |
DE3825178A1 (de) * | 1988-07-25 | 1990-02-01 | Audi Ag | Leuchten-reinigungsanlage fuer kraftfahrzeuge |
JPH03204710A (ja) | 1990-01-08 | 1991-09-06 | Nec Corp | 半導体装置 |
US5170107A (en) * | 1991-11-29 | 1992-12-08 | Nissan Motor Co., Ltd. | Head lamp washer |
EP0830996B1 (de) | 1996-09-19 | 2003-04-02 | Volkswagen Aktiengesellschaft | Befeuchtungsvorrichtung für eine Scheibe |
KR100229447B1 (ko) * | 1996-12-14 | 2000-08-01 | 정몽규 | 자동차의 전조등 와셔 구동장치 |
DE10007517A1 (de) * | 2000-02-18 | 2001-09-06 | Mannesmann Vdo Ag | Streuscheibenreinigungsanlage |
US6546590B2 (en) * | 2001-01-31 | 2003-04-15 | Gary Waters | Automatic attachable side-view mirror cleaning device |
US6896199B2 (en) * | 2002-05-31 | 2005-05-24 | Valeo Electrical Systems, Inc. | Washing apparatus for multiple vehicle surfaces |
JP4604711B2 (ja) * | 2004-12-24 | 2011-01-05 | 市光工業株式会社 | 車両用灯具の洗浄装置および車両用洗浄装置 |
US7196305B2 (en) | 2005-01-18 | 2007-03-27 | Ford Global Technologies, Llc | Vehicle imaging processing system and method having obstructed image detection |
JP2007253731A (ja) | 2006-03-22 | 2007-10-04 | Toyota Motor Corp | 構造物用空調装置 |
FR2907081B1 (fr) * | 2006-10-13 | 2009-05-08 | Renault Sas | Dispositif de lavage pour surface vitree et vehicule automobile equipe d'un essuie-vitre avec moyens d'essuyage |
DE202009011633U1 (de) * | 2009-08-28 | 2009-12-17 | Noell Mobile Systems Gmbh | Scheibenwischanlage für eine Fahrzeugkabine |
US20120117745A1 (en) * | 2009-09-29 | 2012-05-17 | Denso Corporation | On-board optical sensor cover and on-board optical sensor apparatus |
DE102009059154A1 (de) * | 2009-12-19 | 2011-06-22 | Daimler AG, 70327 | Anordnung einer Wischanlage mit einer zugehörigen Scheibenwaschanlage an einem Kraftwagen |
US8671504B2 (en) * | 2010-04-28 | 2014-03-18 | Denso Corporation | Cover of vehicle optical sensor and vehicle optical sensor device |
JP5694871B2 (ja) * | 2011-04-25 | 2015-04-01 | アスモ株式会社 | 車載カメラ洗浄装置及び車両用洗浄装置 |
US8985480B2 (en) * | 2011-08-09 | 2015-03-24 | Asmo Co., Ltd. | Washer apparatus for vehicle |
JP5494743B2 (ja) * | 2011-10-14 | 2014-05-21 | 株式会社デンソー | カメラ洗浄装置 |
DE102011121312A1 (de) * | 2011-12-15 | 2013-06-20 | Gm Global Technology Operations, Llc | Reinigungsanlage |
US20150183404A1 (en) * | 2012-02-23 | 2015-07-02 | Bowles Fluidics Corporation | Adaptive, multi-mode washer system and control method |
DE102012204028A1 (de) | 2012-03-14 | 2013-09-19 | Robert Bosch Gmbh | Scheibenreinigungssystem |
US9327689B2 (en) * | 2012-03-28 | 2016-05-03 | Asmo Co., Ltd. | Washing device for vehicle |
CN104508552B (zh) * | 2012-07-27 | 2016-04-20 | 日产自动车株式会社 | 车载摄像机装置 |
DE102013205793A1 (de) * | 2013-04-02 | 2014-10-02 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zum Steuern eines Wisch-Wasch-Vorgangs einer Heckscheiben-Reinigungsanlage eines Kraftfahrzeugs |
EP2815936B1 (en) * | 2013-06-18 | 2017-03-29 | Volvo Car Corporation | Windscreen washer |
KR101751664B1 (ko) * | 2014-02-14 | 2017-06-27 | 카우텍스 텍스트론 게엠베하 운트 콤파니 카게 | 공기 및 유체 세정 시스템 및 차량 비젼 디바이스들을 세정하기 위한 방법 |
JP2017513772A (ja) * | 2014-04-11 | 2017-06-01 | ディエルエイチ・ボウルズ・インコーポレイテッドdlhBOWLES Inc. | 広角イメージセンサ外面清掃用、統合的自動車システムとしてのコンパクト薄型ノズルアセンブリとコンパクト流体回路 |
US10525937B2 (en) | 2014-04-16 | 2020-01-07 | Dlhbowles, Inc. | Integrated multi image sensor and lens washing nozzle assembly and method for simultaneously cleaning a plurality of image sensors |
KR101585653B1 (ko) * | 2014-05-13 | 2016-01-14 | 조선대학교 산학협력단 | 차량용 워셔액 분사장치 |
JP6338244B2 (ja) | 2014-05-13 | 2018-06-06 | 株式会社デンソー | 車両用洗浄装置 |
DE102014210608A1 (de) * | 2014-06-04 | 2015-12-17 | Bayerische Motoren Werke Aktiengesellschaft | Automatische Windschutzscheibenreinigung für ein Fahrzeug |
DE102014117165A1 (de) * | 2014-11-24 | 2016-05-25 | Kautex Textron Gmbh & Co. Kg | Fahrzeugintegriertes Sicht- und Reinigungssystem |
JP6245206B2 (ja) * | 2015-03-24 | 2017-12-13 | トヨタ自動車株式会社 | 車両用制御装置、車両用制御プログラム、及び車両 |
FR3039113B1 (fr) | 2015-07-22 | 2017-07-28 | Valeo Systemes Dessuyage | Dispositif de nettoyage d'un capteur pour vehicule automobile |
JP3204710U (ja) * | 2016-03-31 | 2016-06-09 | 日本ビニロン株式会社 | ウォッシャーノズルと自動車 |
WO2017184730A1 (en) | 2016-04-19 | 2017-10-26 | Dlhbowles, Inc. | Flow control system, jumper hose elements and fluid flow management method |
JP6669273B2 (ja) * | 2016-10-11 | 2020-03-18 | 株式会社デンソー | 運転車両の防曇部を制御する車両用制御装置 |
US10717415B2 (en) * | 2016-12-09 | 2020-07-21 | Seeva Technologies, Inc. | Washer fluid heating system and apparatus |
JP6998328B2 (ja) | 2017-01-23 | 2022-02-10 | 株式会社小糸製作所 | 車両用クリーナシステムおよび車両用クリーナシステムを備える車両 |
US20180229692A1 (en) * | 2017-02-13 | 2018-08-16 | Ford Global Technologies, Llc | System and method of operating windshield wipers of a semi-autonomous motor vehicle |
DE102017108901A1 (de) * | 2017-04-26 | 2018-10-31 | Valeo Wischersysteme Gmbh | Reinigungseinrichtung für Fahrzeuge und Verfahren zur Reinigung von Oberflächen an Fahrzeugen |
US20180312141A1 (en) * | 2017-04-27 | 2018-11-01 | Ford Global Technologies, Llc | Methods and apparatus for application of washer fluid to vehicle cameras |
US20180354469A1 (en) * | 2017-06-08 | 2018-12-13 | Ford Global Technologies, Llc | Cleaning vehicle sensors |
JP6962038B2 (ja) * | 2017-07-11 | 2021-11-05 | 株式会社デンソー | 車両用洗浄システム |
US10300869B1 (en) * | 2017-11-30 | 2019-05-28 | Ford Global Technologies, Llc | Washer fluid tank with magnetically responsive sensors |
WO2019116607A1 (ja) * | 2017-12-12 | 2019-06-20 | 株式会社デンソー | 車両用清掃システム |
-
2018
- 2018-05-18 CN CN202310221656.5A patent/CN116001730A/zh active Pending
- 2018-05-18 EP EP18817577.2A patent/EP3640099B1/en active Active
- 2018-05-18 EP EP23203350.6A patent/EP4282715A3/en active Pending
- 2018-05-18 JP JP2019525239A patent/JP7133550B2/ja active Active
- 2018-05-18 US US16/622,118 patent/US11993230B2/en active Active
- 2018-05-18 CN CN201880039736.6A patent/CN110770096B/zh active Active
- 2018-05-18 WO PCT/JP2018/019254 patent/WO2018230255A1/ja unknown
-
2021
- 2021-09-15 JP JP2021150007A patent/JP7438173B2/ja active Active
-
2022
- 2022-08-29 JP JP2022136031A patent/JP7367149B2/ja active Active
-
2023
- 2023-10-11 JP JP2023175832A patent/JP2023179658A/ja active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006143150A (ja) * | 2004-11-24 | 2006-06-08 | Asmo Co Ltd | ワイパ装置 |
JP2013144536A (ja) * | 2011-08-22 | 2013-07-25 | Asmo Co Ltd | 洗浄システム |
JP2013079002A (ja) * | 2011-10-04 | 2013-05-02 | Asmo Co Ltd | 車両用洗浄装置 |
JP2013208991A (ja) * | 2012-03-30 | 2013-10-10 | Fuji Heavy Ind Ltd | ウインドウウォッシャ装置 |
WO2014010578A1 (ja) * | 2012-07-11 | 2014-01-16 | 日産自動車株式会社 | 車載カメラの洗浄装置及び車載カメラの洗浄方法 |
JP2015137070A (ja) * | 2014-01-24 | 2015-07-30 | アスモ株式会社 | 車載センサ洗浄装置 |
JP2015231765A (ja) * | 2014-06-09 | 2015-12-24 | アスモ株式会社 | 車両用洗浄装置 |
JP2016172486A (ja) * | 2015-03-17 | 2016-09-29 | アスモ株式会社 | ヘッドランプ洗浄装置 |
JP2016187990A (ja) | 2015-03-30 | 2016-11-04 | トヨタ自動車株式会社 | 車両用周辺情報検出構造 |
JP2017115872A (ja) | 2015-12-09 | 2017-06-29 | 新日鐵住金ステンレス株式会社 | 自動車用部材 |
JP2017115873A (ja) | 2015-12-18 | 2017-06-29 | ゼネラル・エレクトリック・カンパニイ | ターボ機械およびそのためのタービンノズル |
JP2017115875A (ja) | 2015-12-21 | 2017-06-29 | ゼネラル・エレクトリック・カンパニイ | 多重壁ブレードのための冷却回路 |
JP2017115877A (ja) | 2015-12-22 | 2017-06-29 | ゼネラル・エレクトリック・カンパニイ | ガスタービンの燃焼システムにおける段階的な燃料および空気噴射 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113329920A (zh) * | 2019-01-23 | 2021-08-31 | 株式会社小糸制作所 | 车辆用清洁系统 |
EP3947058B1 (fr) * | 2019-03-26 | 2023-12-13 | Valeo Systèmes d'Essuyage | Système de nettoyage d'au moins deux capteurs/émetteurs d'un véhicule automobile |
US12036956B2 (en) | 2019-03-26 | 2024-07-16 | Valeo Systemes D'essuyage | System for cleaning at least two sensors/transmitters for a motor vehicle |
WO2020255780A1 (ja) * | 2019-06-19 | 2020-12-24 | 株式会社小糸製作所 | 車両用エアカーテン装置、車両用クリーナシステム、車両用エアカーテンシステム |
CN113994143A (zh) * | 2019-06-19 | 2022-01-28 | 株式会社小糸制作所 | 车辆用空气幕装置、车辆用清洁系统、车辆用空气幕系统 |
JP2022554034A (ja) * | 2019-12-17 | 2022-12-27 | カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 洗浄システムのシステム挙動の系統的依存性を間接的に導出する方法、洗浄方法、系統的依存性の利用、洗浄システムおよび自動車 |
JP2022554032A (ja) * | 2019-12-17 | 2022-12-27 | カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 自動車の洗浄される表面を洗浄するための洗浄戦略を決定する方法、洗浄方法、洗浄戦略の使用、洗浄システムおよび自動車 |
US11550044B2 (en) | 2020-01-16 | 2023-01-10 | Infineon Technologies Ag | Dirt detector on a LIDAR sensor window |
DE102020114479A1 (de) | 2020-05-29 | 2021-12-02 | Webasto SE | Dach mit Umfeldsensor und Sensordurchsichtsbereich |
DE102020114479B4 (de) | 2020-05-29 | 2023-06-07 | Webasto SE | Dach mit Umfeldsensor und Sensordurchsichtsbereich |
WO2022185885A1 (ja) * | 2021-03-05 | 2022-09-09 | 株式会社小糸製作所 | センサシステム |
WO2023068050A1 (ja) * | 2021-10-20 | 2023-04-27 | 株式会社小糸製作所 | クリーナシステム |
Also Published As
Publication number | Publication date |
---|---|
JP2023179658A (ja) | 2023-12-19 |
CN116001730A (zh) | 2023-04-25 |
JP2021193025A (ja) | 2021-12-23 |
EP4282715A3 (en) | 2024-02-28 |
JP7133550B2 (ja) | 2022-09-08 |
JP7438173B2 (ja) | 2024-02-26 |
US11993230B2 (en) | 2024-05-28 |
CN110770096B (zh) | 2023-03-28 |
JPWO2018230255A1 (ja) | 2020-04-16 |
JP2022169735A (ja) | 2022-11-09 |
EP4282715A2 (en) | 2023-11-29 |
JP7367149B2 (ja) | 2023-10-23 |
EP3640099A4 (en) | 2021-06-23 |
EP3640099A1 (en) | 2020-04-22 |
EP3640099B1 (en) | 2023-12-06 |
CN110770096A (zh) | 2020-02-07 |
US20200180567A1 (en) | 2020-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7367149B2 (ja) | 車両用クリーナシステムおよび車両用クリーナシステムを備える車両 | |
JP7556094B2 (ja) | 車両用クリーナシステム | |
EP3686068B1 (en) | Vehicle sensor system, vehicle provided with said vehicle sensor system | |
JP7165659B2 (ja) | 車両用クリーナシステムおよび車両用クリーナ制御装置 | |
CN111301352B (zh) | 车辆用清洗系统 | |
JP7495930B2 (ja) | 車両用クリーナシステム及び車両用クリーナ付きセンサシステム | |
CN111867896B (zh) | 车辆用清洁系统 | |
CN111867898B (zh) | 车辆用清洁系统及车辆用系统 | |
JP7486525B2 (ja) | センサユニット | |
WO2020255780A1 (ja) | 車両用エアカーテン装置、車両用クリーナシステム、車両用エアカーテンシステム | |
CN113404915B (zh) | 电磁阀以及具备电磁阀的车辆用清洁器系统 | |
WO2023048129A1 (ja) | センサシステム及びクリーナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18817577 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019525239 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018817577 Country of ref document: EP Effective date: 20200113 |