WO2018225691A1 - 医薬容器用着色ガラスの製造方法及び医薬容器用着色ガラス - Google Patents

医薬容器用着色ガラスの製造方法及び医薬容器用着色ガラス Download PDF

Info

Publication number
WO2018225691A1
WO2018225691A1 PCT/JP2018/021392 JP2018021392W WO2018225691A1 WO 2018225691 A1 WO2018225691 A1 WO 2018225691A1 JP 2018021392 W JP2018021392 W JP 2018021392W WO 2018225691 A1 WO2018225691 A1 WO 2018225691A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
tio
content
colored
pharmaceutical
Prior art date
Application number
PCT/JP2018/021392
Other languages
English (en)
French (fr)
Inventor
裕基 横田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Priority to CN201880036908.4A priority Critical patent/CN110709363A/zh
Priority to US16/619,139 priority patent/US11884583B2/en
Priority to EP18813787.1A priority patent/EP3636611A4/en
Priority to JP2019523528A priority patent/JP7477293B2/ja
Publication of WO2018225691A1 publication Critical patent/WO2018225691A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes

Definitions

  • the present invention relates to a method for producing colored glass for pharmaceutical containers and colored glass for pharmaceutical containers.
  • Pharmaceutical containers such as syringes and cartridges have two types of color, uncolored or colored. Of these, the colored containers are shielded from ultraviolet rays so that the contained drugs are not altered by light irradiation. Function is required.
  • the light transmittance when measured at a wavelength interval of 20 nm is 50% or less in the short wavelength region (290 to 450 nm). It is prescribed.
  • Japanese Pharmacopoeia 7.01 in addition to the provision of the transmittance in the short wavelength region (290 to 450 nm) described above, regarding the light-shielding property of the colored container for medicine, Regarding the transmittance in the long wavelength region (590 to 610 nm), there are two types of standards according to the thickness. Specifically, the transmittance in the long wavelength region (590 to 610 nm) is defined as 60% or more when the thickness is less than 1 mm, and 45% or more when the thickness is 1 mm or more.
  • the colored glass for a pharmaceutical container is manufactured by melting a glass batch containing a colored component to obtain a glass melt, and then molding the glass melt into a desired shape and cooling.
  • Patent Document 1 describes amber-colored borosilicate glass containing Fe 2 O 3 and TiO 2 in the glass composition as a coloring component.
  • the transmittance is controlled by adjusting the contents of Fe 2 O 3 and TiO 2 .
  • the thickness of the product is 0.5 mm to 2 mm or more during the production. In the case of a large change, it was more difficult to control the transmittance of the glass.
  • the present invention has been made in view of the above circumstances, and relates to a method for producing colored glass for a pharmaceutical container that can easily control the transmittance of the obtained glass so as to satisfy the standards of the Japanese Pharmacopoeia.
  • the present inventor has intensively investigated the coloring mechanism of colored glass for pharmaceutical containers.
  • the transmittance of the glass is not uniquely determined by the contents of Fe 2 O 3 and TiO 2 , but is related to the redox state during glass melting, and when a reducing agent is used the product of Fe 2 O 3 and TiO 2 in the glass composition has been found to be closely related to the transmittance in the colored glass pharmaceutical containers.
  • the value of the product of Fe 2 O 3 and TiO 2 is within a certain range, and can solve the above problems.
  • the manufacturing method of the colored glass for pharmaceutical containers of the present invention includes a step of preparing a glass batch, a step of melting the glass batch to form a glass melt, and molding the glass melt to obtain a molded glass.
  • a method for producing a colored glass for a pharmaceutical container comprising adding a reducing agent to a glass batch and, as a glass composition, by mass%, SiO 2 65-75%, B 2 O 3 0-20%, Al 2 O 3 1-10%, R 2 O 1-10% (where R is at least one of Li, Na and K), R′O 1-5% (where R ′ is At least one of Ca and Ba), Fe 2 O 3 0.01 to 5%, TiO 2 0.01 to 5%, and 1.00 ⁇ [Fe 2 O 3 (Fe 2 O the content of 3)] ⁇ [content of TiO 2 (TiO 2)] As glass is obtained that satisfies the 6.00 relation, characterized by formulating a glass batch.
  • the transmittance of glass is related to the redox state of glass, but the redox state of glass is generally closely related to the melting temperature. For this reason, when trying to obtain a glass having a suitable transmittance, a countermeasure for changing the melting temperature can be considered. However, if the production conditions such as the melting temperature are changed, the viscosity of the glass also changes, and there is a concern that the productivity will decrease. For example, if the melting temperature is too high, the viscosity at the time of molding the glass becomes too low, making it difficult to obtain the desired shape.
  • the product of mass% of Fe 2 O 3 and TiO 2 in the glass composition is strictly regulated as described above while using a reducing agent, the Japanese Pharmacopoeia without reducing productivity. It is possible to obtain a colored glass for a pharmaceutical container in which the transmittance can be easily controlled so as to satisfy the above-mentioned standards.
  • the content of Fe 2 O 3 in the present application is a value when converted all valence of Fe in the glass to Fe 2 O 3.
  • the content of the reducing agent in the glass batch is preferably 0.01 to 0.20% by mass.
  • the kind and content of the reducing agent in addition to the change of the melting temperature as described above.
  • the type and content of the reducing agent also affect the clarity of the glass, in order to maintain the productivity while obtaining an appropriate oxidation-reduction state and clarification effect, the content of the reducing agent is particularly important. It is desirable not to fluctuate significantly.
  • the content of the reducing agent in the glass batch is 0.01 to 0.20. It can be in the range of mass%, and it is difficult to reduce productivity. Moreover, when the content of the reducing agent is within the above range, it is easy to obtain a colored glass for a pharmaceutical container that satisfies the Japanese Pharmacopoeia transmittance standard.
  • the reducing agent is preferably at least one of metallic aluminum, metallic sulfur and carbon.
  • the content of metal aluminum in the glass batch is preferably 0.03 to 0.13 mass%.
  • the product of Fe 2 O 3 and TiO 2 is strictly regulated, it is easy to achieve a transmittance that satisfies the Japanese Pharmacopoeia when the content of metallic aluminum is within the above range. It is. By regulating the content of metallic aluminum to the above range, the influence on clarity can be suppressed, and there is little concern that the productivity and the quality of the glass are deteriorated.
  • the method for producing a colored glass for a pharmaceutical container according to the present invention is a method for producing a colored glass for a pharmaceutical container to obtain a molded glass having a thickness of less than 1 mm, and is 1.20 ⁇ [Fe 2 O 3 in mass%. It is preferable to prepare a glass batch so that a glass satisfying the relational expression of (Fe 2 O 3 content)] ⁇ [TiO 2 (TiO 2 content)] is obtained.
  • the thickness of the colored container for medicine there are two types of standards according to the thickness of the colored container for medicine.
  • the target thickness of the colored container for pharmaceutical use is less than 1 mm
  • the product of Fe 2 O 3 and TiO 2 is strictly regulated to further reduce the thickness of the molded glass to less than 1 mm.
  • Colored glass for pharmaceutical containers that can easily control the transmittance so as to satisfy the following standards: transmittance of 50% or less in the short wavelength region (290 to 450 nm) and transmittance of 60% or more in the long wavelength region (590 to 610 nm) Can be obtained.
  • the method for producing a colored glass for a pharmaceutical container of the present invention is a method for producing a colored glass for a pharmaceutical container to obtain a molded glass having a thickness of 1 mm or more, and is expressed in mass% as [Fe 2 O 3 (Fe 2 O 3 )) ⁇ [TiO 2 ( TiO 2 content)] ⁇ 5.95 It is preferable to prepare the glass batch so that a glass satisfying the relational expression is obtained.
  • the product of Fe 2 O 3 and TiO 2 is strictly regulated to further control the product of the Japanese Pharmacopoeia when the thickness of the molded glass is 1 mm or more.
  • Colored glass for pharmaceutical containers that can easily control the transmittance so as to satisfy the following standards: transmittance of 50% or less in the short wavelength region (290 to 450 nm) and transmittance of 45% or more in the long wavelength region (590 to 610 nm) Can be obtained.
  • the obtained colored glass for a pharmaceutical container satisfies the transmittance defined in the light-shielding property of the colored container defined in paragraph 7.01 of the Japanese Pharmacopoeia. preferable.
  • the method for producing colored glass for containers according to the present invention includes a step of preparing a glass batch, a step of melting the glass batch to form a glass melt, and molding the glass melt to obtain a molded glass.
  • a method for producing colored glass for a container comprising: adding a reducing agent to a glass batch; and, as a glass composition, by mass%, SiO 2 65-75%, B 2 O 3 0-20%, Al 2 O 3 1-10%, R 2 O 1-10% (where R is at least one of Li, Na and K), R′O 1-5% (where R ′ is Ca) And at least one of Ba), Fe 2 O 3 0.01 to 5%, TiO 2 0.01 to 5%, and 1.00 ⁇ [Fe 2 O 3 (Fe 2 O 3 content)] ⁇ [content of TiO 2 (TiO 2)] ⁇ 6.0 Glass is obtained which satisfies the relational expression described above, characterized by formulating a glass batch.
  • the colored glass for a pharmaceutical container of the present invention has, as a glass composition, SiO 2 65 to 75%, B 2 O 3 0 to 20%, Al 2 O 3 1 to 10%, R 2 O 1 to 10% by mass.
  • 10% (where R is at least one of Li, Na and K), R′O 1-5% (where R ′ is at least one of Ca and Ba), Fe 2 O 3 0.01 to 5%, TiO 2 0.01 to 5%, and 1.00 ⁇ [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (of TiO 2 Content)] ⁇ 6.00 is satisfied, and the transmittance defined in the light-shielding property of the colored container in 7.01 of the Japanese Pharmacopoeia is satisfied.
  • the colored glass for pharmaceutical containers of the present invention has a molded glass thickness of less than 1 mm and, in mass%, 1.20 ⁇ [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2. 2 (content of TiO 2 )] is preferable.
  • permeability of the colored glass for pharmaceutical containers of this invention becomes easy to satisfy
  • the colored glass for a pharmaceutical container of the present invention has a molded glass thickness of 1 mm or more and, in mass%, [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (TiO 2 Content)] ⁇ 5.95 is preferable.
  • permeability of the colored glass for pharmaceutical containers of this invention becomes easy to satisfy
  • the colored glass for containers of the present invention has a glass composition in terms of mass% of SiO 2 65 to 75%, B 2 O 3 0 to 20%, Al 2 O 3 1 to 10%, R 2 O 1 to 10% (where R is at least one of Li, Na and K), R′O 1-5% (where R ′ is at least one of Ca and Ba), Fe 2 O 3 0.01 to 5%, TiO 2 0.01 to 5%, and 1.00 ⁇ [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (of TiO 2 Content)] ⁇ 6.00 is satisfied.
  • the method for producing a colored glass for a pharmaceutical container of the present invention includes a step of preparing a glass batch, a step of melting the glass batch to form a glass melt, and a step of forming the glass melt.
  • glass raw materials are weighed and mixed to prepare a glass batch.
  • the glass batch contains a reducing agent and, in mass%, SiO 2 65 to 75%, B 2 O 3 0 to 20%, Al 2 O 3 1 to 10%, R 2 O 1 to 10% (provided that R Is at least one of Li, Na and K), R′O 1 to 5% (where R ′ is at least one of Ca and Ba), Fe 2 O 3 0.01 to 5%, TiO 2 0.01 to 5%, and the product of Fe 2 O 3 and TiO 2 is 1.00 ⁇ [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (Content of TiO 2 )] Prepare a glass satisfying the relational expression of ⁇ 6.00.
  • a glass cullet can also be used for a glass batch as needed.
  • the prepared glass batch is put into a melting furnace and melted to obtain a glass melt.
  • the glass melting temperature is preferably 1350 ° C. to 1700 ° C., more preferably 1500 to 1700 ° C., 1550 to 1700 ° C., and particularly 1600 to 1700 ° C.
  • the glass melt obtained as described above is formed into a desired shape such as a tubular shape or a plate shape and slowly cooled to obtain a shaped glass.
  • the glass forming method is not limited, and a method suitable for obtaining a desired shape may be employed as appropriate.
  • a Danner method when forming into a tubular shape, a Danner method, a blow method, a downdraw method, an updraw method, or the like can be employed.
  • the transmittance of glass is not determined only by the contents of Fe 2 O 3 and TiO 2 but is related to the redox state of glass.
  • the transmittance of the glass can be changed to Japan without greatly changing the production conditions such as the melting temperature and the content of the reducing agent. It is possible to obtain a colored glass for a pharmaceutical container that is easy to control so as to satisfy pharmacopoeia standards.
  • the product of Fe 2 O 3 and TiO 2 is mass%, and 1.00 ⁇ [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (content of TiO 2 )] ⁇ 6.00 1.20 or more, 1.40 or more, 1.60 or more, 1.80 or more, 1.90 or more are preferable. Also, 5.95 or less, 5.50 or less, 5.00 or less, 4.50 or less, 4.00 or less, 3.50 or less, 3.30 or less, 3.00 or less, 2.90 or less, particularly 2. 80 or less is preferable.
  • the colored glass for pharmaceutical containers which can control easily so that the transmittance
  • the present invention further includes a reducing agent in the glass batch.
  • a reducing agent for example, sulfide, metal sulfur, metal aluminum, chromite, carbon, coke, silicon and the like can be used.
  • the content of the reducing agent in the glass batch is 0.01 to 0.20%, 0.02 to 0.18%, 0.03 to 0.15%, 0.03 to 0.13% in mass%. 0.04 to 0.12%, particularly preferably 0.06 to 0.10%.
  • the content of the reducing agent not only contributes to the redox state, but also affects the clarity of the glass. Therefore, when there are too many reducing agents, it becomes impossible to obtain an optimal clarification effect. When the content of the reducing agent is out of the above range, productivity and glass quality deteriorate.
  • the content is 0.03% to 0.13%, 0.04 to 0.12%, 0.05 to 0.10%, particularly 0.06 to 0% by mass. 0.09% is preferable.
  • metallic aluminum when an aluminum component is included as the glass composition, it is taken into the glass composition, and it is preferable that problems such as elution are difficult to occur when it is made into a pharmaceutical container.
  • the transmittance defined in the Japanese Pharmacopoeia can be more easily satisfied by more strictly regulating the product of Fe 2 O 3 and TiO 2 in accordance with the target thickness of the molded glass.
  • the product of Fe 2 O 3 and TiO 2 is 1.20 ⁇ [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 2 (TiO 2 content)], preferably 1.40 or more, 1.60 or more, 1.80 or more, 2.00 or more, 2.20 or more, 2.40 or more, 2.60 or more, In particular, it is preferably 2.80 or more.
  • the transmittance of the molded glass varies depending on the thickness, if this value is too small, the degree of coloring of the glass becomes weak. Therefore, when the thickness is less than 1 mm, the short wavelength region (290 in the Japanese Pharmacopoeia standard) It is difficult to satisfy the standard of transmittance of 50% or less ( ⁇ 450 nm).
  • various wall thicknesses such as 0.9 mm or less, 0.7 mm or less, 0.6 mm or less, 0.4 mm or less, 0.3 mm or less, or 0.2 mm or less can be used. Selectable.
  • the content of metallic aluminum in the glass batch is 0.06 to 0.13%, 0.07 to 0.12%, 0.08 to 0.0% by mass. It is preferably 0.11% and 0.09 to 0.11%.
  • the product of Fe 2 O 3 and TiO 2 is [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (TiO 2 content)] ⁇ 5.95 is preferred, 5.40 or less, 4.90 or less, 4.40 or less, 3.90 or less, 3.50 or less, 3.20 or less, 3. It is preferably 10 or less, 2.90 or less, 2.70 or less, 2.50 or less, 2.30 or less, 2.10 or less, 1.90 or less, particularly 1.85 or less.
  • a colored glass for a pharmaceutical container that can easily control the transmittance so as to satisfy the transmittance defined in the Japanese Pharmacopoeia without reducing the productivity when the thickness is 1 mm or more.
  • the transmittance of the molded glass varies depending on the thickness, but if this value is too large, the degree of coloration of the glass becomes excessively strong, so when the thickness is 1 mm or more, the long wavelength region of the Japanese Pharmacopoeia standard It becomes difficult to satisfy the standard of a transmittance of 45% or more (590 to 610 nm).
  • the thickness of the molded glass is 1 mm or more
  • there are various thicknesses such as 1.3 mm or more, 1.5 mm or more, 1.9 mm or more, 2.0 mm or more, 2.3 mm or more, 2.6 mm or more, etc. Selectable.
  • the content of metallic aluminum in the glass batch is preferably 0.03 to 0.10% by mass%, 0.04 to 0.09%, 0.0. It is preferably from 0.05 to 0.08%, particularly preferably from 0.05 to 0.07%.
  • the ratio of Fe 2 O 3 and TiO 2 is preferably 0.10 ⁇ [Fe 2 O 3 (content of Fe 2 O 3 )] / [TiO 2 (content of TiO 2 )] ⁇ 0.50. 0.10 or more, 0.15 or more, 0.20 or more, 0.45 or less, 0.40 or less, and particularly preferably 0.30 or less. By doing so, brown coloration due to the Fe—O—Ti structure is easily developed, and the transmittance of the glass is easily controlled to satisfy the transmittance defined in the Japanese Pharmacopoeia with a wide thickness. .
  • the raw material used as the iron raw material is not particularly limited, and it is preferable to use at least one of ferrous oxide, ferric oxide, and triiron tetroxide. Selection of an iron raw material can be selected according to the oxidation-reduction state of the target glass melt. That is, ferrous oxide is preferably used when the reduction side is desired, and ferric oxide is used when the reduction side is desired.
  • the obtained colored glass for a pharmaceutical container preferably satisfies the transmittance defined in the light-shielding property of the colored container defined in paragraph 7.01 of the Japanese Pharmacopoeia.
  • the said manufacturing method is suitable as a manufacturing method of the colored glass for pharmaceutical containers as above-mentioned, these are not restricted to a pharmaceutical container use, It can also be used as a manufacturing method of colored glass for containers other than a pharmaceutical container. it can.
  • the colored glass for pharmaceutical containers of the present invention can be easily obtained by using the above-described method for producing colored glass for pharmaceutical containers.
  • the colored glass for a pharmaceutical container of the present invention has, as a glass composition, SiO 2 65 to 75%, B 2 O 3 0 to 20%, Al 2 O 3 1 to 10%, R 2 O 1 to 10% by mass.
  • 10% (where R is at least one of Li, Na and K), R′O 1-5% (where R ′ is at least one of Ca and Ba), Fe 2 O 3 0.01 to 5%, TiO 2 0.01 to 5%, and 1.00 ⁇ [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (of TiO 2 Content)] ⁇ 6.00, satisfying the relational expression, and satisfying the transmittance defined in the light-shielding property of the colored container defined in 7.01 of the Japanese Pharmacopoeia.
  • the colored glass for pharmaceutical containers of the present invention has a molded glass thickness of less than 1 mm and, in mass%, 1.20 ⁇ [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2. 2 (TiO 2 content)] is preferably satisfied.
  • the colored glass for a pharmaceutical container of the present invention has a molded glass thickness of 1 mm or more and, in mass%, [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (TiO 2 Content)] ⁇ 5.95 is preferably satisfied.
  • Fe 2 O 3 is used as a coloring component and has the effect of reducing the transmittance in the long wavelength region (590 to 610 nm).
  • the content of Fe 2 O 3 is 0.01 to 5%, 0.05 to 3%, 0.1 to 2.5%, 0.2 to 2.3%, 0.3 to 2%, 0.4 to 1.8%, 0.5 to 1.5%, 0.55 to 1.4%, 0.6 to 1.3%, particularly 0.6 to 1.2% are preferable. If the content of Fe 2 O 3 is too large, the amount of iron elution increases when it is made into a pharmaceutical container, and it is likely to be mixed in the medicine, and the elution amount prescribed in the Japanese Pharmacopoeia may not be satisfied. If the amount is too small, the effect of reducing the transmittance cannot be obtained.
  • TiO 2 is used as a coloring component and has the effect of reducing the transmittance in the short wavelength region (290 to 450 nm).
  • the content of TiO 2 is 0.01 to 5%, 0.05 to 4.8%, 0.1 to 4.6%, 0.1 to 4.5%, 0.5 to 4.3. %, 0.7-4.1%, 1-4%, 1.2-3.9%, 1.5-3.8%, 1.6-3.7%, 1.8-3.6 %, Particularly 2.0 to 3.5% is preferable. If the content of TiO 2 is too large, devitrified substances of TiO 2 are likely to be generated and the productivity is deteriorated. If the content is too small, the effect of reducing the transmittance cannot be obtained.
  • SiO 2 is the main glass forming oxide.
  • the content of SiO 2 is 65 to 75%, preferably 65 to 73%. If the content of SiO 2 is too large, the meltability of the glass is deteriorated, and if it is too small, the mechanical strength of the glass is lowered or the chemical durability is deteriorated and the glass component is easily mixed in the chemical. Become.
  • B 2 O 3 is a component that improves the meltability of the glass.
  • the content of B 2 O 3 is 0 to 20%, preferably 0.1 to 18%, 0.5 to 16%, more preferably 5 to 15%, and particularly preferably 8 to 13%. If the content of B 2 O 3 is too small, the viscosity of the glass becomes high tends to decrease the melting property and formability, too large chemical durability deteriorates. However, from the viewpoint of reducing delamination inside the pharmaceutical container, B 2 O 3 may be reduced or not contained.
  • Al 2 O 3 is a component that suppresses devitrification of glass and improves chemical durability.
  • the content of Al 2 O 3 is 1 to 10%, preferably 2 to 10%, more preferably 3 to 9%, and particularly preferably 5 to 8%.
  • the content of Al 2 O 3 is too large, the meltability of the glass is deteriorated and striae or bubbles are likely to be generated, and when it is too small, the chemical durability is deteriorated.
  • R 2 O that is, an alkali metal oxide
  • R 2 O is a component that improves the meltability of glass and the coefficient of thermal expansion.
  • R 2 O is 1 to 10%, preferably 5 to 10%, more preferably 5 to 9%, and particularly preferably 5 to 8%.
  • the total amount of R 2 O is too large, the chemical durability is lowered and the thermal expansion coefficient is increased too much, so that the processed glass tends to be damaged, and when it is too small, the above effects are hardly received.
  • a part of Na 2 O can be replaced with K 2 O or Li 2 O. Replacing a part of Na 2 O with K 2 O improves the chemical durability. However, when K 2 O is more than 3.5%, the viscosity of the glass increases and the meltability deteriorates, resulting in 0.2% When the amount is smaller, it is difficult to enjoy the above effect.
  • R′O that is, the total amount of CaO and BaO, is a component that improves the meltability and chemical durability of the glass.
  • the total amount of R′O is 1 to 5%, preferably 1 to 4%, more preferably 1 to 3%. If the total amount of R′O is too large, the coefficient of thermal expansion increases too much and the specific gravity increases, and if it is too small, it is difficult to enjoy the above effects.
  • CaO is a component that improves the meltability and chemical durability of glass.
  • the CaO content is preferably 0 to 3%, more preferably 0.1 to 2%, and particularly preferably 0.1 to 1.4%.
  • BaO is a component that lowers the viscosity of the glass and improves devitrification resistance.
  • the content of BaO is preferably 0 to 4%, more preferably 0.5 to 3%, and further preferably 1 to 2%.
  • the fining agent it is possible to use Cl, of SO 3, Sb 2 O 3, etc. Any ones.
  • the glass composition By making the glass composition in this way, it becomes easy to obtain colored glass for pharmaceutical containers whose glass transmittance meets the standards of the Japanese Pharmacopoeia.
  • the colored glass of the present invention is suitable for colored glass for pharmaceutical containers as described above, but can also be used for colored glass for containers other than pharmaceutical use.
  • the colored glass for containers of the present invention has, as a glass composition, SiO 2 65 to 75%, B 2 O 3 0 to 20%, Al 2 O 3 1 to 10%, R 2 O 1 to 10% in mass%.
  • R is at least one of Li, Na and K
  • R′O 1-5% where R ′ is at least one of Ca and Ba
  • Fe 2 O 3 0 .01 to 5% TiO 2 0.01 to 5%
  • TiO 2 0.01 to 5%
  • the relational expression of ⁇ 6.00 is satisfied.
  • the colored glass of the present invention is excellent in light-shielding properties, the contents are not easily deteriorated by light irradiation and has an excellent function of shielding ultraviolet rays. Therefore, it is particularly suitable when it is desired to protect the contents from deterioration due to light. For example, it can be suitably used for bio-related applications, laboratory instruments such as petri dishes and beakers, cosmetic bottles, beverage bottles, food containers and the like.
  • the glass composition explained in full detail in the colored glass for pharmaceutical containers of this invention can be suitably employ
  • Tables 1 to 3 show the glasses of the present invention (Sample Nos. 1 to 18) and comparative examples (Sample Nos. 19 to 22).
  • each raw material was blended so as to have the composition shown in the table to prepare a glass batch.
  • an iron raw material having a different redox state such as ferric oxide or triiron tetroxide, is used as the iron raw material, and metallic aluminum and / or metallic sulfur is used as the reducing agent.
  • a glass raw material (glass 500 g built) was put into a platinum crucible, melted at 1600 ° C. for 4 hours, and rapidly cooled. Thereafter, the glass was processed to the wall thickness shown in the table, and the glass surfaces were all mirror finished.
  • the transmittance of the processed glass was measured using a spectrophotometer (SHIMADZU UV-3100).
  • the measurement wavelength range was 300 to 800 nm
  • the slit width was 5 nm
  • the scan speed was medium
  • the sampling pitch was 1 nm.
  • Sample No. 8 to 11 have a value of [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (content of TiO 2 )] of 1.20 or more, so that the thickness of the formed glass is 1 mm.
  • the ratio was less than 1, the transmittance of the glass met the transmittance defined in the Japanese Pharmacopoeia.
  • Sample No. Nos. 12 to 18 had a value of [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (content of TiO 2 )] of 5.40 or less.
  • the transmittance of the glass satisfied the transmittance prescribed in the Japanese Pharmacopoeia.
  • sample No. which is a comparative example.
  • Nos. 19 to 22 show that the value of [Fe 2 O 3 (content of Fe 2 O 3 )] ⁇ [TiO 2 (content of TiO 2 )] is outside the range of the present invention.
  • the rate was significantly different from the transmittance value specified by the Japanese Pharmacopoeia. Therefore, it was not possible to satisfy the Japanese Pharmacopoeia standard for the transmittance of the glass only by changing the content of the reducing agent so as to maintain productivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Glass Compositions (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Wrappers (AREA)

Abstract

得られるガラスの透過率を日本薬局方の規格を満たすように制御しやすい医薬容器用着色ガラスの製造方法に関する。 本発明の医薬容器用着色ガラスの製造方法は、ガラスバッチを調合する工程と、前記ガラスバッチを溶融してガラス融液とする工程と、前記ガラス融液を成形し、成形ガラスを得る工程とを有する医薬容器用着色ガラスの製造方法であって、ガラスバッチに還元剤を添加するとともに、ガラス組成として、質量%で、SiO2 65~75%、B2O3 0~20%、Al2O3 1~10%、R2O 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe2O3 0.01~5%、TiO2 0.01~5%を含有し、更に、1.00≦[Fe2O3(Fe2O3の含有量)]×[TiO2(TiO2の含有量)]<6.00の関係式を満たすガラスが得られるように、ガラスバッチを調合することを特徴とする。

Description

医薬容器用着色ガラスの製造方法及び医薬容器用着色ガラス
 本発明は医薬容器用着色ガラスの製造方法及び医薬容器用着色ガラスに関する。
 シリンジやカートリッジなどに代表される医薬容器には、無着色又は着色の二種類の色調があり、そのうち着色容器には、内包される医薬品が光照射によって変質しないようにするために、紫外線を遮蔽する機能が求められる。
 ところで、医薬用着色容器の遮光性に関して、欧州薬局方や米国薬局方では、20nmの波長間隔で測定した場合の光の透過率が、短波長領域(290~450nm)において50%以下であることと規定されている。
 一方、第十六改正日本薬局方7.01(以下、日本薬局方という)では、医薬用着色容器の遮光性に関して、上述した短波長領域(290~450nm)の透過率の規定に加えて、長波長領域(590~610nm)の透過率に関しても、肉厚に応じた二種類の規格がある。具体的には、長波長領域(590~610nm)における透過率が、肉厚1mm未満の場合は透過率60%以上、肉厚1mm以上の場合は透過率45%以上と規定されている。従って、日本薬局方の規格を満たすような医薬用着色容器を得るためには、医薬容器用着色ガラスにおいて、成形するガラスの肉厚に応じて、ガラスの透過率を厳密に制御する必要がある。
 ここで、医薬容器用着色ガラスは、着色成分を含むガラスバッチを溶融することによってガラス融液を得た後、所望の形状に成形し、冷却することによって製造される。
 例えば、特許文献1には着色成分として、ガラス組成中にFe及びTiOを含有させたアンバー着色ホウケイ酸ガラスが記載されている。特許文献1において、透過率の制御はFe及びTiOの含有量の調整により行っている。
特許第2608535号公報
 しかしながら、ガラス組成中の着色成分の含有量の変更だけでは、ガラスの透過率の細やかな制御が困難であった。しかも、日本薬局方では、肉厚に応じて長波長領域(590~610nm)の透過率の規格が二種類存在するため、例えば、生産の途中で製品の肉厚を0.5mmから2mm以上など大幅に変化させる場合は、ガラスの透過率を制御することが更に困難であった。
 本発明は上記事情に鑑みなされたものであり、得られるガラスの透過率を日本薬局方の規格を満たすように制御しやすい医薬容器用着色ガラスの製造方法に関するものである。
 本発明者は、上記課題を解決するため、医薬容器用着色ガラスの着色機構について鋭意調査を行った。その結果、ガラスの透過率はFe及びTiOの含有量により一義的に決まるものではなく、ガラス溶融の際の酸化還元状態と関係していること、そして、還元剤を使用した場合に、ガラス組成中のFeとTiOの積が、医薬容器用着色ガラスにおける透過率と密接に関連していることを見出した。そして、FeとTiOの積の値が一定範囲内であれば、上記課題を解決できることを見出した。
 すなわち、本発明の医薬容器用着色ガラスの製造方法は、ガラスバッチを調合する工程と、前記ガラスバッチを溶融してガラス融液とする工程と、前記ガラス融液を成形し、成形ガラスを得る工程とを有する医薬容器用着色ガラスの製造方法であって、ガラスバッチに還元剤を添加するとともに、ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たすガラスが得られるように、ガラスバッチを調合することを特徴とする。
 ここで、上述したように、ガラスの透過率はガラスの酸化還元状態と関係しているが、一般的にガラスの酸化還元状態は溶融温度と密接に関わる。そのため、好適な透過率のガラスを得ようとする場合、溶融温度を変更する対応が考えられる。しかし、溶融温度等の生産条件を変更すると、ガラスの粘性も変化するため、生産性の低下が懸念される。例えば、溶融温度を高くし過ぎると、ガラスを成形する際の粘度が低くなりすぎて、所望の形状を得にくくなる。
 本発明では、還元剤を使用しつつ、ガラス組成中のFeとTiOの質量%の積を上記のように厳密に規制しているため、生産性を低下させることなく日本薬局方の規格を満たすように透過率を制御しやすい医薬容器用着色ガラスを得ることが可能である。
 なお、本願におけるFeの含有量とは、ガラス中の全価数のFeをFeへと換算したときの値である。
 本発明の医薬容器用着色ガラスの製造方法は、ガラスバッチ中の還元剤の含有量が、0.01~0.20質量%であることが好ましい。
 ガラスの酸化還元状態を変更する手段としては、前述したような溶融温度の変更の他、還元剤の種類や含有量を変更することが考えられる。しかし、還元剤の種類や含有量はガラスの清澄性にも影響を及ぼすため、適切な酸化還元状態及び清澄効果を得つつ、生産性を維持するためには、特に、還元剤の含有量を大幅に変動させないことが望ましい。
 本発明では、ガラス組成中のFeとTiOの質量%の積を上記のように厳密に規制しているため、ガラスバッチ中の還元剤の含有量を0.01~0.20質量%の範囲にでき、生産性を低下させにくい。また、還元剤の含有量が上記範囲のときに、日本薬局方の透過率の規格を満たす医薬容器用着色ガラスを得ることが容易である。
 本発明の医薬容器用着色ガラスの製造方法は、前記還元剤が、金属アルミニウム、金属イオウ、カーボンの内、少なくとも1種類であることが好ましい。
 本発明の医薬容器用着色ガラスの製造方法は、ガラスバッチ中の金属アルミニウムの含有量が、0.03~0.13質量%であることが好ましい。本発明では、FeとTiOの積を厳密に規制しているため、金属アルミニウムの含有量が上記の範囲内のときに、日本薬局方を満たすような透過率にすることが容易である。金属アルミニウムの含有量を上記範囲に規制することにより、清澄性に与える影響を抑制でき、生産性やガラスの品質を悪化させる懸念が少ない。
 更に、本発明の医薬容器用着色ガラスの製造方法は、肉厚が1mm未満の成形ガラスを得る医薬容器用着色ガラスの製造方法であって、質量%で、1.20≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]の関係式を満たすガラスが得られるようにガラスバッチを調合することが好ましい。
 前述の通り、日本薬局方においては、医薬用着色容器の肉厚に応じた二種類の規格がある。目標とする医薬用着色容器の肉厚が1mm未満のときは、更に、FeとTiOの積を厳密に規制することにより、成形ガラスの肉厚が1mm未満のときの日本薬局方の規格、すなわち短波長領域(290~450nm)の透過率50%以下、長波長領域(590~610nm)の透過率60%以上の規格を満たすように透過率を制御しやすい医薬容器用着色ガラスを得ることができる。
 更に、本発明の医薬容器用着色ガラスの製造方法は、肉厚が1mm以上の成形ガラスを得る医薬容器用着色ガラスの製造方法であって、質量%で、[Fe(Feの含有量)]×[TiO2(TiOの含有量)]≦5.95の関係式を満たすガラスが得られるようにガラスバッチを調合することが好ましい。
 目標とする医薬用着色容器の肉厚が1mm以上のときは、更に、FeとTiOの積を厳密に規制することにより、成形ガラスの肉厚が1mm以上のときの日本薬局方の規格、すなわち短波長領域(290~450nm)の透過率50%以下、長波長領域(590~610nm)の透過率45%以上の規格を満たすように透過率を制御しやすい医薬容器用着色ガラスを得ることができる。
 また、本発明の医薬容器用着色ガラスの製造方法は、得られる医薬容器用着色ガラスが、日本薬局方7.01項で規定された着色容器の遮光性に規定された透過率を満たすことが好ましい。
 加えて、本発明の容器用着色ガラスの製造方法は、ガラスバッチを調合する工程と、前記ガラスバッチを溶融してガラス融液とする工程と、前記ガラス融液を成形し、成形ガラスを得る工程とを有する容器用着色ガラスの製造方法であって、 ガラスバッチに還元剤を添加するとともに、ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、 1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たすガラスが得られるように、ガラスバッチを調合することを特徴とする。
 更に、本発明の医薬容器用着色ガラスは、ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たし、日本薬局方7.01項の着色容器の遮光性に規定された透過率を満たすことを特徴とする。
 また、本発明の医薬容器用着色ガラスは、成形ガラスの肉厚が1mm未満であり、且つ質量%で、1.20≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]の関係式を満たす着色ガラスであることが好ましい。このようにすることで、本発明の医薬容器用着色ガラスの透過率が日本薬局方の規格を特に満たしやすくなる。
 また、本発明の医薬容器用着色ガラスは、成形ガラスの肉厚が1mm以上であり、且つ質量%で、[Fe(Feの含有量)]×[TiO(TiOの含有量)]≦5.95の関係式を満たす着色ガラスであることが好ましい。このようにすることで、本発明の医薬容器用着色ガラスの透過率が日本薬局方の規格を特に満たしやすくなる。
 加えて、本発明の容器用着色ガラスは、ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たすことを特徴とする。
 以下、本発明の医薬容器用着色ガラスの製造方法について説明する。
 本発明の医薬容器用着色ガラスの製造方法は、ガラスバッチを調合する工程と、前記ガラスバッチを溶融してガラス融液とする工程と、前記ガラス融液を成形する工程とを有する。
 まず、ガラス原料を秤量、混合し、ガラスバッチを調合する。ガラスバッチは、還元剤を含むとともに、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、FeとTiOの積が1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たすガラスが得られるように調合する。なお、ガラスバッチには、天然原料、化成原料の他に、必要に応じてガラスカレットを用いることもできる。
 次に、調合したガラスバッチを溶融炉に投入し、溶融してガラス融液とする。清澄性の観点からは、ガラスの溶融温度は1350℃~1700℃が好ましく、より好ましくは1500~1700℃、1550~1700℃、特に1600~1700℃である。
 続いて、上記のようにして得られたガラス融液を管状、板状等所望の形状に成形、徐冷して、成形ガラスを得る。ガラスの成形方法は限定されるものではなく、所望の形状を得るのに適した方法を適宜採用すれば良い。例えば、管状に成形する場合、ダンナー法、ブロー法、ダウンドロー法、アップドロー法等を採用することができる。また、必要に応じて、得られた成形ガラスに端面処理や融封処理を施しても良い。
 上述したとおり、ガラスの透過率は、Fe及びTiOの含有量だけで決まるものではなく、ガラスの酸化還元状態と関わっている。しかし、本発明では、FeとTiOの積を厳密に規制しているため、溶融温度等の生産条件や還元剤の含有量を大幅に変動させることなく、ガラスの透過率を日本薬局方の規格を満たすように制御しやすい医薬容器用着色ガラスを得ることができる。
 FeとTiOの積は、質量%で、1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00であり、1.20以上、1.40以上、1.60以上、1.80以上、1.90以上が好ましい。また、5.95以下、5.50以下、5.00以下、4.50以下、4.00以下、3.50以下、3.30以下、3.00以下、2.90以下、特に2.80以下が好ましい。このようにすることにより、生産性を維持したままで、ガラスの透過率を日本薬局方の規格を満たすように制御しやすい医薬容器用着色ガラスを得ることができる。一方、FeとTiOの積が上記の範囲以外であると、実際の生産品の透過率と日本薬局方に規定される透過率の値との乖離が大きすぎて、透過率を日本薬局方の規格を満たすように制御することが困難になる。日本薬局方の規格を満たすような製品を得るためには、溶融温度等の生産条件や還元剤の含有量を大幅に変更しなければならず、生産性やガラスの品質が悪化してしまう可能性が高い。
 本発明は、更に、ガラスバッチに還元剤を含んでいる。還元剤としては、例えば、硫化物、金属イオウ、金属アルミニウム、クロム鉄鉱、カーボン、コークス、シリコン等が使用可能である。
 ガラスバッチ中の還元剤の含有量は、質量%で、0.01~0.20%、0.02~0.18%、0.03~0.15%、0.03~0.13%、0.04~0.12%、特に0.06~0.10%であることが好ましい。還元剤の含有量は、酸化還元状態に寄与するだけではなく、ガラスの清澄性にも影響を及ぼす。そのため、還元剤が多すぎると最適な清澄効果を得ることができなくなり、少なすぎると酸化還元状態をコントロールし難くなり、更に清澄効果が乏しくなる。還元剤の含有量が上記の範囲外であると、生産性やガラスの品質が悪化する。
 還元剤として金属アルミニウムを用いる場合、含有量は、質量%で、0.03~0.13%、0.04~0.12%、0.05~0.10%、特に0.06~0.09%であることが好ましい。還元剤として金属アルミニウムを用いると、ガラス組成としてアルミニウム成分を含む場合はガラス組成中に取り込まれ、医薬容器にしたときに溶出等の不具合が出にくくなるため好ましい。
 また、本発明では、目標とする成形ガラスの肉厚に合わせてFeとTiOの積を更に厳密に規制することで、日本薬局方に規定された透過率を更に満たしやすくなる。
 すなわち、肉厚が1mm未満の成形ガラスを得たい場合には、FeとTiOの積を、1.20≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]とすることが好ましく、1.40以上、1.60以上、1.80以上、2.00以上、2.20以上、2.40以上、2.60以上、特に2.80以上とすることが好ましい。このようにすることにより、肉厚が1mm未満の肉厚において、生産性を低下させずに、日本薬局方の規格を満たすように透過率を制御しやすい医薬容器用着色ガラスを得ることができる。成形ガラスの透過率は肉厚に応じて異なるが、この値が小さすぎると、ガラスの着色度合いが弱くなるため、肉厚が1mm未満のとき、日本薬局方の規格のうち短波長領域(290~450nm)の透過率50%以下の規格を満たしにくくなる。
 また、肉厚が1mmの未満の形態としては、例えば0.9mm以下、0.7mm以下、0.6mm以下、0.4mm以下、0.3mm以下、0.2mm以下等、様々な肉厚を選択可能である。
 また、成形ガラスの肉厚が1mm未満の場合、ガラスバッチ中の金属アルミニウムの含有量は、質量%で、0.06~0.13%、0.07~0.12%、0.08~0.11%、0.09~0.11%であることが好ましい。このようにすることで、生産性やガラスの品質を悪化させることなく、医薬容器用着色ガラスの透過率を日本薬局方の規格を満たすようにすることが可能である。
 別の形態として、肉厚が1mm以上の成形ガラスを得たい場合には、FeとTiOの積を、[Fe(Feの含有量)]×[TiO(TiOの含有量)]≦5.95とすることが好ましく、5.40以下、4.90以下、4.40以下、3.90以下、3.50以下、3.20以下、3.10以下、2.90以下、2.70以下、2.50以下、2.30以下、2.10以下、1.90以下、特に1.85以下とすることが好ましい。このようにすることにより、肉厚が1mm以上の肉厚において、生産性を低下させずに、日本薬局方に規定された透過率を満たすように透過率を制御しやすい医薬容器用着色ガラスを得ることができる。成形ガラスの透過率は肉厚に応じて異なるが、この値が大きすぎると、ガラスの着色度合いが過度に強くなるため、肉厚が1mm以上のとき、日本薬局方の規格のうち長波長領域(590~610nm)の透過率45%以上の規格を満たしにくくなる。
 成形ガラスの肉厚が1mm以上の形態としては、例えば1.3mm以上、1.5mm以上、1.9mm以上、2.0mm以上、2.3mm以上、2.6mm以上等、様々な肉厚を選択可能である。
 また、成形ガラスの肉厚が1mm以上の場合、ガラスバッチ中の金属アルミニウムの含有量は、質量%で、0.03~0.10%が好ましく、0.04~0.09%、0.05~0.08%、特に0.05~0.07%であることが好ましい。このようにすることで、生産性やガラスの品質を悪化させることなく、医薬容器用着色ガラスの透過率を日本薬局方の規格を満たすようにすることが可能である。
 また、FeとTiOの比は、0.10≦[Fe(Feの含有量)]/[TiO(TiOの含有量)]≦0.50が好ましく、0.10以上、0.15以上、0.20以上、0.45以下、0.40以下、特に0.30以下が好ましい。このようにすることにより、Fe-O-Ti構造による茶褐色着色が発現しやすくなり、幅広い肉厚にて、日本薬局方に規定された透過率を満たすようにガラスの透過率を制御しやすくなる。
 鉄原料として使用する原料は特に限定されず、酸化第一鉄、酸化第二鉄、四酸化三鉄のうち、少なくとも1種以上を使用する事が好ましい。鉄原料の選択は、目標とするガラス融液の酸化還元状態に合わせて選択することができる。すなわち、還元側にしたいときは酸化第一鉄を用い、酸化側にしたいときは酸化第二鉄を用いると良い。
 本発明の医薬容器用着色ガラスの製造方法は、得られる医薬容器用着色ガラスが、日本薬局方7.01項で規定された着色容器の遮光性に規定された透過率を満たすことが好ましい。
 また、上記製造方法は、上述したとおり医薬容器用の着色ガラスの製造方法として適するものであるが、これらは医薬容器用途に限られず、医薬容器以外の容器用着色ガラスの製造方法として用いることもできる。
 なお、ガラスバッチ中の還元剤の含有量や種類、FeとTiOの含有量や関係式、その他好ましい範囲等に関しては、上述した医薬容器用着色ガラスの製造方法と同様であるため、ここでは説明を割愛する。
 本発明の医薬容器用着色ガラスは、上述した医薬容器用着色ガラスの製造方法を用いることにより、容易に得ることができる。
 すなわち、本発明の医薬容器用着色ガラスは、ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たし、日本薬局方7.01項で規定された着色容器の遮光性に規定された透過率を満たすことを特徴とする。
 また、本発明の医薬容器用着色ガラスは、成形ガラスの肉厚が1mm未満であり、且つ質量%で、1.20≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]の関係式を満たすことが好ましい。
 更に、本発明の医薬容器用着色ガラスは、成形ガラスの肉厚が1mm以上であり、且つ質量%で、[Fe(Feの含有量)]×[TiO(TiOの含有量)]≦5.95の関係式を満たすことが好ましい。
 上記のように、更に、FeとTiOの積の値を厳密に規制することで、得られるガラスの透過率を容易に日本薬局方の規格を満たすようにすることが可能になる。
 下記に、本発明の医薬容器用着色ガラスの製造方法に係るガラス組成を既述のように限定した理由について詳述する。なお、本発明の医薬容器用着色ガラスのガラス組成についても同様であるので、説明を割愛する。
 Feは着色成分として用いられ、長波長領域(590~610nm)における透過率を低下させる効果がある。Feの含有量は、0.01~5%であり、0.05~3%、0.1~2.5%、0.2~2.3%、0.3~2%、0.4~1.8%、0.5~1.5%、0.55~1.4%、0.6~1.3%、特に0.6~1.2%が好ましい。Feの含有量が多すぎると、医薬容器にしたときに鉄の溶出量が増えて薬品中に混入しやすくなり、日本薬局方に規定された溶出量を満たさなくなる可能性がある。また、少なすぎる場合は透過率を下げる効果が得られない。
 TiOは着色成分として用いられ、短波長領域(290~450nm)における透過率を下げる効果がある。TiOの含有量は、0.01~5%であり、0.05~4.8%、0.1~4.6%、0.1~4.5%、0.5~4.3%、0.7~4.1%、1~4%、1.2~3.9%、1.5~3.8%、1.6~3.7%、1.8~3.6%、特に2.0~3.5%が好ましい。TiOの含有量が多すぎるとTiOの失透物が発生しやすくなり生産性が悪化し、少なすぎると透過率を下げる効果が得られない。
 SiOは主要なガラス形成酸化物である。SiOの含有量は65~75%であり、好ましくは65~73%である。SiOの含有量が多すぎると、ガラスの溶融性が悪くなり、少なすぎると、ガラスの機械的強度が低下したり化学的耐久性が悪くなってガラス成分が薬品中に混入したりしやすくなる。
 Bはガラスの溶融性を向上させる成分である。Bの含有量は、0~20%であり、好ましくは0.1~18%、0.5~16%、より好ましくは5~15%、特に好ましくは8~13%である。Bの含有量が少なすぎると、ガラスの粘度が高くなって溶融性や成形性が低下しやすくなり、多すぎると化学的耐久性が悪くなる。ただし、医薬容器内部のデラミネーションを低減させる観点では、Bを低減させたり、不含有としたりしても良い。
 Alはガラスの失透を抑制し、化学的耐久性を向上させる成分である。Alの含有量は、1~10%であり、好ましくは2~10%、より好ましくは3~9%、特に好ましくは5~8%である。Alの含有量が多すぎるとガラスの溶融性が悪くなって脈理や泡等が発生しやすくなり、少なすぎると化学的耐久性が悪くなる。
 ROすなわちアルカリ金属酸化物は、ガラスの溶融性を向上すると共に熱膨張係数を向上させる成分である。ROは、1~10%であり、好ましくは5~10%、より好ましくは5~9%、特に好ましくは5~8%である。ROの合量が多すぎると、化学的耐久性が低下すると共に熱膨張係数が上がりすぎて加工したガラスが破損しやすくなり、少なすぎると上記効果が享受しにくくなる。
 またNaOの一部をKOあるいはLiOで置換することができる。NaOの一部をKOで置換すると化学的耐久性が向上するが、KOが3.5%より多い場合はガラスの粘度が上がって溶融性が悪くなり、0.2%より少ない場合は上記効果を享受しにくくなる。
 R´OすなわちCaO及びBaOの合量であり、ガラスの溶融性及び化学的耐久性を向上させる成分である。R´Oの合量は、1~5%であり、好ましくは1~4%、より好ましくは1~3%である。R´Oの合量が多すぎると、熱膨張係数が上がりすぎると共に比重が大きくなり、少なすぎると上記効果を享受しにくくなる。
 CaOはガラスの溶融性及び化学的耐久性を向上させる成分である。CaOの含有量は、好ましくは0~3%であり、より好ましくは0.1~2%、特に好ましくは0.1~1.4%である。CaOの含有量が多すぎるとガラスの耐酸性が低下しやすくなる上、ガラスからCaを含む結晶が析出しやすくなり、生産性が悪化する。また、少なすぎると、上記効果を享受しにくくなる。
 BaOは、ガラスの粘度を低下させるとともに、耐失透性を向上させる成分である。BaOの含有量は、好ましくは0~4%、より好ましくは0.5~3%、さらに好ましくは1~2%である。BaOの含有量が多すぎると、ガラスの歪点が低下して耐熱性が悪化しやすくなる上、ガラスからBaを含む結晶が析出しやすくなり、生産性が悪化する。また、少なすぎると、上記効果を享受しにくくなる。
 なお、清澄剤としては、Cl、SO、Sb等任意のものを用いることができる。
 ガラス組成をこのようにすることで、ガラスの透過率が日本薬局方の規格を満たす医薬容器用着色ガラスを得ることが容易になる。
 また、本発明の着色ガラスは、上述したとおり医薬容器用着色ガラスに適するが、医薬用途以外の容器用着色ガラスに用いることもできる。
 本発明の容器用着色ガラスは、ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たす。
 本発明の着色ガラスは遮光性に優れるため、内容物が光照射によって変質しにくく、紫外線を遮蔽する機能に優れている。そのため、内容物を光による劣化から保護したい場合に特に好適である。例えば、バイオ関連用途や、シャーレ、ビーカー等の実験用器具、化粧品用のびん、飲料用のびん、フードコンテナ等にも好適に用いることができる。
 なお、本発明の容器用着色ガラスのガラス組成は、本発明の医薬容器用着色ガラスで詳述したガラス組成を適宜採用可能であり、ここでは説明を割愛する。
 以下、実施例にて、本発明を詳細に説明する。
 表1~3は本発明のガラス(試料No.1~18)及び比較例(試料No.19~22)を示している。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 まず、表に記載の組成となるように各原料を調合しガラスバッチを作製した。なお、ガラスの酸化還元状態を調整するため、鉄原料として、酸化第二鉄や四酸化三鉄のように酸化還元状態が異なる鉄原料を用い、還元剤には金属アルミニウム及び/又は金属イオウを用いた。
 次にガラス原料(ガラス500g建て)を白金坩堝に投入し、1600℃で4時間溶融し、急冷成形した。その後、ガラスを表に記載の肉厚に加工し、ガラス表面をいずれも鏡面に仕上げた。
 加工したガラスの透過率は、分光光度計(SHIMADZU UV―3100)を用いて測定した。測定波長域は300~800nm、スリット幅は5nm、スキャンスピードは中速、サンプリングピッチは1nmとした。
 試料No.1~18は、[Fe(Feの含有量)]×[TiO(TiOの含有量)]の値が1.00~6.00未満を満たしているため、いずれの肉厚についても、生産性を維持しつつ、還元剤を添加することで日本薬局方に規定された透過率の規格を満たすようにガラスの透過率を制御することができた。
 特に、試料No.1~7は、還元剤の種類や還元剤の含有量が任意であっても、成形ガラスの肉厚が1mmのときのガラスの透過率が日本薬局方に規定された透過率を満たしていた。
 また、試料No.8~11は、[Fe(Feの含有量)]×[TiO(TiOの含有量)]の値が1.20以上であるため、成形ガラスの肉厚が1mm未満のときに、ガラスの透過率が日本薬局方に規定された透過率を満たしていた。
 また、試料No.12~18は、[Fe(Feの含有量)]×[TiO(TiOの含有量)]の値が5.40以下であるため、成形ガラスの肉厚が1mm以上のときに、ガラスの透過率が日本薬局方に規定された透過率を満たしていた。
 一方、比較例である試料No.19~22は、[Fe(Feの含有量)]×[TiO(TiOの含有量)]の値が本発明の範囲外であるため、得られたガラスの透過率が日本薬局方に規定された透過率の値と大きく乖離していた。そのため、生産性を維持できるように還元剤の含有量を変更するだけでは、ガラスの透過率を日本薬局方の規格を満たすようにすることができなかった。ガラスの透過率を日本薬局方の規格を満たすようにするためには、還元剤の含有量を大幅に変更したり、溶融温度等の生産条件を変更したりする必要があり、生産性やガラスの品質が悪化してしまうと考えられる。

Claims (12)

  1.  ガラスバッチを調合する工程と、前記ガラスバッチを溶融してガラス融液とする工程と、前記ガラス融液を成形し、成形ガラスを得る工程とを有する医薬容器用着色ガラスの製造方法であって、
     ガラスバッチに還元剤を添加するとともに、ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、 1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たすガラスが得られるように、ガラスバッチを調合することを特徴とする医薬容器用着色ガラスの製造方法。
  2.  ガラスバッチ中の還元剤の含有量が、0.01~0.20質量%であることを特徴とする請求項1に記載の医薬容器用着色ガラスの製造方法。
  3.  前記還元剤が、金属アルミニウム、金属イオウ、カーボンの内、少なくとも1種類であることを特徴とする請求項1または2に記載の医薬容器用着色ガラスの製造方法。
  4.  ガラスバッチ中の金属アルミニウムの含有量が、0.03~0.13質量%であることを特徴とする請求項3に記載の医薬容器用着色ガラスの製造方法。
  5.  肉厚が1mm未満の成形ガラスを得る請求項1~4のいずれかに記載の医薬容器用着色ガラスの製造方法であって、質量%で、 1.20≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]の関係式を満たすガラスが得られるようにガラスバッチを調合することを特徴とする医薬容器用着色ガラスの製造方法。
  6.  肉厚が1mm以上の成形ガラスを得る請求項1~4のいずれかに記載の医薬容器用着色ガラスの製造方法であって、質量%で、 [Fe(Feの含有量)]×[TiO(TiOの含有量)]≦5.95の関係式を満たすガラスが得られるようにガラスバッチを調合することを特徴とする医薬容器用着色ガラスの製造方法。
  7.  得られる医薬容器用着色ガラスが、日本薬局方7.01項で規定された着色容器の遮光性に規定された透過率を満たすことを特徴とする請求項1~6のいずれかに記載の医薬容器用着色ガラスの製造方法。
  8.  ガラスバッチを調合する工程と、前記ガラスバッチを溶融してガラス融液とする工程と、前記ガラス融液を成形し、成形ガラスを得る工程とを有する容器用着色ガラスの製造方法であって、
     ガラスバッチに還元剤を添加するとともに、ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たすガラスが得られるように、ガラスバッチを調合することを特徴とする容器用着色ガラスの製造方法。
  9.  ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、 1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たし、日本薬局方7.01項の着色容器の遮光性(耐紫外線透過性)に規定された透過率を満たすことを特徴とする医薬容器用着色ガラス。
  10.  成形ガラスの肉厚が1mm未満であり、且つ質量%で、 1.20≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]の関係式を満たす請求項9に記載の医薬容器用着色ガラス。
  11.  成形ガラスの肉厚が1mm以上であり、且つ質量%で、 [Fe(Feの含有量)]×[TiO(TiOの含有量)]≦5.95の関係式を満たす請求項9に記載の医薬容器用着色ガラス。
  12.  ガラス組成として、質量%で、SiO 65~75%、B 0~20%、Al 1~10%、RO 1~10%(但し、Rは、Li、Na及びKのうち、少なくとも1種以上)、R´O 1~5%(但し、R´は、Ca、Baのうち、少なくとも1種以上)、Fe 0.01~5%、TiO 0.01~5%を含有し、更に、1.00≦[Fe(Feの含有量)]×[TiO(TiOの含有量)]<6.00の関係式を満たすことを特徴とする容器用着色ガラス。
     
PCT/JP2018/021392 2017-06-06 2018-06-04 医薬容器用着色ガラスの製造方法及び医薬容器用着色ガラス WO2018225691A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880036908.4A CN110709363A (zh) 2017-06-06 2018-06-04 医药容器用着色玻璃的制造方法和医药容器用着色玻璃
US16/619,139 US11884583B2 (en) 2017-06-06 2018-06-04 Method for producing colored glass for pharmaceutical containers and colored glass for pharmaceutical containers
EP18813787.1A EP3636611A4 (en) 2017-06-06 2018-06-04 PROCESS FOR THE PRODUCTION OF COLORED GLASS FOR PHARMACEUTICAL CONTAINERS AND COLORED GLASS FOR PHARMACEUTICAL CONTAINERS
JP2019523528A JP7477293B2 (ja) 2017-06-06 2018-06-04 医薬容器用着色ガラスの製造方法及び医薬容器用着色ガラス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017111478 2017-06-06
JP2017-111478 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018225691A1 true WO2018225691A1 (ja) 2018-12-13

Family

ID=64566686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021392 WO2018225691A1 (ja) 2017-06-06 2018-06-04 医薬容器用着色ガラスの製造方法及び医薬容器用着色ガラス

Country Status (5)

Country Link
US (1) US11884583B2 (ja)
EP (1) EP3636611A4 (ja)
JP (1) JP7477293B2 (ja)
CN (1) CN110709363A (ja)
WO (1) WO2018225691A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11333320B2 (en) * 2018-10-22 2022-05-17 American Sterilizer Company Retroreflector LED spectrum enhancement method and apparatus
EP3819268B1 (en) * 2019-11-08 2021-09-29 Schott AG Toughenable glass with high hydrolytic resistance and reduced color tinge
CN113480166A (zh) * 2021-06-11 2021-10-08 泰州市星安玻陶有限公司 一种抗冲击的工业特种玻璃

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608535B2 (ja) 1988-05-13 1997-05-07 日本電気硝子株式会社 アンバー着色硼珪酸ガラス
JP2005170735A (ja) * 2003-12-11 2005-06-30 Ishizuka Glass Co Ltd 酸化反応促進性ガラス材
JP2014024731A (ja) * 2012-07-30 2014-02-06 Nippon Electric Glass Co Ltd ホウケイ酸ガラス
JP2015193521A (ja) * 2014-03-19 2015-11-05 日本電気硝子株式会社 紫外線透過ガラス及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141000Y2 (ja) 1971-02-02 1976-10-06
WO1999033759A1 (fr) * 1997-12-26 1999-07-08 Nippon Sheet Glass Co., Ltd. Verre absorbant l'ultraviolet/infrarouge, plaque de verre absorbant l'ultraviolet/infrarouge, plaque de verre absorbant l'ultraviolet/infrarouge revetue d'un film colore, et verre a vitre pour vehicule
US20050061033A1 (en) * 2003-06-05 2005-03-24 Petrany Valeria Greco Method of making amber glass composition having low thermal expansion
CN101428969B (zh) * 2008-12-05 2011-06-29 北京工业大学 棕色玻璃及其应用
CN106277755A (zh) * 2015-05-22 2017-01-04 张云德 一种防紫外线有色玻璃
CN106316097A (zh) * 2015-06-18 2017-01-11 张玉芬 一种强吸收紫外线绿色隔热玻璃
US11542191B2 (en) 2017-10-20 2023-01-03 Nippon Electric Glass Co., Ltd. Glass for medicine container and glass tube for medicine container

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608535B2 (ja) 1988-05-13 1997-05-07 日本電気硝子株式会社 アンバー着色硼珪酸ガラス
JP2005170735A (ja) * 2003-12-11 2005-06-30 Ishizuka Glass Co Ltd 酸化反応促進性ガラス材
JP2014024731A (ja) * 2012-07-30 2014-02-06 Nippon Electric Glass Co Ltd ホウケイ酸ガラス
JP2015193521A (ja) * 2014-03-19 2015-11-05 日本電気硝子株式会社 紫外線透過ガラス及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3636611A4

Also Published As

Publication number Publication date
US20200140312A1 (en) 2020-05-07
CN110709363A (zh) 2020-01-17
EP3636611A1 (en) 2020-04-15
JP7477293B2 (ja) 2024-05-01
EP3636611A4 (en) 2021-02-24
JPWO2018225691A1 (ja) 2020-04-09
US11884583B2 (en) 2024-01-30

Similar Documents

Publication Publication Date Title
US11807575B2 (en) Glass for medicine container and glass tube for medicine container
CN110255895B (zh) 含碱硼硅酸盐玻璃及其制备方法
US20070293388A1 (en) Glass articles and method for making thereof
CN112811813B (zh) 一种硼硅玻璃组合物、硼硅玻璃及其制备方法和应用
JPH0692681A (ja) 低膨張透明結晶化ガラス
CN112694254A (zh) 一种中硼硅玻璃组合物、中硼硅玻璃及其制备方法和应用
JP2001058845A (ja) 精密プレス成形用光学ガラス
WO2018225691A1 (ja) 医薬容器用着色ガラスの製造方法及び医薬容器用着色ガラス
CN111977972B (zh) 硼硅酸盐玻璃及其制备方法
WO2008065937A1 (fr) Verre optique
JP2006131480A (ja) 光学ガラス及び光学素子
JP2011057509A (ja) 光学ガラス
EP2351716A1 (en) Glass
JPS61286237A (ja) リングレ−ザ−ジヤイロに適するガラスセラミツク体およびその製造方法
JP6055876B2 (ja) 光学ガラス、プリフォーム及び光学素子
JP2008305711A (ja) プラズマディスプレイパネル用ガラス基板の製造方法及びプラズマディスプレイパネル用ガラス基板
CN107010826B (zh) 环保镧火石光学玻璃及其制备方法
CN115893834A (zh) 一种棕色中性硼硅玻璃管及其制备方法和应用
US11299419B2 (en) UV-resistant and alkaline-resistant borosilicate glass and use thereof
CN103145331A (zh) 高折射光学玻璃及其制造方法
WO2017110927A1 (ja) 珪酸塩ガラス用混合原料及びこれを用いた管ガラスの製造方法
KR100929869B1 (ko) 박막트랜지스터 액정디스플레이 유리기판의 파유리를 원료로한 소다석회붕규산염계 단섬유 유리 뱃지조성물
JP2000247678A (ja) 光学ガラス
JP2013087009A (ja) 光学ガラス、プリフォーム及び光学素子
JP7534924B2 (ja) 耐加水分解性が高く、色味を抑えた強化ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813787

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523528

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018813787

Country of ref document: EP

Effective date: 20200107