WO2018225617A1 - 電気化学反応セルスタック、インターコネクタ-電気化学反応単セル複合体および電気化学反応セルスタックの製造方法 - Google Patents

電気化学反応セルスタック、インターコネクタ-電気化学反応単セル複合体および電気化学反応セルスタックの製造方法 Download PDF

Info

Publication number
WO2018225617A1
WO2018225617A1 PCT/JP2018/020957 JP2018020957W WO2018225617A1 WO 2018225617 A1 WO2018225617 A1 WO 2018225617A1 JP 2018020957 W JP2018020957 W JP 2018020957W WO 2018225617 A1 WO2018225617 A1 WO 2018225617A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive member
separator
cell stack
electrochemical reaction
interconnector
Prior art date
Application number
PCT/JP2018/020957
Other languages
English (en)
French (fr)
Inventor
健太 眞邉
大野 猛
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to US16/618,481 priority Critical patent/US11271221B2/en
Priority to CN201880037344.6A priority patent/CN110710038B/zh
Priority to EP18813366.4A priority patent/EP3637517A4/en
Priority to JP2018541715A priority patent/JP6621541B2/ja
Priority to KR1020197034631A priority patent/KR102214589B1/ko
Publication of WO2018225617A1 publication Critical patent/WO2018225617A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the technology disclosed by this specification relates to an electrochemical reaction cell stack.
  • SOFC solid oxide fuel cell
  • array direction a predetermined direction
  • the single cell includes an electrolyte layer, and an air electrode and a fuel electrode facing each other in the arrangement direction with the electrolyte layer interposed therebetween.
  • the fuel cell stack further includes a plurality of conductive members arranged in the arrangement direction.
  • the fuel cell stack includes, as a conductive member, a separator that partitions an air chamber facing the air electrode and a fuel chamber facing the fuel electrode, an interconnector that is adjacent to the separator in the arrangement direction and faces the air chamber or the fuel chamber. And a frame member disposed between the separator and the interconnector.
  • the first surface on one side of the conductive member is located on the flat portion, the edge of the first surface from the flat portion, and in the first direction from the flat portion. And a convex portion protruding to one side.
  • the convex portion of the one conductive member interferes with the other conductive member. Therefore, for example, the sealing performance between two conductive members may be deteriorated.
  • electrolytic cell stack that is one form of a solid oxide electrolytic cell (hereinafter also referred to as “SOEC”) that generates hydrogen using an electrolysis reaction of water.
  • SOEC solid oxide electrolytic cell
  • the fuel cell stack and the electrolytic cell stack are collectively referred to as an electrochemical reaction cell stack.
  • An electrochemical reaction cell stack disclosed in the present specification includes an electrolyte layer and an air electrode and a fuel electrode facing each other in a first direction with the electrolyte layer interposed therebetween, and are arranged in the first direction.
  • a plurality of single cells arranged and arranged in the first direction, and having a conductivity and a plurality of flat plate-shaped conductive members, wherein the plurality of conductive members are The first surface on one side in the direction of 1 is a flat first flat portion, and is positioned on the edge side of the first surface with respect to the first flat portion, and from the first flat portion.
  • a first conductive member including a convex portion projecting to the one side in the first direction, and a second located on the one side in the first direction with respect to the first conductive member.
  • a second surface opposite to the first surface of the first conductive member is a flat surface.
  • a second flat portion having a shape and a concave portion facing the convex portion of the first conductive member and recessed from the second flat portion to the one side in the first direction.
  • a thickness of the second conductive member in the first direction is greater than a thickness of the first conductive member in the first direction, and The depth dimension in the first direction of the concave portion from the second flat portion in the second conductive member is the convex portion from the first flat portion in the first conductive member.
  • the first conductive member includes a convex portion
  • the second conductive member includes a concave portion at a position facing the convex portion.
  • the depth dimension in the first direction of the concave portion from the second flat portion in the second conductive member is the first depth of the convex portion from the first flat portion in the first conductive member. Greater than protruding length in direction.
  • the distance in the first direction between the convex portion of the first conductive member and the concave portion of the second conductive member is the first distance. It spreads toward the edge of the surface.
  • the first conductive member and the second conductive member adjacent to each other can be compared to a configuration in which the distance in the first direction between the convex portion and the concave portion is substantially uniform. Interference with the conductive member due to thermal expansion of the second conductive member can be more effectively suppressed.
  • the plurality of conductive members include a third flat portion having a flat third surface on one side in the first direction and the third flat portion.
  • a third conductive member including a convex portion positioned on the edge side of the third surface and projecting to the one side in the first direction from the third flat portion; and
  • a fourth conductive member positioned on the one side in the first direction with respect to the conductive member, wherein the fourth surface of the third conductive member is opposite to the third surface.
  • a fourth flat portion having a flat shape, and a concave portion facing the convex portion of the third conductive member and recessed from the fourth flat portion to the one side in the first direction Including the fourth conductive member, and the second conductive member and the fourth conductive member include the first conductive member. Unlike the thickness of the direction to each other, and the higher the first thing is thick thickness direction, a large depth of the first direction of the concave portion. Since the conductive member has a larger amount of thermal expansion as the thickness in the first direction is thicker, the conductive member is likely to interfere with a convex portion of another conductive member due to expansion of the concave portion of the conductive member.
  • the concave portion is deep, but if the concave portion is too deep, a relatively thin conductive member may not be able to secure a strength higher than a predetermined level.
  • the second conductive member and the fourth conductive member including the concave portion have a thickness corresponding to the concave portion as the thickness in the first direction increases. The depth dimension in the direction 1 is large. Thereby, the interference of the mutually adjacent conductive members can be suppressed while suppressing the strength reduction of the conductive members.
  • a ratio of a depth dimension in the first direction corresponding to the concave portion to a thickness in the first direction of the second conductive member is 7% or more. It is good also as a certain structure. According to this electrochemical reaction cell stack, the ratio of the depth dimension in the first direction of the concave portion to the thickness in the first direction of the second conductive member is less than 7%, Physical interference between conductive members adjacent to each other can be suppressed.
  • the protruding length of the convex portion from the first flat portion in the first direction with respect to the thickness of the first conductive member in the first direction may be 2% or less. According to this electrochemical reaction cell stack, the ratio of the protruding length of the protruding portion in the first direction to the thickness of the first conductive member in the first direction is larger than that of the configuration in which the protruding length is larger than 2%. Corrosion due to oxidation of the portion can be suppressed.
  • a gas flow path extending in the first direction is formed in the first conductive member, and an edge side of the first surface is the first conductive member. It is good also as a structure which is the edge side which faces the said gas flow path among the surfaces. According to this electrochemical reaction cell stack, it is possible to suppress interference between adjacent conductive members while suppressing a decrease in strength of the first conductive member in the vicinity of the gas flow path.
  • the electrolyte layer includes a solid oxide.
  • An interconnector-electrochemical reaction single cell complex disclosed in the present specification includes a single cell including an electrolyte layer and an air electrode and a fuel electrode facing each other in a first direction with the electrolyte layer interposed therebetween.
  • a plurality of plate-like conductive members that are arranged side by side in the first direction, and each of the plurality of conductive members has a through hole formed therein.
  • the interconnector-electrochemical reaction single cell composite comprising an interconnector disposed on a side, and a frame member disposed between the separator and the interconnector, the frame in the separator
  • the first surface on the material side is a flat first flat portion, and is positioned closer to the edge side of the first surface than the first flat portion, and is closer to the frame member than the first flat portion.
  • the second surface on the separator side of the frame member is a flat second flat portion, and the convex portion of the separator is opposed to the second flat portion.
  • a thickness of the frame member in the first direction is greater than a thickness of the separator in the first direction, and A depth dimension in the first direction of the concave portion from the second flat portion is larger than a protruding length of the convex portion in the first direction from the first flat portion in the separator.
  • the electrolyte layer includes a solid oxide.
  • a method for manufacturing an electrochemical reaction cell stack disclosed in the present specification includes an electrolyte layer containing a solid oxide, and an air electrode and a fuel electrode facing each other in a first direction with the electrolyte layer interposed therebetween.
  • An electrochemical reaction comprising: a plurality of single cells arranged side by side in the first direction; and a plurality of plate-like conductive members arranged side by side in the first direction and having conductivity.
  • the first surface on one side in the first direction is flattened by pressing, and the edge side of the first surface is more flat than the first flat portion.
  • a convex portion protruding to the one side in the first direction from the first flat portion, and the second surface on the other side in the first direction is flat
  • a preparation step of preparing a plurality of conductive members each including a concave portion recessed on one side; and for each of the conductive members, protrusion of the convex portion from the first flat portion in the first direction The processing step of processing the convex portion so as to shorten the length, the convex portion of the first surface of one of the two adjacent conductive members, and the concave portion of the second surface of the other And a disposing step of arranging the plurality of conductive members side by side in the first direction so as to face each other.
  • an electrochemical reaction cell stack (a fuel cell stack or an electrolytic cell stack) including a plurality of electrochemical reaction single cells
  • It can be realized in the form of an interconnector-electrochemical reaction single cell complex, an electrochemical reaction unit, a manufacturing method thereof, and the like.
  • FIG. 1 is a perspective view showing an external configuration of a fuel cell stack 100 in the present embodiment.
  • FIG. 2 is an explanatory diagram showing an XZ cross-sectional configuration of a fuel cell stack 100 at a position II-II in FIG.
  • FIG. 3 is an explanatory diagram showing a YZ cross-sectional configuration of a fuel cell stack 100 at a position of III-III in FIG. It is explanatory drawing which shows XZ cross-section structure of the two electric power generation units 102 adjacent to each other in the same position as the cross section shown in FIG. It is explanatory drawing which shows the YZ cross-section structure of the two electric power generation units 102 adjacent to each other in the same position as the cross section shown in FIG.
  • FIG. 5 is a flowchart showing an example of a method for manufacturing the fuel cell stack 100 in the present embodiment.
  • FIG. 10 is an explanatory view showing a processing step of the separator 120.
  • FIG. 1 is a perspective view showing an external configuration of the fuel cell stack 100 in the present embodiment
  • FIG. 2 is an explanatory diagram showing an XZ cross-sectional configuration of the fuel cell stack 100 at a position II-II in FIG.
  • FIG. 3 is an explanatory diagram showing a YZ cross-sectional configuration of the fuel cell stack 100 at the position III-III in FIG.
  • XYZ axes orthogonal to each other for specifying the direction are shown.
  • the positive direction of the Z axis is referred to as the upward direction
  • the negative direction of the Z axis is referred to as the downward direction.
  • the fuel cell stack 100 is actually different from such an orientation. It may be installed. The same applies to FIG.
  • the fuel cell stack 100 includes a plurality (seven in this embodiment) of power generation units 102 and a pair of end plates 104 and 106.
  • the seven power generation units 102 are arranged side by side in a predetermined arrangement direction (vertical direction in the present embodiment).
  • the pair of end plates 104 and 106 are arranged so as to sandwich an assembly composed of seven power generation units 102 from above and below.
  • the arrangement direction (vertical direction) corresponds to the first direction in the claims.
  • a plurality of (eight in the present embodiment) holes penetrating in the vertical direction are formed in the peripheral portion around the Z direction of each layer (power generation unit 102, end plates 104, 106) constituting the fuel cell stack 100.
  • the holes formed in each layer and corresponding to each other communicate with each other in the vertical direction to form a communication hole 108 extending in the vertical direction from one end plate 104 to the other end plate 106.
  • the holes formed in each layer of the fuel cell stack 100 to form the communication holes 108 may also be referred to as communication holes 108.
  • the bolts 22 extending in the vertical direction are inserted into the communication holes 108, and the fuel cell stack 100 is fastened by the bolts 22 and the nuts 24 fitted on both sides of the bolts 22. 2 and 3, between the nut 24 fitted on one side (upper side) of the bolt 22 and the upper surface of the end plate 104 constituting the upper end of the fuel cell stack 100, and the bolt An insulating sheet 26 is interposed between the nut 24 fitted on the other side (lower side) of 22 and the lower surface of the end plate 106 constituting the lower end of the fuel cell stack 100.
  • an insulating sheet disposed between the nut 24 and the surface of the end plate 106 on the upper and lower sides of the gas passage member 27 and the gas passage member 27, respectively. 26 is interposed.
  • the insulating sheet 26 is made of, for example, a mica sheet, a ceramic fiber sheet, a ceramic powder sheet, a glass sheet, a glass ceramic composite agent, or the like.
  • the outer diameter of the shaft portion of each bolt 22 is smaller than the inner diameter of each communication hole 108. Therefore, a space is secured between the outer peripheral surface of the shaft portion of each bolt 22 and the inner peripheral surface of each communication hole 108.
  • the fuel cell stack 100 is located near the midpoint of one side (the X-axis positive direction side of two sides parallel to the Y-axis) on the outer periphery around the Z-direction.
  • the space formed by the bolt 22 (bolt 22A) and the communication hole 108 through which the bolt 22A is inserted is introduced with the oxidant gas OG from the outside of the fuel cell stack 100, and the oxidant gas OG is generated by each power generation.
  • oxidant gas introduction manifold 161 that is a gas flow path to be supplied to the unit 102, and is the midpoint of the side opposite to the side (X-axis negative direction side of two sides parallel to the Y-axis)
  • the space formed by the bolts 22 (bolts 22B) located in the vicinity and the communication holes 108 through which the bolts 22B are inserted contains the oxidant off-gas OOG that is the gas discharged from the air chamber 166 of each power generation unit 102.
  • Burning Functions as the oxidizing gas discharging manifold 162 for discharging to the outside of the cell stack 100. In the present embodiment, for example, air is used as the oxidant gas OG.
  • the vicinity of the midpoint of one side (the side on the Y axis positive direction side of two sides parallel to the X axis) on the outer periphery of the fuel cell stack 100 around the Z direction The space formed by the bolt 22 (bolt 22D) positioned at the position and the communication hole 108 through which the bolt 22D is inserted is introduced with the fuel gas FG from the outside of the fuel cell stack 100, and the fuel gas FG is generated by each power generation.
  • the space formed by the (bolt 22E) and the communication hole 108 through which the bolt 22E is inserted is a fuel cell stack in which the fuel off-gas FOG that is the gas discharged from the fuel chamber 176 of each power generation unit 102 is supplied to the fuel cell stack. 00 and to the outside to function as a fuel gas discharge manifold 172 for discharging.
  • the fuel gas FG for example, hydrogen-rich gas obtained by reforming city gas is used.
  • the fuel cell stack 100 is provided with four gas passage members 27.
  • Each gas passage member 27 has a hollow cylindrical main body portion 28 and a hollow cylindrical branch portion 29 branched from the side surface of the main body portion 28.
  • the hole of the branch part 29 communicates with the hole of the main body part 28.
  • a gas pipe (not shown) is connected to the branch portion 29 of each gas passage member 27.
  • a forming the oxidant gas introduction manifold 161 communicates with the oxidant gas introduction manifold 161.
  • the hole of the main body portion 28 of the gas passage member 27 disposed at the position of the bolt 22 ⁇ / b> B that forms the oxidant gas discharge manifold 162 communicates with the oxidant gas discharge manifold 162. Further, as shown in FIG. 3, the hole of the main body portion 28 of the gas passage member 27 arranged at the position of the bolt 22D forming the fuel gas introduction manifold 171 communicates with the fuel gas introduction manifold 171 and the fuel gas The hole of the main body portion 28 of the gas passage member 27 disposed at the position of the bolt 22 ⁇ / b> E forming the discharge manifold 172 communicates with the fuel gas discharge manifold 172.
  • the pair of end plates 104 and 106 are substantially rectangular flat plate-shaped conductive members, and are formed of, for example, stainless steel.
  • One end plate 104 is disposed on the upper side of the power generation unit 102 located on the uppermost side, and the other end plate 106 is disposed on the lower side of the power generation unit 102 located on the lowermost side.
  • a plurality of power generation units 102 are held in a pressed state by a pair of end plates 104 and 106.
  • the upper end plate 104 functions as a positive output terminal of the fuel cell stack 100, and the lower end plate 106 functions as a negative output terminal of the fuel cell stack 100.
  • the thickness of each end plate 104, 106 (the dimension in the vertical direction (which may be an average dimension or a maximum thickness) is the same) is smaller than the thickness H3 of the interconnector 150.
  • (Configuration of power generation unit 102) 4 is an explanatory diagram showing an XZ cross-sectional configuration of two power generation units 102 adjacent to each other at the same position as the cross section shown in FIG. 2, and FIG. 5 is adjacent to each other at the same position as the cross section shown in FIG. It is explanatory drawing which shows the YZ cross-section structure of the two electric power generation units.
  • the power generation unit 102 includes a single cell 110, a separator 120, an air electrode side frame 130, an air electrode side current collector 134, a fuel electrode side frame 140, and a fuel electrode side.
  • a current collector 144 and a pair of interconnectors 150 constituting the uppermost layer and the lowermost layer of the power generation unit 102 are provided.
  • the separator 120, the air electrode side frame 130, the fuel electrode side frame 140, and the periphery of the interconnector 150 around the Z direction are formed with holes corresponding to the communication holes 108 through which the bolts 22 are inserted.
  • the interconnector 150 is a substantially rectangular flat plate-shaped conductive member, and is formed of, for example, ferritic stainless steel.
  • the interconnector 150 ensures electrical continuity between the power generation units 102 and prevents reaction gas from being mixed between the power generation units 102.
  • one interconnector 150 is shared by two adjacent power generation units 102. That is, the upper interconnector 150 in a power generation unit 102 is the same member as the lower interconnector 150 in another power generation unit 102 adjacent to the upper side of the power generation unit 102.
  • the power generation unit 102 located at the top in the fuel cell stack 100 does not include the upper interconnector 150 and is located at the bottom.
  • the power generation unit 102 does not include the lower interconnector 150 (see FIGS. 2 and 3).
  • a thickness H3 of the interconnector 150 is thinner than a thickness H2 of a fuel electrode side frame 140 described later, and is about 0.8 (mm), for example.
  • the single cell 110 includes an electrolyte layer 112 and an air electrode (cathode) 114 and a fuel electrode (anode) 116 that face each other in the vertical direction (the arrangement direction in which the power generation units 102 are arranged) with the electrolyte layer 112 interposed therebetween.
  • the thickness of the fuel electrode 116 (size in the vertical direction) is thicker than the thickness of the air electrode 114 and the electrolyte layer 112, and the fuel electrode 116 supports the other layers constituting the single cell 110. That is, the single cell 110 of this embodiment is a fuel electrode support type single cell.
  • the electrolyte layer 112 is a substantially rectangular flat plate-shaped member and contains at least Zr.
  • solid oxide such as YSZ (yttria stabilized zirconia), ScSZ (scandia stabilized zirconia), CaSZ (calcia stabilized zirconia), and the like. It is formed by things.
  • the air electrode 114 is a substantially rectangular flat plate-shaped member, and is formed of, for example, a perovskite oxide (for example, LSCF (lanthanum strontium cobalt iron oxide), LSM (lanthanum strontium manganese oxide), LNF (lanthanum nickel iron)).
  • LSCF larovskite oxide
  • LSM lanthanum strontium cobalt iron oxide
  • LSM lanthanum strontium manganese oxide
  • LNF lanthanum nickel iron
  • the fuel electrode 116 is a substantially rectangular flat plate-like member, and is formed of, for example, Ni (nickel), cermet made of Ni and ceramic particles, Ni-based alloy, or the like.
  • the single cell 110 (power generation unit 102) of the present embodiment is a solid oxide fuel cell (SOFC) that uses a solid oxide as an electrolyte.
  • SOFC solid oxide fuel cell
  • the separator 120 is a frame-like member in which a substantially rectangular hole 121 penetrating in the vertical direction is formed near the center, and is made of, for example, metal.
  • the peripheral part of the hole 121 in the separator 120 is opposed to the peripheral part of the surface of the electrolyte layer 112 on the air electrode 114 side.
  • the separator 120 is bonded to the electrolyte layer 112 (single cell 110) by a bonding portion 124 formed of a brazing material (for example, Ag brazing) disposed in the facing portion.
  • the separator 120 divides the air chamber 166 facing the air electrode 114 and the fuel chamber 176 facing the fuel electrode 116, and gas leaks from one electrode side to the other electrode side in the peripheral portion of the single cell 110. It is suppressed.
  • the thickness H1 of the separator 120 is thinner than the thickness H3 of the interconnector 150, and is about 0.1 (mm), for example.
  • the hole 121 corresponds to a through hole in the claims.
  • the air electrode side frame 130 is a frame-like member in which a substantially rectangular hole 131 penetrating in the vertical direction is formed near the center, and is formed of an insulator such as mica, for example.
  • the hole 131 of the air electrode side frame 130 forms an air chamber 166 that faces the air electrode 114.
  • the air electrode side frame 130 is in contact with the peripheral edge portion of the surface of the separator 120 opposite to the side facing the electrolyte layer 112 and the peripheral edge portion of the surface of the interconnector 150 facing the air electrode 114. .
  • the pair of interconnectors 150 included in the power generation unit 102 is electrically insulated by the air electrode side frame 130.
  • the air electrode side frame 130 has an oxidant gas supply passage 132 communicating the oxidant gas introduction manifold 161 and the air chamber 166, and an oxidant gas communicating the air chamber 166 and the oxidant gas discharge manifold 162.
  • a discharge communication hole 133 is formed.
  • the thickness of the air electrode side frame 130 is thicker than the thickness H1 of the separator 120 and the thickness H3 of the interconnector 150, for example, about 1.0 (mm).
  • the fuel electrode side frame 140 is a frame-like member in which a substantially rectangular hole 141 penetrating in the vertical direction is formed near the center, and is made of, for example, metal.
  • the hole 141 of the fuel electrode side frame 140 forms a fuel chamber 176 that faces the fuel electrode 116.
  • the fuel electrode side frame 140 is in contact with the peripheral portion of the surface of the separator 120 facing the electrolyte layer 112 and the peripheral portion of the surface of the interconnector 150 facing the fuel electrode 116.
  • the fuel electrode side frame 140 has a fuel gas supply communication hole 142 that connects the fuel gas introduction manifold 171 and the fuel chamber 176, and a fuel gas discharge communication hole 143 that connects the fuel chamber 176 and the fuel gas discharge manifold 172. And are formed.
  • the thickness H2 of the fuel electrode side frame 140 is larger than the thickness H1 of the separator 120 and the thickness H3 of the interconnector 150, for example, about 1.5 (mm).
  • the fuel electrode side current collector 144 is disposed in the fuel chamber 176.
  • the fuel electrode side current collector 144 includes an interconnector facing portion 146, an electrode facing portion 145, and a connecting portion 147 that connects the electrode facing portion 145 and the interconnector facing portion 146.
  • the electrode facing portion 145 is in contact with the surface of the fuel electrode 116 on the side opposite to the side facing the electrolyte layer 112, and the interconnector facing portion 146 is on the surface of the interconnector 150 on the side facing the fuel electrode 116. In contact.
  • the interconnector facing portion 146 in the power generation unit 102 has a lower end plate. 106 is in contact. Since the fuel electrode side current collector 144 has such a configuration, the fuel electrode 116 and the interconnector 150 (or the end plate 106) are electrically connected. Note that a spacer 149 made of, for example, mica is disposed between the electrode facing portion 145 and the interconnector facing portion 146.
  • the fuel electrode side current collector 144 follows the deformation of the power generation unit 102 due to the temperature cycle and the reaction gas pressure fluctuation, and the fuel electrode 116 and the interconnector 150 (or the end plate 106) via the fuel electrode side current collector 144.
  • the electrical connection with is maintained well.
  • the air electrode side current collector 134 is disposed in the air chamber 166.
  • the air electrode side current collector 134 is composed of a plurality of current collector elements 135 having a substantially quadrangular prism shape, and is formed of, for example, ferritic stainless steel.
  • the air electrode side current collector 134 is in contact with the surface of the air electrode 114 opposite to the side facing the electrolyte layer 112 and the surface of the interconnector 150 facing the air electrode 114.
  • the air electrode side current collector 134 in the power generation unit 102 includes the upper end plate. 104 is in contact.
  • the air electrode side current collector 134 has such a configuration, the air electrode 114 and the interconnector 150 (or the end plate 104) are electrically connected.
  • the air electrode side current collector 134 and the interconnector 150 may be configured as an integral member.
  • the air electrode side current collector 134 may be covered with a conductive coating, and a conductive bonding layer is interposed between the air electrode 114 and the air electrode side current collector 134. You may do it.
  • the separator 120, the interconnector 150, the fuel electrode side frame 140, and the end plates 104 and 106 correspond to a plurality of conductive members in the claims.
  • the complex of the single cell 110, the separator 120, the interconnector 150, and the fuel electrode side frame 140 corresponds to the interconnector-electrochemical reaction single cell complex in the claims, and is also called a cassette.
  • the oxidant gas OG is supplied through a gas pipe (not shown) connected to the branch portion 29 of the gas passage member 27 provided at the position of the oxidant gas introduction manifold 161. Then, the oxidant gas OG is supplied to the oxidant gas introduction manifold 161 through the branch portion 29 of the gas passage member 27 and the hole of the main body portion 28, and the oxidant gas introduction manifold 161 oxidizes each power generation unit 102. It is supplied to the air chamber 166 through the agent gas supply communication hole 132. Further, as shown in FIGS.
  • the fuel gas FG is supplied through a gas pipe (not shown) connected to the branch portion 29 of the gas passage member 27 provided at the position of the fuel gas introduction manifold 171. Then, the fuel gas FG is supplied to the fuel gas introduction manifold 171 through the branch portion 29 of the gas passage member 27 and the hole of the main body portion 28, and the fuel gas supply communication of each power generation unit 102 from the fuel gas introduction manifold 171.
  • the fuel chamber 176 is supplied through the hole 142.
  • each power generation unit 102 When the oxidant gas OG is supplied to the air chamber 166 of each power generation unit 102 and the fuel gas FG is supplied to the fuel chamber 176, power is generated by an electrochemical reaction between the oxidant gas OG and the fuel gas FG in the single cell 110. Is called. This power generation reaction is an exothermic reaction.
  • the air electrode 114 of the single cell 110 is electrically connected to one interconnector 150 via the air electrode side current collector 134, and the fuel electrode 116 is connected via the fuel electrode side current collector 144.
  • the other interconnector 150 is electrically connected.
  • the plurality of power generation units 102 included in the fuel cell stack 100 are electrically connected in series.
  • each power generation unit 102 electrical energy generated in each power generation unit 102 is taken out from the end plates 104 and 106 that function as output terminals of the fuel cell stack 100. Since SOFC generates power at a relatively high temperature (for example, 700 ° C. to 1000 ° C.), the fuel cell stack 100 is heated by a heater (after the start-up until the high temperature can be maintained by the heat generated by the power generation. (Not shown).
  • the oxidant off-gas OOG discharged from the air chamber 166 of each power generation unit 102 is discharged to the oxidant gas discharge manifold 162 via the oxidant gas discharge communication hole 133 as shown in FIGS.
  • the fuel cell stack 100 is connected to the branch portion 29 via a gas pipe (not shown) through the holes of the main body portion 28 and the branch portion 29 of the gas passage member 27 provided at the position of the agent gas discharge manifold 162. Is discharged outside.
  • the fuel off-gas FOG discharged from the fuel chamber 176 of each power generation unit 102 is discharged to the fuel gas discharge manifold 172 via the fuel gas discharge communication hole 143, and further to the fuel gas.
  • the gas passage member 27 provided at the position of the discharge manifold 172 passes through the body portion 28 and the branch portion 29 and passes through a gas pipe (not shown) connected to the branch portion 29 to the outside of the fuel cell stack 100. Discharged.
  • FIG. 6 shows an enlarged configuration of the X1 portion of FIG. 5
  • FIG. 7 shows an enlarged configuration of the X2 portion of FIG. 6
  • FIG. 8 shows an X3 portion of FIG. The configuration of is enlarged.
  • the separator 120, the fuel electrode side frame 140, and the interconnector 150 are all plate-like conductive members, and are arranged in the vertical direction (Z direction).
  • the surface on the fuel electrode side frame 140 side of the separator 120 (hereinafter referred to as “separator lower surface 122”) includes a separator lower flat portion 122A and a separator convex portion 122B.
  • the separator lower flat portion 122A is a flat portion substantially parallel to the surface direction orthogonal to the vertical direction.
  • the separator convex portion 122B is a portion that is located on the edge side of the separator lower surface 122 from the separator lower flat portion 122A, and protrudes toward the fuel electrode side frame 140 from the separator lower flat portion 122A.
  • the edge of separator lower surface 122 includes an opening edge of communication hole 108 formed in separator lower surface 122 and a peripheral edge forming the outer shape of separator lower surface 122.
  • the separator convex portion 122 ⁇ / b> B is an inclined surface that is inclined so as to be positioned on the fuel electrode side frame 140 side (lower side) as it goes toward each edge side of the separator lower surface 122.
  • FIG. 7 a portion near the opening edge of the communication hole 108 formed in the separator lower surface 122 is shown enlarged.
  • the separator 120 corresponds to the first conductive member in the claims.
  • the separator lower surface 122 corresponds to the first surface in the claims
  • the separator lower flat portion 122A corresponds to the first flat portion in the claims
  • the separator convex portion 122B corresponds to the claims. Corresponds to a convex portion in the range.
  • the surface of the separator 120 on the air electrode side frame 130 side (hereinafter referred to as “separator upper surface 123”) includes a separator upper flat portion 123A and a separator concave portion 123B.
  • the separator upper flat portion 123A is a flat portion substantially parallel to the surface direction orthogonal to the vertical direction.
  • the separator recessed portion 123B is located on the edge side of the separator upper surface 123 from the separator upper flat portion 123A, and is a portion recessed from the separator upper flat portion 123A to the side opposite to the air electrode side frame 130 (fuel electrode side frame 140 side). It is.
  • the edge of the separator upper surface 123 includes an opening edge of the communication hole 108 formed in the separator upper surface 123 and a peripheral edge forming the outer shape of the separator upper surface 123.
  • the separator concave portion 123B is an inclined surface that is inclined so as to be positioned on the fuel electrode side frame 140 side (lower side) as it goes toward the edge side of the separator upper surface 123. In FIG. 7, a portion near the opening edge of the communication hole 108 formed in the separator upper surface 123 is shown enlarged.
  • the surface on the interconnector 150 side of the fuel electrode side frame 140 (hereinafter referred to as “frame lower surface 148”) includes a lower frame flat portion 148A and a frame convex portion 148B.
  • the frame lower flat portion 148A is a flat portion substantially parallel to the surface direction orthogonal to the vertical direction.
  • the frame convex portion 148B is a portion that is located on the edge side of the frame lower surface 148 with respect to the frame lower flat portion 148A and projects toward the interconnector 150 from the frame lower flat portion 148A.
  • the edge of the frame lower surface 148 includes an opening edge of the communication hole 108 formed in the frame lower surface 148 and a peripheral edge forming the outer shape of the frame lower surface 148.
  • the frame convex portion 148B is an inclined surface that is inclined so as to be positioned on the interconnector 150 side (lower side) as it goes to each edge side of the frame lower surface 148. In FIG. 8, a portion near the opening edge of the communication hole 108 formed in the frame lower surface 148 is shown enlarged.
  • the fuel electrode side frame 140 corresponds to a third conductive member and a frame member in the claims.
  • the frame lower surface 148 corresponds to the third surface in the claims
  • the lower flat portion 148A corresponds to the third flat portion in the claims
  • the frame convex portion 148B in the claims Corresponds to the convex part.
  • the surface on the separator 120 side of the fuel electrode side frame 140 (hereinafter referred to as “frame upper surface 180”) includes a frame upper flat portion 180A and a frame concave portion 180B.
  • the flat portion 180A on the frame is a flat portion that is substantially parallel to the surface direction orthogonal to the vertical direction.
  • the frame concave portion 180B is a portion that is located on the edge side of the frame upper surface 180 from the frame upper flat portion 180A and that is recessed to the side opposite to the separator 120 (interconnector 150 side) from the frame upper flat portion 180A.
  • the edge of frame upper surface 180 includes an opening edge of communication hole 108 formed in frame upper surface 180 and a peripheral edge forming the outer shape of frame upper surface 180.
  • the frame concave portion 180B is an inclined surface that is inclined so as to be positioned on the interconnector 150 side (lower side) as it goes toward the edge side of the frame upper surface 180.
  • a portion near the opening edge of the communication hole 108 formed in the frame upper surface 180 is shown enlarged.
  • the fuel electrode side frame 140 corresponds to a second conductive member and a frame member in the claims.
  • the frame upper surface 180 corresponds to the second surface in the claims
  • the frame upper flat portion 180A corresponds to the second flat portion in the claims
  • the frame concave portion 180B corresponds to the claims. It corresponds to the concave portion in the range.
  • the interconnector 150 has a thin plate portion 152.
  • the thin plate portion 152 is a portion that is grooved from the surface side facing the air electrode side frame 130 in the interconnector 150 so that the plate thickness in the vertical direction is thinner than other portions of the interconnector 150.
  • the thin plate portion 152 includes an annular portion 152A surrounding the communication hole 108 and a peripheral portion 152B outside the fuel electrode side frame 140 (interconnector 150, separator 120) as viewed in the vertical direction (see FIG. 6).
  • interconnector lower surface 154 The surface on the air electrode side frame 130 side of the thin plate portion 152 of the interconnector 150 (hereinafter referred to as “interconnector lower surface 154”) includes an interconnector lower flat portion 154A and an interconnector convex portion 154B (see FIG. 8). .
  • the interconnector lower flat portion 154A is a flat portion substantially parallel to the surface direction orthogonal to the vertical direction.
  • the interconnector convex portion 154B is a portion that is located on the edge side of the interconnector lower surface 154 from the interconnector lower flat portion 154A, and protrudes toward the air electrode side frame 130 from the interconnector lower flat portion 154A.
  • the edge of the interconnector lower surface 154 includes an opening edge of the communication hole 108 formed in the interconnector lower surface 154 and a peripheral edge forming the outer shape of the interconnector lower surface 154.
  • the interconnector convex portion 154B is an inclined surface that is inclined so as to be positioned on the air electrode side frame 130 side (lower side) as it goes to each edge side of the interconnector lower surface 154. In FIG. 8, a portion near the opening edge of the communication hole 108 formed in the interconnector lower surface 154 is shown enlarged.
  • interconnector upper surface 156 includes an interconnector upper flat portion 156A and an interconnector concave portion 156B.
  • the interconnector upper flat portion 156A is a flat portion substantially parallel to the surface direction orthogonal to the vertical direction.
  • the interconnector concave portion 156B is located on the edge side of the interconnector upper surface 156 with respect to the interconnector upper flat portion 156A, and is opposite to the fuel electrode side frame 140 with respect to the interconnector upper flat portion 156A (air electrode side frame 130 side). It is a recessed part.
  • the edge of the interconnector upper surface 156 includes an opening edge of the communication hole 108 formed in the interconnector upper surface 156 and a peripheral edge forming the outer shape of the interconnector upper surface 156.
  • the interconnector concave portion 156B is an inclined surface that is inclined so as to be positioned on the air electrode side frame 130 side (lower side) toward the edge side of the interconnector upper surface 156. In FIG. 8, a portion near the opening edge of the communication hole 108 formed in the interconnector upper surface 156 is shown enlarged.
  • the interconnector 150 corresponds to the fourth conductive member in the claims.
  • interconnector upper surface 156 corresponds to the fourth surface in the claims
  • interconnector flat portion 156A corresponds to the fourth flat portion in the claims
  • interconnector concave portion 156B This corresponds to the concave portion in the claims.
  • the fuel electrode side frame 140 is welded to the separator 120 and also to the lower interconnector 150 (the fuel electrode 116 side) of the pair of interconnectors 150.
  • the power generation unit 102 includes a first welded portion 410 that seals between the fuel electrode side frame 140 and the separator 120, and a second welded portion that seals between the fuel electrode side frame 140 and the interconnector 150. 420 is formed.
  • the first welded portion 410 and the second welded portion 420 are each formed in a portion that overlaps the thin plate portion 152 (the annular portion 152A and the peripheral portion 152B) when viewed in the vertical direction.
  • the first and second welded portions 410 and 420 are formed by, for example, laser welding.
  • a protrusion BU such as a bead is formed, and the flatness of the weld surface may be lowered.
  • a space SP exists between the interconnector 150 and the air electrode side frame 130 due to the thin plate portion 152 of the interconnector 150.
  • Relational expression 1 H1 ⁇ H3 ⁇ H2
  • the magnitude relationship between the depth D2 of the separator recess portion 123B of the separator 120, the depth D4 of the frame recess portion 180B of the fuel electrode side frame 140, and the depth D6 of the interconnector recess portion 156B of the interconnector 150 is It can be expressed by the following relational expression 2.
  • Relational expression 2 D2 ⁇ D6 ⁇ D4
  • the depth D2 of the separator concave portion 123B can be obtained as follows. As shown in FIG. 7, in one cross section (ZX cross section) parallel to the Z direction, a straight line passing through the edge of the separator upper surface 123 and extending in the vertical direction (in FIG.
  • a straight line extending along the line) is defined as a virtual straight line L1.
  • a plane including the separator upper flat portion 123A and parallel to the surface direction perpendicular to the vertical direction is defined as a first virtual plane M1.
  • the depth D2 of the separator concave portion 123B is a vertical distance between the first virtual plane M1 and the second virtual plane M2.
  • the depth D4 of the frame recess portion 180B and the depth D6 of the interconnector recess portion 156B can be obtained in the same manner.
  • the protruding length D1 of the separator convex portion 122B in the vertical direction is smaller than the depth D2 of the separator concave portion 123B.
  • the protruding length D3 in the vertical direction of the frame convex portion 148B is smaller than the depth D4 of the frame concave portion 180B. That is, the protruding length D3 of the frame convex portion 148B is shorter than the length corresponding to the depth D4 of the frame concave portion 180B.
  • the protruding length D5 in the vertical direction of the interconnector convex portion 154B is smaller than the depth D6 of the interconnector concave portion 156B. That is, the protrusion length D5 of the interconnector convex portion 154B is shorter than the length corresponding to the depth D6 of the interconnector concave portion 156B.
  • the protruding length D1 in the vertical direction of the separator convex portion 122B can be obtained as follows. As shown in FIG. 7, a plane including the separator lower flat portion 122A and parallel to the surface direction orthogonal to the vertical direction is defined as a third virtual plane M3. A plane that includes the apex (the part located at the lowest side) of the separator convex portion 122B and is parallel to the plane direction is defined as a fourth virtual plane M4.
  • the protrusion length D1 in the vertical direction of the separator convex portion 122B is the vertical distance between the third virtual plane M3 and the fourth virtual plane M4.
  • the vertical projection length D3 of the frame convex portion 148B and the vertical projection length D5 of the interconnector convex portion 154B can be obtained in the same manner.
  • the depth D2 of the separator recessed part 123B in the separator 120 is 0.02 (mm) or more, and it is preferable that it is less than 0.08 (mm).
  • the depth D6 of the interconnector recess 156B in the interconnector 150 is preferably 0.08 (mm) or more, and preferably less than 0.1 (mm).
  • the depth D4 of the frame concave portion 180B in the fuel electrode side frame 140 is preferably 0.1 (mm) or more.
  • the ratio of the depth D2 of the separator recess portion 123B to the thickness H1 of the separator 120 is preferably 20% or more.
  • the ratio of the depth D4 of the frame recess portion 180B to the thickness H2 of the fuel electrode side frame 140 may be 7% or more.
  • the ratio of the depth D6 of the interconnector recess 156B to the thickness H3 of the interconnector 150 is preferably 0.4% or more.
  • the ratio of the protruding length D1 in the vertical direction of the separator convex portion 122B to the thickness H1 of the separator 120 is preferably 2% or less.
  • the ratio of the projection length D3 in the vertical direction of the frame convex portion 148B to the thickness H2 of the fuel electrode side frame 140 is 0.4. % Or less is preferable.
  • FIG. 8 is a flowchart illustrating an example of a method for manufacturing the fuel cell stack 100 according to the present embodiment
  • FIG. 9 is an explanatory diagram illustrating processing steps for the separator 120.
  • the single cell 110 is produced by a known method (S110).
  • a fuel electrode green sheet and an electrolyte layer green sheet are attached and degreased at a predetermined temperature (for example, about 280 ° C.).
  • the degreased green sheet laminate is fired at a predetermined temperature (for example, about 1350 ° C.).
  • a laminated body of the electrolyte layer 112 and the fuel electrode 116 is obtained.
  • a mixed solution of the air electrode forming material is spray-coated on the surface of the electrolyte layer 112 in the above-described laminate of the electrolyte layer 112 and the fuel electrode 116, and is fired at a predetermined temperature (for example, 1100 ° C.).
  • a predetermined temperature for example, 1100 ° C.
  • an intermediate separator 120P in which the hole 121 and the communication hole 108 are formed is formed by punching a metal plate formed of a material for forming the separator 120 by pressing (S120). As shown in the upper part of FIG. 9, burrs protruding in the punching direction (downward) are formed on the edge side of the intermediate separator 120 ⁇ / b> P by pressing.
  • an intermediate separator convex portion 122C is formed on the separator lower surface 122 of the intermediate separator 120P, and a separator concave portion 123B is formed on the separator upper surface 123.
  • the protruding length in the vertical direction of the intermediate separator convex portion 122C is substantially the same as the depth D2 of the separator concave portion 123B.
  • the process of S120 corresponds to the preparation process in the claims. In addition, you may prepare by purchasing the separator 120 of the structure mentioned above, the fuel electrode side frame 140, and the interconnector 150 from the outside.
  • the intermediate separator convex portion 122C is processed into the separator convex portion 122B by subjecting the intermediate separator convex portion 122C to surface pressing. Thereby, as shown in the lower part of FIG. 9, the separator 120 can be manufactured.
  • the process of S130 corresponds to the processing process in the claims.
  • a plurality of conductive members are arranged in the vertical direction so that one convex portion of two conductive members adjacent to each other and the other concave portion face each other (S140).
  • the single cell 110 is joined to the separator 120, and then, as shown in FIGS. 7 and 8, the separator convex portion 122B of the separator 120 and the frame concave portion 180B of the fuel electrode side frame 140 are vertically aligned.
  • the separator 120 and the fuel electrode side frame 140 are overlapped so as to face each other.
  • the separator convex portion 122B can be prevented from interfering with the fuel electrode side frame 140. Further, the fuel electrode side frame 140 and the interconnector 150 are overlapped so that the frame convex portion 148B of the fuel electrode side frame 140 and the interconnector recess portion 156B of the interconnector 150 face each other in the vertical direction.
  • the fuel cell stack 100 is assembled (S150). Specifically, a structure (cassette) including a single cell 110, a separator 120, a fuel electrode side frame 140, and an interconnector 150 is stacked in multiple stages via an air electrode side frame 130 and fastened with bolts 22. To do. As described above, the fuel cell stack 100 having the above-described configuration can be manufactured.
  • the upper second surface of each conductive member is a flat portion (the first portion of the other conductive member located on the upper side.
  • a flat second portion that is opposed to the flat portion, and a concave portion that is opposed to the convex portion of the other conductive member and is recessed above the second flat portion.
  • the frame upper surface 180 of the fuel electrode side frame 140 includes a frame upper flat portion 180A and a frame concave portion 180B, and the frame concave portion 180B faces the separator convex portion 122B of the separator 120 (FIG. 7). reference).
  • the conductive member since the conductive member has a larger amount of thermal expansion as the thickness in the vertical direction increases, the conductive member easily interferes with the convex portion of the other conductive member due to the expansion of the concave portion of the conductive member.
  • the thickness H2 of the fuel electrode side frame 140 is thicker than the thickness H1 of the separator 120.
  • the depth D4 of the frame concave portion 180B of the fuel electrode side frame 140 is larger than the protruding length D1 of the separator convex portion 122B of the separator 120. That is, the length corresponding to the depth D4 of the frame concave portion 180B is longer than the protruding length D1 of the separator convex portion 122B.
  • the separator 120 and the fuel electrode side frame 140 adjacent to each other are compared with the configuration in which the depth D4 of the frame concave portion 180B is equal to or less than the protruding length D1 of the separator convex portion 122B. Can be prevented from interfering due to thermal expansion.
  • the vertical distance between the separator convex portion 122B and the frame concave portion 180B increases toward the edge side of the separator 120 and the fuel electrode side frame 140.
  • the separator 120 and the fuel electrode side frame 140 that are adjacent to each other are fueled compared to a configuration in which the vertical distance between the separator convex portion 122B and the frame concave portion 180B is substantially uniform. Interference due to thermal expansion of the pole-side frame 140 can be more effectively suppressed.
  • the conductive member tends to interfere with the convex portion of another conductive member due to the expansion of the concave portion of the conductive member. For example, when the temperature rises due to heat generated by the power generation operation of the single cell 110, the conductive member thermally expands. However, since the expansion in the vertical direction (thickness direction) in the conductive member is regulated by fastening with the bolts 22, the conductive member expands in the plane direction perpendicular to the vertical direction of the fuel cell stack 100 accordingly. . The amount of expansion in the surface direction increases as the thickness of the conductive member increases.
  • the frame concave portion 180B and the separator concave portion 123B are displaced outward in the surface direction of the fuel cell stack 100.
  • the thickness H2 of the fuel electrode side frame 140 is thicker than the thickness H1 of the separator 120.
  • the amount of displacement of the frame recessed portion 180B outward in the surface direction is larger than the amount of displacement of the separator recessed portion 123B outward in the surface direction. Therefore, the frame concave portion 180B is more likely to interfere with the convex portions of other conductive members than the separator concave portion 123B.
  • the recessed portion is deeper, but if the recessed portion is too deep, a relatively thin conductive member (for example, the separator 120) has a strength or function higher than a predetermined value (function to partition the air chamber 166 and the fuel chamber 176). May not be secured.
  • a relatively thin conductive member for example, the separator 120
  • the thicker the separator 120, the fuel electrode side frame 140, and the interconnector 150 the deeper the depth of the concave portion. Thereby, it is possible to suppress interference between adjacent conductive members while suppressing a decrease in strength or the like of each conductive member.
  • the conductive member may be oxidized by touching the outside air.
  • the protruding length of the convex portion from the first flat portion is smaller than the depth of the concave portion from the second flat portion.
  • the protruding length D1 in the vertical direction of the separator convex portion 122B is smaller than the depth D2 of the separator concave portion 123B.
  • the ratio of the depth of the concave portion to the thickness of each conductive member is 7% or more.
  • the ratio of the protruding length of the convex portion to the thickness of each conductive member is 2% or less.
  • a convex portion (separator convex portion 122B) is formed on one of the opening edge side of the communication hole 108 formed on the separator lower surface 122 and the peripheral edge side forming the outer shape of the separator lower surface 122. It is also possible that no convex portion is formed on the other side.
  • the convex portion may be formed over the entire circumference on each edge side, or may be formed only on a part of each edge side.
  • a concave portion (separator concave portion 123B) is formed on one of the opening edge side of the communication hole 108 formed on the separator upper surface 123 and the peripheral side forming the outer shape of the separator upper surface 123, and the other May not have a recess.
  • the concave portion may be formed over the entire circumference on each edge side, or may be formed only on a part of each edge side. Contrary to the above embodiment, a concave portion may be formed on the separator lower surface 122, and a convex portion may be formed on the separator upper surface 123. Note that these modified examples are also applicable to the fuel electrode side frame 140 and the interconnector 150. Further, the interconnector 150 may not have the thin plate portion 152. In this case, a convex portion may be formed on the edge side of the lower surface of the interconnector 150 that contacts the air electrode side frame 130.
  • the depth of the concave portion is deeper.
  • the present invention is not limited to this.
  • the separator 120, the fuel electrode side frame 140, and the interconnector 150 only the pair of conductive members adjacent to each other in the vertical direction, It may be deeper.
  • the thickness relationship among the separator 120, the fuel electrode side frame 140, and the interconnector 150 may be different from the relational expression 1 in the above embodiment.
  • the end plates 104 and 106 may be used, or the air electrode side frame 130 (when formed of a conductive material) may be used.
  • the separator 120, the fuel electrode side frame 140, and the interconnector 150 are formed of materials having different thermal expansion coefficients.
  • the conductive member formed of a material having a high coefficient of thermal expansion may have a deeper concave portion.
  • the fuel electrode side frame 140 has the highest thermal expansion coefficient
  • the interconnector 150 has the highest thermal expansion coefficient
  • the separator 120 has the lowest thermal expansion coefficient.
  • the above relational expression 2 holds for the depth of the concave portion.
  • the conductive member may be a metal member other than the separator 120, the interconnector 150, the fuel electrode side frame 140, and the end plates 104 and 106.
  • the protruding length of the convex portion from the first flat portion is the depth of the concave portion from the second flat portion. Or larger than the same length.
  • the number of unit cells 110 included in the fuel cell stack 100 is merely an example, and the number of unit cells 110 is appropriately determined according to the output voltage required for the fuel cell stack 100 or the like.
  • the material which forms each member in the said embodiment is an illustration to the last, and each member may be formed with another material.
  • the manufacturing method of the fuel cell stack 100 in the above embodiment is merely an example, and may be manufactured by other manufacturing methods.
  • the convex portion and the concave portion such as the separator 120 are formed by pressing.
  • the present invention is not limited to this, and may be formed by, for example, cutting.
  • the SOFC that generates electricity using the electrochemical reaction between hydrogen contained in the fuel gas and oxygen contained in the oxidant gas is targeted.
  • the present invention can be similarly applied to an electrolytic single cell that is a constituent unit of a solid oxide electrolytic cell (SOEC) that generates hydrogen by using hydrogen, and an electrolytic cell stack including a plurality of electrolytic single cells.
  • SOEC solid oxide electrolytic cell
  • the configuration of the electrolytic cell stack is well known as described in, for example, Japanese Patent Application Laid-Open No. 2016-81813, and thus will not be described in detail here. However, it is schematically the same as the fuel cell stack 100 in the above-described embodiment. It is the composition.
  • the fuel cell stack 100 in the above-described embodiment may be read as an electrolytic cell stack
  • the power generation unit 102 may be read as an electrolytic cell unit
  • the single cell 110 may be read as an electrolytic single cell.
  • a voltage is applied between the two electrodes so that the air electrode 114 is positive (anode) and the fuel electrode 116 is negative (cathode).
  • Water vapor as a source gas is supplied.
  • an electrolysis reaction of water occurs in each electrolytic single cell, hydrogen gas is generated in the fuel chamber 176, and hydrogen is taken out of the electrolytic cell stack through the communication hole.
  • the thickness of the plurality of conductive members constituting the electrolysis cell stack can be suppressed by increasing the depth of the concave portion as the thickness increases.
  • interference between conductive members adjacent to each other can be suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

互いに隣り合う導電性部材同士の干渉を抑制する。 電気化学反応セルスタックは、複数の単セルと、第1の方向に並べて配置された平板状の複数の導電性部材と、を備える。複数の導電性部材は、第1の方向の一方側の第1の表面が、第1の平坦部分と凸部分とを含む第1の導電性部材と、第1の導電性部材に対して第1の方向の一方側に位置し、第1の導電性部材の第1の表面に対向する第2の表面が、第2の平坦部分と、上記凸部分と対向する凹部分と、を含む第2の導電性部材と、を含む。第2の導電性部材の第1の方向の厚さは、第1の導電性部材の第1の方向の厚さより厚い。第2の導電性部材における第2の平坦部分からの凹部分の第1の方向の深さ寸法は、第1の導電性部材における第1の平坦部分からの凸部分の第1の方向の突出長さより大きい。

Description

電気化学反応セルスタック、インターコネクタ-電気化学反応単セル複合体および電気化学反応セルスタックの製造方法
 本明細書によって開示される技術は、電気化学反応セルスタックに関する。
 水素と酸素との電気化学反応を利用して発電を行う燃料電池の種類の1つとして、固体酸化物を含む電解質層を備える固体酸化物形の燃料電池(以下、「SOFC」ともいう)が知られている。SOFCは、一般に、所定の方向(以下、「配列方向」ともいう)に並べて配置された複数の単セルを備える燃料電池スタックの形態で利用される。単セルは、電解質層と、電解質層を挟んで配列方向に互いに対向する空気極および燃料極とを含んでいる。
 燃料電池スタックは、さらに、配列方向に並べて配置された複数の導電性部材を備える。例えば、燃料電池スタックは、導電性部材として、空気極に面する空気室と燃料極に面する燃料室とを仕切るセパレータ、配列方向においてセパレータと隣り合い、空気室または燃料室に面するインターコネクタや、セパレータとインターコネクタとの間に配置されるフレーム部材等を備える。
特開2015-159106号公報
 例えば加工上の理由により、導電性部材における一方側の第1の表面が、平坦部分と、該平坦部分より上記第1の表面の縁側に位置し、かつ、平坦部分より第1の方向の上記一方側に突出する凸部分と、を含む場合がある。このような凸部を含む一の導電性部材の第1の表面側に、他の導電性部材を重ね合わせる場合、該一の導電性部材の凸部分が、他の導電性部材と干渉することにより、例えば2つの導電性部材間のシール性が低下するおそれがある。
 なお、このような課題は、水の電気分解反応を利用して水素の生成を行う固体酸化物形の電解セル(以下、「SOEC」ともいう)の一形態である電解セルスタックの製造の際にも共通の課題である。なお、本明細書では、燃料電池スタックと電解セルスタックとをまとめて、電気化学反応セルスタックと呼ぶ。
 本明細書では、上述した課題を解決することが可能な技術を開示する。
 本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される電気化学反応セルスタックは、電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含み、前記第1の方向に並べて配置された複数の単セルと、前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備え、前記複数の導電性部材は、前記第1の方向の一方側の第1の表面が、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含む第1の導電性部材と、前記第1の導電性部材に対して前記第1の方向の前記一方側に位置する第2の導電性部材であって、前記第1の導電性部材の前記第1の表面に対向する第2の表面が、平坦状の第2の平坦部分と、前記第1の導電性部材の前記凸部分と対向し、前記第2の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む第2の導電性部材と、を含んでおり、前記第2の導電性部材の前記第1の方向の厚さは、前記第1の導電性部材の前記第1の方向の厚さより厚く、かつ、前記第2の導電性部材における前記第2の平坦部分からの前記凹部分の前記第1の方向の深さ寸法は、前記第1の導電性部材における前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さより大きい。本電気化学反応セルスタックでは、第1の導電性部材は、凸部分を含んでおり、第2の導電性部材は、凸部分と対向する位置に凹部分を含んでいる。これにより、互いに隣り合う第1の導電性部材と第2の導電性部材との干渉を抑制することができる。ここで、導電性部材は、第1の方向の厚さが厚いほど、熱膨張量が大きいため、該導電性部材の凹部分の膨張により他の導電性部材の凸部分と干渉し易くなる。これに対して、本電気化学反応セルスタックでは、第2の導電性部材の第1の方向の厚さは、第1の導電性部材の第1の方向の厚さより厚い。また、第2の導電性部材における第2の平坦部分からの凹部分の前記第1の方向の深さ寸法は、第1の導電性部材における第1の平坦部分からの凸部分の第1の方向の突出長さより大きい。これにより、本電気化学反応セルスタックによれば、凹部分の深さ寸法が凸部分の突出長さと同等以下である構成に比べて、互いに隣り合う第1の導電性部材と第2の導電性部材とが熱膨張に起因して干渉することを抑制することができる。
(2)上記電気化学反応セルスタックにおいて、前記第1の導電性部材の前記凸部分と前記第2の導電性部材の前記凹部分との間の前記第1の方向の距離は、前記第1の表面の縁側に向かうに連れて広がっている。本電気化学反応セルスタックによれば、例えば、凸部分と凹部分との間の第1の方向の距離が略均一である構成に比べて、互いに隣り合う第1の導電性部材と第2の導電性部材とが第2の導電性部材の熱膨張に起因して干渉することを、より効果的に抑制することができる。
(3)上記電気化学反応セルスタックにおいて、前記複数の導電性部材は、前記第1の方向の一方側の第3の表面が、平坦状の第3の平坦部分と、前記第3の平坦部分より前記第3の表面の縁側に位置し、かつ、前記第3の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含む第3の導電性部材と、前記第3の導電性部材に対して前記第1の方向の前記一方側に位置する第4の導電性部材であって、前記第3の導電性部材の前記第3の表面に対向する第4の表面が、平坦状の第4の平坦部分と、前記第3の導電性部材の前記凸部分と対向し、前記第4の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む第4の導電性部材と、を含んでおり、前記第2の導電性部材と前記第4の導電性部材とは、前記第1の方向の厚さが互いに異なり、かつ、前記第1の方向の厚さが厚いものほど、前記凹部分の前記第1の方向の深さ寸法が大きい。導電性部材は、第1の方向の厚さが厚いほど、熱膨張量が大きいため、該導電性部材の凹部分の膨張により他の導電性部材の凸部分と干渉し易くなる。したがって、凹部分は深い方が好ましいが、凹部分が深すぎると、比較的に薄い導電性部材では所定以上の強度を確保できなくなるおそれがある。これに対して、本電気化学反応セルスタックでは、凹部分を含む第2の導電性部材と第4の導電性部材とは、前記第1の方向の厚さが厚いものほど、凹部分の第1の方向の深さ寸法が大きい。これにより、導電性部材の強度低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することができる。
(4)上記電気化学反応セルスタックにおいて、前記第2の導電性部材の前記第1の方向の厚さに対する、前記凹部分の前記第1の方向の深さ寸法の割合は、7%以上である構成としてもよい。本電気化学反応セルスタックによれば、第2の導電性部材の第1の方向の厚さに対する、凹部分の第1の方向の深さ寸法の割合が7%未満である構成に比べて、互いに隣接する導電性部材同士の物理的な干渉を抑制することができる。
(5)上記電気化学反応セルスタックにおいて、前記第1の導電性部材の前記第1の方向の厚さに対する、前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さの割合は、2%以下である構成としてもよい。本電気化学反応セルスタックによれば、第1の導電性部材の第1の方向の厚さに対する、凸部分の第1の方向の突出長さの割合が2%より大きい構成に比べて、凸部分の酸化等による腐食を抑制することができる。
(6)上記電気化学反応セルスタックにおいて、前記第1の導電性部材には、前記第1の方向に延びるガス流路が形成されており、前記第1の表面の縁側は、前記第1の表面のうち、前記ガス流路に面する縁側である構成としてもよい。本電気化学反応セルスタックによれば、ガス流路付近において、第1の導電性部材の強度低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することができる。
(7)上記電気化学反応セルスタックにおいて、前記電解質層は、固体酸化物を含む。
(8)本明細書に開示されるインターコネクタ-電気化学反応単セル複合体は、電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含む単セルと、前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備え、前記複数の導電性部材は、貫通孔が形成され、前記貫通孔を取り囲む部分が前記単セルの周縁部と接合され、前記空気極に面する空気室と前記燃料極に面する燃料室とを区画するセパレータと、前記単セルの前記空気極および前記燃料極の一方側に配置されたインターコネクタと、前記セパレータと前記インターコネクタとの間に配置されたフレーム部材と、を含むインターコネクタ-電気化学反応単セル複合体において、前記セパレータにおける前記フレーム部材側の第1の表面は、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記フレーム部材側に突出する凸部分と、を含み、前記フレーム部材における前記セパレータ側の第2の表面は、平坦状の第2の平坦部分と、前記セパレータの前記凸部分と対向し、前記第2の平坦部分より前記セパレータとは反対側に窪んだ凹部分と、を含み、前記フレーム部材の前記第1の方向の厚さは、前記セパレータの前記第1の方向の厚さより厚く、かつ、前記フレーム部材における前記第2の平坦部分からの前記凹部分の前記第1の方向の深さ寸法は、前記セパレータにおける前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さより大きい。本インターコネクタ-電気化学反応単セル複合体によれば、凹部分の深さ寸法が凸部分の突出長さと同等以下である構成に比べて、熱膨張に起因して互いに隣り合うセパレータとフレーム部材とが干渉することを抑制することができる。
(9)上記インターコネクタ-電気化学反応単セル複合体において、前記電解質層は、固体酸化物を含む。
(10)本明細書に開示される電気化学反応セルスタックの製造方法は、固体酸化物を含む電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含み、前記第1の方向に並べて配置された複数の単セルと、前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備える電気化学反応セルスタックの製造方法において、プレス加工により、前記第1の方向の一方側の第1の表面が、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含み、前記第1の方向の他方側の第2の表面が、平坦状の第2の平坦部分と、前記第2の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む複数の導電性部材をそれぞれ準備する準備工程と、前記各導電性部材について、前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さが短くなるように前記凸部分を加工する加工工程と、互いに隣り合う2つの導電性部材の一方の前記第1の表面の前記凸部分と、他方の前記第2の表面の前記凹部分とが互いに対向するように、前記複数の導電性部材を前記第1の方向に並べて配置する配置工程と、を含むことを特徴とする。本電気化学反応セルスタックの製造方法によれば、各導電性部材の強度低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することが可能な電気化学反応セルスタックを製造することができる。
 なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、複数の電気化学反応単セルを備える電気化学反応セルスタック(燃料電池スタックまたは電解セルスタック)、インターコネクタ-電気化学反応単セル複合体、電気化学反応単位、その製造方法等の形態で実現することが可能である。
本実施形態における燃料電池スタック100の外観構成を示す斜視図である。 図1のII-IIの位置における燃料電池スタック100のXZ断面構成を示す説明図である。 図1のIII-IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。 図2に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図である。 図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。 発電単位102の詳細構成(図5のX1部分の構成)を示す説明図である。 発電単位102の詳細構成(図6のX2部分の構成)を示す説明図である。 本実施形態における燃料電池スタック100の製造方法の一例を示すフローチャートである。 セパレータ120の加工工程を示す説明図である。
A.実施形態:
A-1.構成:
(燃料電池スタック100の構成)
 図1は、本実施形態における燃料電池スタック100の外観構成を示す斜視図であり、図2は、図1のII-IIの位置における燃料電池スタック100のXZ断面構成を示す説明図であり、図3は、図1のIII-IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとするが、燃料電池スタック100は実際にはそのような向きとは異なる向きで設置されてもよい。図4以降についても同様である。
 燃料電池スタック100は、複数の(本実施形態では7つの)発電単位102と、一対のエンドプレート104,106とを備える。7つの発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。一対のエンドプレート104,106は、7つの発電単位102から構成される集合体を上下から挟むように配置されている。なお、上記配列方向(上下方向)は、特許請求の範囲における第1の方向に相当する。
 燃料電池スタック100を構成する各層(発電単位102、エンドプレート104,106)のZ方向回りの周縁部には、上下方向に貫通する複数の(本実施形態では8つの)孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通して、一方のエンドプレート104から他方のエンドプレート106にわたって上下方向に延びる連通孔108を構成している。以下の説明では、連通孔108を構成するために燃料電池スタック100の各層に形成された孔も、連通孔108と呼ぶ場合がある。
 各連通孔108には上下方向に延びるボルト22が挿通されており、ボルト22とボルト22の両側に嵌められたナット24とによって、燃料電池スタック100は締結されている。なお、図2および図3に示すように、ボルト22の一方の側(上側)に嵌められたナット24と燃料電池スタック100の上端を構成するエンドプレート104の上側表面との間、および、ボルト22の他方の側(下側)に嵌められたナット24と燃料電池スタック100の下端を構成するエンドプレート106の下側表面との間には、絶縁シート26が介在している。ただし、後述のガス通路部材27が設けられた箇所では、ナット24とエンドプレート106の表面との間に、ガス通路部材27とガス通路部材27の上側および下側のそれぞれに配置された絶縁シート26とが介在している。絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成される。
 各ボルト22の軸部の外径は各連通孔108の内径より小さい。そのため、各ボルト22の軸部の外周面と各連通孔108の内周面との間には、空間が確保されている。図1および図2に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸正方向側の辺)の中点付近に位置するボルト22(ボルト22A)と、そのボルト22Aが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から酸化剤ガスOGが導入され、その酸化剤ガスOGを各発電単位102に供給するガス流路である酸化剤ガス導入マニホールド161として機能し、該辺の反対側の辺(Y軸に平行な2つの辺の内のX軸負方向側の辺)の中点付近に位置するボルト22(ボルト22B)と、そのボルト22Bが挿通された連通孔108とにより形成された空間は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へと排出する酸化剤ガス排出マニホールド162として機能する。なお、本実施形態では、酸化剤ガスOGとして、例えば空気が使用される。
 また、図1および図3に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置するボルト22(ボルト22D)と、そのボルト22Dが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から燃料ガスFGが導入され、その燃料ガスFGを各発電単位102に供給する燃料ガス導入マニホールド171として機能し、該辺の反対側の辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置するボルト22(ボルト22E)と、そのボルト22Eが挿通された連通孔108とにより形成された空間は、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へと排出する燃料ガス排出マニホールド172として機能する。なお、本実施形態では、燃料ガスFGとして、例えば都市ガスを改質した水素リッチなガスが使用される。
 燃料電池スタック100には、4つのガス通路部材27が設けられている。各ガス通路部材27は、中空筒状の本体部28と、本体部28の側面から分岐した中空筒状の分岐部29とを有している。分岐部29の孔は本体部28の孔と連通している。各ガス通路部材27の分岐部29には、ガス配管(図示せず)が接続される。また、図2に示すように、酸化剤ガス導入マニホールド161を形成するボルト22Aの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス導入マニホールド161に連通しており、酸化剤ガス排出マニホールド162を形成するボルト22Bの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス排出マニホールド162に連通している。また、図3に示すように、燃料ガス導入マニホールド171を形成するボルト22Dの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス導入マニホールド171に連通しており、燃料ガス排出マニホールド172を形成するボルト22Eの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス排出マニホールド172に連通している。
(エンドプレート104,106の構成)
 一対のエンドプレート104,106は、略矩形の平板形状の導電性部材であり、例えばステンレスにより形成されている。一方のエンドプレート104は、最も上に位置する発電単位102の上側に配置され、他方のエンドプレート106は、最も下に位置する発電単位102の下側に配置されている。一対のエンドプレート104,106によって複数の発電単位102が押圧された状態で挟持されている。上側のエンドプレート104は、燃料電池スタック100のプラス側の出力端子として機能し、下側のエンドプレート106は、燃料電池スタック100のマイナス側の出力端子として機能する。なお、各エンドプレート104,106の厚さ(上下方向の寸法(平均寸法または最大厚さでもよい) 以下同じ)は、インターコネクタ150の厚さH3より薄い。
(発電単位102の構成)
 図4は、図2に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図であり、図5は、図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。
 図4および図5に示すように、発電単位102は、単セル110と、セパレータ120と、空気極側フレーム130と、空気極側集電体134と、燃料極側フレーム140と、燃料極側集電体144と、発電単位102の最上層および最下層を構成する一対のインターコネクタ150とを備えている。セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ150におけるZ方向回りの周縁部には、上述したボルト22が挿通される連通孔108に対応する孔が形成されている。
 インターコネクタ150は、略矩形の平板形状の導電性部材であり、例えばフェライト系ステンレスにより形成されている。インターコネクタ150は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を防止する。なお、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ150は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ150は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ150と同一部材である。また、燃料電池スタック100は一対のエンドプレート104,106を備えているため、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えておらず、最も下に位置する発電単位102は下側のインターコネクタ150を備えていない(図2および図3参照)。インターコネクタ150の厚さH3は、後述する燃料極側フレーム140の厚さH2より薄く、例えば約0.8(mm)である。
 単セル110は、電解質層112と、電解質層112を挟んで上下方向(発電単位102が並ぶ配列方向)に互いに対向する空気極(カソード)114および燃料極(アノード)116とを備える。本実施形態では、燃料極116の厚さ(上下方向のサイズ)が空気極114や電解質層112の厚さより厚く、燃料極116が単セル110を構成する他の層を支持している。すなわち、本実施形態の単セル110は、燃料極支持型の単セルである。
 電解質層112は、略矩形の平板形状部材であり、少なくともZrを含んでおり、例えば、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、CaSZ(カルシア安定化ジルコニア)等の固体酸化物により形成されている。空気極114は、略矩形の平板形状部材であり、例えば、ペロブスカイト型酸化物(例えばLSCF(ランタンストロンチウムコバルト鉄酸化物)、LSM(ランタンストロンチウムマンガン酸化物)、LNF(ランタンニッケル鉄))により形成されている。燃料極116は、略矩形の平板形状部材であり、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。このように、本実施形態の単セル110(発電単位102)は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。
 セパレータ120は、中央付近に上下方向に貫通する略矩形の孔121が形成されたフレーム状の部材であり、例えば、金属により形成されている。セパレータ120における孔121の周囲部分は、電解質層112における空気極114の側の表面の周縁部に対向している。セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部124により、電解質層112(単セル110)と接合されている。セパレータ120により、空気極114に面する空気室166と燃料極116に面する燃料室176とが区画され、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリークが抑制される。なお、セパレータ120の厚さH1は、インターコネクタ150の厚さH3より薄く、例えば約0.1(mm)である。孔121は、特許請求の範囲における貫通孔に相当する。
 空気極側フレーム130は、中央付近に上下方向に貫通する略矩形の孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130の孔131は、空気極114に面する空気室166を構成する。空気極側フレーム130は、セパレータ120における電解質層112に対向する側とは反対側の表面の周縁部と、インターコネクタ150における空気極114に対向する側の表面の周縁部とに接触している。また、空気極側フレーム130によって、発電単位102に含まれる一対のインターコネクタ150間が電気的に絶縁される。また、空気極側フレーム130には、酸化剤ガス導入マニホールド161と空気室166とを連通する酸化剤ガス供給連通孔132と、空気室166と酸化剤ガス排出マニホールド162とを連通する酸化剤ガス排出連通孔133とが形成されている。なお、空気極側フレーム130の厚さは、セパレータ120の厚さH1やインターコネクタ150の厚さH3より厚く、例えば約1.0(mm)である。
 燃料極側フレーム140は、中央付近に上下方向に貫通する略矩形の孔141が形成されたフレーム状の部材であり、例えば、金属により形成されている。燃料極側フレーム140の孔141は、燃料極116に面する燃料室176を構成する。燃料極側フレーム140は、セパレータ120における電解質層112に対向する側の表面の周縁部と、インターコネクタ150における燃料極116に対向する側の表面の周縁部とに接触している。また、燃料極側フレーム140には、燃料ガス導入マニホールド171と燃料室176とを連通する燃料ガス供給連通孔142と、燃料室176と燃料ガス排出マニホールド172とを連通する燃料ガス排出連通孔143とが形成されている。なお、燃料極側フレーム140の厚さH2は、セパレータ120の厚さH1やインターコネクタ150の厚さH3より厚く、例えば約1.5(mm)である。
 燃料極側集電体144は、燃料室176内に配置されている。燃料極側集電体144は、インターコネクタ対向部146と、電極対向部145と、電極対向部145とインターコネクタ対向部146とをつなぐ連接部147とを備えており、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。電極対向部145は、燃料極116における電解質層112に対向する側とは反対側の表面に接触しており、インターコネクタ対向部146は、インターコネクタ150における燃料極116に対向する側の表面に接触している。ただし、上述したように、燃料電池スタック100において最も下に位置する発電単位102は下側のインターコネクタ150を備えていないため、当該発電単位102におけるインターコネクタ対向部146は、下側のエンドプレート106に接触している。燃料極側集電体144は、このような構成であるため、燃料極116とインターコネクタ150(またはエンドプレート106)とを電気的に接続する。なお、電極対向部145とインターコネクタ対向部146との間には、例えばマイカにより形成されたスペーサー149が配置されている。そのため、燃料極側集電体144が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電体144を介した燃料極116とインターコネクタ150(またはエンドプレート106)との電気的接続が良好に維持される。
 空気極側集電体134は、空気室166内に配置されている。空気極側集電体134は、複数の略四角柱状の集電体要素135から構成されており、例えば、フェライト系ステンレスにより形成されている。空気極側集電体134は、空気極114における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における空気極114に対向する側の表面とに接触している。ただし、上述したように、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えていないため、当該発電単位102における空気極側集電体134は、上側のエンドプレート104に接触している。空気極側集電体134は、このような構成であるため、空気極114とインターコネクタ150(またはエンドプレート104)とを電気的に接続する。なお、空気極側集電体134とインターコネクタ150とが一体の部材として構成されていてもよい。また、空気極側集電体134が導電性のコートによって覆われていてもよく、また、空気極114と空気極側集電体134との間に両者を接合する導電性の接合層が介在していてもよい。なお、セパレータ120とインターコネクタ150と燃料極側フレーム140とエンドプレート104,106とは、特許請求の範囲における複数の導電性部材に相当する。また、単セル110とセパレータ120とインターコネクタ150と燃料極側フレーム140との複合体は、特許請求の範囲におけるインターコネクタ-電気化学反応単セル複合体に相当し、カセットとも呼ばれる。
A-2.燃料電池スタック100の動作:
 図2および図4に示すように、酸化剤ガス導入マニホールド161の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して酸化剤ガスOGが供給されると、酸化剤ガスOGは、ガス通路部材27の分岐部29および本体部28の孔を介して酸化剤ガス導入マニホールド161に供給され、酸化剤ガス導入マニホールド161から各発電単位102の酸化剤ガス供給連通孔132を介して、空気室166に供給される。また、図3および図5に示すように、燃料ガス導入マニホールド171の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して燃料ガスFGが供給されると、燃料ガスFGは、ガス通路部材27の分岐部29および本体部28の孔を介して燃料ガス導入マニホールド171に供給され、燃料ガス導入マニホールド171から各発電単位102の燃料ガス供給連通孔142を介して、燃料室176に供給される。
 各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、単セル110において酸化剤ガスOGおよび燃料ガスFGの電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は空気極側集電体134を介して一方のインターコネクタ150に電気的に接続され、燃料極116は燃料極側集電体144を介して他方のインターコネクタ150に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するエンドプレート104,106から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器(図示せず)により加熱されてもよい。
 各発電単位102の空気室166から排出された酸化剤オフガスOOGは、図2および図4に示すように、酸化剤ガス排出連通孔133を介して酸化剤ガス排出マニホールド162に排出され、さらに酸化剤ガス排出マニホールド162の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示せず)を介して燃料電池スタック100の外部に排出される。また、各発電単位102の燃料室176から排出された燃料オフガスFOGは、図3および図5に示すように、燃料ガス排出連通孔143を介して燃料ガス排出マニホールド172に排出され、さらに燃料ガス排出マニホールド172の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示しない)を介して燃料電池スタック100の外部に排出される。
A-3.発電単位102の詳細構成:
 図6から図8は、発電単位102の詳細構成を示す説明図である。図6には、図5のX1部分の構成が拡大して示されており、図7は、図6のX2部分の構成が拡大して示されており、図8は、図6のX3部分の構成が拡大して示されている。上述したように、セパレータ120と燃料極側フレーム140とインターコネクタ150とは、いずれも平板状の導電性部材であり、上下方向(Z方向)に並べて配置されている。
(セパレータ120)
 図6および図7に示すように、セパレータ120における燃料極側フレーム140側の表面(以下、「セパレータ下面122」という)は、セパレータ下平坦部分122Aと、セパレータ凸部分122Bとを含む。セパレータ下平坦部分122Aは、上下方向に直交する面方向に略平行な平坦な部分である。セパレータ凸部分122Bは、セパレータ下平坦部分122Aよりセパレータ下面122の縁側に位置し、かつ、セパレータ下平坦部分122Aより燃料極側フレーム140側に突出する部分である。具体的には、セパレータ下面122の縁は、セパレータ下面122に形成された連通孔108の開口縁と、セパレータ下面122の外形を形成する周縁とを含む。セパレータ凸部分122Bは、セパレータ下面122の各縁側に向かうに連れて燃料極側フレーム140側(下側)に位置するように傾斜した傾斜面となっている。なお、図7には、セパレータ下面122に形成された連通孔108の開口縁付近の部分が拡大して示されている。セパレータ120は、特許請求の範囲における第1の導電性部材に相当する。また、セパレータ下面122は、特許請求の範囲における第1の表面に相当し、セパレータ下平坦部分122Aは、特許請求の範囲における第1の平坦部分に相当し、セパレータ凸部分122Bは、特許請求の範囲における凸部分に相当する。
 また、セパレータ120における空気極側フレーム130側の表面(以下、「セパレータ上面123」という)は、セパレータ上平坦部分123Aと、セパレータ凹部分123Bとを含む。セパレータ上平坦部分123Aは、上下方向に直交する面方向に略平行な平坦な部分である。セパレータ凹部分123Bは、セパレータ上平坦部分123Aよりセパレータ上面123の縁側に位置し、かつ、セパレータ上平坦部分123Aより空気極側フレーム130とは反対側(燃料極側フレーム140側)に窪んだ部分である。具体的には、セパレータ上面123の縁は、セパレータ上面123に形成された連通孔108の開口縁と、セパレータ上面123の外形を形成する周縁とを含む。セパレータ凹部分123Bは、セパレータ上面123の縁側に向かうに連れて燃料極側フレーム140側(下側)に位置するように傾斜した傾斜面となっている。なお、図7には、セパレータ上面123に形成された連通孔108の開口縁付近の部分が拡大して示されている。
(燃料極側フレーム140)
 図6および図8に示すように、燃料極側フレーム140におけるインターコネクタ150側の表面(以下、「フレーム下面148」という)は、フレーム下平坦部分148Aと、フレーム凸部分148Bとを含む。フレーム下平坦部分148Aは、上下方向に直交する面方向に略平行な平坦な部分である。フレーム凸部分148Bは、フレーム下平坦部分148Aよりフレーム下面148の縁側に位置し、かつ、フレーム下平坦部分148Aよりインターコネクタ150側に突出する部分である。具体的には、フレーム下面148の縁は、フレーム下面148に形成された連通孔108の開口縁と、フレーム下面148の外形を形成する周縁とを含む。フレーム凸部分148Bは、フレーム下面148の各縁側に向かうに連れてインターコネクタ150側(下側)に位置するように傾斜した傾斜面となっている。なお、図8には、フレーム下面148に形成された連通孔108の開口縁付近の部分が拡大して示されている。燃料極側フレーム140は、特許請求の範囲における第3の導電性部材、フレーム部材に相当する。フレーム下面148は、特許請求の範囲における第3の表面に相当し、フレーム下平坦部分148Aは、特許請求の範囲における第3の平坦部分に相当し、フレーム凸部分148Bは、特許請求の範囲における凸部分に相当する。
 また、図6および図7に示すように、燃料極側フレーム140におけるセパレータ120側の表面(以下、「フレーム上面180」という)は、フレーム上平坦部分180Aと、フレーム凹部分180Bとを含む。フレーム上平坦部分180Aは、上下方向に直交する面方向に略平行な平坦な部分である。フレーム凹部分180Bは、フレーム上平坦部分180Aよりフレーム上面180の縁側に位置し、かつ、フレーム上平坦部分180Aよりセパレータ120とは反対側(インターコネクタ150側)に窪んだ部分である。具体的には、フレーム上面180の縁は、フレーム上面180に形成された連通孔108の開口縁と、フレーム上面180の外形を形成する周縁とを含む。フレーム凹部分180Bは、フレーム上面180の縁側に向かうに連れてインターコネクタ150側(下側)に位置するように傾斜した傾斜面となっている。なお、図7には、フレーム上面180に形成された連通孔108の開口縁付近の部分が拡大して示されている。燃料極側フレーム140は、特許請求の範囲における第2の導電性部材、フレーム部材に相当する。また、フレーム上面180は、特許請求の範囲における第2の表面に相当し、フレーム上平坦部分180Aは、特許請求の範囲における第2の平坦部分に相当し、フレーム凹部分180Bは、特許請求の範囲における凹部分に相当する。
(インターコネクタ150)
 図6および図8に示すように、インターコネクタ150は、薄板部152を有する。薄板部152は、インターコネクタ150の他部分に比べて、上下方向の板厚が薄くなるように、インターコネクタ150における空気極側フレーム130に対向する表面側から溝加工された部分である。薄板部152は、上下方向視で、連通孔108を囲む環状部分152Aと、燃料極側フレーム140(インターコネクタ150、セパレータ120)の外側の周縁部分152Bとを含む(図6参照)。インターコネクタ150の薄板部152における空気極側フレーム130側の表面(以下、「インターコネクタ下面154」という)は、インターコネクタ下平坦部分154Aと、インターコネクタ凸部分154Bとを含む(図8参照)。インターコネクタ下平坦部分154Aは、上下方向に直交する面方向に略平行な平坦な部分である。インターコネクタ凸部分154Bは、インターコネクタ下平坦部分154Aよりインターコネクタ下面154の縁側に位置し、かつ、インターコネクタ下平坦部分154Aより空気極側フレーム130側に突出する部分である。具体的には、インターコネクタ下面154の縁は、インターコネクタ下面154に形成された連通孔108の開口縁と、インターコネクタ下面154の外形を形成する周縁とを含む。インターコネクタ凸部分154Bは、インターコネクタ下面154の各縁側に向かうに連れて空気極側フレーム130側(下側)に位置するように傾斜した傾斜面となっている。なお、図8には、インターコネクタ下面154に形成された連通孔108の開口縁付近の部分が拡大して示されている。
 また、インターコネクタ150における燃料極側フレーム140側の表面(以下、「インターコネクタ上面156」という)は、インターコネクタ上平坦部分156Aと、インターコネクタ凹部分156Bとを含む。インターコネクタ上平坦部分156Aは、上下方向に直交する面方向に略平行な平坦な部分である。インターコネクタ凹部分156Bは、インターコネクタ上平坦部分156Aよりインターコネクタ上面156の縁側に位置し、かつ、インターコネクタ上平坦部分156Aより燃料極側フレーム140とは反対側(空気極側フレーム130側)に窪んだ部分である。具体的には、インターコネクタ上面156の縁は、インターコネクタ上面156に形成された連通孔108の開口縁と、インターコネクタ上面156の外形を形成する周縁とを含む。インターコネクタ凹部分156Bは、インターコネクタ上面156の縁側に向かうに連れて空気極側フレーム130側(下側)に位置するように傾斜した傾斜面となっている。なお、図8には、インターコネクタ上面156に形成された連通孔108の開口縁付近の部分が拡大して示されている。インターコネクタ150は、特許請求の範囲における第4の導電性部材に相当する。また、インターコネクタ上面156は、特許請求の範囲における第4の表面に相当し、インターコネクタ上平坦部分156Aは、特許請求の範囲における第4の平坦部分に相当し、インターコネクタ凹部分156Bは、特許請求の範囲における凹部分に相当する。
 なお、本実施形態では、発電単位102において、燃料極側フレーム140は、セパレータ120に溶接されていると共に、一対のインターコネクタ150の内の下側(燃料極116側)のインターコネクタ150にも溶接されている。すなわち、発電単位102には、燃料極側フレーム140とセパレータ120との間をシールする第1の溶接部410と、燃料極側フレーム140とインターコネクタ150との間をシールする第2の溶接部420とが形成されている。第1の溶接部410および第2の溶接部420は、それぞれ、上下方向視で、薄板部152(環状部分152A、周縁部分152B)と重なる部分に形成されている。第1および第2の溶接部410,420は、例えばレーザ溶接により形成される。第1および第2の溶接部410,420の形成の際には、ビード等の突起部BUが形成され、溶接面の平坦性が低下することがある。しかし、インターコネクタ150の薄板部152によってインターコネクタ150と空気極側フレーム130との間に空間SPが存在する。これにより、突起部BUと空気極側フレーム130との干渉が抑制されるため、空気極側フレーム130によるガスシール性の低下を抑制することができる。
(セパレータ120と燃料極側フレーム140とインターコネクタ150との関係)
 セパレータ120と燃料極側フレーム140とインターコネクタ150について、厚さ(上下方向の寸法)が厚いものほど、凹部分の深さ(上下方向の寸法 以下同じ)が深くなっている。具体的には、図6に示すように、セパレータ120の厚さH1と燃料極側フレーム140の厚さH2とインターコネクタ150の厚さH3との大小関係は、次の関係式1で表すことができる。
 関係式1:H1 < H3 <H2
 また、セパレータ120のセパレータ凹部分123Bの深さD2と、燃料極側フレーム140のフレーム凹部分180Bの深さD4と、インターコネクタ150のインターコネクタ凹部分156Bの深さD6との大小関係は、次の関係式2で表すことができる。
 関係式2:D2 < D6 <D4
 例えば、セパレータ凹部分123Bの深さD2は、次のように求めることができる。図7に示すにように、Z方向に平行な一の断面(ZX断面)において、セパレータ上面123の縁を通り、かつ、上下方向に延びる直線(図8では連通孔108を構成する内壁面に沿って延びる直線)を仮想直線L1とする。セパレータ上平坦部分123Aを含み、かつ、上下方向に直交する面方向に平行な平面を第1の仮想平面M1とする。セパレータ上面123(セパレータ凹部分123B)と仮想直線L1との交点(セパレータ上面123の傾斜角度が仮想直線L1の傾き角度と一致し始める点)を含み、かつ、上記面方向に平行な平面を第2の仮想平面M2とする。セパレータ凹部分123Bの深さD2は、第1の仮想平面M1と第2の仮想平面M2との上下方向の離間距離である。フレーム凹部分180Bの深さD4およびインターコネクタ凹部分156Bの深さD6も同様にして求めることができる。
 次に、セパレータ120について、セパレータ凸部分122Bの上下方向の突出長さD1は、セパレータ凹部分123Bの深さD2より小さい。また、燃料極側フレーム140について、フレーム凸部分148Bの上下方向の突出長さD3は、フレーム凹部分180Bの深さD4より小さい。すなわち、フレーム凸部分148Bの突出長さD3は、フレーム凹部分180Bの深さD4に相当する長さより短い。また、インターコネクタ150について、インターコネクタ凸部分154Bの上下方向の突出長さD5は、インターコネクタ凹部分156Bの深さD6より小さい。すなわち、インターコネクタ凸部分154Bの突出長さD5は、インターコネクタ凹部分156Bの深さD6に相当する長さより短い。
 例えば、セパレータ凸部分122Bの上下方向の突出長さD1は、次のようにして求めることができる。図7に示すように、セパレータ下平坦部分122Aを含み、かつ、上下方向に直交する面方向に平行な平面を第3の仮想平面M3とする。セパレータ凸部分122Bの頂点(最も下側に位置する部位)を含み、かつ、上記面方向に平行な平面を第4の仮想平面M4とする。セパレータ凸部分122Bの上下方向の突出長さD1は、第3の仮想平面M3と第4の仮想平面M4との上下方向の離間距離である。フレーム凸部分148Bの上下方向の突出長さD3およびインターコネクタ凸部分154Bの上下方向の突出長さD5も同様にして求めることができる。なお、セパレータ120におけるセパレータ凹部分123Bの深さD2は、0.02(mm)以上であることが好ましく、また、0.08(mm)未満であることが好ましい。また、インターコネクタ150におけるインターコネクタ凹部分156Bの深さD6は、0.08(mm)以上であることが好ましく、また、0.1(mm)未満であることが好ましい。同様に、燃料極側フレーム140におけるフレーム凹部分180Bの深さD4は、0.1(mm)以上であることが好ましい。
 また、セパレータ120について、セパレータ120の厚さH1に対する、セパレータ凹部分123Bの深さD2の割合(=(D2/H1)×100)は、20%以上であることが好ましい。同様に、燃料極側フレーム140について、燃料極側フレーム140の厚さH2に対する、フレーム凹部分180Bの深さD4の割合(=(D4/H2)×100)は、7%以上であることが好ましい。また、インターコネクタ150について、インターコネクタ150の厚さH3に対する、インターコネクタ凹部分156Bの深さD6の割合(=(D6/H3)×100)は、0.4%以上であることが好ましい。
 また、セパレータ120について、セパレータ120の厚さH1に対する、セパレータ凸部分122Bの上下方向の突出長さD1の割合(=(D1/H1)×100)は、2%以下であることが好ましい。同様に、燃料極側フレーム140について、燃料極側フレーム140の厚さH2に対する、フレーム凸部分148Bの上下方向の突出長さD3の割合(=(D3/H2)×100)は、0.4%以下であることが好ましい。また、インターコネクタ150について、インターコネクタ150の厚さH3に対する、インターコネクタ凸部分154Bの上下方向の突出長さD5の割合(=(D5/H3)×100)は、0.4%以下であることが好ましい。
A-4.燃料電池スタック100の製造方法:
 図8は、本実施形態における燃料電池スタック100の製造方法の一例を示すフローチャートであり、図9は、セパレータ120の加工工程を示す説明図である。はじめに、単セル110を公知の方法により作製する(S110)。例えば、燃料極用グリーンシートと電解質層用グリーンシートとを貼り付けて所定の温度(例えば約280℃)で脱脂する。さらに、脱脂後のグリーンシートの積層体を所定の温度(例えば約1350℃)で焼成する。これにより、電解質層112と燃料極116との積層体を得る。次に、空気極形成材料の混合液を、上述した電解質層112と燃料極116との積層体における電解質層112の表面に噴霧塗布し、所定の温度(例えば1100℃)で焼成する。これにより、電解質層112の表面上に空気極114が形成され、その結果、燃料極116と電解質層112と空気極114とを備える単セル110を得る。
 次に、上述した構成のセパレータ120と燃料極側フレーム140とインターコネクタ150とを作製する(S120~S130)。以下、セパレータ120を例に挙げて説明する。まず、セパレータ120の形成材料で形成された金属板を、プレス加工によって打ち抜くことにより、上記孔121と連通孔108とが形成された中間セパレータ120Pを形成する(S120)。図9の上段に示すように、プレス加工により、中間セパレータ120Pの縁側に、打ち抜き方向(下方向)に突出するバリが形成される。このバリの形成により、中間セパレータ120Pのセパレータ下面122に中間セパレータ凸部分122Cが形成されるとともに、セパレータ上面123にセパレータ凹部分123Bが形成される。なお、中間セパレータ凸部分122Cの上下方向の突出長さは、セパレータ凹部分123Bの深さD2と略同一である。S120の工程は、特許請求の範囲における準備工程に相当する。なお、上述した構成のセパレータ120と燃料極側フレーム140とインターコネクタ150とを外部から購入等することによって準備してもよい。
 次に、中間セパレータ凸部分122Cに対して面押し加工を施すことにより、中間セパレータ凸部分122Cをセパレータ凸部分122Bに加工する。これにより、図9の下段に示すように、セパレータ120を作製することができる。S130の工程は、特許請求の範囲における加工工程に相当する。
 次に、互いに隣り合う2つの導電性部材の一方の凸部分と、他方の凹部分とが互いに対向するように、複数の導電性部材を上下方向に並べて配置する(S140)。具体的には、セパレータ120に単セル110を接合し、その後、図7および図8に示すように、セパレータ120のセパレータ凸部分122Bと、燃料極側フレーム140のフレーム凹部分180Bとが上下方向に対向するように、セパレータ120と燃料極側フレーム140とを重ね合わせる。この際、セパレータ凸部分122Bの上下方向の突出長さD1は、フレーム凹部分180Bの深さD4より小さいため、セパレータ凸部分122Bが燃料極側フレーム140と干渉することを抑制することができる。また、燃料極側フレーム140のフレーム凸部分148Bとインターコネクタ150のインターコネクタ凹部分156Bとが上下方向に対向するように燃料極側フレーム140とインターコネクタ150とを重ね合わせる。この際、フレーム凸部分148Bの上下方向の突出長さD3は、インターコネクタ凹部分156Bの深さD6より小さいため、フレーム凸部分148Bがインターコネクタ150と干渉することを抑制することができる。S140の工程は、特許請求の範囲における配置工程に相当する。
 その後、燃料電池スタック100を組み立てる(S150)。具体的には、単セル110とセパレータ120と燃料極側フレーム140とインターコネクタ150とを備える構造体(カセット)を、空気極側フレーム130を介して、複数段、積層し、ボルト22により締結する。以上により、上述した構成の燃料電池スタック100を作製することができる。
A-5.本実施形態の効果:
 本実施形態によれば、各導電性部材(セパレータ120と燃料極側フレーム140とインターコネクタ150)における上側の第2の表面は、上側に位置する他の導電性部材における平坦部分(第1の平坦部分)と対向する平坦状の第2の平坦部分と、該他の導電性部材における凸部分と対向し、第2の平坦部分より上側に窪んだ凹部分とを含む。例えば、燃料極側フレーム140におけるフレーム上面180は、フレーム上平坦部分180Aとフレーム凹部分180Bとを含んでおり、フレーム凹部分180Bは、セパレータ120におけるセパレータ凸部分122Bと対向している(図7参照)。これにより、互いに隣り合う導電性部材同士の干渉を抑制することができる。
 ここで、導電性部材は、上下方向の厚さが厚いほど、熱膨張量が大きいため、該導電性部材の凹部分の膨張により他の導電性部材の凸部分と干渉し易くなる。これに対して、本実施形態では、燃料極側フレーム140の厚さH2は、セパレータ120の厚さH1より厚い。また、燃料極側フレーム140のフレーム凹部分180Bの深さD4は、セパレータ120のセパレータ凸部分122Bの突出長さD1より大きい。すなわち、フレーム凹部分180Bの深さD4に相当する長さは、セパレータ凸部分122Bの突出長さD1より長い。これにより、本実施形態によれば、フレーム凹部分180Bの深さD4がセパレータ凸部分122Bの突出長さD1と同等以下である構成に比べて、互いに隣り合うセパレータ120と燃料極側フレーム140とが熱膨張に起因して干渉することを抑制することができる。
 また、図7に示すように、セパレータ凸部分122Bとフレーム凹部分180Bとの間の上下方向の距離は、セパレータ120および燃料極側フレーム140の縁側に向かうに連れて広がっている。本実施形態によれば、例えば、セパレータ凸部分122Bとフレーム凹部分180Bとの間の上下方向の距離が略均一である構成に比べて、互いに隣り合うセパレータ120と燃料極側フレーム140とが燃料極側フレーム140の熱膨張に起因して干渉することを、より効果的に抑制することができる。
 また、導電性部材は、厚いほど、熱膨張量が大きいため、該導電性部材の凹部分の膨張により他の導電性部材の凸部分と干渉し易くなる。例えば、単セル110の発電動作に伴う発熱によって温度が上昇した場合、導電性部材が熱膨張する。ただし、導電性部材における上下方向(厚さ方向)の膨張は、ボルト22による締結によって規制されるため、その分、導電性部材は、燃料電池スタック100の上下方向に直交する面方向に膨張する。その面方向の膨張量は、導電性部材の厚さが厚いほど、大きくなる。燃料極側フレーム140やセパレータ120が膨張すると、それに伴って、フレーム凹部分180Bやセパレータ凹部分123Bが燃料電池スタック100の面方向外側に変位する。上述したように、燃料極側フレーム140の厚さH2は、セパレータ120の厚さH1より厚い。このため、フレーム凹部分180Bの面方向外側への変位量は、セパレータ凹部分123Bの面方向外側への変位量より大きい。従って、フレーム凹部分180Bは、セパレータ凹部分123Bに比べて、他の導電性部材の凸部分と干渉し易くなる。凹部分は深い方が好ましいが、凹部分が深すぎると、比較的に薄い導電性部材(例えばセパレータ120)では所定以上の強度や各機能(空気室166と燃料室176とを区画する機能)を確保できなくなるおそれがある。これに対して、本実施形態の燃料電池スタック100では、セパレータ120と燃料極側フレーム140とインターコネクタ150とについて、厚いものほど、凹部分の深さが深くなっている。これにより、各導電性部材の強度等の低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することができる。
 また、凸部分の突出長さが大きいほど、凸部分の先端が鋭角になるため、局所的な酸化によって腐食する可能性が高くなる。例えば発電単位102や燃料電池スタック100の出荷時において、導電性部材が外気に触れることによって酸化することがある。これに対して、本実施形態によれば、各導電性部材について、第1の平坦部分からの凸部分の突出長さが、第2の平坦部分からの凹部分の深さより小さい。例えば、セパレータ120について、セパレータ凸部分122Bの上下方向の突出長さD1は、セパレータ凹部分123Bの深さD2より小さい。これにより、第1の平坦部分からの凸部分の突出長さが、第2の平坦部分からの凹部分の深さと等しいまたは大きい構成である場合に比べて、凸部分の酸化による腐食を抑制することができる。
 また、本実施形態によれば、各導電性部材の厚さに対する凹部分の深さの割合は、7%以上である。例えば、セパレータ120について、セパレータ120の厚さH1に対する、セパレータ凹部分123Bの深さD2の割合(=(D2/H1)×100)は、20%以上である。これにより、各導電性部材の厚さに対する凹部分の深さの割合が7%未満である構成に比べて、互いに隣接する導電性部材同士の物理的な干渉を抑制することができる。
 また、本実施形態によれば、各導電性部材の厚さに対する凸部分の突出長さの割合は、2%以下である。例えば、セパレータ120について、セパレータ120の厚さH1に対する、セパレータ凸部分122Bの上下方向の突出長さD1の割合(=(D1/H1)×100)は、2%以下である。これにより、各導電性部材の厚さに対する凸部分の突出長さの割合が2%より大きい構成に比べて、セパレータ凸部分122Bの酸化等による腐食を抑制することができる。
B.変形例:
 本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
 上記実施形態における単セル110または燃料電池スタック100の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態において、セパレータ下面122に形成された連通孔108の開口縁側と、セパレータ下面122の外形を形成する周縁側とのいずれか一方について、凸部分(セパレータ凸部分122B)が形成されており、他方には凸部分が形成されていないとしてもよい。凸部分は、各縁側の全周にわたって形成されているとしてもよいし、各縁側の一部分だけに形成されているとしてもよい。また、セパレータ上面123に形成された連通孔108の開口縁側と、セパレータ上面123の外形を形成する周縁側とのいずれか一方について、凹部分(セパレータ凹部分123B)が形成されており、他方には凹部分が形成されていないとしてもよい。凹部分は、各縁側の全周にわたって形成されているとしてもよいし、各縁側の一部分だけに形成されているとしてもよい。また、上記実施形態とは逆に、セパレータ下面122に凹部分が形成され、セパレータ上面123に凸部分が形成されているとしてもよい。なお、これらの変形例は、燃料極側フレーム140やインターコネクタ150についても同様に適用可能である。また、インターコネクタ150について、薄板部152を有しないとしてもよい。この場合、インターコネクタ150における空気極側フレーム130と接触する下面の縁側に凸部分が形成されているとしてもよい。
 また、上記実施形態では、燃料電池スタック100に含まれる導電性部材のうち、セパレータ120と燃料極側フレーム140とインターコネクタ150とについて、厚いものほど、凹部分の深さが深くなっているとしたが、これに限定されず、セパレータ120と燃料極側フレーム140とインターコネクタ150とのうち、互いに上下方向に隣接する1組の導電性部材だけについて、厚いものほど、凹部分の深さが深くなっているとしてもよい。また、セパレータ120と燃料極側フレーム140とインターコネクタ150とにおける厚さの大小関係は、上記実施形態の関係式1とは異なるとしてもよい。また、本発明が適用される導電性部材として、エンドプレート104,106でもよいし、空気極側フレーム130(導電性材料で形成されている場合)でもよい。なお、セパレータ120と燃料極側フレーム140とインターコネクタ150とは、熱膨張係数が互いに異なる材料により形成されている。ここで、熱膨張率が高い材料により形成された導電性部材ほど、凹部分の深さを深くするとしてもよい。上記実施形態では、燃料極側フレーム140の熱膨張率が最も高く、次に、インターコネクタ150の熱膨張率が高く、セパレータ120の熱膨張率が最も低い。これに対して、凹部分の深さに関して上記関係式2が成り立っている。
 また、上記導電性部材は、セパレータ120、インターコネクタ150、燃料極側フレーム140やエンドプレート104,106以外の金属部材であるとしてもよい。
 上記実施形態において、セパレータ120と燃料極側フレーム140とインターコネクタ150との少なくとも1つについて、第1の平坦部分からの凸部分の突出長さが、第2の平坦部分からの凹部分の深さと同じ、或いは、同長さより大きいとしてもよい。
 また、上記実施形態において、燃料電池スタック100に含まれる単セル110の個数は、あくまで一例であり、単セル110の個数は燃料電池スタック100に要求される出力電圧等に応じて適宜決められる。また、上記実施形態における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。
 また、上記実施形態における燃料電池スタック100の製造方法は、あくまで例示であり、他の製造方法により製造されてもよい。例えば、上記実施形態では、セパレータ120等の凸部分や凹部分はプレス加工により形成するとしたが、これに限らず、例えば切削加工等により形成してもよい。また、上記実施形態において、面取り加工ではなく、例えば切削加工により、中間セパレータ凸部分122Cをセパレータ凸部分122Bに加工するとしてもよい。
 また、上記実施形態では、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素との電気化学反応を利用して発電を行うSOFCを対象としているが、本発明は、水の電気分解反応を利用して水素の生成を行う固体酸化物形電解セル(SOEC)の構成単位である電解単セルや、複数の電解単セルを備える電解セルスタックにも同様に適用可能である。なお、電解セルスタックの構成は、例えば特開2016-81813号公報に記載されているように公知であるためここでは詳述しないが、概略的には上述した実施形態における燃料電池スタック100と同様の構成である。すなわち、上述した実施形態における燃料電池スタック100を電解セルスタックと読み替え、発電単位102を電解セル単位と読み替え、単セル110を電解単セルと読み替えればよい。ただし、電解セルスタックの運転の際には、空気極114がプラス(陽極)で燃料極116がマイナス(陰極)となるように両電極間に電圧が印加されると共に、連通孔108を介して原料ガスとしての水蒸気が供給される。これにより、各電解単セルにおいて水の電気分解反応が起こり、燃料室176で水素ガスが発生し、連通孔108を介して電解セルスタックの外部に水素が取り出される。このような構成の電解セルスタックにおいても、該電解セルスタックを構成する複数の導電性部材について、厚いものほど、凹部分の深さを深くすれば、各導電性部材の強度等の低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することができる。
22:ボルト 24:ナット 26:絶縁シート 27:ガス通路部材 28:本体部 29:分岐部 100:燃料電池スタック 102:発電単位 104,106:エンドプレート 108:連通孔 110:単セル 112:電解質層 114:空気極 116:燃料極 120:セパレータ 120P:中間セパレータ 121:孔 122:セパレータ下面 122A:セパレータ下平坦部分 122B:セパレータ凸部分 122C:中間セパレータ凸部分 123:セパレータ上面 123A:セパレータ上平坦部分 123B:セパレータ凹部分 124:接合部 130:空気極側フレーム 131:孔 132:酸化剤ガス供給連通孔 133:酸化剤ガス排出連通孔 134:空気極側集電体 135:集電体要素 140:燃料極側フレーム 141:孔 142:燃料ガス供給連通孔 143:燃料ガス排出連通孔 144:燃料極側集電体 145:電極対向部 146:インターコネクタ対向部 147:連接部 148:フレーム下面 148A:フレーム下平坦部分 148B:フレーム凸部分 149:スペーサー 150:インターコネクタ 152:薄板部 152A:環状部分 152B:周縁部分 154:インターコネクタ下面 154A:インターコネクタ下平坦部分 154B:インターコネクタ凸部分 156:インターコネクタ上面 156A:インターコネクタ上平坦部分 156B:インターコネクタ凹部分 161:酸化剤ガス導入マニホールド 162:酸化剤ガス排出マニホールド 166:空気室 171:燃料ガス導入マニホールド 172:燃料ガス排出マニホールド 176:燃料室 180:フレーム上面 180A:フレーム上平坦部分 180B:フレーム凹部分 410,420:溶接部 BU:突起部 D1:突出長さ D2:深さ D3:突出長さ D4:深さ D5:突出長さ D6:深さ FG:燃料ガス FOG:燃料オフガス H1~H3:厚さ L1:仮想直線 M1:第1の仮想平面 M2:第2の仮想平面 M3:第3の仮想平面 M4:第4の仮想平面 OG:酸化剤ガス OOG:酸化剤オフガス SP:空間

Claims (10)

  1.  電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含み、前記第1の方向に並べて配置された複数の単セルと、
     前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備え、
     前記複数の導電性部材は、
      前記第1の方向の一方側の第1の表面が、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含む第1の導電性部材と、
      前記第1の導電性部材に対して前記第1の方向の前記一方側に位置する第2の導電性部材であって、前記第1の導電性部材の前記第1の表面に対向する第2の表面が、平坦状の第2の平坦部分と、前記第1の導電性部材の前記凸部分と対向し、前記第2の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む第2の導電性部材と、を含んでおり、
     前記第2の導電性部材の前記第1の方向の厚さは、前記第1の導電性部材の前記第1の方向の厚さより厚く、かつ、前記第2の導電性部材における前記第2の平坦部分からの前記凹部分の前記第1の方向の深さ寸法は、前記第1の導電性部材における前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さより大きい、
     ことを特徴とする、電気化学反応セルスタック。
  2.  請求項1に記載の電気化学反応セルスタックにおいて、
     前記第1の導電性部材の前記凸部分と前記第2の導電性部材の前記凹部分との間の前記第1の方向の距離は、前記第1の表面の縁側に向かうに連れて広がっている、
     ことを特徴とする、電気化学反応セルスタック。
  3.  請求項1または請求項2に記載の電気化学反応セルスタックにおいて、
     前記複数の導電性部材は、
      前記第1の方向の一方側の第3の表面が、平坦状の第3の平坦部分と、前記第3の平坦部分より前記第3の表面の縁側に位置し、かつ、前記第3の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含む第3の導電性部材と、
      前記第3の導電性部材に対して前記第1の方向の前記一方側に位置する第4の導電性部材であって、前記第3の導電性部材の前記第3の表面に対向する第4の表面が、平坦状の第4の平坦部分と、前記第3の導電性部材の前記凸部分と対向し、前記第4の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む第4の導電性部材と、を含んでおり、
      前記第2の導電性部材と前記第4の導電性部材とは、前記第1の方向の厚さが互いに異なり、かつ、前記第1の方向の厚さが厚いものほど、前記凹部分の前記第1の方向の深さ寸法が大きい、
     ことを特徴とする、電気化学反応セルスタック。
  4.  請求項1から請求項3のいずれか一項に記載の電気化学反応セルスタックにおいて、
     前記第2の導電性部材の前記第1の方向の厚さに対する、前記凹部分の前記第1の方向の深さ寸法の割合は、7%以上である、
     ことを特徴とする、電気化学反応セルスタック。
  5.  請求項1から請求項4のいずれか一項に記載の電気化学反応セルスタックにおいて、
     前記第1の導電性部材の前記第1の方向の厚さに対する、前記凸部分の前記第1の方向の突出長さの割合は、2%以下である、
     ことを特徴とする、電気化学反応セルスタック。
  6.  請求項1から請求項5のいずれか一項に記載の電気化学反応セルスタックにおいて、
     前記第1の導電性部材には、前記第1の方向に延びるガス流路が形成されており、
     前記第1の表面の縁側は、前記第1の表面のうち、前記ガス流路に面する縁側である、
     ことを特徴とする、電気化学反応セルスタック。
  7.  請求項1から請求項6のいずれか一項に記載の電気化学反応セルスタックにおいて、
     前記電解質層は、固体酸化物を含む、
     ことを特徴とする、電気化学反応セルスタック。
  8.  電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含む単セルと、
     前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備え、
     前記複数の導電性部材は、
      貫通孔が形成され、前記貫通孔を取り囲む部分が前記単セルの周縁部と接合され、前記空気極に面する空気室と前記燃料極に面する燃料室とを区画するセパレータと、
      前記単セルの前記空気極および前記燃料極の一方側に配置されたインターコネクタと、
      前記セパレータと前記インターコネクタとの間に配置されたフレーム部材と、を含むインターコネクタ-電気化学反応単セル複合体において、
     前記セパレータにおける前記フレーム部材側の第1の表面は、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記フレーム部材側に突出する凸部分と、を含み、
     前記フレーム部材における前記セパレータ側の第2の表面は、平坦状の第2の平坦部分と、前記セパレータの前記凸部分と対向し、前記第2の平坦部分より前記セパレータとは反対側に窪んだ凹部分と、を含み、
     前記フレーム部材の前記第1の方向の厚さは、前記セパレータの前記第1の方向の厚さより厚く、かつ、前記フレーム部材における前記第2の平坦部分からの前記凹部分の前記第1の方向の深さ寸法は、前記セパレータにおける前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さより大きい、
     ことを特徴とする、インターコネクタ-電気化学反応単セル複合体。
  9.  請求項8に記載のインターコネクタ-電気化学反応単セル複合体において、
     前記電解質層は、固体酸化物を含む、
     ことを特徴とする、インターコネクタ-電気化学反応単セル複合体。
  10.  電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含み、前記第1の方向に並べて配置された複数の単セルと、前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備える電気化学反応セルスタックの製造方法において、
     プレス加工により、前記第1の方向の一方側の第1の表面が、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含み、前記第1の方向の他方側の第2の表面が、平坦状の第2の平坦部分と、前記第2の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む複数の導電性部材をそれぞれ準備する準備工程と、
     前記各導電性部材について、前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さが短くなるように前記凸部分を加工する加工工程と、
     互いに隣り合う2つの導電性部材の一方の前記第1の表面の前記凸部分と、他方の前記第2の表面の前記凹部分とが互いに対向するように、前記複数の導電性部材を前記第1の方向に並べて配置する配置工程と、を含むことを特徴とする、電気化学反応セルスタックの製造方法。
PCT/JP2018/020957 2017-06-06 2018-05-31 電気化学反応セルスタック、インターコネクタ-電気化学反応単セル複合体および電気化学反応セルスタックの製造方法 WO2018225617A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/618,481 US11271221B2 (en) 2017-06-06 2018-05-31 Electrochemical reaction cell stack, interconnector-electrochemical reaction unit cell composite, and method for manufacturing electrochemical reaction cell stack
CN201880037344.6A CN110710038B (zh) 2017-06-06 2018-05-31 电化学反应电池组、互连器-电化学反应单体电池复合体以及电化学反应电池组的制造方法
EP18813366.4A EP3637517A4 (en) 2017-06-06 2018-05-31 STACK OF ELECTROCHEMICAL REACTION CELLS, CELL COMPOSITION OF INTERCONNECTOR AND ELECTROCHEMICAL REACTION UNIT AND METHOD FOR PRODUCING A STACK OF ELECTROCHEMICAL REACTION CELLS
JP2018541715A JP6621541B2 (ja) 2017-06-06 2018-05-31 電気化学反応セルスタック、インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタックの製造方法
KR1020197034631A KR102214589B1 (ko) 2017-06-06 2018-05-31 전기 화학 반응 셀 스택, 인터커넥터-전기 화학 반응 단셀 복합체 및 전기 화학 반응 셀 스택의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017111362 2017-06-06
JP2017-111362 2017-06-06

Publications (1)

Publication Number Publication Date
WO2018225617A1 true WO2018225617A1 (ja) 2018-12-13

Family

ID=64566137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020957 WO2018225617A1 (ja) 2017-06-06 2018-05-31 電気化学反応セルスタック、インターコネクタ-電気化学反応単セル複合体および電気化学反応セルスタックの製造方法

Country Status (6)

Country Link
US (1) US11271221B2 (ja)
EP (1) EP3637517A4 (ja)
JP (1) JP6621541B2 (ja)
KR (1) KR102214589B1 (ja)
CN (1) CN110710038B (ja)
WO (1) WO2018225617A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022471A (ja) * 2019-07-26 2021-02-18 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032559A (ja) * 2013-08-06 2015-02-16 日本特殊陶業株式会社 固体酸化物形燃料電池スタック及びセパレータ付インターコネクタ
JP2015032477A (ja) * 2013-08-02 2015-02-16 株式会社日本自動車部品総合研究所 燃料電池セルスタック
JP2015088265A (ja) * 2013-10-29 2015-05-07 日本特殊陶業株式会社 セパレータ付燃料電池単セル,燃料電池スタック,およびその製造方法
JP2015153672A (ja) * 2014-02-18 2015-08-24 日本特殊陶業株式会社 燃料電池スタック
JP2015159106A (ja) 2014-01-23 2015-09-03 日本特殊陶業株式会社 燃料電池カセット及びその製造方法、燃料電池スタック
JP2016081813A (ja) 2014-10-20 2016-05-16 株式会社東芝 電気化学セルスタック、および電力システム
WO2017073530A1 (ja) * 2015-10-28 2017-05-04 日本特殊陶業株式会社 インターコネクタ-電気化学反応単セル複合体、電気化学反応セルスタックおよびインターコネクタ-電気化学反応単セル複合体の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044703B4 (de) * 2000-09-09 2013-10-17 Elringklinger Ag Brennstoffzelleneinheit, Brennstoffzellenblockverbund und Verfahren zum Herstellen eines Brennstoffzellenblockverbunds
DE10135334B4 (de) * 2001-07-19 2012-09-06 Elringklinger Ag Brennstoffzelleneinheit und Brennstoffzellenblockverbund
US6875533B2 (en) 2001-07-19 2005-04-05 Elringklinger Ag Fuel cell unit and composite block of fuel cells
JP3857960B2 (ja) 2002-02-22 2006-12-13 日本特殊陶業株式会社 固体電解質型燃料電池
US7803493B2 (en) * 2004-09-29 2010-09-28 General Electric Company Fuel cell system with separating structure bonded to electrolyte
GB2437767B (en) * 2006-05-05 2010-11-17 Intelligent Energy Ltd Fuel cell fluid distribution plates
EP2306567B1 (en) * 2008-05-28 2014-03-26 Panasonic Corporation Fuel cell
JP5708923B2 (ja) * 2011-04-20 2015-04-30 日本特殊陶業株式会社 燃料電池セル及び燃料電池
JP5819099B2 (ja) * 2011-05-11 2015-11-18 日本特殊陶業株式会社 固体酸化物形燃料電池
CN103907233B (zh) * 2011-11-02 2016-05-04 日本特殊陶业株式会社 燃料电池
US10224553B2 (en) * 2013-02-07 2019-03-05 Ngk Spark Plug Co., Ltd. Fuel cell comprising connection members having different thickness for each of cell units and method for manufacturing same
DE102015222245A1 (de) * 2015-11-11 2017-05-11 Volkswagen Aktiengesellschaft Polarplatte für einen Brennstoffzellenstapel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032477A (ja) * 2013-08-02 2015-02-16 株式会社日本自動車部品総合研究所 燃料電池セルスタック
JP2015032559A (ja) * 2013-08-06 2015-02-16 日本特殊陶業株式会社 固体酸化物形燃料電池スタック及びセパレータ付インターコネクタ
JP2015088265A (ja) * 2013-10-29 2015-05-07 日本特殊陶業株式会社 セパレータ付燃料電池単セル,燃料電池スタック,およびその製造方法
JP2015159106A (ja) 2014-01-23 2015-09-03 日本特殊陶業株式会社 燃料電池カセット及びその製造方法、燃料電池スタック
JP2015153672A (ja) * 2014-02-18 2015-08-24 日本特殊陶業株式会社 燃料電池スタック
JP2016081813A (ja) 2014-10-20 2016-05-16 株式会社東芝 電気化学セルスタック、および電力システム
WO2017073530A1 (ja) * 2015-10-28 2017-05-04 日本特殊陶業株式会社 インターコネクタ-電気化学反応単セル複合体、電気化学反応セルスタックおよびインターコネクタ-電気化学反応単セル複合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637517A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022471A (ja) * 2019-07-26 2021-02-18 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Also Published As

Publication number Publication date
CN110710038A (zh) 2020-01-17
KR20190140024A (ko) 2019-12-18
US11271221B2 (en) 2022-03-08
KR102214589B1 (ko) 2021-02-09
JPWO2018225617A1 (ja) 2019-06-27
EP3637517A4 (en) 2021-03-03
EP3637517A1 (en) 2020-04-15
US20200099065A1 (en) 2020-03-26
JP6621541B2 (ja) 2019-12-18
CN110710038B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
JP6868051B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6445182B2 (ja) インターコネクタ−電気化学反応単セル複合体、電気化学反応セルスタックおよびインターコネクタ−電気化学反応単セル複合体の製造方法
WO2016199362A1 (ja) 電気化学反応単位および燃料電池スタック
JP2019200877A (ja) 電気化学反応単位および電気化学反応セルスタック
WO2018097174A1 (ja) 電気化学反応単位、電気化学反応セルスタック、および、電気化学反応単位の製造方法
JP6917416B2 (ja) 電気化学反応セルスタック
JP6667278B2 (ja) 電気化学反応セルスタック
JP6621541B2 (ja) 電気化学反応セルスタック、インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタックの製造方法
JP6890040B2 (ja) 電気化学反応セルスタック
JP6760866B2 (ja) 電気化学反応セルスタック
JP7210508B2 (ja) 電気化学反応セルスタック
JP6945035B1 (ja) 電気化学反応セルスタック
JP6273233B2 (ja) 電気化学反応セルスタックの製造方法
JP2019003794A (ja) 電気化学反応セルスタック
JP6873944B2 (ja) 電気化学反応セルスタック
JP6773470B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6773472B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP2021044178A (ja) 電気化学反応セルスタック
JP2019200878A (ja) 電気化学反応単位および電気化学反応セルスタック
JP7023898B2 (ja) 電気化学反応セルスタック
JP7042783B2 (ja) 電気化学反応セルスタック
JP6959040B2 (ja) スタック用プレート、電気化学反応セルスタック、および、電気化学反応セルスタックの製造方法
JP6959039B2 (ja) 電気化学反応単位、電気化学反応セルスタック、および、電気化学反応単位の製造方法
JP2021140883A (ja) 電気化学反応セルスタック
JP2021131999A (ja) 電気化学反応セルスタック

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018541715

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197034631

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018813366

Country of ref document: EP

Effective date: 20200107