JPWO2018225617A1 - 電気化学反応セルスタック、インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタックの製造方法 - Google Patents

電気化学反応セルスタック、インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタックの製造方法 Download PDF

Info

Publication number
JPWO2018225617A1
JPWO2018225617A1 JP2018541715A JP2018541715A JPWO2018225617A1 JP WO2018225617 A1 JPWO2018225617 A1 JP WO2018225617A1 JP 2018541715 A JP2018541715 A JP 2018541715A JP 2018541715 A JP2018541715 A JP 2018541715A JP WO2018225617 A1 JPWO2018225617 A1 JP WO2018225617A1
Authority
JP
Japan
Prior art keywords
conductive member
separator
cell stack
electrochemical reaction
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018541715A
Other languages
English (en)
Other versions
JP6621541B2 (ja
Inventor
健太 眞邉
健太 眞邉
大野 猛
大野  猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Publication of JPWO2018225617A1 publication Critical patent/JPWO2018225617A1/ja
Application granted granted Critical
Publication of JP6621541B2 publication Critical patent/JP6621541B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0256Vias, i.e. connectors passing through the separator material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

互いに隣り合う導電性部材同士の干渉を抑制する。電気化学反応セルスタックは、複数の単セルと、第1の方向に並べて配置された平板状の複数の導電性部材と、を備える。複数の導電性部材は、第1の方向の一方側の第1の表面が、第1の平坦部分と凸部分とを含む第1の導電性部材と、第1の導電性部材に対して第1の方向の一方側に位置し、第1の導電性部材の第1の表面に対向する第2の表面が、第2の平坦部分と、上記凸部分と対向する凹部分と、を含む第2の導電性部材と、を含む。第2の導電性部材の第1の方向の厚さは、第1の導電性部材の第1の方向の厚さより厚い。第2の導電性部材における第2の平坦部分からの凹部分の第1の方向の深さ寸法は、第1の導電性部材における第1の平坦部分からの凸部分の第1の方向の突出長さより大きい。

Description

本明細書によって開示される技術は、電気化学反応セルスタックに関する。
水素と酸素との電気化学反応を利用して発電を行う燃料電池の種類の1つとして、固体酸化物を含む電解質層を備える固体酸化物形の燃料電池(以下、「SOFC」ともいう)が知られている。SOFCは、一般に、所定の方向(以下、「配列方向」ともいう)に並べて配置された複数の単セルを備える燃料電池スタックの形態で利用される。単セルは、電解質層と、電解質層を挟んで配列方向に互いに対向する空気極および燃料極とを含んでいる。
燃料電池スタックは、さらに、配列方向に並べて配置された複数の導電性部材を備える。例えば、燃料電池スタックは、導電性部材として、空気極に面する空気室と燃料極に面する燃料室とを仕切るセパレータ、配列方向においてセパレータと隣り合い、空気室または燃料室に面するインターコネクタや、セパレータとインターコネクタとの間に配置されるフレーム部材等を備える。
特開2015−159106号公報
例えば加工上の理由により、導電性部材における一方側の第1の表面が、平坦部分と、該平坦部分より上記第1の表面の縁側に位置し、かつ、平坦部分より第1の方向の上記一方側に突出する凸部分と、を含む場合がある。このような凸部を含む一の導電性部材の第1の表面側に、他の導電性部材を重ね合わせる場合、該一の導電性部材の凸部分が、他の導電性部材と干渉することにより、例えば2つの導電性部材間のシール性が低下するおそれがある。
なお、このような課題は、水の電気分解反応を利用して水素の生成を行う固体酸化物形の電解セル(以下、「SOEC」ともいう)の一形態である電解セルスタックの製造の際にも共通の課題である。なお、本明細書では、燃料電池スタックと電解セルスタックとをまとめて、電気化学反応セルスタックと呼ぶ。
本明細書では、上述した課題を解決することが可能な技術を開示する。
本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。
(1)本明細書に開示される電気化学反応セルスタックは、電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含み、前記第1の方向に並べて配置された複数の単セルと、前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備え、前記複数の導電性部材は、前記第1の方向の一方側の第1の表面が、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含む第1の導電性部材と、前記第1の導電性部材に対して前記第1の方向の前記一方側に位置する第2の導電性部材であって、前記第1の導電性部材の前記第1の表面に対向する第2の表面が、平坦状の第2の平坦部分と、前記第1の導電性部材の前記凸部分と対向し、前記第2の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む第2の導電性部材と、を含んでおり、前記第2の導電性部材の前記第1の方向の厚さは、前記第1の導電性部材の前記第1の方向の厚さより厚く、かつ、前記第2の導電性部材における前記第2の平坦部分からの前記凹部分の前記第1の方向の深さ寸法は、前記第1の導電性部材における前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さより大きい。本電気化学反応セルスタックでは、第1の導電性部材は、凸部分を含んでおり、第2の導電性部材は、凸部分と対向する位置に凹部分を含んでいる。これにより、互いに隣り合う第1の導電性部材と第2の導電性部材との干渉を抑制することができる。ここで、導電性部材は、第1の方向の厚さが厚いほど、熱膨張量が大きいため、該導電性部材の凹部分の膨張により他の導電性部材の凸部分と干渉し易くなる。これに対して、本電気化学反応セルスタックでは、第2の導電性部材の第1の方向の厚さは、第1の導電性部材の第1の方向の厚さより厚い。また、第2の導電性部材における第2の平坦部分からの凹部分の前記第1の方向の深さ寸法は、第1の導電性部材における第1の平坦部分からの凸部分の第1の方向の突出長さより大きい。これにより、本電気化学反応セルスタックによれば、凹部分の深さ寸法が凸部分の突出長さと同等以下である構成に比べて、互いに隣り合う第1の導電性部材と第2の導電性部材とが熱膨張に起因して干渉することを抑制することができる。
(2)上記電気化学反応セルスタックにおいて、前記第1の導電性部材の前記凸部分と前記第2の導電性部材の前記凹部分との間の前記第1の方向の距離は、前記第1の表面の縁側に向かうに連れて広がっている。本電気化学反応セルスタックによれば、例えば、凸部分と凹部分との間の第1の方向の距離が略均一である構成に比べて、互いに隣り合う第1の導電性部材と第2の導電性部材とが第2の導電性部材の熱膨張に起因して干渉することを、より効果的に抑制することができる。
(3)上記電気化学反応セルスタックにおいて、前記複数の導電性部材は、前記第1の方向の一方側の第3の表面が、平坦状の第3の平坦部分と、前記第3の平坦部分より前記第3の表面の縁側に位置し、かつ、前記第3の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含む第3の導電性部材と、前記第3の導電性部材に対して前記第1の方向の前記一方側に位置する第4の導電性部材であって、前記第3の導電性部材の前記第3の表面に対向する第4の表面が、平坦状の第4の平坦部分と、前記第3の導電性部材の前記凸部分と対向し、前記第4の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む第4の導電性部材と、を含んでおり、前記第2の導電性部材と前記第4の導電性部材とは、前記第1の方向の厚さが互いに異なり、かつ、前記第1の方向の厚さが厚いものほど、前記凹部分の前記第1の方向の深さ寸法が大きい。導電性部材は、第1の方向の厚さが厚いほど、熱膨張量が大きいため、該導電性部材の凹部分の膨張により他の導電性部材の凸部分と干渉し易くなる。したがって、凹部分は深い方が好ましいが、凹部分が深すぎると、比較的に薄い導電性部材では所定以上の強度を確保できなくなるおそれがある。これに対して、本電気化学反応セルスタックでは、凹部分を含む第2の導電性部材と第4の導電性部材とは、前記第1の方向の厚さが厚いものほど、凹部分の第1の方向の深さ寸法が大きい。これにより、導電性部材の強度低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することができる。
(4)上記電気化学反応セルスタックにおいて、前記第2の導電性部材の前記第1の方向の厚さに対する、前記凹部分の前記第1の方向の深さ寸法の割合は、7%以上である構成としてもよい。本電気化学反応セルスタックによれば、第2の導電性部材の第1の方向の厚さに対する、凹部分の第1の方向の深さ寸法の割合が7%未満である構成に比べて、互いに隣接する導電性部材同士の物理的な干渉を抑制することができる。
(5)上記電気化学反応セルスタックにおいて、前記第1の導電性部材の前記第1の方向の厚さに対する、前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さの割合は、2%以下である構成としてもよい。本電気化学反応セルスタックによれば、第1の導電性部材の第1の方向の厚さに対する、凸部分の第1の方向の突出長さの割合が2%より大きい構成に比べて、凸部分の酸化等による腐食を抑制することができる。
(6)上記電気化学反応セルスタックにおいて、前記第1の導電性部材には、前記第1の方向に延びるガス流路が形成されており、前記第1の表面の縁側は、前記第1の表面のうち、前記ガス流路に面する縁側である構成としてもよい。本電気化学反応セルスタックによれば、ガス流路付近において、第1の導電性部材の強度低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することができる。
(7)上記電気化学反応セルスタックにおいて、前記電解質層は、固体酸化物を含む。
(8)本明細書に開示されるインターコネクタ−電気化学反応単セル複合体は、電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含む単セルと、前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備え、前記複数の導電性部材は、貫通孔が形成され、前記貫通孔を取り囲む部分が前記単セルの周縁部と接合され、前記空気極に面する空気室と前記燃料極に面する燃料室とを区画するセパレータと、前記単セルの前記空気極および前記燃料極の一方側に配置されたインターコネクタと、前記セパレータと前記インターコネクタとの間に配置されたフレーム部材と、を含むインターコネクタ−電気化学反応単セル複合体において、前記セパレータにおける前記フレーム部材側の第1の表面は、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記フレーム部材側に突出する凸部分と、を含み、前記フレーム部材における前記セパレータ側の第2の表面は、平坦状の第2の平坦部分と、前記セパレータの前記凸部分と対向し、前記第2の平坦部分より前記セパレータとは反対側に窪んだ凹部分と、を含み、前記フレーム部材の前記第1の方向の厚さは、前記セパレータの前記第1の方向の厚さより厚く、かつ、前記フレーム部材における前記第2の平坦部分からの前記凹部分の前記第1の方向の深さ寸法は、前記セパレータにおける前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さより大きい。本インターコネクタ−電気化学反応単セル複合体によれば、凹部分の深さ寸法が凸部分の突出長さと同等以下である構成に比べて、熱膨張に起因して互いに隣り合うセパレータとフレーム部材とが干渉することを抑制することができる。
(9)上記インターコネクタ−電気化学反応単セル複合体において、前記電解質層は、固体酸化物を含む。
(10)本明細書に開示される電気化学反応セルスタックの製造方法は、固体酸化物を含む電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含み、前記第1の方向に並べて配置された複数の単セルと、前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備える電気化学反応セルスタックの製造方法において、プレス加工により、前記第1の方向の一方側の第1の表面が、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含み、前記第1の方向の他方側の第2の表面が、平坦状の第2の平坦部分と、前記第2の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む複数の導電性部材をそれぞれ準備する準備工程と、前記各導電性部材について、前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さが短くなるように前記凸部分を加工する加工工程と、互いに隣り合う2つの導電性部材の一方の前記第1の表面の前記凸部分と、他方の前記第2の表面の前記凹部分とが互いに対向するように、前記複数の導電性部材を前記第1の方向に並べて配置する配置工程と、を含むことを特徴とする。本電気化学反応セルスタックの製造方法によれば、各導電性部材の強度低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することが可能な電気化学反応セルスタックを製造することができる。
なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、複数の電気化学反応単セルを備える電気化学反応セルスタック(燃料電池スタックまたは電解セルスタック)、インターコネクタ−電気化学反応単セル複合体、電気化学反応単位、その製造方法等の形態で実現することが可能である。
本実施形態における燃料電池スタック100の外観構成を示す斜視図である。 図1のII−IIの位置における燃料電池スタック100のXZ断面構成を示す説明図である。 図1のIII−IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。 図2に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図である。 図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。 発電単位102の詳細構成(図5のX1部分の構成)を示す説明図である。 発電単位102の詳細構成(図6のX2部分の構成)を示す説明図である。 本実施形態における燃料電池スタック100の製造方法の一例を示すフローチャートである。 セパレータ120の加工工程を示す説明図である。
A.実施形態:
A−1.構成:
(燃料電池スタック100の構成)
図1は、本実施形態における燃料電池スタック100の外観構成を示す斜視図であり、図2は、図1のII−IIの位置における燃料電池スタック100のXZ断面構成を示す説明図であり、図3は、図1のIII−IIIの位置における燃料電池スタック100のYZ断面構成を示す説明図である。各図には、方向を特定するための互いに直交するXYZ軸が示されている。本明細書では、便宜的に、Z軸正方向を上方向と呼び、Z軸負方向を下方向と呼ぶものとするが、燃料電池スタック100は実際にはそのような向きとは異なる向きで設置されてもよい。図4以降についても同様である。
燃料電池スタック100は、複数の(本実施形態では7つの)発電単位102と、一対のエンドプレート104,106とを備える。7つの発電単位102は、所定の配列方向(本実施形態では上下方向)に並べて配置されている。一対のエンドプレート104,106は、7つの発電単位102から構成される集合体を上下から挟むように配置されている。なお、上記配列方向(上下方向)は、特許請求の範囲における第1の方向に相当する。
燃料電池スタック100を構成する各層(発電単位102、エンドプレート104,106)のZ方向回りの周縁部には、上下方向に貫通する複数の(本実施形態では8つの)孔が形成されており、各層に形成され互いに対応する孔同士が上下方向に連通して、一方のエンドプレート104から他方のエンドプレート106にわたって上下方向に延びる連通孔108を構成している。以下の説明では、連通孔108を構成するために燃料電池スタック100の各層に形成された孔も、連通孔108と呼ぶ場合がある。
各連通孔108には上下方向に延びるボルト22が挿通されており、ボルト22とボルト22の両側に嵌められたナット24とによって、燃料電池スタック100は締結されている。なお、図2および図3に示すように、ボルト22の一方の側(上側)に嵌められたナット24と燃料電池スタック100の上端を構成するエンドプレート104の上側表面との間、および、ボルト22の他方の側(下側)に嵌められたナット24と燃料電池スタック100の下端を構成するエンドプレート106の下側表面との間には、絶縁シート26が介在している。ただし、後述のガス通路部材27が設けられた箇所では、ナット24とエンドプレート106の表面との間に、ガス通路部材27とガス通路部材27の上側および下側のそれぞれに配置された絶縁シート26とが介在している。絶縁シート26は、例えばマイカシートや、セラミック繊維シート、セラミック圧粉シート、ガラスシート、ガラスセラミック複合剤等により構成される。
各ボルト22の軸部の外径は各連通孔108の内径より小さい。そのため、各ボルト22の軸部の外周面と各連通孔108の内周面との間には、空間が確保されている。図1および図2に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(Y軸に平行な2つの辺の内のX軸正方向側の辺)の中点付近に位置するボルト22(ボルト22A)と、そのボルト22Aが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から酸化剤ガスOGが導入され、その酸化剤ガスOGを各発電単位102に供給するガス流路である酸化剤ガス導入マニホールド161として機能し、該辺の反対側の辺(Y軸に平行な2つの辺の内のX軸負方向側の辺)の中点付近に位置するボルト22(ボルト22B)と、そのボルト22Bが挿通された連通孔108とにより形成された空間は、各発電単位102の空気室166から排出されたガスである酸化剤オフガスOOGを燃料電池スタック100の外部へと排出する酸化剤ガス排出マニホールド162として機能する。なお、本実施形態では、酸化剤ガスOGとして、例えば空気が使用される。
また、図1および図3に示すように、燃料電池スタック100のZ方向回りの外周における1つの辺(X軸に平行な2つの辺の内のY軸正方向側の辺)の中点付近に位置するボルト22(ボルト22D)と、そのボルト22Dが挿通された連通孔108とにより形成された空間は、燃料電池スタック100の外部から燃料ガスFGが導入され、その燃料ガスFGを各発電単位102に供給する燃料ガス導入マニホールド171として機能し、該辺の反対側の辺(X軸に平行な2つの辺の内のY軸負方向側の辺)の中点付近に位置するボルト22(ボルト22E)と、そのボルト22Eが挿通された連通孔108とにより形成された空間は、各発電単位102の燃料室176から排出されたガスである燃料オフガスFOGを燃料電池スタック100の外部へと排出する燃料ガス排出マニホールド172として機能する。なお、本実施形態では、燃料ガスFGとして、例えば都市ガスを改質した水素リッチなガスが使用される。
燃料電池スタック100には、4つのガス通路部材27が設けられている。各ガス通路部材27は、中空筒状の本体部28と、本体部28の側面から分岐した中空筒状の分岐部29とを有している。分岐部29の孔は本体部28の孔と連通している。各ガス通路部材27の分岐部29には、ガス配管(図示せず)が接続される。また、図2に示すように、酸化剤ガス導入マニホールド161を形成するボルト22Aの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス導入マニホールド161に連通しており、酸化剤ガス排出マニホールド162を形成するボルト22Bの位置に配置されたガス通路部材27の本体部28の孔は、酸化剤ガス排出マニホールド162に連通している。また、図3に示すように、燃料ガス導入マニホールド171を形成するボルト22Dの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス導入マニホールド171に連通しており、燃料ガス排出マニホールド172を形成するボルト22Eの位置に配置されたガス通路部材27の本体部28の孔は、燃料ガス排出マニホールド172に連通している。
(エンドプレート104,106の構成)
一対のエンドプレート104,106は、略矩形の平板形状の導電性部材であり、例えばステンレスにより形成されている。一方のエンドプレート104は、最も上に位置する発電単位102の上側に配置され、他方のエンドプレート106は、最も下に位置する発電単位102の下側に配置されている。一対のエンドプレート104,106によって複数の発電単位102が押圧された状態で挟持されている。上側のエンドプレート104は、燃料電池スタック100のプラス側の出力端子として機能し、下側のエンドプレート106は、燃料電池スタック100のマイナス側の出力端子として機能する。なお、各エンドプレート104,106の厚さ(上下方向の寸法(平均寸法または最大厚さでもよい) 以下同じ)は、インターコネクタ150の厚さH3より薄い。
(発電単位102の構成)
図4は、図2に示す断面と同一の位置における互いに隣接する2つの発電単位102のXZ断面構成を示す説明図であり、図5は、図3に示す断面と同一の位置における互いに隣接する2つの発電単位102のYZ断面構成を示す説明図である。
図4および図5に示すように、発電単位102は、単セル110と、セパレータ120と、空気極側フレーム130と、空気極側集電体134と、燃料極側フレーム140と、燃料極側集電体144と、発電単位102の最上層および最下層を構成する一対のインターコネクタ150とを備えている。セパレータ120、空気極側フレーム130、燃料極側フレーム140、インターコネクタ150におけるZ方向回りの周縁部には、上述したボルト22が挿通される連通孔108に対応する孔が形成されている。
インターコネクタ150は、略矩形の平板形状の導電性部材であり、例えばフェライト系ステンレスにより形成されている。インターコネクタ150は、発電単位102間の電気的導通を確保すると共に、発電単位102間での反応ガスの混合を防止する。なお、本実施形態では、2つの発電単位102が隣接して配置されている場合、1つのインターコネクタ150は、隣接する2つの発電単位102に共有されている。すなわち、ある発電単位102における上側のインターコネクタ150は、その発電単位102の上側に隣接する他の発電単位102における下側のインターコネクタ150と同一部材である。また、燃料電池スタック100は一対のエンドプレート104,106を備えているため、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えておらず、最も下に位置する発電単位102は下側のインターコネクタ150を備えていない(図2および図3参照)。インターコネクタ150の厚さH3は、後述する燃料極側フレーム140の厚さH2より薄く、例えば約0.8(mm)である。
単セル110は、電解質層112と、電解質層112を挟んで上下方向(発電単位102が並ぶ配列方向)に互いに対向する空気極(カソード)114および燃料極(アノード)116とを備える。本実施形態では、燃料極116の厚さ(上下方向のサイズ)が空気極114や電解質層112の厚さより厚く、燃料極116が単セル110を構成する他の層を支持している。すなわち、本実施形態の単セル110は、燃料極支持型の単セルである。
電解質層112は、略矩形の平板形状部材であり、少なくともZrを含んでおり、例えば、YSZ(イットリア安定化ジルコニア)、ScSZ(スカンジア安定化ジルコニア)、CaSZ(カルシア安定化ジルコニア)等の固体酸化物により形成されている。空気極114は、略矩形の平板形状部材であり、例えば、ペロブスカイト型酸化物(例えばLSCF(ランタンストロンチウムコバルト鉄酸化物)、LSM(ランタンストロンチウムマンガン酸化物)、LNF(ランタンニッケル鉄))により形成されている。燃料極116は、略矩形の平板形状部材であり、例えば、Ni(ニッケル)、Niとセラミック粒子からなるサーメット、Ni基合金等により形成されている。このように、本実施形態の単セル110(発電単位102)は、電解質として固体酸化物を用いる固体酸化物形燃料電池(SOFC)である。
セパレータ120は、中央付近に上下方向に貫通する略矩形の孔121が形成されたフレーム状の部材であり、例えば、金属により形成されている。セパレータ120における孔121の周囲部分は、電解質層112における空気極114の側の表面の周縁部に対向している。セパレータ120は、その対向した部分に配置されたロウ材(例えばAgロウ)により形成された接合部124により、電解質層112(単セル110)と接合されている。セパレータ120により、空気極114に面する空気室166と燃料極116に面する燃料室176とが区画され、単セル110の周縁部における一方の電極側から他方の電極側へのガスのリークが抑制される。なお、セパレータ120の厚さH1は、インターコネクタ150の厚さH3より薄く、例えば約0.1(mm)である。孔121は、特許請求の範囲における貫通孔に相当する。
空気極側フレーム130は、中央付近に上下方向に貫通する略矩形の孔131が形成されたフレーム状の部材であり、例えば、マイカ等の絶縁体により形成されている。空気極側フレーム130の孔131は、空気極114に面する空気室166を構成する。空気極側フレーム130は、セパレータ120における電解質層112に対向する側とは反対側の表面の周縁部と、インターコネクタ150における空気極114に対向する側の表面の周縁部とに接触している。また、空気極側フレーム130によって、発電単位102に含まれる一対のインターコネクタ150間が電気的に絶縁される。また、空気極側フレーム130には、酸化剤ガス導入マニホールド161と空気室166とを連通する酸化剤ガス供給連通孔132と、空気室166と酸化剤ガス排出マニホールド162とを連通する酸化剤ガス排出連通孔133とが形成されている。なお、空気極側フレーム130の厚さは、セパレータ120の厚さH1やインターコネクタ150の厚さH3より厚く、例えば約1.0(mm)である。
燃料極側フレーム140は、中央付近に上下方向に貫通する略矩形の孔141が形成されたフレーム状の部材であり、例えば、金属により形成されている。燃料極側フレーム140の孔141は、燃料極116に面する燃料室176を構成する。燃料極側フレーム140は、セパレータ120における電解質層112に対向する側の表面の周縁部と、インターコネクタ150における燃料極116に対向する側の表面の周縁部とに接触している。また、燃料極側フレーム140には、燃料ガス導入マニホールド171と燃料室176とを連通する燃料ガス供給連通孔142と、燃料室176と燃料ガス排出マニホールド172とを連通する燃料ガス排出連通孔143とが形成されている。なお、燃料極側フレーム140の厚さH2は、セパレータ120の厚さH1やインターコネクタ150の厚さH3より厚く、例えば約1.5(mm)である。
燃料極側集電体144は、燃料室176内に配置されている。燃料極側集電体144は、インターコネクタ対向部146と、電極対向部145と、電極対向部145とインターコネクタ対向部146とをつなぐ連接部147とを備えており、例えば、ニッケルやニッケル合金、ステンレス等により形成されている。電極対向部145は、燃料極116における電解質層112に対向する側とは反対側の表面に接触しており、インターコネクタ対向部146は、インターコネクタ150における燃料極116に対向する側の表面に接触している。ただし、上述したように、燃料電池スタック100において最も下に位置する発電単位102は下側のインターコネクタ150を備えていないため、当該発電単位102におけるインターコネクタ対向部146は、下側のエンドプレート106に接触している。燃料極側集電体144は、このような構成であるため、燃料極116とインターコネクタ150(またはエンドプレート106)とを電気的に接続する。なお、電極対向部145とインターコネクタ対向部146との間には、例えばマイカにより形成されたスペーサー149が配置されている。そのため、燃料極側集電体144が温度サイクルや反応ガス圧力変動による発電単位102の変形に追随し、燃料極側集電体144を介した燃料極116とインターコネクタ150(またはエンドプレート106)との電気的接続が良好に維持される。
空気極側集電体134は、空気室166内に配置されている。空気極側集電体134は、複数の略四角柱状の集電体要素135から構成されており、例えば、フェライト系ステンレスにより形成されている。空気極側集電体134は、空気極114における電解質層112に対向する側とは反対側の表面と、インターコネクタ150における空気極114に対向する側の表面とに接触している。ただし、上述したように、燃料電池スタック100において最も上に位置する発電単位102は上側のインターコネクタ150を備えていないため、当該発電単位102における空気極側集電体134は、上側のエンドプレート104に接触している。空気極側集電体134は、このような構成であるため、空気極114とインターコネクタ150(またはエンドプレート104)とを電気的に接続する。なお、空気極側集電体134とインターコネクタ150とが一体の部材として構成されていてもよい。また、空気極側集電体134が導電性のコートによって覆われていてもよく、また、空気極114と空気極側集電体134との間に両者を接合する導電性の接合層が介在していてもよい。なお、セパレータ120とインターコネクタ150と燃料極側フレーム140とエンドプレート104,106とは、特許請求の範囲における複数の導電性部材に相当する。また、単セル110とセパレータ120とインターコネクタ150と燃料極側フレーム140との複合体は、特許請求の範囲におけるインターコネクタ−電気化学反応単セル複合体に相当し、カセットとも呼ばれる。
A−2.燃料電池スタック100の動作:
図2および図4に示すように、酸化剤ガス導入マニホールド161の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して酸化剤ガスOGが供給されると、酸化剤ガスOGは、ガス通路部材27の分岐部29および本体部28の孔を介して酸化剤ガス導入マニホールド161に供給され、酸化剤ガス導入マニホールド161から各発電単位102の酸化剤ガス供給連通孔132を介して、空気室166に供給される。また、図3および図5に示すように、燃料ガス導入マニホールド171の位置に設けられたガス通路部材27の分岐部29に接続されたガス配管(図示せず)を介して燃料ガスFGが供給されると、燃料ガスFGは、ガス通路部材27の分岐部29および本体部28の孔を介して燃料ガス導入マニホールド171に供給され、燃料ガス導入マニホールド171から各発電単位102の燃料ガス供給連通孔142を介して、燃料室176に供給される。
各発電単位102の空気室166に酸化剤ガスOGが供給され、燃料室176に燃料ガスFGが供給されると、単セル110において酸化剤ガスOGおよび燃料ガスFGの電気化学反応による発電が行われる。この発電反応は発熱反応である。各発電単位102において、単セル110の空気極114は空気極側集電体134を介して一方のインターコネクタ150に電気的に接続され、燃料極116は燃料極側集電体144を介して他方のインターコネクタ150に電気的に接続されている。また、燃料電池スタック100に含まれる複数の発電単位102は、電気的に直列に接続されている。そのため、燃料電池スタック100の出力端子として機能するエンドプレート104,106から、各発電単位102において生成された電気エネルギーが取り出される。なお、SOFCは、比較的高温(例えば700℃から1000℃)で発電が行われることから、起動後、発電により発生する熱で高温が維持できる状態になるまで、燃料電池スタック100が加熱器(図示せず)により加熱されてもよい。
各発電単位102の空気室166から排出された酸化剤オフガスOOGは、図2および図4に示すように、酸化剤ガス排出連通孔133を介して酸化剤ガス排出マニホールド162に排出され、さらに酸化剤ガス排出マニホールド162の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示せず)を介して燃料電池スタック100の外部に排出される。また、各発電単位102の燃料室176から排出された燃料オフガスFOGは、図3および図5に示すように、燃料ガス排出連通孔143を介して燃料ガス排出マニホールド172に排出され、さらに燃料ガス排出マニホールド172の位置に設けられたガス通路部材27の本体部28および分岐部29の孔を経て、当該分岐部29に接続されたガス配管(図示しない)を介して燃料電池スタック100の外部に排出される。
A−3.発電単位102の詳細構成:
図6から図8は、発電単位102の詳細構成を示す説明図である。図6には、図5のX1部分の構成が拡大して示されており、図7は、図6のX2部分の構成が拡大して示されており、図8は、図6のX3部分の構成が拡大して示されている。上述したように、セパレータ120と燃料極側フレーム140とインターコネクタ150とは、いずれも平板状の導電性部材であり、上下方向(Z方向)に並べて配置されている。
(セパレータ120)
図6および図7に示すように、セパレータ120における燃料極側フレーム140側の表面(以下、「セパレータ下面122」という)は、セパレータ下平坦部分122Aと、セパレータ凸部分122Bとを含む。セパレータ下平坦部分122Aは、上下方向に直交する面方向に略平行な平坦な部分である。セパレータ凸部分122Bは、セパレータ下平坦部分122Aよりセパレータ下面122の縁側に位置し、かつ、セパレータ下平坦部分122Aより燃料極側フレーム140側に突出する部分である。具体的には、セパレータ下面122の縁は、セパレータ下面122に形成された連通孔108の開口縁と、セパレータ下面122の外形を形成する周縁とを含む。セパレータ凸部分122Bは、セパレータ下面122の各縁側に向かうに連れて燃料極側フレーム140側(下側)に位置するように傾斜した傾斜面となっている。なお、図7には、セパレータ下面122に形成された連通孔108の開口縁付近の部分が拡大して示されている。セパレータ120は、特許請求の範囲における第1の導電性部材に相当する。また、セパレータ下面122は、特許請求の範囲における第1の表面に相当し、セパレータ下平坦部分122Aは、特許請求の範囲における第1の平坦部分に相当し、セパレータ凸部分122Bは、特許請求の範囲における凸部分に相当する。
また、セパレータ120における空気極側フレーム130側の表面(以下、「セパレータ上面123」という)は、セパレータ上平坦部分123Aと、セパレータ凹部分123Bとを含む。セパレータ上平坦部分123Aは、上下方向に直交する面方向に略平行な平坦な部分である。セパレータ凹部分123Bは、セパレータ上平坦部分123Aよりセパレータ上面123の縁側に位置し、かつ、セパレータ上平坦部分123Aより空気極側フレーム130とは反対側(燃料極側フレーム140側)に窪んだ部分である。具体的には、セパレータ上面123の縁は、セパレータ上面123に形成された連通孔108の開口縁と、セパレータ上面123の外形を形成する周縁とを含む。セパレータ凹部分123Bは、セパレータ上面123の縁側に向かうに連れて燃料極側フレーム140側(下側)に位置するように傾斜した傾斜面となっている。なお、図7には、セパレータ上面123に形成された連通孔108の開口縁付近の部分が拡大して示されている。
(燃料極側フレーム140)
図6および図8に示すように、燃料極側フレーム140におけるインターコネクタ150側の表面(以下、「フレーム下面148」という)は、フレーム下平坦部分148Aと、フレーム凸部分148Bとを含む。フレーム下平坦部分148Aは、上下方向に直交する面方向に略平行な平坦な部分である。フレーム凸部分148Bは、フレーム下平坦部分148Aよりフレーム下面148の縁側に位置し、かつ、フレーム下平坦部分148Aよりインターコネクタ150側に突出する部分である。具体的には、フレーム下面148の縁は、フレーム下面148に形成された連通孔108の開口縁と、フレーム下面148の外形を形成する周縁とを含む。フレーム凸部分148Bは、フレーム下面148の各縁側に向かうに連れてインターコネクタ150側(下側)に位置するように傾斜した傾斜面となっている。なお、図8には、フレーム下面148に形成された連通孔108の開口縁付近の部分が拡大して示されている。燃料極側フレーム140は、特許請求の範囲における第3の導電性部材、フレーム部材に相当する。フレーム下面148は、特許請求の範囲における第3の表面に相当し、フレーム下平坦部分148Aは、特許請求の範囲における第3の平坦部分に相当し、フレーム凸部分148Bは、特許請求の範囲における凸部分に相当する。
また、図6および図7に示すように、燃料極側フレーム140におけるセパレータ120側の表面(以下、「フレーム上面180」という)は、フレーム上平坦部分180Aと、フレーム凹部分180Bとを含む。フレーム上平坦部分180Aは、上下方向に直交する面方向に略平行な平坦な部分である。フレーム凹部分180Bは、フレーム上平坦部分180Aよりフレーム上面180の縁側に位置し、かつ、フレーム上平坦部分180Aよりセパレータ120とは反対側(インターコネクタ150側)に窪んだ部分である。具体的には、フレーム上面180の縁は、フレーム上面180に形成された連通孔108の開口縁と、フレーム上面180の外形を形成する周縁とを含む。フレーム凹部分180Bは、フレーム上面180の縁側に向かうに連れてインターコネクタ150側(下側)に位置するように傾斜した傾斜面となっている。なお、図7には、フレーム上面180に形成された連通孔108の開口縁付近の部分が拡大して示されている。燃料極側フレーム140は、特許請求の範囲における第2の導電性部材、フレーム部材に相当する。また、フレーム上面180は、特許請求の範囲における第2の表面に相当し、フレーム上平坦部分180Aは、特許請求の範囲における第2の平坦部分に相当し、フレーム凹部分180Bは、特許請求の範囲における凹部分に相当する。
(インターコネクタ150)
図6および図8に示すように、インターコネクタ150は、薄板部152を有する。薄板部152は、インターコネクタ150の他部分に比べて、上下方向の板厚が薄くなるように、インターコネクタ150における空気極側フレーム130に対向する表面側から溝加工された部分である。薄板部152は、上下方向視で、連通孔108を囲む環状部分152Aと、燃料極側フレーム140(インターコネクタ150、セパレータ120)の外側の周縁部分152Bとを含む(図6参照)。インターコネクタ150の薄板部152における空気極側フレーム130側の表面(以下、「インターコネクタ下面154」という)は、インターコネクタ下平坦部分154Aと、インターコネクタ凸部分154Bとを含む(図8参照)。インターコネクタ下平坦部分154Aは、上下方向に直交する面方向に略平行な平坦な部分である。インターコネクタ凸部分154Bは、インターコネクタ下平坦部分154Aよりインターコネクタ下面154の縁側に位置し、かつ、インターコネクタ下平坦部分154Aより空気極側フレーム130側に突出する部分である。具体的には、インターコネクタ下面154の縁は、インターコネクタ下面154に形成された連通孔108の開口縁と、インターコネクタ下面154の外形を形成する周縁とを含む。インターコネクタ凸部分154Bは、インターコネクタ下面154の各縁側に向かうに連れて空気極側フレーム130側(下側)に位置するように傾斜した傾斜面となっている。なお、図8には、インターコネクタ下面154に形成された連通孔108の開口縁付近の部分が拡大して示されている。
また、インターコネクタ150における燃料極側フレーム140側の表面(以下、「インターコネクタ上面156」という)は、インターコネクタ上平坦部分156Aと、インターコネクタ凹部分156Bとを含む。インターコネクタ上平坦部分156Aは、上下方向に直交する面方向に略平行な平坦な部分である。インターコネクタ凹部分156Bは、インターコネクタ上平坦部分156Aよりインターコネクタ上面156の縁側に位置し、かつ、インターコネクタ上平坦部分156Aより燃料極側フレーム140とは反対側(空気極側フレーム130側)に窪んだ部分である。具体的には、インターコネクタ上面156の縁は、インターコネクタ上面156に形成された連通孔108の開口縁と、インターコネクタ上面156の外形を形成する周縁とを含む。インターコネクタ凹部分156Bは、インターコネクタ上面156の縁側に向かうに連れて空気極側フレーム130側(下側)に位置するように傾斜した傾斜面となっている。なお、図8には、インターコネクタ上面156に形成された連通孔108の開口縁付近の部分が拡大して示されている。インターコネクタ150は、特許請求の範囲における第4の導電性部材に相当する。また、インターコネクタ上面156は、特許請求の範囲における第4の表面に相当し、インターコネクタ上平坦部分156Aは、特許請求の範囲における第4の平坦部分に相当し、インターコネクタ凹部分156Bは、特許請求の範囲における凹部分に相当する。
なお、本実施形態では、発電単位102において、燃料極側フレーム140は、セパレータ120に溶接されていると共に、一対のインターコネクタ150の内の下側(燃料極116側)のインターコネクタ150にも溶接されている。すなわち、発電単位102には、燃料極側フレーム140とセパレータ120との間をシールする第1の溶接部410と、燃料極側フレーム140とインターコネクタ150との間をシールする第2の溶接部420とが形成されている。第1の溶接部410および第2の溶接部420は、それぞれ、上下方向視で、薄板部152(環状部分152A、周縁部分152B)と重なる部分に形成されている。第1および第2の溶接部410,420は、例えばレーザ溶接により形成される。第1および第2の溶接部410,420の形成の際には、ビード等の突起部BUが形成され、溶接面の平坦性が低下することがある。しかし、インターコネクタ150の薄板部152によってインターコネクタ150と空気極側フレーム130との間に空間SPが存在する。これにより、突起部BUと空気極側フレーム130との干渉が抑制されるため、空気極側フレーム130によるガスシール性の低下を抑制することができる。
(セパレータ120と燃料極側フレーム140とインターコネクタ150との関係)
セパレータ120と燃料極側フレーム140とインターコネクタ150について、厚さ(上下方向の寸法)が厚いものほど、凹部分の深さ(上下方向の寸法 以下同じ)が深くなっている。具体的には、図6に示すように、セパレータ120の厚さH1と燃料極側フレーム140の厚さH2とインターコネクタ150の厚さH3との大小関係は、次の関係式1で表すことができる。
関係式1:H1 < H3 <H2
また、セパレータ120のセパレータ凹部分123Bの深さD2と、燃料極側フレーム140のフレーム凹部分180Bの深さD4と、インターコネクタ150のインターコネクタ凹部分156Bの深さD6との大小関係は、次の関係式2で表すことができる。
関係式2:D2 < D6 <D4
例えば、セパレータ凹部分123Bの深さD2は、次のように求めることができる。図7に示すにように、Z方向に平行な一の断面(ZX断面)において、セパレータ上面123の縁を通り、かつ、上下方向に延びる直線(図8では連通孔108を構成する内壁面に沿って延びる直線)を仮想直線L1とする。セパレータ上平坦部分123Aを含み、かつ、上下方向に直交する面方向に平行な平面を第1の仮想平面M1とする。セパレータ上面123(セパレータ凹部分123B)と仮想直線L1との交点(セパレータ上面123の傾斜角度が仮想直線L1の傾き角度と一致し始める点)を含み、かつ、上記面方向に平行な平面を第2の仮想平面M2とする。セパレータ凹部分123Bの深さD2は、第1の仮想平面M1と第2の仮想平面M2との上下方向の離間距離である。フレーム凹部分180Bの深さD4およびインターコネクタ凹部分156Bの深さD6も同様にして求めることができる。
次に、セパレータ120について、セパレータ凸部分122Bの上下方向の突出長さD1は、セパレータ凹部分123Bの深さD2より小さい。また、燃料極側フレーム140について、フレーム凸部分148Bの上下方向の突出長さD3は、フレーム凹部分180Bの深さD4より小さい。すなわち、フレーム凸部分148Bの突出長さD3は、フレーム凹部分180Bの深さD4に相当する長さより短い。また、インターコネクタ150について、インターコネクタ凸部分154Bの上下方向の突出長さD5は、インターコネクタ凹部分156Bの深さD6より小さい。すなわち、インターコネクタ凸部分154Bの突出長さD5は、インターコネクタ凹部分156Bの深さD6に相当する長さより短い。
例えば、セパレータ凸部分122Bの上下方向の突出長さD1は、次のようにして求めることができる。図7に示すように、セパレータ下平坦部分122Aを含み、かつ、上下方向に直交する面方向に平行な平面を第3の仮想平面M3とする。セパレータ凸部分122Bの頂点(最も下側に位置する部位)を含み、かつ、上記面方向に平行な平面を第4の仮想平面M4とする。セパレータ凸部分122Bの上下方向の突出長さD1は、第3の仮想平面M3と第4の仮想平面M4との上下方向の離間距離である。フレーム凸部分148Bの上下方向の突出長さD3およびインターコネクタ凸部分154Bの上下方向の突出長さD5も同様にして求めることができる。なお、セパレータ120におけるセパレータ凹部分123Bの深さD2は、0.02(mm)以上であることが好ましく、また、0.08(mm)未満であることが好ましい。また、インターコネクタ150におけるインターコネクタ凹部分156Bの深さD6は、0.08(mm)以上であることが好ましく、また、0.1(mm)未満であることが好ましい。同様に、燃料極側フレーム140におけるフレーム凹部分180Bの深さD4は、0.1(mm)以上であることが好ましい。
また、セパレータ120について、セパレータ120の厚さH1に対する、セパレータ凹部分123Bの深さD2の割合(=(D2/H1)×100)は、20%以上であることが好ましい。同様に、燃料極側フレーム140について、燃料極側フレーム140の厚さH2に対する、フレーム凹部分180Bの深さD4の割合(=(D4/H2)×100)は、7%以上であることが好ましい。また、インターコネクタ150について、インターコネクタ150の厚さH3に対する、インターコネクタ凹部分156Bの深さD6の割合(=(D6/H3)×100)は、0.4%以上であることが好ましい。
また、セパレータ120について、セパレータ120の厚さH1に対する、セパレータ凸部分122Bの上下方向の突出長さD1の割合(=(D1/H1)×100)は、2%以下であることが好ましい。同様に、燃料極側フレーム140について、燃料極側フレーム140の厚さH2に対する、フレーム凸部分148Bの上下方向の突出長さD3の割合(=(D3/H2)×100)は、0.4%以下であることが好ましい。また、インターコネクタ150について、インターコネクタ150の厚さH3に対する、インターコネクタ凸部分154Bの上下方向の突出長さD5の割合(=(D5/H3)×100)は、0.4%以下であることが好ましい。
A−4.燃料電池スタック100の製造方法:
図8は、本実施形態における燃料電池スタック100の製造方法の一例を示すフローチャートであり、図9は、セパレータ120の加工工程を示す説明図である。はじめに、単セル110を公知の方法により作製する(S110)。例えば、燃料極用グリーンシートと電解質層用グリーンシートとを貼り付けて所定の温度(例えば約280℃)で脱脂する。さらに、脱脂後のグリーンシートの積層体を所定の温度(例えば約1350℃)で焼成する。これにより、電解質層112と燃料極116との積層体を得る。次に、空気極形成材料の混合液を、上述した電解質層112と燃料極116との積層体における電解質層112の表面に噴霧塗布し、所定の温度(例えば1100℃)で焼成する。これにより、電解質層112の表面上に空気極114が形成され、その結果、燃料極116と電解質層112と空気極114とを備える単セル110を得る。
次に、上述した構成のセパレータ120と燃料極側フレーム140とインターコネクタ150とを作製する(S120〜S130)。以下、セパレータ120を例に挙げて説明する。まず、セパレータ120の形成材料で形成された金属板を、プレス加工によって打ち抜くことにより、上記孔121と連通孔108とが形成された中間セパレータ120Pを形成する(S120)。図9の上段に示すように、プレス加工により、中間セパレータ120Pの縁側に、打ち抜き方向(下方向)に突出するバリが形成される。このバリの形成により、中間セパレータ120Pのセパレータ下面122に中間セパレータ凸部分122Cが形成されるとともに、セパレータ上面123にセパレータ凹部分123Bが形成される。なお、中間セパレータ凸部分122Cの上下方向の突出長さは、セパレータ凹部分123Bの深さD2と略同一である。S120の工程は、特許請求の範囲における準備工程に相当する。なお、上述した構成のセパレータ120と燃料極側フレーム140とインターコネクタ150とを外部から購入等することによって準備してもよい。
次に、中間セパレータ凸部分122Cに対して面押し加工を施すことにより、中間セパレータ凸部分122Cをセパレータ凸部分122Bに加工する。これにより、図9の下段に示すように、セパレータ120を作製することができる。S130の工程は、特許請求の範囲における加工工程に相当する。
次に、互いに隣り合う2つの導電性部材の一方の凸部分と、他方の凹部分とが互いに対向するように、複数の導電性部材を上下方向に並べて配置する(S140)。具体的には、セパレータ120に単セル110を接合し、その後、図7および図8に示すように、セパレータ120のセパレータ凸部分122Bと、燃料極側フレーム140のフレーム凹部分180Bとが上下方向に対向するように、セパレータ120と燃料極側フレーム140とを重ね合わせる。この際、セパレータ凸部分122Bの上下方向の突出長さD1は、フレーム凹部分180Bの深さD4より小さいため、セパレータ凸部分122Bが燃料極側フレーム140と干渉することを抑制することができる。また、燃料極側フレーム140のフレーム凸部分148Bとインターコネクタ150のインターコネクタ凹部分156Bとが上下方向に対向するように燃料極側フレーム140とインターコネクタ150とを重ね合わせる。この際、フレーム凸部分148Bの上下方向の突出長さD3は、インターコネクタ凹部分156Bの深さD6より小さいため、フレーム凸部分148Bがインターコネクタ150と干渉することを抑制することができる。S140の工程は、特許請求の範囲における配置工程に相当する。
その後、燃料電池スタック100を組み立てる(S150)。具体的には、単セル110とセパレータ120と燃料極側フレーム140とインターコネクタ150とを備える構造体(カセット)を、空気極側フレーム130を介して、複数段、積層し、ボルト22により締結する。以上により、上述した構成の燃料電池スタック100を作製することができる。
A−5.本実施形態の効果:
本実施形態によれば、各導電性部材(セパレータ120と燃料極側フレーム140とインターコネクタ150)における上側の第2の表面は、上側に位置する他の導電性部材における平坦部分(第1の平坦部分)と対向する平坦状の第2の平坦部分と、該他の導電性部材における凸部分と対向し、第2の平坦部分より上側に窪んだ凹部分とを含む。例えば、燃料極側フレーム140におけるフレーム上面180は、フレーム上平坦部分180Aとフレーム凹部分180Bとを含んでおり、フレーム凹部分180Bは、セパレータ120におけるセパレータ凸部分122Bと対向している(図7参照)。これにより、互いに隣り合う導電性部材同士の干渉を抑制することができる。
ここで、導電性部材は、上下方向の厚さが厚いほど、熱膨張量が大きいため、該導電性部材の凹部分の膨張により他の導電性部材の凸部分と干渉し易くなる。これに対して、本実施形態では、燃料極側フレーム140の厚さH2は、セパレータ120の厚さH1より厚い。また、燃料極側フレーム140のフレーム凹部分180Bの深さD4は、セパレータ120のセパレータ凸部分122Bの突出長さD1より大きい。すなわち、フレーム凹部分180Bの深さD4に相当する長さは、セパレータ凸部分122Bの突出長さD1より長い。これにより、本実施形態によれば、フレーム凹部分180Bの深さD4がセパレータ凸部分122Bの突出長さD1と同等以下である構成に比べて、互いに隣り合うセパレータ120と燃料極側フレーム140とが熱膨張に起因して干渉することを抑制することができる。
また、図7に示すように、セパレータ凸部分122Bとフレーム凹部分180Bとの間の上下方向の距離は、セパレータ120および燃料極側フレーム140の縁側に向かうに連れて広がっている。本実施形態によれば、例えば、セパレータ凸部分122Bとフレーム凹部分180Bとの間の上下方向の距離が略均一である構成に比べて、互いに隣り合うセパレータ120と燃料極側フレーム140とが燃料極側フレーム140の熱膨張に起因して干渉することを、より効果的に抑制することができる。
また、導電性部材は、厚いほど、熱膨張量が大きいため、該導電性部材の凹部分の膨張により他の導電性部材の凸部分と干渉し易くなる。例えば、単セル110の発電動作に伴う発熱によって温度が上昇した場合、導電性部材が熱膨張する。ただし、導電性部材における上下方向(厚さ方向)の膨張は、ボルト22による締結によって規制されるため、その分、導電性部材は、燃料電池スタック100の上下方向に直交する面方向に膨張する。その面方向の膨張量は、導電性部材の厚さが厚いほど、大きくなる。燃料極側フレーム140やセパレータ120が膨張すると、それに伴って、フレーム凹部分180Bやセパレータ凹部分123Bが燃料電池スタック100の面方向外側に変位する。上述したように、燃料極側フレーム140の厚さH2は、セパレータ120の厚さH1より厚い。このため、フレーム凹部分180Bの面方向外側への変位量は、セパレータ凹部分123Bの面方向外側への変位量より大きい。従って、フレーム凹部分180Bは、セパレータ凹部分123Bに比べて、他の導電性部材の凸部分と干渉し易くなる。凹部分は深い方が好ましいが、凹部分が深すぎると、比較的に薄い導電性部材(例えばセパレータ120)では所定以上の強度や各機能(空気室166と燃料室176とを区画する機能)を確保できなくなるおそれがある。これに対して、本実施形態の燃料電池スタック100では、セパレータ120と燃料極側フレーム140とインターコネクタ150とについて、厚いものほど、凹部分の深さが深くなっている。これにより、各導電性部材の強度等の低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することができる。
また、凸部分の突出長さが大きいほど、凸部分の先端が鋭角になるため、局所的な酸化によって腐食する可能性が高くなる。例えば発電単位102や燃料電池スタック100の出荷時において、導電性部材が外気に触れることによって酸化することがある。これに対して、本実施形態によれば、各導電性部材について、第1の平坦部分からの凸部分の突出長さが、第2の平坦部分からの凹部分の深さより小さい。例えば、セパレータ120について、セパレータ凸部分122Bの上下方向の突出長さD1は、セパレータ凹部分123Bの深さD2より小さい。これにより、第1の平坦部分からの凸部分の突出長さが、第2の平坦部分からの凹部分の深さと等しいまたは大きい構成である場合に比べて、凸部分の酸化による腐食を抑制することができる。
また、本実施形態によれば、各導電性部材の厚さに対する凹部分の深さの割合は、7%以上である。例えば、セパレータ120について、セパレータ120の厚さH1に対する、セパレータ凹部分123Bの深さD2の割合(=(D2/H1)×100)は、20%以上である。これにより、各導電性部材の厚さに対する凹部分の深さの割合が7%未満である構成に比べて、互いに隣接する導電性部材同士の物理的な干渉を抑制することができる。
また、本実施形態によれば、各導電性部材の厚さに対する凸部分の突出長さの割合は、2%以下である。例えば、セパレータ120について、セパレータ120の厚さH1に対する、セパレータ凸部分122Bの上下方向の突出長さD1の割合(=(D1/H1)×100)は、2%以下である。これにより、各導電性部材の厚さに対する凸部分の突出長さの割合が2%より大きい構成に比べて、セパレータ凸部分122Bの酸化等による腐食を抑制することができる。
B.変形例:
本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
上記実施形態における単セル110または燃料電池スタック100の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態において、セパレータ下面122に形成された連通孔108の開口縁側と、セパレータ下面122の外形を形成する周縁側とのいずれか一方について、凸部分(セパレータ凸部分122B)が形成されており、他方には凸部分が形成されていないとしてもよい。凸部分は、各縁側の全周にわたって形成されているとしてもよいし、各縁側の一部分だけに形成されているとしてもよい。また、セパレータ上面123に形成された連通孔108の開口縁側と、セパレータ上面123の外形を形成する周縁側とのいずれか一方について、凹部分(セパレータ凹部分123B)が形成されており、他方には凹部分が形成されていないとしてもよい。凹部分は、各縁側の全周にわたって形成されているとしてもよいし、各縁側の一部分だけに形成されているとしてもよい。また、上記実施形態とは逆に、セパレータ下面122に凹部分が形成され、セパレータ上面123に凸部分が形成されているとしてもよい。なお、これらの変形例は、燃料極側フレーム140やインターコネクタ150についても同様に適用可能である。また、インターコネクタ150について、薄板部152を有しないとしてもよい。この場合、インターコネクタ150における空気極側フレーム130と接触する下面の縁側に凸部分が形成されているとしてもよい。
また、上記実施形態では、燃料電池スタック100に含まれる導電性部材のうち、セパレータ120と燃料極側フレーム140とインターコネクタ150とについて、厚いものほど、凹部分の深さが深くなっているとしたが、これに限定されず、セパレータ120と燃料極側フレーム140とインターコネクタ150とのうち、互いに上下方向に隣接する1組の導電性部材だけについて、厚いものほど、凹部分の深さが深くなっているとしてもよい。また、セパレータ120と燃料極側フレーム140とインターコネクタ150とにおける厚さの大小関係は、上記実施形態の関係式1とは異なるとしてもよい。また、本発明が適用される導電性部材として、エンドプレート104,106でもよいし、空気極側フレーム130(導電性材料で形成されている場合)でもよい。なお、セパレータ120と燃料極側フレーム140とインターコネクタ150とは、熱膨張係数が互いに異なる材料により形成されている。ここで、熱膨張率が高い材料により形成された導電性部材ほど、凹部分の深さを深くするとしてもよい。上記実施形態では、燃料極側フレーム140の熱膨張率が最も高く、次に、インターコネクタ150の熱膨張率が高く、セパレータ120の熱膨張率が最も低い。これに対して、凹部分の深さに関して上記関係式2が成り立っている。
また、上記導電性部材は、セパレータ120、インターコネクタ150、燃料極側フレーム140やエンドプレート104,106以外の金属部材であるとしてもよい。
上記実施形態において、セパレータ120と燃料極側フレーム140とインターコネクタ150との少なくとも1つについて、第1の平坦部分からの凸部分の突出長さが、第2の平坦部分からの凹部分の深さと同じ、或いは、同長さより大きいとしてもよい。
また、上記実施形態において、燃料電池スタック100に含まれる単セル110の個数は、あくまで一例であり、単セル110の個数は燃料電池スタック100に要求される出力電圧等に応じて適宜決められる。また、上記実施形態における各部材を形成する材料は、あくまで例示であり、各部材が他の材料により形成されてもよい。
また、上記実施形態における燃料電池スタック100の製造方法は、あくまで例示であり、他の製造方法により製造されてもよい。例えば、上記実施形態では、セパレータ120等の凸部分や凹部分はプレス加工により形成するとしたが、これに限らず、例えば切削加工等により形成してもよい。また、上記実施形態において、面取り加工ではなく、例えば切削加工により、中間セパレータ凸部分122Cをセパレータ凸部分122Bに加工するとしてもよい。
また、上記実施形態では、燃料ガスに含まれる水素と酸化剤ガスに含まれる酸素との電気化学反応を利用して発電を行うSOFCを対象としているが、本発明は、水の電気分解反応を利用して水素の生成を行う固体酸化物形電解セル(SOEC)の構成単位である電解単セルや、複数の電解単セルを備える電解セルスタックにも同様に適用可能である。なお、電解セルスタックの構成は、例えば特開2016−81813号公報に記載されているように公知であるためここでは詳述しないが、概略的には上述した実施形態における燃料電池スタック100と同様の構成である。すなわち、上述した実施形態における燃料電池スタック100を電解セルスタックと読み替え、発電単位102を電解セル単位と読み替え、単セル110を電解単セルと読み替えればよい。ただし、電解セルスタックの運転の際には、空気極114がプラス(陽極)で燃料極116がマイナス(陰極)となるように両電極間に電圧が印加されると共に、連通孔108を介して原料ガスとしての水蒸気が供給される。これにより、各電解単セルにおいて水の電気分解反応が起こり、燃料室176で水素ガスが発生し、連通孔108を介して電解セルスタックの外部に水素が取り出される。このような構成の電解セルスタックにおいても、該電解セルスタックを構成する複数の導電性部材について、厚いものほど、凹部分の深さを深くすれば、各導電性部材の強度等の低下を抑制しつつ、互いに隣り合う導電性部材同士の干渉を抑制することができる。
22:ボルト 24:ナット 26:絶縁シート 27:ガス通路部材 28:本体部 29:分岐部 100:燃料電池スタック 102:発電単位 104,106:エンドプレート 108:連通孔 110:単セル 112:電解質層 114:空気極 116:燃料極 120:セパレータ 120P:中間セパレータ 121:孔 122:セパレータ下面 122A:セパレータ下平坦部分 122B:セパレータ凸部分 122C:中間セパレータ凸部分 123:セパレータ上面 123A:セパレータ上平坦部分 123B:セパレータ凹部分 124:接合部 130:空気極側フレーム 131:孔 132:酸化剤ガス供給連通孔 133:酸化剤ガス排出連通孔 134:空気極側集電体 135:集電体要素 140:燃料極側フレーム 141:孔 142:燃料ガス供給連通孔 143:燃料ガス排出連通孔 144:燃料極側集電体 145:電極対向部 146:インターコネクタ対向部 147:連接部 148:フレーム下面 148A:フレーム下平坦部分 148B:フレーム凸部分 149:スペーサー 150:インターコネクタ 152:薄板部 152A:環状部分 152B:周縁部分 154:インターコネクタ下面 154A:インターコネクタ下平坦部分 154B:インターコネクタ凸部分 156:インターコネクタ上面 156A:インターコネクタ上平坦部分 156B:インターコネクタ凹部分 161:酸化剤ガス導入マニホールド 162:酸化剤ガス排出マニホールド 166:空気室 171:燃料ガス導入マニホールド 172:燃料ガス排出マニホールド 176:燃料室 180:フレーム上面 180A:フレーム上平坦部分 180B:フレーム凹部分 410,420:溶接部 BU:突起部 D1:突出長さ D2:深さ D3:突出長さ D4:深さ D5:突出長さ D6:深さ FG:燃料ガス FOG:燃料オフガス H1〜H3:厚さ L1:仮想直線 M1:第1の仮想平面 M2:第2の仮想平面 M3:第3の仮想平面 M4:第4の仮想平面 OG:酸化剤ガス OOG:酸化剤オフガス SP:空間

Claims (10)

  1. 電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含み、前記第1の方向に並べて配置された複数の単セルと、
    前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備え、
    前記複数の導電性部材は、
    前記第1の方向の一方側の第1の表面が、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含む第1の導電性部材と、
    前記第1の導電性部材に対して前記第1の方向の前記一方側に位置する第2の導電性部材であって、前記第1の導電性部材の前記第1の表面に対向する第2の表面が、平坦状の第2の平坦部分と、前記第1の導電性部材の前記凸部分と対向し、前記第2の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む第2の導電性部材と、を含んでおり、
    前記第2の導電性部材の前記第1の方向の厚さは、前記第1の導電性部材の前記第1の方向の厚さより厚く、かつ、前記第2の導電性部材における前記第2の平坦部分からの前記凹部分の前記第1の方向の深さ寸法は、前記第1の導電性部材における前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さより大きい、
    ことを特徴とする、電気化学反応セルスタック。
  2. 請求項1に記載の電気化学反応セルスタックにおいて、
    前記第1の導電性部材の前記凸部分と前記第2の導電性部材の前記凹部分との間の前記第1の方向の距離は、前記第1の表面の縁側に向かうに連れて広がっている、
    ことを特徴とする、電気化学反応セルスタック。
  3. 請求項1または請求項2に記載の電気化学反応セルスタックにおいて、
    前記複数の導電性部材は、
    前記第1の方向の一方側の第3の表面が、平坦状の第3の平坦部分と、前記第3の平坦部分より前記第3の表面の縁側に位置し、かつ、前記第3の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含む第3の導電性部材と、
    前記第3の導電性部材に対して前記第1の方向の前記一方側に位置する第4の導電性部材であって、前記第3の導電性部材の前記第3の表面に対向する第4の表面が、平坦状の第4の平坦部分と、前記第3の導電性部材の前記凸部分と対向し、前記第4の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む第4の導電性部材と、を含んでおり、
    前記第2の導電性部材と前記第4の導電性部材とは、前記第1の方向の厚さが互いに異なり、かつ、前記第1の方向の厚さが厚いものほど、前記凹部分の前記第1の方向の深さ寸法が大きい、
    ことを特徴とする、電気化学反応セルスタック。
  4. 請求項1から請求項3のいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記第2の導電性部材の前記第1の方向の厚さに対する、前記凹部分の前記第1の方向の深さ寸法の割合は、7%以上である、
    ことを特徴とする、電気化学反応セルスタック。
  5. 請求項1から請求項4のいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記第1の導電性部材の前記第1の方向の厚さに対する、前記凸部分の前記第1の方向の突出長さの割合は、2%以下である、
    ことを特徴とする、電気化学反応セルスタック。
  6. 請求項1から請求項5のいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記第1の導電性部材には、前記第1の方向に延びるガス流路が形成されており、
    前記第1の表面の縁側は、前記第1の表面のうち、前記ガス流路に面する縁側である、
    ことを特徴とする、電気化学反応セルスタック。
  7. 請求項1から請求項6のいずれか一項に記載の電気化学反応セルスタックにおいて、
    前記電解質層は、固体酸化物を含む、
    ことを特徴とする、電気化学反応セルスタック。
  8. 電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含む単セルと、
    前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備え、
    前記複数の導電性部材は、
    貫通孔が形成され、前記貫通孔を取り囲む部分が前記単セルの周縁部と接合され、前記空気極に面する空気室と前記燃料極に面する燃料室とを区画するセパレータと、
    前記単セルの前記空気極および前記燃料極の一方側に配置されたインターコネクタと、
    前記セパレータと前記インターコネクタとの間に配置されたフレーム部材と、を含むインターコネクタ−電気化学反応単セル複合体において、
    前記セパレータにおける前記フレーム部材側の第1の表面は、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記フレーム部材側に突出する凸部分と、を含み、
    前記フレーム部材における前記セパレータ側の第2の表面は、平坦状の第2の平坦部分と、前記セパレータの前記凸部分と対向し、前記第2の平坦部分より前記セパレータとは反対側に窪んだ凹部分と、を含み、
    前記フレーム部材の前記第1の方向の厚さは、前記セパレータの前記第1の方向の厚さより厚く、かつ、前記フレーム部材における前記第2の平坦部分からの前記凹部分の前記第1の方向の深さ寸法は、前記セパレータにおける前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さより大きい、
    ことを特徴とする、インターコネクタ−電気化学反応単セル複合体。
  9. 請求項8に記載のインターコネクタ−電気化学反応単セル複合体において、
    前記電解質層は、固体酸化物を含む、
    ことを特徴とする、インターコネクタ−電気化学反応単セル複合体。
  10. 電解質層と前記電解質層を挟んで第1の方向に互いに対向する空気極および燃料極とを含み、前記第1の方向に並べて配置された複数の単セルと、前記第1の方向に並べて配置され、導電性を有し、かつ、平板状の複数の導電性部材と、を備える電気化学反応セルスタックの製造方法において、
    プレス加工により、前記第1の方向の一方側の第1の表面が、平坦状の第1の平坦部分と、前記第1の平坦部分より前記第1の表面の縁側に位置し、かつ、前記第1の平坦部分より前記第1の方向の前記一方側に突出する凸部分と、を含み、前記第1の方向の他方側の第2の表面が、平坦状の第2の平坦部分と、前記第2の平坦部分より前記第1の方向の前記一方側に窪んだ凹部分と、を含む複数の導電性部材をそれぞれ準備する準備工程と、
    前記各導電性部材について、前記第1の平坦部分からの前記凸部分の前記第1の方向の突出長さが短くなるように前記凸部分を加工する加工工程と、
    互いに隣り合う2つの導電性部材の一方の前記第1の表面の前記凸部分と、他方の前記第2の表面の前記凹部分とが互いに対向するように、前記複数の導電性部材を前記第1の方向に並べて配置する配置工程と、を含むことを特徴とする、電気化学反応セルスタックの製造方法。
JP2018541715A 2017-06-06 2018-05-31 電気化学反応セルスタック、インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタックの製造方法 Active JP6621541B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017111362 2017-06-06
JP2017111362 2017-06-06
PCT/JP2018/020957 WO2018225617A1 (ja) 2017-06-06 2018-05-31 電気化学反応セルスタック、インターコネクタ-電気化学反応単セル複合体および電気化学反応セルスタックの製造方法

Publications (2)

Publication Number Publication Date
JPWO2018225617A1 true JPWO2018225617A1 (ja) 2019-06-27
JP6621541B2 JP6621541B2 (ja) 2019-12-18

Family

ID=64566137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018541715A Active JP6621541B2 (ja) 2017-06-06 2018-05-31 電気化学反応セルスタック、インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタックの製造方法

Country Status (6)

Country Link
US (1) US11271221B2 (ja)
EP (1) EP3637517A4 (ja)
JP (1) JP6621541B2 (ja)
KR (1) KR102214589B1 (ja)
CN (1) CN110710038B (ja)
WO (1) WO2018225617A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6917416B2 (ja) * 2019-07-26 2021-08-11 森村Sofcテクノロジー株式会社 電気化学反応セルスタック

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032559A (ja) * 2013-08-06 2015-02-16 日本特殊陶業株式会社 固体酸化物形燃料電池スタック及びセパレータ付インターコネクタ
JP2015032477A (ja) * 2013-08-02 2015-02-16 株式会社日本自動車部品総合研究所 燃料電池セルスタック
JP2015088265A (ja) * 2013-10-29 2015-05-07 日本特殊陶業株式会社 セパレータ付燃料電池単セル,燃料電池スタック,およびその製造方法
JP2015153672A (ja) * 2014-02-18 2015-08-24 日本特殊陶業株式会社 燃料電池スタック
WO2017073530A1 (ja) * 2015-10-28 2017-05-04 日本特殊陶業株式会社 インターコネクタ-電気化学反応単セル複合体、電気化学反応セルスタックおよびインターコネクタ-電気化学反応単セル複合体の製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10044703B4 (de) * 2000-09-09 2013-10-17 Elringklinger Ag Brennstoffzelleneinheit, Brennstoffzellenblockverbund und Verfahren zum Herstellen eines Brennstoffzellenblockverbunds
DE10135334B4 (de) * 2001-07-19 2012-09-06 Elringklinger Ag Brennstoffzelleneinheit und Brennstoffzellenblockverbund
US6875533B2 (en) 2001-07-19 2005-04-05 Elringklinger Ag Fuel cell unit and composite block of fuel cells
JP3857960B2 (ja) 2002-02-22 2006-12-13 日本特殊陶業株式会社 固体電解質型燃料電池
US7803493B2 (en) * 2004-09-29 2010-09-28 General Electric Company Fuel cell system with separating structure bonded to electrolyte
GB2437767B (en) * 2006-05-05 2010-11-17 Intelligent Energy Ltd Fuel cell fluid distribution plates
EP2306567B1 (en) * 2008-05-28 2014-03-26 Panasonic Corporation Fuel cell
JP5708923B2 (ja) * 2011-04-20 2015-04-30 日本特殊陶業株式会社 燃料電池セル及び燃料電池
JP5819099B2 (ja) * 2011-05-11 2015-11-18 日本特殊陶業株式会社 固体酸化物形燃料電池
CN103907233B (zh) * 2011-11-02 2016-05-04 日本特殊陶业株式会社 燃料电池
US10224553B2 (en) * 2013-02-07 2019-03-05 Ngk Spark Plug Co., Ltd. Fuel cell comprising connection members having different thickness for each of cell units and method for manufacturing same
JP6100291B2 (ja) 2014-01-23 2017-03-22 日本特殊陶業株式会社 燃料電池カセット及びその製造方法、燃料電池スタック
JP6385788B2 (ja) 2014-10-20 2018-09-05 株式会社東芝 電気化学セルスタック、および電力システム
DE102015222245A1 (de) * 2015-11-11 2017-05-11 Volkswagen Aktiengesellschaft Polarplatte für einen Brennstoffzellenstapel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032477A (ja) * 2013-08-02 2015-02-16 株式会社日本自動車部品総合研究所 燃料電池セルスタック
JP2015032559A (ja) * 2013-08-06 2015-02-16 日本特殊陶業株式会社 固体酸化物形燃料電池スタック及びセパレータ付インターコネクタ
JP2015088265A (ja) * 2013-10-29 2015-05-07 日本特殊陶業株式会社 セパレータ付燃料電池単セル,燃料電池スタック,およびその製造方法
JP2015153672A (ja) * 2014-02-18 2015-08-24 日本特殊陶業株式会社 燃料電池スタック
WO2017073530A1 (ja) * 2015-10-28 2017-05-04 日本特殊陶業株式会社 インターコネクタ-電気化学反応単セル複合体、電気化学反応セルスタックおよびインターコネクタ-電気化学反応単セル複合体の製造方法

Also Published As

Publication number Publication date
CN110710038A (zh) 2020-01-17
WO2018225617A1 (ja) 2018-12-13
KR20190140024A (ko) 2019-12-18
US11271221B2 (en) 2022-03-08
KR102214589B1 (ko) 2021-02-09
EP3637517A4 (en) 2021-03-03
EP3637517A1 (en) 2020-04-15
US20200099065A1 (en) 2020-03-26
JP6621541B2 (ja) 2019-12-18
CN110710038B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
JP6868051B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6445182B2 (ja) インターコネクタ−電気化学反応単セル複合体、電気化学反応セルスタックおよびインターコネクタ−電気化学反応単セル複合体の製造方法
JP6917416B2 (ja) 電気化学反応セルスタック
JP2019200877A (ja) 電気化学反応単位および電気化学反応セルスタック
JP6667278B2 (ja) 電気化学反応セルスタック
JP6835768B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP6621541B2 (ja) 電気化学反応セルスタック、インターコネクタ−電気化学反応単セル複合体および電気化学反応セルスタックの製造方法
JP6893126B2 (ja) 電気化学反応セルスタック
JP6760866B2 (ja) 電気化学反応セルスタック
JP6756549B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7210508B2 (ja) 電気化学反応セルスタック
JP6945035B1 (ja) 電気化学反応セルスタック
JP6873944B2 (ja) 電気化学反応セルスタック
JP7082954B2 (ja) 電気化学反応セルスタック
JP6867852B2 (ja) 集電部材−電気化学反応単セル複合体および電池化学反応セルスタック
JP6773472B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP2021044178A (ja) 電気化学反応セルスタック
JP2021012797A (ja) 電気化学反応セルスタック
JP6773470B2 (ja) 電気化学反応単位および電気化学反応セルスタック
JP7071422B2 (ja) 電気化学反応セルスタック
JP7023898B2 (ja) 電気化学反応セルスタック
JP7042783B2 (ja) 電気化学反応セルスタック
JP7049781B2 (ja) 導電性部材、電気化学反応単位、および、電気化学反応セルスタック
JP6959039B2 (ja) 電気化学反応単位、電気化学反応セルスタック、および、電気化学反応単位の製造方法
JP6827672B2 (ja) 電気化学反応セルスタック

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191119

R150 Certificate of patent or registration of utility model

Ref document number: 6621541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250