WO2018221700A1 - フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置 - Google Patents

フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置 Download PDF

Info

Publication number
WO2018221700A1
WO2018221700A1 PCT/JP2018/021088 JP2018021088W WO2018221700A1 WO 2018221700 A1 WO2018221700 A1 WO 2018221700A1 JP 2018021088 W JP2018021088 W JP 2018021088W WO 2018221700 A1 WO2018221700 A1 WO 2018221700A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst structure
fischer
metal
tropsch synthesis
carrier
Prior art date
Application number
PCT/JP2018/021088
Other languages
English (en)
French (fr)
Inventor
禎宏 加藤
將行 福嶋
尋子 高橋
祐一郎 馬場
可織 関根
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN201880035946.8A priority Critical patent/CN110691648A/zh
Priority to JP2019521328A priority patent/JP7361604B2/ja
Priority to EP18810101.8A priority patent/EP3632546A4/en
Publication of WO2018221700A1 publication Critical patent/WO2018221700A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • B01J29/0352Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites containing iron group metals, noble metals or copper
    • B01J29/0356Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/04Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
    • C07C1/06Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen in the presence of organic compounds, e.g. hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/334Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing molecular sieve catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/10Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing iron group metals, noble metals or copper
    • B01J29/14Iron group metals or copper
    • B01J29/146Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/66Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing iron group metals, noble metals or copper
    • B01J29/68Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7669MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3

Definitions

  • the present invention relates to a Fischer-Tropsch synthesis catalyst structure, a method for producing the same, a method for producing liquid hydrocarbons using the catalyst structure, and a hydrocarbon production apparatus having the catalyst structure.
  • Carbon monoxide gas (CO) and hydrogen gas (H 2 ) are the main components as a method for producing hydrocarbon compounds used as raw materials for synthetic fuels and synthetic fuels that are alternative fuels for petroleum.
  • a Fischer-Tropsch synthesis reaction (hereinafter also referred to as “FT synthesis reaction”) in which hydrocarbons, in particular liquid hydrocarbons, are synthesized from synthesis gas using a catalytic reaction is known.
  • FT synthesis reaction A Fischer-Tropsch synthesis reaction in which hydrocarbons, in particular liquid hydrocarbons, are synthesized from synthesis gas using a catalytic reaction.
  • Patent Document 1 discloses a catalyst in which an active metal such as cobalt or iron is supported on a support such as silica or alumina
  • Patent Document 2 discloses cobalt. Catalysts containing zirconium, titanium or titanium and silica are disclosed.
  • the catalyst used for the FT synthesis reaction is, for example, a catalyst in which cobalt oxide and / or ruthenium oxide is supported by impregnating a carrier such as silica or alumina with a cobalt salt, a ruthenium salt or the like and firing it. (Unreduced catalyst).
  • a carrier such as silica or alumina
  • a cobalt salt such as a ruthenium salt or the like
  • firing it unreduced catalyst.
  • the catalyst is brought into contact with a reducing gas such as hydrogen gas for reduction treatment.
  • a reducing gas such as hydrogen gas for reduction treatment.
  • a sol-gel method in which metal fine particles are supported in a highly dispersed manner is known.
  • active metal species are uniformly introduced at an atomic level at the stage of synthesizing a metal oxide as a support. Since the active metal species of the supported metal catalyst are included in the lattice of the metal oxide as the support in a very high dispersion, they do not easily aggregate in various treatments and reactions. However, since the active metal species is strongly bound to the support, it is difficult to activate the catalyst prior to the reaction, and there is a problem that sufficient catalytic activity cannot be obtained.
  • the catalyst activity decreases with a decrease in the effective surface area of the catalyst, so that the life of the catalyst itself becomes shorter than usual. For this reason, the catalyst itself must be replaced and regenerated in a short period of time, and there is a problem that the replacement work is complicated and resource saving cannot be achieved.
  • JP-A-4-227847 JP 59-102440 A International Publication No. 2015/072573 JP 2000-70720 A
  • An object of the present invention is to prevent aggregation of metal fine particles and to suppress a decrease in catalytic activity to realize a long life, and does not require complicated replacement work and can save resources.
  • An object of the present invention is to provide a Fischer-Tropsch synthesis catalyst structure, a production method thereof, a production method of liquid hydrocarbons using the catalyst structure, and a hydrocarbon production apparatus having the catalyst structure.
  • the Fischer-Tropsch synthesis catalyst structure has a porous structure carrier composed of a zeolite-type compound, and at least one inherent in the carrier. And the carrier has a passage communicating with each other, and the metal particulate is present in at least the passage of the carrier, thereby preventing aggregation of the metal particulates and catalytic activity. It has been found that a catalyst structure capable of suppressing the decrease in the life and achieving a long life can be obtained, and the present invention has been completed based on such knowledge.
  • the gist configuration of the present invention is as follows.
  • a porous support composed of a zeolite-type compound; At least one fine metal particle inherent in the carrier; With The carrier has passages communicating with each other; The Fischer-Tropsch synthesis catalyst structure, wherein the metal fine particles are present in at least the passage of the carrier.
  • the passage includes any one of a one-dimensional hole, a two-dimensional hole, and a three-dimensional hole defined by a skeleton structure of the zeolite-type compound, and the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
  • Tropsch synthesis catalyst structure [4] The Fischer-based material according to [2] or [3], wherein an average particle diameter of the metal fine particles is larger than an average inner diameter of the passage and equal to or smaller than an inner diameter of the enlarged diameter portion.
  • the metal element (M) of the metal fine particles is contained in an amount of 0.5 to 2.5% by mass with respect to the Fischer-Tropsch synthesis catalyst structure.
  • the passage includes any one of a one-dimensional hole, a two-dimensional hole, and a three-dimensional hole defined by a skeleton structure of the zeolite-type compound, and the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
  • the average inner diameter of the passage is 0.1 nm to 1.5 nm
  • the content of the at least one metal fine particle present in the carrier is larger than the content of the at least one other metal fine particle held on the outer surface of the carrier.
  • a process for producing a Fischer-Tropsch synthesis catalyst structure comprising: [18] The Fischer-based material according to [17], wherein a nonionic surfactant is added in an amount of 50 to 500% by mass with respect to the precursor material (A) before the firing step.
  • a method for producing a Tropsch synthesis catalyst structure comprising: [18] The Fischer-based material according to [17], wherein a nonionic surfactant is added in an amount of 50 to 500% by mass with respect to the precursor material (A) before the firing step.
  • the precursor material (A) is impregnated with the metal-containing solution by adding the metal-containing solution to the precursor material (A) in a plurality of times.
  • the amount of the metal-containing solution added to the precursor material (A) is changed to the precursor material.
  • a method for producing a liquid hydrocarbon using a catalyst to synthesize a liquid hydrocarbon from carbon monoxide and hydrogen comprising: A porous structure carrier composed of a zeolite-type compound; And at least one metal fine particle inherent in the carrier, The carrier has passages communicating with each other;
  • the method for producing a liquid hydrocarbon characterized in that the metal fine particles include a Fischer-Tropsch synthesis catalyst structure existing in at least a diameter-enlarged portion of the passage of the carrier.
  • the present invention it is possible to prevent agglomeration between metal fine particles, to suppress a decrease in catalytic activity, to realize a long life, and to save resources without requiring complicated replacement work. It is possible to provide a Fischer-Tropsch synthesis catalyst structure, a production method thereof, a hydrocarbon production method using the catalyst structure, and a hydrocarbon production apparatus having the catalyst structure.
  • FIG. 1 is a schematic view showing the internal structure of a Fischer-Tropsch synthesis catalyst structure according to an embodiment of the present invention.
  • FIG. 1 (a) is a perspective view (partially in cross section).
  • FIG. 1B is a partially enlarged sectional view.
  • 2 is a partially enlarged sectional view for explaining an example of the function of the Fischer-Tropsch synthetic catalyst structure of FIG. 1,
  • FIG. 2 (a) is a sieving function, and
  • FIG. 2 (b) is a catalyst function.
  • FIG. FIG. 3 is a flowchart showing an example of a method for producing the Fischer-Tropsch synthesis catalyst structure of FIG.
  • FIG. 4 is a schematic view showing a modification of the Fischer-Tropsch synthesis catalyst structure of FIG.
  • FIG. 1 is a diagram schematically showing a configuration of a Fischer-Tropsch synthesis catalyst structure (hereinafter also simply referred to as “catalyst structure”) according to an embodiment of the present invention, and FIG. (B) is a partially enlarged sectional view. Note that the catalyst structure in FIG. 1 shows an example, and the shape, dimensions, etc. of each component according to the present invention are not limited to those in FIG.
  • the catalyst structure 1 includes a porous structure carrier 10 composed of a zeolite-type compound and at least one metal fine particle 20 present in the carrier 10.
  • the plurality of metal fine particles 20, 20,... are enclosed within the porous structure of the carrier 10.
  • the metal fine particle 20 is a catalyst material having catalytic ability (catalytic activity). Details of the metal fine particles will be described later.
  • the metal fine particles 20 may be particles containing a metal oxide, a metal alloy, or a composite material thereof.
  • the carrier 10 has a porous structure and, as shown in FIG. 1 (b), preferably has a plurality of holes 11a, 11a,.
  • the metal fine particles 20 are present in at least the passage 11 of the carrier 10, and are preferably held in at least the passage 11 of the carrier 10.
  • the movement of the metal fine particles 20 in the carrier 10 is regulated, and the aggregation of the metal fine particles 20 and 20 is effectively prevented.
  • a reduction in the effective surface area of the metal fine particles 20 can be effectively suppressed, and the catalytic activity of the metal fine particles 20 lasts for a long time. That is, according to the catalyst structure 1, it is possible to suppress a decrease in the catalyst activity due to the aggregation of the metal fine particles 20, and to extend the life of the catalyst structure 1. Further, by extending the life of the catalyst structure 1, the replacement frequency of the catalyst structure 1 can be reduced, the amount of used catalyst structure 1 discarded can be greatly reduced, and resource saving can be achieved. .
  • the catalyst structure when used in a fluid (for example, heavy oil or a reformed gas such as NOx), there is a possibility of receiving an external force from the fluid.
  • a fluid for example, heavy oil or a reformed gas such as NOx
  • the metal fine particles are only held in the attached state on the outer surface of the carrier 10, there is a problem that they are easily detached from the outer surface of the carrier 10 due to the influence of the external force from the fluid.
  • the metal fine particles 20 are present in at least the passage 11 of the carrier 10, so that the metal fine particles 20 are not easily detached from the carrier 10 even when affected by an external force due to the fluid.
  • the fluid flows into the passage 11 from the hole 11a of the carrier 10, so that the speed of the fluid flowing in the passage 11 depends on the flow path resistance (friction force).
  • This is considered to be slower than the speed of the fluid flowing on the outer surface of the carrier 10.
  • the pressure that the metal fine particles 20 held in the passage 11 receive from the fluid is lower than the pressure that the metal fine particles receive from the fluid outside the carrier 10. Therefore, it is possible to effectively suppress the separation of the metal fine particles 20 existing in the carrier 10, and it is possible to stably maintain the catalytic activity of the metal fine particles 20 for a long period of time.
  • the flow path resistance as described above is considered to increase as the passage 11 of the carrier 10 has a plurality of bends and branches and the inside of the carrier 10 has a more complicated and three-dimensional structure. .
  • the passage 11 includes any one of a one-dimensional hole, a two-dimensional hole, and a three-dimensional hole defined by a skeleton structure of the zeolite type compound, and the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
  • the metal fine particles 20 are present at least in the diameter-expanded portion 12, and are at least included in the diameter-expanded portion 12. It is more preferable.
  • the enlarged diameter part 12 is connecting the some hole 11a and 11a which comprise either of the said one-dimensional hole, the said two-dimensional hole, and the said three-dimensional hole.
  • the one-dimensional hole referred to here is a tunnel-type or cage-type hole forming a one-dimensional channel, or a plurality of tunnel-type or cage-type holes forming a plurality of one-dimensional channels (a plurality of holes).
  • a two-dimensional hole refers to a two-dimensional channel in which a plurality of one-dimensional channels are two-dimensionally connected.
  • a three-dimensional hole refers to a three-dimensional channel in which a plurality of one-dimensional channels are three-dimensionally connected. Point to.
  • Inclusion refers to a state in which the metal fine particles 20 are encapsulated in the carrier 10. At this time, the metal fine particles 20 and the carrier 10 are not necessarily in direct contact with each other, and another substance (for example, a surfactant or the like) is interposed between the metal fine particles 20 and the carrier 10. Thus, the metal fine particles 20 may be indirectly held on the carrier 10.
  • FIG. 1B shows a case where the metal fine particles 20 are enclosed by the enlarged diameter portion 12, the present invention is not limited to this configuration, and the metal fine particles 20 are partially formed of the enlarged diameter portion 12. You may hold
  • the passage 11 is formed in a three-dimensional manner inside the carrier 10 including a branch portion or a merge portion, and the enlarged diameter portion 12 is preferably provided in the branch portion or the merge portion of the passage 11. .
  • the average inner diameter DF of the passage 11 formed in the carrier 10 is calculated from the average value of the short diameter and the long diameter of the hole 11a constituting any one of the one-dimensional hole, the two-dimensional hole, and the three-dimensional hole.
  • the thickness is 0.1 nm to 1.5 nm, preferably 0.5 nm to 0.8 nm.
  • the inner diameter DE of the enlarged diameter portion 12 is, for example, 0.5 nm to 50 nm, preferably 1.1 nm to 40 nm, more preferably 1.1 nm to 3.3 nm.
  • the inner diameter D E of the enlarged diameter section 12 depends on for example the pore size of which will be described later precursor material (A), and the average particle diameter D C of the fine metal particles 20 to be inclusion.
  • the inner diameter DE of the enlarged diameter portion 12 is a size that can enclose the metal fine particles 20.
  • the carrier 10 is composed of a zeolite type compound.
  • Zeolite type compounds include, for example, zeolites (aluminosilicates), cation exchange zeolites, silicate compounds such as silicalite, zeolite related compounds such as aluminoborate, aluminoarsenate, germanate, molybdenum phosphate, etc. And phosphate-based zeolite-like substances.
  • the zeolite type compound is preferably a silicate compound.
  • the framework structure of zeolite type compounds is FAU type (Y type or X type), MTW type, MFI type (ZSM-5), FER type (ferrierite), LTA type (A type), MWW type (MCM-22) , MOR type (mordenite), LTL type (L type), BEA type (beta type), etc., preferably MFI type, more preferably ZSM-5.
  • a plurality of pores having a pore size corresponding to each skeleton structure are formed.
  • the maximum pore size of the MFI type is 0.636 nm (6.36 mm), and the average pore size is 0.560 nm (5.60 mm). is there.
  • the average particle diameter D C of the fine metal particles 20 have an average internal diameter D F of the preferred path 11 Larger than the inner diameter D E of the enlarged diameter portion 12 (D F ⁇ D C ⁇ D E ).
  • Such metal fine particles 20 are preferably present in the enlarged diameter portion 12 in the passage 11, and movement of the metal fine particles 20 in the carrier 10 is restricted. Therefore, even when the metal fine particle 20 receives an external force from the fluid, the movement of the metal fine particle 20 in the carrier 10 is suppressed, and the diameter-enlarged portions 12, 12,. It is possible to effectively prevent the metal fine particles 20, 20,.
  • the average particle diameter D C of the fine metal particles 20, in either case of the primary particles and the secondary particles is preferably 0.08 nm ⁇ 30 nm, more preferably less than than 0.1 nm 25 nm, more preferably It is 0.4 nm to 11.0 nm, and particularly preferably 0.8 nm to 2.7 nm.
  • the ratio of the average particle diameter D C of the fine metal particles 20 to the average inner diameter D F of the passage 11 (D C / D F) is preferably 0.05 to 300, more preferably be 0.1 to 30 More preferably, it is 1.1 to 30, and particularly preferably 1.4 to 3.6.
  • the metal element (M) of the metal fine particles 20 is preferably contained in an amount of 0.5 to 2.5% by mass with respect to the catalyst structure 1, and 0.5 to 1 with respect to the catalyst structure 1. More preferably, it is contained at 5% by mass.
  • the content (mass%) of the Co element is represented by ⁇ (mass of Co element) / (mass of all elements of the catalyst structure 1) ⁇ ⁇ 100. .
  • the metal fine particles may be composed of a metal that is not oxidized, and may be composed of, for example, a single metal or a mixture of two or more metals.
  • “metal” (as a material) constituting the metal fine particles includes a single metal containing one kind of metal element (M), a metal alloy containing two or more kinds of metal elements (M), and Is a generic term for metals containing one or more metal elements.
  • metals examples include platinum (Pt), palladium (Pd), ruthenium (Ru), nickel (Ni), cobalt (Co), molybdenum (Mo), tungsten (W), iron (Fe), chromium ( Cr), cerium (Ce), copper (Cu), magnesium (Mg), aluminum (Al), and the like, preferably any one or more of the above, ruthenium, nickel, iron, cobalt More preferably, nickel, iron, and cobalt are more preferable, and iron and cobalt are particularly preferable.
  • the ratio of the silicon (Si) constituting the carrier 10 to the metal element (M) constituting the metal fine particles 20 is preferably 10 to 1000, and preferably 50 to 200. Is more preferable. If the ratio is greater than 1000, the activity of the metal fine particles as a catalyst substance may not be sufficiently obtained, such as low activity. On the other hand, if the ratio is less than 10, the ratio of the metal fine particles 20 becomes too large, and the strength of the carrier 10 tends to decrease.
  • the metal fine particles 20 referred to here are fine particles held or supported inside the carrier 10 and do not include metal fine particles attached to the outer surface of the carrier 10.
  • the catalyst structure 1 includes the support 10 having a porous structure and at least one metal fine particle 20 present in the support.
  • the catalyst structure 1 exhibits the catalytic ability of the metal fine particles 20 when the metal fine particles 20 existing in the carrier come into contact with the fluid.
  • the fluid that has contacted the outer surface 10a of the catalyst structure 1 flows into the carrier 10 through the holes 11a formed in the outer surface 10a, is guided into the passage 11, and moves through the passage 11. Then, it goes out of the catalyst structure 1 through another hole 11a.
  • the catalytic reaction by the metal fine particles 20 occurs due to contact with the metal fine particles 20 existing in the passage 11.
  • the catalyst structure 1 has molecular sieving ability because the carrier has a porous structure.
  • the metal fine particles 20 are included in the diameter-enlarged portion 12 of the passage 11.
  • the average particle diameter D C of the metal fine particles is larger than the average inner diameter D F of the passage 11 and smaller than the inner diameter D E of the expanded diameter portion 12 (D F ⁇ D C ⁇ D E )
  • the metal fine particles and the expanded particles are expanded.
  • a small passage 13 is formed with the diameter portion 12. Therefore, as shown by the arrow in FIG. 2B, the fluid that has entered the small passage 13 comes into contact with the metal fine particles. Since each metal fine particle is enclosed by the enlarged diameter part 12, the movement in the support
  • the molecules that have entered the passage 11 come into contact with the metal fine particles 20, the molecules (substance to be modified) are modified by a catalytic reaction.
  • the catalyst structure 1 for example, hydrocarbon (except CH 4 ), preferably C 5 to C 20 carbonization, using a mixed gas mainly composed of hydrogen and carbon monoxide as a raw material.
  • Hydrogen particularly liquid hydrocarbons (C 5 -C 16 hydrocarbons) that are liquid at room temperature can be produced.
  • This catalytic reaction is performed at a high temperature of, for example, 180 ° C. to 350 ° C.
  • the metal fine particles 20 are inherent in the carrier 10, they are not easily affected by heating.
  • the metal fine particles 20 are present in the enlarged diameter portion 12, the movement of the metal fine particles 20 within the carrier 10 is further restricted, and aggregation of the metal fine particles 20 (sintering) is further suppressed. As a result, a decrease in the catalyst activity is further suppressed, and a longer life of the catalyst structure 1 can be realized. Further, by using the catalyst structure 1 for a long period of time, even if the catalytic activity is reduced, the metal fine particles 20 are not bonded to the carrier 10, so that the activation treatment (reduction treatment) of the metal fine particles 20 is easily performed. be able to.
  • FIG. 3 is a flowchart showing a method for manufacturing the catalyst structure 1 of FIG.
  • Step S1 Preparation process
  • a precursor material (A) for obtaining a porous support composed of a zeolite-type compound is prepared.
  • the precursor material (A) is preferably a regular mesoporous material, and can be appropriately selected according to the type (composition) of the zeolite-type compound constituting the support of the catalyst structure.
  • the regular mesoporous material when the zeolitic compound constituting the support of the catalyst structure is a silicate compound, the regular mesoporous material has a one-dimensional, two-dimensional or three-dimensional pore having a pore diameter of 1 to 50 nm. It is preferably a compound composed of a Si—O skeleton having a uniform size and regularly developed.
  • Such regular mesoporous materials can be obtained as various composites depending on the synthesis conditions. Specific examples of the composites include, for example, SBA-1, SBA-15, SBA-16, KIT-6, FSM- 16, MCM-41, etc., among which MCM-41 is preferable.
  • the pore diameter of SBA-1 is 10 to 30 nm
  • the pore diameter of SBA-15 is 6 to 10 nm
  • the pore diameter of SBA-16 is 6 nm
  • the pore diameter of KIT-6 is 9 nm
  • the pore diameter of FSM-16 is 3
  • the pore diameter of MCM-41 is 1 to 10 nm.
  • regular mesoporous materials include mesoporous silica, mesoporous aluminosilicate, and mesoporous metallosilicate.
  • the precursor material (A) may be a commercially available product or a synthetic product.
  • the precursor material (A) can be performed by a known method for synthesizing regular mesoporous materials. For example, a mixed solution containing a raw material containing the constituent elements of the precursor material (A) and a templating agent for defining the structure of the precursor material (A) is prepared, and the pH is adjusted as necessary. Hydrothermal treatment (hydrothermal synthesis) is performed. Thereafter, the precipitate (product) obtained by hydrothermal treatment is recovered (for example, filtered), washed and dried as necessary, and further calcined to form a regular mesoporous material in powder form. A precursor material (A) is obtained.
  • a solvent of the mixed solution for example, water, an organic solvent such as alcohol, or a mixed solvent thereof can be used.
  • a raw material is selected according to the kind of support
  • carrier for example, silica agents, such as tetraethoxysilane (TEOS), fumed silica, quartz sand, etc. are mentioned.
  • TEOS tetraethoxysilane
  • various surfactants, block copolymers, etc. can be used, and it is preferable to select according to the kind of the compound of the regular mesoporous material.
  • a surfactant such as hexadecyltrimethylammonium bromide is suitable.
  • the hydrothermal treatment can be performed, for example, in a sealed container at 80 to 800 ° C., 5 hours to 240 hours, and treatment conditions of 0 to 2000 kPa.
  • the baking treatment can be performed, for example, in air at 350 to 850 ° C. for 2 hours to 30 hours.
  • Step S2 impregnation step
  • the prepared precursor material (A) is impregnated with the metal-containing solution to obtain the precursor material (B).
  • the metal-containing solution may be a solution containing a metal component (for example, metal ion) corresponding to the metal element (M) constituting the metal fine particles of the catalyst structure.
  • a metal component for example, metal ion
  • the metal element (M) is added to a solvent. It can be prepared by dissolving the contained metal salt.
  • metal salts include metal salts such as chlorides, hydroxides, oxides, sulfates, nitrates, etc. Among them, nitrates are preferable.
  • the solvent for example, water, an organic solvent such as alcohol, or a mixed solvent thereof can be used.
  • the method of impregnating the precursor material (A) with the metal-containing solution is not particularly limited.
  • the precursor material (A) is stirred while stirring the powdery precursor material (A) before the firing step described later. It is preferable to add the metal-containing solution in small portions in multiple portions. Further, from the viewpoint of facilitating the penetration of the metal-containing solution into the pores of the precursor material (A), a surfactant as an additive is added in advance to the precursor material (A) before adding the metal-containing solution. It is preferable to add it.
  • Such an additive has a function of coating the outer surface of the precursor material (A), suppresses the metal-containing solution added thereafter from adhering to the outer surface of the precursor material (A), and the metal It is considered that the contained solution is more likely to enter the pores of the precursor material (A).
  • nonionic surfactants such as polyoxyethylene oleyl ether, polyoxyethylene alkyl ether, and polyoxyethylene alkylphenyl ether. Since these surfactants have a large molecular size and cannot penetrate into the pores of the precursor material (A), they do not adhere to the inside of the pores, and the metal-containing solution penetrates into the pores. It is thought not to interfere.
  • the nonionic surfactant is preferably added in an amount of 50 to 500% by mass with respect to the precursor material (A) before the firing step described later.
  • the addition amount of the nonionic surfactant to the precursor material (A) is less than 50% by mass, the above-described inhibitory action is hardly exhibited, and the nonionic surfactant is added to the precursor material (A) at 500. Addition of more than% by mass is not preferable because the viscosity increases excessively. Therefore, the addition amount of the nonionic surfactant with respect to the precursor material (A) is set to a value within the above range.
  • the amount of the metal-containing solution added to the precursor material (A) is the amount of the metal element (M) contained in the metal-containing solution impregnated in the precursor material (A) (that is, the precursor material (B It is preferable to adjust appropriately in consideration of the amount of the metal element (M) contained in ().
  • the addition amount of the metal-containing solution added to the precursor material (A) is the metal element (M) contained in the metal-containing solution added to the precursor material (A)
  • the ratio of silicon (Si) constituting the precursor material (A) atomic ratio Si / M
  • it is preferably adjusted to be 10 to 1000, and adjusted to be 50 to 200. It is more preferable.
  • the addition of the metal-containing solution to be added to the precursor material (A) By setting the amount to 50 to 200 in terms of the atomic ratio Si / M, the metal element (M) of the metal fine particles is contained in an amount of 0.5 to 2.5% by mass with respect to the catalyst structure. Can do.
  • the amount of the metal element (M) present in the pores is the same as the metal concentration of the metal-containing solution, the presence or absence of the additive, and other conditions such as temperature and pressure. If there is, it is roughly proportional to the amount of the metal-containing solution added to the precursor material (A).
  • the amount of the metal element (M) inherent in the precursor material (B) is proportional to the amount of the metal element constituting the metal fine particles inherent in the support of the catalyst structure. Therefore, by controlling the amount of the metal-containing solution added to the precursor material (A) within the above range, the metal-containing solution can be sufficiently impregnated inside the pores of the precursor material (A), and thus It is possible to adjust the amount of metal fine particles incorporated in the support of the catalyst structure.
  • a cleaning treatment may be performed as necessary.
  • the cleaning solution water, an organic solvent such as alcohol, or a mixed solution thereof can be used.
  • the drying treatment include natural drying overnight or high temperature drying at 150 ° C. or lower.
  • the regular mesopores of the precursor material (A) are obtained by performing the baking treatment described later in a state where a large amount of moisture contained in the metal-containing solution and the moisture of the cleaning solution remain in the precursor material (A). Since the skeletal structure as a substance may be broken, it is preferable to dry it sufficiently.
  • Step S3 Firing step
  • the precursor material (B) obtained by impregnating the precursor material (A) for impregnating the porous material structure composed of the zeolite type compound with the metal-containing solution is calcined to obtain the precursor material (C). Get.
  • the calcination treatment is preferably performed, for example, in air at 350 to 850 ° C. for 2 hours to 30 hours.
  • the metal component impregnated in the pores of the regular mesoporous material grows and crystal particles are formed in the pores.
  • Step S4 Hydrothermal treatment process
  • a mixed solution in which the precursor material (C) and the structure directing agent are mixed is prepared, and the precursor material (C) obtained by firing the precursor material (B) is hydrothermally treated to form a catalyst structure. Get the body.
  • the structure directing agent is a templating agent for defining the skeletal structure of the support of the catalyst structure, and for example, a surfactant can be used.
  • the structure directing agent is preferably selected according to the skeleton structure of the support of the catalyst structure.
  • a surfactant such as tetramethylammonium bromide (TMABr), tetraethylammonium bromide (TEABr), tetrapropylammonium bromide (TPABr), etc. Is preferred.
  • the mixing of the precursor material (C) and the structure directing agent may be performed during the hydrothermal treatment step or before the hydrothermal treatment step.
  • the preparation method of the said mixed solution is not specifically limited, A precursor material (C), a structure directing agent, and a solvent may be mixed simultaneously, or precursor material (C) and structure prescription
  • each agent is dispersed in each solution, each dispersion solution may be mixed.
  • the solvent for example, water, an organic solvent such as alcohol, or a mixed solvent thereof can be used.
  • the pH of the mixed solution is preferably adjusted using an acid or a base before hydrothermal treatment.
  • the hydrothermal treatment can be performed by a known method, for example, preferably in a sealed container at 80 to 800 ° C., 5 hours to 240 hours, and 0 to 2000 kPa.
  • the hydrothermal treatment is preferably performed in a basic atmosphere.
  • the reaction mechanism here is not necessarily clear, by performing hydrothermal treatment using the precursor material (C) as a raw material, the skeleton structure of the precursor material (C) as a regular mesoporous material gradually collapses. While the position of the metal fine particles inside the pores of the precursor material (C) is generally maintained, a new skeleton structure (porous structure) as a support for the catalyst structure is formed by the action of the structure directing agent. .
  • the catalyst structure thus obtained includes a porous structure carrier and metal fine particles inherent in the carrier, and the carrier has a passage in which a plurality of holes communicate with each other due to the porous structure. Is at least partially present in the passage of the carrier.
  • a mixed solution in which the precursor material (C) and the structure directing agent are mixed is prepared, and the precursor material (C) is hydrothermally treated.
  • the precursor material (C) may be hydrothermally treated without mixing the precursor material (C) and the structure directing agent.
  • the precipitate (catalyst structure) obtained after the hydrothermal treatment is preferably recovered (for example, filtered), then washed, dried and fired as necessary.
  • the cleaning solution water, an organic solvent such as alcohol, or a mixed solution thereof can be used.
  • the drying treatment include natural drying overnight or high temperature drying at 150 ° C. or lower.
  • the calcination treatment is performed in a state where a large amount of moisture remains in the precipitate, the skeletal structure as the support of the catalyst structure may be broken. Therefore, it is preferable that the precipitate is sufficiently dried.
  • the firing treatment can be performed, for example, in air at 350 to 850 ° C. for 2 hours to 30 hours.
  • the structure directing agent attached to the catalyst structure is burned away.
  • the catalyst structure can be used as it is without subjecting the recovered precipitate to a firing treatment depending on the purpose of use. For example, if the environment in which the catalyst structure is used is a high-temperature environment in an oxidizing atmosphere, the structure directing agent will be burned down by exposure to the environment for a certain period of time. Since it is obtained, it can be used as it is.
  • the manufacturing method described above is an example in the case where the metal element (M) contained in the metal-containing solution impregnated in the precursor material (A) is a metal species that is not easily oxidized (for example, a noble metal).
  • the metal element (M) contained in the metal-containing solution impregnated in the precursor material (A) is a metal species that is easily oxidized (eg, Fe, Co, Cu, etc.)
  • the metal component is oxidized by the heat treatment in the steps (steps S3 to S4) after the impregnation treatment (step S2). . Therefore, the metal oxide fine particles are inherent in the support formed in the hydrothermal treatment step (step S4).
  • the collected precipitate is calcined and further reduced in an atmosphere of a reducing gas such as hydrogen gas.
  • a reducing gas such as hydrogen gas.
  • the metal oxide fine particles present in the carrier are reduced, and metal fine particles corresponding to the metal element (M) constituting the metal oxide fine particles are formed.
  • M metal element
  • a catalyst structure in which metal fine particles are inherent in the support is obtained.
  • reduction treatment may be performed as necessary.
  • the environment in which the catalyst structure is used is a reducing atmosphere
  • the metal oxide fine particles are obtained by exposing the environment to the environment for a certain period of time. Since it is reduced, a catalyst structure similar to that obtained by the reduction treatment can be obtained, so that it can be used as it is in a state where oxide fine particles are inherent in the carrier.
  • FIG. 4 is a schematic view showing a modification of the catalyst structure 1 of FIG.
  • the catalyst structure 1 of FIG. 1 shows a case where the support 10 and the metal fine particles 20 existing in the support 10 are provided.
  • the present invention is not limited to this configuration.
  • the structure 2 may further include other metal fine particles 30 held on the outer surface 10 a of the carrier 10.
  • the metal fine particles 30 are catalyst substances that exhibit one or more catalytic capabilities.
  • the catalytic ability of the other metal fine particles 30 may be the same as or different from the catalytic ability of the metal fine particles 20.
  • the material of the other metal fine particles 30 may be the same as or different from the material of the metal fine particles 20. . According to this configuration, the content of the metal fine particles held in the catalyst structure 2 can be increased, and the catalytic activity of the metal fine particles can be further promoted.
  • the content of the metal fine particles 20 inherent in the carrier 10 is preferably larger than the content of the other metal fine particles 30 held on the outer surface 10 a of the carrier 10.
  • the catalytic ability of the metal fine particles 20 held inside the carrier 10 becomes dominant, and the catalytic ability of the metal fine particles is stably exhibited.
  • a method for producing liquid hydrocarbons by synthesizing liquid hydrocarbons from carbon monoxide and hydrogen using a catalyst includes a porous structure carrier 10 composed of a zeolite-type compound and at least one metal fine particle 20 contained in the carrier 10, and the carrier 10 has a passage 11 communicating with each other,
  • the metal fine particles 20 include the Fischer-Tropsch synthesis catalyst structure 1 existing in at least the diameter-enlarged portion 12 of the passage 11 of the support 10.
  • the present invention provides a method for producing liquid hydrocarbons by synthesizing liquid hydrocarbons from carbon monoxide and hydrogen using the above-mentioned Afischer-Tropsch synthesis catalyst structure.
  • the raw material for carrying out such a method for producing liquid hydrocarbons utilizing Fischer-Tropsch synthesis reaction is not particularly limited as long as it is a synthesis gas mainly composed of molecular hydrogen and carbon monoxide.
  • a synthesis gas having a molar ratio of carbon monoxide of 1.5 to 2.5 is preferred, and a synthesis gas having a molar ratio of 1.8 to 2.2 is more preferred.
  • the reaction temperature is preferably 200 to 500 ° C. and 200 to 350 ° C.
  • the pressure is preferably 0.1 to 3.0 MPa (absolute pressure).
  • the Fischer-Tropsch synthesis reaction can be carried out in a process known as a Fischer-Tropsch synthesis reaction process, for example, a fixed bed, a supercritical fixed bed, a slurry bed, or a fluidized bed.
  • a Fischer-Tropsch synthesis reaction process for example, a fixed bed, a supercritical fixed bed, a slurry bed, or a fluidized bed.
  • Preferred processes include a fixed bed, a supercritical fixed bed, and a slurry bed.
  • a hydrocarbon production apparatus having the above catalyst structure may be provided.
  • a hydrocarbon production apparatus is not particularly limited as long as it can perform Fischer-Tropsch synthesis using the above catalyst structure.
  • FT synthesis reaction apparatus FT synthesis reaction column, etc.
  • Production equipment can be used.
  • the catalyst structure according to the present invention in such a hydrocarbon production apparatus, the production apparatus can also achieve the same effects as described above.
  • type of precursor material (A) (“type of precursor material (A): surfactant”).
  • CTL-41 hexadecyltrimethylammonium bromide (CTAB) (manufactured by Wako Pure Chemical Industries, Ltd.)
  • SBA-1 Pluronic P123 (BASF)
  • metal fine particles metal salts
  • Co Cobalt nitrate (II) hexahydrate (Wako Pure Chemical Industries, Ltd.)
  • Ni Nickel (II) nitrate hexahydrate (Wako Pure Chemical Industries, Ltd.)
  • Fe Iron nitrate (III) nonahydrate (manufactured by Wako Pure Chemical Industries, Ltd.)
  • the metal-containing aqueous solution is added to the powdery precursor material (A) in small portions in small portions, and dried at room temperature (20 ° C. ⁇ 10 ° C.) for 12 hours or more to obtain the precursor material (B).
  • polyoxyethylene (15) as an additive with respect to the precursor material (A) before adding the metal-containing aqueous solution A pretreatment of adding an aqueous solution of oleyl ether (NIKKOL BO-15V, Nikko Chemicals) was performed, and then the metal-containing aqueous solution was added as described above. In the case of “None” in the presence or absence of the additive, the pretreatment with the additive as described above is not performed.
  • the addition amount of the metal-containing aqueous solution added to the precursor material (A) is the ratio of silicon (Si) constituting the precursor material (A) to the metal element (M) contained in the metal-containing aqueous solution (
  • the numerical values when converted into the atomic ratio (Si / M) were adjusted to the values shown in Tables 1-6.
  • precursor material (B) impregnated with the metal-containing aqueous solution obtained as described above was fired in the air at 600 ° C. for 24 hours to obtain a precursor material (C).
  • the precursor material (C) obtained as described above and the structure directing agent shown in Tables 1 to 6 are mixed to prepare a mixed aqueous solution.
  • the mixture is prepared in a sealed container at 80 to 350 ° C., and Tables 1 to 6 are used.
  • Hydrothermal treatment was performed under the conditions of pH and time shown in FIG. Thereafter, the produced precipitate was filtered off, washed with water, dried at 100 ° C. for 12 hours or more, and further calcined in air at 600 ° C. for 24 hours. Thereafter, the fired product was collected and reduced at 500 ° C. for 60 minutes under inflow of hydrogen gas to obtain a catalyst structure having a carrier and metal fine particles as a catalyst material shown in Tables 1 to 6 ( Examples 1 to 298).
  • Comparative Example 1 Comparative Example 1, cobalt oxide powder (II, III) (manufactured by Sigma Aldrich Japan LLC) having an average particle size of 50 nm or less was mixed with MFI type silicalite, and hydrogen reduction treatment was performed in the same manner as in Example, As a result, a catalyst structure in which cobalt fine particles were adhered as a catalyst material to the outer surface of silicalite was obtained. MFI type silicalite was synthesized in the same manner as in Examples 56 to 62 except for the step of adding metal.
  • Comparative Example 2 MFI type silicalite was synthesized by the same method as Comparative Example 1 except that the step of attaching cobalt fine particles was omitted.
  • Fe element was detected from inside the support. From the results of cross-sectional observation using the TEM and SEM / EDX, it was confirmed that iron fine particles were present inside the carrier.
  • iron fine particles of various sizes are randomly present in a particle size range of about 50 nm to 400 nm, whereas each average particle size obtained from a TEM image is 1.2 nm to 2.0 nm.
  • a scattering peak having a particle size of 10 nm or less was detected in the SAXS measurement result. From the SAXS measurement result and the cross-sectional measurement result by SEM / EDX, it was found that a catalyst substance having a particle size of 10 nm or less was present in the carrier in a very dispersed state with a uniform particle size.
  • the metal fine particles are cobalt fine particles (Co) and iron fine particles as the catalyst substance.
  • the amount of metal (mass%) included in the carrier of each catalyst structure produced with the above-mentioned addition amount was measured.
  • Quantification of the amount of metal was performed using ICP (high frequency inductively coupled plasma) alone or a combination of ICP and XRF (fluorescence X-ray analysis).
  • XRF energy dispersive X-ray fluorescence spectrometer “SEA1200VX”, manufactured by SSI Nanotechnology Inc.
  • SEA1200VX energy dispersive X-ray fluorescence spectrometer “SEA1200VX”, manufactured by SSI Nanotechnology Inc.
  • the amount of metal included in the catalyst structure increased as the amount of the metal-containing solution added increased at least in the atomic ratio Si / M in the range of 50 to 1000. It was.
  • Catalytic activity was evaluated under the following conditions. First, 70 mg of the catalyst structure is charged into an atmospheric pressure flow reactor, hydrogen (8 ml / min) and carbon monoxide (4 ml / min) are supplied, and heated at 100 to 700 ° C. and 0.1 MPa for 1 hour. However, Fischer-Tropsch synthesis was performed. A single microreactor (Frontier Lab, Rx-3050SR) was used as the atmospheric pressure flow type reaction apparatus.
  • the amount of hydrocarbon produced was determined in the same manner as in the evaluation (1). Furthermore, compared with the amount of hydrocarbons produced by the catalyst structure before heating, how much the yield of hydrocarbons by the catalyst structure after heating was maintained was compared. Specifically, the amount of hydrocarbon produced by the catalyst structure after heating relative to the amount of hydrocarbon produced by the catalyst structure before heating (the amount obtained by evaluation (1) above) (this evaluation (2) The percentage (%) of the production amount obtained in (1) was calculated.
  • the amount of hydrocarbon produced by the catalyst structure after heating is the amount of hydrocarbon produced by the catalyst structure before heating (the above evaluation (1)).
  • the case where 80% or more is maintained compared to the obtained amount) is judged as being excellent in durability (heat resistance), “ ⁇ ”, and the case where 60% or more and less than 80% is maintained is durability.
  • Judgment that (heat resistance) is good is “O”, and when 40% or more and less than 60% are maintained, it is judged that the durability (heat resistance) is not good but the acceptable level is acceptable.
  • a case where “ ⁇ ” and a drop to less than 40% was judged as inferior in durability (heat resistance) (impossible), and “X” was assigned.
  • Comparative Examples 1 and 2 were also subjected to the same performance evaluation as in the above evaluations (1) and (2).
  • the comparative example 2 is a support
  • the evaluation method was the same as the evaluation method performed in “(1) Catalytic activity” in [D] “Performance evaluation”.
  • the addition amount of the metal-containing solution added to the precursor material (A) is 50 to 200 in terms of the atomic ratio Si / M (the metal element of the metal fine particles (M It was found that the catalyst activity tends to be improved in the FT synthesis reaction when the content of) is 0.5 to 2.5% by mass).
  • Examples 58 to 61 which had good activity and durability, were used.
  • the GC / MS area areas of the hydrocarbons (C 5 to C 20 ) of (Co inclusion catalyst structure) and Examples 254 to 257 (Fe inclusion catalyst structure) were compared.
  • the Co inclusion catalyst structure had a peak area about 1.4 times that of the Fe inclusion catalyst structure. From this, it was found that Co is more suitable as the clathrate metal species than Fe.
  • the catalytic structure of Comparative Example 1 in which the catalytic material is attached only to the outer surface of the carrier has improved catalytic activity in the FT synthesis reaction as compared with the carrier of Comparative Example 2 that does not have any catalytic material.
  • the durability as a catalyst was inferior to the catalyst structures of Examples 1 to 298.
  • the catalyst structures exhibit excellent catalytic activity in the FT synthesis reaction for synthesizing liquid hydrocarbons from carbon monoxide and hydrogen, and are excellent in durability as a catalyst. be able to.
  • a method of using a Fischer-Tropsch synthetic catalyst structure comprising:
  • the catalyst structure includes a porous structure carrier composed of a zeolite-type compound and at least one metal fine particle present in the carrier, and the carrier has a passage communicating with each other, and the metal fine particle Is present in at least the diameter-expanded portion of the passage of the carrier, and uses the Fischer-Tropsch synthesis catalyst structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

金属微粒子同士の凝集を防ぐと共に、触媒活性の低下を抑制して長寿命化を実現することができ、煩雑な交換作業を要せず、省資源化を図ることができるフィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置を提供する。 フィッシャー・トロプシュ合成触媒構造体(1)は、ゼオライト型化合物で構成される多孔質構造の担体(10)と、前記担体(10)に内在する少なくとも1つの金属微粒子(20)と、を備え、前記担体(10)が、互いに連通する通路(11)を有し、前記金属微粒子(20)が、前記担体(10)の少なくとも前記通路(11)に存在している。

Description

フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置
 本発明は、フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置に関する。
 石油の代替燃料である合成油、合成燃料等の液体燃料製品の原料として利用される炭化水素化合物を製造する方法として、一酸化炭素ガス(CO)及び水素ガス(H)を主成分とする合成ガスから触媒反応を利用して炭化水素、特に液体炭化水素を合成するフィッシャー・トロプシュ合成反応(以下、「FT合成反応」ということもある。)が知られている。このFT合成反応に使用される触媒として、例えば、特許文献1には、シリカ、アルミナ等の担体上に、コバルト、鉄等の活性金属を担持した触媒が開示され、特許文献2には、コバルト、ジルコニウム又はチタン、及びシリカを含有する触媒が開示されている。
 FT合成反応に用いる触媒は、例えば、シリカ、アルミナ等の担体に、コバルト塩、ルテニウム塩等を含浸させ、これを焼成することによって、コバルト酸化物及び/又はルテニウム酸化物が担持された触媒(未還元触媒)として得ることができる。このようにして得られた触媒がFT合成反応に対して十分な活性を発現するために、特許文献3に開示されているように、該触媒を水素ガス等の還元ガスに接触させて還元処理し、活性金属であるコバルト及び/又はルテニウムを酸化物の状態から、金属の状態へと変換する必要がある。
 ところで、FT合成反応は、特許文献4に開示されているように極めて大きな発熱を伴うため、触媒表面で局部的な過熱が発生し、これにより触媒表面に生じたホットスポットにおける副反応(炭素質の析出など)の進行が活性を劣化させてしまうことが知られている。このようなホットスポットの生成を防ぐために、触媒として作用する活性金属種(金属微粒子)を凝集させず、活性点を分散させる必要がある。活性金属種の凝集を防ぐ目的で、当該活性金属種と強い相互作用を有する担体を用い、金属微粒子同士が容易には凝集できないようにすることが考えられる。
 この方法の一例として、金属微粒子を高分散に担持させるゾル・ゲル法が知られている。ゾル・ゲル法では、担体となる金属酸化物を合成する段階で活性金属種が原子レベルで均一に導入される。担持金属触媒の活性金属種は担体である金属酸化物の格子の中に極めて高分散に包含されるため、各種の処理や反応においても容易には凝集しない。しかしながら、活性金属種が担体と強く結合しているため、反応に先立つ触媒の活性化が困難になり、十分な触媒活性が得られないという問題があった。
 また、金属微粒子同士の凝集が生じると、触媒としての有効表面積の減少に伴い、触媒活性が低下することから、触媒自体の寿命が通常よりも短くなる。そのため、触媒自体を短期間で交換・再生しなければならず、交換作業が煩雑であると共に、省資源化を図ることができないという問題もある。
特開平4-227847号公報 特開昭59-102440号公報 国際公開第2015/072573号 特開2000-70720号公報
 本発明の目的は、金属微粒子同士の凝集を防ぐと共に、触媒活性の低下を抑制して長寿命化を実現することができ、煩雑な交換作業を要せず、省資源化を図ることができるフィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置を提供することにある。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、フィッシャー・トロプシュ合成触媒構造体が、ゼオライト型化合物で構成される多孔質構造の担体と、前記担体に内在する少なくとも1つの金属微粒子と、を備え、前記担体が、互いに連通する通路を有し、前記金属微粒子が、前記担体の少なくとも前記通路に存在していることによって、金属微粒子同士の凝集を防ぐと共に、触媒活性の低下を抑制し、長寿命化を実現できる触媒構造体が得られることを見出し、かかる知見に基づき本発明を完成させるに至った。
 すなわち、本発明の要旨構成は、以下のとおりである。
[1]ゼオライト型化合物で構成される多孔質構造の担体と、
 前記担体に内在する少なくとも1つの金属微粒子と、
を備え、
 前記担体が、互いに連通する通路を有し、
 前記金属微粒子が、前記担体の少なくとも前記通路に存在していることを特徴とするフィッシャー・トロプシュ合成触媒構造体。
[2]前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部とを有し、かつ
 前記金属微粒子が、少なくとも前記拡径部に存在していることを特徴とする、上記[1]に記載のフィッシャー・トロプシュ合成触媒構造体。
[3]前記拡径部は、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれかを構成する複数の孔同士を連通している、上記[2]に記載のフィッシャー・トロプシュ合成触媒構造体。
[4]前記金属微粒子の平均粒径が、前記通路の平均内径よりも大きく、且つ前記拡径部の内径以下であることを特徴とする、上記[2]または[3]に記載のフィッシャー・トロプシュ合成触媒構造体。
[5]前記金属微粒子の金属元素(M)が、前記フィッシャー・トロプシュ合成触媒構造体に対して0.5~2.5質量%で含有されていることを特徴とする、上記[1]~[4]のいずれか1つに記載のフィッシャー・トロプシュ合成触媒構造体。
[6]前記金属微粒子が、Co、Fe、Niまたはそれら少なくとも1種を含む合金を含んでいることを特徴とする、上記[1]~[5]のいずれか1つに記載のフィッシャー・トロプシュ合成触媒構造体。
[7]前記金属微粒子の平均粒径が、0.08nm~30nmであることを特徴とする、上記[1]~[6]のいずれか1つに記載のフィッシャー・トロプシュ合成触媒構造体。
[8]前記金属微粒子の平均粒径が、0.4nm~11.0nmであることを特徴とする、上記[7]に記載のフィッシャー・トロプシュ合成触媒構造体。
[9]前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、0.05~300であることを特徴とする、上記[1]~[8]のいずれか1つに記載のフィッシャー・トロプシュ合成触媒構造体。
[10]前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、0.1~30であることを特徴とする、上記[9]に記載のフィッシャー・トロプシュ合成触媒構造体。
[11]前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、1.4~3.6であることを特徴とする、上記[10]に記載のフィッシャー・トロプシュ合成触媒構造体。
[12]前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部とを有し、
 前記通路の平均内径は、0.1nm~1.5nmであり、
 前記拡径部の内径は、0.5nm~50nmであることを特徴とする、上記[1]~[11]のいずれか1つに記載のフィッシャー・トロプシュ合成触媒構造体。
[13]前記担体の外表面に保持された少なくとも1つの他の金属微粒子を更に備えることを特徴とする、上記[1]~[12]のいずれか1つに記載のフィッシャー・トロプシュ合成触媒構造体。
[14]前記担体に内在する前記少なくとも1つの金属微粒子の含有量が、前記担体の外表面に保持された前記少なくとも1つの他の金属微粒子の含有量よりも多いことを特徴とする、上記[13]に記載のフィッシャー・トロプシュ合成触媒構造体。
[15]前記ゼオライト型化合物は、ケイ酸塩化合物であることを特徴とする、上記[1]~[14]のいずれか1つに記載のフィッシャー・トロプシュ合成触媒構造体。
[16]上記[1]~[15]のいずれか1つに記載のフィッシャー・トロプシュ合成触媒構造体を有する炭化水素製造装置。
[17]ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成する焼成工程と、
 前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理する水熱処理工程と、
 前記水熱処理された前駆体材料(C)に還元処理を行う工程と、
 を有することを特徴とするフィッシャー・トロプシュ合成触媒構造体の製造方法。
[18]前記焼成工程の前に、非イオン性界面活性剤を、前記前駆体材料(A)に対して50~500質量%添加することを特徴とする、上記[17]に記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
[19]前記焼成工程の前に、前記前駆体材料(A)に前記金属含有溶液を複数回に分けて添加することで、前記前駆体材料(A)に前記金属含有溶液を含浸させることを特徴とする、上記[17]または[18]に記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
[20]前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前記前駆体材料(A)に添加する前記金属含有溶液の添加量を、前記前駆体材料(A)に添加する前記金属含有溶液中に含まれる金属元素(M)に対する、前記前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整することを特徴とする、上記[17]~[19]のいずれか1つに記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
[21]前記水熱処理工程において、前記前駆体材料(C)と構造規定剤とを混合することを特徴とする、上記[17]に記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
[22]前記水熱処理工程が塩基性雰囲気下で行われることを特徴とする、上記[17]に記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
[23]触媒を用いて、一酸化炭素と水素から液体炭化水素を合成する液体炭化水素の製造方法であって、前記触媒が、
 ゼオライト型化合物で構成される多孔質構造の担体と、
 前記担体に内在する少なくとも1つの金属微粒子と、を備え、
 前記担体が、互いに連通する通路を有し、
 前記金属微粒子が、前記担体の少なくとも前記通路の拡径部に存在しているフィッシャー・トロプシュ合成触媒構造体を含んでいることを特徴とする、液体炭化水素の製造方法。
 本発明によれば、金属微粒子同士の凝集を防ぐと共に、触媒活性の低下を抑制して長寿命化を実現することができ、煩雑な交換作業を要せず、省資源化を図ることができるフィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置を提供することができる。
図1は、本発明の実施形態に係るフィッシャー・トロプシュ合成触媒構造体の内部構造が分かるように概略的に示したものであって、図1(a)は斜視図(一部を横断面で示す。)、図1(b)は部分拡大断面図である。 図2は、図1のフィッシャー・トロプシュ合成触媒構造体の機能の一例を説明するための部分拡大断面図であり、図2(a)は篩機能、図2(b)は触媒能を説明する図である。 図3は、図1のフィッシャー・トロプシュ合成触媒構造体の製造方法の一例を示すフローチャートである。 図4は、図1のフィッシャー・トロプシュ合成触媒構造体の変形例を示す模式図である。
 以下、本発明の実施形態を、図面を参照しながら詳細に説明する。
[フィッシャー・トロプシュ合成触媒構造体の構成]
 図1は、本発明の実施形態に係るフィッシャー・トロプシュ合成触媒構造体(以下、単に「触媒構造体」ともいう)の構成を概略的に示す図であり、(a)は斜視図(一部を横断面で示す。)、(b)は部分拡大断面図である。なお、図1における触媒構造体は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、図1のものに限られないものとする。
 図1(a)に示されるように、触媒構造体1は、ゼオライト型化合物で構成される多孔質構造の担体10と、該担体10に内在する、少なくとも1つの金属微粒子20とを備える。
 触媒構造体1において、複数の金属微粒子20,20,・・・は、担体10の多孔質構造の内部に包接されている。金属微粒子20は、触媒能(触媒活性)を有する触媒物質である。金属微粒子については、詳しくは後述する。また、金属微粒子20は、金属酸化物や金属の合金、またはこれらの複合材料を含む粒子であってもよい。
 担体10は、多孔質構造であり、図1(b)に示すように、好適には複数の孔11a,11a,・・・が形成されることにより、互いに連通する通路11を有する。ここで金属微粒子20は、担体10の少なくとも通路11に存在しており、好ましくは担体10の少なくとも通路11に保持されている。
 このような構成により、担体10内での金属微粒子20の移動が規制され、金属微粒子20、20同士の凝集が有効に防止されている。その結果、金属微粒子20としての有効表面積の減少を効果的に抑制することができ、金属微粒子20の触媒活性は長期にわたって持続する。すなわち、触媒構造体1によれば、金属微粒子20の凝集による触媒活性の低下を抑制でき、触媒構造体1としての長寿命化を図ることができる。また、触媒構造体1の長寿命化により、触媒構造体1の交換頻度を低減でき、使用済みの触媒構造体1の廃棄量を大幅に低減することができ、省資源化を図ることができる。
 通常、触媒構造体を、流体(例えば、重質油や、NOx等の改質ガスなど)の中で用いる場合、流体から外力を受ける可能性がある。この場合、金属微粒子が、担体10の外表面に付着状態で保持されているだけであると、流体からの外力の影響で担体10の外表面から離脱しやすいという問題がある。これに対し、触媒構造体1では、金属微粒子20は担体10の少なくとも通路11に存在しているため、流体による外力の影響を受けたとしても、担体10から金属微粒子20が離脱しにくい。すなわち、触媒構造体1が流体内にある場合、流体は担体10の孔11aから、通路11内に流入するため、通路11内を流れる流体の速さは、流路抵抗(摩擦力)により、担体10の外表面を流れる流体の速さに比べて、遅くなると考えられる。このような流路抵抗の影響により、通路11内に保持された金属微粒子20が流体から受ける圧力は、担体10の外部において金属微粒子が流体から受ける圧力に比べて低くなる。そのため、担体10に内在する金属微粒子20が離脱することを効果的に抑制でき、金属微粒子20の触媒活性を長期的に安定して維持することが可能となる。なお、上記のような流路抵抗は、担体10の通路11が、曲がりや分岐を複数有し、担体10の内部がより複雑で三次元的な立体構造となっているほど、大きくなると考えられる。
 また、通路11は、ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、上記一次元孔、上記二次元孔及び上記三次元孔のうちのいずれとも異なる拡径部12とを有していることが好ましく、このとき、金属微粒子20は、少なくとも拡径部12に存在していることが好ましく、少なくとも拡径部12に包接されていることがより好ましい。また、拡径部12は、上記一次元孔、上記二次元孔及び上記三次元孔のうちのいずれかを構成する複数の孔11a,11a同士を連通しているのが好ましい。これにより、担体10の内部に、一次元孔、二次元孔又は三次元孔とは異なる別途の通路が設けられるので、金属微粒子20の機能をより発揮させることができる。尚、ここでいう一次元孔とは、一次元チャンネルを形成しているトンネル型またはケージ型の孔、もしくは複数の一次元チャンネルを形成しているトンネル型またはケージ型の複数の孔(複数の一次元チャンネル)を指す。また、二次元孔とは、複数の一次元チャンネルが二次元的に連結された二次元チャンネルを指し、三次元孔とは、複数の一次元チャンネルが三次元的に連結された三次元チャンネルを指す。これにより、金属微粒子20の担体10内での移動がさらに規制され、金属微粒子20の離脱、金属微粒子20、20同士の凝集をさらに有効に防止することができる。包接とは、金属微粒子20が担体10に内包されている状態を指す。このとき金属微粒子20と担体10とは、必ずしも直接的に互いが接触している必要はなく、金属微粒子20と担体10との間に他の物質(例えば、界面活性剤等)が介在した状態で、金属微粒子20が担体10に間接的に保持されていてもよい。
 図1(b)では金属微粒子20が拡径部12に包接されている場合を示しているが、この構成だけには限定されず、金属微粒子20は、その一部が拡径部12の外側にはみ出した状態で通路11に保持されていてもよい。また、金属微粒子20は、拡径部12以外の通路11の部分(例えば通路11の内壁部分)に部分的に埋設され、または固着等によって保持されていてもよい。
 また、通路11は、担体10の内部に、分岐部または合流部を含んで三次元的に形成されており、拡径部12は、通路11の上記分岐部または合流部に設けられるのが好ましい。
 担体10に形成された通路11の平均内径Dは、上記一次元孔、二次元孔及び三次元孔のうちのいずれかを構成する孔11aの短径及び長径の平均値から算出され、例えば0.1nm~1.5nmであり、好ましくは0.5nm~0.8nmである。また、拡径部12の内径Dは、例えば0.5nm~50nmであり、好ましくは1.1nm~40nm、より好ましくは1.1nm~3.3nmである。拡径部12の内径Dは、例えば後述する前駆体材料(A)の細孔径、及び包接される金属微粒子20の平均粒径Dに依存する。拡径部12の内径Dは、金属微粒子20を包接し得る大きさである。
 担体10は、ゼオライト型化合物で構成される。ゼオライト型化合物としては、例えば、ゼオライト(アルミノケイ酸塩)、陽イオン交換ゼオライト、シリカライト等のケイ酸塩化合物、アルミノホウ酸塩、アルミノヒ酸塩、ゲルマニウム酸塩等のゼオライト類縁化合物、リン酸モリブデン等のリン酸塩系ゼオライト類似物質などが挙げられる。中でも、ゼオライト型化合物はケイ酸塩化合物であることが好ましい。
 ゼオライト型化合物の骨格構造は、FAU型(Y型またはX型)、MTW型、MFI型(ZSM-5)、FER型(フェリエライト)、LTA型(A型)、MWW型(MCM-22)、MOR型(モルデナイト)、LTL型(L型)、BEA型(ベータ型)などの中から選択され、好ましくはMFI型であり、より好ましくはZSM-5である。ゼオライト型化合物には、各骨格構造に応じた孔径を有する孔が複数形成されており、例えばMFI型の最大孔径は0.636nm(6.36Å)、平均孔径0.560nm(5.60Å)である。
 金属微粒子20は一次粒子である場合と、一次粒子が凝集して形成した二次粒子である場合とがあるが、金属微粒子20の平均粒径Dは、好ましくは通路11の平均内径Dよりも大きく、且つ拡径部12の内径D以下である(D<D≦D)。このような金属微粒子20は、通路11内では、好適には拡径部12に存在しており、担体10内での金属微粒子20の移動が規制される。よって、金属微粒子20が流体から外力を受けた場合であっても、担体10内での金属微粒子20の移動が抑制され、担体10の通路11に分散配置された拡径部12、12、・・のそれぞれに存在する金属微粒子20、20、・・同士が接触するのを有効に防止することができる。
 また、金属微粒子20の平均粒径Dは、一次粒子および二次粒子のいずれの場合も、好ましくは0.08nm~30nmであり、より好ましくは0.1nm以上25nm未満であり、さらに好ましくは0.4nm~11.0nmであり、特に好ましくは0.8nm~2.7nmである。また、通路11の平均内径Dに対する金属微粒子20の平均粒径Dの割合(D/D)は、好ましくは0.05~300であり、より好ましくは0.1~30であり、更に好ましくは1.1~30であり、特に好ましくは1.4~3.6である。また、金属微粒子20の金属元素(M)は、触媒構造体1に対して0.5~2.5質量%で含有されていることが好ましく、触媒構造体1に対して0.5~1.5質量%で含有されていることがより好ましい。例えば、金属元素(M)がCoである場合、Co元素の含有量(質量%)は、{(Co元素の質量)/(触媒構造体1の全元素の質量)}×100で表される。
 上記金属微粒子は、酸化されていない金属で構成されていればよく、例えば、単一の金属で構成されていてもよく、あるいは2種以上の金属の混合物で構成されていてもよい。なお、本明細書において、金属微粒子を構成する(材質としての)「金属」は、1種の金属元素(M)を含む単体金属と、2種以上の金属元素(M)を含む金属合金とを含む意味であり、1種以上の金属元素を含む金属の総称である。
 このような金属としては、例えば白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、ニッケル(Ni)、コバルト(Co)、モリブデン(Mo)、タングステン(W)、鉄(Fe)、クロム(Cr)、セリウム(Ce)、銅(Cu)、マグネシウム(Mg)、アルミニウム(Al)等が挙げられ、上記のいずれか1種以上を主成分とすることが好ましく、ルテニウム、ニッケル、鉄、コバルトであることがより好ましく、ニッケル、鉄、コバルトであることがさらに好ましく、鉄、コバルトであることが特に好ましい。
 また、金属微粒子20を構成する金属元素(M)に対する、担体10を構成するケイ素(Si)の割合(原子数比Si/M)は、10~1000であるのが好ましく、50~200であるのがより好ましい。上記割合が1000より大きいと、活性が低いなど、金属微粒子の触媒物質としての作用が十分に得られない可能性がある。一方、上記割合が10よりも小さいと、金属微粒子20の割合が大きくなりすぎて、担体10の強度が低下する傾向がある。なお、ここでいう金属微粒子20は、担体10の内部に保持され、または担持された微粒子をいい、担体10の外表面に付着した金属微粒子を含まない。
[フィッシャー・トロプシュ合成触媒構造体の機能]
 触媒構造体1は、上記のとおり、多孔質構造の担体10と、担体に内在する少なくとも1つの金属微粒子20とを備える。触媒構造体1は、担体に内在する金属微粒子20が流体と接触することにより、金属微粒子20の触媒能を発揮する。具体的に、触媒構造体1の外表面10aに接触した流体は、外表面10aに形成された孔11aから担体10内部に流入して通路11内に誘導され、通路11内を通って移動し、他の孔11aを通じて触媒構造体1の外部へ出る。流体が通路11内を通って移動する経路において、通路11に存在している金属微粒子20と接触することによって、金属微粒子20による触媒反応が生じる。また、触媒構造体1は、担体が多孔質構造であることにより、分子篩能を有する。
 まず、触媒構造体1の分子篩能について、図2(a)を用いて、説明する。図2(a)に示すように、孔11aの孔径以下、言い換えれば、通路11の内径以下の大きさを有する分子15aは、担体10内に浸入することができる。一方、孔11aの孔径を超える大きさを有する分子15bは、担体10内へ浸入することができない。このように、流体が複数種類の化合物を含んでいる場合に、担体10内に浸入することができない化合物の反応は規制され、担体10内に浸入することができる化合物を反応させることができる。
 反応によって担体10内で生成した化合物のうち、孔11aの孔径以下の大きさを有する分子で構成される化合物のみが孔11aを通じて担体10の外部へ出ることができ、反応生成物として得られる。一方、孔11aから担体10の外部へ出ることができない化合物は、担体10の外部へ出ることができる大きさの分子で構成される化合物に変換させれば、担体10の外部へ出すことができる。このように、触媒構造体1を用いることにより、特定の反応生成物を選択的に得ることができる。
 触媒構造体1では、図2(b)に示すように、通路11の拡径部12に金属微粒子20が包接されている。金属微粒子の平均粒径Dが、通路11の平均内径Dよりも大きく、拡径部12の内径Dよりも小さい場合には(D<D<D)、金属微粒子と拡径部12との間に小通路13が形成される。そこで、図2(b)中の矢印に示すように、小通路13に浸入した流体が金属微粒子と接触する。各金属微粒子は、拡径部12に包接されているため、担体10内での移動が制限されている。これにより、担体10内における金属微粒子同士の凝集が防止される。その結果、金属微粒子と流体との大きな接触面積を安定して維持することができる。
 具体的には、通路11に浸入した分子が金属微粒子20に接触すると、触媒反応によって分子(被改質物質)が改質される。本発明では、触媒構造体1を用いることにより、例えば、水素と一酸化炭素とを主成分とする混合ガスを原料として、炭化水素(CHを除く)、好ましくはC~C20の炭化水素、特に常温で液体の液体炭化水素(C~C16の炭化水素)を製造することができる。この触媒反応は、例えば180℃~350℃の高温下で行われるが、金属微粒子20は担体10に内在しているため、加熱による影響を受けにくい。特に、金属微粒子20は拡径部12に存在しているため、金属微粒子20の担体10内での移動がより制限され、金属微粒子20同士の凝集が(シンタリング)がさらに抑制される。その結果、触媒活性の低下がより抑制され、触媒構造体1のさらなる長寿命化を実現することができる。また、触媒構造体1を長期にわたって使用することにより、触媒活性が低下しても、金属微粒子20は担体10に結合していないため、金属微粒子20の活性化処理(還元処理)を容易に行うことができる。
[フィッシャー・トロプシュ合成触媒構造体の製造方法]
 図3は、図1の触媒構造体1の製造方法を示すフローチャートである。
(ステップS1:準備工程)
 図3に示すように、先ず、ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)を準備する。前駆体材料(A)は、好ましくは規則性メソ細孔物質であり、触媒構造体の担体を構成するゼオライト型化合物の種類(組成)に応じて適宜選択できる。
 ここで、触媒構造体の担体を構成するゼオライト型化合物がケイ酸塩化合物である場合には、規則性メソ細孔物質は、細孔径1~50nmの細孔が1次元、2次元または3次元に均一な大きさかつ規則的に発達したSi-O骨格からなる化合物であることが好ましい。このような規則性メソ細孔物質は、合成条件によって様々な合成物として得られるが、合成物の具体例としては、例えばSBA-1、SBA-15、SBA-16、KIT-6、FSM-16、MCM-41等が挙げられ、中でもMCM-41が好ましい。なお、SBA-1の細孔径は10~30nm、SBA-15の細孔径は6~10nm、SBA-16の細孔径は6nm、KIT-6の細孔径は9nm、FSM-16の細孔径は3~5nm、MCM-41の細孔径は1~10nmである。また、このような規則性メソ細孔物質としては、例えばメソポーラスシリカ、メソポーラスアルミノシリケート、メソポーラスメタロシリケート等が挙げられる。
 前駆体材料(A)は、市販品および合成品のいずれであってもよい。前駆体材料(A)を合成する場合には、公知の規則性メソ細孔物質の合成方法により行うことができる。例えば、前駆体材料(A)の構成元素を含有する原料と、前駆体材料(A)の構造を規定するための鋳型剤とを含む混合溶液を調製し、必要に応じてpHを調整して、水熱処理(水熱合成)を行う。その後、水熱処理により得られた沈殿物(生成物)を回収(例えば、ろ別)し、必要に応じて洗浄および乾燥し、さらに焼成することで、粉末状の規則性メソ細孔物質である前駆体材料(A)が得られる。ここで、混合溶液の溶媒としては、例えば水、またはアルコール等の有機溶媒、若しくはこれらの混合溶媒等を用いることができる。また、原料は、担体の種類に応じて選択されるが、例えば、テトラエトキシシラン(TEOS)等のシリカ剤、フュームドシリカ、石英砂等が挙げられる。また、鋳型剤としては、各種界面活性剤、ブロックコポリマー等を用いることができ、規則性メソ細孔物質の合成物の種類に応じて選択することが好ましく、例えば、MCM-41を作製する場合には、ヘキサデシルトリメチルアンモニウムブロミド等の界面活性剤が好適である。水熱処理は、例えば、密閉容器内で、80~800℃、5時間~240時間、0~2000kPaの処理条件で行うことができる。焼成処理は、例えば、空気中で、350~850℃、2時間~30時間の処理条件で行うことができる。
(ステップS2:含浸工程)
 次に、準備した前駆体材料(A)に、金属含有溶液を含浸させ、前駆体材料(B)を得る。
 金属含有溶液は、触媒構造体の金属微粒子を構成する金属元素(M)に対応する金属成分(例えば、金属イオン)を含有する溶液であればよく、例えば、溶媒に、金属元素(M)を含有する金属塩を溶解させることにより調製できる。このような金属塩としては、例えば、塩化物、水酸化物、酸化物、硫酸塩、硝酸塩等の金属塩が挙げられ、中でも硝酸塩が好ましい。溶媒としては、例えば水、またはアルコール等の有機溶媒、若しくはこれらの混合溶媒等を用いることができる。
 前駆体材料(A)に金属含有溶液を含浸させる方法は、特に限定されないが、例えば、後述する焼成工程の前に、粉末状の前駆体材料(A)を撹拌しながら、前駆体材料(A)に金属含有溶液を複数回に分けて少量ずつ添加することが好ましい。また、前駆体材料(A)の細孔内部に金属含有溶液がより浸入し易くなる観点から、前駆体材料(A)に、金属含有溶液を添加する前に予め、添加剤として界面活性剤を添加しておくことが好ましい。このような添加剤は、前駆体材料(A)の外表面を被覆する働きがあり、その後に添加される金属含有溶液が前駆体材料(A)の外表面に付着することを抑制し、金属含有溶液が前駆体材料(A)の細孔内部により浸入し易くなると考えられる。
 このような添加剤としては、例えばポリオキシエチレンオレイルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等の非イオン性界面活性剤が挙げられる。これらの界面活性剤は、分子サイズが大きく前駆体材料(A)の細孔内部には浸入できないため、細孔の内部に付着することは無く、金属含有溶液が細孔内部に浸入することを妨げないと考えられる。非イオン性界面活性剤の添加方法としては、例えば、後述する焼成工程の前に、非イオン性界面活性剤を、前駆体材料(A)に対して50~500質量%添加するのが好ましい。非イオン性界面活性剤の前駆体材料(A)に対する添加量が50質量%未満であると上記の抑制作用が発現し難く、非イオン性界面活性剤を前駆体材料(A)に対して500質量%よりも多く添加すると粘度が上がりすぎるので好ましくない。よって、非イオン性界面活性剤の前駆体材料(A)に対する添加量を上記範囲内の値とする。
 また、前駆体材料(A)に添加する金属含有溶液の添加量は、前駆体材料(A)に含浸させる金属含有溶液中に含まれる金属元素(M)の量(すなわち、前駆体材料(B)に内在させる金属元素(M)の量)を考慮して、適宜調整することが好ましい。例えば、後述する焼成工程の前に、前駆体材料(A)に添加する金属含有溶液の添加量を、前駆体材料(A)に添加する金属含有溶液中に含まれる金属元素(M)に対する、前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整することが好ましく、50~200となるように調整することがより好ましい。例えば、前駆体材料(A)に金属含有溶液を添加する前に、添加剤として界面活性剤を前駆体材料(A)に添加した場合、前駆体材料(A)に添加する金属含有溶液の添加量を、原子数比Si/Mに換算して50~200とすることで、金属微粒子の金属元素(M)を、触媒構造体に対して0.5~2.5質量%で含有させることができる。前駆体材料(B)の状態で、その細孔内部に存在する金属元素(M)の量は、金属含有溶液の金属濃度、上記添加剤の有無、その他温度や圧力等の諸条件が同じであれば、前駆体材料(A)に添加する金属含有溶液の添加量に概ね比例する。また、前駆体材料(B)に内在する金属元素(M)の量は、触媒構造体の担体に内在する金属微粒子を構成する金属元素の量と比例関係にある。したがって、前駆体材料(A)に添加する金属含有溶液の添加量を上記範囲に制御することにより、前駆体材料(A)の細孔内部に金属含有溶液を十分に含浸させることができ、ひいては、触媒構造体の担体に内在させる金属微粒子の量を調整することができる。
 前駆体材料(A)に金属含有溶液を含浸させた後は、必要に応じて、洗浄処理を行ってもよい。洗浄溶液として、水、またはアルコール等の有機溶媒、若しくはこれらの混合溶液を用いることができる。また、前駆体材料(A)に金属含有溶液を含浸させ、必要に応じて洗浄処理を行った後、さらに乾燥処理を施すことが好ましい。乾燥処理としては、一晩程度の自然乾燥や、150℃以下の高温乾燥が挙げられる。なお、金属含有溶液に含まれる水分や、洗浄溶液の水分が、前駆体材料(A)に多く残った状態で、後述の焼成処理を行うと、前駆体材料(A)の規則性メソ細孔物質としての骨格構造が壊れる恐れがあるので、十分に乾燥するのが好ましい。
(ステップS3:焼成工程)
 次に、ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成して、前駆体材料(C)を得る。
 焼成処理は、例えば、空気中で、350~850℃、2時間~30時間の処理条件で行うことが好ましい。このような焼成処理により、規則性メソ細孔物質の孔内に含浸された金属成分が結晶成長して、孔内で金属微粒子が形成される。
(ステップS4:水熱処理工程)
 次いで、前駆体材料(C)と構造規定剤とを混合した混合溶液を調製し、前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理して、触媒構造体を得る。
 構造規定剤は、触媒構造体の担体の骨格構造を規定するための鋳型剤であり、例えば界面活性剤を用いることができる。構造規定剤は、触媒構造体の担体の骨格構造に応じて選択することが好ましく、例えばテトラメチルアンモニウムブロミド(TMABr)、テトラエチルアンモニウムブロミド(TEABr)、テトラプロピルアンモニウムブロミド(TPABr)等の界面活性剤が好適である。
 前駆体材料(C)と構造規定剤との混合は、本水熱処理工程時に行ってもよいし、水熱処理工程の前に行ってもよい。また、上記混合溶液の調製方法は、特に限定されず、前駆体材料(C)と、構造規定剤と、溶媒とを同時に混合してもよいし、溶媒に前駆体材料(C)と構造規定剤とをそれぞれ個々の溶液に分散させた状態にした後に、それぞれの分散溶液を混合してもよい。溶媒としては、例えば水、またはアルコール等の有機溶媒、若しくはこれらの混合溶媒等を用いることができる。また、混合溶液は、水熱処理を行う前に、酸または塩基を用いてpHを調整しておくことが好ましい。
 水熱処理は、公知の方法で行うことができ、例えば、密閉容器内で、80~800℃、5時間~240時間、0~2000kPaの処理条件で行うことが好ましい。また、水熱処理は、塩基性雰囲気下で行われることが好ましい。ここでの反応メカニズムは必ずしも明らかではないが、前駆体材料(C)を原料として水熱処理を行うことにより、前駆体材料(C)の規則性メソ細孔物質としての骨格構造は次第に崩れるが、前駆体材料(C)の細孔内部での金属微粒子の位置は概ね維持されたまま、構造規定剤の作用により、触媒構造体の担体としての新たな骨格構造(多孔質構造)が形成される。このようにして得られた触媒構造体は、多孔質構造の担体と、担体に内在する金属微粒子を備え、さらに担体はその多孔質構造により複数の孔が互いに連通した通路を有し、金属微粒子はその少なくとも一部分が担体の通路に存在している。また、本実施形態では、上記水熱処理工程において、前駆体材料(C)と構造規定剤とを混合した混合溶液を調製して、前駆体材料(C)を水熱処理しているが、これに限らず、前駆体材料(C)と構造規定剤とを混合することなく、前駆体材料(C)を水熱処理してもよい。
 水熱処理後に得られる沈殿物(触媒構造体)は、回収(例えば、ろ別)後、必要に応じて洗浄、乾燥および焼成することが好ましい。洗浄溶液としては、水、またはアルコール等の有機溶媒、若しくはこれらの混合溶液を用いることができる。乾燥処理としては、一晩程度の自然乾燥や、150℃以下の高温乾燥が挙げられる。なお、沈殿物に水分が多く残った状態で、焼成処理を行うと、触媒構造体の担体としての骨格構造が壊れる恐れがあるので、十分に乾燥するのが好ましい。また、焼成処理は、例えば、空気中で、350~850℃、2時間~30時間の処理条件で行うことができる。このような焼成処理により、触媒構造体に付着していた構造規定剤が焼失する。また、触媒構造体は、使用目的に応じて、回収後の沈殿物を焼成処理することなくそのまま用いることもできる。例えば、触媒構造体の使用する環境が、酸化性雰囲気の高温環境である場合には、使用環境に一定時間晒すことで、構造規定剤は焼失し、焼成処理した場合と同様の触媒構造体が得られるので、そのまま使用することが可能となる。
 以上説明した製造方法は、前駆体材料(A)に含浸させる金属含有溶液に含まれる金属元素(M)が、酸化され難い金属種(例えば、貴金属)である場合の一例である。
 前駆体材料(A)に含浸させる金属含有溶液中に含まれる金属元素(M)が、酸化され易い金属種(例えば、Fe、Co、Cu等)である場合には、上記水熱処理工程後に、水熱処理された前駆体材料(C)に還元処理を行うことが好ましい。金属含有溶液中に含まれる金属元素(M)が、酸化され易い金属種である場合、含浸処理(ステップS2)の後の工程(ステップS3~S4)における熱処理により、金属成分が酸化されてしまう。そのため、水熱処理工程(ステップS4)で形成される担体には、金属酸化物微粒子が内在することになる。そのため、担体に金属微粒子が内在する触媒構造体を得るためには、上記水熱処理後に、回収した沈殿物を焼成処理し、さらに水素ガス等の還元ガス雰囲気下で還元処理することが望ましい。還元処理を行うことにより、担体に内在する金属酸化物微粒子が還元され、金属酸化物微粒子を構成する金属元素(M)に対応する金属微粒子が形成される。その結果、担体に金属微粒子が内在する触媒構造体が得られる。なお、このような還元処理は、必要に応じて行えばよく、例えば、触媒構造体の使用する環境が、還元雰囲気である場合には、使用環境に一定時間晒すことで、金属酸化物微粒子は還元されるため、還元処理した場合と同様の触媒構造体が得られるので、担体に酸化物微粒子が内在した状態でそのまま使用することが可能となる。
[フィッシャー・トロプシュ合成触媒構造体の変形例]
 図4は、図1の触媒構造体1の変形例を示す模式図である。図1の触媒構造体1は、担体10と、担体10に内在する金属微粒子20とを備える場合を示しているが、この構成だけには限定されず、例えば、図4に示すように、触媒構造体2が、担体10の外表面10aに保持された他の金属微粒子30を更に備えていてもよい。
 この金属微粒子30は、一又は複数の触媒能を発揮する触媒物質である。他の金属微粒子30が有する触媒能は、金属微粒子20が有する触媒能と同一であってもよいし、異なっていてもよい。また、金属微粒子20,30の双方が同一の触媒能を有する触媒物質である場合、他の金属微粒子30の材料は、金属微粒子20の材料と同一であってもよいし、異なっていてもよい。本構成によれば、触媒構造体2に保持された金属微粒子の含有量を増大することができ、金属微粒子の触媒活性を更に促進することができる。
 この場合、担体10に内在する金属微粒子20の含有量は、担体10の外表面10aに保持された他の金属微粒子30の含有量よりも多いことが好ましい。これにより、担体10の内部に保持された金属微粒子20による触媒能が支配的となり、安定的に金属微粒子の触媒能が発揮される。
 また、本発明において、触媒を用いて、一酸化炭素と水素から液体炭化水素を合成する液体炭化水素の製造方法が提供される。このような触媒は、ゼオライト型化合物で構成される多孔質構造の担体10と、担体10に内在する少なくとも1つの金属微粒子20と、を備え、担体10が、互いに連通する通路11を有し、金属微粒子20が、担体10の少なくとも通路11の拡径部12に存在しているフィッシャー・トロプシュ合成触媒構造体1を含んでいる。すなわち、本発明では、上述のアフィッシャー・トロプシュ合成触媒構造体を用いて、一酸化炭素と水素から液体炭化水素を合成する液体炭化水素の製造方法が提供される。
 このようなフィッシャー・トロプシュ合成反応を利用した液体炭化水素の製造方法を実施する際の原料としては、分子状水素及び一酸化炭素を主成分とする合成ガスであれば特に制限はないが、水素/一酸化炭素のモル比が1.5~2.5である合成ガスが好適であり、該モル比が1.8~2.2である合成ガスがより好適である。また、FT合成反応の反応条件についても、特に制限はなく、公知の条件にて行うことができる。例えば、反応温度としては200~500℃、200~350℃が好ましく、圧力としては0.1~3.0MPa(絶対圧力)が好ましい。
 フィッシャー・トロプシュ合成反応は、フィッシャー・トロプシュ合成の反応プロセスとして公知のプロセス、例えば、固定床、超臨界固定床、スラリー床、流動床等で実施することができる。好ましいプロセスとしては、固定床、超臨界固定床、スラリー床を挙げることができる。
 また、本発明において、上記触媒構造体を有する炭化水素製造装置が提供されていてもよい。このような炭化水素製造装置は、上記触媒構造体を利用してフィッシャー・トロプシュ合成ができるものであれば特に限定されるものではなく、例えば、FT合成反応装置、FT合成反応カラム等の通常使用される製造装置を使用することができる。本発明に係る触媒構造体をこのような炭化水素製造装置に用いることにより、当該製造装置も上記と同様の効果を奏することができる。
 以上、本発明の実施形態に係る触媒構造体、その製造方法及び該触媒構造体を用いた炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
(実施例1~298)
[前駆体材料(A)の合成]
 シリカ剤(テトラエトキシシラン(TEOS)、和光純薬工業社製)と、鋳型剤としての界面活性剤とを混合した混合水溶液を作製し、適宜pH調整を行い、密閉容器内で、80~350℃、100時間、水熱処理を行った。その後、生成した沈殿物をろ別し、水およびエタノールで洗浄し、さらに600℃、24時間、空気中で焼成して、表1~6に示される種類および孔径の前駆体材料(A)を得た。なお、界面活性剤は、前駆体材料(A)の種類に応じて(「前駆体材料(A)の種類:界面活性剤」)以下のものを用いた。
・MCM-41:ヘキサデシルトリメチルアンモニウムブロミド(CTAB)(和光純薬工業社製)
・SBA-1:Pluronic P123(BASF社製)
[前駆体材料(B)および(C)の作製]
 次に、表1~6に示される種類の金属微粒子を構成する金属元素(M)に応じて、該金属元素(M)を含有する金属塩を、水に溶解させて、金属含有水溶液を調製した。なお、金属塩は、金属微粒子の種類に応じて(「金属微粒子:金属塩」)以下のものを用いた。
・Co:硝酸コバルト(II)六水和物(和光純薬工業社製)
・Ni:硝酸ニッケル(II)六水和物(和光純薬工業社製)
・Fe:硝酸鉄(III)九水和物(和光純薬工業社製)
 次に、粉末状の前駆体材料(A)に、金属含有水溶液を複数回に分けて少量ずつ添加し、室温(20℃±10℃)で12時間以上乾燥させて、前駆体材料(B)を得た。
 なお、表1~6に示す添加剤の有無の条件が「有り」の場合は、金属含有水溶液を添加する前の前駆体材料(A)に対して、添加剤としてのポリオキシエチレン(15)オレイルエーテル(NIKKOL BO-15V、日光ケミカルズ社製)の水溶液を添加する前処理を行い、その後、上記のように金属含有水溶液を添加した。なお、添加剤の有無の条件で「無し」の場合については、上記のような添加剤による前処理は行っていない。
 また、前駆体材料(A)に添加する金属含有水溶液の添加量は、該金属含有水溶液中に含まれる金属元素(M)に対する、前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算したときの数値が、表1~6の値になるように調整した。
 次に、上記のようにして得られた金属含有水溶液を含浸させた前駆体材料(B)を、600℃、24時間、空気中で焼成して、前駆体材料(C)を得た。
 上記のようにして得られた前駆体材料(C)と、表1~6に示す構造規定剤とを混合して混合水溶液を作製し、密閉容器内で、80~350℃、表1~6に示すpHおよび時間の条件で、水熱処理を行った。その後、生成した沈殿物をろ別し、水洗し、100℃で12時間以上乾燥させ、さらに600℃、24時間、空気中で焼成した。その後、焼成物を回収し、水素ガスの流入下で、500℃、60分間、還元処理して、表1~6に示す担体と触媒物質としての金属微粒子とを有する触媒構造体を得た(実施例1~298)。
(比較例1)
 比較例1では、MFI型シリカライトに平均粒径50nm以下の酸化コバルト粉末(II,III)(シグマ アルドリッチ ジャパン合同会社製)を混合し、実施例と同様にして水素還元処理を行って、担体としてのシリカライトの外表面に、触媒物質としてコバルト微粒子を付着させた触媒構造体を得た。MFI型シリカライトは、金属を添加する工程以外は、実施例56~実施例62と同様の方法で合成した。
(比較例2)
 比較例2では、コバルト微粒子を付着させる工程を省略したこと以外は、比較例1と同様の方法にてMFI型シリカライトを合成した。
[評価]
 上記実施例の触媒構造体および比較例のシリカライトについて、以下に示す条件で、各種特性評価を行った。
[A]断面観察
 上記実施例の触媒構造体および比較例のシリカライトについて、粉砕法にて観察試料を作製し、透過電子顕微鏡(TEM)(TITAN G2、FEI社製)を用いて、断面観察を行った。その結果、上記実施例の触媒構造体では、シリカライトまたはゼオライトからなる担体の内部に触媒物質が内在し、保持されていることが確認された。一方、比較例1のシリカライトでは、触媒物質が担体の外表面に付着しているのみで、担体の内部には存在していなかった。
 また、上記実施例のうち金属が鉄微粒子(Fe)である触媒構造体については、FIB(集束イオンビーム)加工により断面を切り出し、SEM(SU8020、日立ハイテクノロジーズ社製)、EDX(X-Max、堀場製作所社製)を用いて断面元素分析を行った。その結果、担体内部からFe元素が検出された。上記TEMとSEM/EDXによる断面観察の結果から、担体内部に鉄微粒子が存在していることが確認された。
[B]担体の通路の平均内径および触媒物質の平均粒径
 上記評価[A]で行った断面観察により撮影したTEM画像にて、担体の通路を、任意に500個選択し、それぞれの長径および短径を測定し、その平均値からそれぞれの内径を算出し(N=500)、さらに内径の平均値を求めて、担体の通路の平均内径Dとした。また、触媒物質についても同様に、上記TEM画像から、触媒物質を、任意に500個選択し、それぞれの粒径を測定して(N=500)、その平均値を求めて、触媒物質の平均粒径Dとした。結果を表1~6に示す。
 また、触媒物質の平均粒径及び分散状態を確認するため、SAXS(小角X線散乱)を用いて分析した。SAXSによる測定は、Spring-8のビームラインBL19B2を用いて行った。得られたSAXSデータは、Guinier近似法により球形モデルでフィッティングを行い、粒径を算出した。粒径は、金属が鉄微粒子である触媒構造体について測定した。また、比較対象として、市販品である鉄微粒子(Wako製)をSEMにて観察、測定した。
 この結果、市販品では粒径約50nm~400nmの範囲で様々なサイズの鉄微粒子がランダムに存在しているのに対し、TEM画像から求めた平均粒径が1.2nm~2.0nmの各実施例の触媒構造体では、SAXSの測定結果においても粒径が10nm以下の散乱ピークが検出された。SAXSの測定結果とSEM/EDXによる断面の測定結果から、担体内部に、粒径10nm以下の触媒物質が、粒径が揃いかつ非常に高い分散状態で存在していることが分かった。
[C]金属含有溶液の添加量と担体内部に包接された金属量との関係
 表1、2、5、6に示されるように、触媒物質として金属微粒子がコバルト微粒子(Co)、鉄微粒子(Fe)である触媒構造体については、原子数比Si/M=50、100、200、1000(M=Co、Fe)の添加量で、これらの金属微粒子を担体内部に包接させた触媒構造体を作製し、表3、4に示されるように、触媒物質として金属微粒子がニッケル微粒子(Ni)である触媒構造体については、原子数比Si/M=100、200、1000(M=Ni)の添加量で、金属微粒子を担体内部に包接させた触媒構造体を作製した。その後、上記添加量で作製された各触媒構造体の担体内部に包接された金属量(質量%)を測定した。尚、本測定において原子数比Si/M=100、200、1000の触媒構造体は、実施例1~298のうちの原子数比Si/M=100、200、1000の触媒構造体と同様の方法で金属含有溶液の添加量を調整して作製し、原子数比Si/M=50の触媒構造体は、金属含有溶液の添加量を異ならせたこと以外は、原子数比Si/M=100、200、1000の触媒構造体と同様の方法で作製した。
 金属量の定量は、ICP(高周波誘導結合プラズマ)単体か、或いはICPとXRF(蛍光X線分析)を組み合わせて行った。XRF(エネルギー分散型蛍光X線分析装置「SEA1200VX」、エスエスアイ・ナノテクノロジー社製)は、真空雰囲気、加速電圧15kV(Crフィルター使用)或いは加速電圧50kV(Pbフィルター使用)の条件で行った。XRFは、金属の存在量を蛍光強度で算出する方法であり、XRF単体では定量値(質量%換算)を算出できない。そこで、Si/M=100で金属を添加した触媒構造体の金属量は、ICP分析により定量し、Si/M=50および100未満で金属を添加した触媒構造体の金属量は、XRF測定結果とICP測定結果を元に算出した。
 この結果、少なくとも原子数比Si/Mが50~1000の範囲内で、金属含有溶液の添加量の増加に伴って、触媒構造体に包接された金属量が増大していることが確認された。
[D]性能評価
 上記実施例の触媒構造体および比較例のシリカライトについて、触媒物質がもつ触媒能を評価した。結果を表1~6に示す。
(1)触媒活性
 触媒活性は、以下の条件で評価した。
 まず、触媒構造体を、常圧流通式反応装置に70mg充填し、水素(8ml/分)と一酸化炭素(4ml/分)を供給し、100~700℃、0.1MPaで1時間加熱しながら、フィッシャー・トロプシュ合成を行った。常圧流通式反応装置は、シングルマイクロリアクター(フロンティアラボ社、Rx-3050SR)を使用した。
 反応終了後に、回収した生成ガスおよび生成液を、ガスクロマトグラフィー質量分析法(GC/MS)により成分分析した。なお、生成ガスの分析装置には、TRACE 1310GC(サーモフィッシャーサイエンティフィック社製、検出器:熱伝導度検出器)を用いた。
 さらに、上記成分分析の結果に基づき、FT合成反応により得られた生成物を確認した。本評価では、実施例および比較例で得られた触媒構造体用いて、上記操作を250℃、300℃、350℃、400℃でそれぞれ実施し、以下の評価基準により判定した。
 250℃で炭化水素(CHを除く、以下同じ)の生成が確認できた場合(つまり、反応開始温度が250℃以下の場合)を、FT合成反応における触媒活性が優れていると判定して「◎」、300℃で炭化水素の生成が確認できた場合(つまり、反応開始温度が250℃より高く、300℃以下の場合)を、触媒活性が良好であると判断して「○」、350℃で炭化水素の生成が確認できた場合(つまり、反応開始温度が300℃より高く、350℃以下の場合)を、触媒活性が良好ではないものの合格レベル(可)であると判断して「△」、400℃で炭化水素の生成が確認できた場合(つまり、反応開始温度が350℃より高く、400℃以下の場合)又はFT合成反応が起こらなかった場合を、触媒活性が劣る(不可)と判定して「×」とした。
(2)耐久性(寿命)
 耐久性は、以下の条件で評価した。
 まず、上記評価(1)で使用した触媒構造体を回収し、650℃で、12時間加熱して、加熱後の触媒構造体を作製した。次に、得られた加熱後の触媒構造体を用いて、上記評価(1)と同様の方法により、FT合成反応を行い、さらに上記評価(1)と同様の方法で、生成ガスおよび生成液の成分分析を行った。
 得られた分析結果に基づき、上記評価(1)と同様の方法で、炭化水素の生成量を求めた。さらに、加熱前の触媒構造体による炭化水素の生成量と比較して、加熱後の触媒構造体による炭化水素の収率が、どの程度維持されているかを比較した。具体的には、加熱前の触媒構造体による炭化水素の生成量(上記評価(1)で求めた生成量)に対する、上記加熱後の触媒構造体による炭化水素の生成量(本評価(2)で求めた生成量)の百分率(%)を算出した。
 本実施例では、加熱後の触媒構造体による炭化水素の生成量(本評価(2)で求めた生成量)が、加熱前の触媒構造体による炭化水素の生成量(上記評価(1)で求めた生成量)に比べて、80%以上維持されている場合を耐久性(耐熱性)が優れていると判定して「◎」、60%以上80%未満維持されている場合を耐久性(耐熱性)が良好であると判定して「○」、40%以上60%未満維持されている場合を耐久性(耐熱性)が良好ではないものの合格レベル(可)であると判定して「△」、そして40%未満に低下している場合を耐久性(耐熱性)が劣る(不可)と判定して「×」とした。
 比較例1~2についても、上記評価(1)および(2)と同様の性能評価を行った。尚、比較例2は、担体そのものであり、触媒物質を有していない。そのため、上記性能評価では、触媒構造体に替えて、比較例2の担体のみを充填した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表1~6から明らかなように、断面観察により担体の内部に触媒物質が保持されていることが確認された触媒構造体(実施例1~298)は、単に触媒物質が担体の外表面に付着しているだけの触媒構造体(比較例1)および触媒物質を何ら有していない担体そのもの(比較例2)と比較して、FT合成反応において優れた触媒活性を示し、触媒としての耐久性にも優れていることが分かった。
 また、上記評価[C]で測定された触媒構造体の担体内部に包接された金属量(質量%)と、上記評価(1)の触媒活性との関係を評価した。評価方法は、上記[D]「性能評価」における「(1)触媒活性」で行った評価方法と同じとした。その結果、各実施例において、前駆体材料(A)に添加する金属含有溶液の添加量が、原子数比Si/Mに換算して50~200(触媒構造体に対する金属微粒子の金属元素(M)の含有量が0.5~2.5質量%)であると、FT合成反応において触媒活性が向上する傾向にあることが分かった。
 さらに、Co微粒子を包接させた触媒構造体と、Fe微粒子を包接させた触媒構造体との触媒活性を比較するため、代表として、活性・耐久性共に良好であった実施例58~61(Co包接触媒構造体)と実施例254~257(Fe包接触媒構造体)の炭化水素(C~C20)のGC/MSエリア面積を比較した。その結果、Co包接触媒構造体は、Fe包接触媒構造体の約1.4倍のピーク面積を有していた。このことから、包接金属種はFeよりCoの方が適していることが分かった。
 一方、担体の外表面にのみ触媒物質を付着させた比較例1の触媒構造体は、触媒物質を何ら有していない比較例2の担体そのものと比較して、FT合成反応における触媒活性は改善されるものの、実施例1~298の触媒構造体に比べて、触媒としての耐久性は劣っていた。
 上記結果より、触媒構造体(実施例1~298)は、一酸化炭素と水素から液体炭化水素を合成するFT合成反応においても優れた触媒活性を示し、触媒としての耐久性に優れると推察することができる。
[他の実施態様]
 フィッシャー・トロプシュ合成触媒構造体を使用する方法であって、
 前記触媒構造体が、ゼオライト型化合物で構成される多孔質構造の担体と、前記担体に内在する少なくとも1つの金属微粒子と、を備え、前記担体が、互いに連通する通路を有し、前記金属微粒子が、前記担体の少なくとも前記通路の拡径部に存在していることを特徴とする、フィッシャー・トロプシュ合成触媒構造体を使用する方法。
 1 フィッシャー・トロプシュ合成触媒構造体
 10 担体
 10a 外表面
 11 通路
 11a 孔
 12 拡径部
 20 金属微粒子
 30 金属微粒子
 D  平均粒径
 D  平均内径
 D  内径

Claims (23)

  1.  ゼオライト型化合物で構成される多孔質構造の担体と、
     前記担体に内在する少なくとも1つの金属微粒子と、
    を備え、
     前記担体が、互いに連通する通路を有し、
     前記金属微粒子が、前記担体の少なくとも前記通路に存在していることを特徴とするフィッシャー・トロプシュ合成触媒構造体。
  2.  前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部とを有し、かつ
     前記金属微粒子が、少なくとも前記拡径部に存在していることを特徴とする、請求項1に記載のフィッシャー・トロプシュ合成触媒構造体。
  3.  前記拡径部は、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれかを構成する複数の孔同士を連通している、請求項2に記載のフィッシャー・トロプシュ合成触媒構造体。
  4.  前記金属微粒子の平均粒径が、前記通路の平均内径よりも大きく、且つ前記拡径部の内径以下であることを特徴とする、請求項2または3に記載のフィッシャー・トロプシュ合成触媒構造体。
  5.  前記金属微粒子の金属元素(M)が、前記フィッシャー・トロプシュ合成触媒構造体に対して0.5~2.5質量%で含有されていることを特徴とする、請求項1~4のいずれか1項に記載のフィッシャー・トロプシュ合成触媒構造体。
  6.  前記金属微粒子が、Co、Fe、Niまたはそれら少なくとも1種を含む合金を含んでいることを特徴とする、請求項1~5のいずれか1項に記載のフィッシャー・トロプシュ合成触媒構造体。
  7.  前記金属微粒子の平均粒径が、0.08nm~30nmであることを特徴とする、請求項1~6のいずれか1項に記載のフィッシャー・トロプシュ合成触媒構造体。
  8.  前記金属微粒子の平均粒径が、0.4nm~11.0nmであることを特徴とする、請求項7に記載のフィッシャー・トロプシュ合成触媒構造体。
  9.  前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、0.05~300であることを特徴とする、請求項1~8のいずれか1項に記載のフィッシャー・トロプシュ合成触媒構造体。
  10.  前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、0.1~30であることを特徴とする、請求項9に記載のフィッシャー・トロプシュ合成触媒構造体。
  11.  前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、1.4~3.6であることを特徴とする、請求項10に記載のフィッシャー・トロプシュ合成触媒構造体。
  12.  前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部とを有し、
     前記通路の平均内径は、0.1nm~1.5nmであり、
     前記拡径部の内径は、0.5nm~50nmであることを特徴とする、請求項1~11のいずれか1項に記載のフィッシャー・トロプシュ合成触媒構造体。
  13.  前記担体の外表面に保持された少なくとも1つの他の金属微粒子を更に備えることを特徴とする、請求項1~12のいずれか1項に記載のフィッシャー・トロプシュ合成触媒構造体。
  14.  前記担体に内在する前記少なくとも1つの金属微粒子の含有量が、前記担体の外表面に保持された前記少なくとも1つの他の金属微粒子の含有量よりも多いことを特徴とする、請求項13に記載のフィッシャー・トロプシュ合成触媒構造体。
  15.  前記ゼオライト型化合物は、ケイ酸塩化合物であることを特徴とする、請求項1~14のいずれか1項に記載のフィッシャー・トロプシュ合成触媒構造体。
  16.  請求項1~15のいずれか1項に記載のフィッシャー・トロプシュ合成触媒構造体を有する炭化水素製造装置。
  17.  ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成する焼成工程と、
     前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理する水熱処理工程と、
     前記水熱処理された前駆体材料(C)に還元処理を行う工程と、
     を有することを特徴とするフィッシャー・トロプシュ合成触媒構造体の製造方法。
  18.  前記焼成工程の前に、非イオン性界面活性剤を、前記前駆体材料(A)に対して50~500質量%添加することを特徴とする、請求項17に記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
  19.  前記焼成工程の前に、前記前駆体材料(A)に前記金属含有溶液を複数回に分けて添加することで、前記前駆体材料(A)に前記金属含有溶液を含浸させることを特徴とする、請求項17または18に記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
  20.  前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前記前駆体材料(A)に添加する前記金属含有溶液の添加量を、前記前駆体材料(A)に添加する前記金属含有溶液中に含まれる金属元素(M)に対する、前記前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整することを特徴とする、請求項17~19のいずれか1項に記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
  21.  前記水熱処理工程において、前記前駆体材料(C)と構造規定剤とを混合することを特徴とする、請求項17に記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
  22.  前記水熱処理工程が塩基性雰囲気下で行われることを特徴とする、請求項17に記載のフィッシャー・トロプシュ合成触媒構造体の製造方法。
  23.  触媒を用いて、一酸化炭素と水素から液体炭化水素を合成する液体炭化水素の製造方法であって、前記触媒が、
     ゼオライト型化合物で構成される多孔質構造の担体と、
     前記担体に内在する少なくとも1つの金属微粒子と、を備え、
     前記担体が、互いに連通する通路を有し、
     前記金属微粒子が、前記担体の少なくとも前記通路の拡径部に存在しているフィッシャー・トロプシュ合成触媒構造体を含んでいることを特徴とする、液体炭化水素の製造方法。
PCT/JP2018/021088 2017-05-31 2018-05-31 フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置 WO2018221700A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880035946.8A CN110691648A (zh) 2017-05-31 2018-05-31 费托合成催化剂结构体、其制造方法、使用了该催化剂结构体的液态烃的制造方法及具有该催化剂结构体的烃制造装置
JP2019521328A JP7361604B2 (ja) 2017-05-31 2018-05-31 フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置
EP18810101.8A EP3632546A4 (en) 2017-05-31 2018-05-31 FISCHER-TROPSCH SYNTHESIS CATALYST STRUCTURE, MANUFACTURING METHODS FOR IT, MANUFACTURING METHODS FOR LIQUID HYDROCARBONS USING THE CATALYST STRUCTURE AND DEVICE FOR THE PRODUCTION OF HYDROCARBONS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-108632 2017-05-31
JP2017108632 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221700A1 true WO2018221700A1 (ja) 2018-12-06

Family

ID=64454831

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021088 WO2018221700A1 (ja) 2017-05-31 2018-05-31 フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置

Country Status (4)

Country Link
EP (1) EP3632546A4 (ja)
JP (1) JP7361604B2 (ja)
CN (1) CN110691648A (ja)
WO (1) WO2018221700A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027321A1 (ja) * 2018-08-03 2020-02-06 古河電気工業株式会社 軽質炭化水素合成触媒構造体、軽質炭化水素製造装置及び軽質炭化水素の製造方法
WO2020116476A1 (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 炭化水素の製造装置および炭化水素の製造方法
WO2020116478A1 (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 炭化水素の製造装置および炭化水素の製造方法
JP2020089813A (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 フィッシャー・トロプシュ合成触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法
WO2020116474A1 (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 低級オレフィン含有ガスの製造装置および低級オレフィン含有ガスの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102440A (ja) 1982-11-22 1984-06-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ フイツシヤ−トロプシユ触媒の製造法、そのようにして製造された触媒及び炭化水素の製造におけるかかる触媒の使用
JPH04227847A (ja) 1990-05-04 1992-08-17 Shell Internatl Res Maatschappij Bv 合成ガスからの炭化水素の製造方法
JP2000070720A (ja) 1998-08-31 2000-03-07 Agency Of Ind Science & Technol 炭化水素製造用触媒とその製造方法、及び該触媒を用いた炭化水素の製造方法
WO2010097108A1 (en) * 2009-02-27 2010-09-02 Haldor Topsøe A/S Process for the preparation of hybrid zeolite or zeolite-like materials
JP2014534902A (ja) * 2011-10-21 2014-12-25 アイジーティエル・テクノロジー・リミテッドIGTL Technology Ltd 担持活性金属触媒および前駆体を製造および形成する方法
WO2015072573A1 (ja) 2013-11-18 2015-05-21 Jx日鉱日石エネルギー株式会社 フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法
WO2015155216A1 (en) * 2014-04-10 2015-10-15 Danmarks Tekniske Universitet A general method to incorporate metal nanoparticles in zeolites and zeotypes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7678955B2 (en) * 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
EP3016741B1 (en) * 2013-07-05 2020-07-01 Danmarks Tekniske Universitet Method for producing zeolites and zeotypes
JP2016016380A (ja) * 2014-07-09 2016-02-01 国立大学法人 宮崎大学 部位選択的に助触媒金属が担持されたメソポーラス金属酸化物、その製造方法、及びその使用
US9938157B2 (en) * 2014-07-23 2018-04-10 Chevron U.S.A. Inc. Interzeolite transformation and metal encapsulation in the absence of an SDA
US20180311651A1 (en) * 2015-10-30 2018-11-01 Sabic Global Technologies B.V. Use of hollow zeolites doped with bimetallic or trimetallic particles for hydrocarbon reforming reactions

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102440A (ja) 1982-11-22 1984-06-13 シエル・インタ−ナシヨネイル・リサ−チ・マ−チヤツピイ・ベ−・ウイ フイツシヤ−トロプシユ触媒の製造法、そのようにして製造された触媒及び炭化水素の製造におけるかかる触媒の使用
JPH04227847A (ja) 1990-05-04 1992-08-17 Shell Internatl Res Maatschappij Bv 合成ガスからの炭化水素の製造方法
JP2000070720A (ja) 1998-08-31 2000-03-07 Agency Of Ind Science & Technol 炭化水素製造用触媒とその製造方法、及び該触媒を用いた炭化水素の製造方法
WO2010097108A1 (en) * 2009-02-27 2010-09-02 Haldor Topsøe A/S Process for the preparation of hybrid zeolite or zeolite-like materials
JP2014534902A (ja) * 2011-10-21 2014-12-25 アイジーティエル・テクノロジー・リミテッドIGTL Technology Ltd 担持活性金属触媒および前駆体を製造および形成する方法
WO2015072573A1 (ja) 2013-11-18 2015-05-21 Jx日鉱日石エネルギー株式会社 フィッシャー・トロプシュ合成用触媒の製造方法及び炭化水素の製造方法
WO2015155216A1 (en) * 2014-04-10 2015-10-15 Danmarks Tekniske Universitet A general method to incorporate metal nanoparticles in zeolites and zeotypes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3632546A4

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020027321A1 (ja) * 2018-08-03 2020-02-06 古河電気工業株式会社 軽質炭化水素合成触媒構造体、軽質炭化水素製造装置及び軽質炭化水素の製造方法
WO2020116476A1 (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 炭化水素の製造装置および炭化水素の製造方法
WO2020116478A1 (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 炭化水素の製造装置および炭化水素の製造方法
JP2020089813A (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 フィッシャー・トロプシュ合成触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法
WO2020116474A1 (ja) * 2018-12-03 2020-06-11 古河電気工業株式会社 低級オレフィン含有ガスの製造装置および低級オレフィン含有ガスの製造方法
CN113165995A (zh) * 2018-12-03 2021-07-23 古河电气工业株式会社 含低级烯烃气体的制造装置及含低级烯烃气体的制造方法
EP3892604A4 (en) * 2018-12-03 2022-08-17 Furukawa Electric Co., Ltd. DEVICE FOR PRODUCING GAS CONTAINING LIGHT OLEFINS AND METHOD FOR PRODUCING GAS CONTAINING LIGHT OLEFINS
EP3892605A4 (en) * 2018-12-03 2022-09-21 Furukawa Electric Co., Ltd. DEVICE FOR PRODUCTION OF HYDROCARBONS AND METHOD FOR PRODUCTION OF HYDROCARBONS
US11925930B2 (en) 2018-12-03 2024-03-12 Furukawa Electric Co., Ltd. Apparatus for producing lower olefin-containing gas and method for producing lower olefin-containing gas

Also Published As

Publication number Publication date
EP3632546A1 (en) 2020-04-08
CN110691648A (zh) 2020-01-14
EP3632546A4 (en) 2021-01-27
JPWO2018221700A1 (ja) 2020-03-26
JP7361604B2 (ja) 2023-10-16

Similar Documents

Publication Publication Date Title
JP7282027B2 (ja) アンモニア分解触媒構造体及び燃料電池
WO2018221700A1 (ja) フィッシャー・トロプシュ合成触媒構造体、その製造方法及び該触媒構造体を用いた液体炭化水素の製造方法、並びに該触媒構造体を有する炭化水素製造装置
WO2018221704A1 (ja) 芳香族炭化水素製造用触媒構造体、その芳香族炭化水素製造用触媒構造体を備える芳香族炭化水素製造装置、芳香族炭化水素製造用触媒構造体の製造方法及び芳香族炭化水素の製造方法
JP7340198B2 (ja) 機能性構造体及び機能性構造体の製造方法
WO2018221690A1 (ja) 機能性構造体及び機能性構造体の製造方法
CN110678261B (zh) 合成气体制造用催化剂结构体、具备该合成气体制造用催化剂结构体的合成气体制造装置以及合成气体制造用催化剂结构体的制造方法
JP7366432B2 (ja) 触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法
JP7407713B2 (ja) 軽質炭化水素合成触媒構造体、軽質炭化水素製造装置及び軽質炭化水素の製造方法
WO2018221699A1 (ja) アンモニア合成触媒構造体及びその製造方法、アンモニア合成装置並びにアンモニアの合成方法
JP2018202395A (ja) アルカンの脱水素化触媒構造体及びその製造方法、並びに該脱水素化触媒構造体を有するアルケン製造装置
JP7353751B2 (ja) フィッシャー・トロプシュ合成触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法
JP7366431B2 (ja) 触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法
JP7449525B2 (ja) 機能性構造体及びその製造方法
WO2018221695A1 (ja) 流動接触分解用構造体及びその製造方法、並びに、これを備える流動接触分解用装置
JP7269168B2 (ja) 水素化分解用触媒構造体、その水素化分解用触媒構造体を備える水素化分解装置及び水素化分解用触媒構造体の製造方法
JP2018202387A (ja) 機能性構造体およびその製造方法
JP2020089813A (ja) フィッシャー・トロプシュ合成触媒構造体およびその製造方法、ならびに該触媒構造体を用いた炭化水素の製造方法
WO2020116471A1 (ja) 機能性構造体の前駆体および機能性構造体
JP2018202412A (ja) 有機ハイドライドの脱水素化触媒構造体及びその製造方法、並びに該脱水素化触媒構造体を有する水素製造装置
JP2018202386A (ja) 機能性構造体及び機能性構造体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18810101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018810101

Country of ref document: EP

Effective date: 20200102