WO2018221486A1 - フィルタ装置及びフィルタ - Google Patents
フィルタ装置及びフィルタ Download PDFInfo
- Publication number
- WO2018221486A1 WO2018221486A1 PCT/JP2018/020455 JP2018020455W WO2018221486A1 WO 2018221486 A1 WO2018221486 A1 WO 2018221486A1 JP 2018020455 W JP2018020455 W JP 2018020455W WO 2018221486 A1 WO2018221486 A1 WO 2018221486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- filter
- waveguide
- substrate
- conductor layer
- conductor
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/02—Coupling devices of the waveguide type with invariable factor of coupling
- H01P5/022—Transitions between lines of the same kind and shape, but with different dimensions
- H01P5/024—Transitions between lines of the same kind and shape, but with different dimensions between hollow waveguides
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02052—Optical fibres with cladding with or without a coating comprising optical elements other than gratings, e.g. filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
- G02B6/38—Mechanical coupling means having fibre to fibre mating means
- G02B6/3807—Dismountable connectors, i.e. comprising plugs
- G02B6/381—Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres
- G02B6/3817—Dismountable connectors, i.e. comprising plugs of the ferrule type, e.g. fibre ends embedded in ferrules, connecting a pair of fibres containing optical and electrical conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/20—Frequency-selective devices, e.g. filters
- H01P1/207—Hollow waveguide filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
Definitions
- the present invention relates to a filter device in which a filter and two waveguides are coupled.
- the present invention also relates to a filter that can be coupled to a waveguide.
- FIG. 8 of Non-Patent Document 1 describes a filter capable of coupling a rectangular waveguide having a rectangular cross section to each of both ends thereof.
- This filter includes a plurality of resonators formed by cutting a metal block.
- a coupling window for electromagnetically coupling the resonators is formed at the boundary between adjacent resonators.
- a filter configured by coupling a plurality of resonators in this way is called a resonator-coupled filter.
- the characteristics of this filter depend on the resonance frequency of each resonator and the coupling coefficient between the resonators.
- the resonance frequency is a physical quantity determined by the size of each resonator
- the coupling coefficient is a physical quantity determined by the size of the coupling window. Therefore, the characteristics of the filter described in Non-Patent Document 1 strongly depend on the size of the filter itself.
- the filter described in Non-Patent Document 1 is a filter having high temperature dependency.
- the characteristics of the filter fluctuate, the electromagnetic wave originally included in the band to be reflected is transmitted. Therefore, the filter described in Non-Patent Document 1 is not suitable for use in an environment where the temperature change is severe.
- a filter described in Non-Patent Document 2 can be cited.
- the filter described in Non-Patent Document 2 is a resonator-coupled filter configured by a post-wall waveguide (PWW).
- PWW post-wall waveguide
- a region having a rectangular shape functions as a propagation region for propagating electromagnetic waves.
- a pair of conductor layers in the cross section of the propagation region exceeds the height of the post wall in the cross section (equal to the thickness of the substrate). Therefore, in PWW, a pair of conductor layers is also called a pair of wide walls, and a post wall is also called a narrow wall.
- the direction parallel to the normal of the pair of wide walls is referred to as the vertical direction
- the direction parallel to the propagation direction of the electromagnetic wave is referred to as the front-rear direction
- the direction perpendicular to each of the vertical direction and the front-rear direction is referred to as the left-right direction.
- the pair of wide walls sandwich the propagation region from above and below, and the narrow walls sandwich the propagation region from front to back and left and right.
- a portion of the narrow wall that sandwiches the propagation region from the left-right direction is also referred to as a side wall, and a portion of the narrow wall that sandwiches the propagation region from the front-rear direction is also referred to as a short wall.
- the filter described in Non-Patent Document 2 employs quartz glass as a dielectric material constituting the substrate. Quartz glass has a small coefficient of linear expansion compared to metal. Therefore, when the temperature of the external environment changes greatly (for example, when it changes within a range of ⁇ 25 ° C. or more and 100 ° C. or less), the size of the filter itself changes compared to the filter described in Non-Patent Document 1. The amount is small. Therefore, the characteristics of this filter are less temperature dependent than the filter described in Non-Patent Document 1.
- Japanese Published Patent Publication Japanese Published Patent Publication "Japanese Patent Laid-Open No. 2015-80100” Japanese Published Patent Publication “Japanese Unexamined Patent Publication No. 2015-226109” Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2016-6918”
- a filter is a passive device that limits the center frequency and bandwidth of transmitted electromagnetic waves.
- the coupling portion between the filter and the waveguide is required to suppress the reflection loss over a wide band. This is because the band of the electromagnetic wave is limited only by the filter, and it is not preferable that the bandwidth is limited at the coupling portion between the filter and the waveguide.
- Non-Patent Document 2 has a problem that the reflection loss when connected to the waveguide tends to be large, and it is difficult to widen the bandwidth with low reflection loss. This problem will be described below.
- Patent Documents 1 to 3 describe a transmission line in which a waveguide is coupled to one end of a PWW as described below. These transmission lines can be used as a configuration for coupling the filter and the waveguide described in Non-Patent Document 2.
- a coupling window is provided by omitting the PWW short wall, and the waveguide short wall A part of (described as a closed wall in Patent Document 1) is opened.
- the PWW and the waveguide are coupled by abutting the open portion of the short wall of the waveguide with the coupling window of the PWW.
- the PWW and the waveguide are shared so as to share the conductor layer formed on one surface of the substrate. And are arranged.
- This conductor layer functions as one wide wall of the PWW and also functions as one wide wall of the waveguide (see FIG. 3).
- This rectangular wall shared by the PWW and the waveguide is provided with four rectangular coupling windows. In this transmission line, the PWW and the waveguide are coupled through these four coupling windows.
- a coupling window is provided on one wide wall of the PWW, and a short wall of the waveguide is opened.
- the PWW and the waveguide are coupled by bringing together the wide wall portion of the PWW in which the coupling window is formed and the cross section in which the short wall of the waveguide is opened.
- a microstrip line including a signal line and a ground layer as a planar transmission line coupled to an end opposite to the end connected to the PWW waveguide is provided.
- MSL Micro Strip Line
- These transmission lines include a columnar conductor (for example, described as a feed pin in Patent Document 3) that converts a mode propagating through the PWW into a mode propagating through the MSL. This columnar conductor couples the PWW and the waveguide.
- the transmission line as described in Patent Documents 1 to 3 described above has a wide band (for example, 71 GHz or more and 86 GHz or less when operating in the E band).
- the reflection loss is required to be low (for example, the reflection loss is -15 dB or less).
- the bandwidth of each transmission line described in Patent Documents 1 to 3 is less than 10 GHz (FIG. 9 of Patent Document 1, FIG. 13 of Patent Document 2). And FIG. 4 of Patent Document 3). These bandwidths cannot be said to be sufficient as a transmission line for coupling the filter and the waveguide, and there is room for widening the bandwidth of the conventional transmission line.
- the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a low reflection loss band in a filter device including a filter using PWW and a waveguide coupled to the filter. It is to increase the bandwidth.
- a filter device includes a pair of wide electrodes including a dielectric substrate and a first conductor layer and a second conductor layer that respectively cover both surfaces of the substrate.
- a filter including a wall and a narrow wall made of a post wall formed inside the substrate; a tube wall made of a conductor; and a first waveguide and a second waveguide disposed along the substrate.
- a filter device including a waveguide.
- the filter penetrates through a first opening provided in the first conductor layer, and one end portion is located inside the substrate, and the first conductor layer or the first conductor layer A second columnar conductor that penetrates through a second opening provided in the second conductor layer and has one end located inside the substrate is further provided.
- the first columnar conductor passes through an opening provided in a tube wall of the first waveguide, and the other end of the first columnar conductor is in the first waveguide.
- the second columnar conductor penetrates through an opening provided in a tube wall of the second waveguide.
- the other end of the second columnar conductor is disposed so as to be located inside the second waveguide.
- a filter according to one embodiment of the present invention includes a pair of wide walls including a dielectric substrate and a first conductor layer and a second conductor layer that respectively cover both surfaces of the substrate. And a narrow wall made of a post wall formed inside the substrate, the filter passing through a first opening provided in the first conductor layer, and having one end portion The first columnar conductor located inside the substrate and the second opening provided in the first conductor layer or the second conductor layer pass through, and one end portion is inside the substrate. And a second columnar conductor positioned.
- each of the filter device and the filter according to one aspect of the present invention it is possible to widen a band with low reflection loss.
- FIG. 2 is a cross-sectional view of a PWW-waveguide converter provided in the filter device shown in FIG. (A) is sectional drawing of the transmission line provided with the modification of the PWW-waveguide conversion part shown in FIG. (B) is an enlarged sectional view of the PWW-waveguide converter shown in (a).
- (A) is a graph showing the reflection characteristics and transmission characteristics of the PWW-waveguide converter included in the filter device according to the first embodiment of the present invention.
- (B) is a graph showing the reflection characteristics and transmission characteristics of the PWW-waveguide converter provided in the filter device according to the second embodiment of the present invention.
- (A) And (b) is sectional drawing of the filter apparatus which concerns on the 2nd Embodiment of this invention. It is sectional drawing of the 1st modification of the filter apparatus shown in FIG. It is sectional drawing of the 2nd modification of the filter apparatus shown in FIG.
- a filter device includes a filter configured by a post-wall waveguide (PWW) and two waveguides (a first waveguide and a second waveguide). Is a filter device obtained by combining. In the present filter device, the filter is interposed between the first waveguide and the second waveguide.
- PWW post-wall waveguide
- two waveguides a first waveguide and a second waveguide.
- the filter device according to one embodiment of the present invention is assumed to operate in the E band (a band of 70 GHz or more and 90 GHz or less).
- the filter device according to one embodiment of the present invention is assumed to operate in an external environment whose temperature is ⁇ 25 ° C. or higher and 100 ° C. or lower.
- FIG. 1 is an exploded perspective view of a filter device 1 according to the present embodiment.
- FIG. 2 is a cross-sectional view of the PWW-waveguide converter provided in the filter device 1.
- each of the filter 11, the waveguide 21, and the waveguide 31 is disposed so that the propagation directions of the electromagnetic waves in the inside thereof are along each other (preferably in parallel).
- the y axis is set to the propagation direction of the electromagnetic wave inside each of the filter 11, the waveguide 21, and the waveguide 31, and the z axis is the substrate 12.
- the normal direction of the surface is set, and the x-axis is set in a direction orthogonal to each of the y-axis and the z-axis.
- the z-axis positive (negative) direction is referred to as the up (down) direction and the x-axis positive (negative) direction is set to the left (right) according to the direction of the filter device 1 arranged as shown in FIG.
- the y-axis positive (negative) direction is called the front (rear) direction.
- the z-axis direction is referred to as the up-down direction
- the x-axis direction is referred to as the left-right direction
- the y-axis direction is referred to as the front-rear direction.
- the filter device 1 includes a filter 11 made of PWW, a waveguide 21, and a waveguide 31.
- Each of the waveguide 21 and the waveguide 31 is a first waveguide and a second waveguide described in the claims.
- the filter 11 is a laminated substrate in which a conductor layer 13 and a conductor layer 14 are formed on both surfaces of a substrate 12 made of a dielectric (in this embodiment, made of quartz glass).
- a substrate 12 made of a dielectric (in this embodiment, made of quartz glass).
- Each of the conductor layer 13 and the conductor layer 14 is a first conductor layer and a second conductor layer according to claims.
- the substrate 12 may be made of a dielectric, and the dielectric constituting the substrate 12 may be appropriately selected in consideration of at least one of relative permittivity and workability.
- the filter 11 is provided in advance with a first region R1 in which a part of the tube wall of the waveguide 21 can be disposed in the vicinity of an opening 13a1 described later. Further, the filter 11 is provided with a second region in advance in which a part of the tube wall of the waveguide 31 can be arranged in the vicinity of an opening 13a2 described later.
- the opening 13a1 and the opening 13a2 are a first opening and a second opening described in the claims.
- a post wall obtained by arranging a plurality of conductor posts 161i, 162i, 163j, 164j (i, j are arbitrary positive integers) in a fence shape is formed inside the substrate 12 (FIG. 1). reference).
- the plurality of conductor posts 161i, 162i, 163j, and 164j are formed by forming a via penetrating from the front surface to the back surface of the substrate 12 in the substrate 12 and filling a conductor such as metal into the via or It is obtained by depositing on the inner surface of the via.
- Each of the plurality of conductor posts 161i, 162i, 163j, 164j electrically connects the conductor layer 13 and the conductor layer 14.
- the diameters of the conductor posts 161i, 162i, 163j, 164j may be set as appropriate according to the operating band. In the present embodiment, the diameter is 100 ⁇ m. Further, the interval between adjacent conductor posts 161i, 162i, 163j, 164j is 100 ⁇ m, the same as the diameter.
- the side wall 161 which is a post wall obtained by arranging a plurality of conductor posts 161i in a fence shape with a predetermined period functions as a kind of conductor wall that reflects electromagnetic waves in a band corresponding to the period.
- the post wall obtained by the plurality of conductor posts 162i constitutes the side wall 162
- the post wall obtained by the plurality of conductor posts 163j constitutes the short wall 163 and obtained by the plurality of conductor posts 164j.
- the post wall constitutes a short wall 164.
- the side walls 161 and 162 and the short walls 163 and 164 are collectively referred to as a narrow wall 16.
- Each of the planes represented by the virtual lines (two-dot chain lines) shown in FIG. 1 is a virtual plane including the central axes of the plurality of conductor posts 161i, 162i, 163j, and 164j. It is a plane schematically showing a conductor wall virtually realized by each of the walls 163 and 164.
- some of the conductor posts 161 i, 162 i, 163 j, and 164 j are omitted in order to make the configuration of a PWW-waveguide converter described later easier to see.
- the narrow wall 16 sandwiches a region whose shape is a rectangular parallelepiped from front, rear, left and right.
- the conductor layer 13 and the conductor layer 14 which are a pair of wide walls sandwich the area
- the electromagnetic wave propagates in the propagation region in the y-axis direction, with the region having a rectangular parallelepiped shape as the propagation region.
- PWW is comprised by a pair of wide wall and narrow wall.
- the above-described rectangular parallelepiped propagation region is divided into four resonators 11a, 11b, 11c, and 11d by partition walls 171, 172, and 173.
- the partition walls 171, 172, and 173 are constituted by post walls in the same manner as the narrow wall 16.
- the conductor post located near the center of the partition wall 171 is not formed.
- the part functions as a coupling window 171a that electromagnetically couples the adjacent resonator 11a and the resonator 11b.
- the coupling window 172a provided near the center of the partition wall 172 couples the resonator 11b and the resonator 11c
- the coupling window 173a provided near the center of the partition wall 173 includes the resonator 11c and the resonator 11d. And combine.
- the filter 11 configured by electromagnetically coupling the resonators 11a to 11d in this way is a resonator-coupled filter.
- the waveguide 21 is made of a conductor (in this embodiment, the surface of brass is subjected to gold plating). As shown in FIG. 1, the waveguide 21 includes a tube wall 22 having a rectangular cross section, and a short wall 23 that seals an end portion of the tube wall 22 (an end portion on the y-axis negative direction side). . That is, the waveguide 21 is a rectangular waveguide.
- the tube wall 22 includes a wide wall 221 and a wide wall 222 that are a pair of wide walls, and a narrow wall 223 and a narrow wall 224 that are a pair of narrow walls.
- the wide wall 222 located on the filter 11 side is provided with an opening 22a having a diameter larger than that of the pin 18 described later.
- the waveguide 21 In order to couple the filter 11 and the waveguide 21, the waveguide 21 is moved closer to the negative direction of the z-axis toward the filter 11 from the disassembled state shown in FIG. 1, and the pin 18 passes through the opening 22a.
- the waveguide 21 is disposed on the filter 11 so that the lower surface of the wide wall 222 is in close contact with the upper surface of the conductor layer 13 without a gap.
- the waveguide 21 is electromagnetically coupled to the filter 11 via the pin 18. Therefore, the pin 18 is a PWW-waveguide converter that couples the filter 11 constituted by PWW and the waveguide. Details of the PWW-waveguide converter will be described later with reference to FIG.
- the end portion (the end portion on the y-axis positive direction side) opposite to the short wall 23 of the waveguide 21 is cut off so as to be flush with the end surface on the y-axis positive direction side of the substrate 12. ing.
- the y-axis positive direction side end portion of the waveguide 21 may be further extended toward the y-axis positive direction side without being cut off.
- a device that is preferably coupled using a waveguide such as an antenna may be coupled to the end of the waveguide 21 on the positive side in the y-axis direction.
- the waveguide 21 has a hollow structure inside.
- the inside of the waveguide 21 may be filled with dielectric particles for adjusting the relative dielectric constant.
- the waveguide 31 has the same configuration as the waveguide 21. That is, the waveguide 31 is composed of a tube wall 32 and a short wall 33.
- the tube wall 32 includes a wide wall 321 and a wide wall 322 that are a pair of wide walls, and a narrow wall 323 and a narrow wall 324 that are a pair of narrow walls.
- the wide wall 322 is provided with an opening 32a having a diameter larger than that of the pin 19 described later.
- the waveguide 21 is disposed on the filter 11 so that the short wall 23 is located on the y-axis negative direction side.
- the waveguide 31 is disposed on the filter 11 in the opposite direction to the waveguide 21, that is, so that the short wall 33 is located on the y-axis positive direction side.
- the waveguide 31 is electromagnetically coupled to the filter 11 via the pin 19. Therefore, the pin 19 is a PWW-waveguide converter as with the pin 18. Details of the PWW-waveguide converter will be described later with reference to FIG.
- the filter device 1 includes a first PWW-waveguide converter in which the filter 11 and the waveguide 21 are coupled, and a second PWW-waveguide converter in which the filter 11 and the waveguide 31 are coupled. Part.
- the first PWW-waveguide converter and the second PWW-waveguide converter have the same configuration. Therefore, in the present embodiment, the PWW-waveguide converter included in the filter device 1 will be described using the first PWW-waveguide converter as an example.
- FIG. 2 shows a cross-sectional view of the cross section along the line A-A ′ shown in FIG. 1 (cross section along the yz plane).
- FIG. 2 is a cross-sectional view of the vicinity of the pin 18.
- a part of the conductor layer 13 is cut out in a ring shape in the vicinity of the conductor post 163j (the conductor post constituting the short wall 163) in the propagation region of the filter 11.
- an opening 13a1 is provided in the conductor layer 13, and a land 131 (not shown in FIG. 1) concentric with the opening 13a1 is formed inside thereof.
- a circular opening is provided in the vicinity of the center of the land 131 (preferably in the center).
- the substrate 12 communicates with the opening, and the surface of the substrate 12 (surface on the z-axis positive direction side). ) To the inside of the substrate 12 are provided with cylindrical pores. As shown in FIG. 2, these pores are non-through holes.
- the pins 18 are fixed to the substrate 12 by inserting metal pins 18 (columnar conductors described in claims) into the openings and pores of the land 131 described above.
- the pin 18 thus inserted into the substrate 12 passes through the opening 13a1, and its lower end 181 (one end described in claims) is inside the substrate 12, that is, a filter. 11 propagation regions.
- the pin 18 fixed in this way has an upper end 182 (the other end described in the claims) located inside the waveguide 21, that is, in the propagation region of the waveguide 21.
- the diameter of the pin 18 is 180 ⁇ m.
- the end portion 182 of the pin 18 must not be electrically connected to the wide wall 221.
- the length of the portion of the pin 18 protruding from the substrate 12 can be adjusted within a range where the end 182 does not contact the wide wall 221.
- the pin 18 When there is an electromagnetic wave propagating through the propagation region of the filter 11 in the y-axis positive direction, the portion inserted into the substrate 12 of the pin 18 sucks the electromagnetic wave propagating through the propagation region of the filter 11 and The portion protruding from the substrate 12 radiates the electromagnetic wave to the propagation region of the waveguide 21.
- the pin 18 when there is an electromagnetic wave propagating through the propagation region of the waveguide 21 in the negative y-axis direction, the pin 18 has a portion protruding from the substrate 12 sucks the electromagnetic wave from the propagation region of the waveguide 21, The portion inserted into the substrate 12 radiates the electromagnetic wave to the propagation region of the filter 11. Therefore, the pin 18 functions as a PWW-waveguide converter.
- the pin 18 electromagnetically couples the mode propagating in the propagation region of the filter 11 and the mode propagating in the propagation region of the waveguide 21.
- the coupling between the filter 11 and the waveguide 21 by the pin 18 covers a wide band as compared with the coupling using the conventional coupling window. Therefore, the filter device 1 including the pin 18 can reduce the reflection loss at the coupling portion between the filter 11 and the waveguide 21 over a wide band as compared with the conventional transmission device. Therefore, the filter device 1 can broaden a band having a low reflection loss compared to a conventional transmission line.
- the filter 11 shown in FIGS. 1 and 2 includes the waveguide 21 in which the opening 22a is provided in the tube wall 22 and the waveguide 31 in which the opening 32a is provided in the tube wall 32 as described above.
- the waveguide 21 and the waveguide 31 can be easily coupled.
- the waveguide 21 is disposed so that the pin 18 passes through the opening 22 a provided in the waveguide 21 and the end portion 182 of the pin 18 is located inside the waveguide 21.
- the filter 11 and the waveguide 21 can be coupled. The same applies to the coupling between the filter 11 and the waveguide 31.
- the coupling portion between the filter 11 and the waveguide 21 realized in this way can suppress reflection loss over a wide band.
- the coupling portion between the filter 11 and the waveguide 31 realized in this way can suppress reflection loss over a wide band. Therefore, the filter 11 is also included in the technical category of the present invention.
- FIG. 3A is a cross-sectional view of the filter device 1 including the pin 118.
- FIG. 3B is an enlarged cross-sectional view of the pin 118.
- a modification is described using the pin 118 as an example.
- the configuration of the pin 118 obtained by deforming the pin 18 can be adopted as a modification of the pin 19.
- the pin 118 is employed as the first PWW-waveguide converter included in the filter device 1, it is preferable to employ a modification of the pin 19 as the second PWW-waveguide converter.
- the pin 18 provided in the filter device 1 shown in FIGS. 1 and 2 is changed to a pin 118, and the filter device 1 shown in FIGS. 1 and 2 is provided.
- the waveguide 21 is changed to a waveguide 121. In this modification, only the configuration in which the filter device 1 shown in FIG. 3 is different from the filter device 1 shown in FIGS. 1 and 2 will be described.
- the pin 118 is divided into a blind via 118a that is a first portion and a blind via 118b that is a second portion.
- the blind via 118a is configured as follows. In the vicinity of the conductor post 163j in the propagation region of the filter 11, an opening 13a1 is provided. A land 131 is formed inside the opening 13a1. Furthermore, cylindrical pores are provided near the center of the land 131 (preferably at the center). These pores are non-through holes.
- the blind via 118a is obtained by filling the inside of the non-through hole with a conductor such as metal or depositing it on the inner surface of the non-through hole.
- the lower end of the blind via 118a (one end described in claims) is located inside the substrate 12, that is, in the propagation region of the filter 11.
- the upper end portion of the blind via 118a (the other end portion recited in the claims) is electrically connected to the land 131.
- the blind via 118b is embedded in a block 119 made of a dielectric (in this embodiment, made of quartz glass), and an upper end 118b1 (end on the z-axis positive direction side) is located inside the block 119.
- the lower end 118b2 (the end on the z-axis negative direction side) reaches the surface of the block 119.
- the blind via 118b can be manufactured as follows. As the block 119, the thickness is less than the distance between the wide wall 1221 and the wide wall 1222 of the waveguide 121, and the conductor layer 120 is formed on one surface (the surface on the negative side in the z-axis in FIG. 3). A dielectric substrate (in this embodiment, quartz glass) is used. A plurality of blind vias are formed in a matrix on the substrate on which the conductor layer 120 is formed. After that, the block 119 in which the blind via 118b is formed is obtained by cutting out the substrate on which the plurality of blind vias are formed in a dice shape.
- a land 1201 that is electrically connected to the blind via 118b and a conductor layer 120 that surrounds the land 1201 while being separated from the land 1201 are formed on the surface of the block 119.
- the land 1201 is connected to the land 131 using the bump B1.
- the conductor layer 120 is connected to the conductor layer 13 using bumps B2 and B3.
- the bumps B1 to B3 are an embodiment of the conductive connection member, and are formed by forming a solder layer on the surface of a metal spherical member. In this way, the blind via 118b is connected and fixed to the blind via 118a.
- the central axis of the blind via 118a and the central axis of the blind via 118b are coaxial (coincident).
- the conductive connection member solder, conductive adhesive (for example, silver paste) or the like may be used in addition to the bump.
- the conductive connection member solder, conductive adhesive (for example, silver paste) or the like may be used in addition to the bump.
- bumps B1 to B3 having a uniform diameter as the conductive connection member, the surface of the substrate 12 on which the conductor layer 13 is formed and the surface of the block 119 on which the conductor layer 120 is formed are parallel. The degree can be increased easily. Therefore, it is easy to connect the blind via 118a and the blind via 118b in a state where the central axis of the blind via 118a and the central axis of the blind via 118b are parallel.
- a cylindrical pore having a predetermined diameter (for example, 180 ⁇ m) is provided in a predetermined position of the substrate 12 in advance, and the pin 18 is fixed to the substrate 12 by inserting the pin 18 into the pore. .
- the predetermined diameter is determined with a certain width (tolerance)
- the pin 18 cannot be inserted into the substrate, and the provided fineness is small. If the diameter of the hole exceeds a predetermined diameter, the pin 18 cannot be firmly fixed to the substrate.
- the pin 18 is a very thin columnar conductor, it is easily bent when inserted into the pore. Therefore, high precision is required for the operation of inserting the pins 18 into the substrate 12, whether it is performed manually by a human or a manipulator controlled by a machine.
- the filter device 1 including the pin 118 can be easily manufactured as compared with the filter device 1 including the pin 18.
- the blind via 118b which is the second part, is embedded in the block 119, it is easier to handle than when the second part is a simple columnar conductor (when the second part is not embedded in the block 119). Become. Therefore, the filter device 1 including the pin 118 can be more easily manufactured.
- the size of the opening 122a As the pin 118 is embedded in the block 119, the size of the opening 122a (see FIG. 3A) provided in the wide wall 1222 of the waveguide 121 is changed to the size of the opening 22a (see FIG. 2). Is expanding. Specifically, the size of the opening 122a is increased so that the opening 122a includes the block 119 when the filter device 1 is viewed in plan. According to this configuration, even when the pin 118 is embedded in the block 119, the waveguide 21 can be easily disposed at a predetermined position.
- the reflection characteristic and the transmission characteristic were calculated using the configuration of the PWW-waveguide converter provided in the filter device 1 shown in FIG.
- the first embodiment employs a pin 18 as a PWW-waveguide converter.
- the design parameters of the pin 18 are determined as follows.
- reflection characteristics and transmission characteristics were calculated using the configuration of the PWW-waveguide converter included in the filter device 1 shown in FIG.
- the second embodiment employs a pin 118 as the PWW-waveguide converter.
- FIG. 4A is a graph showing the reflection characteristic (frequency dependence of S11) and the transmission characteristic (frequency dependence of S21) of the first embodiment.
- FIG. 4B is a graph showing reflection characteristics (frequency dependence of S11) and transmission characteristics (frequency dependence of S parameter S21) of the second embodiment. In both FIG. 4A and FIG. 4B, the reflection characteristic graph is labeled with “S11”, and the transmission characteristic graph is labeled with “S21”.
- the reflection characteristic of the first example is that S11 is ⁇ 15 dB or less in a band of approximately 71 GHz or more and 88 GHz or less.
- the reflection characteristic of the second example is that S11 is ⁇ 15 dB or less in a band of approximately 73 GHz or more and 90 GHz or less.
- each of the first and second embodiments reflects over a wide band compared to the transmission line having the conventional PWW-waveguide converter using the coupling window. Loss could be suppressed.
- the reflection loss is suppressed over a wide band, so that good transmission characteristics are shown over a wide band.
- the second PWW-waveguide converter has the same configuration as the first PWW-waveguide converter. Therefore, the second PWW-waveguide converter also has the same result as the above-described embodiments.
- FIG. 5A and 5B are cross-sectional views of the filter device 401 according to this embodiment.
- FIG. 5A is a cross-sectional view in a plane (yz plane) including the central axis of the pin 418 that is a columnar conductor constituting the PWW-waveguide converter, and along the propagation direction (y-axis direction) of the electromagnetic wave.
- FIG. 5B is a cross-sectional view in a plane (zx plane) that includes the central axis of the pin 418 and intersects the propagation direction of electromagnetic waves (y-axis direction).
- the filter device 401 includes a filter 411, a housing 441, and a resin substrate 451.
- the filter 411 is configured in the same manner as the filter 11 shown in FIGS.
- the member number of the constituent member of the filter 411 is obtained by adding 4 to the beginning of the member number of the constituent member of the filter 11. In the present embodiment, description of those constituent members is omitted.
- a housing 441 shown in FIG. 5 is formed by forming a cylindrical space 4211 and a cylindrical space 4311 having a rectangular cross section and a concave portion 4411 for housing the filter 411 with respect to a rectangular metal block.
- Each of the cylindrical space 4211 and the cylindrical space 4311 corresponds to the first cylindrical space and the second cylindrical space described in the claims.
- the longitudinal direction of the metal block coincides with the y-axis direction of the orthogonal coordinate system shown in FIG. 5, and the height direction of the metal block is the z-axis direction of the orthogonal coordinate system shown in FIG.
- the housing 441 is disposed on a resin substrate 451 described later.
- a rectangular parallelepiped cylindrical space 4211 is formed in the zx plane on the y-axis positive direction side so as to be dug in the negative y-axis direction.
- a rectangular parallelepiped cylindrical space 4311 is formed in the zx plane on the y-axis negative direction side so as to be dug in the y-axis positive direction.
- the cylindrical space 4211 and the cylindrical space 4311 are similar to the waveguide 21 and the waveguide 31 shown in FIGS. 1 and 2, and the waveguide 421 and the waveguide for guiding electromagnetic waves in the y-axis direction. It functions as a tube 431.
- the upper wall 4221 surrounding the side of the cylindrical space 4211, the lower wall 4222, the right wall 4223, and the left wall 4224 are guided.
- a tube wall 422 of the wave tube 421 is formed.
- the wall along the zx plane among the walls constituting the cylindrical space 4211 constitutes the short wall 423 of the waveguide 421.
- the upper wall 4221 and the lower wall 4222 form a wide wall of the waveguide 421, and the right wall 4223, the left wall 4224, and the short wall 423 form a narrow wall of the waveguide 421.
- the cylindrical space 4311 is configured in the same manner as the cylindrical space 4211, and includes a tube wall 432 and a short wall 433.
- the tube wall 432 includes an upper wall 4321 and a lower wall 4322 which are a pair of wide walls, and a right wall 4323 and a left wall 4324 which are a pair of narrow walls.
- the cylindrical space 4311 is provided so as to be mirror-symmetrical with the cylindrical space 4211 with an axis parallel to the z-axis as an axis of symmetry.
- the distance between the short wall 423 and the short wall 433 is determined according to the distance between the pin 418 and the pin 419.
- the cylindrical space 4311 is provided so that the above-described symmetry axis coincides with a straight line that is a set of points that are equidistant from each of the pins 418 and 419.
- a rectangular parallelepiped concave portion 4411 is formed in the xy plane on the z-axis negative direction side so as to be dug in the z-axis positive direction.
- the shape of the opening of the recess 4411 corresponds to the shape of the substrate 412 of the filter 411.
- the recess 4411 accommodates the filter 411 by pushing the filter 411 in the positive z-axis direction from the opening.
- the recess 4411 is formed at a position that is mirror-symmetric with respect to an axis parallel to the z-axis.
- the symmetry axis in which the concave portion 4411 is mirror-symmetrical coincides with the symmetry axis in which the cylindrical space 4211 and the cylindrical space 4311 are mirror-symmetric.
- an edge portion surrounding the recess 4411 is referred to as a skirt portion 4412.
- the depth of the recess 4411 that is, the height of the skirt portion 4412 is the thickness of the filter 411 (the total thickness of the substrate 412, the conductor layer 413, and the conductor layer 414). It is configured to exceed.
- the boundary between the region on the negative y-axis side of the lower wall 4222 constituting the cylindrical space 4211 and the region on the positive y-axis side of the bottom surface of the recess 4411. Is provided with an opening 421a.
- the cylindrical space 4211 and the recess 4411 communicate with each other through the opening 421a.
- an opening 431 a is provided at the boundary between the cylindrical space 4311 and the recess 4411.
- the cylindrical space 4311 and the recess 4411 communicate with each other through the opening 431a.
- the filter 411 includes: (1) the end of the pin 418, which is the first PWW-waveguide converter, on the positive side in the z-axis direction is located inside the cylindrical space 4211, and the conductor layer 413 seals the opening 421a. (2) The end of the pin 419, which is the second PWW-waveguide converter, on the positive side in the z-axis direction is positioned inside the cylindrical space 4311, and the conductor layer 413 opens the opening 431a. It arrange
- the pin 418 can electromagnetically couple the mode propagating through the waveguide 421 and the mode propagating through the filter 411. Since the opening 421a is sealed by the conductor layer 413, the loss does not increase.
- the pin 419 can electromagnetically couple the mode propagating through the waveguide 431 and the mode propagating through the filter 411. Since the opening 431a is sealed by the conductor layer 413, the loss does not increase.
- the housing 441 accommodates the entire filter 411 in the recess 4411. Therefore, it is possible to reliably protect the filter 411 (particularly the substrate 412) against external impacts.
- a waveguide 461, which is another waveguide may be coupled to the open end side of the waveguide 421.
- a waveguide 471, which is another waveguide may be coupled to the open end side of the waveguide 431.
- a flange 442 is formed on the open end side of the waveguide 421.
- a flange 463 is formed at the end of the waveguide 461 on the waveguide 421 side.
- the resin substrate 451 is configured to hold the filter 411 by sandwiching the filter 411 together with the housing 441. As shown in FIG. 5B, the housing 441 and the resin substrate 451 are fixed using bolts 483 and 485 and nuts 484 and 486.
- the bolt 483 and the nut 484 and the bolt 485 and the nut 486 are one aspect of the pressurizing member described in the claims.
- the pressure member is not limited to a combination of a bolt and a nut.
- the resin substrate 451 is made of resin (in this embodiment, made of glass epoxy resin).
- the resin material constituting the resin substrate 451 can be appropriately selected in view of thermal expansion characteristics, workability, and the like.
- a protruding portion having a shape corresponding to the concave portion 4411 (that is, a shape corresponding to the skirt portion 4412) is formed on the surface of the resin substrate 451 on the filter 411 side (z-axis positive direction side). This protrusion presses the filter 411 toward the housing 441 (toward the z-axis positive direction).
- the height of the skirt portion 4412 of the housing 441 is determined such that the skirt portion 4412 and the resin substrate 451 are separated from each other.
- the protruding portion of the resin substrate 451 pushes the conductor layer 414 of the filter 411 toward the positive z-axis direction.
- the conductor layer 413 of the filter 411 is pressed against the bottom surface of the recess 4411 of the housing 441. That is, the surface of the conductor layer 413 and the bottom surface of the concave portion 4411 are in close contact with each other, and it is possible to prevent a void from being generated at the interface IF.
- the housing 441 and the resin substrate 451 are fixed in a state where the surface of the conductor layer 413 and the bottom surface of the recess 4411 are in close contact with each other without any gap.
- the filter 411 since the filter 411 is sandwiched between the housing 441 and the resin substrate 451, the filter 411 is not displaced inside the recess 4411. In this manner, the relative position between the filter 411 and the waveguide 421 and the relative position between the filter 411 and the waveguide 431 can be reliably held at appropriate positions, and thus the filter 411 and the waveguide 421 are retained. It is possible to suppress fluctuations in reflection loss that may occur at the coupling portion between the filter 411 and the waveguide 431. Therefore, the filter device 401 can reliably widen a band with low reflection loss as compared with the conventional transmission line.
- the waveguide 421 is formed integrally with the housing 441, and the filter 411 is firmly fixed to the concave portion 4411 of the housing 441. Therefore, the filter device 401 can firmly couple the waveguide 421 and the waveguide 431 to the filter 411.
- a filter device 501 as a first modification of the filter device 401 will be described with reference to FIG.
- the member numbers of the constituent members common to the filter device 401 are obtained by changing the number of the beginning of the member number in the filter device 401 (see FIG. 5) from 4 to 5.
- the present modification only the configuration of the filter device 501 that is different from the filter device 401 will be described, and description of other configurations will be omitted.
- the resin substrate 551 provided in the filter device 501 is not formed with the protruding portion formed in the resin substrate 451. That is, the surface of the resin substrate 551 on the housing 541 side is a flat surface.
- the height of the skirt portion 5412 is configured to exceed the thickness of the filter 511 (the total thickness of the substrate 512, the conductor layer 513, and the conductor layer 514), the conductor layer 514 and the resin substrate 551 are different from each other. Separate. That is, a gap is generated between the conductor layer 514 and the resin substrate 551. As described above, in the filter device 501, it is sufficient that a gap exists between the conductor layer 514 and the resin substrate 551. Therefore, as long as this gap exists, a protrusion (a protrusion provided in the resin substrate 451) may be formed on the surface of the resin substrate 551 on the housing 541 side.
- the gap is filled with a resin material.
- a resin material an adhesive, a resin mold, or the like can be used. These resin materials are viscous fluids when filled, and are cured to a solid after a predetermined time has elapsed.
- the gap is filled with an amount of resin material that exceeds the volume of the gap described above.
- the filled resin material rises from the gap due to surface tension.
- the curing reaction of the resin material is advanced, and the resin substrate 551 is fixed to the housing 541 when the resin material is semi-cured.
- the resin material having a volume exceeding the gap generates a pressure that presses the filter 511 toward the housing 541 (the z-axis positive direction). Therefore, according to this configuration, it is possible to prevent an air gap from being generated at the interface IF between the surface of the conductor layer 513 and the bottom surface of the recess 5411 using an easy configuration.
- a filter device 601 which is a second modification of the filter device 401 will be described with reference to FIG.
- the member numbers of the constituent members common to the filter device 401 are obtained by changing the number of the beginning of the member number in the filter device 401 (see FIG. 5) from 4 to 6.
- the present modification only the configuration of the filter device 601 that is different from the filter device 401 will be described, and description of other configurations will be omitted.
- the resin substrate 651 included in the filter device 601 has a protrusion provided on the resin substrate 451.
- a conductor layer 652 is formed on the surface of the protruding portion.
- the height of the skirt portion 6412 is less than the sum of the thickness of the filter 611 (the total thickness of the substrate 612, the conductor layer 613, and the conductor layer 614), the height of the resin substrate 651, and the thickness of the conductor layer 652.
- the skirt portion 6412 and the resin substrate 651 are separated from each other. That is, it is only necessary that a gap be generated between the skirt portion 6412 and the resin substrate 651. Therefore, the surface of the resin substrate 651 on the housing 641 side may be configured to be flat as long as the gap is formed.
- the conductor layer 614 of the filter 611 is connected to the conductor layer 652 using a plurality of bumps DB.
- the bump DB is an aspect of the connection member described in the claims, and each bump DB connects the conductor layer 652 and the conductor layer 614 in a dot-like narrow region.
- the filter 611 and the resin substrate 651 may be connected using a plurality of connecting members. According to this configuration, the filter 611 can be firmly fixed to the resin substrate 651.
- a filter device (1, 401, 501, 601) includes a dielectric substrate (12, 412, 512, 612) and both surfaces of the substrate (12, 412, 512, 612). And a pair of wide walls formed of a first conductor layer (13, 413, 513, 613) and a second conductor layer (14, 414, 514, 614), respectively, and the substrate (12, 412, 512, 612).
- a filter wall (11, 411, 511, 611) including a post wall formed inside and a pipe wall (22, 32, 122, 422, 432, 522, 622) made of a conductor.
- a first waveguide (21, 121, 421, 521, 621) and a second waveguide (31, 431) disposed along the substrate (12, 412, 512, 612). Equipped filter device (1 401,501,601) is.
- the filter (11, 411, 511, 611) passes through a first opening (13a1) provided in the first conductor layer (13, 413, 513, 613) and has one end (181) , 118a1) is located inside the substrate (12, 412, 512, 612), the first columnar conductor (18, 118, 418, 518, 618) and the first conductor layer (13, 413, 513). , 613) or the second opening (13a2) provided in the second conductor layer (14, 414, 514, 614), and one end portion (191) is the substrate (12, 412, 512, 612) and a second columnar conductor (19, 419).
- the first waveguide (21, 121, 421, 521, 621) is a tube wall (22, 122, 422, 522) of the first waveguide (21, 121, 421, 521, 621).
- 622) passes through the first columnar conductors (18, 118, 418, 518, 618) and the first columnar conductors (18, 118, 418, 518, 618) is arranged so that the other end (182, 118b1) is located inside the first waveguide (21, 121, 421, 521, 621), and the second waveguide In (31, 431), the second columnar conductor (19, 419) penetrates the opening (32a) provided in the tube wall (32, 432) of the second waveguide (31, 431). And the second columnar conductor (19, 19).
- the other end of the 19) (192) are arranged so as to be located inside of the second waveguide (31,431).
- the filter and the first waveguide are electromagnetically coupled to each other via the first columnar conductor that passes through the first opening provided in the first conductor layer. Yes.
- the filter and the second waveguide are electromagnetically coupled to each other via a second columnar conductor penetrating the first conductor layer or the second opening provided in the second conductor layer. Has been.
- the first columnar conductor and the second columnar conductor have a coupling portion between the filter and the waveguide over a wide band as compared with the coupling window in which the filter and the waveguide are coupled in the conventional transmission device.
- the reflection loss in can be reduced. Therefore, the present filter device can broaden a band having a low reflection loss compared to a case where a filter and a waveguide are coupled using a conventional transmission line.
- the filter (11, 411, 511, 611) is disposed inside the substrate (12, 412, 512, 612).
- a plurality of resonators (11a to 11a) are formed of a post wall formed and surrounded by the pair of wide walls (13, 14, 413, 414, 513, 514, 613, 614) and the narrow wall.
- one or more partition walls (171, 172, 173) further comprising one or more partition walls (171, 172, 173) each having a coupling window (171a, 172a, 173a), It is preferable.
- each of the first columnar conductor (118) and the second columnar conductor is embedded in the substrate (12) and has one end.
- (118a2) is divided into a first portion (118a) reaching the surface of the substrate (12) and a second portion (118b) protruding from the substrate (12), and the first portion (118a) and It is preferable that the second portion (118b) is connected by a conductive connecting member (B1).
- the columnar conductor of this transmission line is divided into a first part and a second part as described above.
- the first portion embedded in the substrate and having one end exposed on the surface of the substrate can be formed using the same method as the post wall.
- the columnar conductor is formed by connecting the second portion to the first portion using a conductive connecting member.
- the transmission line can be easily manufactured as compared with the case where the columnar conductor is made of one member.
- each of the first columnar conductor (118) and the second portion (118b) of the second columnar conductor is a dielectric block. It is preferable that the end portion (118b2) on the first portion (118a) side reaches the surface of the block (119) while being embedded in (119).
- the second part when the second part is connected to the first part, the second part can be easily handled. Therefore, the present transmission line can be manufactured more easily than in the case where the second portion is not embedded in the block.
- the filter device (401, 501, 601) includes a first cylindrical space (4211) that functions as a propagation region of the first waveguide (421, 521, 621).
- a second cylindrical space (4311) functioning as a propagation region of the second waveguide (431), and recesses (4411, 5411, 6411) for accommodating the filters (411, 511, 611).
- the filter (411, 511, 611) by sandwiching the filter (411, 511, 611) together with the housing (441, 541, 641). And a resin substrate (451, 551, 651) for holding.
- the second opening provided in the first conductor layer (413, 513, 613) or the second conductor layer (414, 514, 614) is It is provided on the first conductor layer (413, 513, 613).
- the recess (4411, 5411, 6411) and the first cylindrical space (4211) communicate with each other via a first opening provided at the boundary thereof, and the recess (4411, 5411, 6411) and the The second cylindrical space (4311) communicates with a second opening provided at the boundary thereof.
- the other end of each of the first columnar conductor (418, 518, 618) and the second columnar conductor (419) are located in each of the cylindrical space (4211) and the second cylindrical space (4311), and the first conductive layer. It is preferable that (413, 513, 613) be disposed so as to seal.
- the filter is sandwiched between the housing and the resin substrate. Therefore, since the relative position between the filter and the waveguide can be reliably held, it is possible to suppress fluctuation of reflection loss that may occur at the coupling portion between the filter and the waveguide. Therefore, the present filter device can reliably widen a band having a low reflection loss as compared with a case where a filter and a waveguide are coupled using a conventional transmission line.
- the filter device (401, 601) uses the edge portion surrounding the concave portion (4411, 6411) of the housing (441, 641) as a skirt portion (4412, 6412). Pressurizing members (483, 484, 485, 486, 683, 684, 685) that pressurize the skirt portion (4412, 6412) and the resin substrate (451, 651) in a direction to sandwich the filter (411, 611). 686).
- the height of the skirt portion (4412, 6412) is determined such that the skirt portion (4412, 6412) and the resin substrate (451, 651) are separated from each other.
- each of the resin substrate and the housing is pressurized in a direction to sandwich the filter.
- the filter is pushed toward the direction approaching the housing. Therefore, it is possible to prevent a gap from being generated at the interface between the first conductor layer of the filter and the recess of the housing.
- the filter device (501) includes a skirt portion (5412) that is an edge portion surrounding the recess (5411) of the housing (541), and the skirt portion (5412), A pressurizing member (583, 584, 585, 586) for pressurizing the resin substrate (551) in a direction to sandwich the filter (511) is further provided.
- the height of the skirt portion (5412) is determined such that the second conductor layer (514) of the filter (511) and the resin substrate (551) are separated from each other, and the second conductor layer It is preferable that the gap interposed between (514) and the resin substrate (551) is filled with a resin material.
- the resin material is pushed in the direction in which the filter approaches the housing by filling the gap between the second conductor layer of the filter and the resin substrate with the resin material. Therefore, it is possible to prevent a gap from being generated at the interface between the first conductor layer of the filter and the recess of the housing.
- the filter device (601) includes a skirt portion (6412) that surrounds the recess (6411) of the housing (641), and the skirt portion (6412).
- a pressure member (683, 684, 685, 686) for pressing the resin substrate (651) in a direction to sandwich the filter (611) is further provided.
- the height of the skirt portion (6412) is determined such that the second conductor layer (614) of the filter (611) and the resin substrate (651) are separated from each other, and the second conductor layer (614) is preferably connected to the resin substrate (651) by a plurality of connecting members (DB).
- the filter and the resin substrate may be connected by a plurality of connecting members. According to this configuration, the filter can be firmly fixed to the resin substrate.
- the filter (11, 411, 511, 611) includes a dielectric substrate (12, 412, 512, 612) and both surfaces of the substrate (12, 412, 512, 612).
- a filter and these waveguides are easily couple
- (1) the first columnar conductor passes through the first opening provided in the tube wall of the first waveguide, and the other end of the first columnar conductor is the first.
- the first waveguide is disposed so as to be located inside the waveguide, and (2) the second columnar conductor penetrates the second opening provided in the tube wall of the second waveguide.
- the filter and these waveguides can be easily arranged. Can be combined.
- the coupling portion between the filter and the waveguide realized in this way can suppress reflection loss over a wide bandwidth as in the case of the filter device according to the embodiment of the present invention.
- the filter (11, 411, 511, 611) is located in the vicinity of the first opening (13a1) in the first conductor layer (13, 413, 513, 613).
- the first region (R1) in which a part of the tube wall (22, 122, 422, 522, 622) of the first waveguide (21, 121, 421, 521, 621) can be disposed is provided in advance.
- the filter (11, 411, 511, 611) includes a post wall formed inside the substrate (12, 412, 512, 612), and the pair of wide walls.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Waveguides (AREA)
- Waveguide Connection Structure (AREA)
Abstract
フィルタ及び導波管を備えたフィルタ装置において、反射損失が低い帯域を広帯域化することである。フィルタ装置(1)は、広壁(13,14)と狭壁(16)とを含むフィルタ(11)と、第1及び第2の導波管(21,31)とを備えている。フィルタ(11)は、広壁(導体層13)に設けられた開口(13a1又は13a2)を貫通するとともに、端部(181,191)が基板(12)の内部に位置する第1及び第2の柱状導体(ピン18,19)を備えている。第1及び第2の導波管(21,31)の各々は、第1及び第2の柱状導体(ピン18,19)が開口(22a,23a)を貫通するとともに、各柱状導体(ピン18,19)の端部(182,192)が導波管(21,31)の内部に位置するように配置されている。
Description
本発明は、フィルタと2つの導波管とが結合したフィルタ装置に関する。また、導波管に対して結合可能なフィルタに関する。
ミリ波帯で使用されるフィルタとしては、金属製の導波管を用いたタイプのフィルタが広く知られている。非特許文献1の図8には、その両端の各々に対して、断面が長方形である矩形導波路を結合可能なフィルタが記載されている。このフィルタは、金属塊を削り出すことによって形成された複数の共振器を備えている。隣接する共振器同士の境界には、共振器同士を電磁気的に結合させる結合窓が形成されている。このように複数の共振器を結合することによって構成されたフィルタのことを共振器結合型のフィルタと呼ぶ。
このフィルタの特性は、各共振器の共振周波数と、各共振器間の結合係数とに依存している。ここで、共振周波数は、各共振器のサイズにより定まる物理量であり、結合係数は、結合窓のサイズにより定まる物理量である。したがって、非特許文献1に記載のフィルタの特性は、フィルタ自身のサイズに強く依存している。
このため、非特許文献1に記載のフィルタの特性は、外部環境の温度が変化した場合に、その温度変化に応じて変動する。換言すれば、非特許文献1に記載のフィルタは、温度依存性が高いフィルタである。フィルタの特性が変動した場合、本来は反射すべき帯域に含まれる電磁波を透過することになる。したがって、非特許文献1に記載のフィルタは、温度変化が激しい環境において用いるためには適していない。
特性の温度依存性が少ないフィルタの一例としては、非特許文献2に記載のフィルタが挙げられる。非特許文献2に記載のフィルタは、ポスト壁導波路(Post-wall waveguide:PWW)により構成された共振器結合型のフィルタである。このフィルタが含むPWWにおいては、誘電体製の基板の両面に形成された一対の導体層と、前記基板の内部に柵状に配置された複数の導体ポストからなるポスト壁とにより囲まれた断面形状が長方形である領域が、電磁波を伝搬する伝搬領域として機能する。
なお、PWWを構成する基板の厚さが薄いため、伝搬領域の断面における一対の導体層の幅は、当該断面におけるポスト壁の高さ(基板の厚さと等しい)を上回る。したがって、PWWにおいて、一対の導体層のことを一対の広壁ともよび、ポスト壁のことを狭壁とも呼ぶ。一対の広壁の法線に平行な方向を上下方向と称し、電磁波の伝搬方向に平行な方向を前後方向と称し、上下方向及び前後方向の各々に直交する方向を左右方向と称した場合に、一対の広壁は、伝搬領域を上下方向から挟み込み、狭壁は、伝搬領域を前後方向及び左右方向から挟み込む。なお、狭壁のうち伝搬領域を左右方向から挟み込む部分を側壁とも称し、狭壁のうち伝搬領域を前後方向から挟み込む部分をショート壁とも称する。
非特許文献2に記載のフィルタは、基板を構成する誘電体材料として石英ガラスを採用している。石英ガラスは、金属と比較して小さな線膨張係数を有する。そのため、外部環境の温度が大きく変化するような場合(例えば-25℃以上100℃以下の範囲内で変化する場合)、フィルタ自身のサイズは、非特許文献1に記載のフィルタと比較して変化量が小さい。そのため、このフィルタの特性は、非特許文献1に記載のフィルタと比較して温度依存性が低い。
"マイクロ波フィルタの技術と応用", 吉田和明, 日本無線技法 No.64 2013年12月.
Y. Uemichi, et. al, "Compact and low-loss bandpass filter realized in silica-based post-wall waveguide for 60-GHz applications", IEEE MTT-S IMS, May 2015.
フィルタは、透過する電磁波の中心周波数及び帯域幅を制限するパッシブデバイスである。しかし、フィルタと導波管との結合部には、反射損失が広い帯域に亘って抑制されていることが求められる。なぜなら、電磁波の帯域を制限するのは、あくまでもフィルタであり、フィルタと導波管との結合部において帯域幅が制限されることは好ましくないためである。
しかしながら、非特許文献2に記載のフィルタには、導波管と接続した場合の反射損失が大きくなりやすく、反射損失が低い帯域幅を広帯域化することが難しいという課題がある。この課題について、以下に説明する。
特許文献1~3には、以下に説明するように、PWWの一方の端部に対して導波管が結合された伝送線路が記載されている。これらの伝送線路は、非特許文献2に記載のフィルタと導波管とを結合する構成として利用できる。
特許文献1の図1~図4に記載の伝送線路(特許文献1では接続構造と記載)では、PWWのショート壁を省略することによって結合窓が設けられているとともに、導波管のショート壁(特許文献1では閉鎖壁と記載)の一部が開放されている。この伝送線路では、PWWの結合窓に、導波管のショート壁の開放された部分を突き合わせることによって、PWWと導波管とを結合する。
特許文献2の図1~図3に記載の伝送線路(特許文献2では伝送モード変換装置と記載)では、基板の一方の表面に形成された導体層を共有するように、PWWと導波管とが配置されている。この導体層は、PWWの一方の広壁としても機能するし、導波管の一方の広壁としても機能する(図3参照)。PWWと導波管とで共有するこの広壁には、長方形の結合窓が4つ設けられている。この伝送線路では、これら4つの結合窓を介して、PWWと導波管とが結合している。
特許文献3の図1及び図2に記載の伝送線路では、PWWの一方の広壁に結合窓が設けられているとともに、導波管のショート壁が開放されている。この伝送線路では、結合窓が形成されたPWWの広壁部分と、導波管のショート壁が開放された断面とをつき合わせることによって、PWWと導波管とを結合する。
また、特許文献1~3に記載の伝送線路では、PWWの導波管が接続される側の端部と逆側の端部に結合させる平面伝送路として信号線及びグランド層からなるマイクロストリップ線路(Micro Strip Line:MSL)を採用している。これらの伝送線路は、PWWの内部を伝搬するモードをMSLの内部を伝搬するモードに変換する柱状導体(例えば特許文献3では給電ピンと記載)を備えている。この柱状導体は、PWWと導波管とを結合する。
フィルタと導波管とを結合する伝送線路として用いる場合、上述した特許文献1~3に記載されたような伝送線路には、広帯域(例えばEバンドで運用する場合であれば71GHz以上86GHz以下)に亘って反射損失が低いこと(例えば反射損失が-15dB以下であること)が求められる。
例えば-15dBを反射損失の判定閾値とした場合、特許文献1~3に記載の各伝送線路の帯域幅は、いずれも10GHz未満であった(特許文献1の図9、特許文献2の図13、及び特許文献3の図4参照)。これらの帯域幅はフィルタと導波管とを結合する伝送線路として十分とは言えず、従来の伝送線路には、その帯域を広帯域化する余地がある。
本発明は、上記の課題に鑑みてなされたものであり、その目的は、PWWを用いたフィルタと、当該フィルタに結合される導波管とを備えたフィルタ装置において、反射損失が低い帯域を広帯域化することである。
上記の課題を解決するために、本発明の一態様に係るフィルタ装置は、誘電体製の基板と、当該基板の両面をそれぞれ覆う第1の導体層及び第2の導体層からなる一対の広壁と、前記基板の内部に形成されたポスト壁からなる狭壁とを含むフィルタと、導体製の管壁を有し、前記基板に沿って配置された第1の導波管及び第2の導波管とを備えたフィルタ装置である。
前記フィルタは、前記第1の導体層に設けられた第1の開口を貫通するとともに、一方の端部が前記基板の内部に位置する第1の柱状導体と、前記第1の導体層又は前記第2の導体層に設けられた第2の開口を貫通するとともに、一方の端部が前記基板の内部に位置する第2の柱状導体とを更に備えている。
前記第1の導波管は、当該第1の導波管の管壁に設けられた開口を前記第1の柱状導体が貫通するとともに、前記第1の柱状導体の他方の端部が当該第1の導波管の内部に位置するように配置されており、前記第2の導波管は、当該第2の導波管の管壁に設けられた開口を前記第2の柱状導体が貫通するとともに、前記第2の柱状導体の他方の端部が当該第2の導波管の内部に位置するように配置されている。
上記の課題を解決するために、本発明の一態様に係るフィルタは、誘電体製の基板と、当該基板の両面をそれぞれ覆う第1の導体層及び第2の導体層からなる一対の広壁と、前記基板の内部に形成されたポスト壁からなる狭壁とを備えているフィルタであって、前記第1の導体層に設けられた第1の開口を貫通するとともに、一方の端部が前記基板の内部に位置する第1の柱状導体と、前記第1の導体層又は前記第2の導体層に設けられた第2の開口を貫通するとともに、一方の端部が前記基板の内部に位置する第2の柱状導体とを更に備えている。
本発明の一態様に係るフィルタ装置及びフィルタの各々によれば、反射損失が低い帯域を広帯域化することができる。
本発明の一態様に係るフィルタ装置は、ポスト壁導波路(Post-wall waveguide:PWW)により構成されたフィルタと、2つの導波管(第1の導波管及び第2の導波管)とを結合させたことによって得られるフィルタ装置である。本フィルタ装置において、フィルタは、第1の導波管と第2の導波管との間に介在する。
本発明の一態様に係るフィルタ装置は、Eバンド(70GHz以上90GHz以下の帯域)において運用することを想定している。また、本発明の一態様に係るフィルタ装置は、温度が-25℃以上100℃以下である外部環境において運用することを想定している。
〔第1の実施形態〕
本発明の第1の実施形態に係るフィルタ装置について、図1及び図2を参照して説明する。図1は、本実施形態に係るフィルタ装置1の分解斜視図である。図2は、フィルタ装置1が備えているPWW-導波管変換部の断面図である。
本発明の第1の実施形態に係るフィルタ装置について、図1及び図2を参照して説明する。図1は、本実施形態に係るフィルタ装置1の分解斜視図である。図2は、フィルタ装置1が備えているPWW-導波管変換部の断面図である。
フィルタ装置1において、フィルタ11、導波管21、及び導波管31の各々は、それぞれの内部における電磁波の伝搬方向が互いに沿うように(好ましくは平行になるように)配置されている。図1及び図2に示した直交座標系は、y軸がフィルタ11、導波管21、及び導波管31の各々の内部における電磁波の伝搬方向に設定されており、z軸が基板12の表面の法線方向に設定されており、x軸は、y軸及びz軸の各々に直交する方向に設定されている。
なお、本明細書においては、図1のように配置したフィルタ装置1の向きに従い、z軸正(負)方向を上(下)方向と呼び、x軸正(負)方向を左(右)方向と呼び、y軸正(負)方向を前(後)方向と呼ぶ。また、方向の向きを規定しない場合には、z軸方向を上下方向と呼び、x軸方向を左右方向と呼び、y軸方向を前後方向と呼ぶ。
図1に示すように、フィルタ装置1は、PWWにより構成されたフィルタ11と、導波管21と、導波管31とを備えている。導波管21及び導波管31の各々は、請求の範囲に記載の第1の導波管及び第2の導波管である。
(フィルタ11)
フィルタ11は、誘電体製(本実施形態では石英ガラス製)である基板12の両面に、それぞれ、導体層13と導体層14とが形成された積層基板である。導体層13及び導体層14の各々は、それぞれ、請求の範囲に記載の第1の導体層及び第2の導体層である。なお、基板12は、誘電体製であればよく、基板12を構成する誘電体は、比誘電率及び加工性などの少なくとも何れかを考慮して適宜選択すればよい。
フィルタ11は、誘電体製(本実施形態では石英ガラス製)である基板12の両面に、それぞれ、導体層13と導体層14とが形成された積層基板である。導体層13及び導体層14の各々は、それぞれ、請求の範囲に記載の第1の導体層及び第2の導体層である。なお、基板12は、誘電体製であればよく、基板12を構成する誘電体は、比誘電率及び加工性などの少なくとも何れかを考慮して適宜選択すればよい。
フィルタ11は、後述する開口13a1の近傍において、導波管21の管壁の一部を配置可能な第1の領域R1が予め設けられている。また、フィルタ11は、後述する開口13a2の近傍において、導波管31の管壁の一部を配置可能な第2の領域が予め設けられている。開口13a1及び開口13a2は、請求の範囲に記載の第1の開口及び第2の開口である。
基板12の内部には、複数の導体ポスト161i,162i,163j,164j(i,jは、任意の正の整数)を柵状に配列することによって得られるポスト壁が形成されている(図1参照)。
複数の導体ポスト161i,162i,163j,164jは、基板12のおもて面からうら面まで貫通したビアを基板12に形成したうえで、金属などの導電体をそのビアの内部に充填あるいはそのビアの内面に堆積することによって得られる。複数の導体ポスト161i,162i,163j,164jは、何れも、導体層13と導体層14とを導通している。なお、導体ポスト161i,162i,163j,164jの直径は動作帯域に応じて適宜設定すればよい。本実施形態においては、その直径は、100μmである。また、隣接する導体ポスト161i,162i,163j,164j同士の間隔は、直径と同じく100μmである。
複数の導体ポスト161iを所定の周期で柵状に配列することによって得られたポスト壁である側壁161は、その周期に対応する帯域の電磁波を反射する一種の導体壁として機能する。
同様に、複数の導体ポスト162iによって得られたポスト壁は、側壁162を構成し、複数の導体ポスト163jによって得られたポスト壁は、ショート壁163を構成し、複数の導体ポスト164jによって得られたポスト壁は、ショート壁164を構成する。また、側壁161,162と、ショート壁163,164とをまとめて狭壁16と呼ぶ。図1に示した仮想線(二点鎖線)により表される平面の各々は、複数の導体ポスト161i,162i,163j,164jの中心軸を含む仮想的な平面であり、側壁161,162及びショート壁163,164の各々によって仮想的に実現される導体壁を模式的に表す平面である。
なお、図1においては、後述するPWW-導波管変換部の構成を見やすくするために、導体ポスト161i,162i,163j,164jの一部を省略して図示している。
図1に示すように、狭壁16は、形状が直方体である領域を前後左右から挟み込む。また、一対の広壁である導体層13及び導体層14は、この形状が直方体である領域を上下方向から挟み込む。電磁波は、この形状が直方体である領域を伝搬領域として、伝搬領域内をy軸方向に向かって伝搬する。このように、PWWは、一対の広壁と狭壁とにより構成されている。
本実施形態において、上述した直方体の伝搬領域は、隔壁171,172,173によって4つの共振器11a、共振器11b、共振器11c、及び共振器11dに分割されている。なお、隔壁171,172,173は、狭壁16と同様にポスト壁により構成されている。
隔壁171を構成する導体ポストのうち、隔壁171の中央近傍に位置する導体ポストは、形成されていない。このように、ポスト壁の一部を構成する導体ポストの一部を形成しないことによって、その部分は、隣接する共振器11aと共振器11bとを電磁気的に結合する結合窓171aとして機能する。
同様に、隔壁172の中央近傍に設けられた結合窓172aは、共振器11bと共振器11cとを結合し、隔壁173の中央近傍に設けられた結合窓173aは、共振器11cと共振器11dとを結合する。
このように共振器11a~11dを電磁気的に結合することによって構成されたフィルタ11は、共振器結合型のフィルタである。
(導波管21)
導波管21は、導体製(本実施形態では真鍮の表面に金メッキ処理を施したもの)である。図1に示すように、導波管21は、断面が長方形である管壁22と、管壁22の端部(y軸負方向側の端部)を封じるショート壁23とにより構成されている。すなわち、導波管21は、矩形導波管である。管壁22は、一対の広壁である広壁221及び広壁222と、一対の狭壁である狭壁223及び狭壁224とからなる。
導波管21は、導体製(本実施形態では真鍮の表面に金メッキ処理を施したもの)である。図1に示すように、導波管21は、断面が長方形である管壁22と、管壁22の端部(y軸負方向側の端部)を封じるショート壁23とにより構成されている。すなわち、導波管21は、矩形導波管である。管壁22は、一対の広壁である広壁221及び広壁222と、一対の狭壁である狭壁223及び狭壁224とからなる。
一対の広壁のうち、フィルタ11側(z軸負方向側)に位置する広壁222には、後述するピン18よりも直径が大きい開口22aが設けられている。
フィルタ11と導波管21とを結合させるためには、図1に示した分解状態から導波管21をフィルタ11に向かってz軸負方向に近づけていき、ピン18が開口22aを貫通し、広壁222の下面が導体層13の上面に対して隙間なく密着するように、導波管21をフィルタ11の上に配置する。
このように構成されたフィルタ装置1において、導波管21は、ピン18を介してフィルタ11に対して電磁気的に結合される。したがって、ピン18は、PWWにより構成されたフィルタ11と導波管とを結合するPWW-導波管変換部である。PWW-導波管変換部の詳細については、図2を参照して後述する。
本実施形態において、導波管21のショート壁23と逆側の端部(y軸正方向側の端部)は、基板12のy軸正方向側の端面と面一になるように切り落とされている。しかし、導波管21のy軸正方向側端部は、切り落とされることなくy軸正方向側に向かって更に延伸されていてもよい。また、図7を参照して後述するように、導波管21のy軸正方向側端部には、アンテナなど導波管を用いて結合することが好ましいデバイスが結合されていてもよい。
なお、本実施形態において導波管21は、その内部を中空構造のままとしている。しかし、導波管21の内部には、比誘電率を調整するための誘電体粒子が充填されていてもよい。
(導波管31)
導波管31は、導波管21と同一の構成を有する。すなわち、導波管31は、管壁32と、ショート壁33とにより構成されている。また、管壁32は、一対の広壁である広壁321及び広壁322と、一対の狭壁である狭壁323及び狭壁324とからなる。また、広壁322には、後述するピン19よりも直径が大きい開口32aが設けられている。
導波管31は、導波管21と同一の構成を有する。すなわち、導波管31は、管壁32と、ショート壁33とにより構成されている。また、管壁32は、一対の広壁である広壁321及び広壁322と、一対の狭壁である狭壁323及び狭壁324とからなる。また、広壁322には、後述するピン19よりも直径が大きい開口32aが設けられている。
導波管21は、ショート壁23がy軸負方向側に位置するように、フィルタ11の上に配置されている。しかし、導波管31は、導波管21と逆向きに、すなわち、ショート壁33がy軸正方向側に位置するように、フィルタ11の上に配置されている。
導波管31は、ピン19を介してフィルタ11に対して電磁気的に結合されている。したがって、ピン19は、ピン18と同じくPWW-導波管変換部である。PWW-導波管変換部の詳細については、図2を参照して後述する。
(PWW-導波管変換部)
フィルタ装置1は、フィルタ11と導波管21とが結合された第1のPWW-導波管変換部と、フィルタ11と導波管31とが結合された第2のPWW-導波管変換部とを含む。第1のPWW-導波管変換部と、第2のPWW-導波管変換部とは、同一の構成を有する。そこで、本実施形態では、第1のPWW-導波管変換部を例として用い、フィルタ装置1が含むPWW-導波管変換部について説明する。
フィルタ装置1は、フィルタ11と導波管21とが結合された第1のPWW-導波管変換部と、フィルタ11と導波管31とが結合された第2のPWW-導波管変換部とを含む。第1のPWW-導波管変換部と、第2のPWW-導波管変換部とは、同一の構成を有する。そこで、本実施形態では、第1のPWW-導波管変換部を例として用い、フィルタ装置1が含むPWW-導波管変換部について説明する。
図1に示したA-A’線に沿った断面(yz平面に沿った断面)の断面矢視図を図2に示す。図2は、ピン18の近傍の断面図である。
図2に示すように、フィルタ11の伝搬領域内の導体ポスト163j(ショート壁163を構成する導体ポスト)近傍において、導体層13の一部はリング状に切り抜かれている。その結果、導体層13には開口13a1が設けられ、その内側には、開口13a1と同心円状のランド131(図1には図示していない)が形成される。また、ランド131の中心近傍(好ましくは中心)には、円形状の開口が設けられており、そのうえで、基板12には、この開口に連通し、基板12の表面(z軸正方向側の表面)から基板12の内部に至る、円柱状の細孔が設けられている。図2に示すように、この細孔は、非貫通孔である。
上述したランド131の開口及び細孔に、金属製のピン18(請求の範囲に記載の柱状導体)差し込むことによって、ピン18は、基板12に対して固定される。このように基板12に対して差し込まれたピン18は、開口13a1を貫通するとともに、その下側の端部181(請求の範囲に記載の一方の端部)が基板12の内部、すなわち、フィルタ11の伝搬領域に位置する。また、このように固定されたピン18は、その上側の端部182(請求の範囲に記載の他方の端部)が導波管21の内部、すなわち導波管21の伝搬領域に位置する。
ピン18において、直径、長さ(z軸方向に沿った長さ)、基板12に差し込まれている部分の長さ、及び、基板12の表面から突出している部分の長さは、それぞれ、反射損失を最適化するための設計パラメータとして利用できる。例えば、本実施形態では、ピン18の直径として180μmを採用している。
なお、ピン18の端部182は、広壁221と導通してはならない。ピン18の基板12から突出した部分の長さは、端部182が広壁221に接触しない範囲内で調整可能である。
フィルタ11の伝搬領域をy軸正方向に向かって伝搬する電磁波が存在する場合に、ピン18の基板12に差し込まれた部分は、フィルタ11の伝搬領域を伝搬してきた電磁波を吸い込み、ピン18の基板12から突出した部分は、導波管21の伝搬領域にその電磁波を放射する。導波管21の伝搬領域をy軸負方向に向かって伝搬する電磁波が存在する場合にも同様に、ピン18は、基板12から突出した部分が導波管21の伝搬領域から電磁波を吸い込み、基板12に差し込まれた部分がフィルタ11の伝搬領域にその電磁波を放射する。したがって、ピン18は、PWW-導波管変換部として機能する。
以上のように、ピン18は、フィルタ11の伝搬領域を伝搬するモードと導波管21の伝搬領域を伝搬するモードとを電磁気的に結合する。ピン18によるフィルタ11と導波管21との結合は、従来の結合窓を用いた結合と比較して、広い帯域に亘っている。したがって、ピン18を備えたフィルタ装置1は、従来の伝送装置と比較して、幅広い帯域に亘ってフィルタ11と導波管21との結合部における反射損失を低減することができる。したがって、フィルタ装置1は、従来の伝送線路と比較して、反射損失が低い帯域を広帯域化することができる。
なお、図1及び図2に示したフィルタ11は、上述したように管壁22に開口22aを設けられた導波管21、及び、管壁32に開口32aを設けられた導波管31を用いることによって、導波管21及び導波管31と容易に結合させることができる。具体的には、導波管21に設けられている開口22aをピン18が貫通するとともに、ピン18の端部182が導波管21の内部に位置するように導波管21を配置することによって、フィルタ11と導波管21とを結合させることができる。フィルタ11と導波管31との結合についても同様である。
このようにして実現されたフィルタ11と導波管21との結合部は、広い帯域に亘って反射損失を抑制することができる。同様に、このようにして実現されたフィルタ11と導波管31との結合部は、広い帯域に亘って反射損失を抑制することができる。したがって、フィルタ11も本発明の技術的な範疇に含まれる。
〔ピン18の変形例〕
ピン18の変形例であるピン118について、図3を参照して説明する。図3の(a)は、ピン118を備えたフィルタ装置1の断面図である。図3の(b)は、ピン118の拡大断面図である。なお、本実施形態ではピン118を例として変形例について説明している。しかし、当然のことながらピン18を変形することによって得られたピン118の構成を、ピン19の変形例として採用することもできる。フィルタ装置1が含む第1のPWW-導波管変換部としてピン118を採用する場合には、第2のPWW-導波管変換部としてピン19の変形例を採用することが好ましい。
ピン18の変形例であるピン118について、図3を参照して説明する。図3の(a)は、ピン118を備えたフィルタ装置1の断面図である。図3の(b)は、ピン118の拡大断面図である。なお、本実施形態ではピン118を例として変形例について説明している。しかし、当然のことながらピン18を変形することによって得られたピン118の構成を、ピン19の変形例として採用することもできる。フィルタ装置1が含む第1のPWW-導波管変換部としてピン118を採用する場合には、第2のPWW-導波管変換部としてピン19の変形例を採用することが好ましい。
図3に示したフィルタ装置1においては、図1及び図2に示したフィルタ装置1が備えていたピン18をピン118に変更するとともに、図1及び図2に示したフィルタ装置1が備えていた導波管21を導波管121に変更している。本変形例では、図1及び図2に示したフィルタ装置1と比較して、図3に示したフィルタ装置1が異なる構成についてのみ説明する。
ピン118は、第1部分であるブラインドビア118aと、第2部分であるブラインドビア118bとに分割されている。
ブラインドビア118aは、以下のように構成されている。フィルタ11の伝搬領域内の導体ポスト163j近傍には、開口13a1が設けられている。開口13a1の内側にはランド131が形成されている。更に、ランド131の中心近傍(好ましくは中心)には、円柱状の細孔が設けられている。この細孔は、非貫通孔である。金属などの導電体をこの非貫通孔の内部に充填あるいはこの非貫通孔の内面に堆積することによって、ブラインドビア118aが得られる。ブラインドビア118aは、その下側の端部(請求の範囲に記載の一方の端部)が基板12の内部、すなわち、フィルタ11の伝搬領域に位置する。また、ブラインドビア118aの上側の端部(請求の範囲に記載の他方の端部)は、ランド131と導通している。
ブラインドビア118bは、誘電体製(本実施形態では石英ガラス製)のブロック119に埋め込まれており、上側の端部118b1(z軸正方向側の端部)がブロック119の内部に位置し、下側の端部118b2(z軸負方向側の端部)がブロック119の表面に至る。
ブラインドビア118bは、次のように製造することができる。ブロック119としては、厚さが導波管121の広壁1221と広壁1222との間隔を下回るとともに、一方の表面(図3ではz軸負方向側の表面)に導体層120が形成された誘電体製(本実施形態では石英ガラス製)の基板を用いる。その導体層120が形成された基板には、複数のブラインドビアをマトリクス状に形成する。そのうえで、複数のブラインドビアが形成された基板をサイコロ状に切り出すことによって、ブラインドビア118bが形成されたブロック119が得られる。そのうえで、導体層120の一部をリング状に切り抜くことによって、ブロック119の表面には、ブラインドビア118bと導通したランド1201と、ランド1201と離間しつつランド1201を取り囲む導体層120とが形成される。
図3の(b)に示すように、ランド1201は、ランド131に対してバンプB1を用いて接続されている。導体層120は、導体層13に対してバンプB2,B3を用いて接続されている。バンプB1~B3は、導電性接続部材の一態様であり、金属製の球状部材の表面に半田層を形成したものである。このようにして、ブラインドビア118bは、ブラインドビア118aに接続・固定されている。
ここで、反射損失をできるだけ抑制するために、ブラインドビア118aの中心軸とブラインドビア118bの中心軸とが同軸となる(一致する)ことが好ましい。
導電性接続部材としては、バンプの他に半田や、導電性接着剤(例えば銀ペースト)などを用いてもよい。ただし、導電性接続部材として直径が揃ったバンプB1~B3を採用することによって、導体層13が形成されている基板12の表面と、導体層120が形成されているブロック119の表面との平行度を容易に高めることができる。したがって、ブラインドビア118aの中心軸とブラインドビア118bの中心軸とが平行な状態でブラインドビア118aとブラインドビア118bとを接続することが容易である。
ピン18の場合、基板12の所定の位置に所定の直径(例えば180μm)を有する円柱状の細孔を予め設けておき、その細孔にピン18を差し込むことによってピン18を基板12に固定する。この場合、細孔の直径を精度よく形成する必要がある。所定の直径は一定の幅(公差)をもって定められているものの、設けられた細孔の直径が所定の直径を下回った場合には、ピン18を基板に差し込むことができないし、設けられた細孔の直径が所定の直径を上回る場合には、ピン18を基板に対してしっかり固定することができない。
また、ピン18は、非常に細い柱状導体であるため、細孔に差し込むときに屈曲しやすい。したがって、ピン18を基板12に差し込む作業には、人間が手で実施する場合でも、機械により制御されたマニピュレーターを用いて実施する場合であっても、高い精度が要求される。
一方、ピン118の場合、バンプB1~B3などの導電性接続部材を用いて、ブラインドビア118aとブラインドビア118bとを容易に且つ精度よく接続することができる。したがって、ピン118を備えたフィルタ装置1は、ピン18を備えたフィルタ装置1と比較して、容易に製造することができる。
また、第2部分であるブラインドビア118bがブロック119に埋め込まれていることによって、第2部分が単なる柱状導体である場合(ブロック119に埋め込まれていない場合)と比較して、取り扱いが容易になる。したがって、ピン118を備えたフィルタ装置1は、更に容易に製造することができる。
なお、ピン118がブロック119に埋め込まれていることに伴い、導波管121の広壁1222に設けられた開口122a(図3の(a)参照)のサイズを、開口22a(図2参照)よりも拡大している。具体的には、フィルタ装置1を平面視した場合に、開口122aがブロック119を包含するように開口122aのサイズを拡大している。この構成によれば、ピン118がブロック119に埋め込まれている場合であっても、導波管21を所定の位置に容易に配置することができる。
〔実施例〕
(第1の実施例)
本発明の第1の実施例として、図2に示したフィルタ装置1が備えているPWW-導波管変換部の構成を用いて反射特性及び透過特性を計算した。第1の実施例は、PWW-導波管変換部としてピン18を採用している。第1の実施例では、ピン18の設計パラメータを以下のように定めた。
(第1の実施例)
本発明の第1の実施例として、図2に示したフィルタ装置1が備えているPWW-導波管変換部の構成を用いて反射特性及び透過特性を計算した。第1の実施例は、PWW-導波管変換部としてピン18を採用している。第1の実施例では、ピン18の設計パラメータを以下のように定めた。
直径:180μm
基板12に差し込まれている部分の長さ:420μm
基板12から突出している部分の長さ:700μm
(第2の実施例)
また、本発明の第2の実施例として、図3に示したフィルタ装置1が備えているPWW-導波管変換部の構成を用いて反射特性及び透過特性を計算した。第2の実施例は、PWW-導波管変換部としてピン118を採用している。
基板12に差し込まれている部分の長さ:420μm
基板12から突出している部分の長さ:700μm
(第2の実施例)
また、本発明の第2の実施例として、図3に示したフィルタ装置1が備えているPWW-導波管変換部の構成を用いて反射特性及び透過特性を計算した。第2の実施例は、PWW-導波管変換部としてピン118を採用している。
・ブラインドビア118a
直径:100μm
長さ:420μm
・ブラインドビア118b
直径:100μm
長さ:700μm
・バンプB1~B3
直径:100μm
(共通する設計パラメータ)
なお、第1の実施例及び第2の実施例の双方に共通する設計パラメータを以下のように定めた。
直径:100μm
長さ:420μm
・ブラインドビア118b
直径:100μm
長さ:700μm
・バンプB1~B3
直径:100μm
(共通する設計パラメータ)
なお、第1の実施例及び第2の実施例の双方に共通する設計パラメータを以下のように定めた。
・フィルタ11
基板12の厚さ:520μm
基板12の比誘電率:3.82
・導波管21
広壁221と広壁222との間隔:1149μm
狭壁223と狭壁224との間隔:2500μm
(反射特性及び透過特性)
図4の(a)は、第1の実施例の反射特性(S11の周波数依存性)及び透過特性(S21の周波数依存性)を示すグラフである。図4の(b)は、第2の実施例の反射特性(S11の周波数依存性)及び透過特性(SパラメータS21の周波数依存性)を示すグラフである。図4の(a)及び(b)のいずれにおいても、反射特性のグラフには「S11」の符号を付し、透過特性のグラフには「S21」の符号を付している。
基板12の厚さ:520μm
基板12の比誘電率:3.82
・導波管21
広壁221と広壁222との間隔:1149μm
狭壁223と狭壁224との間隔:2500μm
(反射特性及び透過特性)
図4の(a)は、第1の実施例の反射特性(S11の周波数依存性)及び透過特性(S21の周波数依存性)を示すグラフである。図4の(b)は、第2の実施例の反射特性(S11の周波数依存性)及び透過特性(SパラメータS21の周波数依存性)を示すグラフである。図4の(a)及び(b)のいずれにおいても、反射特性のグラフには「S11」の符号を付し、透過特性のグラフには「S21」の符号を付している。
図4の(a)を参照すると、第1の実施例の反射特性は、およそ71GHz以上88GHz以下の帯域においてS11が-15dB以下となっている。
図4の(b)を参照すると、第2の実施例の反射特性は、およそ73GHz以上90GHz以下の帯域においてS11が-15dB以下となっている。
以上のように、第1の実施例及び第2の実施例の各々は、結合窓を用いた従来のPWW-導波管変換部を備えた伝送線路と比較して、広い帯域に亘って反射損失を抑制することができた。
また、第1の実施例及び第2の実施例の何れにおいても、反射損失が広い帯域に亘って抑制されていることに伴い、広い帯域に亘って良好な透過特性を示している。
なお、第2のPWW-導波管変換部は、第1のPWW-導波管変換部と同一の構成を有する。したがって、第2のPWW-導波管変換部も上述した各実施例と同じ結果となる。
〔第2の実施形態〕
本発明の第2の実施形態に係るフィルタ装置について、図5を参照して説明する。図5の(a)及び(b)は、本実施形態に係るフィルタ装置401の断面図である。図5の(a)は、PWW-導波管変換部を構成する柱状導体であるピン418の中心軸を含み、電磁波の伝搬方向(y軸方向)に沿う平面(yz平面)における断面図を示す。図5の(b)は、ピン418の中心軸を含み、電磁波の伝搬方向(y軸方向)と交わる平面(zx平面)における断面図を示す。
本発明の第2の実施形態に係るフィルタ装置について、図5を参照して説明する。図5の(a)及び(b)は、本実施形態に係るフィルタ装置401の断面図である。図5の(a)は、PWW-導波管変換部を構成する柱状導体であるピン418の中心軸を含み、電磁波の伝搬方向(y軸方向)に沿う平面(yz平面)における断面図を示す。図5の(b)は、ピン418の中心軸を含み、電磁波の伝搬方向(y軸方向)と交わる平面(zx平面)における断面図を示す。
図5に示すように、フィルタ装置401は、フィルタ411と、ハウジング441と、樹脂基板451とを備えている。
(フィルタ411)
フィルタ411は、図1及び図2に示したフィルタ11と同一に構成されている。フィルタ411の構成部材の部材番号は、フィルタ11の構成部材の部材番号の文頭に4を追加することによって得られる。本実施形態では、それらの構成部材の説明を省略する。
フィルタ411は、図1及び図2に示したフィルタ11と同一に構成されている。フィルタ411の構成部材の部材番号は、フィルタ11の構成部材の部材番号の文頭に4を追加することによって得られる。本実施形態では、それらの構成部材の説明を省略する。
(ハウジング441)
図5に示すハウジング441は、直方体である金属塊に対して、断面が長方形である筒状空間4211及び筒状空間4311と、フィルタ411を収容する凹部4411とを形成したものである。筒状空間4211及び筒状空間4311の各々は、請求の範囲に記載の第1の筒状空間及び第2の筒状空間に対応する。
図5に示すハウジング441は、直方体である金属塊に対して、断面が長方形である筒状空間4211及び筒状空間4311と、フィルタ411を収容する凹部4411とを形成したものである。筒状空間4211及び筒状空間4311の各々は、請求の範囲に記載の第1の筒状空間及び第2の筒状空間に対応する。
図5においては、上記金属塊の長手方向が図5に示した直交座標系のy軸方向と一致し、且つ、上記金属塊の高さ方向が図5に示した直交座標系のz軸方向と一致するように、ハウジング441は、後述する樹脂基板451の上に配置されている。
金属塊を構成する6つの側壁面のうち、y軸正方向側のzx平面には、y軸負方向に向かって掘り込んだ直方体状の筒状空間4211が形成されている。また、金属塊を構成する6つの側壁面のうち、y軸負方向側のzx平面には、y軸正方向に向かって掘り込んだ直方体状の筒状空間4311が形成されている。これらの筒状空間4211及び筒状空間4311は、図1及び図2に示した導波管21及び導波管31と同様に、電磁波をy軸方向に導波する導波管421及び導波管431として機能する。
換言すれば、図5の(a)及び(b)に示すように、筒状空間4211の側方を取り囲む上壁4221と、下壁4222と、右壁4223と、左壁4224とは、導波管421の管壁422を構成する。また、筒状空間4211を構成する壁のうちzx面に沿った壁は、導波管421のショート壁423を構成する。このように、上壁4221及び下壁4222は、導波管421の広壁をなし、右壁4223、左壁4224、及びショート壁423は、導波管421の狭壁をなす。
筒状空間4311は、筒状空間4211と同様に構成されており、管壁432及びショート壁433により構成されている。管壁432は、一対の広壁である上壁4321及び下壁4322と、一対の狭壁である右壁4323及び左壁4324とにより構成されている。図5の(a)に示した状態において、筒状空間4311は、z軸と平行な軸を対称軸として、筒状空間4211と鏡面対称となるように設けられている。ショート壁423とショート壁433との間隔は、ピン418とピン419との間隔に応じて定められている。そのうえで、筒状空間4311は、上述した対称軸がピン418及びピン419の各々から等距離である点の集合である直線と一致するように設けられている。
金属塊をなす6つの側壁面のうち、z軸負方向側のxy平面には、z軸正方向に向かって掘り込んだ直方体状の凹部4411が形成されている。この凹部4411の開口部の形状は、フィルタ411の基板412の形状に対応している。凹部4411は、その開口部からフィルタ411をz軸正方向に向かって押し込まれることによって、フィルタ411を収容する。なお、凹部4411は、z軸と平行な軸を対称軸として、鏡面対称となる位置に形成されている。凹部4411が鏡面対称となる対称軸は、筒状空間4211及び筒状空間4311が鏡面対称となる対称軸と一致する。
なお、ハウジング441のうち、凹部4411を取り囲む縁部分をスカート部4412と呼ぶ。フィルタ411を確実に収容するために、凹部4411の深さ、すなわち、スカート部4412の高さは、フィルタ411の厚さ(基板412、導体層413、及び導体層414を合計した厚さ)を上回るように構成されている。
図5の(a)及び(b)に示すように、筒状空間4211を構成する下壁4222のy軸負方向側の領域と、凹部4411の底面のy軸正方向側の領域との境界には、開口421aが設けられている。筒状空間4211と凹部4411とは、開口421aを介して連通している。
同様に、筒状空間4311と凹部4411との境界には、開口431aが設けられている。筒状空間4311と凹部4411とは、開口431aを介して連通している。
フィルタ411は、(1)第1のPWW-導波管変換部であるピン418のz軸正方向側の端部が筒状空間4211の内部に位置するとともに、開口421aを導体層413が封止するように、(2)第2のPWW-導波管変換部であるピン419のz軸正方向側の端部が筒状空間4311の内部に位置するとともに、開口431aを導体層413が封止するように、凹部4411の内部に配置される。したがって、この開口421aが設けられている領域において、開口421aを封止する導体層413の一部分は、導波管421の下壁4222の一部として機能する。また、開口431aが設けられている領域において、開口431aを封止する導体層413の一部分は、導波管431の下壁4322の一部として機能する。
この構成によれば、ピン418は、導波管421を伝搬するモードとフィルタ411を伝搬するモードとを電磁気的に結合することができる。開口421aは、導体層413によって封止されているので、損失が増大することもない。同様に、ピン419は、導波管431を伝搬するモードとフィルタ411を伝搬するモードとを電磁気的に結合することができる。開口431aは、導体層413によって封止されているので、損失が増大することもない。
また、ハウジング441は、フィルタ411の全体を凹部4411の内部に収容している。したがって、外部からの衝撃に対してフィルタ411(特に基板412)を確実に保護することができる。
なお、図5に示すように、導波管421の開放端側には、別の導波管である導波管461が結合されていてもよい。導波管431の開放端側には、別の導波管である導波管471が結合されていてもよい。本実施形態では、導波管421の開放端側にはフランジ442が形成されている。また、導波管461の導波管421側の端部には、フランジ463が形成されている。フランジ442とフランジ463とをボルト481及びナット482を用いて固定することによって、導波管421と、導波管461とは、結合される。導波管431の開放端側に形成されたフランジ443と、導波管471が備えるフランジ473との結合についても同様である。
(樹脂基板451)
樹脂基板451は、ハウジング441とともにフィルタ411を挟持することによって、フィルタ411を保持することができるように構成されている。図5の(b)に示すように、ハウジング441と樹脂基板451とは、ボルト483,485とナット484,486とを用いて固定されている。ボルト483及びナット484、並びに、ボルト485及びナット486は、請求の範囲に記載の加圧部材の一態様である。加圧部材は、ボルトとナットとの組み合わせに限定されない。
樹脂基板451は、ハウジング441とともにフィルタ411を挟持することによって、フィルタ411を保持することができるように構成されている。図5の(b)に示すように、ハウジング441と樹脂基板451とは、ボルト483,485とナット484,486とを用いて固定されている。ボルト483及びナット484、並びに、ボルト485及びナット486は、請求の範囲に記載の加圧部材の一態様である。加圧部材は、ボルトとナットとの組み合わせに限定されない。
樹脂基板451は、樹脂製(本実施形態ではガラスエポキシ樹脂製)である。樹脂基板451を構成する樹脂材料は、熱膨張特性や加工性などに鑑み適宜選択することができる。
樹脂基板451のフィルタ411側(z軸正方向側)の表面には、凹部4411に対応する形状(すなわちスカート部4412に対応する形状)の突出部が形成されている。この突出部は、フィルタ411をハウジング441の方へ(z軸正方向側へ)押しつける。
このとき、ハウジング441のスカート部4412の高さは、スカート部4412と樹脂基板451とが離間するように定められている。
この構成によれば、樹脂基板451の突出部がフィルタ411の導体層414をz軸正方向に向かって押す。その結果として、フィルタ411の導体層413は、ハウジング441の凹部4411の底面に押しつけられる。すなわち、導体層413の表面と凹部4411の底面とは、密着し、界面IFに空隙が生じることを防止できる。
このように導体層413の表面と凹部4411の底面とが隙間なく密着した状態で、ハウジング441と樹脂基板451とは固定されている。
上記の構成によれば、フィルタ411がハウジング441と樹脂基板451とにより挟持されているため、フィルタ411が凹部4411の内部でズレることがない。このように、フィルタ411と導波管421との相対位置、及び、フィルタ411と導波管431との相対位置を適正な位置に確実に保持することができるため、フィルタ411と導波管421との結合部、及びフィルタ411と導波管431との結合部において生じ得る反射損失が揺らぐことを抑制できる。したがって、フィルタ装置401は、従来の伝送線路と比較して、反射損失が低い帯域を確実に広帯域化することができる。
また、界面IFに空隙が生じることを防止できるため、導波管421を伝搬する電磁波、及び、導波管431を伝搬する電磁波が界面IFに侵入することを防止できる。したがって、フィルタ411と導波管421との結合部、及び、フィルタ411と導波管431との結合部において生じ得る損失を更に抑制することができる。
また、上記の構成によれば、導波管421がハウジング441と一体に成形されており、そのハウジング441の凹部4411に対してフィルタ411が強固に固定されている。したがって、フィルタ装置401は、導波管421及び導波管431をフィルタ411に対して強固に結合することができる。
〔第1の変形例〕
フィルタ装置401の第1の変形例であるフィルタ装置501について、図6を参照して説明する。フィルタ装置501において、フィルタ装置401と共通する構成部材の部材番号は、フィルタ装置401(図5参照)における部材番号の文頭の番号を4から5に変更することによって得られる。本変形例では、フィルタ装置501において、フィルタ装置401と異なっている構成についてのみ説明し、それ以外の構成についての説明は、省略する。
フィルタ装置401の第1の変形例であるフィルタ装置501について、図6を参照して説明する。フィルタ装置501において、フィルタ装置401と共通する構成部材の部材番号は、フィルタ装置401(図5参照)における部材番号の文頭の番号を4から5に変更することによって得られる。本変形例では、フィルタ装置501において、フィルタ装置401と異なっている構成についてのみ説明し、それ以外の構成についての説明は、省略する。
図6に示すように、フィルタ装置501が備えている樹脂基板551には、樹脂基板451には形成されている突出部が形成されていない。すなわち、樹脂基板551のハウジング541側の表面は、平坦面により構成されている。
スカート部5412の高さは、フィルタ511の厚さ(基板512、導体層513、及び導体層514を合計した厚さ)を上回るように構成されているため、導体層514と樹脂基板551とは、離間する。すなわち、導体層514と樹脂基板551との間には空隙が生じる。このように、フィルタ装置501においては、導体層514と樹脂基板551との間に空隙が存在すればよい。したがって、この空隙が存在する範囲内であれば、樹脂基板551のハウジング541側の表面に突出部(樹脂基板451が備えている突出部)が形成されていてもよい。
本実施形態では、この空隙に対して樹脂材料を充填している。この樹脂材料としては、接着剤や樹脂モールドなどを用いることができる。これらの樹脂材料は、充填するときには粘性がある流動体であり、所定の時間が経過したあとには硬化して固体となる。
例えば、上述した空隙の体積を上回る量の樹脂材料を空隙に充填するとする。この場合、充填された樹脂材料は、表面張力により空隙から盛り上がる。この状態で樹脂材料の硬化反応を進め、半硬化となった時点で樹脂基板551をハウジング541に固定する。この構成によれば、空隙を上回る体積を有する樹脂材料は、フィルタ511をハウジング541側(z軸正方向側)へ押しつける圧力を生じさせる。したがって、この構成によれば、容易な構成を用いて、導体層513の表面と凹部5411の底面との界面IFに空隙が生じることを防止できる。
〔第2の変形例〕
フィルタ装置401の第2の変形例であるフィルタ装置601について、図7を参照して説明する。フィルタ装置601において、フィルタ装置401と共通する構成部材の部材番号は、フィルタ装置401(図5参照)における部材番号の文頭の番号を4から6に変更することによって得られる。本変形例では、フィルタ装置601において、フィルタ装置401と異なっている構成についてのみ説明し、それ以外の構成についての説明は、省略する。
フィルタ装置401の第2の変形例であるフィルタ装置601について、図7を参照して説明する。フィルタ装置601において、フィルタ装置401と共通する構成部材の部材番号は、フィルタ装置401(図5参照)における部材番号の文頭の番号を4から6に変更することによって得られる。本変形例では、フィルタ装置601において、フィルタ装置401と異なっている構成についてのみ説明し、それ以外の構成についての説明は、省略する。
図7に示すように、フィルタ装置601が備えている樹脂基板651は、樹脂基板451に設けられている突出部を有する。その突出部の表面には、導体層652が形成されている。
スカート部6412の高さは、フィルタ611の厚さ(基板612、導体層613、及び導体層614を合計した厚さ)と、樹脂基板651の高さと、導体層652の厚さとの和を下回るように構成されているため、スカート部6412と樹脂基板651とは、離間する。すなわち、スカート部6412と樹脂基板651との間には、空隙が生じていればよい。したがって、この空隙が生じるように構成されていれば、樹脂基板651のハウジング641側の表面は、平坦に構成されていてもよい。
そのうえで、導体層652には、フィルタ611の導体層614が複数のバンプDBを用いて接続されている。バンプDBは、請求の範囲に記載の接続部材の一態様であり、各バンプDBは、点状の狭い領域で導体層652と導体層614とを接続する。
このように、フィルタ611と樹脂基板651とは、複数の接続部材を用いて接続されていてもよい。この構成によれば、樹脂基板651に対してフィルタ611を強固に固定することができる。
〔まとめ〕
本発明の一実施形態に係るフィルタ装置(1,401,501,601)は、誘電体製の基板(12,412,512,612)と、当該基板(12,412,512,612)の両面をそれぞれ覆う第1の導体層(13,413,513,613)及び第2の導体層(14,414,514,614)からなる一対の広壁と、前記基板(12,412,512,612)の内部に形成されたポスト壁からなる狭壁とを含むフィルタ(11,411,511,611)と、導体製の管壁(22,32,122,422,432,522,622)を有し、前記基板(12,412,512,612)に沿って配置された第1の導波管(21,121,421,521,621)及び第2の導波管(31,431)とを備えたフィルタ装置(1,401,501,601)である。
本発明の一実施形態に係るフィルタ装置(1,401,501,601)は、誘電体製の基板(12,412,512,612)と、当該基板(12,412,512,612)の両面をそれぞれ覆う第1の導体層(13,413,513,613)及び第2の導体層(14,414,514,614)からなる一対の広壁と、前記基板(12,412,512,612)の内部に形成されたポスト壁からなる狭壁とを含むフィルタ(11,411,511,611)と、導体製の管壁(22,32,122,422,432,522,622)を有し、前記基板(12,412,512,612)に沿って配置された第1の導波管(21,121,421,521,621)及び第2の導波管(31,431)とを備えたフィルタ装置(1,401,501,601)である。
前記フィルタ(11,411,511,611)は、前記第1の導体層(13,413,513,613)に設けられた第1の開口(13a1)を貫通するとともに、一方の端部(181,118a1)が前記基板(12,412,512,612)の内部に位置する第1の柱状導体(18,118,418,518,618)と、前記第1の導体層(13,413,513,613)又は前記第2の導体層(14,414,514,614)に設けられた第2の開口(13a2)を貫通するとともに、一方の端部(191)が前記基板(12,412,512,612)の内部に位置する第2の柱状導体(19,419)とを更に備えている。
前記第1の導波管(21,121,421,521,621)は、当該第1の導波管(21,121,421,521,621)の管壁(22,122,422,522,622)に設けられた開口(22a,122a)を前記第1の柱状導体(18,118,418,518,618)が貫通するとともに、前記第1の柱状導体(18,118,418,518,618)の他方の端部(182,118b1)が当該第1の導波管(21,121,421,521,621)の内部に位置するように配置されており、前記第2の導波管(31,431)は、当該第2の導波管(31,431)の管壁(32,432)に設けられた開口(32a)を前記第2の柱状導体(19,419)が貫通するとともに、前記第2の柱状導体(19,419)の他方の端部(192)が当該第2の導波管(31,431)の内部に位置するように配置されている。
上記の構成によれば、フィルタと第1の導波管とは、第1の導体層に設けられた第1の開口を貫通する第1の柱状導体を介して、互いに電磁気的に結合されている。同様に、フィルタと第2の導波管とは、第1の導体層又は第2の導体層に設けられた第2の開口を貫通する第2の柱状導体を介して、互いに電磁気的に結合されている。
第1の柱状導体及び第2の柱状導体は、従来の伝送装置においてフィルタと導波管とを結合させていた結合窓と比較して、幅広い帯域に亘ってフィルタと導波管との結合部における反射損失を低減することができる。したがって、本フィルタ装置は、従来の伝送線路を用いてフィルタと導波管とを結合した場合と比較して、反射損失が低い帯域を広帯域化することができる。
また、本発明の一実施形態に係るフィルタ装置(1,401,501,601)において、前記フィルタ(11,411,511,611)は、前記基板(12,412,512,612)の内部に形成されたポスト壁からなり、且つ、前記一対の広壁(13,14,413,414,513,514,613,614)と前記狭壁とにより取り囲まれた領域を複数の共振器(11a~11d)に分割する1又は複数の隔壁(171,172,173)であって、各々が結合窓(171a,172a,173a)を有する1又は複数の隔壁(171,172,173)を更に含む、ことが好ましい。
また、本発明の一実施形態に係るフィルタ装置(1)において、前記第1の柱状導体(118)及び前記第2の柱状導体の各々は、前記基板(12)に埋め込まれるとともに一方の端部(118a2)が前記基板(12)の表面に至る第1部分(118a)と、前記基板(12)から突出した第2部分(118b)とに分割されており、前記第1部分(118a)と前記第2部分(118b)とは、導電性接続部材(B1)により接続されている、ことが好ましい。
本伝送線路の柱状導体は、上述したように第1部分と第2部分とに分割されている。基板に埋め込まれるとともに一方の端部が基板の表面に露出した第1部分は、ポスト壁と同様の方法を用いて作成することができる。そのうえで、導電性接続部材を用いて第2部分を第1部分に接続することによって柱状導体は、形成される。
このような製造方法を用いて製造することができるので、柱状導体が1つの部材からなる場合と比較して、本伝送線路は、容易に製造することができる。
また、本発明の一実施形態に係るフィルタ装置(1)において、前記第1の柱状導体(118)及び前記第2の柱状導体の各々の前記第2部分(118b)は、誘電体製のブロック(119)に埋め込まれているとともに、前記第1部分(118a)側の端部(118b2)が前記ブロック(119)の表面に至る、ことが好ましい。
上記の構成によれば、第2部分を第1部分に接続する場合に、第2部分の取り扱いが容易になる。したがって、第2の部分がブロックに埋め込まれていない場合と比較して、本伝送線路は、更に容易に製造することができる。
また、本発明の一実施形態に係るフィルタ装置(401,501,601)は、前記第1の導波管(421,521,621)の伝搬領域として機能する第1の筒状空間(4211)と、前記第2の導波管(431)の伝搬領域として機能する第2の筒状空間(4311)と、前記フィルタ(411,511,611)を収容する凹部(4411,5411,6411)とが形成された金属製のハウジング(441,541,641)と、前記ハウジング(441,541,641)とともに前記フィルタ(411,511,611)を挟持することによって当該フィルタ(411,511,611)を保持する樹脂基板(451,551,651)と、を更に備えている。
前記フィルタ(411,511,611)において、前記第1の導体層(413,513,613)又は前記第2の導体層(414,514,614)に設けられた前記第2の開口は、前記第1の導体層(413,513,613)に設けられている。
前記凹部(4411,5411,6411)と前記第1の筒状空間(4211)とは、その境界に設けられた第1の開口を介して連通し、前記凹部(4411,5411,6411)と前記第2の筒状空間(4311)とは、その境界に設けられた第2の開口を介して連通している。
前記フィルタ(411,511,611)は、前記第1の柱状導体(418,518,618)及び前記第2の柱状導体(419)の各々の前記他方の端部が、それぞれ、前記第1の筒状空間(4211)及び前記第2の筒状空間(4311)の各々の内部に位置するとともに、前記境界に設けられた前記第1の開口及び前記第2の開口を前記第1の導体層(413,513,613)が封止するように配置されている、ことが好ましい。
上記の構成によれば、フィルタは、ハウジングと樹脂基板とを用いて挟持されている。したがって、フィルタと導波管との相対位置を確実に保持することができるため、フィルタと導波管との結合部において生じ得る反射損失が揺らぐことを抑制できる。したがって、本フィルタ装置は、従来の伝送線路を用いてフィルタと導波管とを結合した場合と比較して、反射損失が低い帯域を確実に広帯域化することができる。
また、本発明の一実施形態に係るフィルタ装置(401,601)は、前記ハウジング(441,641)のうち前記凹部(4411,6411)を取り囲む縁部分をスカート部(4412,6412)として、当該スカート部(4412,6412)と、前記樹脂基板(451,651)とを、前記フィルタ(411,611)を挟み込む方向に加圧する加圧部材(483,484,485,486,683,684,685,686)を更に備えている。
前記スカート部(4412,6412)の高さは、前記スカート部(4412,6412)と前記樹脂基板(451,651)とが離間するように定められている、ことが好ましい。
上記の構成によれば、樹脂基板とハウジングとを接続する場合に、樹脂基板及びハウジングの各々は、フィルタを挟み込む方向に加圧される。スカート部と樹脂基板とが離間するようにスカート部の高さが定められていることにより、フィルタは、ハウジングに近づく方向に向かって押される。したがって、フィルタの第1の導体層とハウジングの凹部との界面に空隙が生じることを防止できる。
また、本発明の一実施形態に係るフィルタ装置(501)は、前記ハウジング(541)のうち前記凹部(5411)を取り囲む縁部分をスカート部(5412)として、当該スカート部(5412)と、前記樹脂基板(551)とを、前記フィルタ(511)を挟み込む方向に加圧する加圧部材(583,584,585,586)を更に備えている。
前記スカート部(5412)の高さは、前記フィルタ(511)の前記第2の導体層(514)と前記樹脂基板(551)とが離間するように定められており、前記第2の導体層(514)と前記樹脂基板(551)との間に介在する空隙には、樹脂材料が充填されていることが好ましい。
前記フィルタの前記第2の導体層と前記樹脂基板との間に介在する空隙に樹脂材料を充填することによって、樹脂材料がフィルタをハウジングに近づく方向に押される。したがって、フィルタの第1の導体層とハウジングの凹部との界面に空隙が生じることを防止できる。
また、本発明の一実施形態に係るフィルタ装置(601)は、前記ハウジング(641)のうち前記凹部(6411)を取り囲む縁部分をスカート部(6412)として、当該スカート部(6412)と、前記樹脂基板(651)とを、前記フィルタ(611)を挟み込む方向に加圧する加圧部材(683,684,685,686)を更に備えている。
前記スカート部(6412)の高さは、前記フィルタ(611)の前記第2の導体層(614)と前記樹脂基板(651)とが離間するように定められており、前記第2の導体層(614)は、前記樹脂基板(651)に対して複数の接続部材(DB)により接続されている、ことが好ましい。
このように、フィルタと樹脂基板とは、複数の接続部材により接続されていてもよい。この構成によれば、樹脂基板に対してフィルタを強固に固定することができる。
本発明の一実施形態に係るフィルタ(11,411,511,611)は、誘電体製の基板(12,412,512,612)と、当該基板(12,412,512,612)の両面をそれぞれ覆う第1の導体層(13,413,513,613)及び第2の導体層(14,414,514,614)からなる一対の広壁(13,14,413,414,513,514,613,614)と、前記基板(12,412,512,612)の内部に形成されたポスト壁からなる狭壁とを備えているフィルタであって、前記第1の導体層(13,413,513,613)に設けられた第1の開口(13a1)を貫通するとともに、一方の端部(181,118a1)が前記基板(12,412,512,612)の内部に位置する第1の柱状導体(18,118,418,518,618)と、前記第1の導体層(13,413,513,613)又は前記第2の導体層(14,414,514,614)に設けられた第2の開口(13a2)を貫通するとともに、一方の端部(191)が前記基板(12,412,512,612)の内部に位置する第2の柱状導体(19,419)とを更に備えている。
上記の構成によれば、導波管の管壁に開口を設けられた第1の導波管及び第2の導波管を用いることによって、フィルタとこれらの導波管とを容易に結合させることができる。具体的には、(1)第1の導波管の管壁に設けられている第1の開口を第1の柱状導体が貫通するとともに、第1の柱状導体の他方の端部が第1の導波管の内部に位置するように第1の導波管を配置し、(2)第2の導波管の管壁に設けられている第2の開口を第2の柱状導体が貫通するとともに、第2の柱状導体の他方の端部が第2の導波管の内部に位置するように第2の導波管を配置することによって、フィルタとこれらの導波管とを容易に結合させることができる。
このようにして実現されたフィルタと導波管との結合部は、本発明の一実施形態に係るフィルタ装置の場合と同様に、広い帯域幅に亘って反射損失を抑制することができる。
また、本発明の一実施形態に係るフィルタ(11,411,511,611)は、前記第1の導体層(13,413,513,613)のうち前記第1の開口(13a1)の近傍には、第1の導波管(21,121,421,521,621)の管壁(22,122,422,522,622)の一部を配置可能な第1の領域(R1)が予め設けられており、且つ、前記第1の導体層(13,413,513,613)又は前記第2の導体層(14,414,514,614)のうち前記第2の開口(13a2)の近傍には、第2の導波管(31,431)の管壁(32,432)の一部を配置可能な第2の領域が予め設けられている、ことが好ましい。
また、本発明の一実施形態に係るフィルタ(11,411,511,611)は、前記基板(12,412,512,612)の内部に形成されたポスト壁からなり、且つ、前記一対の広壁(13,14,413,414,513,514,613,614)と前記狭壁とにより取り囲まれた領域を複数の共振器(11a~11d)に分割する1又は複数の隔壁(171,172,173)であって、各々が結合窓(171a,172a,173a)を有する1又は複数の隔壁(171,172,173)を更に含む、ことが好ましい。
なお、まとめの項では、請求の範囲に記載された構成要素に対応する部材のうち、図1~図7の各図に部材番号が記載された部材についてのみ、その部材番号を括弧書きしている。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
1,401,501,601 フィルタ装置
11,411,511,611 フィルタ
12,412,512,612 基板
13,413,513,613 導体層(第1の導体層、広壁)
14,414,514,614 導体層(第2の導体層、広壁)
16 狭壁
161,162 側壁
161i,162i 導体ポスト
163,164 ショート壁
171,172,173 隔壁
171a,172a,173a 結合窓
18,19,118,418,419,518,618 ピン(柱状導体)
181,182,191,192,118a1,118b1 ピンの端部
118a,118b ブラインドビア
119 ブロック
120 導体層
1201 ランド
B1,B2,B3 バンプ
21,31,421,431,521,621 導波管
22,32,122,422,432,522,622 管壁
221,222,321,322,4221,4222,4321,4322,5221,6221 広壁
223,224,4223,4224,5223,5224,6223,6224 狭壁
23,33,423,433 ショート壁
441,541,641 ハウジング
4411,5411,6411 凹部
451,551,651 樹脂基板
11,411,511,611 フィルタ
12,412,512,612 基板
13,413,513,613 導体層(第1の導体層、広壁)
14,414,514,614 導体層(第2の導体層、広壁)
16 狭壁
161,162 側壁
161i,162i 導体ポスト
163,164 ショート壁
171,172,173 隔壁
171a,172a,173a 結合窓
18,19,118,418,419,518,618 ピン(柱状導体)
181,182,191,192,118a1,118b1 ピンの端部
118a,118b ブラインドビア
119 ブロック
120 導体層
1201 ランド
B1,B2,B3 バンプ
21,31,421,431,521,621 導波管
22,32,122,422,432,522,622 管壁
221,222,321,322,4221,4222,4321,4322,5221,6221 広壁
223,224,4223,4224,5223,5224,6223,6224 狭壁
23,33,423,433 ショート壁
441,541,641 ハウジング
4411,5411,6411 凹部
451,551,651 樹脂基板
Claims (11)
- 誘電体製の基板と、当該基板の両面をそれぞれ覆う第1の導体層及び第2の導体層からなる一対の広壁と、前記基板の内部に形成されたポスト壁からなる狭壁とを含むフィルタと、導体製の管壁を有し、前記基板に沿って配置された第1の導波管及び第2の導波管とを備えたフィルタ装置であって、
前記フィルタは、
前記第1の導体層に設けられた第1の開口を貫通するとともに、一方の端部が前記基板の内部に位置する第1の柱状導体と、
前記第1の導体層又は前記第2の導体層に設けられた第2の開口を貫通するとともに、一方の端部が前記基板の内部に位置する第2の柱状導体とを更に備え、
前記第1の導波管は、当該第1の導波管の管壁に設けられた開口を前記第1の柱状導体が貫通するとともに、前記第1の柱状導体の他方の端部が当該第1の導波管の内部に位置するように配置されており、
前記第2の導波管は、当該第2の導波管の管壁に設けられた開口を前記第2の柱状導体が貫通するとともに、前記第2の柱状導体の他方の端部が当該第2の導波管の内部に位置するように配置されている、
ことを特徴とするフィルタ装置。 - 前記フィルタは、前記基板の内部に形成されたポスト壁からなり、且つ、前記一対の広壁と前記狭壁とにより取り囲まれた領域を複数の共振器に分割する1又は複数の隔壁であって、各々が結合窓を有する1又は複数の隔壁を更に含む、
ことを特徴とする請求項1に記載のフィルタ装置。 - 前記第1の柱状導体及び前記第2の柱状導体の各々は、前記基板に埋め込まれるとともに一方の端部が前記基板の表面に至る第1部分と、前記基板から突出した第2部分とに分割されており、
前記第1部分と前記第2部分とは、導電性接続部材により接続されている、
ことを特徴とする請求項1又は2に記載のフィルタ装置。 - 前記第1の柱状導体及び前記第2の柱状導体の各々の前記第2部分は、誘電体製のブロックに埋め込まれているとともに、前記第1部分側の端部が前記ブロックの表面に至る、ことを特徴とする請求項3に記載のフィルタ装置。
- 前記第1の導波管の伝搬領域として機能する第1の筒状空間と、前記第2の導波管の伝搬領域として機能する第2の筒状空間と、前記フィルタを収容する凹部とが形成された金属製のハウジングと、
前記ハウジングとともに前記フィルタを挟持することによって当該フィルタを保持する樹脂基板と、を更に備え、
前記フィルタにおいて、前記第1の導体層又は前記第2の導体層に設けられた前記第2の開口は、前記第1の導体層に設けられており、
前記凹部と前記第1の筒状空間とは、その境界に設けられた第1の開口を介して連通し、
前記凹部と前記第2の筒状空間とは、その境界に設けられた第2の開口を介して連通し、
前記フィルタは、前記第1の柱状導体及び前記第2の柱状導体の各々の前記他方の端部が、それぞれ、前記第1の筒状空間及び前記第2の筒状空間の各々の内部に位置するとともに、前記境界に設けられた前記第1の開口及び前記第2の開口を前記第1の導体層が封止するように配置されている、
ことを特徴とする請求項1~4の何れか1項に記載のフィルタ装置。 - 前記ハウジングのうち前記凹部を取り囲む縁部分をスカート部として、当該スカート部と、前記樹脂基板とを、前記フィルタを挟み込む方向に加圧する加圧部材を更に備え、
前記スカート部の高さは、前記スカート部と前記樹脂基板とが離間するように定められている、
ことを特徴とする請求項5に記載のフィルタ装置。 - 前記ハウジングのうち前記凹部を取り囲む縁部分をスカート部として、当該スカート部と、前記樹脂基板とを、前記フィルタを挟み込む方向に加圧する加圧部材を更に備え、
前記スカート部の高さは、前記フィルタの前記第2の導体層と前記樹脂基板とが離間するように定められており、
前記第2の導体層と前記樹脂基板との間に介在する空隙には、樹脂材料が充填されている、
ことを特徴とする請求項5に記載のフィルタ装置。 - 前記ハウジングのうち前記凹部を取り囲む縁部分をスカート部として、当該スカート部と、前記樹脂基板とを、前記フィルタを挟み込む方向に加圧する加圧部材を更に備え、
前記スカート部の高さは、前記フィルタの前記第2の導体層と前記樹脂基板とが離間するように定められており、
前記第2の導体層は、前記樹脂基板に対して複数の接続部材により接続されている、
ことを特徴とする請求項5に記載のフィルタ装置。 - 誘電体製の基板と、
当該基板の両面をそれぞれ覆う第1の導体層及び第2の導体層からなる一対の広壁と、前記基板の内部に形成されたポスト壁からなる狭壁とを備えているフィルタであって、
前記第1の導体層に設けられた第1の開口を貫通するとともに、一方の端部が前記基板の内部に位置する第1の柱状導体と、
前記第1の導体層又は前記第2の導体層に設けられた第2の開口を貫通するとともに、一方の端部が前記基板の内部に位置する第2の柱状導体とを更に備えている、
ことを特徴とするフィルタ。 - 前記第1の導体層のうち前記第1の開口の近傍には、第1の導波管の管壁の一部を配置可能な第1の領域が予め設けられており、且つ、前記第1の導体層又は前記第2の導体層のうち前記第2の開口の近傍には、第2の導波管の管壁の一部を配置可能な第2の領域が予め設けられている、ことを特徴とする請求項9に記載のフィルタ。
- 前記基板の内部に形成されたポスト壁からなり、且つ、前記一対の広壁と前記狭壁とにより取り囲まれた領域を複数の共振器に分割する1又は複数の隔壁であって、各々が結合窓を有する1又は複数の隔壁を更に含む、ことを特徴とする請求項9又は10に記載のフィルタ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18810401.2A EP3633786B1 (en) | 2017-05-30 | 2018-05-29 | Filter device and filter |
US16/617,400 US11054572B2 (en) | 2017-05-30 | 2018-05-29 | Filter device and filter |
CA3065205A CA3065205A1 (en) | 2017-05-30 | 2018-05-29 | Filter device and filter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-106914 | 2017-05-30 | ||
JP2017106914A JP6348636B1 (ja) | 2017-05-30 | 2017-05-30 | フィルタ装置及びフィルタ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018221486A1 true WO2018221486A1 (ja) | 2018-12-06 |
Family
ID=62706282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/020455 WO2018221486A1 (ja) | 2017-05-30 | 2018-05-29 | フィルタ装置及びフィルタ |
Country Status (5)
Country | Link |
---|---|
US (1) | US11054572B2 (ja) |
EP (1) | EP3633786B1 (ja) |
JP (1) | JP6348636B1 (ja) |
CA (1) | CA3065205A1 (ja) |
WO (1) | WO2018221486A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020202551A (ja) * | 2019-06-10 | 2020-12-17 | 株式会社フジクラ | モード変換器、rfモジュール、及び携帯端末 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6321266B1 (ja) * | 2017-05-30 | 2018-05-09 | 株式会社フジクラ | 伝送線路及びポスト壁導波路 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10135714A (ja) * | 1996-10-31 | 1998-05-22 | Kyocera Corp | 積層型導波管線路の結合構造 |
JP2005102024A (ja) * | 2003-09-04 | 2005-04-14 | Tdk Corp | 高周波回路 |
JP2014179935A (ja) * | 2013-03-15 | 2014-09-25 | Fujikura Ltd | モード変換器 |
JP2015080100A (ja) | 2013-10-17 | 2015-04-23 | 株式会社フジクラ | 導波管との接続構造 |
JP2015226109A (ja) | 2014-05-26 | 2015-12-14 | 株式会社フジクラ | 伝送モード変換装置 |
JP2016006918A (ja) | 2014-05-30 | 2016-01-14 | 株式会社フジクラ | 伝送線路及び高周波回路 |
JP6140872B1 (ja) * | 2016-08-26 | 2017-05-31 | 株式会社フジクラ | 伝送線路 |
JP6190932B1 (ja) * | 2016-08-26 | 2017-08-30 | 株式会社フジクラ | 伝送線路 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4052724A (en) * | 1974-12-20 | 1977-10-04 | Mitsubishi Denki Kabushiki Kaisha | Branching filter |
JPH07105645B2 (ja) * | 1989-08-19 | 1995-11-13 | 富士通株式会社 | 誘電体フィルタ |
JPH04287501A (ja) * | 1991-03-18 | 1992-10-13 | Fujitsu Ltd | 誘電体フィルタとその調整方法 |
JP3210414B2 (ja) | 1992-04-30 | 2001-09-17 | 日本特殊陶業株式会社 | ストリップラインフィルタ |
US5731751A (en) | 1996-02-28 | 1998-03-24 | Motorola Inc. | Ceramic waveguide filter with stacked resonators having capacitive metallized receptacles |
JP3366552B2 (ja) | 1997-04-22 | 2003-01-14 | 京セラ株式会社 | 誘電体導波管線路およびそれを具備する多層配線基板 |
US6927653B2 (en) * | 2000-11-29 | 2005-08-09 | Kyocera Corporation | Dielectric waveguide type filter and branching filter |
JP3996879B2 (ja) * | 2003-07-29 | 2007-10-24 | 京セラ株式会社 | 誘電体導波管とマイクロストリップ線路の結合構造およびこの結合構造を具備するフィルタ基板 |
KR101143637B1 (ko) | 2010-11-18 | 2012-05-09 | 에스케이하이닉스 주식회사 | 내부 연결 구조를 포함하는 반도체 소자 |
KR101761920B1 (ko) * | 2011-02-16 | 2017-07-26 | 삼성전기주식회사 | 유전체 도파관 안테나 |
GB2497982B (en) * | 2011-12-28 | 2014-04-09 | Canon Kk | Apparatus with two waveguides stacked upon each other |
-
2017
- 2017-05-30 JP JP2017106914A patent/JP6348636B1/ja active Active
-
2018
- 2018-05-29 EP EP18810401.2A patent/EP3633786B1/en active Active
- 2018-05-29 US US16/617,400 patent/US11054572B2/en active Active
- 2018-05-29 WO PCT/JP2018/020455 patent/WO2018221486A1/ja unknown
- 2018-05-29 CA CA3065205A patent/CA3065205A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10135714A (ja) * | 1996-10-31 | 1998-05-22 | Kyocera Corp | 積層型導波管線路の結合構造 |
JP2005102024A (ja) * | 2003-09-04 | 2005-04-14 | Tdk Corp | 高周波回路 |
JP2014179935A (ja) * | 2013-03-15 | 2014-09-25 | Fujikura Ltd | モード変換器 |
JP2015080100A (ja) | 2013-10-17 | 2015-04-23 | 株式会社フジクラ | 導波管との接続構造 |
JP2015226109A (ja) | 2014-05-26 | 2015-12-14 | 株式会社フジクラ | 伝送モード変換装置 |
JP2016006918A (ja) | 2014-05-30 | 2016-01-14 | 株式会社フジクラ | 伝送線路及び高周波回路 |
JP6140872B1 (ja) * | 2016-08-26 | 2017-05-31 | 株式会社フジクラ | 伝送線路 |
JP6190932B1 (ja) * | 2016-08-26 | 2017-08-30 | 株式会社フジクラ | 伝送線路 |
Non-Patent Citations (3)
Title |
---|
KAZUAKI YOSHIDA: "Technology and Applications of Microwave Filters", December 2013, JAPAN RADIO CO., LTD. (JRC |
See also references of EP3633786A4 * |
Y. UEMICHI: "Compact and low-loss bandpass filter realized in silica-based post-wall waveguide for 60-GHz applications", IEEE MTT-S IMS, May 2015 (2015-05-01) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020202551A (ja) * | 2019-06-10 | 2020-12-17 | 株式会社フジクラ | モード変換器、rfモジュール、及び携帯端末 |
WO2020250830A1 (ja) * | 2019-06-10 | 2020-12-17 | 株式会社フジクラ | モード変換器、rfモジュール、及び携帯端末 |
US12107310B2 (en) | 2019-06-10 | 2024-10-01 | Fujikura Ltd. | Mode converter, RF module, and mobile terminal |
Also Published As
Publication number | Publication date |
---|---|
US20210124111A1 (en) | 2021-04-29 |
EP3633786A4 (en) | 2021-03-10 |
JP6348636B1 (ja) | 2018-06-27 |
EP3633786B1 (en) | 2021-09-22 |
JP2018207167A (ja) | 2018-12-27 |
US11054572B2 (en) | 2021-07-06 |
EP3633786A1 (en) | 2020-04-08 |
CA3065205A1 (en) | 2018-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10381317B2 (en) | Transition arrangement comprising a contactless transition or connection between an SIW and a waveguide or an antenna | |
WO2018221485A1 (ja) | 伝送線路及びポスト壁導波路 | |
EP2311134B1 (en) | Waveguides and transmission lines in gaps between parallel conducting surfaces | |
KR101761920B1 (ko) | 유전체 도파관 안테나 | |
US9577340B2 (en) | Waveguide adapter plate to facilitate accurate alignment of sectioned waveguide channel in microwave antenna assembly | |
US9515385B2 (en) | Coplanar waveguide implementing launcher and waveguide channel section in IC package substrate | |
US9088058B2 (en) | Waveguide interface with a launch transducer and a circular interface plate | |
US9419341B2 (en) | RF system-in-package with quasi-coaxial coplanar waveguide transition | |
JP6200613B1 (ja) | ダイプレクサ及び送受信システム | |
US20170264011A1 (en) | Air-Filled Quad-Ridge Radiator for AESA Applications | |
WO2018221486A1 (ja) | フィルタ装置及びフィルタ | |
KR102360712B1 (ko) | 이중 편파 안테나 | |
KR20180072977A (ko) | 도파관 필터 | |
JPWO2004059784A1 (ja) | 誘電体フィルタ | |
US8614610B2 (en) | Ruggedized waveguide encapsulation fixture for receiving a compressed waveguide component | |
JP4794616B2 (ja) | 導波管・ストリップ線路変換器 | |
US9368855B2 (en) | Planar circuit to waveguide transition having openings formed in a conductive pattern to form a balance line or an unbalance line | |
Pelliccia et al. | Micromachined filters in multilayer technology for on-board communication systems in Ka-band | |
US20240154302A1 (en) | Electronic component | |
CN114050407B (zh) | 波导模式激励结构、方法及其应用 | |
Li et al. | Design of Crossover Based on Printed Gap Waveguide for Millimeter-wave Application | |
JP2019176345A (ja) | バンドパスフィルタ | |
WO2004102725A2 (ja) | Nrdガイド変換器、および誘電体と導体との結合構造 | |
WO2005078854A1 (ja) | 高周波モジュール | |
JP2003188613A (ja) | 非放射性誘電体線路及びそれを用いた多層基板回路、並びにこれらのチューニング方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18810401 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3065205 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018810401 Country of ref document: EP Effective date: 20200102 |