WO2020250830A1 - モード変換器、rfモジュール、及び携帯端末 - Google Patents
モード変換器、rfモジュール、及び携帯端末 Download PDFInfo
- Publication number
- WO2020250830A1 WO2020250830A1 PCT/JP2020/022354 JP2020022354W WO2020250830A1 WO 2020250830 A1 WO2020250830 A1 WO 2020250830A1 JP 2020022354 W JP2020022354 W JP 2020022354W WO 2020250830 A1 WO2020250830 A1 WO 2020250830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mode converter
- strip
- conductor
- post
- wall
- Prior art date
Links
- 239000004020 conductor Substances 0.000 claims abstract description 411
- 239000000758 substrate Substances 0.000 claims abstract description 128
- 230000005540 biological transmission Effects 0.000 claims abstract description 58
- 210000004907 gland Anatomy 0.000 claims description 2
- 229910000679 solder Inorganic materials 0.000 abstract description 27
- 230000007613 environmental effect Effects 0.000 abstract description 8
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- 230000008859 change Effects 0.000 abstract description 4
- 230000004048 modification Effects 0.000 description 40
- 238000012986 modification Methods 0.000 description 40
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 20
- 229910052802 copper Inorganic materials 0.000 description 20
- 239000010949 copper Substances 0.000 description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 230000005284 excitation Effects 0.000 description 9
- 239000010453 quartz Substances 0.000 description 9
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000003989 dielectric material Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 4
- 230000007547 defect Effects 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- KRTSDMXIXPKRQR-AATRIKPKSA-N monocrotophos Chemical compound CNC(=O)\C=C(/C)OP(=O)(OC)OC KRTSDMXIXPKRQR-AATRIKPKSA-N 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/16—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
- H01P1/161—Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
- H01P5/107—Hollow-waveguide/strip-line transitions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/30—Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/085—Coaxial-line/strip-line transitions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/22—Supports; Mounting means by structural association with other equipment or articles
- H01Q1/24—Supports; Mounting means by structural association with other equipment or articles with receiving set
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/38—Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
Definitions
- the present invention relates to a mode converter that converts a mode in a post-wall waveguide and a mode in a line including a band-shaped conductor.
- the present invention also relates to an RF module and a mobile terminal provided with such a mode converter.
- Non-Patent Document 1 describes a mode converter that mutually converts the waveguide mode of a post-wall waveguide and the waveguide mode of a microstrip line.
- FIGS. 16 and 17 are an exploded perspective view and a cross-sectional view of the RF module 101, respectively.
- the post-wall waveguide PW includes a dielectric substrate 111, a pair of conductor layers 112 and 113 formed on each of the pair of main surfaces of the substrate 111, and the inside of the substrate 111. It is provided with a post wall 114 formed in. Of the pair of conductor layers 112 and 113, the region surrounded by the post wall 114 when viewed in a plan view functions as a pair of wide walls that sandwich the rectangular parallelepiped waveguide region from two directions (for example, the vertical direction).
- the post wall functions as a pair of narrow walls and a pair of short walls that surround the waveguide region from four directions (for example, front-back and left-right directions).
- the post wall 114 is a plurality of through vias arranged in a fence shape inside the substrate 111, and is composed of a plurality of through vias short-circuiting a pair of conductor layers with each other.
- the microstrip line MS includes a band-shaped conductors 116a and 116b that function as signal lines, a ground layer composed of a conductor layer 112, and a dielectric layer 115 that separates the signal line and the ground layer. , And is formed directly on one main surface of the post-wall waveguide.
- the mode converters 110a and 110b are of the band-shaped conductors 116a and 116b constituting the microstrip line MS. It is provided with blind vias BVa and BVb connected to one end.
- the blind vias BVa and BVb function as excitation pins.
- the excitation pin may be a blind via or a through via.
- the strip conductors 116a and 116b can be used as input / output ports of the post wall waveguide PW.
- the RF module 101 forms mode converters 110a and 110b at both ends (near the short wall) of the post-wall waveguide PW, respectively, and the mode converters 110a It is obtained by mounting an RFIC (Radio Frequency Integrated Circuit) 121 on the strip-shaped conductor 116a of the above and mounting an antenna 122 on the strip-shaped conductor 116b of the mode converter 110b.
- the RF module 101 is an RF module in which the RFIC 121 and the antenna 122 are directly mounted on one main surface of the post wall waveguide PW.
- the RFIC and the antenna are mounted in advance on a board (hereinafter referred to as a mounting board) different from the board constituting the post-wall waveguide, and this mounting board and the post-wall waveguide are mounted.
- a mounting board a board different from the board constituting the post-wall waveguide
- FIG. 18 is a cross-sectional view of the RF module 101A.
- the band-shaped conductors 116Aa and 116Ab were pulled out to the back side of the mounting board (the side close to the post wall waveguide PW) by using through vias, and pulled out to the back side of the mounting board. It is conceivable that the strip conductors 116Aa and 116Ab and the blind vias BVa and BVb are joined by using bumps Ba and Bb.
- quartz, ceramics, sapphire, silicon, etc. are often used as the dielectric material constituting the substrate 111 of the post-wall waveguide PW.
- a fluororesin for example, Teflon (registered trademark)
- a glass epoxy resin for example, a glass epoxy resin, a liquid crystal polymer, a polyimide resin, a cycloolefin, or the like is often adopted.
- the coefficient of linear expansion of the dielectric constituting the substrate 111 and the coefficient of linear expansion of the dielectric constituting the mounting substrate 115A are significantly different.
- solder 118 is used in addition to bumps Ba and Bb. However, it is difficult to prevent the occurrence of cracks.
- One aspect of the present invention has been made in view of the above-mentioned problems, and an object thereof is a line in which a mode in a post-wall waveguide and a band-shaped conductor formed on a substrate different from the post-wall waveguide are used as signal lines. It is an object of the present invention to provide a mode converter that converts the mode and the mode in the above, and is less likely to cause a transmission failure due to a change in environmental temperature than in the past. Another object of the present invention is to provide an RF module and a mobile terminal provided with such a mode converter.
- the mode converter according to one aspect of the present invention is a dielectric having a post-wall waveguide having an opening on one wide wall and a strip-shaped conductor formed on at least one of one main surface and the other main surface.
- the substrate is provided with a substrate made of, and a joining member for directly or indirectly joining the one wide wall and the substrate, and at least a part of the opening and the strip shape. It overlaps with at least a part of the conductor.
- a first opening is provided in the vicinity of the first short wall of one wide wall, and a second opening is provided in the vicinity of the second short wall of the one wide wall.
- a first strip-shaped conductor is formed on at least one of a post-wall waveguide provided with an opening and one main surface and the other main surface, and at least one of the main surfaces and the other main surface.
- a dielectric substrate having a second strip-shaped conductor formed on one of them and an antenna formed on at least one of the one main surface and the other main surface, and the one wide wall and the above substrate.
- a joining member for directly or indirectly joining the two, and an RFIC mounted on one main surface of the substrate and having any terminal electrically connected to the first strip-shaped conductor.
- the antenna is electrically connected to the second strip conductor, and when the post wall waveguide is viewed in a plan view, at least a part of the first opening and at least a part of the first strip conductor. Is superimposed, and at least a part of the second opening and at least a part of the second strip-shaped conductor are overlapped.
- the mobile terminal includes the RF module according to one aspect of the present invention as at least one of a transmission module, a reception module, and a transmission / reception module.
- the RF module according to one aspect of the present invention is a post-wall waveguide in which a waveguide region is formed by a pair of wide walls, a narrow wall, and a pair of short walls, and (1) one of the wide walls.
- a first opening is provided in one end region including one of the short walls, and (2) a second opening is provided in the other end region of the above one wide wall including the other short wall.
- a post-wall waveguide that is provided and (3) the one end region and the other end region are arranged in parallel and close to each other, and at least one main surface and the other main surface.
- the post-wall waveguide is mounted on the main surface and each of the output terminal and the input terminal includes an RFIC electrically connected to the third strip conductor and the fourth strip conductor, respectively.
- it is a mode converter that converts a mode in a post-wall waveguide and a mode in a line having a band-shaped conductor formed on a substrate different from the post-wall waveguide as a signal line. , It is possible to provide a mode converter in which transmission defects due to changes in environmental temperature are less likely to occur than in the past. Further, according to one aspect of the present invention, it is possible to provide an RF module and a mobile terminal provided with such a mode converter.
- FIG. 5 is a cross-sectional view of an RF module including a conventional mode converter, which is different from the RF module shown in FIG.
- FIG. 1 is a plan view of the mode converter 10.
- FIG. 2 is a cross-sectional view of the mode converter 10 and is a cross-sectional view taken along the line AA'shown in FIG.
- the mode converter and RF module according to each embodiment of the present invention all assume a 28 GHz band (for example, a band of 27 GHz or more and 29.5 GHz or less) as an operating band.
- the mode converter 10 includes a post-wall waveguide PW, a microstrip line MS, and a solder 18.
- the post-wall waveguide PW and microstrip line MS will be described later.
- the solder 18 is an example of a joining member that short-circuits and joins the conductor layer 12 of the post wall waveguide PW and the conductor layer 17 of the microstrip line MS.
- the solder 18 joins the conductor layer 12 and the conductor layer 17 in a state where the conductor layer 12 and the conductor layer 17 are parallel or substantially parallel to each other.
- the conductor layer 17 is formed on the main surface of the substrate 15 facing each other on the side closer to the conductor layer 12.
- the solder 18 indirectly joins the conductor layer 12 and the substrate 15 via the conductor layer 17.
- the main surface on the side far from the conductor layer 12 is also referred to as one main surface
- the main surface on the side close to the conductor layer 12 is also referred to as the other main surface.
- the shortest distance between the central axis of the through via 14i constituting the short wall 14c described later and the solder 18 is referred to as a distance D3.
- the post wall waveguide PW includes a substrate 11, conductor layers 12 and 13, and a post wall 14.
- the substrate 11 is a plate-shaped member made of a dielectric material, and is made of quartz in this embodiment.
- the dielectric constituting the substrate 11 is not limited to quartz, and transmission loss can be suppressed when it is used as a substrate for a post-wall waveguide, for example, depending on the center frequency of the mode converter 10. Can be appropriately selected from various dielectrics.
- the thickness T11 of the substrate 11 can be appropriately selected.
- Each of the conductor layer 12 and the conductor layer 13 is a layered member formed on each of the pair of main surfaces of the substrate 11 facing each other.
- the conductor layers 12 and 13 are layered members made of conductors, and are made of copper in this embodiment.
- the conductors constituting the conductor layers 12 and 13 are not limited to copper, and can be appropriately selected.
- the thicknesses of the conductor layers 12 and 13 can be appropriately selected, and a layered member called a conductor film having a relatively thin thickness may be used, or a conductor plate having a relatively thick thickness may be used. It may be a layered member.
- the post wall 14 is composed of a plurality of through vias 141 to 14n arranged in a fence shape inside the substrate 11.
- n is an arbitrary integer of 2 or more.
- each of the through vias 141 to 14n is generalized and also referred to as a through via 14i.
- i is an integer of 1 or more and n or less.
- the post wall 14 is composed of a pair of narrow walls 14a and 14b facing each other, a short wall 14c, and another short wall (not shown in FIGS. 1 and 2) facing the short wall 14c. ..
- Each through via 14i is composed of a cylindrical or cylindrical (cylindrical in this embodiment) conductor.
- the conductor layers 12 and 13 sandwich the substrate 11 from two directions (for example, the vertical direction), and the narrow walls 14a and 14b sandwich a part of the substrate 11 from two directions (for example, the horizontal direction).
- the short wall 14c and the other short wall are sandwiched, and a part of the substrate 11 is sandwiched from two directions (for example, the front-rear direction).
- a part of the substrate 11 sandwiched between the conductor layers 12 and 13, the narrow walls 14a and 14b, the short wall 14c, and the other short walls from six directions functions as a waveguide region of the mode converter 10. To do. This waveguide region is shown in FIG.
- the alternate long and short dash line shown in FIG. 1 is a straight line passing through the center of each through via 14i.
- the narrow wall 14a and the narrow wall 14b are parallel to each other, and the short wall 14c and each of the narrow walls 14a and 14b are orthogonal to each other.
- the distance between the narrow wall 14a and the narrow wall 14b will be referred to as the width W1 of the post-wall waveguide PW.
- the conductor layer 12 constituting one wide wall of the post-wall waveguide PW is provided with an opening 121.
- the opening 121 has a rectangular shape, and has a long side along the short wall 14c (parallel in the present embodiment) and a short side along the narrow walls 14a and 14b (in the present embodiment) in the vicinity of the short wall 14c. Are provided in parallel).
- the shortest distance between the opening 121 and the short wall 14c is referred to as the distance D1
- the width of the opening 121 (the length along the short side)
- the length W2 the length along the long side) is referred to as the width W2. It is called length L2.
- the post-wall waveguide PW configured in this way functions as a TE line and guides a high frequency coupled to the waveguide region through the opening 121 along the long axis direction of the waveguide region.
- the microstrip line MS includes a substrate 15, a strip-shaped conductor 16, and a conductor layer 17.
- the substrate 15 is a plate-shaped member made of a dielectric material.
- the dielectric constituting the substrate 15 can be appropriately selected from dielectrics capable of suppressing transmission loss when used as a substrate for a microstrip line, for example, depending on the center frequency of the mode converter 10. ..
- the thickness T15 of the substrate 15 can be appropriately selected.
- a commercially available mounting board for example, Megatron 6 (registered trademark), Rogers RT / duroid (registered trademark) 5880, etc.
- the board 15 can be used as the board 15.
- the conductor layer which is one of the main surfaces is patterned to form the strip-shaped conductor 16 described later, and the conductor layer which is the other main surface of the mounting substrate is formed.
- the conductor layer 17 described later can be formed.
- the strip-shaped conductor 16 is a rectangular conductor pattern formed on one main surface of the substrate 15 (in FIG. 2, the main surface on the side far from the conductor layer 12 of the post-wall waveguide PW), and is a microstrip line MS. Functions as a signal line for.
- the width of the strip-shaped conductor 16 is referred to as a width W3
- the length of the tip portion of the strip-shaped conductor 16 protruding from the opening 121 in a plan view is referred to as a length L3.
- the length L3 affects the impedance matching between the microstrip line MS and the post wall waveguide PW. Therefore, by appropriately designing the length L3, impedance matching can be improved, and the reflection loss in the mode converter 10 can be suppressed.
- the conductor layer 17 is a conductor pattern formed on the other main surface of the substrate 15 (in FIG. 2, the main surface on the side closer to the conductor layer 12 of the post wall waveguide PW), and is a ground layer of the microstrip line MS. Functions as. In the present embodiment, as shown in FIG. 1, the conductor layer 17 is formed outside the waveguide region (that is, the region surrounded by the post wall 14) of the post wall waveguide PW when viewed in a plan view. In the following, the shortest distance between the central axis of the through via 14i forming the short wall 14c and the conductor layer 17 is referred to as a distance D2.
- D2 D3 (see FIGS. 1 and 2).
- the region forming the conductor layer 17 and the distance D2 can be appropriately designed according to the position where the opening 121 is formed or the like, and may reach from the outside of the waveguide region to the vicinity of the opening 121.
- the conductor layer 17 does not have to be formed in at least a region of the other main surface of the substrate 15 facing the opening 121, and is one of regions other than the region facing the opening 121. It may be formed in a portion, or may be formed in the entire region other than the region facing the opening 121.
- the strip-shaped conductor 16 and the conductor layer 17 are made of a conductor, and in the present embodiment, are made of copper.
- the conductors constituting the strip-shaped conductor 16 and the conductor layer 17 are not limited to copper, and can be appropriately selected. Further, the thickness and width of the strip-shaped conductor 16 and the thickness of the conductor layer 17 can be appropriately selected, and a layered member called a conductor film having a relatively thin thickness may be used. It may be a layered member called a relatively thick conductor plate.
- the strip-shaped conductor 16 has a rectangular shape.
- the strip-shaped conductor 16 may be strip-shaped at least in the vicinity of the region overlapping the opening 121 in a plan view, and the end portion on the side far from the opening 121 may be patterned in any shape.
- a conductor pad for connecting a terminal of, for example, an RFIC (Radio Frequency Integrated Circuit) can be formed at an end portion far from the opening 121.
- the end portion on the side closer to the opening 121 is patterned so as to have two corners.
- the shape of the end portion on the side closer to the opening 121 is not limited.
- the strip-shaped conductor 16 When the post-wall waveguide PW is viewed in a plan view (see FIG. 1), the strip-shaped conductor 16 has an end portion far from the opening 121 arranged outside the waveguide region of the post-wall waveguide PW, and is strip-shaped. A portion crosses the short wall 14c and the opening 121, and the end near the opening 121 is in the vicinity of the opening 121 and is arranged in the waveguide region. Therefore, in the mode converter 10, when the post-wall waveguide PW is viewed in a plan view, a part of the vicinity of the center of the opening 121 and a part of the strip-shaped conductor 16 overlap each other.
- the microstrip line MS configured in this way is an aspect of a line called a quasi-TEM line or a two-conductor line.
- the strip-shaped conductor 16 is formed only on one main surface of the substrate 15, but as in the strip-shaped conductor 16C shown in FIG. 5, the strip-shaped conductor covers both main surfaces of the substrate 15. A conductor may be formed.
- the mode converter 10 has been described using the microstrip line MS as a line in which a band-shaped conductor is formed on at least one of one main surface and the other main surface of the substrate 15.
- the line in which the strip-shaped conductor is formed on at least one of one main surface and the other main surface of the substrate 15 is not limited to the microstrip line MS, but is a strip line. It may be a coplanar line, a coplanar line with a ground, or two parallel lines.
- the mode in the microstrip line MS and the mode in the post-wall waveguide PW pass through a region in which a part of the strip conductor 16 and a part of the opening 121 are overlapped in a plan view. To be combined. That is, the mode converter 10 can convert these modes through an opening 121 that does not come into direct contact with the strip conductor 16 without using an excitation pin.
- the voids may be left as gaps (that is, filled with air), or may be filled with a dielectric such as a resin material.
- the resin material that is in a liquid state before curing is injected from any of the through vias 14i, and the resin material seeps out from the through vias 14i different from the injected through vias 14i. If confirmed, it can be considered that many regions of the voids are filled with the resin material. After that, the resin material may be cured.
- the discontinuity of the relative permittivity that may occur between the substrate 11 and the substrate 15 can be alleviated by appropriately selecting the dielectric to be filled.
- the post-wall waveguide PW may be configured with a waveguide region to function as any of a filter, a directional coupler, a diplexer, and an antenna.
- the function of any of the filter, the directional coupler, the diplexer, and the antenna is realized by using the post-wall waveguide PW, the configuration according to the application from the existing filter, the directional coupler, the diplexer, and the antenna. May be selected as appropriate.
- the antenna is preferably an array antenna.
- the mode converter 10A which is a first modification of the present invention and is a modification of the mode converter 10 shown in FIGS. 1 and 2, will be described with reference to FIG.
- FIG. 3 is a cross-sectional view of the mode converter 10A.
- the mode converter 10A is obtained by omitting the conductor layer 17 from the mode converter 10 and replacing the solder 18 with the adhesive 18A based on the mode converter 10.
- the adhesive 18A is made of a non-conductive resin material.
- the adhesive 18A directly joins the conductor layer 12 and the substrate 15.
- the thickness of the adhesive 18A is referred to as a thickness TA.
- the microstrip line MS of the mode converter 10A includes the substrate 15, the strip-shaped conductor 16, and the conductor layer 12.
- the mode converter 10A configured in this way has the same effect as 10.
- a gap is formed between the conductor layer 12 and the substrate 15.
- the voids may remain in the gaps (that is, still filled with air) or may be filled with a dielectric such as a resin material.
- the adhesive 18A is applied to the main surface of the substrate 15 and the substrate 15 is attached to the conductor layer 12 to join the conductor layer 12 and the substrate 15 without forming voids. be able to.
- the adhesive 18A has a higher elastic modulus than the solder 18, the stress that may occur due to a change in the environmental temperature can be relaxed.
- the mode converter 10B which is a second modification of the present invention and is a modification of the mode converter 10 shown in FIGS. 1 and 2, will be described with reference to FIG.
- FIG. 4 is a plan view of the mode converter 10B.
- the mode converter 10B is obtained by replacing the band-shaped conductor 16 included in the mode converter 10 with a band-shaped conductor 16B based on the mode converter 10.
- the strip-shaped conductor 16B includes a strip-shaped main portion 16B1 and two stubs 16B1 and 16B2, both of which are rectangular.
- the main portion 16B1 is a conductor pattern corresponding to the strip-shaped conductor 16, and each of the stubs 16B1 and 16B2 is a rectangular conductor pattern.
- the main portion 16B1 and the stubs 16B1 and 16B2 form a strip-shaped conductor 16B which is a single conductor pattern.
- Each of the stubs 16B1 and 16B2 is located at any position in the main portion 16B1 outside the waveguide region of the post-wall waveguide PW in a plan view, and is symmetrical with respect to the central axis of the strip-shaped main portion 16B1. They are provided at positions that are line-symmetrical as axes.
- the stubs 16B1 and 16B2 are rectangular, so that the long sides intersect the axis of symmetry (orthogonal in the present embodiment) and the short sides follow the axis of symmetry (the present embodiment). It is arranged so as to be parallel to each other.
- the shape and orientation of the stubs 16B1 and 16B2 when arranged are not limited to the mode of this modification.
- the stubs 16B1 and 16B2 may be open stubs with open ends as shown in FIG. 4, or may be short-circuited stubs called short stubs.
- the length L3 is designed to be shorter than the length L3 of the strip-shaped conductor 16. Therefore, when the mode converter 10B adopts a band-shaped conductor having no stub like the band-shaped conductor 16, the impedance matching becomes worse than that of the mode converter 10. As described above, when the impedance matching is poor, the impedance matching between the microstrip line MS and the post wall waveguide PW can be achieved by appropriately designing the stubs 16B1 and 16B2, and the mode converter 10B can be extended. Reflection loss can be suppressed.
- the mode converter 10C which is a third modification of the present invention and is a modification of the mode converter 10 shown in FIGS. 1 and 2, will be described with reference to FIG.
- FIG. 5 is a cross-sectional view of the mode converter 10C.
- the mode converter 10C is obtained by replacing the band-shaped conductor 16 included in the mode converter 10 with a band-shaped conductor 16C based on the mode converter 10.
- the strip-shaped conductor 16C includes a first conductor pattern 16C1 and a second conductor pattern 16C2.
- the first conductor pattern 16C1 and the second conductor pattern 16C2 are both strip-shaped conductor patterns.
- the first conductor pattern 16C1 is formed on one main surface of the substrate 15 (the main surface on the side far from the conductor layer 12), and the second conductor pattern 16C2 is the other of the substrate 15. It is formed on the main surface (the main surface on the side closer to the conductor layer 12).
- the first conductor pattern 16C1 and the second conductor pattern 16C2 are electrically connected by using a through via 16C3.
- the first conductor pattern 16C1 is a strip-shaped conductor pattern formed on one main surface of the substrate 15 like the strip-shaped conductor 16, and its tip is arranged outside the waveguide region of the post-wall waveguide PW. Has been done.
- the second conductor pattern 16C2 is a strip-shaped conductor pattern formed on the other main surface of the substrate 15.
- One tip of the second conductor pattern 16C2 is located outside the waveguide region of the post-wall waveguide PW and is arranged so as to overlap one tip of the first conductor pattern 16C1 in a plan view. There is.
- the strip-shaped portion of the second conductor pattern 16C2 crosses the short wall 14c and the opening 121 in a plan view, and the other tip of the second conductor pattern 16C2 is in the vicinity of the opening 121 in a plan view and is a waveguide region. Is located in.
- the length L3 is referred to as the length of the other tip of the second conductor pattern 16C2, which protrudes from the opening 121.
- the through via 16C3 is a region outside the waveguide region in a plan view, and is formed in a region where one tip of the first conductor pattern 16C1 and one tip of the second conductor pattern 16C2 overlap. It is composed of a cylindrical conductor or a cylindrical conductor (cylindrical shape in this embodiment). In this modification, the diameter of the through via 16C3 is 300 ⁇ m.
- the strip-shaped conductor 16 is realized by using a single conductor pattern formed only on one main surface of the substrate 15.
- each of the first conductor pattern 16C1 and the second conductor pattern 16C2 is formed on one main surface and the other main surface of the substrate 15, respectively. It may be conducted by using the through via 16C3.
- the first conductor pattern 16C1 forms a microstrip line with the conductor layer 17, and the second conductor pattern 16C2 forms a microstrip line with the conductor layer 12.
- the degree of coupling between the second conductor pattern 16C2 and the conductor layer 12 in the microstrip line MS can be adjusted by appropriately designing the thickness TS of the solder 18C.
- the strip-shaped conductor corresponding to the strip-shaped conductor 16 may be formed not on one main surface of the substrate 15 but on the other main surface. In this case, it is possible to prevent the strip-shaped conductor and the conductor layer 12 from being short-circuited by joining at least the region where the strip-shaped conductor and the conductor layer 12 face each other with the adhesive 18A having no conductivity. .. In this case, the strip conductor forms a microstrip line with the conductor layer 12.
- FIG. 6 is an exploded perspective view of the RF module 1. Note that in FIG. 6, the conductor layer 17 and the solder 18 are not shown.
- FIG. 7 is a cross-sectional view of the RF module 1 and is a cross-sectional view taken along a straight line that coincides with the central axes of the strip-shaped conductors 16a and 16b described later.
- the same reference numerals will be added to the members having the same functions as the members described in the first embodiment, and the description will not be repeated.
- a mode converter 10a, a mode converter 10b, an RFIC 21, and an antenna 22 are provided.
- Each of the mode converter 10a and the mode converter 10b is a specific example of the mode converter 10 shown in FIGS. 1 and 2, and is configured in the same manner as the mode converter 10.
- Each member constituting the mode converter 10a is designated by a reference numeral of each member constituting the mode converter 10 with an "a" at the end, and each member constituting the mode converter 10b is designated by a mode.
- a code with "b" added to the end of the code of each member constituting the converter 10 is added.
- the band-shaped conductor 16a is an aspect of the first band-shaped conductor
- the band-shaped conductor 16b is an aspect of the second band-shaped conductor.
- the RF module 1 forms (1) mode converters 10a and 10b that function as input / output ports in the vicinity of a pair of short walls of the post-wall waveguide PW, respectively, and (2) a band-shaped conductor of the mode converter 10a. It is obtained by mounting the RFIC 21 on the 16a and (3) mounting the antenna 22 on the strip conductor 16b of the mode converter 10b.
- the RF module 1 mounts the RFIC 21 and the antenna 22 on one main surface (the main surface far from the conductor layer 12) of the substrate 15, and mounts the RFIC 21 and the antenna 22 on one main surface side (the surface of the conductor layer 12) of the post wall waveguide PW. ) Is mounted on the other main surface side of the substrate 15.
- the band-shaped portion of the band-shaped conductor 16a is wider than the band-shaped portion, and a signal conductor pad for connecting to the signal terminal of the RFIC 21 is connected. Further, two ground conductor pads for connecting to the ground terminal of the RFIC 21 are formed on both sides of the signal conductor pad so as to sandwich the signal conductor pad. Each ground conductor pad is short-circuited with the conductor layer 12. In this way, in the vicinity of the other tip of the strip-shaped conductor 16a, terminals for mounting the RFIC 21 and having a GSG arrangement in which conductor pads are arranged in the order of ground-signal-ground are formed. Has been done. The RFIC 21 is mounted on the terminals of this GSG arrangement using bumps.
- the antenna 22 is mounted (connected) to the other tip of the strip conductor 16b.
- the aspect of the antenna 22 is not limited, and a radiating element can be appropriately selected from the antennas that can be configured by using the conductor pattern. Therefore, the specific shape of the antenna 22 is not shown in FIGS. 6 and 7.
- a patch antenna having a plurality of radiating elements, each of which is composed of a conductor pattern is suitable.
- the strip-shaped conductor 16b and the antenna 22 are realized as a single conductor pattern.
- the strip conductor 16b functions as a feeder line.
- the RF module 1 is provided with the opening 121a, which is the first opening, in the vicinity of the first short wall, which is one short wall of the conductor layer 12, and the other short wall of the conductor layer 12.
- the other of the conductor layer 12 and the substrate 15 in a state where the dielectric substrate 15 on which the antenna having 16b as the feeding line is formed, the conductor layer 12, and the other main surface of the substrate 15 are parallel to or substantially parallel to each other.
- Solder 18 which is a joining member for joining the conductor layer 17 formed on the main surface of the substrate 15 and one of the terminals are connected to the other tip of the strip-shaped conductor 16a.
- the RFIC 21 is connected to the signal conductor pad.
- a part of the opening 121a and a part of the band-shaped conductor 16a are overlapped, and a part of the opening 121b and the band-shaped conductor 16b are overlapped. It overlaps with a part of.
- the RF module 1 functions as any of a transmission module, a reception module, and a transmission / reception module according to the functions of the RFIC 21 and the antenna 22.
- one aspect of the present invention also includes a mobile terminal provided with the RF module 1.
- the microstrip lines MSa and MSb, the mode converters 10a and 10b, and the post-wall waveguide PW provided in the RF module 1 can all suppress transmission loss by using the 28 GHz band as the operating band. Therefore, it can be suitably used as an RF module for 5G.
- the configuration of the mode converter 10 is adopted as the two mode converters included in the RF module 1.
- the configuration of the two mode converters included in the RF module 1 is not limited to the configuration of the mode converter 10, and may be the configuration described in each modification, or the first configuration.
- the configuration may be a combination of the configurations described in the embodiment and each modification as appropriate.
- FIG. 4 is the first embodiment of the present invention
- 8 and 9 are cross-sectional views and plan views of the mode converter 10B showing the results of simulating the conversion characteristics of the mode converter 10B of this embodiment, respectively.
- FIG. 10 is a graph showing the reflection characteristics and transmission characteristics of the mode converter 10B of this embodiment and the mode converter of the reference example.
- FIG. 11 is an enlarged graph showing the transmission characteristics of the mode converter 10B of this embodiment and the mode converter of the reference example.
- the reflection characteristic means the frequency dependence of the S parameter S (1,1)
- the transmission characteristic means the frequency dependence of the S parameter S (2,1). This point is the same for each embodiment described later.
- the mode converter 10B of this embodiment adopts the following design parameters with the aim of realizing an operating band including the 28 GHz band in the mode converter 10B shown in FIG.
- the operating band is 27 GHz or more and 29.5 GHz or less
- the S parameter S (1,1) is lower than ⁇ 20 dB
- the S parameter S (2,1) is higher than ⁇ 0.5 dB. Is considered to be good performance.
- This point is the same for each embodiment described later, and for each embodiment having an operating band of 27 GHz or more and 29.5 GHz or less.
- the alternate long and short dash lines parallel to the y-axis indicate 27 GHz and 29.5 GHz.
- the alternate long and short dash line parallel to the x-axis indicates ⁇ 20 dB
- the alternate long and short dash line parallel to the x-axis indicates ⁇ 0.5 dB
- the quasi-TEM mode in the microstrip line MS and the TE mode in the post-wall waveguide PW are satisfactorily converted through the opening 121. Do you get it.
- the reflection characteristic exceeds -20 dB in the entire band of 24 GHz or more and 32 GHz or less, and the transmission characteristic falls below -0.5 GHz in the entire band of 24 GHz or more and 32 GHz or less. That is, it was found that the reference example did not have good performance in the operating band of 27 GHz or more and 29.5 GHz or less.
- the mode converter 10B of this embodiment in which the stubs 16B1 and 16B2 are added to the strip-shaped conductor 16B has an S parameter S (1,1) in a band of 25.2 GHz or more and 30.4 GHz or less. It was found that the S-parameter S (2,1) exceeded ⁇ 0.5 dB in the band of 26.3 GHz or more and 32 GHz or less, which was below ⁇ 20 dB and as shown in FIG. That is, it was found that the mode converter 10B of this embodiment has good performance in an operating band of 27 GHz or more and 29.5 GHz or less.
- FIG. 12 is a graph showing the reflection characteristics and transmission characteristics of the mode converter 10 of the second embodiment and the reflection characteristics and transmission characteristics of the mode converter 10 of the third embodiment.
- FIG. 13 is an enlarged graph showing the transmission characteristics of the mode converter 10 of the second embodiment and the transmission characteristics of the mode converter 10 of the third embodiment.
- the mode converter 10 of the second embodiment adopted the following design parameters.
- the reflection characteristic may be lower than ⁇ 20 dB in the entire range of 24 GHz or more and 32 GHz or less, and the transmission characteristic may be higher than ⁇ 0.5 GHz in the entire range of 24 GHz or more and 32 GHz or less. Do you get it. That is, it was found that the second embodiment had good performance in the operating band of 27 GHz or more and 29.5 GHz or less.
- the reflection characteristic may be lower than ⁇ 20 dB in the entire band of 24 GHz or more and 32 GHz or less, and the transmission characteristic may be higher than ⁇ 0.5 GHz in the entire band of 24 GHz or more and 32 GHz or less. Do you get it. That is, it was found that the third embodiment had good performance in the operating band of 27 GHz or more and 29.5 GHz or less.
- FIG. 14 is a graph showing the reflection characteristics of each mode converter 10 of the fourth embodiment group.
- FIG. 15 is a graph showing the transmission characteristics of each mode converter 10 of the fourth embodiment group.
- the S-parameter S (1,1) is less than -20 dB in the band of 27 GHz or more and 29.5 GHz or less because the thickness TS is 150 ⁇ m or more and 225 ⁇ m or less. It was a vessel 10.
- the S parameter S (2, 1) exceeds ⁇ 0.5 GHz when the TS is 100 ⁇ m or more and 250 ⁇ m or less. It was a mode converter 10.
- the mode converter 10 has good performance in an operating band of 27 GHz or more and 29.5 GHz or less when the thickness TS is 150 ⁇ m or more and 225 ⁇ m or less. It was.
- FIGS. 19 and 20 are graph showing the reflection characteristic and the transmission characteristic of the mode converter 10 of this embodiment, respectively.
- the mode converter 10 of this embodiment adopts the following design parameters in the mode converter 10 shown in FIGS. 1 and 2 with the aim of setting a band called the E band of 71 GHz or more and 86 GHz or less as an operating band. .. Specifically, in the mode converter 10 of this embodiment, 59.62 GHz was adopted as the cutoff frequency. The in-tube wavelength at 77.5 GHz, which is 1.5 times the cutoff frequency, is 3.1 mm.
- the E band is used as the operating band
- the S parameter S (1,1) is lower than ⁇ 20 dB
- the S parameter S (2,1) is ⁇ 0.5 dB. If it exceeds, it is regarded as good performance.
- the alternate long and short dash lines parallel to the y-axis indicate 71 GHz and 86 GHz.
- the alternate long and short dash line parallel to the x-axis indicates ⁇ 20 dB
- the alternate long and short dash line parallel to the x-axis indicates ⁇ 0.5 dB.
- the S parameter S (1,1) is lower than ⁇ 20 dB in the band of 69.8 GHz or more and 88.2 GHz or less, and as shown in FIG. 20, 68. It was found that the S-parameter S (2,1) exceeds -0.5 dB in the band of .4 GHz or more and 90 GHz or less. That is, it was found that the mode converter 10B of this embodiment has good performance in the E band, which is the operating band.
- FIG. 21 is a graph showing the reflection characteristics of the mode converter 10 of the sixth embodiment group.
- FIG. 22 is a graph showing the transmission characteristics of the mode converter 10 of the sixth embodiment group.
- the mode converter 10 of the present embodiment group adopts the following design parameters with the aim of realizing an operating band including the 28 GHz band in the mode converter 10 shown in FIGS. 1 and 2. Specifically, in the mode converter 10 of this embodiment, 19.68 GHz was adopted as the cutoff frequency. The in-tube wavelength at 28 GHz, which is 1.42 times the cutoff frequency, is 7.7 mm.
- the alternate long and short dash line parallel to the y-axis indicates 27 GHz and 29.5 GHz. Further, among the alternate long and short dash lines shown in FIG. 21, the alternate long and short dash line parallel to the x-axis indicates ⁇ 20 dB.
- the mode converter 10 of this example group adopted the following design parameters.
- Each of the mode converters 10 of the sixth embodiment group is obtained by changing the thickness T15 of the substrate 15 within the range of 50 ⁇ m or more and 300 ⁇ m or less. Further, as the thickness T15 is changed within the above range, the width W3 of the strip-shaped conductor 16 is changed so as to be twice the thickness T15. That is, in the mode converter 10 of the sixth embodiment group, the width W3 is changed within the range of 100 ⁇ m or more and 600 ⁇ m or less. By determining the width W3 so as to be twice the thickness T15 in this way, the input impedance of the microstrip line MS can be made approximately 50 ⁇ .
- each of the mode converters 10 of the present embodiment has an S parameter S (1,1) lower than -20 dB in an operating band of 27 GHz or more and 29.5 GHz or less, as shown in FIG. 22. It was found that the S parameter S (2,1) exceeds ⁇ 0.5 dB in the operating band. That is, it was found that each of the mode converters 10 of the present example group had good performance in the above operating band.
- FIG. 23 is a cross-sectional view of the mode converter 10D.
- the distance D2 and the distance D3 may be different, as in the mode converter 10D. Further, in this modification, the case where the distance D2 and the distance D3 satisfy D3> D2 is described. However, in one aspect of the mode converter 10D, the distance D2 and the distance D3 may be configured to satisfy D3 ⁇ D2.
- the mode converter 10D which is the seventh embodiment group of the present invention and is the example group of the fourth modification shown in FIG. 23, will be described with reference to FIG. 24.
- FIG. 24 is a graph showing the reflection characteristics of the mode converter 10D of the present embodiment.
- the mode converter 10D of the present embodiment is designed with the aim of using the E band as the operating band.
- the difference ⁇ D the narrower the bandwidth of the operating band.
- the difference ⁇ D is preferably small in order to realize an operating band having as wide a bandwidth as possible.
- FIG. 25 is a graph showing the reflection characteristics of the mode converter 10D of the present embodiment.
- the mode converter 10D of the present embodiment is designed with the aim of realizing an operating band including the 28 GHz band.
- the difference ⁇ D is preferably small in order to realize an operating band having as wide a bandwidth as possible.
- FIG. 26 is a graph showing the reflection characteristics of the mode converter 10 of the ninth embodiment.
- FIG. 27 is a graph showing the transmission characteristics of the mode converter 10 of the ninth embodiment.
- the mode converter 10 of the present embodiment is the mode converter 10 shown in FIGS. 1 and 2 with the aim of realizing an operating band including the 32 GHz band and having as wide a bandwidth as possible. Design parameters were adopted. Specifically, in the mode converter 10 of this embodiment, 21.3 GHz was adopted as the cutoff frequency. The in-tube wavelength at 32 GHz, which is 1.5 times the cutoff frequency, is 9.38 mm.
- -Conductor layers 12, 13 Made of copper (thickness 10 ⁇ m)
- -Conductor layer 17 Made of copper (thickness 20 ⁇ m)
- each of the mode converters 10 of this embodiment has an S parameter S (1,1) lower than ⁇ 20 dB in the band of 21.5 GHz or more and 44 GHz or less, and 22 GHz as shown in FIG. 27. It was found that the S parameter S (2,1) exceeds ⁇ 0.5 dB in the band of 44.8 GHz or less. That is, it was found that each of the mode converters 10 of the present example group had good performance in the band of 22 GHz or more and 44 GHz or less.
- FIG. 28 is a plan view of the mode converter 10E.
- the mode converter 10E is obtained by replacing the band-shaped conductor 16 with the band-shaped conductor 16E based on the mode converter 10.
- the strip-shaped conductor 16E is a rectangular conductor pattern formed in the same manner as the strip-shaped conductor 16.
- the strip-shaped conductor 16E is different in position on one main surface of the substrate 15 as compared with the strip-shaped conductor 16.
- the strip conductor 16 is a straight line parallel to the longitudinal direction of the post wall waveguide PW, and has a width W1 of the post wall waveguide PW. It is arranged so that its central axis coincides with the BB'line, which is a straight line that is a set of equally divided points.
- the strip-shaped conductor 16E is arranged so as to be displaced in parallel by the gap ⁇ G from the BB'line when one main surface of the substrate 15 is viewed in a plan view.
- a straight line corresponding to the central axis of the strip-shaped conductor 16E is shown by the CC'line.
- the central axis of the strip-shaped conductor 16E can be provided so as to be offset from the BB'line, so that the mode converter 10E can increase the degree of freedom when arranging the strip-shaped conductor 16E.
- FIG. 29 is a graph showing the reflection characteristics of each mode converter 10E of the tenth embodiment group.
- FIG. 30 is a graph showing the transmission characteristics of each mode converter 10E of the tenth embodiment group.
- the mode converter 10E of the present embodiment has adopted the following design parameters with the aim of realizing an operating band including the 28 GHz band in the mode converter 10E shown in FIG. 28.
- Each of the mode converters 10E of the present example group is obtained by changing the gap ⁇ G within a range of 0 ⁇ m or more and 900 ⁇ m or less.
- the S parameter S (1,1) is performed in the operating band of 27 GHz or more and 29.5 GHz or less. Is less than -20 dB, and (2) the gap ⁇ G is 600 ⁇ m, the S-parameter S (1,1) is more than -20 dB in a part of the operating band, and (3) the gap ⁇ G is 700 ⁇ m or more and 900 ⁇ m or less. In this case, it was found that the S parameter S (1,1) exceeds ⁇ 20 dB in the above operating band.
- the S parameter S (2, 1) is ⁇ 0. It was found that when the value exceeds 5 dB and (5) the gap ⁇ G is 900 ⁇ m, the S parameter S (2,1) is less than ⁇ 0.5 dB in the above operating band.
- the mode converter 10E of the present embodiment adopts a value included in the gap ⁇ G within the range of 0 ⁇ m or more and 500 ⁇ m or less in order to show good performance in the above operating band. Do you get it.
- FIG. 31 is a plan view of the mode converter 10F.
- the mode converter 10F is obtained by replacing the opening 121 with the opening 121F based on the mode converter 10E.
- the strip-shaped conductor 16F included in the mode converter 10F has the same configuration as the strip-shaped conductor 16E included in the mode converter 10E.
- the opening 121F is an opening provided in the conductor layer 12 constituting one wide wall of the post wall waveguide PW like the opening 121, but its shape is different from that of the opening 121. Specifically, when one main surface of the substrate 15 is viewed in a plan view, the shape of the opening 121 is a rectangular shape in which the long side is parallel to the short wall 14c and the short side is parallel to the narrow walls 14a and 14b. Is. On the other hand, the shape of the opening 121F is an isosceles trapezoidal shape in which the portion corresponding to each of the pair of short sides in the opening 121 is a pair of bottoms (upper base and lower bottom) in this modification. The shape of the opening 121F may be at least trapezoidal, and is preferably an isosceles trapezoidal shape.
- the minimum value of the width (length along the short side) of the opening 121F (that is, the length of the upper base in the arrangement shown in FIG. 31) is referred to as the width W2a, and the maximum value of the width of the opening 121F (that is, the figure).
- the length of the lower base in the arrangement shown in 31) is called the width W2b.
- the central axis of the strip conductor 16F are arranged.
- the area on the side where (which can be said to be the CC'line) is arranged (the lower area in the arrangement shown in FIG. 31) is referred to as the first area, and (2) the central axis of the strip conductor 16F is arranged.
- the region on the non-existing side (the upper region in the arrangement shown in FIG. 31) is referred to as a second region.
- the opening 121F is provided in the conductor layer 12 so that the longer bottom of the pair of bottoms is located in the first region and the shorter bottom is located in the second region.
- the distance from the central axis of the strip-shaped conductor 16F to the upper base exceeds the distance from the central axis to the lower base.
- the upper bottom is the shortest of the pair of bottoms
- the lower bottom is the longest of the pair of bottoms.
- the central axis of the strip conductor 16E When the central axis of the strip conductor 16E is offset from the BB'line as in the mode converter 10E shown in FIG. 28, it is compared with the case where the central axis coincides with the BB'line. Therefore, the reflection characteristics and the transmission characteristics may be deteriorated.
- the central axis of the strip-shaped conductor 16F In the mode converter 10F, the central axis of the strip-shaped conductor 16F is provided so as to be offset from the BB'line, and an isosceles trapezoidal opening 121F is adopted. Therefore, it is possible to suppress the deterioration of the reflection characteristics and the transmission characteristics that may occur when the central axis of the strip-shaped conductor 16F is provided so as to be offset from the BB'line. That is, the mode converter 10F can suppress deterioration of the reflection characteristic and the transmission characteristic while increasing the degree of freedom when arranging the strip-shaped conductor 16F.
- FIG. 32 is a graph showing the reflection characteristics of each mode converter 10F of the eleventh example group.
- FIG. 33 is a graph showing the transmission characteristics of each mode converter 10F of the eleventh example group.
- the reflection characteristics were improved by reducing the width W2a from 400 ⁇ m to 50 ⁇ m. More specifically, in the mode converter 10F of the present embodiment, (1) when the width W2a is 50 ⁇ m or more and 300 ⁇ m or less, the S parameter S (1,1) is set in the operating band of 27 GHz or more and 29.5 GHz or less. It was found that when the width W2a was 350 ⁇ m or more and 400 ⁇ m or less, the S parameter S (1,1) exceeded -20 dB in a part of the operating band.
- the transmission characteristics were improved by reducing the width W2a from 400 ⁇ m to 50 ⁇ m.
- the S parameter S (2,1) exceeds ⁇ 0.5 dB in the above operating band.
- the mode converter 10F of the present example group adopts a value included in the range of 50 ⁇ m or more and 300 ⁇ m or less as the width W2a in order to show good performance in the above operating band. Do you get it.
- FIG. 34 is a graph showing the reflection characteristics of each mode converter 10F of the twelfth example group.
- FIG. 35 is a graph showing the transmission characteristics of each mode converter 10F of the twelfth example group.
- the mode converter 10F of the present embodiment adopts a value included in the width W2a within a range of 50 ⁇ m or more and less than 400 ⁇ m in order to show good performance in the above operating band. Do you get it.
- FIG. 36 is a plan view of the RF module 1F.
- the RF module 1F includes a mode converter 10F, a mode converter 10Fb, and an RFIC 21F, which are a pair of mode converters.
- the RFIC21F is one main surface of the substrate 15F constituting the microstrip line MSFa of the mode converter 10F and the microstrip line MSFb of the mode converter 10Fb (post-wall waveguide PWFa of the mode converter 10F and the mode converter 10Fb). It is mounted on the main surface on the side far from the post-wall waveguide PWFb).
- RFIC21F has an output port and an input port.
- the output port is composed of a signal terminal E1a and ground terminals E2a and E3a arranged so as to sandwich the signal terminal E1a.
- the input port is composed of a signal terminal E1b and ground terminals E2b and E3b arranged so as to sandwich the signal terminal E1b. That is, each of the output port and the input port is a GSG-arranged port in which terminals are arranged in the order of ground-signal-ground.
- Each of the mode converter 10F and the mode converter 10Fb is a specific example of the mode converter 10F shown in FIG. 31, and is configured in the same manner as the mode converter 10F. Therefore, in the present embodiment, with respect to the mode converters 10Fa and 10Fb, each member only shows the correspondence between each member constituting the mode converters 10Fa and 10Fb and each member constituting the mode converter 10F. The description of is omitted.
- each of the mode converters 10Fa and 10Fb includes post-wall waveguides PWFa and PWFb and microstrip lines MSFa and MSFb, respectively.
- the post-wall waveguide PWFa and the post-wall waveguide PWFb are arranged in parallel and close to each other in the extending direction.
- the post-wall waveguide PWFa and the post-wall waveguide PWFb are electromagnetically coupled in a region not shown in FIG. 36 to form one post-wall waveguide PWF. Therefore, the post-wall waveguide PWFa is one end region of the post-wall waveguide PWF, and the post-wall waveguide PWFb is the other end region of the post-wall waveguide PWF.
- the shape of the post wall waveguide PWF in a plan view is not particularly limited and can be appropriately determined.
- the post-wall waveguide PWFa includes a short wall 14ac, which is one of the pair of short walls constituting the post-wall waveguide PWF.
- the post-wall waveguide PWFb includes a short wall 14bc which is the other short wall of the pair of short walls constituting the post-wall waveguide PWF.
- an opening 121F (an example of the first opening) is provided in the vicinity of the short wall 14ac of the conductor layer 12F constituting one of the wide walls.
- an opening 121Fb (an example of a second opening) is provided in the vicinity of the short wall 14bc of the conductor layer 12F constituting one of the wide walls.
- the openings 121Fa and 121Fb correspond to the openings 121F in the mode converter 10F.
- the openings 121Fa and 121Fb have an isosceles trapezoidal shape.
- the openings 121F and 121Fb may be trapezoidal.
- the opening 121F has a pair of bottoms forming an equilateral trapezoidal shape parallel to each of the narrow wall 14Fa and the narrow wall 14Fab constituting the post-wall waveguide PWFa.
- the distance from the central axis of the strip-shaped conductor 16F to the bottom having the shortest length among the pair of bottoms of the opening 121F is the longest of the pair of bottoms of the opening 121F from the central axis of the strip-shaped conductor 16F.
- the opening 121Fb has a pair of bottoms forming an equilateral trapezoidal shape parallel to each of the narrow wall 14Fba and the narrow wall 14Fab constituting the post-wall waveguide PWFb.
- the distance from the central axis of the strip conductor 16Fb to the shortest bottom of the pair of bottoms of the opening 121Fb is the length of the pair of bottoms of the opening 121Fb from the central axis of the strip conductor 16Fb.
- the long bottom of the pair of openings 121Fb is on the narrow wall 14Fab side
- the long bottom of the pair of openings 121Fb is on the narrow wall 14Fab side.
- solder is an example of a joining member that short-circuits and joins the conductor layer 12F and the conductor layer 17F, and corresponds to the solder 18 provided in the mode converter 10.
- the post-wall waveguide PWF has a cutoff frequency that depends on the shape and size of the waveguide region. Therefore, the post-wall waveguide PWF functions as a high-pass filter. Further, when a plurality of electromagnetically coupled resonators are provided inside the waveguide region, the post-wall waveguide PWF functions as a bandpass filter. Therefore, the RF module 1F performs (1) a predetermined filtering process on the high frequency supplied from the output port of the RFIC21F to the post-wall waveguide PWF via the microstrip line MSFa, and then (2) the filtering process. High frequencies can be supplied from the post-wall waveguide PWF to the input port of the RFIC 21F via the microstrip line MSFb.
- the post wall waveguide PWF including the post wall waveguides PWFa and PWFb includes a substrate 11F and conductor layers 12F and 13F.
- the substrate 11F and the conductor layers 12F and 13F are common members in the post wall waveguide PWF including the post wall waveguides PWFa and PWFb.
- each of the post wall waveguides PWFa and PWFb includes post walls 14Fa and 14Fb, respectively.
- the substrate 11F corresponds to the substrate 11 of the mode converter 10
- the conductor layers 12F and 13F correspond to the conductor layers 12 and 13 of the mode converter 10
- the post walls 14Fa and 14Fb correspond to the post walls of the mode converter 10.
- the conductor layer 13F is not shown in FIG. 36.
- each of the post-wall waveguides PWFa and PWFb is arranged so that the directions in which the respective waveguide regions are extended are parallel and the intervals between them are as narrow as possible. Therefore, each of the post wall waveguides PWFa and PWFb shares a narrow wall 14Fab that separates the post wall waveguides PWFa and PWFb among the narrow walls constituting the post walls 14Fa and 14Fb.
- the narrow wall 14Faa and the narrow wall 14Fab forming the post wall 14Fa together with the short wall 14Fac are parallel to each other.
- the narrow wall 14Fba and the narrow wall 14Fab forming the post wall 14Fb together with the short wall 14Fbc are parallel to each other.
- the microstrip lines MSFa and MSFb include a substrate 15F and a conductor layer 17F.
- the substrate 15F and the conductor layer 17F are common members in the microstrip lines MSFa and MSFb.
- Each of the microstrip lines MSFa and MSFb includes strip conductors 16Fa and 16Fb, respectively.
- the substrate 15F corresponds to the substrate 15 of the mode converter 10
- the conductor layer 17F corresponds to the conductor layer 17 of the mode converter 10
- the strip conductors 16Fa and 16Fb correspond to the strip conductor 16 of the mode converter 10.
- each of the band-shaped conductors 16Fa and 16Fb is an example of a third band-shaped conductor and a fourth band-shaped conductor, respectively.
- the mode in the microstrip line MSFa and the mode in the post-wall waveguide PWFa are defined via a region in which a part of the strip conductor 16F and a part of the opening 121F are overlapped in a plan view.
- the mode in the microstrip line MSFb and the mode in the post wall waveguide PWFb are regions in which a part of the strip conductor 16Fb and a part of the opening 121Fb are overlapped in a plan view. Combined through. That is, the mode converters 10Fa and 10Fb can convert these modes through openings 121Fa and 121Fb that do not come into direct contact with the strip conductors 16Fa and 16Fb without using an excitation pin.
- each of the mode converters 10Fa and 10Fb is configured to be mirror-symmetrical with the plane including the central axis of each through via forming the narrow wall 14Fab as the plane of symmetry.
- the BB'line shown in FIG. 36 is a straight line that is a set of points that bisect the width of the post-wall waveguide PWFa, like the BB'line shown in FIG. 31, and is shown in FIG.
- the CC'line is a straight line that coincides with the central axis of the strip conductor 16F, like the CC'line shown in FIG.
- the D-D'line shown in FIG. 36 is a straight line that is a set of points that bisect the width of the post-wall waveguide PWFb
- the EE line shown in FIG. 36 is the center of the strip conductor 16Fb. It is a straight line that coincides with the axis.
- each of the strip conductors 16Fa and 16Fb has a gap in the direction in which the distance between the central axes approaches each other with reference to the position of the BB'line and the position of the DD'line, respectively.
- Only ⁇ Ga and ⁇ Gb are arranged in parallel. That is, when the post-wall waveguide PWF is viewed in a plan view, the central axis of the strip conductor 16Fa and the central axis of the strip conductor 16Fb are both located between the BB'line and the DD' line.
- ⁇ Ga ⁇ Gb. Therefore, in the following, the gaps ⁇ Ga and ⁇ Gb are also simply referred to as gaps ⁇ G.
- the tip portion close to the opening 121F and protruding from the opening 121F is referred to as one tip portion, and the tip portion on the side far from the opening 121F is referred to as the other tip portion.
- the other tip of the strip conductor 16F functions as a signal conductor pad for connecting to the signal terminal E1a of the RFIC 21F.
- Ground conductor pads G2a and G3a for connecting to each of the ground terminals E2a and E3a of the RFIC21F are formed on both sides of the other tip of the strip conductor 16F so as to sandwich the other tip. ..
- Each of the ground conductor pads G2a and G3a is short-circuited with the conductor layer 12F.
- the GSG arrangement is a terminal for connecting the output port of the RFIC21F to the other tip and the vicinity of the strip-shaped conductor 16F, and the conductor pads are arranged in the order of ground-signal-ground. Terminals are formed.
- a signal terminal E1a is connected to the other tip of the strip conductor 16F using bumps B1a, and bumps B2a and B3a are used to connect the ground conductor pads G2a and G3a to the ground terminals E2a and E3a, respectively. Each is connected.
- a terminal for connecting the input port of the RFIC 21F which is a GSG-arranged terminal, is formed at the other tip portion and the vicinity of the strip-shaped conductor 16Fb.
- the terminal of the GSG arrangement is composed of the other tip portion of the strip-shaped conductor 16Fb and the ground conductor pads G2b and G3b arranged so as to sandwich the other tip portion.
- a signal terminal E1b is connected to the other tip of the strip conductor 16Fb using a bump B1b, and bumps B2b and B3b are used to connect to the ground conductor pads G2b and G3b, respectively. Each is connected.
- the strip conductor 16F is provided so that the central axis of the strip conductor 16F coincides with the BB'line, and the central axis of the strip conductor 16Fb coincides with the DD'line.
- the distance between the central axes of the band-shaped conductors 16Fa and 16Fb can be narrowed by 2 ⁇ G. Therefore, the distance between the signal terminal E1a constituting the output port and the signal terminal E1b forming the input port is the distance between the BB'line and the DD' line (that is, the post-wall waveguides PWFa and PWFb. Even when the RFIC 21F narrower than the width) is mounted on the microstrip lines MSFa and MSFb, it can be easily mounted.
- FIG. 37 is a cross-sectional view of the mode converter 10G.
- the mode converter 10G is obtained by adding a connector 19G based on the mode converter 10.
- the connector 19G may be any connector that can transmit high frequencies included in a desired operating band, and can be appropriately selected from, for example, commercially available connectors. Therefore, in the mode converter 10G, the internal structure of the connector 19G is not limited. Therefore, in FIG. 37, the illustration of the internal structure of the connector 19G is omitted. In this modification, as the connector 19G, the jack-side connector among the jack-side connector and the plug-side connector that form a pair of coaxial connectors is adopted.
- the connector 19G is fixed to the substrate 15G at the end of the microstrip line MS, which is opposite to the end coupled to the post wall waveguide PW via the opening 121.
- the connector 19G which is a coaxial connector, has a central conductor and an outer conductor.
- the central conductor is electrically connected to the strip conductor 16 of the microstrip line MS.
- the outer conductor also called a shell, is electrically connected to the conductor layer 17 of the microstrip line MS.
- the mode converter 10G configured in this way can convert between the mode coupled to the connector 19G from the outside and the mode in the post wall waveguide PW via the microstrip line MS. On top of that, the mode converter 10G does not use the excitation pin provided in the conventional mode converter, so that the mode converter 10G has the same effect as the mode converter 10.
- the mode converter according to the first aspect of the present invention includes a post-wall waveguide having an opening in one wide wall and at least one main surface and the other main surface.
- a post-wall waveguide When a post-wall waveguide is viewed in a plan view, comprising a dielectric substrate on which a strip-shaped conductor is formed and a joining member that directly or indirectly joins one of the wide walls and the substrate. , At least a part of the opening and at least a part of the strip conductor are overlapped with each other.
- the mode in the post wall waveguide and the band-shaped conductor formed on the substrate different from the post wall waveguide are signaled through the opening provided in one wide wall of the post wall waveguide. It can be combined with the mode in the line. That is, in this mode converter, the mode in the post-wall waveguide and the strip-shaped conductor formed on the substrate different from the post-wall waveguide are used as the signal line without using the excitation pin provided in the conventional mode converter. It is possible to convert the mode in the line to be used. Therefore, this mode converter is less likely to cause transmission defects due to changes in the environmental temperature than conventional mode converters.
- the strip-shaped conductor constitutes a signal line of a TEM line or a quasi-TEM line.
- This mode converter is suitable as a mode converter that converts a mode on a TEM line or a quasi-TEM line and a mode on a post-wall waveguide in this way.
- the TEM line or the quasi-TEM line is a microstrip line, a strip line, a coplanar line, a coplanar line with a gland, and two parallel lines. One of them.
- the mode converter converts a mode in any one of a microstrip line, a strip line, a coplanar line, a coplanar line with a ground, and two parallel lines, and a mode in a post-wall waveguide. Suitable as a vessel.
- the mode converter according to the fourth aspect of the present invention superimposes on the opening of the strip-shaped conductor when the post-wall waveguide is viewed in a plan view in any of the first to third aspects.
- a stub is formed in the vicinity of the region.
- the post-wall waveguide functions as any of a filter, a directional coupler, a diplexer, and an antenna. To do.
- the mode converter according to the sixth aspect of the present invention has a pair of narrow spaces constituting the post-wall waveguide when the post-wall waveguide is viewed in a plan view.
- the walls are parallel to each other, and the straight line, which is a set of points that bisect the width of the post-wall waveguide, is deviated from the central axis of the strip-shaped conductor.
- the central axis of the strip-shaped conductor can be provided so as to be offset from a straight line which is a set of points that bisect the width of the post-wall waveguide. Therefore, this mode converter can increase the degree of freedom when arranging the strip-shaped conductor.
- the opening is trapezoidal, and when the post wall waveguide is viewed in a plan view, the opening has the trapezoidal shape.
- the distance from the central axis to the shortest of the pair of bottoms is such that the pair of bottoms to be formed is parallel to each of the pair of narrow walls, and the distance from the central axis to the pair of bottoms. It is arranged so that the length exceeds the distance to the long bottom.
- this mode converter can suppress deterioration of reflection characteristics and transmission characteristics while increasing the degree of freedom when arranging strip-shaped conductors.
- the mode converter according to the eighth aspect of the present invention is a coaxial connector having a central conductor electrically connected to the strip-shaped conductor in any one of the first to seventh aspects, and at least the above. It also has a coaxial connector fixed to the board.
- the mode coupled to the coaxial connector from the outside and the mode in the post-wall waveguide can be converted via the microstrip line. Moreover, since the present mode converter does not use the excitation pin provided in the conventional mode converter, the same effect as that of the mode converter according to the first aspect is obtained.
- the RF module according to the ninth aspect of the present invention is provided with a first opening in the vicinity of the first short wall of one wide wall, and the one wide wall is provided.
- a post-wall waveguide provided with a second opening in the vicinity of the second short wall of the above, and a first strip-shaped conductor is formed on at least one of one main surface and the other main surface, and the above one
- a dielectric material in which a second strip-shaped conductor is formed on at least one of the main surface and the other main surface, and an antenna is formed on at least one of the one main surface and the other main surface.
- the antenna is electrically connected to the second strip-shaped conductor, and when the post-wall waveguide is viewed in a plan view, the antenna is provided with at least a part of the first opening. At least a part of the first strip-shaped conductor is overlapped, and at least a part of the second opening is overlapped with at least a part of the second strip-shaped conductor.
- the RF module like the mode converter according to the first aspect of the present invention, does not use the excitation pin provided in the conventional mode converter, and the mode in the post-wall waveguide. And the mode in the line in which the band-shaped conductor to which the RFIC is connected as the signal line can be converted, and the mode in the post-wall waveguide and the mode in the antenna can be converted. Therefore, this RF module is less likely to cause transmission defects due to changes in environmental temperature than conventional RF modules.
- the mobile terminal includes the RF module according to the ninth aspect as at least one of a transmission module, a reception module, and a transmission / reception module.
- the mobile terminal has the same effect as the RF module according to the sixth aspect of the present invention.
- the RF module according to the eleventh aspect of the present invention is a post-wall waveguide in which a waveguide region is formed by a pair of wide walls, a narrow wall, and a pair of short walls. Therefore, (1) a first opening is provided in one end region including one short wall of one wide wall, and (2) the other short wall of the above one wide wall is included.
- a post-wall waveguide in which a second opening is provided in the other end region and (3) the one end region and the other end region are arranged in parallel and close to each other.
- a dielectric substrate in which a third strip conductor and a fourth strip conductor are formed on at least one of one main surface and the other main surface, and the one wide wall and the substrate are directly or indirectly connected to each other.
- the joining member to be joined and the output terminal and the input terminal, which are mounted on one main surface of the substrate, are electrically connected to the third strip-shaped conductor and the fourth strip-shaped conductor, respectively.
- RFIC is provided and the post-wall waveguide is viewed in a plan view, at least a part of the first opening and at least a part of the third strip-shaped conductor are overlapped and described above. At least a part of the second opening and at least a part of the fourth band conductor are overlapped with each other.
- the output terminal of the RFIC and one end region of the post wall waveguide can be electromagnetically coupled via a third strip conductor, and the other end of the post wall waveguide can be coupled.
- the region and the input terminal of the RFIC can be electromagnetically coupled via a fourth strip conductor. Therefore, this RF module can supply the mode supplied from the output terminal of the RFIC to the input terminal of the RFIC after passing through the post-wall waveguide.
- this RF module uses the mode in the post-wall waveguide and the strip-shaped conductor formed on a substrate different from the post-wall waveguide as the signal line without using the excitation pin provided in the conventional mode converter. It can be combined with the mode on the track. Therefore, this RF module has the same effect as the mode converter according to the first aspect.
- the RF module according to the twelfth aspect of the present invention is configured such that the post-wall waveguide functions as a filter in the eleventh aspect.
- the RF module according to the thirteenth aspect of the present invention is the narrow wall constituting the one end region when the post-wall waveguide is viewed in a plan view in the eleventh aspect or the twelfth aspect.
- the central axis of the strip-shaped conductor is deviated from the straight line, which is a set of points that bisect the width of the other end region, and the central axis of the fourth strip-shaped conductor is deviated. ..
- the central axis of the third strip conductor can be provided so as to be offset from a straight line which is a set of points that bisect the width of the first end region, and the fourth strip conductor
- the central axis of is offset from a straight line, which is a set of points that bisect the width of the second end region. Therefore, this RF module can increase the degree of freedom when arranging the third strip-shaped conductor and the fourth strip-shaped conductor according to the distance between the terminals of the output terminal and the input terminal of the RFIC.
- the first opening and the second opening are trapezoidal, and when the post-wall waveguide is viewed in a plan view, the RF module has a trapezoidal shape.
- the first opening is such that the pair of bottoms forming the trapezoidal shape are parallel to the narrow walls forming the one end region, and the third strip-shaped conductor is described.
- the distance from the central axis to the shortest length of the pair of bottoms of the first opening is the length of the pair of bottoms of the first opening from the central axis of the third strip conductor. Is arranged so that the distance to the long bottom is exceeded.
- the second opening is formed with the narrow walls in which the pair of bottoms forming the trapezoidal shape form the other end region.
- the distance from the central axis of the fourth strip-shaped conductor to the shortest of the pair of bottoms of the second opening is the center of the fourth strip-shaped conductor so as to be parallel to each other. It is arranged so that the length of the pair of bottoms of the second opening exceeds the distance from the shaft to the long bottom.
- this RF module has the reflection characteristics and the transmission characteristics while increasing the degree of freedom when arranging the third band-shaped conductor and the fourth band-shaped conductor according to the distance between the terminals of the output terminal and the input terminal of the RFIC. The decrease can be suppressed.
- the RF module according to the fifteenth aspect of the present invention has the central axis and the central axis of the third band-shaped conductor when the post-wall waveguide is viewed in a plan view in the thirteenth aspect or the fourteenth aspect.
- the central axis of the fourth strip conductor bisects the straight line, which is a set of points that bisect the width of one end region, and the width of the other end region. It is located between the straight line, which is a set of points.
- the distance between the output terminal and the input terminal of the RFIC is a straight line that is a set of points that bisect the width of one waveguide region and a straight line that is a set of points that bisect the width of the other waveguide region. It may be narrower than the distance between.
- the central axis of the third strip conductor and the central axis of the fourth strip conductor are a set of points that bisect the width of one waveguide region and the other waveguide region.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Waveguides (AREA)
- Structure Of Printed Boards (AREA)
Abstract
ポスト壁導波路のモードと、ポスト壁導波路とは異なる基板に帯状導体が形成された線路のモードとを変換するモード変換器において、環境温度の変化に起因する伝送不良を生じにくくすること。モード変換器(10)は、広壁(導体層12)に開口(121)が設けられたポスト壁導波路(PW)と、主面に帯状導体(16)が形成された誘電体製の基板(15)と、広壁(導体層12)と基板(15)とを接合する接合部材(半田18)と、を備え、平面視において、開口(121)と、帯状導体(16)とは、重畳している。
Description
本発明は、ポスト壁導波路におけるモードと、帯状導体を含む線路におけるモードと、を変換するモード変換器に関する。また、本発明は、このようなモード変換器を備えたRFモジュール及び携帯端末に関する。
非特許文献1には、ポスト壁導波路の導波モードとマイクロストリップ線路の導波モードとを相互に変換するモード変換器が記載されている。
このような従来のモード変換器110a,110bを備えたRFモジュール101を図16,17に示す。図16及び図17の各々は、それぞれ、RFモジュール101の分解斜視図及び断面図である。
モード変換器110a,110bにおいて、ポスト壁導波路PWは、誘電体製の基板111と、基板111の一対の主面の各々にそれぞれ形成された一対の導体層112,113と、基板111の内部に形成されたポスト壁114と、を備えている。一対の導体層112,113のうち、平面視した場合にポスト壁114により取り囲まれている領域は、直方体状の導波領域を2方向(例えば上下方向)から挟み込む一対の広壁として機能し、ポスト壁は、導波領域を4方向(例えば前後左右方向)から取り囲む一対の狭壁及び一対のショート壁として機能する。ポスト壁114は、基板111の内部に柵状に配置された複数のスルービアであって、一対の導体層を互いに短絡する複数のスルービアにより構成されている。
また、モード変換器110a,110bにおいて、マイクロストリップ線路MSは、信号線として機能する帯状導体116a,116bと、導体層112からなるグランド層と、信号線とグランド層とを隔てる誘電体層115と、を備えており、ポスト壁導波路の一方の主面に直接形成されている。
そのうえで、ポスト壁導波路PWの導波モードとマイクロストリップ線路MSの導波モードとを相互に変換するために、モード変換器110a,110bは、マイクロストリップ線路MSを構成する帯状導体116a,116bの一方の端部に接続されたブラインドビアBVa,BVbを備えている。ブラインドビアBVa,BVbは、励振ピンとして機能する。なお、励振ピンは、ブラインドビアであってもよいし、スルービアであってもよい。
モード変換器110a,110bにおいては、帯状導体116a,116bをポスト壁導波路PWの入出力ポートとして利用することができる。例えば、図16及び図17に示すように、RFモジュール101は、ポスト壁導波路PWの両端部(ショート壁近傍)の各々に、それぞれ、モード変換器110a,110bを形成し、モード変換器110aの帯状導体116aにRFIC(Radio Frequency Integrated Circuit)121を実装し、モード変換器110bの帯状導体116bにアンテナ122を実装することによって得られる。RFモジュール101は、ポスト壁導波路PWの一方の主面にRFIC121及びアンテナ122を直接実装したRFモジュールである。
このようなRFモジュールにおいては、RFIC及びアンテナを、ポスト壁導波路を構成する基板とは別の基板(以下において実装基板と称する)に予め実装しておき、この実装基板と、ポスト壁導波路とを接合することによってRFモジュールを製造したいという要望がある。このような構成を有するRFモジュール101Aを図18に示す。図18は、RFモジュール101Aの断面図である。
この要望を実現する場合、図18に示すように、スルービアを用いて帯状導体116Aa,116Abを実装基板の裏側(ポスト壁導波路PWに近接する側)に引き出し、実装基板の裏側に引き出された帯状導体116Aa,116Abと、ブラインドビアBVa,BVbとをバンプBa,Bbを用いて接合する態様が考えられる。
Yusuke Uemichi, et al. "A ultra low-loss silica-based transformer between microstrip line and post-wall waveguide for millimeter-wave antenna-in-package applications," IEEE MTT-S IMS, Jun. 2014.
ところで、ポスト壁導波路PWの基板111を構成する誘電体としては、石英や、セラミックスや、サファイヤや、シリコンなどが採用される場合が多い。一方、実装基板115Aを構成する誘電体としては、フッ素樹脂(例えばテフロン(登録商標))や、ガラスエポキシ樹脂や、液晶ポリマーや、ポリイミド樹脂や、シクロオレフィンなどが採用される場合が多い。このような場合、基板111を構成する誘電体の線膨張係数と、実装基板115Aを構成する誘電体の線膨張係数とが大きく異なる。そのため、バンプBa,Bbには、RFモジュール101Aを使用する環境温度の変化に伴い応力が繰り返し加わり、やがて、バンプBa,Bbの何れか又は両方にクラックが生じることにより、RFIC121とポスト壁導波路PWとの間、及び、アンテナ122とポスト壁導波路PWとの間の何れか又は両方において伝送不良が生じる場合がある(図18参照)。
実装基板115Aとポスト壁導波路PWとの接合を強固にするために、互いに対向する実装基板115Aの主面とポスト壁導波路PWの主面とを半田118を用いて接合する態様も考えられる(図18参照)。しかし、ポスト壁導波路PWの基板を構成する誘電体の線膨張係数と、実装基板を構成する誘電体の線膨張係数とが大きく異なる以上、バンプBa,Bbに加えて半田118を用いたとしても、クラックの発生を防ぐことは難しい。
本発明の一態様は、上述した課題に鑑みなされたものであり、その目的は、ポスト壁導波路におけるモードと、ポスト壁導波路とは異なる基板に形成された帯状導体を信号線とする線路におけるモードと、を変換するモード変換器であって、従来よりも環境温度の変化に起因する伝送不良が生じにくいモード変換器を提供することである。また、このようなモード変換器を備えたRFモジュール及び携帯端末を提供することである。
本発明の一態様に係るモード変換器は、一方の広壁に開口が設けられたポスト壁導波路と、一方の主面及び他方の主面の少なくとも何れかに帯状導体が形成された誘電体製の基板と、上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、を備え、上記ポスト壁導波路を平面視した場合に、上記開口の少なくとも一部と、上記帯状導体の少なくとも一部とは、重畳している。
本発明の一態様に係るRFモジュールは、一方の広壁の第1のショート壁の近傍に第1の開口が設けられ、且つ、上記一方の広壁の第2のショート壁の近傍に第2の開口が設けられたポスト壁導波路と、一方の主面及び他方の主面の少なくとも何れかに第1の帯状導体が形成され、且つ、上記一方の主面及び上記他方の主面の少なくとも何れかに第2の帯状導体が形成され、且つ、上記一方の主面及び上記他方の主面の少なくとも何れかにアンテナが形成された誘電体製の基板と、上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、上記基板の一方の主面に実装され、且つ、何れかの端子が上記第1の帯状導体に電気的に接続されたRFICと、を備え、上記アンテナは、上記第2の帯状導体に電気的に接続され、上記ポスト壁導波路を平面視した場合に、上記第1の開口の少なくとも一部と、上記第1の帯状導体の少なくとも一部とは、重畳しており、且つ、上記第2の開口の少なくとも一部と、上記第2の帯状導体の少なくとも一部とは、重畳している。
本発明の一態様に係る携帯端末は、本発明の一態様に係るRFモジュールを送信モジュール、受信モジュール、及び送受信モジュールの少なくとも何れかとして備えている。
本発明の一態様に係るRFモジュールは、一対の広壁と、狭壁と、一対のショート壁とにより導波領域が形成されたポスト壁導波路であって、(1)一方の広壁のうち一方のショート壁を含む一方の端部領域に第1の開口が設けられ、且つ、(2)上記一方の広壁のうち他方のショート壁を含む他方の端部領域に第2の開口が設けられ、且つ、(3)上記一方の端部領域と、上記他方の端部領域とが平行且つ近接して配置されているポスト壁導波路と、一方の主面及び他方の主面の少なくとも何れかに第3の帯状導体及び第4の帯状導体が形成された誘電体製の基板と、上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、上記基板の一方の主面に実装され、且つ、出力端子及び入力端子の各々が、それぞれ、上記第3の帯状導体及び上記第4の帯状導体に電気的に接続されたRFICと、を備え、上記ポスト壁導波路を平面視した場合に、上記第1の開口の少なくとも一部と、上記第3の帯状導体の少なくとも一部とは、重畳しており、且つ、上記第2の開口の少なくとも一部と、上記第4の帯状導体の少なくとも一部とは、重畳している。
本発明の一態様によれば、ポスト壁導波路におけるモードと、ポスト壁導波路とは異なる基板に形成された帯状導体を信号線とする線路におけるモードと、を変換するモード変換器であって、従来よりも環境温度の変化に起因する伝送不良が生じにくいモード変換器を提供することができる。また、本発明の一態様によれば、このようなモード変換器を備えたRFモジュール及び携帯端末を提供することができる。
〔第1の実施形態〕
本発明の第1の実施形態に係るモード変換器10について、図1及び図2を参照して説明する。図1は、モード変換器10の平面図である。図2は、モード変換器10の断面図であって、図1に示したA-A’線に沿った断面における断面図である。なお、本発明の各実施形態に係るモード変換器及びRFモジュールは、何れも、28GHz帯(例えば27GHz以上29.5GHz以下の帯域)を動作帯域として想定している。
本発明の第1の実施形態に係るモード変換器10について、図1及び図2を参照して説明する。図1は、モード変換器10の平面図である。図2は、モード変換器10の断面図であって、図1に示したA-A’線に沿った断面における断面図である。なお、本発明の各実施形態に係るモード変換器及びRFモジュールは、何れも、28GHz帯(例えば27GHz以上29.5GHz以下の帯域)を動作帯域として想定している。
<モード変換器10の構成>
図1及び図2に示すように、モード変換器10は、ポスト壁導波路PWと、マイクロストリップ線路MSと、半田18とを備えている。ポスト壁導波路PW及びマイクロストリップ線路MSについては、後述する。半田18は、ポスト壁導波路PWの導体層12と、マイクロストリップ線路MSの導体層17とを短絡するとともに接合する接合部材の一例である。半田18は、導体層12と導体層17とを互いに平行又は略平行な状態で、導体層12と導体層17とを接合する。後述するように導体層17は、基板15の互いに対向する一対の主面のうち導体層12に近い側の主面に形成されている。したがって、半田18は、導体層12と基板15とを、導体層17を介して間接に接合する、ともいえる。なお、以下において、基板15の互いに対向する一対の主面のうち、導体層12から遠い側の主面を一方の主面とも称し、導体層12に近い側の主面を他方の主面とも称する。以下において、後述するショート壁14cを構成するスルービア14iの中心軸と、半田18との最短距離を距離D3と呼ぶ。距離D3は、適宜定めることができるが、本実施形態においては、D3=850μmである。
図1及び図2に示すように、モード変換器10は、ポスト壁導波路PWと、マイクロストリップ線路MSと、半田18とを備えている。ポスト壁導波路PW及びマイクロストリップ線路MSについては、後述する。半田18は、ポスト壁導波路PWの導体層12と、マイクロストリップ線路MSの導体層17とを短絡するとともに接合する接合部材の一例である。半田18は、導体層12と導体層17とを互いに平行又は略平行な状態で、導体層12と導体層17とを接合する。後述するように導体層17は、基板15の互いに対向する一対の主面のうち導体層12に近い側の主面に形成されている。したがって、半田18は、導体層12と基板15とを、導体層17を介して間接に接合する、ともいえる。なお、以下において、基板15の互いに対向する一対の主面のうち、導体層12から遠い側の主面を一方の主面とも称し、導体層12に近い側の主面を他方の主面とも称する。以下において、後述するショート壁14cを構成するスルービア14iの中心軸と、半田18との最短距離を距離D3と呼ぶ。距離D3は、適宜定めることができるが、本実施形態においては、D3=850μmである。
(ポスト壁導波路PW)
図1及び図2に示すように、ポスト壁導波路PWは、基板11と、導体層12,13と、ポスト壁14と、を備えている。
図1及び図2に示すように、ポスト壁導波路PWは、基板11と、導体層12,13と、ポスト壁14と、を備えている。
基板11は、誘電体からなる板状部材であり、本実施形態においては石英製である。基板11を構成する誘電体は、石英に限定されるものではなく、例えばモード変換器10の中心周波数などに応じて、ポスト壁導波路の基板として採用した場合に伝送損失を抑制することが可能な誘電体から適宜選択することができる。なお、基板11の厚さT11は、適宜選択することができる。
導体層12及び導体層13の各々は、基板11の互いに対向する一対の主面の各々にそれぞれ形成された層状部材である。導体層12,13は、導体からなる層状部材であり、本実施形態においては銅製である。導体層12,13を構成する導体は、銅に限定されるものではなく、適宜選択することができる。また、導体層12,13の厚さも適宜選択することができ、厚さが相対的に薄い導体膜とよばれる層状部材であってもよいし、厚さが相対的に厚い導体板とよばれる層状部材であってもよい。
ポスト壁14は、基板11の内部に柵状に配置された複数のスルービア141~14nによって構成されている。ここで、nは、2以上の任意の整数である。また、以下において、スルービア141~14nの各々を一般化してスルービア14iとも記載する。ここで、iは、1以上n以下の整数である。ポスト壁14は、互いに対向する一対の狭壁14a,14bと、ショート壁14cと、ショート壁14cに対向する別のショート壁(図1及び図2には図示せず)とにより構成されている。各スルービア14iは、円筒形状又は円柱形状(本実施形態においては円筒形状)の導体により構成されている。
各スルービア14iは、基板11の一方の主面から他方の主面に至っており、導体層12と導体層13とを短絡している。また、各スルービア14iの直径DT(図1参照)は、ポスト壁導波路PWの幅W1や、ポスト壁導波路PWの形状の複雑さ等に応じて適宜定めることができるが、本実施形態においては、DT=100μmとする。
モード変換器10において、導体層12,13は、基板11を2方向(例えば上下方向)から挟み込み、且つ、狭壁14a,14bは、基板11の一部領域を2方向(例えば左右方向)から挟み込み、且つ、ショート壁14c及び上記他のショート壁は、基板11の一部領域を2方向(例えば前後方向)から挟み込む。導体層12,13と、狭壁14a,14bと、ショート壁14cと、上記他のショート壁とにより6方向から挟み込まれた基板11の一部領域は、モード変換器10の導波領域として機能する。この導波領域は、図1において2点鎖線で3方を囲まれた領域として図示されており、図2においてスルービア14iより右側の領域であって、導体層12と導体層13とにより挟まれた領域として図示されている。なお、図1に図示した2点鎖線は、各スルービア14iの中心を通る直線である。図1に示すように、狭壁14aと狭壁14bとは互いに平行であり、ショート壁14cと、狭壁14a,14bの各々とは、互いに直交している。以下において、狭壁14aと狭壁14bとの間隔をポスト壁導波路PWの幅W1と呼ぶ。幅W1は、動作帯域等に応じて適宜定めることができるが、本実施形態においては、W1=4mmである。
図1及び図2に示すように、ポスト壁導波路PWの一方の広壁を構成する導体層12には、開口121が設けられている。開口121は、長方形状であり、ショート壁14cの近傍に、且つ、長辺がショート壁14cに沿い(本実施形態においては平行)、短辺が狭壁14a,14bに沿う(本実施形態においては平行)ように設けられている。以下において、開口121とショート壁14cとの最短距離を距離D1と呼び、開口121の幅(短辺に沿った長さ)を幅W2と呼び、長さ(長辺に沿った長さ)を長さL2と呼ぶ。距離D1、幅W2、及び長さL2の各々は、動作帯域等に応じて適宜定めることができるが、本実施形態においては、D1=100μmであり、W2=400μmであり、L2=3.2mmである。このように構成されたポスト壁導波路PWは、TE線路として機能し、開口121を介して導波領域に結合された高周波を、導波領域の長軸方向に沿って導波する。
(マイクロストリップ線路MS)
図1及び図2に示すように、マイクロストリップ線路MSは、基板15と、帯状導体16と、導体層17とを備えている。
図1及び図2に示すように、マイクロストリップ線路MSは、基板15と、帯状導体16と、導体層17とを備えている。
基板15は、誘電体からなる板状部材である。基板15を構成する誘電体は、例えばモード変換器10の中心周波数などに応じて、マイクロストリップ線路の基板として採用した場合に伝送損失を抑制することが可能な誘電体から適宜選択することができる。なお、基板15の厚さT15は、適宜選択することができる。
また、市販されている実装基板(例えば、Megtron6(登録商標)やRogers RT/duroid(登録商標)5880など)の基板部分を基板15として利用することもできる。この場合、実装基板の互いに対向する一対の主面のうち、一方の主面である導体層をパターニングすることによって後述する帯状導体16を形成し、実装基板の他方の主面である導体層をパターニングすることによって後述する導体層17を形成することができる。
帯状導体16は、基板15の一方の主面(図2においては、ポスト壁導波路PWの導体層12から遠い側の主面)に形成された長方形状の導体パターンであり、マイクロストリップ線路MSの信号線として機能する。以下において、帯状導体16の幅を幅W3と呼び、帯状導体16の先端部であって、平面視において開口121から突出している先端部の長さを長さL3と呼ぶ。幅W3及び長さL3の各々は、動作帯域等に応じて適宜定めることができるが、本実施形態においては、W3=600μmであり、L3=600μmである。
長さL3は、マイクロストリップ線路MSとポスト壁導波路PWとのインピーダンス整合に影響を与える。そのため、長さL3を好適に設計することによって、インピーダンス整合を高めることができ、延いては、モード変換器10における反射損失を抑制することができる。
導体層17は、基板15の他方の主面(図2においては、ポスト壁導波路PWの導体層12から近い側の主面)に形成された導体パターンであり、マイクロストリップ線路MSのグランド層として機能する。本実施形態において、導体層17は、図1に示すように、平面視した場合にポスト壁導波路PWの導波領域(すなわちポスト壁14により取り囲まれた領域)の外側に形成されている。以下において、ショート壁14cを構成するスルービア14iの中心軸と、導体層17との最短距離を距離D2と呼ぶ。距離D2は、適宜定めることができるが、本実施形態においては、D2=850μmである。すなわち、本実施形態において、D2=D3である(図1及び図2参照)。なお、導体層17を形成する領域及び距離D2は、開口121が形成されている位置等に応じて適宜設計することができ、導波領域の外側から開口121の近傍にまで至ってもよい。さらにいえば、平面視した場合に、導体層17は、基板15の他方の主面のうち少なくとも開口121と対向する領域に形成されていなければよく、開口121と対向する領域以外の領域の一部に形成されていてもよいし、開口121と対向する領域以外の領域の全部に形成されていてもよい。
帯状導体16及び導体層17は、導体製であり、本実施形態においては銅製である。帯状導体16及び導体層17を構成する導体は、銅に限定されるものではなく、適宜選択することができる。また、帯状導体16の厚さ及び幅、並びに、導体層17の厚さも適宜選択することができ、厚さが相対的に薄い導体膜とよばれる層状部材であってもよいし、厚さが相対的に厚い導体板とよばれる層状部材であってもよい。
図1に示した領域において、帯状導体16は、長方形状である。ただし、帯状導体16は、少なくとも開口121と平面視において重畳する領域の近傍が帯状であればよく、開口121から遠い側の端部は、如何なる形状にパターニングされていてもよい。開口121から遠い側の端部には、例えばRFIC(Radio Frequency Integrated Circuit)の端子を接続するための導体パッドを形成することができる。また、本実施形態において、開口121から近い側の端部は、2つの角を有するようにパターニングされている。しかし、開口121から近い側の端部の形状は、限定されるものではない。
帯状導体16は、ポスト壁導波路PWを平面視した場合(図1参照)に、開口121から遠い側の端部がポスト壁導波路PWの導波領域の外側に配置されており、帯状の部分がショート壁14c及び開口121を横切り、開口121から近い側の端部が開口121の近傍であって、上記導波領域に配置されている。したがって、モード変換器10において、ポスト壁導波路PWを平面視した場合、開口121の中央近傍の一部と、帯状導体16の一部とは、重畳している。
このように構成されたマイクロストリップ線路MSは、準TEM線路あるいは二導体線路と呼ばれる線路の一態様である。
なお、本実施形態においては、基板15の一方の主面のみに帯状導体16が形成されているが、例えば図5に示す帯状導体16Cのように、基板15の両方の主面に亘って帯状導体が形成されていてもよい。
また、本実施形態においては、基板15の一方の主面及び他方の主面の少なくとも何れかに帯状導体が形成されてなる線路として、マイクロストリップ線路MSを用いてモード変換器10について説明した。しかし、本発明の一態様において、基板15の一方の主面及び他方の主面の少なくとも何れかに帯状導体が形成されてなる線路は、マイクロストリップ線路MSに限定されず、ストリップ線路であってもよいし、コプレナー線路であってもよいし、グランド付きコプレナー線路であってもよいし、平行2線路であってもよい。
(モードの変換)
モード変換器10において、マイクロストリップ線路MSにおけるモードと、ポスト壁導波路PWにおけるモードとは、帯状導体16の一部と、開口121の一部とが平面視において重畳している領域を介して結合される。すなわち、モード変換器10は、励振ピンを用いることなく、帯状導体16とは直接接触しない開口121を介して、これらのモードを変換することができる。
モード変換器10において、マイクロストリップ線路MSにおけるモードと、ポスト壁導波路PWにおけるモードとは、帯状導体16の一部と、開口121の一部とが平面視において重畳している領域を介して結合される。すなわち、モード変換器10は、励振ピンを用いることなく、帯状導体16とは直接接触しない開口121を介して、これらのモードを変換することができる。
(導体層12と基板15との隙間)
図2に示すように、導体層12と基板15との間には、開口121の部分も含み、空隙が形成されている。この空隙は、隙間のまま(すなわち空気が充填されたまま)の状態であってもよいし、樹脂材料などの誘電体を充填されていてもよい。空隙に樹脂材料を充填する場合、例えば、硬化前の液体状である樹脂材料をスルービア14iの何れかから注入し、注入したスルービア14iとは異なるスルービア14iから樹脂材料が浸み出してくることを確認できれば、空隙の多くの領域は、樹脂材料により充填されていると見做せる。その後、樹脂材料を硬化させればよい。
図2に示すように、導体層12と基板15との間には、開口121の部分も含み、空隙が形成されている。この空隙は、隙間のまま(すなわち空気が充填されたまま)の状態であってもよいし、樹脂材料などの誘電体を充填されていてもよい。空隙に樹脂材料を充填する場合、例えば、硬化前の液体状である樹脂材料をスルービア14iの何れかから注入し、注入したスルービア14iとは異なるスルービア14iから樹脂材料が浸み出してくることを確認できれば、空隙の多くの領域は、樹脂材料により充填されていると見做せる。その後、樹脂材料を硬化させればよい。
空隙に誘電体を充填する場合、充填する誘電体を適宜選択することによって、基板11と基板15との間に生じ得る比誘電率の不連続を緩和することができる。
(ポスト壁導波路PWの機能)
モード変換器10において、ポスト壁導波路PWは、フィルタ、方向性結合器、ダイプレクサ、及びアンテナの何れかとして機能するように、導波領域を構成されていてもよい。ポスト壁導波路PWを用いてフィルタ、方向性結合器、ダイプレクサ、及びアンテナの何れかの機能を実現する場合、既存のフィルタ、方向性結合器、ダイプレクサ、及びアンテナのなかから用途に応じた構成を適宜選択すればよい。なお、アンテナは、アレイアンテナであることが好ましい。
モード変換器10において、ポスト壁導波路PWは、フィルタ、方向性結合器、ダイプレクサ、及びアンテナの何れかとして機能するように、導波領域を構成されていてもよい。ポスト壁導波路PWを用いてフィルタ、方向性結合器、ダイプレクサ、及びアンテナの何れかの機能を実現する場合、既存のフィルタ、方向性結合器、ダイプレクサ、及びアンテナのなかから用途に応じた構成を適宜選択すればよい。なお、アンテナは、アレイアンテナであることが好ましい。
<第1の変形例>
本発明の第1の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Aについて、図3を参照して説明する。図3は、モード変換器10Aの断面図である。
本発明の第1の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Aについて、図3を参照して説明する。図3は、モード変換器10Aの断面図である。
モード変換器10Aは、モード変換器10をベースにして、モード変換器10から導体層17を省略し、半田18を接着剤18Aに置き換えることによって得られる。接着剤18Aは、導電性を有さない樹脂材料により構成されている。接着剤18Aは、導体層12と基板15とを直接に接合している。以下において、接着剤18Aの厚さを厚さTAと呼ぶ。厚さTAを適宜設計することによって、マイクロストリップ線路MSにおける帯状導体16と導体層12との結合の度合いを調整することができる。
導体層17を省略した場合であっても、ポスト壁導波路PWの導体層12がマイクロストリップ線路MSのグランド層として機能する。したがって、モード変換器10Aのマイクロストリップ線路MSは、基板15と、帯状導体16と、導体層12とを備えているといえる。
このように構成されたモード変換器10Aは、10と同様の効果を奏する。
また、図3においては、導体層12と基板15との間に空隙が形成されている。しかし、上述したように、この空隙は、隙間のまま(すなわち空気が充填されたまま)の状態であってもよいし、樹脂材料などの誘電体を充填されていてもよい。モード変換器10Aにおいては、例えば、基板15の主面に接着剤18Aを塗布し、基板15を導体層12に貼り付けることによって、空隙を形成することなく導体層12と基板15とを接合することができる。
接着剤18Aは、半田18と比較して弾性率が高いため、環境温度の変化に伴い生じ得る応力を緩和することができる。
<第2の変形例>
本発明の第2の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Bについて、図4を参照して説明する。図4は、モード変換器10Bの平面図である。
本発明の第2の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Bについて、図4を参照して説明する。図4は、モード変換器10Bの平面図である。
モード変換器10Bは、モード変換器10をベースにして、モード変換器10が備えている帯状導体16を帯状導体16Bに置き換えることによって得られる。本変形例においては、帯状導体16Bは、長さL3が帯状導体16の長さL3よりも短く設計されており、L3=200μmである。
帯状導体16Bは、図4に示すように、帯状である主部16B1と、何れも長方形状である2つのスタブ16B1,16B2とを備えている。主部16B1は、帯状導体16に対応する導体パターンであり、スタブ16B1,16B2の各々は、何れも長方形状の導体パターンである。主部16B1及びスタブ16B1,16B2は、単一の導体パターンである帯状導体16Bを形成する。
スタブ16B1,16B2の各々は、平面視において、主部16B1のうちポスト壁導波路PWの導波領域の外側の区間の何れかの位置であって、帯状である主部16B1の中心軸を対称軸として線対称となる位置に、それぞれ設けられている。
本変形例において、スタブ16B1,16B2は、長方形状であり、長辺が上記対称軸に交わる(本実施形態においては直交する)ように、且つ、短辺が上記対称軸に沿う(本実施形態においては平行となる)ように配置されている。しかし、スタブ16B1,16B2の形状及び配置する場合の向きは、本変形例の態様に限定されるものではない。スタブ16B1,16B2は、図4に示すように端部が開放されたオープンスタブであってもよいし、短絡されたショートスタブと呼ばれるスタブであってもよい。
上述したように本変形例では、長さL3が帯状導体16の長さL3よりも短く設計されている。そのため、モード変換器10Bにおいて帯状導体16と同様にスタブを有さない帯状導体を採用した場合、モード変換器10の場合よりもインピーダンス整合が悪くなる。このように、インピーダンス整合が悪い場合に、スタブ16B1,16B2を適宜設計することによって、マイクロストリップ線路MSとポスト壁導波路PWとのインピーダンス整合を図ることができ、延いては、モード変換器10Bにおける反射損失を抑制することができる。
<第3の変形例>
本発明の第3の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Cについて、図5を参照して説明する。図5は、モード変換器10Cの断面図である。
本発明の第3の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Cについて、図5を参照して説明する。図5は、モード変換器10Cの断面図である。
モード変換器10Cは、モード変換器10をベースにして、モード変換器10が備えている帯状導体16を帯状導体16Cに置き換えることによって得られる。
帯状導体16Cは、図5に示すように、第1の導体パターン16C1と、第2の導体パターン16C2とを備えている。第1の導体パターン16C1及び第2の導体パターン16C2は、何れも帯状の導体パターンである。後述するように、第1の導体パターン16C1は、基板15の一方の主面(導体層12から遠い側の主面)に形成されており、第2の導体パターン16C2は、基板15の他方の主面(導体層12から近い側の主面)に形成されている。第1の導体パターン16C1と、第2の導体パターン16C2とは、スルービア16C3を用いて電気的に接続されている。
第1の導体パターン16C1は、帯状導体16と同様に、基板15の一方の主面に形成された帯状の導体パターンであり、その先端部がポスト壁導波路PWの導波領域の外側に配置されている。
第2の導体パターン16C2は、基板15の他方の主面に形成された帯状の導体パターンである。第2の導体パターン16C2の一方の先端部は、ポスト壁導波路PWの導波領域の外側であって、平面視において第1の導体パターン16C1の一方の先端部と重畳するように配置されている。第2の導体パターン16C2の帯状の部分は、平面視においてショート壁14c及び開口121を横切り、第2の導体パターン16C2の他方の先端部が平面視において開口121の近傍であって、導波領域に配置されている。したがって、モード変換器10Cにおいて、ポスト壁導波路PWを平面視した場合、開口121の中央近傍の一部と、帯状導体16Cの一部とは、重畳している。帯状導体16Cにおいても、第2の導体パターン16C2の他方の先端部であって、開口121から突出している先端部の長さを長さL3と呼ぶ。
スルービア16C3は、平面視において導波領域の外側の領域であって、第1の導体パターン16C1の一方の先端部と、第2の導体パターン16C2の一方の先端部とが重畳する領域に形成された円筒形状又は円柱形状(本実施形態においては円筒形状)の導体により構成されている。本変形例において、スルービア16C3の直径は、300μmである。
モード変換器10においては、帯状導体16を基板15の一方の主面のみに形成された単一の導体パターンを用いて実現している。しかし、モード変換器10Cのように、帯状導体16Cは、第1の導体パターン16C1及び第2の導体パターン16C2の各々が、それぞれ、基板15の一方の主面及び他方の主面に形成されており、スルービア16C3を用いて導通されていてもよい。この場合、第1の導体パターン16C1は、導体層17とともにマイクロストリップ線路を形成し、第2の導体パターン16C2は、導体層12とともにマイクロストリップ線路を形成する。本変形例においては、半田18Cの厚さTSを適宜設計することによって、マイクロストリップ線路MSにおける第2の導体パターン16C2と導体層12との結合の度合いを調整することができる。
また、本発明の一態様において、帯状導体16に対応する帯状導体は、基板15の一方の主面ではなく、他方の主面に形成されていてもよい。この場合、少なくとも帯状導体と導体層12とが対向する領域を、導電性を持たない接着剤18Aを用いて接合することによって、帯状導体と導体層12とが短絡されるのを防ぐことができる。この場合、帯状導体は、導体層12とともにマイクロストリップ線路を形成する。
〔第2の実施形態〕
本発明の第2の実施形態に係るRFモジュール1について、図6及び図7を参照して説明する。図6は、RFモジュール1の分解斜視図である。なお、図6においては、導体層17及び半田18の図示を省略している。図7は、RFモジュール1の断面図であって、後述する帯状導体16a,16bの中心軸と一致する直線を通る断面における断面図である。なお、説明の便宜上、第1の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
本発明の第2の実施形態に係るRFモジュール1について、図6及び図7を参照して説明する。図6は、RFモジュール1の分解斜視図である。なお、図6においては、導体層17及び半田18の図示を省略している。図7は、RFモジュール1の断面図であって、後述する帯状導体16a,16bの中心軸と一致する直線を通る断面における断面図である。なお、説明の便宜上、第1の実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を繰り返さない。
図6及び図7に示すように、モード変換器10aと、モード変換器10bと、RFIC21と、アンテナ22とを備えている。モード変換器10a及びモード変換器10bの各々は、何れも、図1及び図2に示したモード変換器10の一具体例であり、モード変換器10と同様に構成されている。モード変換器10aを構成する各部材には、モード変換器10を構成する各部材の符号の末尾に「a」を付した符号を付し、モード変換器10bを構成する各部材には、モード変換器10を構成する各部材の符号の末尾に「b」を付した符号を付す。なお、帯状導体16aは、第1の帯状導体の一態様であり、帯状導体16bは、第2の帯状導体の一態様である。
RFモジュール1は、(1)ポスト壁導波路PWの一対のショート壁の近傍に、それぞれ、入出力ポートとして機能するモード変換器10a,10bを形成し、(2)モード変換器10aの帯状導体16aにRFIC21を実装し、(3)モード変換器10bの帯状導体16bにアンテナ22を実装することによって得られる。RFモジュール1は、基板15の一方の主面(導体層12から遠い側の主面)側にRFIC21及びアンテナ22を実装し、ポスト壁導波路PWの一方の主面側(導体層12の表面)に基板15の他方の主面側を実装したRFモジュールである。
本実施形態においては、モード変換器10a及びモード変換器10bの構成のうち、モード変換器10について説明しなかった構成についてのみ説明する。具体的には、帯状導体16aの先端部のうち開口121aから突出している一方の先端部と逆側の他方の先端部(開口121aから遠い側の先端部)と、帯状導体16bの先端部のうち開口121bから突出している一方の先端部と逆側の他方の先端部(開口121bから遠い側の先端部)とについてのみ説明する。
帯状導体16aの他方の先端部において、帯状導体16aの帯状部分には、該帯状部分よりも幅が広く、RFIC21の信号端子と接続するための信号用導体パッドが接続されている。また、信号用導体パッドの両脇には、信号用導体パッドを挟み込むように、RFIC21のグランド端子と接続するためのグランド用導体パッドが2つ形成されている。各グランド用導体パッドは、導体層12と短絡されている。このように、帯状導体16aの他方の先端部近傍には、RFIC21を実装するための端子であって、グランド用-信号用-グランド用の順番で導体パッドが配列されたGSG配置の端子が形成されている。RFIC21は、バンプを用いて、このGSG配置の端子に実装されている。
帯状導体16bの他方の先端部には、アンテナ22が実装(接続)されている。なお、本実施形態においてアンテナ22の態様は限定されるものではなく、導体パターンを用いて放射素子を構成可能なアンテナから適宜選択することができる。そのため、図6及び図7においては、アンテナ22の具体的な形状を図示していない。なお、アンテナ22としては、各々が導体パターンにより構成された複数の放射素子を備えたパッチアンテナが好適である。本実施形態においては、帯状導体16bとアンテナ22とを単一の導体パターンとして実現している。帯状導体16bは、給電線として機能する。
以上のように、RFモジュール1は、導体層12の一方のショート壁である第1のショート壁の近傍に第1の開口である開口121aが設けられ、且つ、導体層12の他方のショート壁である第2のショート壁の近傍に第2の開口である開口121bが設けられたポスト壁導波路PWと、一方の主面に帯状導体16aが形成され、且つ、一方の主面に帯状導体16bを給電線とするアンテナが形成された誘電体製の基板15と、導体層12と、基板15の他方の主面とが互いに平行又は略平行な状態で、導体層12と基板15の他方の主面に形成された導体層17とを接合する接合部材である半田18と、基板15の一方の主面に実装され、且つ、何れかの端子が帯状導体16aの他方の先端部に接続された信号用導体パッドに接続されたRFIC21と、を備えている。RFモジュール1において、ポスト壁導波路PWを平面視した場合に、開口121aの一部と、帯状導体16aの一部とは、重畳しており、且つ、開口121bの一部と、帯状導体16bの一部とは、重畳している。
RFモジュール1は、RFIC21及びアンテナ22の機能に応じて、送信モジュール、受信モジュール、及び送受信モジュールの何れかとして機能する。
また、本発明の一態様には、RFモジュール1を備えている携帯端末も含まれる。RFモジュール1が備えている、マイクロストリップ線路MSa,MSbと、モード変換器10a,10bと、ポスト壁導波路PWとは、何れも、28GHz帯を動作帯域として、伝送損失を抑制することができるため、5G用のRFモジュールとして好適に用いることができる。
なお、本実施形態では、RFモジュール1が備えている2つのモード変換器として、モード変換器10の構成を採用していた。しかし、RFモジュール1が備えている2つのモード変換器の構成は、モード変換器10の構成に限定されるものではなく、各変形例に記載された構成であってもよいし、第1の実施形態及び各変形例に記載の構成を適宜組み合わせた構成であってもよい。
〔実施例〕
<第1の実施例>
本発明の第1の実施例であり、図4に示したモード変換器10Bの実施例について、図8~図11を参照して説明する。図8及び図9の各々は、それぞれ、本実施例のモード変換器10Bの変換特性をシミュレーションした結果を示す、モード変換器10Bの断面図及び平面図である。図10は、本実施例のモード変換器10B及び参考例のモード変換器の反射特性及び透過特性を示すグラフである。図11は、本実施例のモード変換器10B及び参考例のモード変換器の透過特性を拡大して示すグラフである。なお、反射特性は、SパラメータS(1,1)の周波数依存性を意味し、透過特性は、SパラメータS(2,1)の周波数依存性を意味する。この点については、後述する各実施例についても同様である。
<第1の実施例>
本発明の第1の実施例であり、図4に示したモード変換器10Bの実施例について、図8~図11を参照して説明する。図8及び図9の各々は、それぞれ、本実施例のモード変換器10Bの変換特性をシミュレーションした結果を示す、モード変換器10Bの断面図及び平面図である。図10は、本実施例のモード変換器10B及び参考例のモード変換器の反射特性及び透過特性を示すグラフである。図11は、本実施例のモード変換器10B及び参考例のモード変換器の透過特性を拡大して示すグラフである。なお、反射特性は、SパラメータS(1,1)の周波数依存性を意味し、透過特性は、SパラメータS(2,1)の周波数依存性を意味する。この点については、後述する各実施例についても同様である。
本実施例のモード変換器10Bは、図4に示したモード変換器10Bにおいて、28GHz帯を含む動作帯域を実現することを目指し、以下の設計パラメータを採用した。なお、本明細書においては、27GHz以上29.5GHz以下を動作帯域とし、SパラメータS(1,1)が-20dBを下回り、且つ、SパラメータS(2,1)が-0.5dBを上回れば良好な性能とみなす。この点については、後述する各実施例であって、27GHz以上29.5GHz以下を動作帯域とする各実施例についても同様である。なお、図10及び図11に示した一点鎖線のうちy軸に平行な一点鎖線は、27GHz及び29.5GHzを示す。また、図10に示した一点鎖線のうちx軸に平行な一点鎖線は、-20dBを示し、図11に示した一点鎖線のうちx軸に平行な一点鎖線は、-0.5dBを示す。
(設計パラメータ)
・基板11:石英製(T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=300μm)
・導体層12,13,17:銅製(厚さ18μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ18μm)、L3=200μm、W3=600μm
・スタブ16B1,16B2:長辺の長さ600μm、短辺の長さ300の長方形状
・半田18:TS=30μm
なお、参考例のモード変換器は、本実施例のモード変換器10Bからスタブ16B1,16B2を省略することによって得られる。
・基板11:石英製(T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=300μm)
・導体層12,13,17:銅製(厚さ18μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ18μm)、L3=200μm、W3=600μm
・スタブ16B1,16B2:長辺の長さ600μm、短辺の長さ300の長方形状
・半田18:TS=30μm
なお、参考例のモード変換器は、本実施例のモード変換器10Bからスタブ16B1,16B2を省略することによって得られる。
図8及び図9を参照すれば、モード変換器10Bにおいて、マイクロストリップ線路MSにおける準TEMモードと、ポスト壁導波路PWにおけるTEモードとが、開口121を介して良好に変換されていることが分かった。
参考例について図10及び図11を参照すると、反射特性が24GHz以上32GHz以下の全帯域において-20dBを上回り、透過特性が24GHz以上32GHz以下の全帯域において-0.5GHzを下回ることが分かった。すなわち、参考例は、27GHz以上29.5GHz以下の動作帯域で良好な性能を有しないことが分かった。
一方、帯状導体16Bにスタブ16B1,16B2を追加した本実施例のモード変換器10Bは、図10に示すように、25.2GHz以上30.4GHz以下の帯域においてSパラメータS(1,1)が-20dBを下回り、図11に示すように、26.3GHz以上32GHz以下の帯域においてSパラメータS(2,1)が-0.5dBを上回ることが分かった。すなわち、本実施例のモード変換器10Bは、27GHz以上29.5GHz以下の動作帯域で良好な性能を有することが分かった。
<第2,第3の実施例>
本発明の第2,第3の実施例であり、図1及び図2に示したモード変換器10の実施例について、図12及び図13を参照して説明する。図12は、第2の実施例のモード変換器10の反射特性及び透過特性と、第3の実施例のモード変換器10の反射特性及び透過特性と、を示すグラフである。図13は、第2の実施例のモード変換器10の透過特性と、第3の実施例のモード変換器10の透過特性と、を拡大して示すグラフである。
本発明の第2,第3の実施例であり、図1及び図2に示したモード変換器10の実施例について、図12及び図13を参照して説明する。図12は、第2の実施例のモード変換器10の反射特性及び透過特性と、第3の実施例のモード変換器10の反射特性及び透過特性と、を示すグラフである。図13は、第2の実施例のモード変換器10の透過特性と、第3の実施例のモード変換器10の透過特性と、を拡大して示すグラフである。
第2の実施例のモード変換器10は、以下の設計パラメータを採用した。
(設計パラメータ)
・基板11:石英製((T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=300μm)
・導体層12,13,17:銅製(厚さ18μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ18μm)、L3=600μm、W3=600μm
・半田18:TS=30μm
また、第3の実施例のモード変換器10は、第2の実施例のモード変換器10をベースにし、基板15の厚さT15を300μmから100μmに変更するとともに、半田18の厚さTSをTS=150μmに変更することによって得られた。
・基板11:石英製((T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=300μm)
・導体層12,13,17:銅製(厚さ18μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ18μm)、L3=600μm、W3=600μm
・半田18:TS=30μm
また、第3の実施例のモード変換器10は、第2の実施例のモード変換器10をベースにし、基板15の厚さT15を300μmから100μmに変更するとともに、半田18の厚さTSをTS=150μmに変更することによって得られた。
第2の実施例について図12及び図13を参照すると、反射特性が24GHz以上32GHz以下の全体域において-20dBを下回り、透過特性が24GHz以上32GHz以下の全体域において-0.5GHzを上回ることが分かった。すなわち、第2の実施例は、27GHz以上29.5GHz以下の動作帯域で良好な性能を有することが分かった。
第3の実施例について図12及び図13を参照すると、反射特性が24GHz以上32GHz以下の全帯域において-20dBを下回り、透過特性が24GHz以上32GHz以下の全帯域において-0.5GHzを上回ることが分かった。すなわち、第3の実施例は、27GHz以上29.5GHz以下の動作帯域で良好な性能を有することが分かった。
<第4の実施例群>
本発明の第4の実施例群であり、図1及び図2に示したモード変換器10の実施例群について、図14及び図15を参照して説明する。図14は、第4の実施例群の各モード変換器10の反射特性を示すグラフである。図15は、第4の実施例群の各モード変換器10の透過特性を示すグラフである。
本発明の第4の実施例群であり、図1及び図2に示したモード変換器10の実施例群について、図14及び図15を参照して説明する。図14は、第4の実施例群の各モード変換器10の反射特性を示すグラフである。図15は、第4の実施例群の各モード変換器10の透過特性を示すグラフである。
第4の実施例群の各モード変換器10は、上述した第3の実施例のモード変換器10をベースにし、厚さTSを100μm以上300μm以下の範囲内で変化させることによって得られる。したがって、図14及び図15に示した各プロットのうちTS=150μmのプロットは、図12及び図13に示した第3の実施例のプロットと同じである。
第4の実施例群について、図14を参照すると、27GHz以上29.5GHz以下の帯域においてSパラメータS(1,1)が-20dBを下回るのは、厚さTSが150μm以上225μm以下のモード変換器10であった。
また、第4の実施例群について、図15を参照すると、27GHz以上29.5GHz以下の帯域においてSパラメータS(2,1)が-0.5GHzを上回るのは、TSが100μm以上250μm以下のモード変換器10であった。
以上の結果より、第4の実施例群において、モード変換器10は、厚さTSが150μm以上225μm以下である場合に、27GHz以上29.5GHz以下の動作帯域で良好な性能を有することが分かった。
<第5の実施例>
本発明の第5の実施例であり、図1及び図2に示したモード変換器10の実施例について、図19及び図20を参照して説明する。図19及び図20の各々は、それぞれ、本実施例のモード変換器10の反射特性及び透過特性を示すグラフである。
本発明の第5の実施例であり、図1及び図2に示したモード変換器10の実施例について、図19及び図20を参照して説明する。図19及び図20の各々は、それぞれ、本実施例のモード変換器10の反射特性及び透過特性を示すグラフである。
本実施例のモード変換器10は、図1及び図2に示したモード変換器10において、Eバンドと呼ばれる71GHz以上86GHz以下の帯域を動作帯域とすることを目指し、以下の設計パラメータを採用した。具体的には、本実施例のモード変換器10において、カットオフ周波数として59.62GHzを採用した。なお、該カットオフ周波数の1.5倍である77.5GHzにおける管内波長は、3.1mmである。
なお、上述したように、本明細書においては、Eバンドを動作帯域とし、SパラメータS(1,1)が-20dBを下回り、且つ、SパラメータS(2,1)が-0.5dBを上回れば良好な性能とみなす。この点については、後述する各実施例であって、Eバンドを動作帯域とする各実施例についても同様である。なお、図19及び図20に示した一点鎖線のうちy軸に平行な一点鎖線は、71GHz及び86GHzを示す。また、図19に示した一点鎖線のうちx軸に平行な一点鎖線は、-20dBを示し、図20に示した一点鎖線のうちx軸に平行な一点鎖線は、-0.5dBを示す。
(設計パラメータ)
・基板11:石英製(T11=0.45mm)
・ポスト壁導波路PW:W1=1.54mm
・基板15:Megtron6(登録商標)(T15=125μm)
・導体層12,13:銅製(厚さ10μm)
・導体層17:銅製(厚さ18μm)
・開口121:L2=1.4mm、W2=150μm、D1=75μm、D2=D3=375μm
・帯状導体16B:銅製(厚さ20μm)、L3=275μm、W3=250μm
・半田18:TS=30μm
本実施例のモード変換器10は、図19に示すように、69.8GHz以上88.2GHz以下の帯域においてSパラメータS(1,1)が-20dBを下回り、図20に示すように、68.4GHz以上90GHz以下の帯域においてSパラメータS(2,1)が-0.5dBを上回ることが分かった。すなわち、本実施例のモード変換器10Bは、動作帯域であるEバンドにおいて良好な性能を有することが分かった。
・基板11:石英製(T11=0.45mm)
・ポスト壁導波路PW:W1=1.54mm
・基板15:Megtron6(登録商標)(T15=125μm)
・導体層12,13:銅製(厚さ10μm)
・導体層17:銅製(厚さ18μm)
・開口121:L2=1.4mm、W2=150μm、D1=75μm、D2=D3=375μm
・帯状導体16B:銅製(厚さ20μm)、L3=275μm、W3=250μm
・半田18:TS=30μm
本実施例のモード変換器10は、図19に示すように、69.8GHz以上88.2GHz以下の帯域においてSパラメータS(1,1)が-20dBを下回り、図20に示すように、68.4GHz以上90GHz以下の帯域においてSパラメータS(2,1)が-0.5dBを上回ることが分かった。すなわち、本実施例のモード変換器10Bは、動作帯域であるEバンドにおいて良好な性能を有することが分かった。
<第6の実施例群>
本発明の第6の実施例群であり、図1及び図2に示したモード変換器10の実施例群について、図21及び図22を参照して説明する。図21は、第6の実施例群のモード変換器10の反射特性を示すグラフである。図22は、第6の実施例群のモード変換器10の透過特性を示すグラフである。
本発明の第6の実施例群であり、図1及び図2に示したモード変換器10の実施例群について、図21及び図22を参照して説明する。図21は、第6の実施例群のモード変換器10の反射特性を示すグラフである。図22は、第6の実施例群のモード変換器10の透過特性を示すグラフである。
本実施例群のモード変換器10は、図1及び図2に示したモード変換器10において、28GHz帯を含む動作帯域を実現することを目指し、以下の設計パラメータを採用した。具体的には、本実施例のモード変換器10において、カットオフ周波数として19.68GHzを採用した。なお、該カットオフ周波数の1.42倍である28GHzにおける管内波長は、7.7mmである。
なお、図21及び図22に示した一点鎖線のうちy軸に平行な一点鎖線は、27GHz及び29.5GHzを示す。また、図21に示した一点鎖線のうちx軸に平行な一点鎖線は、-20dBを示す。
本実施例群のモード変換器10は、以下の設計パラメータを採用した。第6の実施例群のモード変換器10の各々は、基板15の厚さT15を、50μm以上300μm以下の範囲内で変化させることによって得られる。また、厚さT15を上述した範囲内で変化させることにともない、帯状導体16の幅W3を厚さT15の2倍になるように変化させている。すなわち、第6の実施例群のモード変換器10において、幅W3は、100μm以上600μm以下の範囲内で変化させている。このように、厚さT15の二倍になるように幅W3を定めることによって、マイクロストリップ線路MSの入力インピーダンスをおおよそ50Ωにすることができる。
(設計パラメータ)
・基板11:石英製(T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=50,100,200,300μm)
・導体層12,13:銅製(厚さ10μm)
・導体層17:銅製(厚さ18μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ18μm)、L3=600μm、W3=100,200,400,600μm
・半田18:TS=30μm
本実施例群のモード変換器10の各々は、図21に示すように、27GHz以上29.5GHz以下の動作帯域においてSパラメータS(1,1)が-20dBを下回り、図22に示すように、該動作帯域においてSパラメータS(2,1)が-0.5dBを上回ることが分かった。すなわち、本実施例群のモード変換器10の各々は、上記動作帯域において良好な性能を有することが分かった。
・基板11:石英製(T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=50,100,200,300μm)
・導体層12,13:銅製(厚さ10μm)
・導体層17:銅製(厚さ18μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ18μm)、L3=600μm、W3=100,200,400,600μm
・半田18:TS=30μm
本実施例群のモード変換器10の各々は、図21に示すように、27GHz以上29.5GHz以下の動作帯域においてSパラメータS(1,1)が-20dBを下回り、図22に示すように、該動作帯域においてSパラメータS(2,1)が-0.5dBを上回ることが分かった。すなわち、本実施例群のモード変換器10の各々は、上記動作帯域において良好な性能を有することが分かった。
<第4の変形例>
本発明の第4の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Dについて、図23を参照して説明する。図23は、モード変換器10Dの断面図である。
本発明の第4の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Dについて、図23を参照して説明する。図23は、モード変換器10Dの断面図である。
モード変換器10Dは、モード変換器10をベースにして、導体層17の端辺のうち開口121に近接する側の端辺の位置と、半田18に対応する半田18Dの端辺のうち開口121に近接する側の端辺の位置とを異ならせることによって得られる。なお、本変形例においても、ショート壁14cを構成するスルービア14iの中心軸と、導体層17との最短距離のことを距離D2と呼び、ショート壁14cを構成するスルービア14iの中心軸と、半田18との最短距離のことを距離D3と呼ぶ。図23に示したモード変換器10Dにおいて、距離D2及び距離D3は、差分ΔDが正であるものとして、D3=D2+ΔDすなわちD3>D2となるように定められている。
本発明の一態様においては、モード変換器10Dのように、距離D2及び距離D3の各々が異なっていてもよい。また、本変形例では、距離D2及び距離D3がD3>D2を満たす場合を用いて説明している。しかし、モード変換器10Dの一態様において、距離D2及び距離D3は、D3<D2を満たすように構成されていてもよい。
<第7の実施例群>
本発明の第7の実施例群であり、図23に示した第4の変形例の実施例群であるモード変換器10Dについて、図24を参照して説明する。図24は、本実施例群のモード変換器10Dの反射特性を示すグラフである。なお、本実施例群のモード変換器10Dは、Eバンドを動作帯域とすることを目指して設計されている。
本発明の第7の実施例群であり、図23に示した第4の変形例の実施例群であるモード変換器10Dについて、図24を参照して説明する。図24は、本実施例群のモード変換器10Dの反射特性を示すグラフである。なお、本実施例群のモード変換器10Dは、Eバンドを動作帯域とすることを目指して設計されている。
本実施例群のモード変換器10Dは、第5の実施例のモード変換器10をベースにし、差分ΔDとしてΔD=100μm,200μmを採用することによって得られる。なお、図24に示すΔD=0μmのプロットは、第5の実施例のモード変換器10の反射特性である。
図24を参照すれば、差分ΔDが大きくなればなるほど動作帯域の帯域幅が狭くなることが分かった。換言すれば、できるだけ帯域幅が広い動作帯域を実現するために、差分ΔDは、小さいほうが好ましい。
<第8の実施例群>
本発明の第8の実施例群であり、図23に示した第4の変形例の実施例群であるモード変換器10Dについて、図25を参照して説明する。図25は、本実施例群のモード変換器10Dの反射特性を示すグラフである。なお、本実施例群のモード変換器10Dは、28GHz帯を含む動作帯域を実現することを目指して設計されている。
本発明の第8の実施例群であり、図23に示した第4の変形例の実施例群であるモード変換器10Dについて、図25を参照して説明する。図25は、本実施例群のモード変換器10Dの反射特性を示すグラフである。なお、本実施例群のモード変換器10Dは、28GHz帯を含む動作帯域を実現することを目指して設計されている。
本実施例群のモード変換器10Dは、第6の実施例群のモード変換器10のうち基板15の厚さT15が300μmであるモード変換器10をベースにし、差分ΔDとしてΔD=100μm,200μmを採用することによって得られる。
図25を参照すれば、差分ΔDが大きくなればなるほど動作帯域の帯域幅が狭くなることが分かった。換言すれば、できるだけ帯域幅が広い動作帯域を実現するために、差分ΔDは、小さいほうが好ましい。
<第9の実施例>
本発明の第9の実施例であり、図1及び図2に示したモード変換器10の実施例について、図26及び図27を参照して説明する。図26は、第9の実施例のモード変換器10の反射特性を示すグラフである。図27は、第9の実施例のモード変換器10の透過特性を示すグラフである。
本発明の第9の実施例であり、図1及び図2に示したモード変換器10の実施例について、図26及び図27を参照して説明する。図26は、第9の実施例のモード変換器10の反射特性を示すグラフである。図27は、第9の実施例のモード変換器10の透過特性を示すグラフである。
本実施例群のモード変換器10は、図1及び図2に示したモード変換器10において、32GHz帯を含む動作帯域であって、できるだけ帯域幅が広い動作帯域を実現することを目指し、以下の設計パラメータを採用した。具体的には、本実施例のモード変換器10において、カットオフ周波数として21.3GHzを採用した。なお、該カットオフ周波数の1.5倍である32GHzにおける管内波長は、9.38mmである。
(設計パラメータ)
・基板11:石英製(T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=100μm)
・導体層12,13:銅製(厚さ10μm)
・導体層17:銅製(厚さ20μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ20μm)、L3=600μm、W3=200μm
・半田18:TS=30μm
本実施例のモード変換器10の各々は、図26に示すように、21.5GHz以上44GHz以下の帯域においてSパラメータS(1,1)が-20dBを下回り、図27に示すように、22GHz以上44.8GHz以下の帯域においてSパラメータS(2,1)が-0.5dBを上回ることが分かった。すなわち、本実施例群のモード変換器10の各々は、22GHz以上44GHz以下の帯域において良好な性能を有することが分かった。
・基板11:石英製(T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=100μm)
・導体層12,13:銅製(厚さ10μm)
・導体層17:銅製(厚さ20μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ20μm)、L3=600μm、W3=200μm
・半田18:TS=30μm
本実施例のモード変換器10の各々は、図26に示すように、21.5GHz以上44GHz以下の帯域においてSパラメータS(1,1)が-20dBを下回り、図27に示すように、22GHz以上44.8GHz以下の帯域においてSパラメータS(2,1)が-0.5dBを上回ることが分かった。すなわち、本実施例群のモード変換器10の各々は、22GHz以上44GHz以下の帯域において良好な性能を有することが分かった。
<第5の変形例>
本発明の第5の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Eについて、図28を参照して説明する。図28は、モード変換器10Eの平面図である。
本発明の第5の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Eについて、図28を参照して説明する。図28は、モード変換器10Eの平面図である。
モード変換器10Eは、モード変換器10をベースにして、帯状導体16を帯状導体16Eに置換することによって得られる。
帯状導体16Eは、帯状導体16と同一に形成された長方形状の導体パターンである。帯状導体16Eは、帯状導体16と比較して、基板15の一方の主面上における位置が異なっている。具体的には、基板15の一方の主面を平面視した場合に、帯状導体16は、ポスト壁導波路PWの長手方向に平行な直線であって、ポスト壁導波路PWの幅W1を二等分する点の集合である直線であるB-B’線にその中心軸が一致するように配置されている。一方、帯状導体16Eは、基板15の一方の主面を平面視した場合に、B-B’線からギャップΔGだけ平行にずれて配置されている。図28においては、帯状導体16Eの中心軸と一致する直線をC-C’線で示している。
このように、帯状導体16Eの中心軸をB-B’線からずらして設けることができることによって、モード変換器10Eは、帯状導体16Eを配置する場合の自由度を高めることができる。
<第10の実施例群>
本発明の第10の実施例群であり、図28に示したモード変換器10Eの実施例群について、図29及び図30を参照して説明する。図29は、第10の実施例群の各モード変換器10Eの反射特性を示すグラフである。図30は、第10の実施例群の各モード変換器10Eの透過特性を示すグラフである。
本発明の第10の実施例群であり、図28に示したモード変換器10Eの実施例群について、図29及び図30を参照して説明する。図29は、第10の実施例群の各モード変換器10Eの反射特性を示すグラフである。図30は、第10の実施例群の各モード変換器10Eの透過特性を示すグラフである。
本実施例群のモード変換器10Eは、図28に示したモード変換器10Eにおいて、28GHz帯を含む動作帯域を実現することを目指し、以下の設計パラメータを採用した。本実施例群のモード変換器10Eの各々は、ギャップΔGを0μm以上900μm以下の範囲内で変化させることによって得られる。
(設計パラメータ)
・基板11:石英製(T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=100μm)
・導体層12,13:銅製(厚さ10μm)
・導体層17:銅製(厚さ18μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ18μm)、L3=600μm、W3=200μm、ΔG=0,100,200,300,400,500,600,700,800,900μm・半田18:TS=30μm
図29を参照すれば、本実施例群のモード変換器10Eにおいて、(1)ギャップΔGが0μm以上500μm以下である場合、27GHz以上29.5GHz以下の動作帯域においてSパラメータS(1,1)が-20dBを下回り、(2)ギャップΔGが600μmである場合、上記動作帯域の一部においてSパラメータS(1,1)が-20dBを上回り、(3)ギャップΔGが700μm以上900μm以下である場合、上記動作帯域においてSパラメータS(1,1)が-20dBを上回ることが分かった。
・基板11:石英製(T11=0.86mm)
・ポスト壁導波路PW:W1=4mm
・基板15:Megtron6(登録商標)(T15=100μm)
・導体層12,13:銅製(厚さ10μm)
・導体層17:銅製(厚さ18μm)
・開口121:L2=3.2mm、W2=400μm、D1=100μm、D2=D3=850μm
・帯状導体16B:銅製(厚さ18μm)、L3=600μm、W3=200μm、ΔG=0,100,200,300,400,500,600,700,800,900μm・半田18:TS=30μm
図29を参照すれば、本実施例群のモード変換器10Eにおいて、(1)ギャップΔGが0μm以上500μm以下である場合、27GHz以上29.5GHz以下の動作帯域においてSパラメータS(1,1)が-20dBを下回り、(2)ギャップΔGが600μmである場合、上記動作帯域の一部においてSパラメータS(1,1)が-20dBを上回り、(3)ギャップΔGが700μm以上900μm以下である場合、上記動作帯域においてSパラメータS(1,1)が-20dBを上回ることが分かった。
また、図30を参照すれば、本実施例群のモード変換器10Eにおいて、(4)ギャップΔGが0μm以上800μm以下である場合、上記動作帯域においてSパラメータS(2,1)が-0.5dBを上回り、(5)ギャップΔGが900μmである場合、上記動作帯域においてSパラメータS(2,1)が-0.5dBを下回ることが分かった。
以上の結果から、本実施例群のモード変換器10Eは、上記動作帯域において良好な性能を示すために、ギャップΔGとして0μm以上500μm以下の範囲内に含まれる値を採用することが好ましいことが分かった。
<第6の変形例>
本発明の第6の変形例であって、図28に示したモード変換器10Eの変形例であるモード変換器10Fについて、図31を参照して説明する。図31は、モード変換器10Fの平面図である。
本発明の第6の変形例であって、図28に示したモード変換器10Eの変形例であるモード変換器10Fについて、図31を参照して説明する。図31は、モード変換器10Fの平面図である。
モード変換器10Fは、モード変換器10Eをベースにして、開口121を開口121Fに置換することによって得られる。なお、モード変換器10Fが備えている帯状導体16Fは、モード変換器10Eが備えている帯状導体16Eと同一に構成されている。
開口121Fは、開口121と同様にポスト壁導波路PWの一方の広壁を構成する導体層12に設けられた開口であるが、その形状が開口121とは異なる。具体的には、基板15の一方の主面を平面視した場合に、開口121の形状は、長辺がショート壁14cに平行であり、短辺が狭壁14a,14bに平行である長方形状である。一方、開口121Fの形状は、本変形例では、開口121における一対の短辺の各々に対応する部分を一対の底(上底及び下底)とする等脚台形状である。なお、開口121Fの形状は、少なくとも台形状であればよく、等脚台形であることが好ましい。
以下において、開口121Fの幅(短辺に沿った長さ)の最小値(すなわち図31に示した配置における上底の長さ)を幅W2aと呼び、開口121Fの幅の最大値(すなわち図31に示した配置における下底の長さ)を幅W2bと呼ぶ。
ポスト壁導波路PWの幅W1を二等分する点の集合であるB-B’線を境界として、2つに分けられるモード変換器10Fの領域のうち、(1)帯状導体16Fの中心軸(C-C’線ともいえる)が配置されている側の領域(図31に示した配置における下側の領域)を第1の領域と称し、(2)帯状導体16Fの中心軸が配置されていない側の領域(図31に示した配置における上側の領域)を第2の領域と称する。開口121Fは、一対の底のうち、長い方の底が上記第1の領域に位置し、短い方の底が上記第2の領域に位置するように、導体層12に設けられている。別の言い方をすれば、帯状導体16Fの中心軸から上底までの距離が、該中心軸から下底までの距離を上回る。なお、図31に示した配置において、上底は、一対の底のうち長さが短い底であり、下底は、一対の底のうち長さが長い底である。
幅W2a及び幅W2bの各々は、動作帯域やギャップΔG等に応じて適宜定めることができるが、本実施形態においては、幅W2a,W2bの各々として、W2a=100μm及びW2b=400μmを採用している。
図28に示したモード変換器10Eのように、帯状導体16Eの中心軸をB-B’線からずらして設けた場合、該中心軸がB-B’線に一致している場合と比較して、反射特性及び透過特性が低下する場合がある。モード変換器10Fにおいては、帯状導体16Fの中心軸をB-B’線からずらして設けたうえで、等脚台形状の開口121Fを採用している。したがって、帯状導体16Fの中心軸をB-B’線からずらして設けた場合に生じ得る反射特性及び透過特性の低下を抑制することができる。すなわち、モード変換器10Fは、帯状導体16Fを配置する場合の自由度を高めつつ、反射特性及び透過特性の低下を抑制することができる。
<第11の実施例群>
本発明の第11の実施例群であり、図31に示したモード変換器10Fの実施例群について、図32及び図33を参照して説明する。図32は、第11の実施例群の各モード変換器10Fの反射特性を示すグラフである。図33は、第11の実施例群の各モード変換器10Fの透過特性を示すグラフである。
本発明の第11の実施例群であり、図31に示したモード変換器10Fの実施例群について、図32及び図33を参照して説明する。図32は、第11の実施例群の各モード変換器10Fの反射特性を示すグラフである。図33は、第11の実施例群の各モード変換器10Fの透過特性を示すグラフである。
本実施例群のモード変換器10Fは、図31に示したモード変換器10Fにおいて、28GHz帯を含む動作帯域を実現することを目指し、第10の実施例群であるモード変換器10Eのうち、ΔG=600μmであるモード変換器10Eをベースにした。そのうえで、幅W2bを400μmに固定し、幅W2aを50μm以上400μm以下の範囲内で変化させることによって得られる。なお、図32及び図33に示したプロットのうち、W2a=400μmであるプロットは、ΔG=600μmであるモード変換器10Eに対応する。
図32を参照すれば、本実施例群のモード変換器10Fにおいて、幅W2aを400μmから50μmまで縮小することにともなって、反射特性が改善されることが分かった。より具体的には、本実施例群のモード変換器10Fにおいて、(1)幅W2aが50μm以上300μm以下である場合、27GHz以上29.5GHz以下の動作帯域においてSパラメータS(1,1)が-20dBを下回り、(2)幅W2aが350μm以上400μm以下である場合、上記動作帯域の一部においてSパラメータS(1,1)が-20dBを上回ることが分かった。
また、図33を参照すれば、本実施例群のモード変換器10Fにおいて、幅W2aを400μmから50μmまで縮小することにともなって、透過特性が改善されることが分かった。なお、本実施例群のモード変換器10Fにおいて、幅W2aが50μm以上400μm以下である場合、上記動作帯域においてSパラメータS(2,1)は、-0.5dBを上回った。
以上の結果から、本実施例群のモード変換器10Fは、上記動作帯域において良好な性能を示すために、幅W2aとして50μm以上300μm以下の範囲内に含まれる値を採用することが好ましいことが分かった。
<第12の実施例群>
本発明の第12の実施例群であり、図31に示したモード変換器10Fの実施例について、図34及び図35を参照して説明する。図34は、第12の実施例群の各モード変換器10Fの反射特性を示すグラフである。図35は、第12の実施例群の各モード変換器10Fの透過特性を示すグラフである。
本発明の第12の実施例群であり、図31に示したモード変換器10Fの実施例について、図34及び図35を参照して説明する。図34は、第12の実施例群の各モード変換器10Fの反射特性を示すグラフである。図35は、第12の実施例群の各モード変換器10Fの透過特性を示すグラフである。
本実施例のモード変換器10Fは、図31に示したモード変換器10Fにおいて、28GHz帯を含む動作帯域を実現することを目指し、第10の実施例群であるモード変換器10Eのうち、ΔG=700μmであるモード変換器10Eをベースにした。そのうえで、幅W2bを400μmに固定し、幅W2aとして50μm及び400μmを採用することによって得られる。なお、図34及び図35に示したプロットのうち、W2a=400μmであるプロットは、ΔG=700μmであるモード変換器10Eに対応する。
図34を参照すれば、本実施例群のモード変換器10Fにおいて、W2a=50μmを採用することによって、W2a=400μmを採用する場合と比較して、反射特性が改善されることが分かった。より具体的には、本実施例群のモード変換器10Fにおいて、(1)幅W2aが50μmである場合、27GHz以上29.5GHz以下の動作帯域においてSパラメータS(1,1)が-20dBを下回り、(2)幅W2aが400μmである場合、上記動作帯域の一部においてSパラメータS(1,1)が-20dBを上回ることが分かった。
また、図35を参照すれば、本実施例群のモード変換器10Fにおいて、W2a=50μmを採用することによって、W2a=400μmを採用する場合と比較して、透過特性が改善されることが分かった。なお、本実施例群のモード変換器10Fにおいて、幅W2aが50μm以上400μm以下である場合、上記動作帯域においてSパラメータS(2,1)は、-0.5dBを上回った。
以上の結果から、本実施例群のモード変換器10Fは、上記動作帯域において良好な性能を示すために、幅W2aとして50μm以上400μm未満の範囲内に含まれる値を採用することが好ましいことが分かった。
〔第3の実施形態〕
本発明の第3の実施形態に係るRFモジュール1Fについて、図36を参照して説明する。図36は、RFモジュール1Fの平面図である。
本発明の第3の実施形態に係るRFモジュール1Fについて、図36を参照して説明する。図36は、RFモジュール1Fの平面図である。
図36に示すように、RFモジュール1Fは、一対のモード変換器であるモード変換器10Fa及びモード変換器10Fbと、RFIC21Fと、を備えている。RFIC21Fは、モード変換器10Faのマイクロストリップ線路MSFa、及び、モード変換器10Fbのマイクロストリップ線路MSFbを構成する基板15Fの一方の主面(モード変換器10Faのポスト壁導波路PWFa及びモード変換器10Fbのポスト壁導波路PWFbから遠い側の主面)に実装されている。
RFIC21Fは、出力ポートと入力ポートとを備えている。出力ポートは、信号端子E1aと、信号端子E1aを挟み込むように配置されたグランド端子E2a,E3aとにより構成されている。入力ポートは、信号端子E1bと、信号端子E1bを挟み込むように配置されたグランド端子E2b,E3bとにより構成されている。すなわち、出力ポート及び入力ポートの各々は、グランド用-信号用-グランド用の順番で端子が配列されたGSG配置のポートである。
<モード変換器10Fa,10Fbの構成>
モード変換器10Fa及びモード変換器10Fbの各々は、何れも、図31に示したモード変換器10Fの一具体例であり、モード変換器10Fと同様に構成されている。そのため、本実施形態において、モード変換器10Fa,10Fbについては、モード変換器10Fa,10Fbの各々を構成する各部材と、モード変換器10Fを構成する各部材との対応関係を示すに留め各部材の説明を省略する。
モード変換器10Fa及びモード変換器10Fbの各々は、何れも、図31に示したモード変換器10Fの一具体例であり、モード変換器10Fと同様に構成されている。そのため、本実施形態において、モード変換器10Fa,10Fbについては、モード変換器10Fa,10Fbの各々を構成する各部材と、モード変換器10Fを構成する各部材との対応関係を示すに留め各部材の説明を省略する。
図36に示すように、モード変換器10Fa,10Fbの各々は、それぞれ、ポスト壁導波路PWFa,PWFbと、マイクロストリップ線路MSFa,MSFbと、を備えている。
(ポスト壁導波路PWFa,PWFb)
ポスト壁導波路PWFaと、ポスト壁導波路PWFbとは、各々の延伸方向が平行且つ近接して配置されている。ポスト壁導波路PWFaと、ポスト壁導波路PWFbとは、図36に図示されていない領域において電磁気的に結合されることによって、1つのポスト壁導波路PWFを構成している。したがって、ポスト壁導波路PWFaは、ポスト壁導波路PWFの一方の端部領域であり、ポスト壁導波路PWFbは、ポスト壁導波路PWFの他方の端部領域である。ポスト壁導波路PWFを平面視した場合の形状は、特に限定されず適宜定めることができる。
ポスト壁導波路PWFaと、ポスト壁導波路PWFbとは、各々の延伸方向が平行且つ近接して配置されている。ポスト壁導波路PWFaと、ポスト壁導波路PWFbとは、図36に図示されていない領域において電磁気的に結合されることによって、1つのポスト壁導波路PWFを構成している。したがって、ポスト壁導波路PWFaは、ポスト壁導波路PWFの一方の端部領域であり、ポスト壁導波路PWFbは、ポスト壁導波路PWFの他方の端部領域である。ポスト壁導波路PWFを平面視した場合の形状は、特に限定されず適宜定めることができる。
ポスト壁導波路PWFaは、ポスト壁導波路PWFを構成する一対のショート壁のうち一方のショート壁であるショート壁14acを含む。ポスト壁導波路PWFbは、ポスト壁導波路PWFを構成する一対のショート壁のうち他方のショート壁であるショート壁14bcを含む。ポスト壁導波路PWFaにおいて、一方の広壁を構成する導体層12Fのうちショート壁14acの近傍には開口121Fa(第1の開口の一例)が設けられている。ポスト壁導波路PWFbにおいて、一方の広壁を構成する導体層12Fのうちショート壁14bcの近傍には開口121Fb(第2の開口の一例)が設けられている。開口121Fa,121Fbは、モード変換器10Fにおける開口121Fに対応する。
開口121Fa,121Fbは、等脚台形状である。なお、開口121Fa,121Fbは、台形状であってもよい。ポスト壁導波路PWFを平面視した場合に、開口121Faは、等脚台形状を形成する一対の底がポスト壁導波路PWFaを構成する狭壁14Faa及び狭壁14Fabbの各々と平行になるように、且つ、後述する帯状導体16Faの中心軸から開口121Faの一対の底のうち長さが短い底までの距離が、帯状導体16Faの中心軸から開口121Faの一対の底のうち長さが長い底までの距離を上回る、ように配置されている。また、ポスト壁導波路PWFを平面視した場合に、開口121Fbは、等脚台形状を形成する一対の底がポスト壁導波路PWFbを構成する狭壁14Fba及び狭壁14Fabbの各々と平行になるように、且つ、後述する帯状導体16Fbの中心軸から開口121Fbの一対の底のうち長さが短い底までの距離が、帯状導体16Fbの中心軸から開口121Fbの一対の底のうち長さが長い底までの距離を上回る、ように配置されている。また、開口121Faの一対の底のうち長さが長い底は、狭壁14Fabb側にあり、開口121Fbの一対の底のうち長さが長い底は、狭壁14Fabb側にある。
ポスト壁導波路PWFa,PWFbと、マイクロストリップ線路MSFa,MSFbとは、図36に図示していない半田を用いて接合されている。この半田は、導体層12Fと導体層17Fとを短絡するとともに接合する接合部材の一例であり、モード変換器10が備えている半田18に対応する。
ポスト壁導波路PWFは、導波領域の形状及びサイズに依存したカットオフ周波数を有する。したがって、ポスト壁導波路PWFは、ハイパスフィルタとして機能する。また、導波領域の内部に電磁気的に結合した複数の共振器を設けた場合、ポスト壁導波路PWFは、バンドパスフィルタとして機能する。したがって、RFモジュール1Fは、(1)RFIC21Fの出力ポートからマイクロストリップ線路MSFaを介してポスト壁導波路PWFに供給された高周波に対して所定のフィルタリング処理を施したうえで、(2)フィルタリング処理を施された高周波をポスト壁導波路PWFからマイクロストリップ線路MSFbを介してRFIC21Fの入力ポートに供給することができる。
ポスト壁導波路PWFa,PWFbを含むポスト壁導波路PWFは、基板11Fと、導体層12F,13Fと、を備えている。基板11F及び導体層12F,13Fは、ポスト壁導波路PWFa,PWFbを含むポスト壁導波路PWFにおいて共通の部材である。また、ポスト壁導波路PWFa,PWFbの各々は、それぞれ、ポスト壁14Fa,14Fbを備えている。基板11Fは、モード変換器10の基板11に対応し、導体層12F,13Fは、モード変換器10の導体層12,13に対応し、ポスト壁14Fa,14Fbは、モード変換器10のポスト壁14に対応する。なお、導体層13Fは、図36に図示されていない。
RFモジュール1Fにおいて、ポスト壁導波路PWFa,PWFbの各々は、それぞれの導波領域が延伸されている方向が平行になるように、且つ、それぞれの間隔ができるだけ狭くなるように配置されている。そのため、ポスト壁導波路PWFa,PWFbの各々は、ポスト壁14Fa,14Fbを構成する狭壁のうちポスト壁導波路PWFa,PWFbを隔てる狭壁14Fabbを共有している。ショート壁14Facとともにポスト壁14Faを構成する狭壁14Faaと狭壁14Fabbとは、互いに平行である。また、ショート壁14Fbcとともにポスト壁14Fbを構成する狭壁14Fbaと狭壁14Fabbとは、互いに平行である。
(マイクロストリップ線路MSFa,MSFb)
マイクロストリップ線路MSFa,MSFbは、基板15Fと、導体層17Fとを備えている。基板15F及び導体層17Fは、マイクロストリップ線路MSFa,MSFbにおいて共通の部材である。マイクロストリップ線路MSFa,MSFbの各々は、それぞれ、帯状導体16Fa,16Fbを備えている。基板15Fは、モード変換器10の基板15に対応し、導体層17Fは、モード変換器10の導体層17に対応し、帯状導体16Fa,16Fbは、モード変換器10の帯状導体16に対応する。また、帯状導体16Fa,16Fbの各々は、それぞれ、第3の帯状導体及び第4の帯状導体の一例である。
マイクロストリップ線路MSFa,MSFbは、基板15Fと、導体層17Fとを備えている。基板15F及び導体層17Fは、マイクロストリップ線路MSFa,MSFbにおいて共通の部材である。マイクロストリップ線路MSFa,MSFbの各々は、それぞれ、帯状導体16Fa,16Fbを備えている。基板15Fは、モード変換器10の基板15に対応し、導体層17Fは、モード変換器10の導体層17に対応し、帯状導体16Fa,16Fbは、モード変換器10の帯状導体16に対応する。また、帯状導体16Fa,16Fbの各々は、それぞれ、第3の帯状導体及び第4の帯状導体の一例である。
モード変換器10Faにおいて、マイクロストリップ線路MSFaにおけるモードと、ポスト壁導波路PWFaにおけるモードとは、帯状導体16Faの一部と、開口121Faの一部とが平面視において重畳している領域を介して結合される。同様に、モード変換器10Fbにおいて、マイクロストリップ線路MSFbにおけるモードと、ポスト壁導波路PWFbにおけるモードとは、帯状導体16Fbの一部と、開口121Fbの一部とが平面視において重畳している領域を介して結合される。すなわち、モード変換器10Fa,10Fbは、励振ピンを用いることなく、帯状導体16Fa,16Fbとは直接接触しない開口121Fa,121Fbを介して、これらのモードを変換することができる。
RFモジュール1Fにおいて、モード変換器10Fa,10Fbの各々は、狭壁14Fabbを構成する各スルービアの中心軸を含む平面を対称面として、鏡映対称になるように構成されている。
図36に示したB-B’線は、図31に示したB-B’線と同じく、ポスト壁導波路PWFaの幅を二等分する点の集合である直線であり、図36に示したC-C’線は、図31に示したC-C’線と同じく、帯状導体16Faの中心軸と一致する直線である。図36に示したD-D’線は、ポスト壁導波路PWFbの幅を二等分する点の集合である直線であり、図36に示したE-E’線は、帯状導体16Fbの中心軸と一致する直線である。
図36に示すように、帯状導体16Fa,16Fbの各々は、それぞれ、B-B’線の位置及びD-D’線の位置を基準として、それぞれの中心軸同士の間隔が近づく方向に、ギャップΔGa,ΔGbだけ平行にずれて配置されている。すなわち、ポスト壁導波路PWFを平面視した場合に、帯状導体16Faの中心軸及び帯状導体16Fbの中心軸は、何れも、B-B’線とD-D’線との間に位置する。なお、RFモジュール1Fにおいて、ΔGa=ΔGbである。そこで、以下においては、ギャップΔGa,ΔGbのことを単にギャップΔGとも記載する。
<RFIC21Fを実装するための構成>
帯状導体16Faの一対の先端部のうち、開口121Faに近く且つ開口121Faから突出している先端部を一方の先端部とし、開口121Faから遠い側の先端部を他方の先端部と称する。帯状導体16Faの他方の先端部は、RFIC21Fの信号端子E1aと接続するための信号用導体パッドとして機能する。帯状導体16Faの他方の先端部の両脇には、該他方の先端部を挟み込むように、RFIC21Fのグランド端子E2a,E3aの各々と接続するためのグランド用導体パッドG2a,G3aが形成されている。グランド用導体パッドG2a,G3aの各々は、導体層12Fと短絡されている。このように、帯状導体16Faの他方の先端部及び近傍には、RFIC21Fの出力ポートを接続するための端子であって、グランド用-信号用-グランド用の順番で導体パッドが配列されたGSG配置の端子が形成されている。
帯状導体16Faの一対の先端部のうち、開口121Faに近く且つ開口121Faから突出している先端部を一方の先端部とし、開口121Faから遠い側の先端部を他方の先端部と称する。帯状導体16Faの他方の先端部は、RFIC21Fの信号端子E1aと接続するための信号用導体パッドとして機能する。帯状導体16Faの他方の先端部の両脇には、該他方の先端部を挟み込むように、RFIC21Fのグランド端子E2a,E3aの各々と接続するためのグランド用導体パッドG2a,G3aが形成されている。グランド用導体パッドG2a,G3aの各々は、導体層12Fと短絡されている。このように、帯状導体16Faの他方の先端部及び近傍には、RFIC21Fの出力ポートを接続するための端子であって、グランド用-信号用-グランド用の順番で導体パッドが配列されたGSG配置の端子が形成されている。
帯状導体16Faの他方の先端部には、バンプB1aを用いて信号端子E1aが接続され、グランド用導体パッドG2a,G3aの各々には、それぞれ、バンプB2a,B3aを用いてグランド端子E2a,E3aの各々が接続されている。
同様に、帯状導体16Fbの一対の先端部のうち、開口121Fbに近く且つ開口121Fbから突出している先端部を一方の先端部とし、開口121Fbから遠い側の先端部を他方の先端部と称する。帯状導体16Fbの他方の先端部及び近傍には、RFIC21Fの入力ポートを接続するための端子であって、GSG配置の端子が形成されている。このGSG配置の端子は、帯状導体16Fbの他方の先端部と、該他方の先端部を挟み込むように配置されたグランド用導体パッドG2b,G3bとにより構成されている。帯状導体16Fbの他方の先端部には、バンプB1bを用いて信号端子E1bが接続され、グランド用導体パッドG2b,G3bの各々には、それぞれ、バンプB2b,B3bを用いてグランド端子E2b,E3bの各々が接続されている。
RFモジュール1Fによれば、帯状導体16Faの中心軸がB-B’線に一致するように帯状導体16Faが設けられ、且つ、帯状導体16Fbの中心軸がD-D’線に一致するように帯状導体16Fbが設けられている場合と比較して、帯状導体16Fa,16Fbの各々の中心軸同士の間隔を2ΔGだけ狭めることができる。したがって、出力ポートを構成する信号端子E1aと、入力ポートを構成する信号端子E1bとの間隔が、B-B’線とD-D’線との間隔(すなわち、ポスト壁導波路PWFa,PWFbの幅)よりも狭いRFIC21Fを、マイクロストリップ線路MSFa,MSFbに実装する場合であっても、容易に実装することができる。
<第7の変形例>
本発明の第7の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Gについて、図37を参照して説明する。図37は、モード変換器10Gの断面図である。
本発明の第7の変形例であって、図1及び図2に示したモード変換器10の変形例であるモード変換器10Gについて、図37を参照して説明する。図37は、モード変換器10Gの断面図である。
モード変換器10Gは、モード変換器10をベースにして、コネクタ19Gを追加することによって得られる。コネクタ19Gは、所望の動作帯域に含まれる高周波を伝送可能なコネクタであればよく、例えば、市販されているコネクタの中から適宜選択することができる。したがって、モード変換器10Gにおいて、コネクタ19Gの内部構造は限定されない。そのため、図37においては、コネクタ19Gの内部構造の図示を省略している。本変形例では、コネクタ19Gとして、同軸コネクタの対を構成するジャック側コネクタ及びプラグ側コネクタのうちジャック側コネクタを採用している。
コネクタ19Gは、マイクロストリップ線路MSの端部であって、開口121を介してポスト壁導波路PWと結合している端部と逆側の端部において、基板15Gに対して固定されている。
同軸コネクタであるコネクタ19Gは、中央導体と、外側導体とを備えている。中央導体は、マイクロストリップ線路MSの帯状導体16と電気的に接続されている。外側導体は、シェルとも呼ばれ、マイクロストリップ線路MSの導体層17と電気的に接続されている。
このように構成されたモード変換器10Gは、外部からコネクタ19Gに結合されるモードと、ポスト壁導波路PWにおけるモードとを、マイクロストリップ線路MSを介して変換することができる。そのうえで、モード変換器10Gは、従来のモード変換器が備えていた励振ピンを用いていないためモード変換器10と同様の効果を奏する。
〔まとめ〕
上記の課題を解決するために、本発明の第1の態様に係るモード変換器は、一方の広壁に開口が設けられたポスト壁導波路と、一方の主面及び他方の主面の少なくとも何れかに帯状導体が形成された誘電体製の基板と、上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、を備え、上記ポスト壁導波路を平面視した場合に、上記開口の少なくとも一部と、上記帯状導体の少なくとも一部とは、重畳している。
上記の課題を解決するために、本発明の第1の態様に係るモード変換器は、一方の広壁に開口が設けられたポスト壁導波路と、一方の主面及び他方の主面の少なくとも何れかに帯状導体が形成された誘電体製の基板と、上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、を備え、上記ポスト壁導波路を平面視した場合に、上記開口の少なくとも一部と、上記帯状導体の少なくとも一部とは、重畳している。
上記の構成によれば、ポスト壁導波路の一方の広壁に設けられた開口を介して、ポスト壁導波路におけるモードと、ポスト壁導波路とは異なる基板に形成された帯状導体を信号線とする線路におけるモードと、結合させることができる。すなわち、本モード変換器は、従来のモード変換器が備えていた励振ピンを用いることなく、ポスト壁導波路におけるモードと、ポスト壁導波路とは異なる基板に形成された帯状導体を信号線とする線路におけるモードと、を変換することができる。したがって、本モード変換器は、従来のモード変換器よりも環境温度の変化に起因する伝送不良を生じにくい。
本発明の第2の態様に係るモード変換器は、上記第1の態様において、上記帯状導体は、TEM線路又は準TEM線路の信号線を構成する。
本モード変換器は、このように、TEM線路又は準TEM線路におけるモードと、ポスト壁導波路におけるモードと、を変換するモード変換器として好適である。
本発明の第3の態様に係るモード変換器は、上記第2の態様において、上記TEM線路又は準TEM線路は、マイクロストリップ線路、ストリップ線路、コプレナー線路、グランド付きコプレナー線路、及び平行2線路のうちいずれかである。
本モード変換器は、このように、マイクロストリップ線路、ストリップ線路、コプレナー線路、グランド付きコプレナー線路、及び平行2線路のうちいずれかにおけるモードと、ポスト壁導波路におけるモードと、を変換するモード変換器として好適である。
本発明の第4の態様に係るモード変換器は、上記第1~第3の態様の何れかにおいて、上記ポスト壁導波路を平面視した場合に、上記帯状導体のうち上記開口と重畳している領域の近傍には、スタブが形成されている。
上記の構成によれば、スタブを適宜設計することによって、インピーダンス整合を図ることができ、延いては、本モード変換器における反射損失を抑制することができる。
本発明の第5の態様に係るモード変換器は、上記第1~第4の態様の何れかにおいて、上記ポスト壁導波路は、フィルタ、方向性結合器、ダイプレクサ、及びアンテナの何れかとして機能する。
上記の構成によれば、帯状導体を信号線とする線路と、フィルタ、方向性結合器、ダイプレクサ、及びアンテナの何れかと、を結合する場合に、従来よりも環境温度の変化に起因する伝送不良を生じにくくさせることができる。
本発明の第6の態様に係るモード変換器は、上記第1~第5の態様の何れかにおいて、上記ポスト壁導波路を平面視した場合に、上記ポスト壁導波路を構成する一対の狭壁同士は、平行であり、且つ、上記ポスト壁導波路の幅を二等分する点の集合である直線と、上記帯状導体の中心軸とは、ずれている。
上記の構成によれば、帯状導体の中心軸をポスト壁導波路の幅を二等分する点の集合である直線からずらして設けることができる。したがって、本モード変換器は、帯状導体を配置する場合の自由度を高めることができる。
本発明の第7の態様に係るモード変換器は、上記第6の態様において、上記開口は、台形状であり、上記ポスト壁導波路を平面視した場合に、上記開口は、上記台形状を形成する一対の底が上記一対の狭壁の各々と平行になるように、且つ、上記中心軸から上記一対の底のうち長さが短い底までの距離が、上記中心軸から上記一対の底のうち長さが長い底までの距離を上回る、ように配置されている。
上記の構成によれば、帯状導体の中心軸をポスト壁導波路の幅を二等分する点の集合である直線からずらして設けた場合に生じ得る反射特性及び透過特性の低下を抑制することができる。すなわち、本モード変換器は、帯状導体を配置する場合の自由度を高めつつ、反射特性及び透過特性の低下を抑制することができる。
本発明の第8の態様に係るモード変換器は、上記第1~第7の態様の何れかにおいて、上記帯状導体に電気的に接続された中央導体を備えた同軸コネクタであって、少なくとも上記基板に固定された同軸コネクタを更に備えている。
上記の構成によれば、外部から同軸コネクタに結合されるモードと、ポスト壁導波路におけるモードとを、マイクロストリップ線路を介して変換することができる。そのうえで、本モード変換器は、従来のモード変換器が備えていた励振ピンを用いていないため、第1の態様に係るモード変換器と同様の効果を奏する。
上記の課題を解決するために、本発明の第9の態様に係るRFモジュールは、一方の広壁の第1のショート壁の近傍に第1の開口が設けられ、且つ、上記一方の広壁の第2のショート壁の近傍に第2の開口が設けられたポスト壁導波路と、一方の主面及び他方の主面の少なくとも何れかに第1の帯状導体が形成され、且つ、上記一方の主面及び上記他方の主面の少なくとも何れかに第2の帯状導体が形成され、且つ、上記一方の主面及び上記他方の主面の少なくとも何れかにアンテナが形成された誘電体製の基板と、上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、上記基板の一方の主面に実装され、且つ、何れかの端子が上記第1の帯状導体に電気的に接続されたRFICと、を備え、上記アンテナは、上記第2の帯状導体に電気的に接続され、上記ポスト壁導波路を平面視した場合に、上記第1の開口の少なくとも一部と、上記第1の帯状導体の少なくとも一部とは、重畳しており、且つ、上記第2の開口の少なくとも一部と、上記第2の帯状導体の少なくとも一部とは、重畳している。
上記の構成によれば、本RFモジュールは、本発明の第1の態様に係るモード変換器と同様に、従来のモード変換器が備えていた励振ピンを用いることなく、ポスト壁導波路におけるモードと、RFICが接続された帯状導体を信号線とする線路におけるモードと、を変換することができ、且つ、ポスト壁導波路におけるモードと、アンテナにおけるモードとを変換することができる。したがって、本RFモジュールは、従来のRFモジュールよりも環境温度の変化に起因する伝送不良を生じにくい。
上記の課題を解決するために、本発明の第10の態様に係る携帯端末は、上記第9の態様に係るRFモジュールを送信モジュール、受信モジュール、及び送受信モジュールの少なくとも何れかとして備えている。
上記の構成によれば、本携帯端末は、本発明の第6の態様に係るRFモジュールと同様の効果を奏する。
上記の課題を解決するために、本発明の第11の態様に係るRFモジュールは、一対の広壁と、狭壁と、一対のショート壁とにより導波領域が形成されたポスト壁導波路であって、(1)一方の広壁のうち一方のショート壁を含む一方の端部領域に第1の開口が設けられ、且つ、(2)上記一方の広壁のうち他方のショート壁を含む他方の端部領域に第2の開口が設けられ、且つ、(3)上記一方の端部領域と、上記他方の端部領域とが平行且つ近接して配置されているポスト壁導波路と、一方の主面及び他方の主面の少なくとも何れかに第3の帯状導体及び第4の帯状導体が形成された誘電体製の基板と、上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、上記基板の一方の主面に実装され、且つ、出力端子及び入力端子の各々が、それぞれ、上記第3の帯状導体及び上記第4の帯状導体に電気的に接続されたRFICと、を備え、上記ポスト壁導波路を平面視した場合に、上記第1の開口の少なくとも一部と、上記第3の帯状導体の少なくとも一部とは、重畳しており、且つ、上記第2の開口の少なくとも一部と、上記第4の帯状導体の少なくとも一部とは、重畳している。
上記の構成によれば、RFICの出力端子とポスト壁導波路の一方の端部領域とを第3の帯状導体を介して電磁気的に結合させることができ、ポスト壁導波路の他方の端部領域とRFICの入力端子とを第4の帯状導体を介して電磁気的に結合させることができる。したがって、本RFモジュールは、RFICの出力端子から供給されたモードを、ポスト壁導波路を通過させたうえで、RFICの入力端子に供給することができる。そのうえで、本RFモジュールは、従来のモード変換器が備えていた励振ピンを用いることなく、ポスト壁導波路におけるモードと、ポスト壁導波路とは異なる基板に形成された帯状導体を信号線とする線路におけるモードと、結合させることができる。したがって、本RFモジュールは、第1の態様に係るモード変換器と同様の効果を奏する。
本発明の第12の態様に係るRFモジュールは、上記第11の態様において、上記ポスト壁導波路は、フィルタとして機能する、ように構成されている。
上記の構成によれば、RFICの出力端子から供給されたモードに対してフィルタリング処理を施されたモードをRFICの入力端子に供給することができる。
本発明の第13の態様に係るRFモジュールは、上記第11の態様又は上記第12の態様において、上記ポスト壁導波路を平面視した場合に、上記一方の端部領域を構成する上記狭壁同士、及び、上記他方の端部領域を構成する上記狭壁同士は、平行であり、且つ、上記一方の端部領域の幅を二等分する点の集合である直線と、上記第3の帯状導体の中心軸とは、ずれており、且つ、上記他方の端部領域の幅を二等分する点の集合である直線と、上記第4の帯状導体の中心軸とは、ずれている。
上記の構成によれば、第3の帯状導体の中心軸を第1の端部領域の幅を二等分する点の集合である直線からずらして設けることができ、且つ、第4の帯状導体の中心軸を第2の端部領域の幅を二等分する点の集合である直線からずらして設けることができる。したがって、本RFモジュールは、RFICの出力端子及び入力端子の端子間距離に応じて、第3の帯状導体及び第4の帯状導体を配置する場合の自由度を高めることができる。
本発明の第14の態様に係るRFモジュールは、上記第13の態様において、上記第1の開口及び上記第2の開口は、台形状であり、上記ポスト壁導波路を平面視した場合に、(1)上記第1の開口は、上記台形状を形成する一対の底が上記一方の端部領域を構成する上記狭壁同士と平行になるように、且つ、上記第3の帯状導体の上記中心軸から上記第1の開口の上記一対の底のうち長さが短い底までの距離が、上記第3の帯状導体の上記中心軸から上記第1の開口の上記一対の底のうち長さが長い底までの距離を上回る、ように配置されており、(2)上記第2の開口は、上記台形状を形成する一対の底が上記他方の端部領域を構成する上記狭壁同士と平行になるように、且つ、上記第4の帯状導体の上記中心軸から上記第2の開口の上記一対の底のうち長さが短い底までの距離が、上記第4の帯状導体の上記中心軸から上記第2の開口の上記一対の底のうち長さが長い底までの距離を上回る、ように配置されている。
上記の構成によれば、第3の帯状導体の中心軸を一方の導波領域の幅を二等分する点の集合である直線からずらして設けた場合に生じ得る反射特性及び透過特性の低下を抑制することができ、且つ、第4の帯状導体の中心軸を他方の導波領域の幅を二等分する点の集合である直線からずらして設けた場合に生じ得る反射特性及び透過特性の低下を抑制することができる。すなわち、本RFモジュールは、RFICの出力端子及び入力端子の端子間距離に応じて、第3の帯状導体及び第4の帯状導体を配置する場合の自由度を高めつつ、反射特性及び透過特性の低下を抑制することができる。
本発明の第15の態様に係るRFモジュールは、上記第13又の態様又は上記第14の態様において、上記ポスト壁導波路を平面視した場合に、上記第3の帯状導体の上記中心軸及び上記第4の帯状導体の上記中心軸は、何れも、上記一方の端部領域の幅を二等分する点の集合である上記直線と、上記他方の端部領域の幅を二等分する点の集合である上記直線との間に位置する。
RFICの出力端子及び入力端子の端子間距離は、一方の導波領域の幅を二等分する点の集合である直線と他方の導波領域の幅を二等分する点の集合である直線との間の距離よりも狭い場合がある。上記の構成によれば、第3の帯状導体の中心軸及び第4の帯状導体の中心軸を一方の導波領域の幅を二等分する点の集合である直線と他方の導波領域の幅を二等分する点の集合である直線との間に配置することによって、第3の帯状導体の中心軸及び第4の帯状導体の中心軸の軸間距離をより狭くすることができる。したがって、本RFモジュールは、RFICの出力端子及び入力端子の端子間距離に応じて、第3の帯状導体及び第4の帯状導体を配置する場合の自由度を更に高めることができる。
〔付記事項〕
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
10,10A,10B,10C,10D,10E,10F,10Fa,10Fb,10G モード変換器
PW,PWFa,PWFb ポスト壁導波路
11 基板
12,13 導体層
121,121F 開口
121Fa,121Fb 開口(第1の開口、第2の開口)
14,14Fa,14Fb ポスト壁
14a,14b,14Faa,14Fba,14Fb 狭壁
14c,14Fac,14Fbc ショート壁
14i スルービア
15 基板
16,16B,16C,16E,16F 帯状導体
16a,16b 帯状導体(第1の帯状導体、第2の帯状導体)
16Fa,16Fb 帯状導体(第3の帯状導体、第4の帯状導体)
16B1,16B2 スタブ
16C1 第1の導体パターン
16C2 第2の導体パターン
16C3 スルービア
17 導体層
18,18C,18D 半田(接合部材)
18A 接着剤(接合部材)
19G コネクタ
MS,MSFa,MSFb マイクロストリップ線路
1,1F RFモジュール
21,21F RFIC
22 アンテナ
PW,PWFa,PWFb ポスト壁導波路
11 基板
12,13 導体層
121,121F 開口
121Fa,121Fb 開口(第1の開口、第2の開口)
14,14Fa,14Fb ポスト壁
14a,14b,14Faa,14Fba,14Fb 狭壁
14c,14Fac,14Fbc ショート壁
14i スルービア
15 基板
16,16B,16C,16E,16F 帯状導体
16a,16b 帯状導体(第1の帯状導体、第2の帯状導体)
16Fa,16Fb 帯状導体(第3の帯状導体、第4の帯状導体)
16B1,16B2 スタブ
16C1 第1の導体パターン
16C2 第2の導体パターン
16C3 スルービア
17 導体層
18,18C,18D 半田(接合部材)
18A 接着剤(接合部材)
19G コネクタ
MS,MSFa,MSFb マイクロストリップ線路
1,1F RFモジュール
21,21F RFIC
22 アンテナ
Claims (15)
- 一方の広壁に開口が設けられたポスト壁導波路と、
一方の主面及び他方の主面の少なくとも何れかに帯状導体が形成された誘電体製の基板と、
上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、を備え、
上記ポスト壁導波路を平面視した場合に、上記開口の少なくとも一部と、上記帯状導体の少なくとも一部とは、重畳している、
ことを特徴とするモード変換器。 - 上記帯状導体は、TEM線路又は準TEM線路の信号線を構成する、
ことを特徴とする請求項1に記載のモード変換器。 - 上記TEM線路又は準TEM線路は、マイクロストリップ線路、ストリップ線路、コプレナー線路、グランド付きコプレナー線路、及び平行2線路のうちいずれかである、
ことを特徴とする請求項2に記載のモード変換器。 - 上記ポスト壁導波路を平面視した場合に、上記帯状導体のうち上記開口と重畳している領域の近傍には、スタブが形成されている、
ことを特徴とする請求項1~3の何れか1項に記載のモード変換器。 - 上記ポスト壁導波路は、フィルタ、方向性結合器、ダイプレクサ、及びアンテナの何れかとして機能する、
ことを特徴とする請求項1~4の何れか1項に記載のモード変換器。 - 上記ポスト壁導波路を平面視した場合に、上記ポスト壁導波路を構成する一対の狭壁同士は、平行であり、且つ、上記ポスト壁導波路の幅を二等分する点の集合である直線と、上記帯状導体の中心軸とは、ずれている、
ことを特徴とする請求項1~5の何れか1項に記載のモード変換器。 - 上記開口は、台形状であり、
上記ポスト壁導波路を平面視した場合に、上記開口は、上記台形状を形成する一対の底が上記一対の狭壁の各々と平行になるように、且つ、上記中心軸から上記一対の底のうち長さが短い底までの距離が、上記中心軸から上記一対の底のうち長さが長い底までの距離を上回る、ように配置されている、
ことを特徴とする請求項6に記載のモード変換器。 - 上記帯状導体に電気的に接続された中央導体を備えた同軸コネクタであって、少なくとも上記基板に固定された同軸コネクタを更に備えている、
ことを特徴とする請求項1~7の何れか1項に記載のモード変換器。 - 一方の広壁の第1のショート壁の近傍に第1の開口が設けられ、且つ、上記一方の広壁の第2のショート壁の近傍に第2の開口が設けられたポスト壁導波路と、
一方の主面及び他方の主面の少なくとも何れかに第1の帯状導体が形成され、且つ、上記一方の主面及び上記他方の主面の少なくとも何れかに第2の帯状導体が形成され、且つ、上記一方の主面及び上記他方の主面の少なくとも何れかにアンテナが形成された誘電体製の基板と、
上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、
上記基板の一方の主面に実装され、且つ、何れかの端子が上記第1の帯状導体に電気的に接続されたRFICと、を備え、
上記アンテナは、上記第2の帯状導体に電気的に接続され、
上記ポスト壁導波路を平面視した場合に、上記第1の開口の少なくとも一部と、上記第1の帯状導体の少なくとも一部とは、重畳しており、且つ、上記第2の開口の少なくとも一部と、上記第2の帯状導体の少なくとも一部とは、重畳している、
ことを特徴とするRFモジュール。 - 請求項9に記載のRFモジュールを送信モジュール、受信モジュール、及び送受信モジュールの少なくとも何れかとして備えている、
ことを特徴とする携帯端末。 - 一対の広壁と、狭壁と、一対のショート壁とにより導波領域が形成されたポスト壁導波路であって、(1)一方の広壁のうち一方のショート壁を含む一方の端部領域に第1の開口が設けられ、且つ、(2)上記一方の広壁のうち他方のショート壁を含む他方の端部領域に第2の開口が設けられ、且つ、(3)上記一方の端部領域と、上記他方の端部領域とが平行且つ近接して配置されているポスト壁導波路と、
一方の主面及び他方の主面の少なくとも何れかに第3の帯状導体及び第4の帯状導体が形成された誘電体製の基板と、
上記一方の広壁と上記基板とを直接又は間接に接合する接合部材と、
上記基板の一方の主面に実装され、且つ、出力端子及び入力端子の各々が、それぞれ、上記第3の帯状導体及び上記第4の帯状導体に電気的に接続されたRFICと、を備え、
上記ポスト壁導波路を平面視した場合に、上記第1の開口の少なくとも一部と、上記第3の帯状導体の少なくとも一部とは、重畳しており、且つ、上記第2の開口の少なくとも一部と、上記第4の帯状導体の少なくとも一部とは、重畳している、
ことを特徴とするRFモジュール。 - 上記ポスト壁導波路は、フィルタとして機能する、
ことを特徴とする請求項11に記載のRFモジュール。 - 上記ポスト壁導波路を平面視した場合に、上記一方の端部領域を構成する上記狭壁同士、及び、上記他方の端部領域を構成する上記狭壁同士は、平行であり、且つ、上記一方の端部領域の幅を二等分する点の集合である直線と、上記第3の帯状導体の中心軸とは、ずれており、且つ、上記他方の端部領域の幅を二等分する点の集合である直線と、上記第4の帯状導体の中心軸とは、ずれている、
ことを特徴とする請求項11又は12に記載のRFモジュール。 - 上記第1の開口及び上記第2の開口は、台形状であり、
上記ポスト壁導波路を平面視した場合に、
上記第1の開口は、上記台形状を形成する一対の底が上記一方の端部領域を構成する上記狭壁同士と平行になるように、且つ、上記第3の帯状導体の上記中心軸から上記第1の開口の上記一対の底のうち長さが短い底までの距離が、上記第3の帯状導体の上記中心軸から上記第1の開口の上記一対の底のうち長さが長い底までの距離を上回る、ように配置されており、
上記第2の開口は、上記台形状を形成する一対の底が上記他方の端部領域を構成する上記狭壁同士と平行になるように、且つ、上記第4の帯状導体の上記中心軸から上記第2の開口の上記一対の底のうち長さが短い底までの距離が、上記第4の帯状導体の上記中心軸から上記第2の開口の上記一対の底のうち長さが長い底までの距離を上回る、ように配置されている、
ことを特徴とする請求項13に記載のRFモジュール。 - 上記ポスト壁導波路を平面視した場合に、上記第3の帯状導体の上記中心軸及び上記第4の帯状導体の上記中心軸は、何れも、上記一方の端部領域の幅を二等分する点の集合である上記直線と、上記他方の端部領域の幅を二等分する点の集合である上記直線との間に位置する、
ことを特徴とする請求項13又は14に記載のRFモジュール。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/612,135 US12107310B2 (en) | 2019-06-10 | 2020-06-05 | Mode converter, RF module, and mobile terminal |
CN202080038365.7A CN113924691A (zh) | 2019-06-10 | 2020-06-05 | 模式转换器、rf模块以及便携式终端 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-108153 | 2019-06-10 | ||
JP2019108153 | 2019-06-10 | ||
JP2020-009352 | 2020-01-23 | ||
JP2020009352A JP6767591B1 (ja) | 2019-06-10 | 2020-01-23 | モード変換器、rfモジュール、及び携帯端末 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020250830A1 true WO2020250830A1 (ja) | 2020-12-17 |
Family
ID=72745089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/022354 WO2020250830A1 (ja) | 2019-06-10 | 2020-06-05 | モード変換器、rfモジュール、及び携帯端末 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12107310B2 (ja) |
JP (1) | JP6767591B1 (ja) |
CN (1) | CN113924691A (ja) |
WO (1) | WO2020250830A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022141077A (ja) | 2021-03-15 | 2022-09-29 | 富士通株式会社 | 電力合成器 |
CN114336015B (zh) * | 2022-03-07 | 2022-07-12 | 华南理工大学 | 馈线滤波天线及通信设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005051331A (ja) * | 2003-07-29 | 2005-02-24 | Kyocera Corp | マイクロストリップ線路と誘電体導波管との結合構造 |
JP2014236291A (ja) * | 2013-05-31 | 2014-12-15 | 株式会社フジクラ | モード変換器 |
JP2018023088A (ja) * | 2016-07-22 | 2018-02-08 | 株式会社フジクラ | ダイプレクサ及び送受信システム |
WO2018221486A1 (ja) * | 2017-05-30 | 2018-12-06 | 株式会社フジクラ | フィルタ装置及びフィルタ |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5404117A (en) * | 1993-10-01 | 1995-04-04 | Hewlett-Packard Company | Connector for strip-type transmission line to coaxial cable |
US5793263A (en) * | 1996-05-17 | 1998-08-11 | University Of Massachusetts | Waveguide-microstrip transmission line transition structure having an integral slot and antenna coupling arrangement |
JP3210889B2 (ja) | 1997-01-14 | 2001-09-25 | シャープ株式会社 | 直交2偏波導波管入力装置およびそれを用いた衛星放送受信用のコンバータ |
JP3366552B2 (ja) * | 1997-04-22 | 2003-01-14 | 京セラ株式会社 | 誘電体導波管線路およびそれを具備する多層配線基板 |
JP3991451B2 (ja) | 1998-06-19 | 2007-10-17 | 株式会社富士通ゼネラル | 円偏波用フィードホン |
JP2004153367A (ja) * | 2002-10-29 | 2004-05-27 | Tdk Corp | 高周波モジュール、ならびにモード変換構造および方法 |
CN104904061B (zh) | 2012-12-27 | 2017-07-21 | 株式会社藤仓 | 模式转换器 |
CN105144481A (zh) * | 2014-03-03 | 2015-12-09 | 株式会社藤仓 | 天线模块及其安装方法 |
JP6687469B2 (ja) * | 2016-06-14 | 2020-04-22 | 日立オートモティブシステムズ株式会社 | ミリ波帯通信装置 |
KR102674456B1 (ko) * | 2017-01-26 | 2024-06-13 | 주식회사 케이엠더블유 | 전송선로-도파관 전이 장치 |
-
2020
- 2020-01-23 JP JP2020009352A patent/JP6767591B1/ja active Active
- 2020-06-05 US US17/612,135 patent/US12107310B2/en active Active
- 2020-06-05 CN CN202080038365.7A patent/CN113924691A/zh active Pending
- 2020-06-05 WO PCT/JP2020/022354 patent/WO2020250830A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005051331A (ja) * | 2003-07-29 | 2005-02-24 | Kyocera Corp | マイクロストリップ線路と誘電体導波管との結合構造 |
JP2014236291A (ja) * | 2013-05-31 | 2014-12-15 | 株式会社フジクラ | モード変換器 |
JP2018023088A (ja) * | 2016-07-22 | 2018-02-08 | 株式会社フジクラ | ダイプレクサ及び送受信システム |
WO2018221486A1 (ja) * | 2017-05-30 | 2018-12-06 | 株式会社フジクラ | フィルタ装置及びフィルタ |
Also Published As
Publication number | Publication date |
---|---|
CN113924691A (zh) | 2022-01-11 |
JP2020202551A (ja) | 2020-12-17 |
US20220231390A1 (en) | 2022-07-21 |
JP6767591B1 (ja) | 2020-10-14 |
US12107310B2 (en) | 2024-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7884682B2 (en) | Waveguide to microstrip transducer having a ridge waveguide and an impedance matching box | |
US20200168974A1 (en) | Transition arrangement, a transition structure, and an integrated packaged structure | |
US8089327B2 (en) | Waveguide to plural microstrip transition | |
WO2017137224A1 (en) | A transition arrangement comprising a contactless transition or connection between an siw and a waveguide or an antenna | |
US11121695B2 (en) | Diplexer and multiplexer | |
WO2014045966A1 (ja) | 偏波共用アンテナ | |
US10396421B2 (en) | Slot coupled directional coupler and directional filters in multilayer substrate | |
US20140306776A1 (en) | Planar rf crossover structure with broadband characteristic | |
US8854152B2 (en) | High-frequency module including a conductor with a slot therein and a conductive wire crossing over the slot and physically contacting the conductor | |
US20070171005A1 (en) | Stacked resonator | |
WO2020250830A1 (ja) | モード変換器、rfモジュール、及び携帯端末 | |
US9214715B2 (en) | Hybrid coupler device having plural transmission line structures with unwound-rewound geometry | |
WO2018016632A1 (ja) | ダイプレクサ及び送受信システム | |
US3721921A (en) | Waveguide directional coupler | |
JP5251603B2 (ja) | 信号伝達用通信体及びカプラ | |
US11050130B1 (en) | Dielectric waveguide | |
CN208767444U (zh) | 一种基于混合基片集成波导结构的三通带滤波器 | |
WO2018173721A1 (ja) | ダイプレクサ | |
JP2004320351A (ja) | デュアルモード・バンドパスフィルタ、デュプレクサ及び無線通信装置 | |
JP2000252712A (ja) | 誘電体導波管線路と高周波線路導体との接続構造 | |
JP7360764B2 (ja) | 帯域通過フィルタ及びそれを備える高周波装置 | |
JP6905608B2 (ja) | ポスト壁導波路及びフィルタモジュール | |
JPH07120888B2 (ja) | 複数面導波管結合器 | |
CN109301412A (zh) | 一种基于混合基片集成波导结构的三通带滤波器 | |
WO2024154165A1 (ja) | 平衡線路-不平衡線路変換器及びアンテナ装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20822828 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20822828 Country of ref document: EP Kind code of ref document: A1 |