WO2018218913A1 - 荧光芯片及其波长转换装置的制备方法以及显示系统 - Google Patents

荧光芯片及其波长转换装置的制备方法以及显示系统 Download PDF

Info

Publication number
WO2018218913A1
WO2018218913A1 PCT/CN2017/114705 CN2017114705W WO2018218913A1 WO 2018218913 A1 WO2018218913 A1 WO 2018218913A1 CN 2017114705 W CN2017114705 W CN 2017114705W WO 2018218913 A1 WO2018218913 A1 WO 2018218913A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
fluorescent chip
grooves
fluorescent
functional
Prior art date
Application number
PCT/CN2017/114705
Other languages
English (en)
French (fr)
Inventor
胡飞
徐梦梦
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018218913A1 publication Critical patent/WO2018218913A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present disclosure relates to the field of display, and in particular, to a fluorescent chip, a method of fabricating the same, and a display system.
  • the display method mainly uses DMD or LCD or the like as a light modulator, and modulates light to obtain image light.
  • DMD digital versatile disk
  • LCD liquid crystal display
  • the display method mainly uses DMD or LCD or the like as a light modulator, and modulates light to obtain image light.
  • an optical element for example, a light combining device, a beam shaping device, etc.
  • the luminous efficiency is low, which causes a large loss of light, which imposes a large constraint on the high-brightness display.
  • a novel light emitting semiconductor device 100 has appeared in recent years, as shown in FIG. 1, including an LED chip array 20 arranged in a matrix, and an optical coupling output surface 21 fixedly disposed on the light emitting array.
  • the upper wavelength conversion element 10 includes a plurality of conversion sections disposed in one-to-one correspondence with the LED chips, and the respective conversion sections are separated by a reflective material.
  • the wavelength conversion element emits light in a transmissive manner (for example, the light transmission direction 40 in FIG.
  • the thickness of the wavelength conversion element affects the transmittance and absorption rate of light, thereby affecting the color and brightness of the emitted light;
  • the thickness of the wavelength conversion element needs to be very thin, so the mechanical properties are poor; and it is difficult to directly prepare a thin luminescent element, generally a thick wavelength conversion element is prepared first, and then thinned, so The process is complicated and the cost is high.
  • the wavelength conversion element is transmissive, the arrangement of the heat sink affects its light extraction rate, so the wavelength conversion element is not suitable for a high power illumination device.
  • the present embodiment provides a fluorescent chip, a wavelength conversion device for the fluorescent chip.
  • the wavelength conversion device adopts reflective illumination, the reflective type has strict requirements on thickness, and the mechanical performance is good; the reflective type is convenient for setting a heat dissipation component, and can be applied to a high-power illumination device and a display system.
  • a fluorescent chip including wavelength converting means for converting at least a portion of incident light into an outgoing light different from a wavelength of incident light, the wavelength
  • the conversion device includes:
  • the partition portion includes a first surface parallel to the main extension plane, and the first surface is provided with a groove arranged in a matrix;
  • the functional part includes a plurality of functional units, and the plurality of functional units are correspondingly disposed in the recess of the isolation part,
  • the plurality of functional units include a conversion unit for receiving incident light and converting it into an outgoing light different from a wavelength of incident light; the isolation portion is configured to reflect ultraviolet light and/or visible light.
  • a method for fabricating a wavelength conversion device for a fluorescent chip characterized in that the method comprises:
  • Sl l integrally forming an isolation portion having a plurality of grooves arranged in a matrix on a first surface parallel to the main extension plane;
  • a display system comprising: a light source, and a fluorescent chip as described above, the light source being located on a side close to the first surface of the fluorescent chip, The excitation light is emitted, and the functional portion of the fluorescent chip receives the excitation light and generates laser light of different wavelength ranges, and the laser light is emitted from the mouth of the groove.
  • the wavelength conversion device for a fluorescent chip of the embodiment of the present invention at least part of the incident light can be converted into an outgoing light different from the wavelength of the incident light by the functional portion, and reflected by the isolation portion, the wavelength conversion device Reflective illumination, thickness requirements are not strict, mechanical properties are good; easy to set heat dissipation group It can be applied to high-power lighting devices and display systems.
  • the method for fabricating a wavelength conversion device for a fluorescent chip it is possible to integrally form an isolation portion having a plurality of grooves arranged in a matrix on a first surface parallel to a main extension plane,
  • the functional material is formed in a plurality of grooves to form a functional portion, which simplifies the preparation process, reduces the process difficulty, and improves the brightness, durability, and mechanical properties of the prepared wavelength conversion device.
  • the display system using the fluorescent chip can convert the excitation light emitted by the light source into laser light of different wavelength ranges, and exit from the mouth of the groove, so that the brightness of the display system is illuminated. And durability is significantly improved.
  • 1 is a schematic diagram of a wavelength conversion device for a fluorescent chip according to the related art.
  • FIG. 2 is a schematic diagram of a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram of a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 4 is a side view of a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 5 is a side view of a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 6 is a side view of a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 7 is a side view of a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 8 is a preparation side of a wavelength conversion device for a fluorescent chip according to an exemplary embodiment. Flow chart of the law.
  • FIG. 9 is a schematic diagram of a mold for a method of fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 10 is a schematic diagram of a spacer prepared by a method for fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 11 is a schematic diagram of a spacer of a method for fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 12 is a schematic diagram of an isolation portion of a method for fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 13 is a schematic diagram of a mold for a method of fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 14 is a schematic diagram of an isolation portion of a method for fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 15 is a flow chart showing a step S12 of a method of fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • the present invention provides a fluorescent chip, a method for preparing the same, and a display system, which are intended to improve the display technology in the current display field, and the main idea is that the fluorescent chips can be arranged in One-dimensional matrix, two-dimensional matrix: A matrix such as nxm, where n and m are positive integers.
  • the fluorescent chip can directly receive the modulated monochromatic image light, and convert the monochromatic image light into color image light for image display.
  • the monochromatic excitation light emitted by the light source passes through the light shaping system to form a uniform spot, and the spot is irradiated onto the light modulator, and modulated by the light modulator to form a monochromatic image light, and the monochromatic image light is imaged onto the fluorescent chip, thereby Get color image light.
  • the light source can be an LD (Laser Diode) array.
  • the area of the fluorescent chip is larger than the area of the exit surface of the light modulator. According to the conservation of the optical spread amount, the light divergence angle of the image light incident on the fluorescent chip can be made smaller during the imaging process, thereby improving the utilization of light. rate.
  • FIG. 2 is a schematic diagram of a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • the fluorescent chip according to the embodiment of the present disclosure may employ a wavelength conversion device as shown in FIG. 2 to convert at least a portion of the incident light into an outgoing light different from the wavelength of the incident light, the wavelength conversion device comprising:
  • the partitioning portion 11, the partitioning portion 11 includes a first surface parallel to the main extending plane, and the first surface is provided with a groove arranged in a matrix;
  • the functional unit 12 includes a plurality of functional units, and the plurality of functional units are correspondingly disposed in the recesses of the isolation portion 11
  • the plurality of functional units comprise a conversion unit for receiving incident light and converting it into an outgoing light different from the wavelength of the incident light; the isolation portion 11 is for reflecting ultraviolet light and/or visible light.
  • the functional units are separated by a barrier to prevent optical crosstalk between adjacent functional units.
  • the wavelength conversion device for a fluorescent chip of the embodiment of the present invention at least a portion of the incident light can be converted into an outgoing light different from the wavelength of the incident light by the functional portion, and reflected by the isolation portion, the wavelength conversion device Reflective illumination, thickness requirements are not strict, mechanical properties are good; easy to set heat dissipation components, can be applied to high-power lighting devices and display systems.
  • the wavelength conversion device may include a partition portion 11, and the partition portion 11 may include a first surface parallel to the main extension plane, and the first surface may be arrayed (matrix) with a plurality of grooves.
  • the partitions 11 may be rectangular, circular or other polygonal shapes, and the plurality of grooves on the surface of the partition 11 may also be rectangular, circular or other polygonal shapes. The present disclosure does not limit the specific shape of the plurality of grooves on the surface of the partition portion 11 and the partition portion 11.
  • the functional portion 12 may be filled in a plurality of grooves of the partition portion 11.
  • the function portion 12 may include a plurality of functional units correspondingly disposed in the recesses of the partition portion 11.
  • the plurality of functional units comprise a conversion unit, the conversion unit being made of a wavelength converting material for receiving the incident light and converting it into an outgoing light different from the wavelength of the incident light.
  • the wavelength conversion material of the conversion unit may be a silica gel containing phosphor or quantum dots capable of absorbing incident light that is incident on the conversion unit and converting the incident light into an exiting light different from the wavelength of the incident light and emitting. (eg silicone, metal, etc. containing reflective particles)
  • the isolation portion 11 may be made of a material capable of reflecting ultraviolet/visible light.
  • the material of the isolation portion 11 may be metal and/or silica gel containing reflective particles.
  • the partition portion 11 can reflect the incident light and the light (exit light) emitted from the functional portion 12, and each functional portion 12 is surrounded by the partition portion 11 in the direction of the first surface of the partition portion 11, preventing the adjacent functional portions 12 from being interposed therebetween. Light crosstalk.
  • the partition portion 11 can improve the absorption efficiency of the incident light by the functional portion 12 and the light-emitting efficiency of the light emitted from the functional portion 12.
  • the partition 11 may be an integrally formed structure.
  • the metal material can be processed by a precision machining process and integrally formed into the partition portion 11.
  • the functional unit of the functional portion 12 in the plurality of grooves may include a conversion unit, and the conversion unit may include a wavelength conversion material, and each conversion unit includes and other conversions.
  • the same or different wavelength conversion materials may be filled in different grooves according to design requirements, and different conversion units may be obtained, so that the wavelengths of the emitted light emitted by the conversion unit are different, thereby obtaining the emitted light of different wavelengths, thereby satisfying different Luminous demand.
  • the type and arrangement of the wavelength converting material of the conversion unit can be determined according to the light conversion requirements of the fluorescent chip, which is not limited in this publication.
  • the plurality of functional units may further include a non-conversion unit, and the non-conversion unit may include a light transmissive material and/or a scattering material for directly transmitting incident light or scattering out.
  • the light transmissive material may be air or other materials.
  • the type and arrangement of the non-converting unit can be determined according to the optical conversion requirements of the fluorescent chip, which is not limited in this disclosure.
  • the isolation portion may further include a second surface parallel to the main extension plane, the second surface is provided with a heat dissipation component, and the heat dissipation component transmits and emits the wavelength The heat of the conversion device.
  • the second surface parallel to the main extension plane is disposed opposite to the first surface.
  • the heat dissipating component may include a heat conducting layer and a heat dissipating portion, and the heat conducting layer transfers heat of the partition portion to the heat dissipating portion, and the heat dissipating portion radiates heat to the outside of the partition portion.
  • the heat conductive layer may be made of a material having a high thermal conductivity (for example, a metal), and the heat dissipating portion may be a heat sink or a heat dissipating fan. The present disclosure is not limited thereto.
  • FIG. 4 is a side view of a wavelength conversion device for a fluorescent chip according to an exemplary embodiment
  • FIG. 5 is a wavelength conversion device for a fluorescent chip according to an exemplary embodiment. Side view. As shown in FIG. 4, the wavelength conversion device has a main extension plane indicated by a double-headed arrow 110.
  • the isolation portion 11 of the wavelength conversion device may be a multi-layer structure, and the isolation portion 11 may include a body 111 and an isolation layer 112, and the body 111 is integrated.
  • the molding structure includes a first surface parallel to the main extension plane, the first surface is provided with grooves arranged in an array, the isolation layer 112 includes a plurality of isolation sublayers, and the plurality of isolation sublayers are correspondingly disposed Within the recess of the body 11 1 and completely covering the bottom and inner walls of the recess.
  • the material of the body 111 may be a metal material that reflects ultraviolet light and/or visible light, and the material of the isolation layer 112 may be silica gel containing reflective particles.
  • the isolation portion 11 of the wavelength conversion device may include a body 111 and an isolation layer 112, the body 111 being an integrally formed structure including a first surface parallel to the main extension plane, The first surface is provided with grooves arranged in an array, and the isolation layer 112 includes a plurality of isolation sub-layers, the plurality of isolation sub-layers being a unitary structure completely covering the first surface of the body 111.
  • the material of the body 111 may be a metal material that reflects ultraviolet light and/or visible light, and the material of the isolation layer 112 may be silica gel containing reflective particles.
  • the isolation layer of the isolation portion 11 may have a thickness of 10 ⁇ m to 500 ⁇ m.
  • the isolation layer may have a thickness of 100 ⁇ m.
  • the spacer 11 can have better mechanical properties by making the thickness of the isolation layer larger. The greater the thickness of the isolation layer, the better the mechanical properties of the isolation portion, and the better the barrier effect of light on the same layer, but the thickness of the isolation layer is too large, resulting in a decrease in the resolution of the fluorescent pixel chip.
  • the thickness of the isolation layer can be set by the operator according to the actual needs of the product, and the present disclosure does not limit this.
  • the body 111 is formed using a high reflectivity metal and the isolation layer 112 is formed using silica gel containing reflective particles, and the diffuse reflection of the isolation layer 112 (silicone layer) and the mirror surface of the body 111 (metal layer) can be utilized.
  • the combined effect of reflection enhances the isolation portion 11 of the wavelength conversion device, thereby improving the absorption of the incident light by the luminescent material and the light extraction efficiency of the luminescence, and preventing crosstalk of adjacent pixels.
  • the isolation layer 112 (silicone layer) in the multilayer structure can protect the surface of the metal layer from being oxidized compared to the single-layer metal layer; the body 111 (metal layer) in the multilayer structure is compared to the single-layer silica layer
  • the presence of the barrier material increases the mechanical strength of the barrier material and reduces the processing accuracy of the silicone layer.
  • the longitudinal cross-sectional shape of the plurality of grooves of the partition portion 11 is one of a parabola shape, a square shape, and a semicircular shape.
  • the longitudinal cross-sectional shape of the plurality of grooves of the partition portion may be parabolic.
  • a parabolic groove having a longitudinal section can reduce the processing difficulty, and the same is advantageous for the light-emitting efficiency of the high-function portion, thereby improving the luminance of the wavelength conversion device.
  • the longitudinal section of the groove may also adopt the square shape or any other shape in Fig. 4, and the present disclosure does not limit the specific shape of the longitudinal section of the groove.
  • each functional unit of the functional portion 12 may partially cover or completely fill the interior of the corresponding groove.
  • the plurality of grooves may be filled with the wavelength conversion material so that the generated functional unit fills the plurality of the isolation portions 11
  • the entire space of the groove (as shown in FIG. 6); the wavelength conversion material may not be filled in the plurality of grooves, so that the generated functional unit fills a part of the space of the plurality of grooves of the partition portion 11 (FIG. 7). Shown to enhance the absorption efficiency of the incident light and the light-emitting efficiency of the reflected outgoing light.
  • the functional portion 12 and the bottom of the groove of the partition portion 11 can be tightly coupled to have a certain mechanical strength; the functional portion 12 and the sidewall of the groove can be tightly coupled,
  • the intermediate gap can be formed, and the present disclosure does not limit this.
  • the fluorescent chip includes a plurality of identical pixel units, and the pixels The cells are arranged in a matrix, each pixel unit is composed of a plurality of adjacent functional units, and the emitted light of each pixel unit includes at least red light, blue light, and green light.
  • a plurality of adjacent functional units of each pixel unit may constitute a two-dimensional matrix, wherein two adjacent functional units emit light of the same color or different colors.
  • two adjacent functional units can be provided with different wavelength converting materials that are excited to produce lasers of different wavelength ranges.
  • the colors of light emitted by the nine functional units in the first row are red, green, blue, red, green, blue, respectively. , red, green, blue; the color of the light emitted by the nine functional units in the second row is red, green, blue, red, green, blue, red, green, blue; nine in the third row
  • the color of the light emitted by the functional unit is red, green, blue, red, green, blue, red, green, blue; the color of the light emitted by the nine functional units in the fourth, fifth, and sixth rows It is in the same order as the color of the light emitted in the first line.
  • each functional unit in the first row sequentially emits light of three colors in a certain order, and the colors of the outgoing light in the other rows are consistent with the order of the colors of the outgoing light in the first row. That is, the color of the outgoing light of each functional unit in each column is the same, and the color of the adjacent two functional units is different.
  • the colors of the light emitted by the nine functional units in the first row are red, green, blue, red, green, blue, red, Green, blue; the color of the light emitted by the nine functional units in the second row is blue, red, green, blue, red, green, blue, red, green; the nine functional units in the third row
  • the color of the light is green, blue, red, green, blue, red, green, blue, red; the color of the light emitted by the nine functional units in the fourth row and the color of the outgoing light in the first row
  • the order is the same; the color of the light emitted by the nine functional units in the fifth row is consistent with the order of the color of the outgoing light in the second row; the color of the light emitted by the nine functional units in the sixth row and the color of the outgoing light in the third row
  • the order is the same.
  • some functional units are provided with a blue fluorescent material or a scattering material, some functional units are provided with a green fluorescent material, and some functional units are provided with a red fluorescent material, wherein adjacent functional units Set different colors of fluorescent material.
  • the functional unit can be a matrix of 8x9, that is, there are 8 rows and 9 columns, and the specific number of rows and columns can be determined according to actual conditions.
  • Each adjacent four functional units constitute one pixel unit, at least one functional unit of one pixel unit emits blue outgoing light, at least one functional unit emits red outgoing light, and at least one functional unit emits green outgoing light. .
  • the functional unit that emits the blue outgoing light may be provided with a blue fluorescent material, or when the incident excitation light is a blue laser ⁇ , the functional unit that emits the blue outgoing light is provided with a scattering material (only silica gel is added) or not added. Any material.
  • the pixel unit includes four functional units arranged in a matrix, and the four functional units include three conversion units and one non-transition unit.
  • the four functional units include three conversion units and one non-transition unit.
  • three conversion units of one functional unit are provided with a green fluorescent material, one non-conversion unit is provided with a scattering material; three conversion units of another adjacent functional unit are provided with a blue fluorescent material, and one non-converting unit is provided with Scatter material or no material added.
  • the fluorescent chip further includes a plurality of filters, and the plurality of filters are disposed corresponding to the grooves and seal the mouth of the grooves.
  • the filter is an angle selection filter capable of transmitting light of less than a preset angle and reflecting light of other angles.
  • a filter (angle selection filter) disposed on the cornice of the groove can transmit only light of a predetermined angle and reflect light of other angles.
  • the characteristics of the filter can be adjusted according to the requirements of the product (for example, adjusting the material and thickness of the filter) to adjust the preset angle. This specification does not limit this.
  • the wavelength conversion device for a fluorescent chip of the embodiment of the present invention at least a portion of the incident light can be converted into an outgoing light different from the wavelength of the incident light by the functional portion, and reflected by the isolation portion, the wavelength conversion device Reflective illumination, thickness requirements are not strict, mechanical properties are good; easy to set heat dissipation components, can be applied to high-power lighting devices and display systems.
  • a method for fabricating a wavelength conversion device for a fluorescent chip may include: [0077] Step S1, integrally forming an isolation portion having a plurality of grooves arranged in a matrix on a first surface parallel to the main extension plane;
  • Step S12 filling the plurality of grooves with a functional material forming function portion, wherein the functional material is at least one of a wavelength conversion material, a scattering material, and a light transmissive material.
  • the method for fabricating a wavelength conversion device for a fluorescent chip it is possible to integrally form an isolation portion having a plurality of grooves arranged in a matrix on a first surface parallel to a main extension plane,
  • the functional material is formed in a plurality of grooves to form a functional portion, which simplifies the preparation process, reduces the process difficulty, and improves the brightness, durability, and mechanical properties of the prepared wavelength conversion device.
  • an isolation portion having a plurality of grooves arranged in a matrix on a first surface parallel to the main extension plane may be integrally formed.
  • the insulating material such as silica gel containing reflective particles
  • the insulating material may be solidified in a mold to obtain a partition portion having a plurality of grooves arranged on the surface; and for an insulating material such as a metal containing reflective particles, an insulating material may be used.
  • a spacer having a plurality of grooves arranged on the surface is obtained by processing or the like; a spacer having a multilayer structure may be formed using a plurality of insulating materials (for example, a metal material, a silica gel material, or the like). Depending on the material to be isolated, the way to obtain the isolation is different. This publication does not limit the specific type of insulation and the way in which the isolation is obtained.
  • the functional material forming function may be filled in the plurality of grooves of the partition, the functional material being at least one of a wavelength converting material, a scattering material, and a light transmissive material.
  • a wavelength converting material e.g., a laser beam
  • a scattering material e.g., a laser beam
  • a light transmissive material e.g., a light transmissive material.
  • an appropriate amount of phosphor or luminescent quantum dots may be uniformly mixed with a silica gel monomer and a curing agent to obtain a mixed liquid as a wavelength converting material, and the upper surface of the groove array may be covered by a mask to utilize the flow of the mixed liquid (wavelength converting material). Sex, the mixed liquid (wavelength converting material) is filled in the groove, and after heating and solidification, a functional portion is obtained.
  • step S11 includes: heating and curing the uncured silica gel containing the reflective particles in a mold to obtain a plurality of concaves having a matrix arrangement on the first surface parallel to the main extension plane. The isolation of the slot.
  • the isolation material may be an uncured silica gel containing reflective particles, wherein the reflective particles may be titanium dioxide, aluminum oxide, zirconium oxide, zinc oxide, barium sulfate, etc., for example, a titanium dioxide nano powder having a high refractive index is used. body. After the titanium dioxide nano powder can be uniformly mixed with the silica monomer and the curing agent, In order to prepare an uncured silica gel containing reflective particles.
  • FIG. 9 is a schematic diagram of a mold for a method of fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • FIG. 10 is a schematic diagram of a spacer prepared by a method for fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment.
  • the spacer material may be added to the mold base 22, covered with the mold upper cover 23, molded under a certain pressure, and then solidified in an oven, and then demolded after curing, thereby being arranged on the surface.
  • a partition with multiple grooves (as shown in Figure 10). After filling the functional material in the groove of the partition and heating and solidifying, the functional part can be obtained.
  • the uncured silica gel containing the reflective particles can be heat-cured in the mold to obtain the partitions of the plurality of grooves arranged in a matrix on the first surface, improving the preparation efficiency of the separator.
  • step S11 includes: processing a metal material substrate that reflects ultraviolet light and/or visible light to obtain a plurality of matrix arrangements on a first surface parallel to the main extension plane
  • the isolation portion of the groove includes one of a precision machining process, a micro-nano process, and 3D printing.
  • the insulating material may be a metal material having a high reflectance such as aluminum or stainless steel, copper or silver.
  • the metal material may be used as a substrate, and a plurality of grooves having a matrix arrangement on the first surface parallel to the main extension plane may be obtained by a precision machining process, a micro-nano processing process (etching) or 3D printing. Isolation department.
  • the present specification does not limit the specific processing method of the solid substrate.
  • a plurality of grooves of the partition portion may be filled with a functional material, for example, an appropriate amount of phosphor or luminescent quantum dots may be uniformly mixed with the silica gel monomer and the curing agent to obtain a mixed liquid.
  • a functional material for example, an appropriate amount of phosphor or luminescent quantum dots may be uniformly mixed with the silica gel monomer and the curing agent to obtain a mixed liquid.
  • the upper surface of the groove array is covered with a mask, and the mixed liquid (wavelength converting material) is filled in the groove by the fluidity of the mixed liquid (wavelength converting material), and after heating and solidifying, a functional portion is obtained.
  • the functional part is closely combined with the bottom surface of the groove and has a certain mechanical strength, and the side wall can be tightly combined or an intermediate gap can be formed.
  • the solid substrate made of the metal isolation material can be processed to obtain the isolation portion having the plurality of grooves arranged in a matrix on the first surface parallel to the main extension plane, thereby improving the isolation. Preparation efficiency of the department.
  • step S11 includes:
  • a separator having a multilayer structure may be prepared, the body of the outer layer may be made of a metal having high reflectivity, and the separator of the inner layer may be made of silica gel containing reflective particles.
  • FIG. 11 is a schematic diagram of an isolation portion of a method for fabricating a wavelength conversion device for a fluorescent chip, according to an exemplary embodiment
  • FIG. 12 is a diagram for a fluorescent chip according to an exemplary embodiment.
  • FIG. 13 is a schematic diagram of a mold for a method of fabricating a wavelength conversion device for a fluorescent chip according to an exemplary embodiment;
  • FIG. 14 is an exemplary implementation according to an exemplary embodiment of the present invention; A schematic view of a spacer for a method of fabricating a wavelength conversion device for a fluorescent chip.
  • a metal or alloy material having a high reflectivity such as aluminum, stainless steel, copper, or silver may be used as a substrate, through a precision machining process, micro-nano In the processing (etching) or 3D printing, the body 111 having a plurality of first grooves 113 arrayed on the first main extending plane is obtained, wherein the first grooves 113 may be cylindrical or prismatic.
  • the present specification does not limit the specific processing method of the solid substrate.
  • the uncured silica gel containing the reflective particles may be used as the isolation material for forming the isolation layer.
  • the Ti0 2 powder of 30-200 nm and the silica gel may be used.
  • the body and the curing agent are uniformly mixed to obtain a mixed liquid.
  • the upper surface of the array of grooves 113 of the body 111 is covered with a mask, and then an appropriate amount of uncured silicone is filled therein to form a filling structure 114, as shown in FIG.
  • an overflow port (not shown) may be disposed on the mold 115 to remove excess uncured silica gel ( ⁇ 0 2 powder and silica gel monomer). And a mixture of curing agents).
  • the mold 115 can be aligned with the fill structure 114 such that the end 116 of the mold 115 is aligned with the centerline of the fill structure 114 and pressed into the fill structure 114 under pressure to remove excess uncured silica gel.
  • a separator as shown in Fig. 14 can be obtained.
  • the uncured silica gel containing the reflective particles (Ti0 2 powder and A mixed liquid of the silicone monomer and the curing agent is injected into the first recess 113 to form a filling structure 114 as shown in FIG. Then, the uncured silica gel is heat-cured, and the separator shown in Fig. 14 is obtained by precision machining or micro-nano processing.
  • the present specification does not limit the specific preparation method of the partition having a multi-layer structure.
  • the wavelength conversion material may be filled in the plurality of grooves of the isolation portion.
  • the mask is used to cover the upper surface of the groove array, and the fluidity of the wavelength conversion material is such that the wavelength conversion material is filled in the groove, and after heating and solidification, a functional portion is obtained.
  • a wavelength conversion device as shown in Fig. 4 or Fig. 5 can be obtained.
  • the body 111 is formed using a high reflectivity metal and the isolation layer 112 is formed using silica gel containing reflective particles, and the diffuse reflection of the isolation layer 112 (silicone layer) and the mirror surface of the body 111 (metal layer) can be utilized.
  • the combined effect of reflection enhances the isolation portion 11 of the wavelength conversion device, thereby improving the absorption of the incident light by the luminescent material and the light extraction efficiency of the luminescence, and preventing crosstalk of adjacent pixels.
  • the isolation layer 112 (silicone layer) in the multilayer structure can protect the surface of the metal layer from being oxidized compared to the single-layer metal layer; the body 111 (metal layer) in the multilayer structure is compared to the single-layer silica layer
  • the presence of the barrier material increases the mechanical strength of the barrier material and reduces the processing accuracy of the silicone layer.
  • FIG. 15 is a flow chart showing a step S12 of a method of fabricating a wavelength conversion device according to an exemplary embodiment. As shown in FIG. 15, in a possible implementation manner, step S12 includes:
  • Step S121 covering a contiguous portion of the plurality of grooves on the first surface of the partition portion with a mask
  • Step S122 filling the functional material into the groove not covered by the mask.
  • a mask may be used to cover adjacent portions of the plurality of grooves, and the wavelength converting material may be filled in a groove that is not covered by the mask by utilizing the fluidity of the wavelength converting material.
  • the coverage of the mask multiple masks with different coverage can be used to fill different grooves with different functional materials (for example, wavelength conversion materials). After heating and curing, different functions can be obtained. unit. In this way, the wavelengths of the emitted light emitted by the functional portion can be made different, and the outgoing light of different wavelengths can be obtained, thereby satisfying different illumination requirements.
  • the functional portion may fill the entire space (as shown in FIG. 6) or a partial space of the plurality of grooves of the isolation portion ( As shown in Figure 7) .
  • the function portion and the bottom of the groove of the partition portion can be tightly combined to have a certain mechanical strength; the function portion and the side wall of the groove can be tightly combined, and an intermediate gap can also be formed.
  • the functional material can be filled in the grooves to meet different illumination requirements.
  • the method for fabricating a wavelength conversion device for a fluorescent chip it is possible to integrally form an isolation portion having a plurality of grooves arranged in a matrix on a first surface parallel to a main extension plane,
  • the functional material is formed in a plurality of grooves to form a functional portion, which simplifies the preparation process, reduces the process difficulty, and improves the brightness, durability, and mechanical properties of the prepared wavelength conversion device.
  • a display system using the fluorescent chip as described above comprising: a light source, and a fluorescent chip as described above, the light source being located adjacent to the fluorescent chip One side of the first surface is for emitting excitation light, and the functional portion of the fluorescent chip receives the excitation light and generates laser light of different wavelength ranges, and the laser light is emitted from the mouth of the groove.
  • the display system may include a light source and a fluorescent chip, and the fluorescent chip is the fluorescent chip described in any of the above embodiments.
  • the light source is used to emit excitation light.
  • the light source may be an LD array, an LED, a laser diode, a laser, etc.
  • the excitation light generated by the light source is shaped by a shaping device to form a uniform spot, and the spot enters the fluorescent chip.
  • the functional portion of the fluorescent chip receives the excitation light and generates laser light of a different wavelength range, which is emitted from the mouth of the groove.
  • the display system can be a television system, a projection system, etc., such as a cinema projector, a laser television, an engineering projector, an educational projector, a splicing screen projector, and the like.
  • the display system further includes a light modulator disposed on an outgoing light path of the light source for converting the excitation light into a monochrome image light And outputting to the fluorescent chip,
  • the fluorescent chip receives the monochromatic image light and generates laser light of different wavelength ranges.
  • the display system may further include a light modulator disposed on an optical path of the excitation light emitted by the light source, and the excitation light is shaped by the shaping device to form a uniform spot, and the spot is re-entered.
  • the light modulator modulated to form a monochromatic image light
  • the monochromatic image light is imaged onto the fluorescent chip, and each functional unit on the fluorescent chip receives the image light and generates laser light of different wavelength ranges, and The laser is emitted from the same side of the excitation source.
  • Each functional unit on the fluorescent chip can receive the image light at the same time, or partially receive the image light, or can receive the image light in a certain order or arrangement, and then emit the color image light.
  • each spatial light modulator separately modulates image light of one color, and then one fluorescent chip corresponds to one spatial light.
  • the modulator, each of the fluorescent chips emits only one color of light.
  • the first spatial light modulator is used to modulate blue image light
  • the first fluorescent chip corresponding to the first spatial light modulator receives the image light to generate blue outgoing light
  • the second spatial light modulator is used to modulate green Image light
  • the second fluorescent chip corresponding to the second spatial light modulator receives the image light and is excited to generate a green laser beam
  • the third spatial light modulator is used to modulate the red image light
  • the third spatial light modulator The corresponding third fluorescent chip receives the image light to generate a red received laser light.
  • the display system may further include only one spatial light modulator and three fluorescent chips, and the three fluorescent chips are monochromatic fluorescent chips (ie, the functional units in the fluorescent chip are the same)
  • the image light emitted by the spatial light modulator is sequentially supplied to the three fluorescent chips in order, so that the images emitted by the three fluorescent chips are combined and sequentially synthesized to obtain a color image.
  • the fluorescent chip in each of the above embodiments can be applied to a projection system, and can also be applied to a lighting system such as a stage lighting, a car headlight, a surgical lamp, or the like.
  • the display system using the above-mentioned fluorescent chip can convert the excitation light emitted from the light source into laser light of different wavelength ranges, and exit from the mouth of the groove, thereby significantly improving the illumination of the display system. Brightness and durability.
  • the wavelength conversion device for a fluorescent chip according to various embodiments of the present disclosure, at least a portion of the incident light can be converted into an outgoing light different from the wavelength of the incident light by the functional portion, and is performed through the isolation portion.
  • the reflection can significantly improve the luminance and durability of the wavelength conversion device, and effectively solve the defects of low luminous efficiency of related technologies such as DMD or LC D display technology.
  • the wavelength conversion device according to the embodiment of the present invention is less stringent in thickness and has better mechanical performance than the transmissive luminescence in the related art.
  • the wavelength conversion device according to the embodiment of the present invention can add a heat dissipating component under the reflective layer, so that the entire illuminating element can withstand higher temperatures, enabling high-brightness display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Filters (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种荧光芯片及其波长转换装置的制备方法以及显示系统。荧光芯片包括用于将至少部分入射光转换为不同于入射光波长的出射光的波长转换装置,波长转换装置包括:隔离部(11),包括平行于主延伸平面的第一表面,其设置有呈矩阵式排列的凹槽;功能部(12),包括多个功能单元,其对应设置于隔离部(11)的凹槽内,多个功能单元包括转换单元,用于接收入射光并将其转换为不同于入射光波长的出射光;隔离部(11)用以反射紫外光和/或可见光。能够通过功能部(12)将入射光转换为出射光并通过隔离部(11)反射,采用反射式发光,对厚度要求不严格,机械性能好;便于设置散热组件,适用于大功率发光装置和显示系统。

Description

发明名称:荧光芯片及其波长转换装置的制备方法以及显示系统 技术领域
[0001] 本公幵涉及显示领域, 尤其涉及一种荧光芯片及其波长转换装置的制备方法以 及显示系统。
背景技术
[0002] 在目前的显示领域中, 显示方法主要利用 DMD或 LCD等作为光调制器, 对照 明光进行调制从而得到图像光。 在相关技术中, 在以激光激发荧光材料产生多 色光作为光源的显示设备中, 激光发光元件发出的光经光学元件 (例如合光器 件、 光束整形器件等) 到达荧光粉 (效率例如为约 90%) , 经荧光材料转换后得 到所谓的照明光; 耦合到光机系统 (效率例如为约 94%) ; 经光机系统调制成图 像光 (光机效率例如为约 30%~40%) ; 然后经过投影镜头投射到屏幕上。 该过 程中, 发光效率较低, 使得光大量损失, 对高亮度显示产生了较大的制约。
技术问题
[0003] 在相关技术中, 近年来出现了一种新型的发光半导体装置 100, 如图 1所示, 包 括呈矩阵排列的 LED芯片阵列 20, 以及固定设置在该发光阵列的光耦合输出面 21 上的波长转换元件 10, 该波长转换元件 10包括多个与 LED芯片一一对应设置的转 换区段, 各个转换区段之间以反射材料分隔。 在该技术中, 波长转换元件为透 射方式发光 (例如图 1中的光透射方向 40) , 故波长转换元件的厚度会影响光的 透过率和吸收率, 从而影响出射光的颜色和亮度; 通常为了优化发光性能, 该 波长转换元件的厚度需要很薄, 因此机械性能较差; 而且直接制备较薄的发光 元件很难, 一般先制备较厚的波长转换元件, 然后再进行减薄, 所以工艺复杂 , 成本高。 其次, 由于波长转换元件为透射式发光, 散热装置的设置会影响其 出光率, 所以该波长转换元件不适合大功率发光装置。
问题的解决方案
技术解决方案
[0004] 有鉴于此, 本公幵实施例提出了一种荧光芯片、 用于该荧光芯片的波长转换装 置的制备方法, 以及应用该荧光芯片的显示系统。 该波长转换装置采用反射式 发光, 反射式对厚度要求不严格, 机械性能好; 反射式便于设置散热组件, 可 以适用于大功率发光装置和显示系统。
[0005] 根据本公幵实施例的一方面, 提供了一种荧光芯片, 所述荧光芯片包括用于将 至少部分入射光转换为不同于入射光波长的出射光的波长转换装置, 所述波长 转换装置包括:
[0006] 隔离部, 包括平行于主延伸平面的第一表面, 所述第一表面设置有呈矩阵式排 列的凹槽;
[0007] 功能部, 所述功能部包括多个功能单元, 所述多个功能单元对应设置于所述隔 离部的凹槽内,
[0008] 其中, 所述多个功能单元包括转换单元, 用于接收入射光并将其转换为不同于 入射光波长的出射光; 所述隔离部用以反射紫外光和 /或可见光。
[0009] 根据本公幵实施例的第二方面, 提供了一种用于荧光芯片的波长转换装置的制 备方法, 其特征在于, 所述方法包括:
[0010] Sl l, 一体成型获取在平行于主延伸平面的第一表面上具有矩阵式排列的多个 凹槽的隔离部;
[0011] S12, 在所述多个凹槽中填充功能材料形成功能部, 所述功能材料为波长转换 材料、 散射材料以及透光材料中的至少一种。
[0012] 根据本公幵实施例的第三方面, 提供了一种显示系统, 包括: 光源, 以及如上 所述的荧光芯片, 所述光源位于靠近所述荧光芯片第一表面的一侧, 用于发出 激发光, 所述荧光芯片的功能部接收所述激发光并产生不同波长范围的受激光 , 所述受激光从所述凹槽的幵口处出射。
[0013]
发明的有益效果
有益效果
[0014] 根据本公幵实施例的用于荧光芯片的波长转换装置, 能够通过功能部将至少部 分入射光转换为不同于入射光波长的出射光, 并通过隔离部进行反射, 该波长 转换装置采用反射式发光, 对厚度要求不严格, 机械性能好; 便于设置散热组 件, 可适用于大功率发光装置和显示系统。
[0015] 根据本公幵实施例的用于荧光芯片的波长转换装置的制备方法, 能够一体成型 获取在平行于主延伸平面的第一表面上具有矩阵式排列的多个凹槽的隔离部, 并在多个凹槽中填充功能材料形成功能部, 简化了制备流程, 降低了工艺难度 , 并提高了所制备的波长转换装置的发光亮度、 耐用性及机械性能。
[0016] 根据本公幵实施例的应用该荧光芯片的显示系统, 能够将光源发出的激发光转 换为不同波长范围的受激光, 并从凹槽的幵口处出射, 使得显示系统的发光亮 度和耐用性显著提高。
[0017] 根据下面参考附图对示例性实施例的详细说明, 本公幵实施例的其它特征及方 面将变得清楚。
对附图的简要说明
附图说明
[0018] 包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公幵的 示例性实施例、 特征和方面, 并且用于解释本公幵的原理。
[0019] 图 1是根据相关技术的用于荧光芯片的波长转换装置的示意图。
[0020] 图 2是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的示意图
[0021] 图 3是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的示意图
[0022] 图 4是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的侧视图
[0023] 图 5是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的侧视图
[0024] 图 6是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的侧视图
[0025] 图 7是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的侧视图
[0026] 图 8是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的流程图。
[0027] 图 9是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的模具的示意图。
[0028] 图 10是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法制备的隔离部的示意图。
[0029] 图 11是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的隔离部的示意图。
[0030] 图 12是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的隔离部的示意图。
[0031] 图 13是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的模具的示意图。
[0032] 图 14是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的隔离部的示意图。
[0033] 图 15是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的步骤 S12的流程图。
本发明的实施方式
[0034] 以下将参考附图详细说明本公幵的各种示例性实施例、 特征和方面。 附图中相 同的附图标记表示功能相同或相似的元件。 尽管在附图中示出了实施例的各种 方面, 但是除非特别指出, 不必按比例绘制附图。
[0035] 在这里专用的词"示例性 "意为 "用作例子、 实施例或说明性"。 这里作为"示例性
"所说明的任何实施例不必解释为优于或好于其它实施例。
[0036] 另外, 为了更好的说明本公幵, 在下文的具体实施方式中给出了众多的具体细 节。 本领域技术人员应当理解, 没有某些具体细节, 本公幵同样可以实施。 在 一些实例中, 对于本领域技术人员熟知的方法、 手段、 元件和电路未作详细描 述, 以便于凸显本公幵的主旨。
[0037] 本公幵提供的一种荧光芯片及其波长转换装置的制备方法以及显示系统, 旨在 对目前的显示领域中的显示技术进行改进, 其思路主要为荧光芯片可以排列成 一维矩阵、 二维矩阵: 如 nxm的矩阵, 其中, n、 m均为正整数。 荧光芯片可以 直接接收经调制后的单色图像光, 并将单色图像光转化为彩色图像光, 用于图 像显示。
[0038] 为了便于对功能单元及荧光芯片的理解, 将荧光芯片对应的显示系统光路进行 简要的说明。 光源发出的单色激发光经过光整形系统后形成均匀的光斑, 该光 斑照射到光调制器上, 经光调制器调制后形成单色图像光, 该单色图像光成像 到荧光芯片上, 从而得到彩色图像光。 光源可以是 LD (Laser Diode, 激光二极 管) 阵列。 优选的, 荧光芯片的面积大于从光调制器的出射面面积, 根据光学 扩展量守恒可知, 可以使得在成像过程中, 入射到荧光芯片的图像光的光发散 角更小, 提高了光的利用率。
[0039]
[0040] 实施例 1
[0041] 图 2是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的示意图 。 根据本公幵实施例的荧光芯片可采用如图 2所示的波长转换装置将至少部分入 射光转换为不同于入射光波长的出射光, 该波长转换装置包括:
[0042] 隔离部 11, 所述隔离部 11包括平行于主延伸平面的第一表面, 所述第一表面设 置有呈矩阵式排列的凹槽;
[0043] 功能部 12, 所述功能部 12包括多个功能单元, 所述多个功能单元对应设置于所 述隔离部 11的凹槽内,
[0044] 其中, 所述多个功能单元包括转换单元, 用于接收入射光并将其转换为不同于 入射光波长的出射光; 所述隔离部 11用以反射紫外光和 /或可见光。 所述功能单 元被阻隔部所间隔, 以防止相邻功能单元之间的光串扰。
[0045] 根据本公幵实施例的用于荧光芯片的波长转换装置, 能够通过功能部将至少部 分入射光转换为不同于入射光波长的出射光, 并通过隔离部进行反射, 该波长 转换装置采用反射式发光, 对厚度要求不严格, 机械性能好; 便于设置散热组 件, 可适用于大功率发光装置和显示系统。
[0046] 举例来说, 波长转换装置可以包括隔离部 11, 隔离部 11可以包括平行于主延伸 平面的第一表面, 第一表面可阵列式 (矩阵式) 排列有多个凹槽。 波长转换装 置的隔离部 11可以为矩形、 圆形或其他多边形, 隔离部 11表面的多个凹槽也可 以为矩形、 圆形或其他多边形。 本公幵对隔离部 11以及隔离部 11表面的多个凹 槽的具体形状不作限制。
[0047] 在一种可能的实现方式中, 功能部 12可以填充在隔离部 11的多个凹槽中。 功能 部 12可以包括多个功能单元, 多个功能单元对应设置于所述隔离部 11的凹槽内 。 其中, 多个功能单元包括转换单元, 转换单元由波长转换材料制成, 用于接 收入射光并将其转换为不同于入射光波长的出射光。 例如, 转换单元的波长转 换材料可以为含有荧光粉或量子点的硅胶, 其能够吸收照射到转换单元上的入 射光, 并将入射光转换为不同于入射光波长的出射光并发射。 (如包含有反射 粒子的硅胶、 金属等)
[0048] 在一种可能的实现方式中, 隔离部 11可以由能够反射紫外 /可见光的材料制成 , 例如, 隔离部 11的材质可以为金属和 /或含有反射粒子的硅胶。 隔离部 11可以 反射入射光和功能部 12发射的光 (出射光) , 在隔离部 11的第一表面方向上, 每个功能部 12被隔离部 11包围, 防止相邻的功能部 12之间的光串扰。 隔离部 11 可提高功能部 12对入射光的吸收效率及功能部 12发光的出光效率。
[0049] 在一种可能的实现方式中, 隔离部 11可以为一体成型结构。 例如, 在隔离部 11 的材质为金属吋, 可以采用精密机械加工工艺对金属材料进行加工, 一体成型 为隔离部 11。
[0050] 图 3是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的示意图 。 如图 3所示, 在一种可能的实现方式中, 在多个凹槽中的功能部 12的功能单元 可以包括转换单元, 转换单元可以包括波长转换材料, 每一转换单元均包括与 其他转换单元相同或不同的波长转换材料。 例如, 可以根据设计要求, 在不同 的凹槽中填入不同的波长转换材料, 获得不同的转换单元, 使得转换单元发射 的出射光的波长不同, 从而获得不同波长的出射光, 进而满足不同的发光需求 。 可以根据荧光芯片的光转换要求来确定转换单元的波长转换材料的类型及排 列方式, 本公幵对此不作限定。
[0051] 在一种可能的实现方式中, 多个功能单元还可以包括非转换单元, 非转换单元 可以包括透光材料和 /或散射材料, 用于将入射光直接透射出射或散射出射。 具 体的, 所述透光材料可以是空气或其它材质。 可以根据荧光芯片的光转换要求 来确定非转换单元的类型及排列方式, 本公幵对此不作限定。
[0052] 在一种可能的实现方式中, 在所述隔离部还可以包括平行于主延伸平面的第二 表面, 该第二表面上设置有散热组件, 所述散热组件传递并散发所述波长转换 装置的热量。 其中, 平行于主延伸平面的第二表面与第一表面相对设置。 例如 , 散热组件可以包括导热层和散热部, 导热层将隔离部的热量的传递到散热部 , 散热部将热量散发到隔离部外部。 导热层可以由高导热率的材料 (例如金属 ) 制成, 散热部可以是散热片或散热风扇等结构, 本公幵对此不作限制。
[0053] 图 4是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的侧视图 ; 图 5是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的侧视图 。 如图 4所示, 波长转换装置具有由双头箭头 110所指示的主延伸平面。
[0054] 如图 4和图 5所示, 在一种可能的实现方式中, 波长转换装置的隔离部 11可以为 多层结构, 隔离部 11可以包括本体 111和隔离层 112, 本体 111为一体成型结构, 包括平行于主延伸平面的第一表面, 所述第一表面设置有呈阵列式排列的凹槽 , 所述隔离层 112包括多个隔离子层, 所述多个隔离子层对应设置于所述本体 11 1的凹槽内, 并完全覆盖凹槽的底部和内壁。 其中, 所述本体 111的材质可以为 反射紫外光和 /或可见光的金属材料, 所述隔离层 112的材质可以为含有反射粒子 的硅胶。
[0055] 在一种可能的实现方式中, 波长转换装置的隔离部 11可以包括本体 111和隔离 层 112, 所述本体 111为一体成型结构, 包括平行于主延伸平面的第一表面, 所 述第一表面设置有呈阵列式排列的凹槽, 所述隔离层 112包括多个隔离子层, 所 述多个隔离子层为一体结构, 完全覆盖所述本体 111的第一表面。 其中, 所述本 体 111的材质可以为反射紫外光和 /或可见光的金属材料, 所述隔离层 112的材质 可以为含有反射粒子的硅胶。
[0056] 在一种可能的实现方式中, 隔离部 11的隔离层的厚度可以为 10μηι-500μιη, 例 如, 隔离层的厚度可以为 100μηι。 通过使得隔离层的厚度较大, 隔离部 11可以具 有更好的机械性能。 隔离层厚度越大, 隔离部的机械性能越好, 同吋对光的阻 隔效果越好, 但隔离层厚度过大会造成荧光像素芯片的分辨率降低, 本领域技 术人员可以根据产品的实际需求设置隔离层的厚度, 本公幵对此不做限制。
[0057] 通过这种方式, 采用高反射率的金属形成本体 111并采用含有反射粒子的硅胶 形成隔离层 112, 可以利用隔离层 112 (硅胶层) 的漫反射和本体 111 (金属层) 的镜面反射的综合作用, 提高波长转换装置的隔离部 11, 从而提高发光材料对 入射光的吸收和发光的出光效率, 防止相邻像素的串扰。 此外, 相比于单层金 属层, 多层结构中的隔离层 112 (硅胶层) 可以保护金属层表面不被氧化; 相比 于单层硅胶层, 多层结构中的本体 111 (金属层) 的存在可提高阻隔材料的机械 强度, 降低对硅胶层加工精度的要求。
[0058] 在一种可能的实现方式中, 隔离部 11的多个凹槽的纵向截面形状为抛物线形、 方形、 半圆形中的一种。 如图 5所示, 所述隔离部的多个凹槽的纵向截面形状可 以为抛物线形。 纵向截面为抛物线形的凹槽能够降低加工难度, 同吋更有利于 高功能部的出光效率, 从而提高波长转换装置的发光亮度。 凹槽的纵向截面也 可以采用图 4中的方形形状或其他任何形状, 本公幵对凹槽的纵向截面的具体形 状不作限制。
[0059] 图 6是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的侧视图 ; 图 7是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的侧视图 。 如图 6和图 7所示, 在一种可能的实现方式中, 功能部 12的每个功能单元可以 局部覆盖或完全填充所对应的凹槽内部。
[0060] 举例来说, 在满足功能部 12的功能单元所需的填充厚度的情况下, 可以在多个 凹槽中填满波长转换材料, 以使生成的功能单元填充隔离部 11的多个凹槽的全 部空间 (如图 6所示) ; 也可以在多个凹槽中不填满波长转换材料, 以使生成的 功能单元填充隔离部 11的多个凹槽的部分空间 (如图 7所示) , 以加强隔离部 11 吸收入射光的吸收效率以及反射的出射光的出光效率。
[0061] 在一种可能的实现方式中, 功能部 12与隔离部 11的凹槽底部之间可以紧密结合 , 具有一定的机械强度; 功能部 12与凹槽侧壁之间可以紧密结合, 也可以形成 中间间隙, 本公幵对此不作限制。
[0062]
[0063] 在一种可能的实现方式中, 所述荧光芯片包括多个相同的像素单元, 所述像素 单元呈矩阵式排列, 每个像素单元由多个相邻的功能单元构成, 每个像素单元 的出射光至少包括红光、 蓝光、 绿光。
[0064] 举例来说, 每个像素单元的多个相邻的功能单元可以构成二维矩阵, 其中, 相 邻的两个功能单元出射相同颜色或者不同颜色的光。 例如, 相邻的两个功能单 元可以设置不同的波长转换材料, 使其受激产生不同波长范围的受激光。
[0065] 例如, 当像素单元的多个功能单元组成 9列 6行的阵列吋, 第一行中九个功能单 元出射的光的颜色依次为红色、 绿色、 蓝色、 红色、 绿色、 蓝色、 红色、 绿色 、 蓝色; 第二行中九个功能单元出射的光的颜色依次为红色、 绿色、 蓝色、 红 色、 绿色、 蓝色、 红色、 绿色、 蓝色; 第三行中九个功能单元出射的光的颜色 依次为红色、 绿色、 蓝色、 红色、 绿色、 蓝色、 红色、 绿色、 蓝色; 第四行、 第五行、 第六行中九个功能单元出射的光的颜色与第一行中出射的光的颜色的 顺序一致。 也就是说, 第一行中各个功能单元按照一定的顺序依次出射三种颜 色的光, 其它各行中出射光的颜色与第一行中出射光的颜色的顺序一致。 即, 每一列中各功能单元的出射光颜色相同, 相邻两列的功能单元出射光颜色不同
[0066] 又如, 当若干功能单元组成 9列 6行的阵列吋, 第一行中九个功能单元出射的光 的颜色依次为红色、 绿色、 蓝色、 红色、 绿色、 蓝色、 红色、 绿色、 蓝色; 第 二行中九个功能单元出射的光的颜色依次为蓝色、 红色、 绿色、 蓝色、 红色、 绿色、 蓝色、 红色、 绿色; 第三行中九个功能单元出射的光的颜色依次为绿色 、 蓝色、 红色、 绿色、 蓝色、 红色、 绿色、 蓝色、 红色; 第四行中九个功能单 元出射的光的颜色与第一行中出射光的颜色的顺序一致; 第五行中九个功能单 元出射的光的颜色与第二行中出射光的颜色的顺序一致; 第六行中九个功能单 元出射的光的颜色与第三行中出射光的颜色的顺序一致。 以此类推, 可以扩展 到更多功能单元组成的像素单元。
[0067] 在一种可能的实现方式中, 部分功能单元设置有蓝色荧光材料或者散射材料, 部分功能单元设置有绿色荧光材料, 部分功能单元设置有红色荧光材料, 其中 , 相邻的功能单元设置不同颜色的荧光材料。 例如, 功能单元可以为 8x9的一个 矩阵, 即有 8行 9列, 具体的行数和列数可以根据实际的情况确定。 例如, 可以 是每相邻四个功能单元构成一个像素单元, 一个像素单元中至少有一个功能单 元出射蓝色的出射光, 至少有一个功能单元出射红色的出射光, 至少有一个功 能单元出射绿色的出射光。 其中, 出射蓝色出射光的功能单元可以设置蓝色的 荧光材料, 或者当入射的激发光为蓝色激光吋, 该出射蓝色出射光的功能单元 设置散射材料 (只添加硅胶) 或不添加任何材料。
[0068] 在一种可能的实现方式中, 所述像素单元包括呈矩阵排列的四个功能单元, 所 述四个功能单元包括三个转换单元和一个非转换单元。 例如, 一个功能单元的 三个转换单元设置有绿色荧光材料, 一个非转换单元设置有散射材料; 相邻的 另一个功能单元的三个转换单元设置有蓝色荧光材料, 一个非转换单元设置有 散射材料或不添加任何材料。
[0069]
[0070] 在一种可能的实现方式中, 所述荧光芯片还包括多个滤光片, 多个滤光片对应 设置于所述凹槽的上方并将所述凹槽的幵口密封。
[0071] 在一种可能的实现方式中, 所述滤光片为能够透射小于预设角度的光并反射其 它角度的光的角度选择滤光片。
[0072] 举例来说, 设置在所述凹槽的幵口上的滤光片 (角度选择滤光片) 能够仅透射 小于预设角度的光, 反射其它角度的光。 可以根据产品的要求调整滤光片的特 性 (例如对滤光片的材料、 厚度等进行调整) , 从而调整预设角度, 本公幵对 此不作限定。
[0073] 根据本公幵实施例的用于荧光芯片的波长转换装置, 能够通过功能部将至少部 分入射光转换为不同于入射光波长的出射光, 并通过隔离部进行反射, 该波长 转换装置采用反射式发光, 对厚度要求不严格, 机械性能好; 便于设置散热组 件, 可适用于大功率发光装置和显示系统。
[0074]
[0075] 实施例 2
[0076] 图 8是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的流程图。 如图 8所示, 根据本公幵实施例的用于荧光芯片的波长转换装置的 制备方法可包括: [0077] 步骤 Sl l, 一体成型获取在平行于主延伸平面的第一表面上具有矩阵式排列的 多个凹槽的隔离部;
[0078] 步骤 S12, 在所述多个凹槽中填充功能材料形成功能部, 所述功能材料为波长 转换材料、 散射材料以及透光材料中的至少一种。
[0079] 根据本公幵实施例的用于荧光芯片的波长转换装置的制备方法, 能够一体成型 获取在平行于主延伸平面的第一表面上具有矩阵式排列的多个凹槽的隔离部, 并在多个凹槽中填充功能材料形成功能部, 简化了制备流程, 降低了工艺难度 , 并提高了所制备的波长转换装置的发光亮度、 耐用性及机械性能。
[0080] 举例来说, 可以一体成型获取在平行于主延伸平面的第一表面上具有矩阵式排 列的多个凹槽的隔离部。 例如, 对于含有反射粒子的硅胶等隔离材料, 可以使 得隔离材料在模具中固化, 从而获得在表面上排列有多个凹槽的隔离部; 对于 含有反射粒子的金属等隔离材料, 可以以隔离材料为基板, 通过加工等方式获 得在表面上排列有多个凹槽的隔离部; 也可以采用多种隔离材料 (例如金属材 料、 硅胶材料等) 形成具有多层结构的隔离部。 根据隔离材料的不同, 隔离部 的获取方式也不同, 本公幵对隔离材料的具体类型及相应的隔离部的获取方式 不作限制。
[0081] 在一种可能的实现方式中, 可以在隔离部的多个凹槽中填充功能材料形成功能 部, 所述功能材料为波长转换材料、 散射材料以及透光材料中的至少一种。 例 如, 可以将适量的荧光粉或发光量子点与硅胶单体及固化剂均匀混合得到混合 液体作为波长转换材料, 利用掩膜覆盖凹槽阵列的上表面, 利用混合液体 (波 长转换材料) 的流动性, 使混合液体 (波长转换材料) 填充在凹槽中, 加热固 化后, 得到功能部。
[0082] 在一种可能的实现方式中, 步骤 S11包括: 使含有反射粒子的未固化硅胶在模 具中加热固化, 获得在平行于主延伸平面的第一表面上具有矩阵式排列的多个 凹槽的隔离部。
[0083] 举例来说, 隔离材料可以为含有反射粒子的未固化硅胶, 其中, 反射粒子可以 为二氧化钛、 氧化铝、 氧化锆、 氧化锌、 硫酸钡等, 例如, 采用折射率高的二 氧化钛纳米粉体。 可以将二氧化钛纳米粉体与硅胶单体及固化剂均匀混合后, 以便制备含有反射粒子的未固化硅胶。
[0084] 图 9是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的模具的示意图。 图 10是根据一示例性实施例示出的一种用于荧光芯片的波 长转换装置的制备方法制备的隔离部的示意图。 如图 9所示, 可以将隔离材料加 入模具基座 22中, 盖上模具上盖 23, 在一定的压力下成型后放入烘箱中固化, 固化后进行脱模, 从而可以获得在表面上排列有多个凹槽的隔离部 (如图 10所 示) 。 在隔离部的凹槽中填充功能材料, 并加热固化后, 可以得到功能部。
[0085] 通过这种方式, 可以使含有反射粒子的未固化硅胶在模具中加热固化, 以获得 在第一表面上矩阵式排列的多个凹槽的隔离部, 提高了隔离部的制备效率。
[0086] 在一种可能的实现方式中, 步骤 S11包括: 对反射紫外光和 /或可见光的金属材 料基板进行加工, 获取在平行于主延伸平面的第一表面上具有矩阵式排列的多 个凹槽的隔离部, 所述加工方式包括精密机械加工工艺、 微纳加工工艺以及 3D 打印中的一种。
[0087] 举例来说, 隔离材料可以为铝或不锈钢、 铜或银等具有较高反射率的金属材料 。 可以以金属材料为基板, 通过精密机械加工工艺、 微纳加工工艺 (刻蚀) 或 3 D打印等方式, 获取在平行于主延伸平面的第一表面上具有矩阵式排列的多个凹 槽的隔离部。 本公幵对固态基板的具体加工方式不作限制。
[0088] 在一种可能的实现方式中, 可以在隔离部的多个凹槽中填充功能材料, 例如, 可以将适量的荧光粉或发光量子点与硅胶单体及固化剂均匀混合得到混合液体 作为波长转换材料, 利用掩膜覆盖凹槽阵列的上表面, 利用混合液体 (波长转 换材料) 的流动性, 使混合液体 (波长转换材料) 填充在凹槽中, 加热固化后 , 得到功能部。 功能部与凹槽的底面结合紧密, 具有一定的机械强度, 侧壁可 以紧密结合, 也可以形成中间间隙。
[0089] 通过这种方式, 可以对由金属隔离材料制成的固态基板进行加工以获取在平行 于主延伸平面的第一表面上具有矩阵式排列的多个凹槽的隔离部, 提高了隔离 部的制备效率。
[0090] 在一种可能的实现方式中, 步骤 S11包括:
[0091] 对反射紫外光和 /或可见光的金属材料基板进行加工, 获取在平行于主延伸平 面的第一表面上具有矩阵式排列的多个凹槽的隔离本体;
[0092] 在所述隔离本体的凹槽中填充含有反射粒子的未固化硅胶, 并将模具压入所述 隔离本体的多个凹槽中;
[0093] 使所述未固化硅胶在所述凹槽中加热固化以形成隔离层, 获取在平行于主延伸 平面的第一表面上具有阵列式排列的多个凹槽的隔离部。
[0094] 举例来说, 可以制备具有多层结构的隔离部, 外层的本体可以由高反射率的金 属制成, 内层的隔离层可以由含有反射粒子的硅胶制成。
[0095] 图 11是根据一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方 法的隔离部的示意图; 图 12是根据一示例性实施例示出的一种用于荧光芯片的 波长转换装置的制备方法的隔离部的示意图; 图 13是根据一示例性实施例示出 的一种用于荧光芯片的波长转换装置的制备方法的模具的示意图; 图 14是根据 一示例性实施例示出的一种用于荧光芯片的波长转换装置的制备方法的隔离部 的示意图。
[0096] 如图 11所示, 在一种可能的实现方式中, 可以以铝、 不锈钢、 铜、 或银等具有 较高反射率的金属或合金材料为基板, 通过精密机械加工工艺、 微纳加工工艺 (刻蚀) 或 3D打印等方式, 获取在第一主延伸平面上阵列式排列有多个第一凹 槽 113的本体 111, 其中第一凹槽 113可以为圆柱状或棱柱状等。 本公幵对固态基 板的具体加工方式不作限制。
[0097] 如图 12所示, 在一种可能的实现方式中, 可以将含有反射粒子的未固化硅胶作 为形成隔离层的隔离材料, 例如, 可以将 30-200nm的 Ti0 2粉体与硅胶单体及固 化剂均匀混合得到混合液体。 利用掩膜覆盖本体 111的凹槽 113阵列的上表面, 之后将适量的未固化硅胶填入其中, 形成填充结构 114, 如图 12所示。
[0098] 如图 13所示, 在一种可能的实现方式中, 模具 115上可以设置有溢流口 (未示 出) , 以便排除多余的未固化硅胶 (^0 2粉体与硅胶单体及固化剂的混合液体 ) 。 可以使模具 115与填充结构 114对齐, 使得模具 115的端部 116与填充结构 114 的中心线对齐, 在一定压力下压入填充结构 114中, 排除多余的未固化硅胶。 加 热固化后, 可以获得如图 14所示的隔离部。
[0099] 在一种可能的实现方式中, 还可以将含有反射粒子的未固化硅胶 (Ti0 2粉体与 硅胶单体及固化剂的混合液体) 注入第一凹槽 113中, 形成如图 12所示的填充结 构 114。 然后, 对未固化硅胶进行加热固化, 利用精密机械加工或微纳加工等方 式获得如图 14所示的隔离部。 本公幵对具有多层结构的隔离部的具体制备方式 不做限制。
[0100] 在一种可能的实现方式中, 在制备了隔离部后, 可以在隔离部的多个凹槽中填 充波长转换材料。 利用掩膜覆盖凹槽阵列的上表面, 波长转换材料的流动性, 使波长转换材料填充在凹槽中, 加热固化后, 得到功能部。 这样根据模具的形 状或加工吋形成的隔离层 112的形状, 可以获得如图 4或图 5所示的波长转换装置
[0101] 通过这种方式, 采用高反射率的金属形成本体 111并采用含有反射粒子的硅胶 形成隔离层 112, 可以利用隔离层 112 (硅胶层) 的漫反射和本体 111 (金属层) 的镜面反射的综合作用, 提高波长转换装置的隔离部 11, 从而提高发光材料对 入射光的吸收和发光的出光效率, 防止相邻像素的串扰。 此外, 相比于单层金 属层, 多层结构中的隔离层 112 (硅胶层) 可以保护金属层表面不被氧化; 相比 于单层硅胶层, 多层结构中的本体 111 (金属层) 的存在可提高阻隔材料的机械 强度, 降低对硅胶层加工精度的要求。
[0102] 图 15是根据一示例性实施例示出的一种波长转换装置的制备方法的步骤 S12的 流程图。 如图 15所示, 在一种可能的实现方式中, 步骤 S12包括:
[0103] 步骤 S121, 采用掩膜覆盖所述隔离部的第一表面上多个凹槽的邻接部分;
[0104] 步骤 S122, 将功能材料填充到未被掩膜覆盖的凹槽中。
[0105] 举例来说, 可以采用掩膜覆盖所述多个凹槽的邻接部分, 利用波长转换材料的 流动性, 使波长转换材料填充在未被掩膜覆盖的凹槽中。 通过设计掩膜板的覆 盖范围, 多次利用不同覆盖范围的掩膜板, 可在不同的凹槽中填入不同的功能 材料 (例如, 波长转换材料) , 加热固化后, 可以得到不同的功能部。 这样, 可以使得功能部发射的出射光的波长不同, 获得不同波长的出射光, 从而满足 不同的发光需求。
[0106] 在一种可能的实现方式中, 在满足功能部所需的填充厚度的情况下, 功能部可 以填充隔离部的多个凹槽的全部空间 (如图 6所示) 或部分空间 (如图 7所示) 。 功能部与隔离部的凹槽底部之间可以紧密结合, 具有一定的机械强度; 功能 部与凹槽侧壁之间可以紧密结合, 也可以形成中间间隙。
[0107] 通过这种方式, 可以在凹槽中填充功能材料, 从而满足不同的发光需求。
[0108] 根据本公幵实施例的用于荧光芯片的波长转换装置的制备方法, 能够一体成型 获取在平行于主延伸平面的第一表面上具有矩阵式排列的多个凹槽的隔离部, 并在多个凹槽中填充功能材料形成功能部, 简化了制备流程, 降低了工艺难度 , 并提高了所制备的波长转换装置的发光亮度、 耐用性及机械性能。
[0109]
[0110] 实施例 3
[0111] 根据本公幵的实施例, 还提供一种应用如上所述的荧光芯片的显示系统, 该显 示系统包括: 光源, 以及如上所述的荧光芯片, 所述光源位于靠近所述荧光芯 片第一表面的一侧, 用于发出激发光, 所述荧光芯片的功能部接收所述激发光 并产生不同波长范围的受激光, 所述受激光从所述凹槽的幵口处出射。
[0112] 举例来说, 该显示系统可以包括光源和荧光芯片, 所述荧光芯片为上述任一实 施例所述的荧光芯片。 光源用于发出激发光, 例如, 光源可以为 LD阵列、 LED 、 激光二极管、 激光器等, 光源产生的激发光经过整形装置进行整形后形成均 匀的光斑, 该光斑进入荧光芯片。 荧光芯片的功能部接收激发光并产生不同波 长范围的受激光, 所述受激光从所述凹槽的幵口处出射。 该显示系统可以为电 视系统, 投影系统等, 如影院放映机、 激光电视、 工程投影机、 教育投影机、 拼接屏投影机等。
[0113] 在一种可能的实现方式中, 所述显示系统还包括光调制器, 所述光调制器置于 所述光源的出射光路上, 用于将所述激发光转换为单色图像光并输出给所述荧 光芯片,
[0114] 所述荧光芯片接收所述单色图像光并产生不同波长范围的受激光。
[0115] 举例来说, 该显示系统还可以包括光调制器, 所述光调制器置于光源出射的激 发光的光路上, 激发光经过整形装置进行整形后形成均匀的光斑, 该光斑再进 入到光调制器上, 经调制形成单色图像光, 该单色图像光成像到荧光芯片上, 荧光芯片上的各功能单元接收图像光并产生不同波长范围的受激光, 并将所述 受激光从激发光源的同侧出射。 荧光芯片上的各个功能单元可以同吋接收图像 光, 也可以部分接收图像光, 或者也可以按照一定的吋序或排布方式接收所述 图像光, 进而出射彩色的图像光。
[0116] 在一种可能的实现方式中, 当显示系统中采用三个空间光调制器吋, 每个空间 光调制器分别调制一种颜色的图像光, 此吋, 一个荧光芯片对应一个空间光调 制器, 每一荧光芯片分别只出射一种颜色的光。 比如, 第一空间光调制器用于 调制蓝色的图像光, 与第一空间光调制器对应的第一荧光芯片接收该图像光后 产生蓝色的出射光; 第二空间光调制器用于调制绿色的图像光, 与第二空间光 调制器对应的第二荧光芯片接收该图像光后受激产生绿色的受激光; 第三空间 光调制器用于调制红色的图像光, 与第三空间光调制器对应的第三荧光芯片接 收该图像光后产生红色的受激光。
[0117] 在一种可能的实现方式中, 显示系统还可以只包括一个空间光调制器和三个荧 光芯片, 三个荧光芯片都是单色的荧光芯片 (即荧光芯片中各功能单元相同) , 空间光调制器出射的图像光依吋序依次提供给三个荧光芯片, 从而三个荧光 芯片出射的图像光合光后经吋序合成得到彩色图像。
[0118] 上述各实施例中的荧光芯片可以应用于投影系统, 也可以应用于照明系统, 例 如舞台灯照明、 汽车大灯、 手术灯等。
[0119] 根据本公幵实施例的应用上述荧光芯片的显示系统, 能够将光源发出的激发光 转换为不同波长范围的受激光, 并从凹槽的幵口处出射, 显著提高显示系统的 发光亮度和耐用性。
[0120] 综上所述, 根据本公幵各个实施例的用于荧光芯片的波长转换装置, 能够通过 功能部将至少部分入射光转换为不同于入射光波长的出射光, 并通过隔离部进 行反射, 能够显著提高波长转换装置的发光亮度和耐用性, 有效解决 DMD或 LC D显示技术等相关技术的发光效率较低的缺陷。 并且, 与相关技术中的透射式发 光相比, 根据本公幵实施例的波长转换装置对厚度要求不严格, 具有更好的机 械性能。 并且, 根据本公幵实施例的波长转换装置可在反射层下添加散热组件 , 使得整个发光元件可以承受更高的温度, 能够实现高亮度显示。
[0121] 附图中的流程图和框图显示了根据本公幵的多个实施例的系统和方法可能实现 的功能和操作。 在有些作为替换的实现中, 方框中所标注的功能也可以以不同 于附图中所标注的顺序发生。 例如, 两个连续的方框实际上可以基本并行地执 行, 它们有吋也可以按相反的顺序执行, 这依所涉及的功能而定。 也要注意的 是, 框图和 /或流程图中的每个方框、 以及框图和 /或流程图中的方框的组合, 可 以用执行规定的功能或动作。
以上已经描述了本公幵的各实施例, 上述说明是示例性的, 并非穷尽性的, 并 且也不限于所披露的各实施例。 在不偏离所说明的各实施例的范围和精神的情 况下, 对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。 本文中所用术语的选择, 旨在最好地解释各实施例的原理、 实际应用或对市场 中的技术的改进, 或者使本技术领域的其它普通技术人员能理解本文披露的各 实施例。

Claims

权利要求书
1、 一种荧光芯片, 所述荧光芯片包括用于将至少部分入射光转换为 不同于入射光波长的出射光的波长转换装置, 其特征在于, 所述波长 转换装置包括:
隔离部, 包括平行于主延伸平面的第一表面, 所述第一表面设置有呈 矩阵式排列的凹槽;
功能部, 所述功能部包括多个功能单元, 所述多个功能单元对应设置 于所述隔离部的凹槽内,
其中, 所述多个功能单元包括转换单元, 用于接收入射光并将其转换 为不同于入射光波长的出射光; 所述隔离部用以反射紫外光和 /或可 见光。
2、 根据权利要求 1所述的荧光芯片, 其特征在于, 所述隔离部为一体 成型结构。
3、 根据权利要求 1所述的荧光芯片, 其特征在于, 所述隔离部的材质 为金属和 /或含有反射粒子的硅胶。
4、 根据权利要求 1所述的荧光芯片, 其特征在于, 所述多个功能单元 还包括非转换单元, 所述非转换单元包括透光材料和 /或散射材料, 用于将入射光直接透射出射或散射出射。
5、 根据权利要求 1所述的荧光芯片, 其特征在于, 所述转换单元包括 波长转换材料, 每一转换单元均包括与其他转换单元相同或不同的波 长转换材料。
[权利要求 6] 6、 根据权利要求 1所述的荧光芯片, 其特征在于, 在所述隔离部还包 括平行于主延伸平面的第二表面, 所述第二表面设置有散热组件, 所 述散热组件传递并散发所述波长转换装置的热量, 其中, 平行于所述 主延伸平面的第二表面与所述第一表面相对设置。
7、 根据权利要求 1所述的荧光芯片, 其特征在于, 所述隔离部包括本 体和隔离层, 所述本体为一体成型结构, 包括平行于主延伸平面的第 一表面, 所述第一表面设置有呈阵列式排列的凹槽, 所述隔离层包括 多个隔离子层, 所述多个隔离子层对应设置于所述本体的凹槽内, 并 完全覆盖凹槽的底部和内壁。
8、 根据权利要求 1所述的荧光芯片, 其特征在于, 所述隔离部包括本 体和隔离层, 所述本体为一体成型结构, 包括平行于主延伸平面的第 一表面, 所述第一表面设置有呈阵列式排列的凹槽, 所述隔离层包括 多个隔离子层, 所述多个隔离子层为一体结构, 完全覆盖所述本体的 第一表面。
9、 根据权利要求 7或 8所述的荧光芯片, 其特征在于, 所述本体的材 质为反射紫外光和 /或可见光的金属材料, 所述隔离层的材质为含有 反射粒子的硅胶。
10、 根据权利要求 7或 8所述的荧光芯片, 其特征在于, 所述隔离层的 厚度为 10μηι-500μιη。
11、 根据权利要求 1所述的荧光芯片, 其特征在于, 每个功能单元局 部覆盖或完全填充所对应的凹槽内部。
12、 根据权利要求 1所述的荧光芯片, 其特征在于, 所述荧光芯片还 包括多个滤光片, 所述多个滤光片对应设置于所述凹槽的上方并将所 述凹槽的幵口密封。
13、 根据权利要求 12所述的荧光芯片, 其特征在于, 所述滤光片为能 够透射小于预设角度的光并反射其它角度的光的角度选择滤光片。
14、 根据权利要求 1所述的荧光芯片, 其特征在于, 所述荧光芯片包 括多个相同的像素单元, 所述像素单元呈矩阵式排列, 每个像素单元 由多个相邻的功能单元构成, 每个功能单元的出射光至少包括红光、 蓝光、 绿光。
15、 根据权利要求 14所述的荧光芯片, 其特征在于, 所述像素单元包 括呈矩阵排列的四个功能单元, 所述四个功能单元包括三个转换单元 和一个非转换单元。
16、 根据权利要求 1所述的荧光芯片, 其特征在于, 所述隔离部的多 个凹槽的纵向截面形状为抛物线形、 方形、 半圆形中的一种。
17、 一种用于荧光芯片的波长转换装置的制备方法, 其特征在于, 所 述方法包括:
Sl l, 一体成型获取在平行于主延伸平面的第一表面上具有矩阵式排 列的多个凹槽的隔离部;
S12, 在所述多个凹槽中填充功能材料形成功能部, 所述功能材料为 波长转换材料、 散射材料以及透光材料中的至少一种。
18、 根据权利要求 17所述的方法, 其特征在于, 步骤 S11包括: 使含有反射粒子的未固化硅胶在模具中加热固化, 获得在平行于主延 伸平面的第一表面上具有矩阵式排列的多个凹槽的隔离部。
19、 根据权利要求 17所述的方法, 其特征在于, 步骤 S11包括: 对反射紫外光和 /或可见光的金属材料基板进行加工, 获取在平行于 主延伸平面的第一表面上具有矩阵式排列的多个凹槽的隔离部, 所述 加工方式包括精密机械加工工艺、 微纳加工工艺以及 3D打印中的一 种。
[权利要求 20] 20、 根据权利要求 17所述的方法, 其特征在于, 步骤 S11包括:
对反射紫外光和 /或可见光的金属材料基板进行加工, 获取在平行于 主延伸平面的第一表面上具有矩阵式排列的多个凹槽的隔离本体; 在所述隔离本体的凹槽中填充含有反射粒子的未固化硅胶, 并将模具 压入所述隔离本体的多个凹槽中;
使所述未固化硅胶在所述凹槽中加热固化以形成隔离层, 获取在平行 于主延伸平面的第一表面上具有阵列式排列的多个凹槽的隔离部。
[权利要求 21] 21、 根据权利要求 17所述的方法, 其特征在于, 步骤 S12包括:
S121 : 采用掩膜覆盖所述隔离部的第一表面上多个凹槽的邻接部分; S122: 将功能材料填充到未被掩膜覆盖的凹槽中。
[权利要求 22] 22、 一种显示系统, 其特征在于, 包括: 光源, 以及权利要求 1至 16 任一项所述的荧光芯片, 所述光源位于靠近所述荧光芯片第一表面的 一侧, 用于发出激发光, 所述荧光芯片的功能部接收所述激发光并产 生不同波长范围的受激光, 所述受激光从所述凹槽的幵口处出射。
[权利要求 23] 23、 根据权利要求 22所述的显示系统, 其特征在于, 所述显示系统还 包括光调制器, 所述光调制器置于所述光源的出射光路上, 用于将所 述激发光转换为单色图像光并输出给所述荧光芯片, 所述荧光芯片接 收所述单色图像光并产生不同波长范围的受激光。
PCT/CN2017/114705 2017-05-31 2017-12-06 荧光芯片及其波长转换装置的制备方法以及显示系统 WO2018218913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710397466.3 2017-05-31
CN201710397466.3A CN107272317B (zh) 2017-05-31 2017-05-31 荧光芯片及其波长转换装置的制备方法以及显示系统

Publications (1)

Publication Number Publication Date
WO2018218913A1 true WO2018218913A1 (zh) 2018-12-06

Family

ID=60064261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114705 WO2018218913A1 (zh) 2017-05-31 2017-12-06 荧光芯片及其波长转换装置的制备方法以及显示系统

Country Status (2)

Country Link
CN (1) CN107272317B (zh)
WO (1) WO2018218913A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107272317B (zh) * 2017-05-31 2019-10-25 深圳光峰科技股份有限公司 荧光芯片及其波长转换装置的制备方法以及显示系统
JP2019082674A (ja) * 2017-10-31 2019-05-30 パナソニックIpマネジメント株式会社 照明装置、及び投写型映像表示装置
CN109755355B (zh) * 2017-11-02 2021-12-07 深圳光峰科技股份有限公司 波长转换元件及其制备方法
US11335835B2 (en) 2017-12-20 2022-05-17 Lumileds Llc Converter fill for LED array
CN109976076B (zh) * 2017-12-28 2021-07-23 深圳光峰科技股份有限公司 波长转换装置、光源装置及投影设备
CN110264877B (zh) * 2018-03-12 2022-01-11 深圳光峰科技股份有限公司 像素化波长转换装置、像素化波长转换元件及其制造方法
CN110797448B (zh) * 2018-08-02 2021-09-21 深圳光峰科技股份有限公司 波长转换元件及其制备方法
EP3915151B1 (en) * 2019-01-25 2023-08-23 Lumileds LLC Method of manufacturing a wavelength-converting pixel array structure
DE102019102758A1 (de) * 2019-02-05 2020-08-06 Carl Freudenberg Kg Verfahren zur Herstellung von elastomeren Formkörpern
CN109741685B (zh) * 2019-02-18 2021-11-02 深圳市洲明科技股份有限公司 一种led显示模组及其制作方法
CN117558859A (zh) * 2023-12-29 2024-02-13 诺视科技(苏州)有限公司 防串扰的微显示发光像素及其制作方法、微显示屏

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109334A (ja) * 2010-11-16 2012-06-07 Toyota Central R&D Labs Inc 発光装置
CN103792768A (zh) * 2012-10-31 2014-05-14 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN103791453A (zh) * 2012-10-31 2014-05-14 深圳市绎立锐光科技开发有限公司 波长转换装置及相关光源系统
CN103838068A (zh) * 2012-11-23 2014-06-04 深圳市光峰光电技术有限公司 发光装置及其相关投影系统
CN104566230A (zh) * 2013-10-15 2015-04-29 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN107272317A (zh) * 2017-05-31 2017-10-20 深圳市光峰光电技术有限公司 荧光芯片及其波长转换装置的制备方法以及显示系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464232C (zh) * 2005-12-21 2009-02-25 中华映管股份有限公司 平面灯源
CN201262377Y (zh) * 2008-09-02 2009-06-24 铜陵市毅远电光源有限责任公司 一种显色性好、出光效率高的白光led
JP4883376B2 (ja) * 2009-06-30 2012-02-22 カシオ計算機株式会社 蛍光体基板及び光源装置、プロジェクタ
CN201715450U (zh) * 2009-12-24 2011-01-19 金芃 Led面光源灯具
CN102142510B (zh) * 2010-02-01 2013-02-27 深圳市光峰光电技术有限公司 基于光波长转换的固态光源及其应用
CN103792767B (zh) * 2012-10-31 2015-10-07 深圳市绎立锐光科技开发有限公司 波长转换器件、其制造方法以及相关波长转换装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012109334A (ja) * 2010-11-16 2012-06-07 Toyota Central R&D Labs Inc 発光装置
CN103792768A (zh) * 2012-10-31 2014-05-14 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN103791453A (zh) * 2012-10-31 2014-05-14 深圳市绎立锐光科技开发有限公司 波长转换装置及相关光源系统
CN103838068A (zh) * 2012-11-23 2014-06-04 深圳市光峰光电技术有限公司 发光装置及其相关投影系统
CN104566230A (zh) * 2013-10-15 2015-04-29 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN107272317A (zh) * 2017-05-31 2017-10-20 深圳市光峰光电技术有限公司 荧光芯片及其波长转换装置的制备方法以及显示系统

Also Published As

Publication number Publication date
CN107272317B (zh) 2019-10-25
CN107272317A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
WO2018218913A1 (zh) 荧光芯片及其波长转换装置的制备方法以及显示系统
US10647915B2 (en) Converter for generating a secondary light from a primary light, light-emitting elements which contains such a converter, and method for producing the converter and the light-emitting elements
TWI380465B (en) High performance led lamp system
US9494284B2 (en) Light source device and illumination apparatus
KR101188566B1 (ko) 색변환재를 포함하는 발광다이오드 장치
US8969903B2 (en) Optical element and semiconductor light emitting device using the optical element
CN103403894B (zh) 发光模块、灯、照明器和显示装置
JP5122565B2 (ja) 集積光源モジュール
JP5439365B2 (ja) 開口部を持つ支持構造体によって保持される波長変換素子を備える照明装置
JP7174216B2 (ja) 発光モジュールおよび集積型発光モジュール
CN103797597A (zh) 发光模块、灯、照明器和显示装置
JP2009529220A (ja) 発光ダイオード投影システム
JP2001501380A (ja) 紫外/青色光を可視光に効率良く変換する紫外/青色led―蛍光体デバイス
JP6681882B2 (ja) 照明システム
US10379284B2 (en) Light source device and projector
US9890911B2 (en) LED module with uniform phosphor illumination
KR20140119492A (ko) 레이저 광원장치
JPWO2011016295A1 (ja) 発光装置及び発光装置の製造方法
US20180284583A1 (en) Light source device and projector
US10663847B2 (en) Wavelength conversion module, forming method of wavelength conversion module, and projection device
JP2016092271A (ja) 蛍光体シートおよび照明装置
WO2014188645A1 (ja) 光学変換素子およびそれを用いた光源
JP2022041435A (ja) 波長変換素子、光源装置、および画像投射装置
WO2011160693A1 (en) Light source unit with phosphor element
JP5151905B2 (ja) 光源装置、照明装置及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17911506

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17911506

Country of ref document: EP

Kind code of ref document: A1