DE102019102758A1 - Verfahren zur Herstellung von elastomeren Formkörpern - Google Patents

Verfahren zur Herstellung von elastomeren Formkörpern Download PDF

Info

Publication number
DE102019102758A1
DE102019102758A1 DE102019102758.6A DE102019102758A DE102019102758A1 DE 102019102758 A1 DE102019102758 A1 DE 102019102758A1 DE 102019102758 A DE102019102758 A DE 102019102758A DE 102019102758 A1 DE102019102758 A1 DE 102019102758A1
Authority
DE
Germany
Prior art keywords
raw material
procedure according
nozzle
area
chambers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019102758.6A
Other languages
English (en)
Inventor
Jan Kuiken
Boris Traber
Ernst Osen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Priority to DE102019102758.6A priority Critical patent/DE102019102758A1/de
Priority to US17/428,285 priority patent/US20220105674A1/en
Priority to PCT/EP2019/085043 priority patent/WO2020160820A1/de
Priority to CN201980091212.6A priority patent/CN113382843A/zh
Publication of DE102019102758A1 publication Critical patent/DE102019102758A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/112Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using individual droplets, e.g. from jetting heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/295Heating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D99/00Subject matter not provided for in other groups of this subclass
    • B29D99/0053Producing sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/26Sealing devices, e.g. packaging for pistons or pipe joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

Verfahren zur Herstellung von elastomeren Formkörpern, umfassend die folgenden Schritte:a) Bereitstellen eines wärmevernetzbaren Elastomer-Rohmaterials enthaltend zumindest 10 Gew.% Füllstoffeb) schrittweises Fördern des Rohmaterials in einen Fertigungsbereich (1)c) schrittweise Formgebung eines Abschnittes des Formkörpers aus dem Rohmateriald) schrittweises Vernetzen des aus dem Rohmaterial in Form gebrachten Abschnittes durch Zuführen von Wärmee) Wiederholung der Schritte b) bis d) bis zur Fertigstellung des Formkörpers.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von elastomeren Formkörpern mittels eines generativen Fertigungsprozesses.
  • Ein derartiges Verfahren ist aus der WO 2018/072809 A1 bekannt. Bei dem vorbekannten Verfahren werden elastomere Formkörper aus einem Silikonwerkstoff hergestellt. Über eine räumlich unabhängig steuerbare 3D-Druckvorrichtung erfolgt in einer X-Y-Arbeitsebene das Aufbringen von Rohmaterial in Form von Tropfen oder kontinuierlichen Strängen mittels einer Druckdüse auf eine räumlich unabhängig steuerbare Trägerplatte. Dadurch entsteht der Formkörper nach und nach auf der Trägerplatte. Das Vernetzen des Silikon-Werkstoffes erfolgt durch Einbringen elektromagnetischer Strahlung. Bei diesem Verfahren ist nachteilig, dass nicht jeder elastomere Werkstoff mittels Einbringen elektromagnetischer Strahlung vernetzbar ist. Insbesondere elastomere Materialien, welche in der Dichtungstechnik zum Einsatz gelangen, werden zumindest durch Zufuhr von Wärme vernetzt.
  • Aus dem Stand der Technik sind auch Elastomere bekannt, welche mittels UV-Licht vernetzen. Ein derartiges System ist aber dahingehend nachteilig, dass das Rohmaterial transparent sein muss. Hochgefüllte mineralische Werkstoffe und rußgefüllte Mischungen scheiden aufgrund einer mangelhaften UV-Adsorption aus.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von elastomeren Formkörpern bereitzustellen, welches auf der Basis gebräuchlicher elastomerer Werkstoffe die Herstellung von in der Dichtungstechnik verwendeten Formkörpern ermöglicht.
  • Diese Aufgabe wird mit den Merkmalen von Anspruch 1 gelöst. Auf vorteilhafte Ausgestaltungen nehmen die Unteransprüche Bezug.
  • Das erfindungsgemäße Verfahren zur Herstellung von elastomeren Formkörpern umfasst die folgenden Schritte:
    • - Bereitstellen eines wärmevernetzbaren Elastomer-Rohmaterials enthaltend zumindest 10 Gew.% Füllstoffe
    • - schrittweises Fördern des Rohmaterials in einen Fertigungsbereich
    • - schrittweise Formgebung eines Abschnittes des Formkörpers aus dem Rohmaterial
    • - schrittweises Vernetzen des aus dem Rohmaterial in Form gebrachten Abschnittes durch Zuführen von Wärme
    • - Wiederholung der Schritte Fördern, Formgebung, Vernetzen und Zufuhr von Wärme bis zur Fertigstellung des Formkörpers.
  • Das erfindungsgemäße Verfahren zur Herstellung von elastomeren Formkörpern ist ein generativer Fertigungsprozess, bei welchem der Formkörper schrittweise aus dem Rohmaterial hergestellt wird. Dabei erfolgt das Einbringen und Formgeben des Rohmaterials und das Vernetzen des Rohmaterials derart, dass der Formkörper nach und nach entsteht. Insofern ist das erfindungsgemäße Verfahren ein Rapid-Prototyping-Verfahren und vergleichbar zu einem 3D-Druckverfahren.
  • Beim klassischen Formgebungsverfahren elastomerer Formkörper wird das Rohmaterial in eine Form gegeben und einem erhöhten Druck und einer erhöhten Temperatur ausgesetzt. Bei einem derartigen Verfahren wird das Rohmaterial in einem Temperaturbereich von etwa 170°C-190 °C vernetzt. Eine ausreichende Vernetzung lässt sich dabei nur bei Verwendung niedermolekularer Polymere erzielen. Für die Vulkanisation, bzw. Vernetzung ist jedoch nicht die Temperatur maßgebend, sondern die Wärmemenge, die pro Zeiteinheit auf das Rohmaterial einwirkt. Wird eine bestimmte Wärmemenge überschritten, wird eine Vernetzungsreaktion angestoßen, die sich diffusionskontrolliert durch das Rohmaterial fortsetzt. Dies gilt insbesondere bei Rohmaterialien mit einer peroxidischen Vernetzung. Aber auch bei anderen Vernetzungssystemen, wie beispielsweise bei der Schwefelvernetzung, der bisphenolischen Vernetzung oder der aminischen Vernetzung gilt die Regel, dass die Vernetzungsreaktion bei höherer Temperatur schneller verläuft. Grundsätzlich erfolgt bei einer Temperaturerhöhung um 10 Kelvin eine Verdopplung bis Vervierfachung der Reaktionsgeschwindigkeit der Vernetzung.
  • Bei dem erfindungsgemäßen Verfahren wird das Rohmaterial vorzugsweise nur sehr kurz auf eine erhöhte Temperatur im Bereich von 200°C bis 500°C gebracht. Dadurch können nachteilige Materialveränderungen des Rohmaterials, bzw. des geformten und fertig vernetzten Elastomermaterials, vermieden werden. Nachteilige Auswirkungen sind insbesondere dann nicht zu erwarten, wenn das Rohmaterial höchstens für eine Zeitdauer von bis zu 50 Sekunden ausgesetzt wird.
  • Der Eintrag der Wärmemenge ist auch von der Bauteildimension abhängig. Die erfindungsgemäße Hochtemperaturvulkanisation eignet sich insbesondere für dünnere Bauteile mit einer Wanddicke von weniger als 6 mm. Bei größeren Wanddicken macht sich der Skineffekt nachteilig bemerkbar. Bei diesem Effekt erfolgt durch den Gradienten der eingetragen Wärmemenge in Bezug auf die Wandstärke des Formkörpers eine stärkere Vernetzung in den äußeren Wandabschnitten. Dies kann dazu führen, dass Außenbereiche übervernetzt und Innenbereiche untervernetzt sind. Der Auftrag des Materials erfolgt daher bei dem erfindungsgemäßen Verfahren derart, dass die abschnittsweise zu vernetzenden Strukturen Wandstärken von weniger als 2 mm aufweisen.
  • Das erfindungsmäße Verfahren ermöglicht insbesondere die Verwendung von bei elastomeren Formkörpern gebräuchlichen elastomeren Werkstoffen. Dabei kommen insbesondere auch Werkstoffe in Betracht, die in der Dichtungstechnik zur Herstellung von dynamischen oder statischen Dichtungen gebräuchlich sind. Dabei können die elastomeren Werkstoffe auch einen hohen Anteil Füllstoff wie Ruß oder Kieselsäure enthalten. Dabei beträgt der Anteil der Füllstoffe mindestens 10 Gew.%. Der Anteil kann aber auch deutlich höher sein und beispielsweise 30 Gew.% betragen. Derartige Werkstoffe sind lichtundurchlässig und daher beispielsweise durch eine UV-Vernetzung nicht vernetzbar.
  • Vorteilhafte Nutzungseigenschaften des elastomeren Formkörpers ergeben sich, wenn die Shore-Härte des Formkörpers zwischen 30 und 90 Shore A beträgt.
  • Als Elastomer-Rohmaterial kommen insbesondere aus der Dichtungstechnik bekannte elastomere Werkstoffe in Betracht, Insofern kann das Elastomer-Rohmaterial ein Kautschukmaterial wie beispielsweise NR, NBR, BR, IR, EPDM, CR, IIR oder FKM sein.
  • Des Weiteren können mit dem erfindungsgemäßen Verfahren auch hochmolekulare Polymere verarbeitet werden. Diese Werkstoffe sind insbesondere im Vergleich zu in den vorbekannten Rapid-Prototyping- oder 3D-Druckverfahren verwendeten niedermolekularen Polymeren vorteilhaft. Niedermolekulare Polymere weisen den Nachteil einer geringen mechanischen Festigkeit auf, welche aber insbesondere für Formkörper relevant ist, welche als Dichtelement fungieren. Daher wurden beispielsweise im Rapid-Prototyping-Verfahren hergestellte Formkörper bislang ausschließlich zur Herstellung von Prototypen und für einen seriellen Einsatz verwendet. Durch Verwendung der oben beschriebenen hochmolekularen Polymere und/oder der Verwendung eines hohen Anteils Füllstoffe können hingegen funktionale und für einen seriellen Einsatz geeignete elastische Formkörper hergestellt werden.
  • Nachteilige Auswirkungen auf das Rohmaterial können insbesondere auch dann vermieden werden, wenn die Verarbeitung des Rohmaterials in einer sauerstofffreien Umgebung erfolgt. Dazu kann das Rohmaterial im Vakuum verarbeitet werden. Alternativ kann das Rohmaterial auch in einer Inertgasatmosphäre verarbeitet werden.
  • Vorzugsweise wird das Rohmaterial auf eine Temperatur von 200°C bis 400°C gebracht. Bei diesem Temperaturbereich hat sich herausgestellt, dass das Rohmaterial ausreichend schnell vernetzt, so dass ein elastomerer Formkörper nach Art eines 3D-Druckverfahrens herstellbar ist. Gleichzeitig ist der Wärmeeinfluss aber so gering, dass keine nachteiligen Auswirkungen in Bezug auf die Materialqualität zu erwarten sind. Ein besonders bevorzugter Temperaturbereich liegt dabei zwischen 220°C und 300°C.
  • Der Fertigungsbereich, auf welchen das Rohmaterial abgelegt wird, kann räumlich verfahrbar sein. Dazu kann der Fertigungsbereich einen räumlich verfahrbaren Tisch aufweisen, auf welchem das Rohmaterial abgelegt wird. Dadurch entsteht der elastomere Formkörper durch Ablegen des Rohmaterials auf den tischartigen Fertigungsbereich, welcher sich gleichzeitig räumlich bewegt. Durch die Positionsänderung des Fertigungsbereiches entsteht der dreidimensionale Formkörper. Gemäß einer alternativen Ausgestaltung ist die Fördereinrichtung, welche das Rohmaterial in den Fertigungsbereich fördert, räumlich verfahrbar. Dabei ist entscheidend, dass sich die Fördereinrichtung und der Fertigungsbereich relativ zueinander in horizontaler und vertikaler Richtung bewegen können, damit ein dreidimensionaler Formkörper hergestellt werden kann.
  • Vorzugsweise wird das Rohmaterial tropfenweise oder in Form eines kontinuierlichen Stranges auf dem Fertigungsbereich abgelegt. Durch das tropfenweise oder strangförmige Ablegen des Rohmaterials und das gleichzeitige räumliche Verfahren des Fertigungsbereiches entsteht kontinuierlich der elastische Formkörper. Dabei ist die Tropfengröße, bzw. der Strangdurchmesser so gewählt, dass auch feine Strukturen hergestellt werden können.
  • Das Rohmaterial wird vorzugsweise während des Ablegens erhitzt und dadurch vernetzt. Dadurch erfolgt gleichzeitig die Formgebung des Formkörpers und eine lokale Vernetzung des Rohmaterials. Dadurch kann eine nachträgliche Wärmebehandlung des gesamten Formkörpers entfallen. Es erfolgt analog zu der Formgebung eine lokale Vernetzung des Rohmaterials.
  • Das Elastomermaterial kann zur Formgebung durch eine Düse gepresst werden, wobei der Düse ein Heizelement zugeordnet ist, welches das Rohmaterial während des Ablegens erwärmt. Dadurch erfolgt ein Vernetzen des Rohmaterials unmittelbar mit dem Austritt des Rohmaterials aus der Düse.
  • Die Förderung des Rohmaterials zur Düse kann mittels einer Förderschnecke erfolgen. In dem Bereich der Förderschnecke kann auch eine Temperierung des Rohmaterials erfolgen, so dass die Viskosität des Rohmaterials sinkt. Dabei muss die Temperierung aber so erfolgen, dass keine unbeabsichtigte Vulkanisation des Rohmaterials eintritt.
  • Gemäß einer alternativen Ausgestaltung kann der Fertigungsbereich gitterförmig ausgebildet sein und mehrere Kammern aufweisen, in welche das Rohmaterial abgelegt wird, wobei der Fertigungsbereich verfahrbar ist, so dass der Formkörper schichtweise ausgebildet wird. Bei dieser Ausgestaltung weist der Fertigungsbereich mehrere nebeneinander angeordnete Kammern auf. Diese können beispielsweise matrixartig angeordnet sein. Zum Ausbilden des Formkörpers wird Rohmaterial in die Kammern eingefüllt, wobei nur vorbestimmte Kammern befüllt werden. Es werden nur solche Kammern befüllt, denen ein Materialabschnitt des Formkörpers zugeordnet ist. Die übrigen Kammern bleiben leer. Dabei ist insbesondere vorteilhaft, dass sich durch die schichtweise Ausbildung der dreidimensionalen Struktur je Volumenelement eine erhöhte Verarbeitungsgeschwindigkeit ergibt.
  • Bei dieser Ausgestaltung erfolgt vorzugsweise ein Erhitzen des Fertigungsbereiches, um die Formgebung und die Vernetzung des Rohmaterials herbeizuführen. Dazu kann zum Vernetzen des Rohmaterials ein Heizelement auf den Fertigungsbereich aufgelegt werden. Sobald das Vernetzen des Rohmaterials in den Kammern initiiert ist, wird der Fertigungsbereich vorzugsweise horizontal verfahren und das Rohmaterial, welches in den Kammern eine Formgebung erfahren hat, wird ausgestoßen. Anschließend wird neues Rohmaterial in die Kammern gefüllt, welche sich stoffschlüssig mit dem im vorherigen Arbeitsschritt vulkanisierten Rohmaterial verbindet. Dabei ist vorteilhaft, dass das Rohmaterial mit einem Anpressdruck auf die darunter liegende Schicht angepresst werden kann, so dass das Rohmaterial vollflächig auf der Schicht zur Anlage gelangt.
  • Das Rohmaterial kann mittels einer Düse in die Kammern des Fertigungsbereiches eingebracht werden. Dabei kann der Fertigungsbereich so verfahrbar sein, dass die zu befüllenden Kammern in Richtung der Düse bewegt werden können.
  • Gemäß einer alternativen Ausgestaltung kann das Rohmaterial flächig ausgebildet sein und in Form eines Verteilerkanals in die Kammern des Fertigungsbereiches eingedrückt werden. Bei dieser Ausgestaltung erfolgt das Einbringen des Rohmaterials in die Kammern durch ein Rakelverfahren analog zum Siebdruckverfahren. Das Rohmaterial wird auf den Fertigungsbereich aufgelegt und anschließend mittels eines geeigneten Werkzeugs in die Kammern eingedrückt, wobei das übrig gebliebene Rohmaterial vom Fertigungsbereich entfernt, beispielsweise abgeschabt wird.
  • Das erfindungsgemäße Verfahren wird nachfolgend anhand der Figuren näher erläutert. Die Figuren zeigen, jeweils schematisch:
    • 1 eine Vorrichtung zur Durchführung des Verfahrens mit einer beheizbaren Düse;
    • 2 eine Vorrichtung mit einem gitterförmigen Fertigungsbereich;
    • 3 eine Vorrichtung zur Verarbeitung von flächigem Rohmaterial;
    • 4 das Einpressen des flächigen Rohmaterials in die Kammern des Fertigungsbereiches;
    • 5 eine Vorrichtung zum Einbringen von Rohmaterial in die Kammern des Fertigungsbereiches.
  • 1 zeigt eine Vorrichtung 8 zur Durchführung des Verfahrens zur Herstellung von elastomeren Formkörpern. Die Vorrichtung 8 entspricht im Wesentlichen einer Spritzgießmaschine. Die Vorrichtung 8 weist einen Vorratsbehälter 7 zur Aufnahme des Elastomer-Rohmaterials auf. Über eine Förderschnecke 5 gelangt das Rohmaterial in den Bereich der Düse 3, wobei zur Herstellung des Formkörpers Tropfen des Rohmaterials aus der Düse 3 in Richtung des Fertigungsbereiches 1 gefördert werden. Der Fertigungsbereich 1 umfasst einen Tisch 2, welcher sowohl horizontal als auch vertikal verfahrbar ist. Die durch die Düse 3 geförderten Tropfen werden auf den Tisch 2 abgelegt, wobei sich die Position des Tisches 2 verändert, so dass nach und nach aus den abgelegten Tropfen der Formkörper entsteht.
  • Der Düse 3 ist ein Heizelement 4 zugeordnet, welches das Rohmaterial während des Ablegens erwärmt. Durch die Erwärmung wird die Vernetzungsreaktion ausgelöst, so dass der Tropfen Rohmaterial nach dem Ablegen auf den Tisch 2 vernetzt ist.
  • Das Heizelement 4 ist ein Verbundkörper und besteht aus einem isolierenden Element aus Keramik, welchem ein Heizkörper in Form einer Widerstandsheizung zugeordnet ist. Gemäß einer alternativen Ausgestaltung kann das isolierende Element aus einem Hochtemperaturthermoplast ausgebildet sein. Der Heizkörper ist bei der vorliegenden Ausgestaltung ein wandförmiges Element aus Federstahl, welches an eine Stromquelle angeschlossen ist. Das Material weist einen hohen elektrischen Widerstand auf, so dass es sich bei Anlegen einer elektrischen Spannung, beispielsweise einer Spannung von 24 Volt und einem elektrischen Strom in Höhe von 600 Ampere schnell erwärmt. Dadurch wird in sehr kurzer Zeit eine hohe Wärmemenge zur Verfügung gestellt und in das Rohmaterial eingebracht. Die Wärmemenge ist dabei so bemessen, dass das Rohmaterial auf eine Temperatur von 280°C gebracht wird. Bei dieser Temperatur wird innerhalb kürzester Zeit der Vulkanisationsprozess des Tropfen-Rohmaterials in die Wege geleitet, wobei keinerlei nachteilige Auswirkungen auf die Materialeigenschaften zu erwarten sind, da der Temperatureintrag nur über eine sehr kurze Zeit erfolgt.
  • Der Tisch 2 ist so ausgebildet, dass er so verfahren kann, dass der Düse 3, bzw. dem aus der Düse 3 austretenden Tropfen, ein Gegendruck entgegensteht. Dadurch ist ein gezieltes Ablegen des Rohmaterials möglich.
  • Gemäß einer alternativen Ausgestaltung ist ein zweites Förderaggregat vorgesehen, welches ein Stützmaterial, beispielsweise ein UV-aushärtendes Acrylat mit schwacher Vernetzungsdichte, in den Fertigungsbereich 1 fördert. Das Stützmaterial härtet schnell aus und stützt das Rohmaterial ab, was insbesondere beim Aufbau komplexer 3D-Formteile vorteilhaft ist. Anschließend wird das Stützmaterial aus dem Formkörper herausgelöst. Das ermöglicht das Herstellen von Formkörpern mit Hinterschnitten und Rundungen.
  • 2 zeigt eine alternative Vorrichtung 8 zur Durchführung des Verfahrens zur Herstellung von elastomeren Formkörpern. Die Vorrichtung 8 gemäß 2 umfasst ebenfalls einen Vorratsbehälter 7 und eine Förderschnecke 5, welche das Rohmaterial in Richtung einer Düse 3 fördert, aus welcher das Rohmaterial in den Fertigungsbereich 1 gelangt. Der Fertigungsbereich 1 umfasst ebenfalls einen Tisch 2, welcher sowohl vertikal als auch horizontal verfahrbar ist. Alternativ ist es auch denkbar, dass die Förderschnecke 5 in vertikaler und/oder horizontaler Richtung verfahrbar ist. Der Tisch 2 ist bei dieser Ausgestaltung gitterförmig ausgebildet und weist mehrere Kammern 6 auf, in welche das Rohmaterial abgelegt werden kann. Zur Herstellung des Formkörpers wird Rohmaterial in die Kammern 6 eingefüllt, deren Bereich dem Bereich des späteren Formkörpers entspricht. Andere Kammern 6 bleiben leer. Nach dem Einfüllen des Rohmaterials in die Kammern 6 wird ein flächig ausgebildetes Heizelement 4 in Form einer elektrischen Widerstandsheizung auf den Tisch 2 aufgelegt, wobei das Heizelement 4 die Kammern 6 bedeckt. Anschließend wird eine elektrische Spannung an das Heizelement 4 angelegt und das in den Kammern 6 befindliche Rohmaterial wird auf eine Temperatur von 280°C erhitzt. Dadurch wird der Vulkanisationsprozess ausgelöst. Anschließend wird das Heizelement 4 wieder entnommen und der Tisch 2 in vertikaler Richtung verfahren, so dass die nun vernetzten Elemente auf der der Düse 3 abgewandten Seite aus den Kammern 6 ausgestoßen werden. Anschließend werden die Kammern 6 wieder mit Rohmaterial befüllt. Dadurch entsteht nach und nach in einem schichtweisen Prozess der Formkörper.
  • Gemäß einer alternativen Ausgestaltung kann ein weiteres Heizelement 4 auch in der Kammer 6 integriert sein. Der Heizvorgang erfolgt dann direkt innerhalb der Kammer 6 durch das in die Kammer 6 integrierte weitere Heizelement 4. Darüber hinaus kann ein flächig ausgebildetes Heizelement 4 in Form einer elektrischen Widerstandsheizung vorgesehen sein, welches auf den Tisch 2 aufgelegt wird und die Kammern 6 bedeckt. Dabei kann das Heizelement 4 auch unbeheizt lediglich zur Druckerzeugung verwendet werden. Die elektrische Spannungssteuerung kann durch elektrische Drähte in der Matrixstruktur erfolgen, welche beispielsweise aufgedampft oder aufgedruckt sein können.
  • Der Tisch 2 mit den Kammern 6 besteht vorzugsweise aus einem druckfesten und inkompressiblen Material wie Keramik. Alternativ können auch hochtemperaturstabile Thermoplaste zum Einsatz gelangen.
  • Gemäß einer alternativen Ausgestaltung sind die Kammern 6 jeweils mit einem Heizelement 4 in Form einer metallischen elektrischen Widerstandsheizung ausgerüstet. Dazu sind die Wände der Kammern 6 mit metallischem Material beschichtet.
  • Wird der Tisch 2 während des Heizvorgangs eine geringe Wegstrecke in vertikaler Richtung, in Richtung der Düse 3, verfahren, können die in den Kammern 6 befindlichen Rohmaterialtropfen ineinander fließen, so dass ein dichtes Gefüge erzielt wird.
  • Alternativ ist es auch möglich, in Kammern 6, deren Position nicht dem späteren Formkörper entspricht, ein Stützmaterial einzubringen, was wiederum das Erstellen komplexer Geometrien ermöglicht.
  • 3 zeigt eine Weiterbildung des in 2 gezeigten Verfahrens. Bei der dafür verwendeten Vorrichtung 8 erfolgt mittels einer Schlitzdüse ein flächiges Ablegen des Rohmaterials auf den mit Kammern 6 versehenen Tisch 2. Mit einer Pressplatte 9 wird das Rohmaterial in die Kammern 6 gepresst. Dabei werden zuvor die Kammern 6 verschlossen, in welche kein Rohmaterial gelangen soll.
  • 4 zeigt eine alternative Ausgestaltung der Vorrichtung 8 gemäß 3, bei der das flächig ausgebildete, dünne Rohmaterial durch eine Schlitzdüse gefördert und mittels einer Walze 10 in die Kammern 6 eingepresst wird. Alternativ kann auch eine Rakel zum Einsatz gelangen.
  • 5 zeigt eine Ausgestaltung der Vorrichtung 8 gemäß 3 oder 4. Bei der vorliegenden Vorrichtung 8 wird ein flächiges Rohmaterial auf den gitterförmigen Tisch 2 aufgelegt. Anschließend wird ein Schaltbrett 11 mit steuerbaren Nadeln 12 in Richtung des Tisches 2 geführt, wobei aus dem Schaltbrett 11 Nadeln 12 an den Stellen hervorragen, an welchen das Rohmaterial in Kammern 6 gepresst werden soll. An den übrigen Stellen stehen die Nadeln 12 nicht aus dem Schaltbrett 11 hervor. Bewegt sich das Schaltbrett 11 in Richtung des Tisches 2, drücken die hervorstehenden Nadeln 12 das Rohmaterial in die Kammern 6 ein. In den übrigen Bereichen verbleibt das Rohmaterial oberhalb des Tisches 2 und kann anschließend durch Abschaben oder dergleichen vom Tisch 2 entfernt werden. Anschließend erfolgt ein Erhitzen des Rohmaterials mittels in die Kammer 6 integrierter Heizelemente 4 oder mittels eines aufgelegten flächigen Heizelementes 4.
  • Das Verarbeiten des Rohmaterials im Fertigungsbereich 1 erfolgt bei sämtlichen in den Figuren gezeigten Vorrichtungen 8 in einer inerten Stickstoff-Atmosphäre. Dadurch kann eine thermooxidative Alterung des Rohmaterials verhindert werden.
  • Das erfindungsgemäße Verfahren in den oben beschriebenen Vorrichtungen 8 eignet sich zur Verarbeitung von Standard-Elastomerwerkstoffen, die im Bereich der Dichtungstechnik gängig sind. Derartige Werkstoffe sind beispielsweise Nitril-Butadien-Kautschuk (NBR) und dergleichen. Dabei können die Elastomerwerkstoffe, welche das Rohmaterial bilden, auch mit Füllstoff, beispielsweise mit Ruß, versehen sein. Es ist nicht erforderlich, besonders fließfähige, niedrigviskose Elastomertypen zu verwenden. Es ist insbesondere möglich, Dichtungswerkstoffe zu verwenden und Formkörper herzustellen, welche als Dichtelement fungieren oder Dichtelemente aufweisen.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2018/072809 A1 [0002]

Claims (13)

  1. Verfahren zur Herstellung von elastomeren Formkörpern, umfassend die folgenden Schritte: a) Bereitstellen eines wärmevernetzbaren Elastomer-Rohmaterials enthaltend zumindest 10 Gew.% Füllstoffe b) schrittweises Fördern des Rohmaterials in einen Fertigungsbereich (1) c) schrittweise Formgebung eines Abschnittes des Formkörpers aus dem Rohmaterial d) schrittweises Vernetzen des aus dem Rohmaterial in Form gebrachten Abschnittes durch Zuführen von Wärme e) Wiederholung der Schritte b) bis d) bis zur Fertigstellung des Formkörpers.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Füllstoff Ruß und/oder Kieselsäure enthält.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Elastomer-Rohmaterial lichtundurchlässig ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Fertigungsbereich (1), auf welchen das Rohmaterial abgelegt wird, räumlich verfahrbar ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Rohmaterial tropfenweise oder in Form eines kontinuierlichen Stranges auf den Fertigungsbereich (1) abgelegt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Rohmaterial während des Ablegens erhitzt wird und dadurch vernetzt.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Rohmaterial zur Formgebung durch eine Düse (3) gepresst wird, wobei der Düse (3) ein Heizelement (4) zugeordnet ist, welches das Rohmaterial während des Ablegens erwärmt.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Förderung des Rohmaterials zur Düse (3) mittels einer Förderschnecke (5) erfolgt.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Fertigungsbereich (1) gitterförmig ausgebildet ist und mehrere Kammern (6) aufweist, in welche das Rohmaterial abgelegt wird, wobei der Fertigungsbereich (1) verfahrbar ist, so dass der Formkörper schichtweise ausgebildet wird.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass der Fertigungsbereich (1) zum Vernetzen erhitzt wird.
  11. Verfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass zum Vernetzen ein Heizelement (4) auf den Fertigungsbereich (1) aufgelegt wird.
  12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass das Rohmaterial mittels einer Düse (3) in den gitterförmigen Fertigungsbereich (1) eingebracht wird.
  13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass das Einbringen des Rohmaterials in den gitterförmigen Fertigungsbereich (1) durch Eindrücken eines flächig auf den Fertigungsbereich (1) aufgebrachten Rohmaterials erfolgt.
DE102019102758.6A 2019-02-05 2019-02-05 Verfahren zur Herstellung von elastomeren Formkörpern Pending DE102019102758A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE102019102758.6A DE102019102758A1 (de) 2019-02-05 2019-02-05 Verfahren zur Herstellung von elastomeren Formkörpern
US17/428,285 US20220105674A1 (en) 2019-02-05 2019-12-13 Method for producing elastomeric molded bodies
PCT/EP2019/085043 WO2020160820A1 (de) 2019-02-05 2019-12-13 Verfahren zur herstellung von elastomeren formkörpern
CN201980091212.6A CN113382843A (zh) 2019-02-05 2019-12-13 用于制造弹性体的成型体的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019102758.6A DE102019102758A1 (de) 2019-02-05 2019-02-05 Verfahren zur Herstellung von elastomeren Formkörpern

Publications (1)

Publication Number Publication Date
DE102019102758A1 true DE102019102758A1 (de) 2020-08-06

Family

ID=69061313

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019102758.6A Pending DE102019102758A1 (de) 2019-02-05 2019-02-05 Verfahren zur Herstellung von elastomeren Formkörpern

Country Status (4)

Country Link
US (1) US20220105674A1 (de)
CN (1) CN113382843A (de)
DE (1) DE102019102758A1 (de)
WO (1) WO2020160820A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170190120A1 (en) * 2016-01-06 2017-07-06 Autodesk, Inc. Controllable release build plate for 3d printer
WO2018072809A1 (de) 2016-10-17 2018-04-26 Wacker Chemie Ag Verfahren zur herstellung von siliconelastomerteilen mit erhöhter druckqualität
DE102017207737A1 (de) * 2017-05-08 2018-11-08 Rema Tip Top Ag Vorrichtung und Verfahren zum 3D-Druck eines Werkstücks aus einem kautschukartigen nicht-thermoplastischen Material

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0017076B1 (pt) * 2000-02-18 2014-09-02 Parker Hannifin Corp Método de fabricação de gaxeta de blindagem emi de formação no lugar, de força de fechamento baixa
JP5132168B2 (ja) * 2007-03-08 2013-01-30 株式会社リコー 画像表示素子用構造体の製造方法及び製造装置、並びに電気泳動表示素子の製造方法及び製造装置
US20090145314A1 (en) * 2007-12-07 2009-06-11 Chemque, Inc. Intaglio Printing Methods, Apparatuses, and Printed or Coated Materials Made Therewith
CN101274469A (zh) * 2007-12-29 2008-10-01 重庆大学 微通道内微点阵列构建方法
WO2016171191A1 (ja) * 2015-04-20 2016-10-27 Mcppイノベーション合同会社 材料押出式3次元プリンター成形用フィラメント及び成形体の製造方法
EP3322581B1 (de) * 2015-11-26 2019-01-02 Wacker Chemie AG Hochviskose siliconzusammensetzungen zur herstellung elastomerer formteile mittels ballistischer generativer verfahren
JP6640375B2 (ja) * 2015-12-21 2020-02-05 ワッカー ケミー アクチエンゲゼルシャフトWacker Chemie AG 3d印刷デバイスを使用することにより物体を製造するための方法およびデバイス
EP3321074A1 (de) * 2016-11-11 2018-05-16 Dow Corning Corporation Vorrichtung zum formfreien drucken eines dreidimensionalen objekts in schichten
CN109196055A (zh) * 2017-02-23 2019-01-11 瓦克化学股份公司 使用由蜡制成的支撑材料制造成型体的增材方法
CN107272317B (zh) * 2017-05-31 2019-10-25 深圳光峰科技股份有限公司 荧光芯片及其波长转换装置的制备方法以及显示系统
CN107457984B (zh) * 2017-08-23 2019-04-02 青岛理工大学 一种高填充率pdms微透镜阵列的制作装置及方法
CN114072269B (zh) * 2019-04-11 2024-03-26 爱乐格3D公司 在多孔板中高通量无掩模制造聚合物支架和生物组织的方法和装置
WO2021126259A1 (en) * 2019-12-20 2021-06-24 Hewlett-Packard Development Company, L.P. 3d printing modules with build platform driving mechanisms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170190120A1 (en) * 2016-01-06 2017-07-06 Autodesk, Inc. Controllable release build plate for 3d printer
WO2018072809A1 (de) 2016-10-17 2018-04-26 Wacker Chemie Ag Verfahren zur herstellung von siliconelastomerteilen mit erhöhter druckqualität
DE102017207737A1 (de) * 2017-05-08 2018-11-08 Rema Tip Top Ag Vorrichtung und Verfahren zum 3D-Druck eines Werkstücks aus einem kautschukartigen nicht-thermoplastischen Material

Also Published As

Publication number Publication date
CN113382843A (zh) 2021-09-10
WO2020160820A1 (de) 2020-08-13
US20220105674A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
EP3362260B1 (de) Verfahren zur herstellung von siliconelastomerteilen mit erhöhter druckqualität
EP3071394B1 (de) Vorrichtung zum verarbeiten von photopolymerisierbarem material zum schichtweisen aufbau eines formkörpers
WO2016071241A1 (de) Verfahren zur herstellung von siliconelastomerteilen
DE102011109369A1 (de) Verfahren und Vorrichtung zur Herstellung eines dreidimensionalen Gegenstandes mit Faserzuführung
WO2019063094A1 (de) 3d-gedruckte formteile aus mehr als einem silicon-material
DE102014107847A1 (de) Formwerkzeug für die Herstellung eines Kunststoffkörpers aus einem thermoplastischen Kunststoffmaterial
DE102016200522A1 (de) Verfahren zur Herstellung dreidimensionaler Objekte und Vorrichtung zur Durchführung des besagten Verfahrens
DE102018006397A1 (de) Verfahren zum Herstellen eines dreidimensionalen Formgegenstands mittels schichtweisem Materialauftrag
EP3890944A1 (de) Mittels 3d-druck funktionalisierte folienflächen zur ausrüstung von werkstückoberflächen
DE102018008808A1 (de) Verfahren zum Herstellen eines dreidimensionalen Formgegenstands mittels schichtweisem Materialauftrag
DE102005051392A1 (de) Verfahren zur Herstellung von genarbten Kunststoff-Formteilen sowie Kunststoff-Formteil
DE102010000088A1 (de) Verfahren und Vorrichtung zum Herstellen von Polymerkaschierungen oder strangförmigen Aufträgen an einem Substrat
DE19532105C2 (de) Verfahren und Vorrichtung zur Behandlung von dreidimensionalen Werkstücken mit einer direkten Barrierenentladung sowie Verfahren zur Herstellung einer mit einer Barriere versehenen Elektrode für diese Barrierenentladung
DE102016223244A1 (de) Verfahren und Vorrichtung zum generativen Fertigen eines dreidimensionalen Objekts und dreidimensionales Objekt
DE102019102758A1 (de) Verfahren zur Herstellung von elastomeren Formkörpern
DE202011004357U1 (de) beheizbare Vakuumhauben-Vorrichtung
EP4061597A1 (de) Verfahren zur herstellung eines implantats aus einem biokompatiblen silikon
DE102018126704A1 (de) Verfahren und Vorrichtung zur Herstellung eines Faserverbundbauteils mittels eines 3D-Druckverfahrens
EP2637834B1 (de) Beheizbare vakuumhauben-vorrichtung
WO2013037334A1 (de) Beheizbare blockstempel-vorrichtung
DE102021003386A1 (de) Klebefilm
DE102015226532B4 (de) Verfahren und Vorrichtung zum Verstrecken und/oder Verformen von Halbzeugen aus thermoplastisch verformbarem Material
DE102022133532A1 (de) Verfahren zum Aufbringen einer Struktur auf einem Substrat und Zierteil mit einem derartigen mit einer Struktur versehenen Substrat
DE102015005974A1 (de) Verfahren und Werkzeug zur Herstellung eines flächigen Faserkunststoffverbund-Bauteils unter Verwendung einer Hybridgarntextilie
DE102020004310A1 (de) Verfahren und Einrichtung zur Herstellung eines Körpers

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication