WO2018216603A1 - 比例ソレノイド、その製造方法、および、比例ソレノイドの特性制御方法 - Google Patents

比例ソレノイド、その製造方法、および、比例ソレノイドの特性制御方法 Download PDF

Info

Publication number
WO2018216603A1
WO2018216603A1 PCT/JP2018/019193 JP2018019193W WO2018216603A1 WO 2018216603 A1 WO2018216603 A1 WO 2018216603A1 JP 2018019193 W JP2018019193 W JP 2018019193W WO 2018216603 A1 WO2018216603 A1 WO 2018216603A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
magnetic
nonmagnetic
proportional solenoid
tubular member
Prior art date
Application number
PCT/JP2018/019193
Other languages
English (en)
French (fr)
Inventor
山口 智
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to DE112018002646.9T priority Critical patent/DE112018002646T5/de
Priority to CN201880033599.5A priority patent/CN110678944B/zh
Priority to US16/615,700 priority patent/US11177061B2/en
Priority to JP2019520209A priority patent/JP7099457B2/ja
Publication of WO2018216603A1 publication Critical patent/WO2018216603A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F2003/106Magnetic circuits using combinations of different magnetic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils

Definitions

  • the present invention relates to a proportional solenoid, a manufacturing method thereof, and a characteristic control method of the proportional solenoid.
  • Japanese Laid-Open Patent Publication Nos. 2001-6925 and 4-263407 disclose a solenoid including a pipe (cylindrical yoke) mounted in a coil and a movable iron core that slides on the inner peripheral surface of the pipe. ing.
  • this solenoid pipe the tapered surface provided at the end of the magnetic part made of a ferromagnetic material and the tapered surface provided at the end of the non-magnetic part made of a nonmagnetic material are joined in a state of surface contact with each other. Yes.
  • the movable magnetic body is controlled by controlling the attractive force (current amount) so as to balance the elastic force of the spring provided outside the solenoid. Can be located at a predetermined position.
  • the taper angle ⁇ of the taper surface is one of the most important factors for determining the attractive force curve, but Japanese Patent Laid-Open No. 2001-6925 and Japanese Patent Laid-Open No. 4-263407.
  • this tapered surface is formed by machining, it is easy to control the taper angle ⁇ .
  • Japanese Patent Laid-Open No. 7-11397 discloses a solenoid valve (sleeve (cylindrical yoke)) made of a composite magnetic member having a ferromagnetic part and a non-magnetic part, and a plunger (movable iron core) that slides in the sleeve ( Solenoid).
  • the sleeve of this solenoid valve is obtained by converting a cylindrical ferromagnetic material converted from non-magnetic (austenite) to ferromagnetic (martensite) by cold working into non-magnetic by partially heating at high frequency. It has been made.
  • JP 2001-6925 A JP-A-4-263407 JP-A-7-11397
  • the solenoid valve disclosed in Japanese Patent Laid-Open No. 7-11397 is a solenoid composed only of a ferromagnetic portion and a non-magnetic portion, it is disclosed in Japanese Patent Laid-Open No. 2001-6925 and Japanese Patent Laid-Open No. 4-263407. It is considered that unlike a solenoid that is used, it is not assumed to be used as a proportional solenoid. In other words, the electromagnetic valve disclosed in Japanese Patent Laid-Open No. 7-11397 cannot obtain an attractive force curve having a desired flat region due to the fact that it consists only of a ferromagnetic part and a non-magnetic part. It is done.
  • a structure of a proportional solenoid in which a nonmagnetic part and a ferromagnetic part are mechanically joined with a tapered surface as in Japanese Patent Application Laid-Open No. 2001-6925 and Japanese Patent Application Laid-Open No. 4-263407 is disclosed.
  • Proportional solenoid capable of obtaining a suction force curve having the following: a proportional solenoid manufacturing method, and a proportional solenoid characteristic control method for obtaining a suction force curve having a desired flat region.
  • the proportional solenoid according to the first aspect of the present invention includes a stationary iron core made of a tubular member made of a composite magnetic material, a movable magnetic body inserted into the tubular member and movable in the axial direction of the tubular member,
  • the tubular member has a suction surface that is provided substantially parallel to a surface orthogonal to the axial direction and that is opposed to the movable magnetic body, includes a suction surface, and mainly includes a ferrite structure.
  • a magnetic region present at a position separated from the adsorption surface, a first semimagnetic region including a ferrite structure, a martensite structure, an austenite structure, and a position separated from the adsorption surface than the first semimagnetic region,
  • a nonmagnetic region mainly composed of an austenite structure is formed continuously and integrally along the axial direction of the tubular member.
  • the first magnetic region mainly composed of a ferromagnetic ferrite structure, a ferrite structure, a ferromagnetic martensite structure having a slightly lower magnetization than the ferrite structure,
  • a first semimagnetic region including a magnetic austenite structure and a nonmagnetic region mainly composed of an austenite structure are formed continuously and integrally. This makes it possible to produce a tubular member having a structure in which magnetization increases from the nonmagnetic region toward the first magnetic region (magnetization decreases from the first magnetic region toward the nonmagnetic region).
  • the tubular member of the proportional solenoid has the first magnetic region, the first semimagnetic region, and the nonmagnetic region formed continuously and integrally along the axial direction of the tubular member, the tubular member has mechanical strength. Small joints are not provided. Thereby, even if it uses a proportional solenoid under high pressure, it can control that a fixed iron core breaks (physically separating).
  • the proportional solenoid manufacturing method includes a heat treatment of a tubular member made of a composite magnetic material mainly made of a ferrite structure, and a magnetic region mainly made of a ferrite structure and a main region.
  • a method for producing a proportional solenoid including a step of forming a non-magnetic region composed of an austenite structure on the basis of C (carbon) mainly composed of a ferrite structure and 0.3% or more and 1.2% or less by mass%.
  • a step of preparing a tubular member made of a composite magnetic material containing, a step of arranging a high-frequency coil so as to surround a heating position including a nonmagnetic region forming portion of the tubular member, and a current in the high-frequency coil In the process of rapidly heating the non-magnetic region forming part to a heating temperature of 1000 ° C. or more and 1300 ° C. or less and a holding time of 5 seconds or more and 20 seconds or less, Maintaining the heating state of the magnetic region forming portion and quenching the heated tubular member, thereby causing the magnetic region, the nonmagnetic region formed in the nonmagnetic region forming portion, and between the magnetic region and the nonmagnetic region.
  • the magnetic region, the semimagnetic region, and the nonmagnetic region are formed on the same tubular member without having a joint portion. It is formed continuously and integrally along the axial direction.
  • the proportional solenoid which can suppress a fracture
  • the compound resulting from overlay welding or the like is not formed at the boundary between the magnetic region and the nonmagnetic region, it is possible to suppress a change in magnetic characteristics due to the compound.
  • the heating temperature of the nonmagnetic region forming portion of the tubular member made of the composite magnetic material containing C (carbon) of 0.3% or more and 1.2% or less by mass% is 1000 ° C. or more and 1300 ° C. or less.
  • a nonmagnetic austenite structure can be stably formed by dissolving solid carbide in the composite magnetic material mainly composed of a ferromagnetic ferrite structure in the nonmagnetic region forming portion. Can do.
  • a nonmagnetic region having an austenite structure can be reliably formed in the nonmagnetic region forming portion.
  • the nonmagnetic region forming portion is rapidly heated to a heating temperature of 1000 ° C. or higher and 1300 ° C. or lower using a high frequency coil.
  • the nonmagnetic region forming portion can be concentrated and rapidly heated by the high frequency coil, so that heat is conducted to the nonmagnetic region forming portion and the portion excluding the periphery thereof (the portion where the magnetic region is formed). Can be suppressed. As a result, it is possible to reliably suppress the transformation of the ferrite structure in the portion where the magnetic region is formed.
  • the nonmagnetic region forming portion is rapidly heated to a heating temperature of 1000 ° C. or higher and 1300 ° C. or lower, and the heated state of the nonmagnetic region forming portion is maintained for a holding time of 5 seconds or longer and 20 seconds or shorter after the rapid heating. .
  • a portion of the heat generated when the nonmagnetic region forming portion is heated by conducting rapid heating and maintaining the heated state after the rapid heating is conducted around the nonmagnetic region forming portion (the portion where the semimagnetic region is formed).
  • an unstable structure in which carbides remain can be formed. As a result, the unstable structure can be transformed into a martensite structure by rapidly cooling the heated tubular member.
  • the amount of unstable tissue formed can be reduced.
  • the amount of heat conduction decreases in the portion where the semimagnetic region is formed as the distance from the nonmagnetic region forming portion increases, the amount of unstable tissue formed can be increased.
  • the abundance ratio of the nonmagnetic and small magnetization austenite structure decreases from the nonmagnetic region to the magnetic region, and the Thus, the abundance ratio of the martensite structure whose magnetization is slightly smaller than that of the ferrite structure can be increased. Therefore, a gradual magnetic gradient that increases the magnetization from the nonmagnetic region toward the magnetic region can be easily formed in the semimagnetic region.
  • the nonmagnetic region forming portion by maintaining the heating state of the nonmagnetic region forming portion for a holding time of 5 seconds or more, heat can be reliably conducted in the thickness direction (radial direction) of the tubular member, so the entire thickness direction Thus, the nonmagnetic region can be reliably formed. Further, by holding the heated state of the nonmagnetic region forming portion for a holding time of 20 seconds or less, the nonmagnetic region forming portion and the portion excluding the periphery thereof (the magnetic region is formed) due to the long holding time. It is possible to prevent the heat from being conducted to the portion).
  • the proportional solenoid characteristic control method includes a magnetic region mainly composed of a ferrite structure by heat-treating a tubular member composed of a composite magnetic material mainly composed of a ferrite structure.
  • a method for controlling the characteristics of a proportional solenoid including a step of forming a non-magnetic region mainly composed of an austenite structure, which is mainly composed of a ferrite structure and is 0.3% or more and 1.2% or less by mass%.
  • the nonmagnetic region forming portion is rapidly heated to a heating temperature of 1000 ° C. or higher and 1300 ° C. or lower and a holding time of 5 seconds or longer and 20 seconds or shorter.
  • a step of maintaining the heated state of the minute a step of rapidly cooling the heated tubular member, a magnetic region, a nonmagnetic region formed in the nonmagnetic region forming portion, and a magnetic region by rapidly cooling the heated tubular member And a semi-magnetic region formed between the non-magnetic region and having a magnetic gradient that increases the magnetization from the non-magnetic region toward the magnetic region, continuously and integrally along the axial direction of the tubular member.
  • the proportional solenoid characteristics are controlled by controlling the distribution of the magnetic properties of the tubular member by adjusting at least one of temperature, holding time and holding temperature gradient.
  • the proportional solenoid characteristic control method in addition to the effect of the second aspect, at least one of the heating position, the heating speed, the heating temperature, the holding time, and the holding temperature gradient as described above. By adjusting one of these, the distribution of the magnetic properties of the tubular member is controlled. As a result, the range of the flat region can be changed by adjusting at least one of the heating position, the heating speed, the heating temperature, the holding time, and the holding temperature gradient, so that the suction force having a desired flat region can be changed.
  • the solenoid characteristic (suction force curve) of the proportional solenoid can be controlled so as to obtain a curve.
  • a proportional solenoid capable of suppressing breakage even when used under high pressure and capable of obtaining a suction force curve having a desired flat region, and a method for manufacturing the proportional solenoid.
  • a characteristic control method of a proportional solenoid for obtaining a suction force curve having a desired flat region it is possible to provide a characteristic control method of a proportional solenoid for obtaining a suction force curve having a desired flat region.
  • FIG. 9A is a diagram for explaining a test piece used for magnetization measurement.
  • FIG. 9B is a view for explaining a test piece used for Vickers hardness measurement, X-ray diffraction (XRD) measurement, and FE-SEM measurement. It is the graph which showed the measurement result of the magnetization of Example 1, and the Vickers hardness in 1st Example of this invention.
  • a proportional solenoid 100 constitutes a part of a hydraulic control valve including a hydraulic pressure switching unit 100a (schematically illustrated by a double chain line in FIG. 1).
  • the proportional solenoid 100 includes a tube-shaped fixed iron core 1 used for the solenoid, a rod assembly 2 inserted into the tube-shaped fixed iron core 1, and a rear hardware 3.
  • the fixed iron core 1 is an example of the “tubular member” in the claims.
  • the rod assembly 2 is an example of the “movable magnetic body” in the claims.
  • the fixed iron core 1 is a tubular member extending in the axial direction (Z-axis direction).
  • the fixed iron core 1 includes a hole 11 that extends in the Z-axis direction and into which the rod assembly 2 is inserted so as to be movable in the Z-axis direction.
  • the hole 11 is formed on the Z2 direction side and has a large accommodating portion 11a in the radial direction (A direction) orthogonal to the axial direction. Further, an adsorption surface 11b with which an abutting portion 21a (described later) of the rod assembly 2 abuts is formed at the end of the accommodating portion 11a on the Z1 direction side.
  • the suction surface 11b is provided substantially parallel to a surface extending in the A direction orthogonal to the Z-axis direction, and is formed such that a later-described facing surface 21b of the rod assembly 2 is opposed to the Z-axis direction. Yes.
  • the accommodating portion 11a is formed so as to extend in the Z-axis direction on the Z2 direction side.
  • a bearing 4 for correctly holding the position of the rod assembly 2 in the A-axis direction is inserted on the Z1 direction side of the suction surface 11b of the hole 11.
  • the detailed structure of the tube-shaped stationary iron core 1 used for a solenoid is mentioned later.
  • the rod assembly 2 includes a movable iron core 21 that is large in the A direction and a rod-shaped rod 22 that extends in the Z-axis direction so as to penetrate the movable iron core 21.
  • the movable iron core 21 has a diameter slightly smaller than the diameter of the accommodating portion 11a. Further, an abutting portion 21 a that abuts against the attracting surface 11 b is disposed on the end surface (opposing surface 21 b) on the Z1 direction side of the movable iron core 21. Direct contact between the facing surface 21b of the movable iron core 21 and the suction surface 11b is suppressed by the contact portion 21a.
  • an inclined surface 21 c is formed in a circumferential shape at the end portion in the A direction on the facing surface 21 b of the movable iron core 21.
  • the inclined surface 21c is provided to slightly taper the Z1 direction side of the movable iron core 21.
  • the suction surface 11b and the facing surface 21b are opposed in the Z-axis direction over substantially the entire surface. Thereby, it is possible to increase the suction force acting between the suction surface 11b and the opposing surface 21b.
  • the rod assembly 2 is composed of a nonmagnetic material and a ferromagnetic material.
  • the rod 22 is made of a non-magnetic material (such as SUS304), and the movable iron core 21 is made of a ferromagnetic carbon steel (such as SUM23).
  • the rear metal part 3 is connected to the housing part 11a and has a hole part 3a into which an end part on the Z2 direction side of the rod 22 of the rod assembly 2 is inserted. Further, the bearing 4 is disposed in the hole 3a, so that the rod assembly 2 is rotatably supported. In the proportional solenoid 100, the bearing 4 may not be provided. Further, the end of the rear metal part 3 on the Z1 direction side is joined to the end of the tubular fixed iron core 1 used for the solenoid on the Z2 direction side by welding.
  • the coil 100b is disposed so as to surround the region including at least the heat treatment region R of the fixed iron core 1 in a circumferential shape. Further, the fixed iron core 1 is fixed in a state where a predetermined gap is separated from the coil 100b. Furthermore, a spring (not shown) that generates a biasing force in the Z2 direction with respect to the rod assembly 2 is disposed in the hydraulic pressure switching unit 100a.
  • a magnetic field of a predetermined magnitude is generated by flowing a current of a predetermined magnitude through the coil 100b. Due to this magnetic field, both the fixed iron core 1 and the movable iron core 21 are magnetized. As a result, the attractive force attracted to the fixed iron core 1 acts on the movable iron core 21 in the Z1 direction.
  • the fixed iron core 1 has a semimagnetic region 14 in which the magnetization decreases along a gentle curve in the same manner as the fixed iron core (see FIG. 7) in which the magnetic region is reduced by conventional machining.
  • the attractive force in the Z1 direction acting on the movable iron core 21 is substantially constant regardless of the position of the movable iron core 21, corresponding to the magnitude of the current flowing through the coil 100b.
  • a suction force curve including a flat region is shown. Thereby, in the flat region, it is possible to cause the rod assembly 2 to generate an attractive force proportional to the magnitude of the current flowing through the coil 100b.
  • the suction force is substantially constant” means that the value of the suction force is within ⁇ 10%.
  • the “flat region” means a suction force at a predetermined position in the flat region (for example, a position 1.0 mm from the suction surface 11b in the embodiment described later) as a reference suction force, and the suction force is ⁇ of the reference suction force. It shall mean the area
  • the coil 100b flows so that the elastic force in the Z2 direction proportional to the amount of displacement of the spring provided outside the proportional solenoid 100 and the generated attractive force in the Z1 direction are balanced.
  • the facing surface 21b of the movable iron core 21 can be positioned at a position separated in the Z-axis direction by a predetermined distance D from the attracting surface 11b.
  • the amount of pressure (hydraulic pressure) of the oil flowing through the hydraulic pressure switching unit 100a can be changed by changing the protruding amount of the movable iron core 21 in the hydraulic pressure switching unit 100a.
  • the proportional solenoid 100 of the present embodiment can be suitably used for an application in which the magnitude of the hydraulic pressure is changed with respect to high pressure oil of, for example, 30 MPa or more and 40 MPa or less, and further 45 MPa or less, Even if a cycle test in which such a high pressure is repeatedly applied 1 million times is performed, it is not destroyed. Further, the fixed iron core 1 of the proportional solenoid 100 of the present invention has sufficient durability without breaking even when a very large pressure of about 150 MPa is applied.
  • FIG. 3 is a cross-sectional view of the fixed iron core 1 in the Z-axis direction
  • FIG. 4A is an enlarged cross-sectional view around the heat treatment region R of the fixed iron core 1 (comparative example from above, magnetic and non-magnetic parts formed by machining).
  • FIG. 4 (c) shows the magnetization of the fixed core 1
  • FIG. 4 (d) shows the comparison. It is a figure which shows the abundance ratio of each structure
  • tissue of the fixed iron core 1 which shows the solenoid characteristic of taper angle (theta) 45 degree
  • the fixed iron core 1 includes a magnetic region 12 mainly composed of a ferrite structure ( ⁇ -Fe phase) which is a ferromagnetic material, and mainly nonmagnetic.
  • a semi-magnetic region 13 composed of an austenite structure ( ⁇ -Fe phase) as a body, and a semimagnetic material formed between the magnetic region 12 and the non-magnetic region 13 and including a martensite structure (Ms phase) as a ferromagnetic material. It is composed of a composite magnetic material including the region 14.
  • the magnetic region 12 is a region that is easily magnetized by an external magnetic field
  • the nonmagnetic region 13 is a region that is hardly magnetized by an external magnetic field.
  • the boundary 14a between the semimagnetic region 14 and the nonmagnetic region 13 is a position where the martensite structure starts to exist in the Z1 direction or the Z2 direction from the nonmagnetic region 13.
  • the boundary 14b between the semimagnetic region 14 and the magnetic region 12 is a position where the abundance ratio of the martensite structure becomes equal to the abundance ratio of the ferrite structure.
  • the abundance ratio of the martensite structure is larger on the semimagnetic region 14 side than the boundary 14b, and the abundance ratio of the ferrite structure is larger on the magnetic region 12 side.
  • the position of each region in FIG. 4A substantially corresponds to the magnetization value shown in FIG.
  • the nonmagnetic region 13 and the semimagnetic region 14 are provided in a heat treatment region R formed on the Z1 direction side (attraction surface 11b side) of the accommodating portion 11a.
  • the magnetic region 12 is provided in a region other than the heat treatment region R.
  • the heat treatment region R is provided at a position separated from the suction surface 11b in the Z2 direction.
  • region R is formed in the whole A direction ranging from the inner surface 11c of the tube-shaped stationary iron core 1 used for a solenoid to the outer surface 11d.
  • the boundary 14b between the semimagnetic region 14 and the magnetic region 12 is a position where the abundance ratio of the martensite structure is equal to the abundance ratio of the ferrite structure, and is slightly in the vicinity of the boundary 14b of the magnetic region 12.
  • the nonmagnetic region 13 and the semimagnetic region 14 are referred to as a heat treatment region R.
  • the magnetic region 12 “mainly composed of a ferrite structure” means that most of the region that is not affected by the heat treatment is substantially only the ferrite structure, and even in the portion that is affected by the heat treatment. It means that the ferrite structure is 50% or more.
  • the phrase “mainly composed of an austenite structure” means that the nonmagnetic region 13 is substantially composed of an austenite structure and no ferrite structure or martensite structure exists.
  • the magnetic region 12, the nonmagnetic region 13, and the semimagnetic region 14 are continuously and integrally formed along the Z-axis direction on the same fixed core 1 without having a joint portion. That is, the magnetic region 12, the nonmagnetic region 13, and the semimagnetic region 14 are formed continuously and integrally without performing a joining process such as welding and brazing.
  • the magnetic region 12, the nonmagnetic region 13, and the semimagnetic region 14 are a composite that can form the magnetic region 12 mainly composed of a ferrite structure and the nonmagnetic region 13 mainly composed of an austenite structure, which constitute the fixed iron core 1.
  • the magnetic material is formed continuously and integrally by heat treatment by high frequency heating.
  • the fixed iron core of the present embodiment is used. 1 has sufficient durability. Moreover, since the compound resulting from overlay welding or the like is not formed at the boundary between the magnetic region 12 and the semimagnetic region 14 or the like, it is possible to suppress changes in magnetic properties due to the compound.
  • the specific composition of the composite magnetic material constituting the fixed iron core 1 will be described later.
  • a pair of semimagnetic regions 14 are formed so as to sandwich the nonmagnetic region 13 in the Z-axis direction. That is, the semimagnetic region 14 includes a first semimagnetic region 14c located on the side of the attracting surface 11b with respect to the nonmagnetic region 13, and a second semimagnetic region located on the side opposite to the attracting surface 11b with respect to the nonmagnetic region 13. 14d.
  • a pair of magnetic regions 12 are formed so as to sandwich the nonmagnetic region 13 and the semimagnetic region 14 (heat treatment region R) in the Z-axis direction.
  • the magnetic region 12 includes the first magnetic region 12a that includes the attracting surface 11b and is located closer to the attracting surface 11b than the first semimagnetic region 14c, and on the opposite side of the attracting surface 11b than the second semimagnetic region 14d. And the second magnetic region 12b located.
  • the respective regions do not necessarily have to be formed symmetrically in the Z-axis direction.
  • the distance L1 and the distance L2, which will be described later, may be different between the Z1 direction side and the Z2 direction side.
  • the solenoid characteristics (attraction force curve) required for the proportional solenoid 100 are mainly involved. Only the first magnetic region 12a and the first semimagnetic region 14c do.
  • the fixed iron core 1 has a Vickers hardness (HV) in a range of 200 ⁇ HV ⁇ 600, specifically, so that the hardness distribution varies from region to region. Have been made.
  • the Vickers hardness (HV) is 200 ⁇ HV ⁇ 300, and in the semimagnetic region 14, there exists a maximum value such that the Vickers hardness (HV) is 400 ⁇ HV ⁇ 600.
  • the fixed iron core 1 is manufactured.
  • the semimagnetic region 14 (the first semimagnetic region 14c and the second semimagnetic region 14d) is changed from the nonmagnetic region 13 to the magnetic region 12 (the first magnetic region 12a and the second magnetic region 12b). It has a gentle magnetic gradient in which the magnetization increases toward. Further, as shown in FIG. 4C, the semimagnetic region 14 has such hardness that the hardness increases from the nonmagnetic region 13 toward the magnetic region 12 on the nonmagnetic region 13 side of the semimagnetic region 14. Has a gradient.
  • the semimagnetic region 14 has a hardness gradient such that the hardness decreases from the nonmagnetic region 13 toward the magnetic region 12 on the magnetic region 12 side of the semimagnetic region 14. This is because the abundance ratio of the martensite structure having a relatively high hardness decreases and the abundance ratio of the ferrite structure having a relatively low hardness (Vickers hardness (HV) of about 200 to 300) increases. It is shown that. That is, the semimagnetic region 14 increases in hardness from the nonmagnetic region 13 toward the magnetic region 12, and has a maximum value of Vickers hardness (HV) of 400 or more in the semimagnetic region 14, The hardness gradient is small.
  • the above change in Vickers hardness HV supports the following description of the abundance ratio of the structure. That is, as shown in FIG. 4D, the abundance ratio of the nonmagnetic austenite structure ( ⁇ -Fe phase) from the nonmagnetic region 13 toward the magnetic region 12 on the nonmagnetic region 13 side of the semimagnetic region 14. And the abundance ratio of the ferromagnetic martensite structure (Ms phase) is increased. On the magnetic region 12 side of the semimagnetic region 14, the abundance ratio of the martensite structure decreases from the nonmagnetic region 13 to the magnetic region 12, and the ferrite structure ( ⁇ -Fe) is more ferromagnetic than the martensite structure. The abundance ratio of (phase) is increased.
  • the semimagnetic region 14 has a structure that changes from a non-magnetic austenite structure to a ferrite structure while abundantly martensite structure having a slightly lower magnetization than the ferrite structure exists.
  • the magnetic field has a gentle magnetic gradient such that the magnetization increases from the nonmagnetic region 13 toward the magnetic region 12.
  • the proportional solenoid 100 of the present embodiment is substantially the same as the proportional solenoid of the comparative example in which the semimagnetic region 14 is appropriately changed to butt-join the taper surfaces of the magnetic part and the nonmagnetic part formed by machining.
  • the solenoid characteristics can be obtained.
  • the amount of carbide in each structure is as follows.
  • the composite magnetic material constituting the fixed iron core 1 (a tubular member 101 described later) before heat treatment contains 0.3% or more and 1.2% or less carbon by mass%.
  • carbon of 0.3% or more and 1.2% or less in mass% is only slightly dissolved in the ferrite structure, in the magnetic region 12 where heat by high-frequency heating described later is not substantially applied.
  • carbon that did not dissolve is present as carbide, and a large amount of carbide is detected.
  • the carbide (carbon) dissolves in the structure to form an austenite structure, so that there is no or very little carbide present in the nonmagnetic region 13.
  • the semimagnetic region 14 has less carbide than the magnetic region 12 and more carbide than the nonmagnetic region 13. That is, the carbides present in the semimagnetic region 14 including a ferrite structure, a martensite structure, and an austenite structure are more than the carbides present in the nonmagnetic region 13 mainly composed of an austenite structure and are mainly composed of a ferrite structure. Less than the carbide present in region 12. Furthermore, the above-described structure in which the maximum value of the martensite structure exists in the semimagnetic region 14 is that carbides existing in the semimagnetic region 14 gradually decrease from the magnetic region 12 toward the nonmagnetic region 13. I mean.
  • the semimagnetic region 14 has a center O in the Z-axis direction of the nonmagnetic region 13 and an end (boundary 14a) of the semimagnetic region 14 on the nonmagnetic region 13 side from the inner surface 11c toward the outer surface 11d.
  • This distance L1 is configured to be large.
  • the semimagnetic region 14 has a center O in the Z-axis direction of the nonmagnetic region 13 and an end (boundary 14b) of the semimagnetic region 14 on the magnetic region 12 side from the inner surface 11c toward the outer surface 11d.
  • This distance L2 is configured to be large.
  • the angle ⁇ x is It is considered that the correlation with the taper angle ⁇ of the proportional solenoid of the comparative example corresponding to the characteristic is small.
  • the distance L1 corresponding to the distance in the Z-axis direction of the nonmagnetic region 13 is considered to have a correlation with the taper angle ⁇ of the proportional solenoid of the corresponding comparative example.
  • the distance L1 corresponding to the distance in the Z-axis direction of the nonmagnetic region 13 tends to decrease as the taper angle ⁇ of the corresponding comparative example increases.
  • the semimagnetic region 14 is formed at a position separated from the attracting surface 11b in the Z-axis direction. That is, the end portion (boundary 14b) on the Z1 direction side of the semimagnetic region 14 is located at a position separated from the attracting surface 11b in the Z-axis direction.
  • composition of composite magnetic material (Composition of composite magnetic material) Next, the composition of the composite magnetic material constituting the tubular fixed iron core 1 used for the solenoid will be described.
  • the material for the composite magnetic body constituting the fixed iron core 1 is an iron alloy containing C (carbon) in an amount of 0.3% to 1.2% by mass.
  • the composite magnetic material constituting the fixed iron core 1 is, by mass%, 0.3% to 1.2% C, 0.1% to 3% Si (silicon), 0.1% Contains 4% or less Mn (manganese), 4% or less Ni (nickel), 4% or more and 20% or less Cr (chromium), 2% or less Al (aluminum), balance Fe (iron) and inevitable impurities It is desirable to be an iron alloy.
  • the composite magnetic material is composed of 0.30% to 1.20% C, 0.10% to 3.0% Si (silicon), 0.10% to 4.0% by mass.
  • % Mn manganese
  • Ni nickel
  • Cr chromium
  • Al aluminum
  • balance Fe iron
  • % of element content means “mass%”.
  • C 0.30% or more and 1.20% or less C is an element effective for forming the nonmagnetic region 13 as an austenite forming element. If C is less than 0.30%, the nonmagnetic region 13 is difficult to be formed stably. When C exceeds 1.20%, the workability of the composite magnetic body (fixed iron core 1) decreases. For this reason, the content rate of C is 0.30% or more and 1.20% or less.
  • Si 0.10% or more and 3.0% or less Si is an element that has the effect of improving the soft magnetic properties and reducing the coercive force in the composite magnetic material. If Si is less than 0.10%, the effect of improving soft magnetic properties is small, and if Si exceeds 3.0%, the workability of the composite magnetic body (fixed iron core 1) is lowered. For this reason, as for the content rate of Si, 0.10% or more and 3.0% or less are desirable. A more preferable range of the Si content is 0.30% or more and 2.5% or less.
  • Mn 0.10% to 4.0%
  • Mn is an effective element for forming the nonmagnetic region 13 as an austenite forming element. If Mn is less than 0.10%, the effect of forming the nonmagnetic region 13 is small, and if Mn exceeds 4.0%, the workability of the composite magnetic body (fixed iron core 1) is lowered. For this reason, the Mn content is desirably 0.10% or more and 4.0% or less.
  • Ni 4.0% or less
  • Ni is an element effective for forming the nonmagnetic region 13 as an austenite forming element. If Ni exceeds 4.0%, the workability of the composite magnetic body (fixed iron core 1) is significantly lowered. For this reason, the Ni content is preferably 4.0% or less. Since Ni is relatively expensive, it may not be included in the composite magnetic material.
  • Cr 4.0% or more and 20.0% or less
  • Cr is an element that has the effect of improving the corrosion resistance of the composite magnetic material and increasing the electrical resistivity. Further, Cr also has an effect of stabilizing the austenite structure of the nonmagnetic region 13. When Cr is less than 4.0%, the effects of improving corrosion resistance, increasing electrical resistivity and stabilizing the austenite structure are small. When Cr exceeds 20.0%, the saturation magnetization of the composite magnetic material is significantly reduced. The workability of the composite magnetic body (fixed iron core 1) is reduced. For this reason, the Cr content is preferably 4.0% or more and 20.0% or less.
  • Al 2.0% or less Al is an element that has the effect of improving the soft magnetic properties and reducing the coercive force in the composite magnetic material. If Al exceeds 2.0%, inclusions are formed and the workability of the composite magnetic body (fixed iron core 1) is lowered. For this reason, the Al content is desirably 2.0% or less. In addition, since Al forms inclusions as described above, Al may not be included in the composite magnetic material.
  • inevitable impurities include elements such as P (phosphorus), S (sulfur), O (oxygen), and N (nitrogen). These impurity elements may each be contained in a range of 0.1% or less as a range that does not affect the magnetic properties and workability of the composite magnetic material.
  • the raw materials weighed so as to be in the above composition range are vacuum-dissolved, and then cast using a mold to produce a steel ingot. And after heating and forging to predetermined temperature (about 1000 degreeC), it heats to predetermined temperature (about 1000 degreeC) and performs hot rolling. Thereby, a hot-rolled material having a predetermined thickness is produced. And after grinding
  • a tubular member 101 is prepared using the rod-shaped composite magnetic material.
  • the heat treatment region R (see FIG. 4) is not formed in the tubular member 101, and the entire tubular member 101 is mainly composed of a ferrite structure.
  • the high-frequency induction heating device 102 includes a high-frequency application unit 102a, a high-frequency coil 102b, a rotary stage 102c, a fixing jig 102d, and a radiation thermometer 102e.
  • the high-frequency application unit 102a has a function of controlling the amount of alternating current flowing through the high-frequency coil 102b.
  • the rotary stage 102c has a function of rotating around a rotation axis at a predetermined rotation speed.
  • the fixing jig 102d has a function of fixing the tubular member 101 on the rotary stage 102c.
  • the radiation thermometer 102e has a function of measuring the temperature of the heat treatment portion in a non-contact manner.
  • a black body paint such as JSC3 manufactured by Japan Sensor
  • the radiation temperature It is preferable to calibrate the meter 102e in advance (when the temperature is measured with a thermocouple, the tubular member 101 may not be rotated). Thereby, it is possible to measure the exact temperature in a non-contact manner by the radiation thermometer 102e.
  • the temperature of the heat treatment part can be measured more accurately.
  • the tubular member 101 is placed on the rotary stage 102c so that the direction in which the rotary shaft extends coincides with the Z-axis direction in which the tubular member 101 extends. Then, the tubular member 101 is fixed on the rotary stage 102c by the fixing jig 102d.
  • the high frequency coil 102b is arranged so as to surround the heating position H (the region facing the high frequency coil 102b) including the nonmagnetic region forming portion R1 of the tubular member 101 in a circumferential manner.
  • the thickness h in the Z-axis direction of the high-frequency coil 102b may be appropriately selected according to the dimensions in the Z-axis direction of the heat treatment region R and the nonmagnetic region forming portion R1.
  • the high frequency coil 102b is disposed so that the suction surface 11b of the tubular member 101 and the end of the high frequency coil 102b on the suction surface 11b side (Z1 direction side) are separated in the Z-axis direction.
  • the periphery of the nonmagnetic region forming portion R1 where the end portion of the high frequency coil 102b is located (the portion where the semimagnetic region 14 is formed) can be separated from the attracting surface 11b.
  • the magnetic region 12 can be ensured between 11b.
  • a suction force curve in which a flat region is formed can be obtained.
  • the high frequency coil 102b is preferably arranged such that the distance t between the suction surface 11b and the end of the high frequency coil 102b on the suction surface 11b side is 1 mm or more and 3 mm or less. More preferably, the high-frequency coil 102b is arranged so as to be 5 mm or more and 2.5 mm or less.
  • the center O1 in the Z-axis direction of the high-frequency coil 102b is the center in the Z-axis direction of the heating position H heated by the high-frequency coil 102b.
  • the center of the heating position H is preferably located at a position away from the suction surface 11b of the tubular member 101 by a distance d of 6 mm or more and 8 mm or less, and is 6.5 mm or more and 7.5 mm. It is more preferable to be located at a position separated by the following distance d.
  • the heat treatment region R is a region slightly larger in the Z-axis direction than the heating position H, and the nonmagnetic region forming portion R1 is a region smaller in the Z-axis direction than the heating position H, and changes the heating position H (Z Since these positions can be changed by moving the heating position H in the axial direction), the positional relationship between the rod assembly 2 (movable iron core 21) and the magnetic region 12, the nonmagnetic region 13, and the semimagnetic region 14 Can be different. As a result, by changing the heating position H, it is possible to change the size (solenoid characteristic) of the flat region of the attractive force curve in the proportional solenoid 100.
  • the nonmagnetic region forming portion R1 and the vicinity thereof (heating position H) are rapidly heated from the outside of the tubular member 101 (heating step).
  • the frequency is, for example, a high frequency of 40 kHz to 80 kHz.
  • at least the heating rate in the nonmagnetic region forming portion R1 is 100 ° C./second or more (preferably 150 ° C./second or more), 250 ° C./second or less (preferably 200 ° C./second or less). The amount of alternating current flowing through the high frequency coil 102b is changed.
  • the heating rate is high, it is difficult to form an unstable structure in which carbides remain in addition to the nonmagnetic austenite structure by heat treatment. That is, the semimagnetic region 14 is not easily formed by rapid cooling after the heat treatment, and the fixed iron core 1 (proportional solenoid 100) having a large attractive force curve in the flat region range is easily obtained.
  • a heating rate of more than 170 ° C./second and 250 ° C./second or less it is easy to obtain a proportional solenoid 100 corresponding to a conventional proportional solenoid having a taper angle ⁇ of 45 degrees or more.
  • the fact that an unstable structure in which carbides remain other than the nonmagnetic austenite structure is easily formed by heat treatment, and the semimagnetic region 14 is easily formed as a result of rapid cooling after the heat treatment is simply referred to as a semimagnetic region. 14 may be easily formed.
  • the characteristics of the proportional solenoid of the present invention will be discussed with reference to the taper angle ⁇ of the conventional (comparative example) proportional solenoid, but the solenoid characteristic corresponds to a conventional proportional solenoid having a predetermined taper angle ⁇ . Means. That is, also in the proportional solenoid 100 of the present invention, the angle ⁇ x (see FIG.
  • the nonmagnetic region forming portion R1 (heating position H) is heated until the heating temperature in the nonmagnetic region forming portion R1 reaches a heating temperature of 1000 ° C. or higher and 1300 ° C. or lower. Since the semimagnetic region 14 is easily formed on the side where the heating temperature is higher in the heating temperature range, it is easy to obtain the fixed iron core 1 (proportional solenoid 100) having a small attractive force curve in the flat region range. That is, for example, a proportional solenoid 100 corresponding to a conventional proportional solenoid having a taper angle ⁇ of less than 45 degrees is easily obtained.
  • the semimagnetic region 14 is difficult to be formed on the side where the heating temperature is low, it is easy to obtain the fixed iron core 1 (proportional solenoid 100) having a large attractive force curve within the flat region. That is, for example, a proportional solenoid 100 corresponding to a conventional proportional solenoid having a taper angle ⁇ of 45 degrees or more is easily obtained.
  • the nonmagnetic region forming portion R1 (heating position H) is maintained for a holding time of 5 seconds or more and 20 seconds or less. Hold the heated state (holding step).
  • the holding time is preferably 10 seconds or more, more preferably more than 10 seconds. preferable.
  • the holding time is preferably 15 seconds or less in order to reliably suppress heat conduction to the portion excluding the heat treatment region R (the portion of the magnetic region 12).
  • the semimagnetic region 14 In the range of the holding time, the semimagnetic region 14 is likely to be formed on the side where the holding time is long. Therefore, it is easy to obtain the fixed iron core 1 (proportional solenoid 100) having a small attractive force curve in the flat region. That is, for example, a proportional solenoid 100 corresponding to a conventional proportional solenoid having a taper angle ⁇ of less than 45 degrees is easily obtained. Further, since the semimagnetic region 14 is difficult to be formed on the side where the holding time is short, it is easy to obtain the fixed iron core 1 (proportional solenoid 100) having a large attractive force curve in the flat region range. That is, for example, a proportional solenoid 100 corresponding to a conventional proportional solenoid having a taper angle ⁇ of 45 degrees or more is easily obtained.
  • the alternating current flowing through the high-frequency coil 102b so that at least the holding temperature gradient of the nonmagnetic region forming portion R1 is included in the holding temperature gradient range of ⁇ 20 ° C./second or more and 5 ° C./second or less. It is preferable to change the amount of current. Further, the amount of alternating current flowing through the high-frequency coil 102b is changed so that at least the holding temperature gradient of the nonmagnetic region forming portion R1 is included in the holding temperature gradient range of ⁇ 15 ° C./second to 0 ° C./second. Is more preferable.
  • the amount of alternating current flowing through the high-frequency coil 102b is changed so that at least the holding temperature gradient of the nonmagnetic region forming portion R1 is included in the holding temperature gradient range of ⁇ 10 ° C./second to 0 ° C./second. Is more preferable.
  • the amount of alternating current flowing through the high frequency coil 102b in the holding process is smaller than the amount of alternating current flowing through the high frequency coil 102b in the heating process.
  • the holding temperature gradient is brought close to 0 ° C./second (or 5 ° C./second)
  • the semimagnetic region 14 is easily formed. Therefore, the fixed iron core 1 (proportional solenoid 100 having a small attractive force curve in the flat region range. ) Is easily obtained. That is, for example, a proportional solenoid 100 corresponding to a conventional proportional solenoid having a taper angle ⁇ of less than 45 degrees is easily obtained.
  • the holding temperature gradient is reduced (closer to ⁇ 10 ° C./second (or ⁇ 20 ° C./second))
  • the semimagnetic region 14 is difficult to be formed, and thus the fixed iron core having a large attractive force curve in the flat region range. 1 (proportional solenoid 100) is easily obtained. That is, for example, a proportional solenoid 100 corresponding to a conventional proportional solenoid having a taper angle ⁇ of 45 degrees or more is easily obtained.
  • a tubular member in addition to changing an electric current amount, during heating of the nonmagnetic area
  • the holding temperature gradient can also be controlled by flowing cooling water whose flow rate and the like are adjusted in the interior of 101.
  • the ferromagnetic ferrite structure is transformed into an austenite structure in the nonmagnetic region forming portion R1, and the carbide contained in the composite magnetic material is completely dissolved in the austenite structure.
  • This austenite structure is thermally stable, and as a result, a nonmagnetic austenite structure is stably formed in the nonmagnetic region forming portion R1.
  • carbide mainly M 23 C 6 , M is Fe in addition to the nonmagnetic austenite structure
  • An unstable structure in which the metal that forms the composite magnetic material is left.
  • the amount of heat conduction is large, so that the amount of unstable tissue formation is reduced.
  • the amount of heat conduction decreases. The amount of formation increases.
  • the tubular member 101 is rapidly cooled by stopping the current flowing through the high-frequency coil 102b and immersing the tubular member 101 in a water tank (not shown) in the vicinity of the high-frequency induction heating device 102 (water cooling shown in FIG. 6).
  • “rapid cooling” refers to a cooling rate of 150 ° C./second or more. Depending on the size of the water tank, the temperature of the cooling water may be room temperature.
  • air cooling is performed after the electric current to the high frequency coil 102b is stopped until the tubular member 101 is immersed in the water tank. If the air cooling time is long, the suction force curve tends to decrease as a whole. Therefore, the shorter the air cooling time is, the better. It is within 5 seconds, specifically 0.5 seconds or more and 5 seconds or less.
  • the rapid cooling method is not limited to water cooling. For example, a tubular member heated by oil cooling may be quenched.
  • the nonmagnetic region forming portion R1 mainly includes a nonmagnetic austenite structure.
  • a nonmagnetic region 13 (see FIG. 4A) is formed.
  • the unstable structure around the nonmagnetic region forming portion R1 (the position indicated by “I” in FIG. 4A) is transformed into a martensite structure by rapid cooling. Thereby, the semimagnetic region 14 is formed.
  • the amount of transformation of the martensite structure that transforms decreases, while the unstable structure increases as the distance from the nonmagnetic region 13 increases.
  • the amount of martensite structure that transforms increases.
  • FIG. 4D on the nonmagnetic region 13 side of the semimagnetic region 14, the abundance ratio of the austenite structure decreases from the nonmagnetic region 13 to the magnetic region 12, and the martensitic structure The abundance ratio increases.
  • the unstable structure formed only in part is transformed into a martensite structure, Coexists with ferrite structure.
  • the unstable structure decreases as it approaches the magnetic region 12 at a position further away from the nonmagnetic region 13, and therefore, the magnetic region 12 side of the semimagnetic region 14 is magnetic from the nonmagnetic region 13.
  • the abundance ratio of the martensite structure decreases toward the region 12 and the abundance ratio of the ferrite structure increases.
  • the abundance ratio of the martensite structure is equal to or less than the abundance ratio of the ferrite structure, and at a position sufficiently separated from the nonmagnetic region forming portion R1 (position indicated by “IV” in FIG. 4). Since no transformation to the martensite structure occurs, only the ferrite structure is obtained.
  • the outer surface 11d side of the tubular member 101 is more affected by heat than the inner surface 11c side of the tubular member 101. Therefore, in the semimagnetic region 14, from the inner surface 11c toward the outer surface 11d, the center O in the Z-axis direction of the nonmagnetic region 13 and the end (boundary 14a) of the semimagnetic region 14 on the nonmagnetic region 13 side. And the distance L2 between the semimagnetic region 14 and the end (boundary 14b) of the semimagnetic region 14 on the magnetic region 12 side are considered to be large.
  • the boundary 14a is non- Since the martensite structure begins to exist in the structure where the structure continuously changes from the magnetic region 13 to the semimagnetic region 14 and further to the magnetic region 12, the boundary 14a is accurately identified and the angle ⁇ x is measured. Is difficult.
  • the angle ⁇ x has no correlation with the taper angle ⁇ , and the angle ⁇ x is It seems to be about 70 degrees or more and 85 degrees or less.
  • the solenoid characteristic (attraction force curve) of the proportional solenoid 100 of the present invention is not determined by the taper angle ⁇ between the magnetic part and the non-magnetic part as in the conventional proportional solenoid.
  • the tissue change of the tubular member 101 brought about by setting various conditions in the manufacturing method 100 greatly contributes, and is completely assumed from the conventional solenoid manufacturing method (for example, Patent Document 3). Is not.
  • the distance L1 corresponding to the distance in the Z-axis direction of the nonmagnetic region 13 is considered to have a correlation with the corresponding taper angle ⁇ . Specifically, the distance L1 tends to decrease as the corresponding taper angle ⁇ increases.
  • the semimagnetic region 14 having a gradual magnetic gradient in which the magnetization increases from the nonmagnetic region 13 toward the magnetic region 12, and the hardness gradient in which the hardness increases and decreases, and the magnetic region
  • region 13 is produced.
  • the magnetic characteristics of the fixed iron core 1 can be changed. It is possible to change (control) the distribution to the distribution of the desired magnetic properties. Thereby, it is possible to obtain an attractive force curve having desired solenoid characteristics such as the length of the flat region. Further, by changing the position of the heating position H, the solenoid characteristic of the fixed iron core 1 can be changed (controlled) to a desired solenoid characteristic. Among these, in the above range, the attractive force curve of the proportional solenoid 100 can be changed most greatly by changing the holding temperature gradient.
  • the attractive force curve of the proportional solenoid 100 can be greatly changed by changing the heating rate. Further, the smallest change amount is when the holding time and the heating position H are changed. Therefore, when the suction force curve of the proportional solenoid 100 is to be changed greatly, the holding temperature gradient or the like is changed, and when the suction force curve of the proportional solenoid 100 is to be changed slightly, the holding time and the heating position H are set. By changing it, it is possible to obtain a desired suction force curve. That is, a desired attraction force curve can be obtained in the proportional solenoid 100 by changing at least one of heating rate, heating temperature, holding time, heating position H, and holding temperature gradient in combination. Is possible.
  • the proportional solenoid 100 provided with the tube-shaped stationary iron core 1 used for the solenoid of Example 1 was produced.
  • the tubular member 101 was produced using a composite magnetic material made of a rod-like Fe—Cr—Ni—Mn—Al—C alloy (YEP-FA1, manufactured by Hitachi Metals).
  • the high frequency induction heating apparatus 102 provided with the high frequency coil 102b which has the thickness h (refer FIG. 5) of 10 mm in the Z-axis direction performed the high frequency heat processing to the tubular member 101 which is the fixed iron core 1 before heat processing.
  • the suction surface 11b of the tubular member 101 and the end of the high-frequency coil 102b on the suction surface 11b side (Z1 direction side) are separated by a distance t (see FIG. 5) of 2.5 mm in the Z-axis direction.
  • a high frequency coil 102b is disposed. That is, the center O1 of the high-frequency coil 102b in the Z-axis direction (the center O1) of the heating position H separated from the adsorption surface 11b of the tubular member 101 by a distance d of 7.5 mm in the Z-axis direction (see FIG. 5).
  • the high-frequency coil 102b is arranged so that the position shown in FIG.
  • an alternating current was passed through the high-frequency coil 102b at 40 kHz while rotating the tubular member 101 at 200 rpm by the rotary stage 102c.
  • the amount of alternating current flowing through the high-frequency coil 102b was adjusted to 80 A so that the heating rate, which is the heating rate in the nonmagnetic region forming portion R1, was 190 ° C./second.
  • the heating state of the nonmagnetic region forming portion R1 was maintained for a holding time of 10 seconds.
  • the amount of alternating current flowing through the high-frequency coil 102b was adjusted to 55 A so that the holding temperature rate indicating the holding temperature gradient of the nonmagnetic region forming portion R1 was 0 ° C./second.
  • the tubular member 101 was rapidly cooled by immersing the tubular member 101 in the water tank which is not shown in the vicinity of the high frequency induction heating apparatus 102. Thereby, the tube-shaped stationary iron core 1 of Example 1 was produced.
  • the time (air cooling time) from the current stop to being immersed in the water tank was about 2 seconds.
  • a proportional solenoid 300 including a tubular fixed iron core 301 used for the solenoid of Comparative Example 1 shown in FIG. 7 was produced. Specifically, a tubular shape including a magnetic part 312 made of the same rod-shaped composite magnetic material as that used in the fixed iron core 1 of Example 1 and a nonmagnetic part 313 made of SUS304 (compliant with JIS standards).
  • the fixed iron core 301 was produced.
  • the magnetic part 312 and the nonmagnetic part 313 are arranged so that the taper angle ⁇ formed by the taper joint surface 301a and the inner surface 311c of the fixed iron core 301 is 45 degrees. Brazed and joined.
  • suction force measurement Then, using the proportional solenoid 100 (300) of Example 1 and Comparative Example 1, suction force measurement was performed. Specifically, the fixed iron core 1 (301) and the coil 100b are fixed in a state where the coil 100b is arranged so as to radially surround a predetermined region of the tubular fixed iron core 1 (301) used for the solenoid. As the coil 100b, a coil having a rectangular section with a wire diameter of 0.48 mm, a winding number of 560 turns, and a resistance value of 5.38 ⁇ was used. And the attraction
  • the suction force was measured using a load cell (LCE-A-500N, manufactured by Kyowa Denki). Further, a distance D (stroke length) from the suction surface 11b was measured using a displacement sensor head (ZX-LD40, manufactured by OMRON) and an amplifier (ZX-LD11N 2M, manufactured by OMRON). The measurement results are shown in Table 1 and FIG.
  • suction to the proportional solenoid 300 of Comparative Example 1 of the proportional solenoid 100 of Example 1 is performed in a range where the distance D is 2.5 mm or less.
  • the relative ratio of force (
  • suction force of Example 1 ⁇ suction force of Comparative Example 1 // suction force of Comparative Example 1 ⁇ 100) (%) was 10% or less.
  • the suction force of the proportional solenoid 100 of Example 1 is within ⁇ 10% of the suction force at a position where the distance D is 1.0 mm in the range where the distance D is 0.5 mm to 2.5 mm, and is 2.0 mm or more.
  • a flat area, and the relative ratio between the suction force at 0.0 mm and the suction force at the boundary between the flat area and the flat area in Example 1 (for example, 0.5 mm and 2.5 mm in Table 1) is Since it was 10% or less, it was confirmed that the proportional solenoid 100 of Example 1 exhibited substantially the same performance as the proportional solenoid 300 of Comparative Example 1.
  • the Vickers hardness was measured at a measurement position by cutting a test piece of 17.0 mm (Z-axis direction) ⁇ 5.0 mm (A direction) ⁇ 2.0 mm (thickness direction) to obtain a micro Vickers hardness meter (HMV-1AD , Manufactured by Shimadzu Corporation). Specifically, as shown in FIG. 9B, the test piece was cut out in a state where the surface on the suction surface side of the test piece was positioned at the position of the suction surface 11b. And the outer peripheral surface (surface in which hatching is formed in FIG.9 (b)) side of the cut-out board was mirror-finished, and the Vickers hardness was measured at intervals of 0.5 mm in the Z-axis direction.
  • the measurement conditions were a test force of 4.903 N and a load time of 15 seconds. The measurement results are shown in FIG.
  • the magnetization was sufficiently reduced to 0.01 T or less, and the Vickers hardness was reduced to about HV220.
  • the nonmagnetic region 13 was mainly composed of an austenite structure which is nonmagnetic and has a relatively small Vickers hardness.
  • 0.0 mm of the distance D in Table 2 corresponds to 0 mm of the distance D from the suction surface indicated by the horizontal axis in FIG. 9, and from the distance D in Table 2 and the suction surface indicated by the horizontal axis in FIG. Corresponds to the distance D.
  • the magnetization increases and the Vickers hardness increases to about HV450.
  • the austenite structure abundance ratio decreases from the nonmagnetic region 13 toward the magnetic region 12, and the martensite is ferromagnetic and has a large Vickers hardness. It was confirmed that the tissue abundance ratio increased.
  • the magnetization increased slightly and the Vickers hardness decreased to about HV220.
  • the abundance ratio of the martensite structure decreases from the nonmagnetic region 13 toward the magnetic region 12, and the material is ferromagnetic and has a relatively small Vickers hardness. It was confirmed that the abundance ratio of the ferrite structure was increased.
  • the semimagnetic region 14 has a magnetic gradient that increases the magnetization from the nonmagnetic region 13 toward the magnetic region 12, and the hardness (Vickers hardness) increases and decreases. It was confirmed that a high hardness gradient was obtained, that is, that the semimagnetic region 14 had a maximum value of Vickers hardness and a maximum value of the abundance ratio of the martensite structure.
  • the test piece of 17.0 mm (Z-axis direction) ⁇ 5.0 mm (A direction) ⁇ 2.0 mm (thickness direction) is measured as in the case of the above Vickers hardness measurement (see FIG. 9B). ), And X-ray diffraction measurement (XRD) at the position of the attracting surface 11b (magnetic region 12), 2 mm from the attracting surface 11b (semimagnetic region 14), and 8 mm from the attracting surface 11b (nonmagnetic region 13). Measurement).
  • an X-ray diffractometer SmartLab, manufactured by Rigaku
  • the X-ray source was Cu wire
  • the detector was a semiconductor detector
  • the scan mode was 2 ⁇ / ⁇ .
  • the measurement results are shown in FIG. In FIG. 11, the peak position based on the ferrite structure ( ⁇ -Fe) is shown by a dotted line, and the peak position based on the austenite structure ( ⁇ -Fe) is shown by a solid line.
  • An ⁇ -Fe peak was observed in the magnetic region 12, and a ⁇ -Fe peak was observed in the nonmagnetic region 13. From this, it has been confirmed that the magnetic region 12 and the nonmagnetic region 13 have a structure mainly composed of a ferrite structure and an austenite structure, respectively.
  • both ⁇ -Fe and ⁇ -Fe peaks were confirmed.
  • the (211) plane of the crystal (2 ⁇ / ⁇ is near 82 degrees) is locally located at the positions of the magnetic region 12 and the semimagnetic region 14. Measured. The results are shown in FIG. The peak position of the semimagnetic region 14 did not change from the peak position of the magnetic region 12 (ferrite structure). That is, the semimagnetic region 14 was not peak shifted. Further, the half width at the peak of the semimagnetic region 14 was larger than the half width at the peak of the magnetic region 12. These are characteristics found in the X-ray diffraction of the martensite structure. From this result, it was confirmed that a martensitic structure was present in the semimagnetic region 14.
  • the semimagnetic region 14 has a ferrite structure, a martensite structure, and an austenite structure, and the semimagnetic region 14 has a martensitic structure. It was confirmed that there was a local maximum.
  • the proportional solenoid 100 provided with the tube-shaped stationary iron core 1 used for the solenoid of Example 2 was produced.
  • the distance t between the suction surface 11b of the tubular member 101, which is a fixed iron core before processing, and the end portion on the suction surface 11b side (Z1 direction side) of the high-frequency coil 102b is 1.5 mm in the Z-axis direction.
  • the high frequency coil 102b is disposed so as to be separated.
  • the center O1 of the high-frequency coil 102b in the Z-axis direction is positioned at the center in the Z-axis direction of the heating position H that is separated from the suction surface 11b of the tubular member 101 by a distance d of 6.5 mm in the Z-axis direction.
  • a high frequency coil 102b is disposed.
  • the heating state of the nonmagnetic region forming portion R1 was held for a holding time of 15 seconds. Except for these, the proportional solenoid 100 including the tube-shaped stationary iron core 1 of Example 2 was produced in the same manner as in Example 1 above. That is, in the method for manufacturing the fixed core 1 of Example 2, the heating position H and the holding time are different from those of the method for manufacturing the fixed core 1 of Example 1.
  • a proportional solenoid 300 including a tubular fixed iron core 301 used for the solenoid of Comparative Example 2 shown in FIG. 7 was produced.
  • the fixed iron core 301 of Comparative Example 2 is formed in the same manner as in Comparative Example 1 except that the magnetic part 312 and the nonmagnetic part 313 are brazed and joined so that the taper angle ⁇ is 30 degrees.
  • Proportional solenoid 300 provided was prepared.
  • the difference in the manufacturing method of the proportional solenoid of Example 1 and the proportional solenoid of Example 2 is the heating position H and the holding time.
  • a proportional solenoid 100 including the fixed core 1 of Example 3a was manufactured in the same manner as the tube-shaped fixed core 1 used for the solenoid of Example 2 except that the holding time was set to 9 seconds. Further, the proportionality provided with the fixed core 1 of Example 3b is the same as that of the tubular fixed core 1 used for the solenoid of Example 2 except that the holding temperature rate indicating the holding temperature gradient is set to ⁇ 10 ° C./second. A solenoid 100 was produced.
  • a tubular fixed iron core 301 used for the solenoid of Comparative Example 3a is the same as Comparative Example 2 except that the magnetic part 312 and the nonmagnetic part 313 are brazed and joined so that the taper angle ⁇ is 45 degrees.
  • the proportional solenoid 300 (refer FIG. 7) provided with this was produced.
  • a proportional solenoid provided with the fixed iron core 301 of the comparative example 3b is the same as the comparative example 2 except that the magnetic part 312 and the nonmagnetic part 313 are brazed and joined so that the taper angle ⁇ is 60 degrees. 300 was produced.
  • the parameters (heating position H, heating speed, heating temperature, holding time, and holding temperature gradient) are different from those of the tubular fixed iron core 1 used in the solenoid of the second embodiment.
  • Proportional solenoids 100 including the fixed iron cores 1 of 4a, 4b, Examples 5a to 5d, Examples 6a to 6d and Examples 7a to 7c were produced, and the attractive force curves thereof were measured.
  • Examples 4a and 4b are proportional solenoids 100 having fixed iron cores 1 with different heating rates
  • Examples 5a to 5d are proportional solenoids 100 having fixed iron cores 1 having different holding times.
  • Proportional solenoid 100 having fixed iron core 1 with different holding temperature gradients as 6a to 6d, and proportional solenoid 100 having fixed iron core 1 with different heating positions H as examples 7a to 7c, respectively. did. Specifically, as shown in Table 5, based on the manufacturing method of the above embodiment, except for the conditions different from Example 2 (underlined part in the table), the tubular shape used for the solenoid of Example 2 Each proportional solenoid 100 was produced in the same manner as the fixed iron core 1.
  • the proportional solenoids 100 having different suction force curves are produced by varying the respective parameters (heating rate, holding time, holding temperature gradient, heating position H) to various values. It was confirmed that it was possible.
  • the flat region becomes longer and the corresponding taper is compared with the side where the holding temperature gradient is large (for example, Example 6a). It was confirmed that the angle ⁇ tends to increase.
  • the flat area is more on the side where the heating position H is far from the suction surface (for example, Example 7c) than on the side where the heating position H is closer to the suction surface (for example, Example 7a). It has been confirmed that the taper angle ⁇ tends to be longer and longer.
  • Example 1 heatating rate 190 ° C./second, heating temperature 1250 ° C.
  • Example 5a heating rate 120 ° C./second, heating temperature 1200 ° C.
  • the proportional solenoid 100 having a different suction force curve was produced by changing two or more of (heating temperature, heating rate, holding time, holding temperature gradient, heating position H).
  • the fixed iron core 1 was prepared, and the magnetization, pressure resistance, and Vickers hardness were measured.
  • the amount of carbide was compared based on the structure observation and observation results by FE-SEM. Further, observation of ⁇ x and cross-sectional observation of the nonmagnetic region and the semimagnetic region by the corrosion treatment were performed.
  • Example 8a a tube-shaped fixed iron core 1 used for a solenoid having a corresponding taper angle ⁇ of 30 degrees was produced in the same manner as in Example 2 above. Further, as Examples 8b and 8c, the fixed cores 1 having the corresponding taper angles ⁇ of 45 degrees and 60 degrees were produced in the same manner as in Examples 3a and 3b.
  • the fixed iron core 1 having different magnetization can be obtained by changing at least one of the heat treatment conditions of the holding time and the holding temperature gradient. Due to this difference in magnetization, in the proportional solenoid 100 using the fixed iron core 1 of Examples 8a to 8c, different attractive force curves can be obtained.
  • a fixed iron core of Comparative Example 4 was produced as a comparative example of Examples 8a to 8c.
  • the fixed iron core of Comparative Example 4 has a rod-like shape so that the taper angle ⁇ formed by the taper joint surface and the inner surface of the fixed iron core is 45 degrees, similarly to the fixed iron core 301 of Comparative Example 1 (see FIG. 7).
  • the taper surface of the magnetic part and the taper of the nonmagnetic part are brazed and joined to the taper surface of the magnetic part made of a ferromagnetic material. The surfaces were joined together.
  • a fixed core was prepared in the same manner as the method for manufacturing the fixed core of Examples 8a to 8c, except that high-frequency heat treatment was not performed.
  • the fixed iron core 1 of Examples 8a, 8b, and 8c is 17.0 mm (Z-axis direction) ⁇ 5.0 mm (A direction) ⁇ 2.0 mm (thickness direction).
  • a test piece (see FIG. 9B) was cut out.
  • the outer surface (surface in which hatching is formed in FIG.9 (b)) side of the cut-out test piece was mirror-finished for Vickers hardness measurement.
  • the Vickers hardness (HV) was reduced to about 250 or less as well as sufficiently below. Thereby, it was confirmed that the nonmagnetic region 13 was mainly composed of an austenite structure which is nonmagnetic and has a relatively small Vickers hardness.
  • the magnetization increases and the Vickers hardness (HV) increases to about 450 to 500 or more.
  • HV Vickers hardness
  • the magnetization increased slightly, and the Vickers hardness (HV) decreased to about 220.
  • HV Vickers hardness
  • the semimagnetic region 14 has a magnetic gradient that increases the magnetization from the nonmagnetic region 13 toward the magnetic region 12, and the hardness (Vickers hardness) increases and decreases. It can be confirmed that such a hardness gradient is obtained, that is, having a maximum value of Vickers hardness in the semimagnetic region 14 and having a maximum value of the abundance ratio of the martensite structure. It was.
  • FIG. 22 shows that the nonmagnetic region 13 has a feature of an austenite structure having a relatively large crystal grain size and a clear grain boundary. No carbide precipitation was observed in the nonmagnetic region 13, but carbide precipitation was confirmed in the semimagnetic region 14 and the magnetic region 12. The composition of the carbide was confirmed by EDX-SEM reflected electron detection mode and also by EDX. In the magnetic region 12, more carbide was confirmed than in the semimagnetic region 14.
  • Example 8a having a taper angle ⁇ equivalent to 30 degrees and a long flat region, the taper angle ⁇ is equivalent to 60 degrees and the distance D from the suction surface 11b is smaller than that in Example 8c having a short flat region.
  • D 3 mm
  • the martensite structure dissolves a part of carbon, and only the carbon not dissolved in the martensite structure is detected as carbides, so that the number of detected carbides is smaller than that in the magnetic region 12. .
  • the nonmagnetic region 13 since carbon is dissolved in the austenite structure, no carbide is detected.
  • an angle ⁇ x (see FIG. 4) formed by the boundary 14a between the nonmagnetic region 13 and the semimagnetic region 14 and the inner surface 11c of the fixed iron core 1 was observed.
  • the fixed iron core 1 of Examples 8a to 8c was cut in the axial direction for observation.
  • a magnet is attached to the attracting surface 11b side, a small amount of toner as magnetic powder is placed near the center of the nonmagnetic region 13, and vibration is applied using a cotton swab.
  • the boundary where the toner is adsorbed that is, the boundary 14a between the nonmagnetic region 13 and the semimagnetic region 14 was visualized and the angle ⁇ x was observed.
  • the angle ⁇ x was measured at the boundary 14a between the two locations (measurement location 1 and measurement location 2). The results are shown in Table 8 and FIG.
  • the present invention is not limited to this.
  • the semimagnetic region and the attracting surface may be formed so as to overlap in the Z-axis direction.
  • tubular member 101 heated by water cooling is quenched
  • present invention is not limited to this.
  • a tubular member heated by oil cooling may be quenched.
  • the nonmagnetic region forming portion R1 is rapidly heated to a heating temperature of 1000 ° C. or more and 1300 ° C. or less, and the holding temperature gradient of the nonmagnetic region forming portion R1 is ⁇ 20 ° C./second or more and 5 ° C./second.
  • the heating state of the nonmagnetic region forming portion R1 is held during the holding time so as to be included in the following holding temperature gradient range, the present invention is not limited to this.
  • the heating position including the nonmagnetic region forming portion is rapidly heated to a heating temperature of 1000 ° C. to 1300 ° C., and the holding temperature gradient of the heating position is ⁇ 20 ° C./sec to 5 ° C./sec. You may make it hold
  • the nonmagnetic region forming portion R1 is rapidly heated while the tubular member 101 is rotated at a predetermined rotation speed
  • the present invention is not limited to this.
  • the non-magnetic region forming portion may be rapidly heated without rotating the tubular member.
  • the suction force curve can be changed by changing the dimension of the movable iron core 21 or changing the dimension by cutting the tubular member. That is, in addition to the manufacturing method described above, the distribution of magnetic characteristics of the tubular member and the solenoid characteristics of the proportional solenoid can be varied in various ways by changing the dimensions.
  • the high frequency induction heating device of the present embodiment may be configured to have not only a function of controlling the amount of alternating current flowing through the high frequency coil but also a function of controlling (variably) the frequency of the alternating current. .
  • the frequency of the alternating current By changing the frequency of the alternating current, the formation state of the semi-magnetic region and the non-magnetic region by high-frequency heating can be changed, and the solenoid characteristics of the proportional solenoid can be controlled.

Abstract

本発明の比例ソレノイド(100)は、主にフェライト組織からなる第1磁性領域(12a)と、吸着面(11b)から離間した位置に存在し、フェライト組織、マルテンサイト組織、オーステナイト組織を含む第1半磁性領域(14a)と、半磁性領域よりも吸着面から離間した位置に存在し、主にオーステナイト組織からなる非磁性領域(13)とが連続的かつ一体的に形成されている管状部材(101)を有する。

Description

比例ソレノイド、その製造方法、および、比例ソレノイドの特性制御方法
 この発明は、比例ソレノイド、その製造方法、および、比例ソレノイドの特性制御方法に関する。
 従来、電力を可動磁性体の直線運動に変換するソレノイドの一種として、可動磁性体の軸方向における位置をコイルに流れる電流の大きさに比例して制御する比例ソレノイドが知られている。そのような比例ソレノイドは、たとえば、特開2001-6925号公報および特開平4-263407号公報に開示されている。
 特開2001-6925号公報および特開平4-263407号公報には、コイル内に装着されるパイプ(筒状ヨーク)と、パイプの内周面を摺動する可動鉄心とを備えるソレノイドが開示されている。このソレノイドのパイプでは、強磁性材料からなる磁性部の端部に設けたテーパ面と、非磁性材料からなる非磁性部の端部に設けたテーパ面とが互いに面接触した状態で接合されている。これにより、テーパ面が形成された領域において、非磁性部から磁性部に向かって磁化が大きくなるような磁気勾配が生じることにより、ソレノイドにおいて、可動鉄心の位置に拘わらず吸引力が略一定の水平特性部(平坦領域)を含む吸引力カーブが生じる。この結果、水平特性部において電流の大きさに比例した吸引力が発生するので、ソレノイドの外部に設けられたばねの弾性力と釣り合うように吸引力(電流量)を制御することによって、可動磁性体を所定の位置に位置させることが可能である。
 なお、特開2001-6925号公報の比例ソレノイドでは、強磁性材料からなる磁性部のテーパ面に非磁性材料を肉盛溶接した後、磁性部が露出するまで切削加工することによって、磁性部のテーパ面と非磁性部のテーパ面とを互いに機械的に接合している。また、特開平4-263407号公報のソレノイドでは、強磁性体からなる磁性部に非磁性材料をろう付け接合した後、磁性部が露出するまで切削加工することによって、磁性部のテーパ面と非磁性部のテーパ面とを互いに機械的に接合している。なお、比例ソレノイドにおいて、上記テーパ面のテーパ角度θ(図7参照)は吸引力カーブを決める最も重要な要素の一つであるが、特開2001-6925号公報および特開平4-263407号公報に記載のソレノイドの製造方法においては、機械加工によってこのテーパ面を作るため、テーパ角度θの制御は容易である。
 一方、可動磁性体の軸方向における位置をコイルに流れる電流の大きさに比例して制御する比例ソレノイドではないものの、強磁性部と非磁性部とを有する複合磁性部材を用いて作製された筒状ヨークを備えるソレノイドが知られている。そのようなソレノイドは、特開平7-11397号公報に開示されている。
 特開平7-11397号公報には、強磁性部と非磁性部とを有する複合磁性部材からなるスリーブ(筒状ヨーク)と、スリーブ内を摺動するプランジャ(可動鉄心)とを備える電磁弁(ソレノイド)が開示されている。この電磁弁のスリーブは、冷間加工により非磁性(オーステナイト)から強磁性(マルテンサイト)に変換された円筒状の強磁性材料を、部分的に高周波加熱することによって非磁性に変換することによって作製されている。
特開2001-6925号公報 特開平4-263407号公報 特開平7-11397号公報
 しかしながら、特開2001-6925号公報に開示された比例ソレノイドでは、肉盛溶接により磁性部のテーパ面と非磁性部のテーパ面とを互いに接合しているため、接合部における機械的強度が小さくなり、高圧下で使用すると接合部より破断するという問題点があった。同様に、特開平4-263407号公報に開示されたソレノイドでも、磁性材料と非磁性材料とをろう材で接合しているため、接合部における機械的強度が小さくなり、高圧下で使用すると接合部より破断するという問題点があった。
 また、特開平7-11397号公報に開示された電磁弁は、強磁性部と非磁性部とのみからなるソレノイドであるので、特開2001-6925号公報や特開平4-263407号公報に開示されたソレノイドと異なり、比例ソレノイドとして用いることを想定していないと考えられる。つまり、特開平7-11397号公報に開示された電磁弁では、強磁性部と非磁性部とのみからなることに起因して、所望の平坦領域を有する吸引力カーブを得ることはできないと考えられる。また、特開2001-6925号公報および特開平4-263407号公報のような非磁性部と強磁性部とがテーパ面を有して機械的に接合された比例ソレノイドの構造を、特開平7-11397号公報の構造において実現する場合には、熱処理により強磁性部と非磁性部との間にテーパ面を形成する必要があると考えられるものの、機械加工ではなく熱処理によりテーパ面を厳密に形成するのは困難であると考えられる。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、高圧下において使用しても破断するのを抑制することができるとともに、所望の平坦領域を有する吸引力カーブを得ることが可能な比例ソレノイド、その比例ソレノイドの製造方法、および、所望の平坦領域を有する吸引力カーブを得るための比例ソレノイドの特性制御方法を提供することである。
 本発明者は鋭意検討した結果、非磁性領域と磁性領域との間に半磁性領域を形成することによって、厳密なテーパ面を形成しなくても、非磁性部と強磁性部とがテーパ面を有して機械的に接合された比例ソレノイドと同等のソレノイド特性(吸引力カーブ)が得られることを見出した。そして、本発明を完成させるに至った。つまり、この発明の第1の局面による比例ソレノイドは、複合磁性体材料により構成された管状部材からなる固定鉄心と、管状部材に挿入され、管状部材の軸方向に移動可能な可動磁性体と、を有する比例ソレノイドであって、管状部材は、軸方向と直交する面に対して略平行に設けられ可動磁性体が対向する吸着面を有し、吸着面を含み、主にフェライト組織からなる第1磁性領域と、吸着面から離間した位置に存在し、フェライト組織、マルテンサイト組織、オーステナイト組織を含む第1半磁性領域と、第1半磁性領域よりも吸着面から離間した位置に存在し、主にオーステナイト組織からなる非磁性領域とが、管状部材の軸方向に沿って連続的かつ一体的に形成されている。
 この発明の第1の局面による比例ソレノイドでは、上記のように、主に強磁性のフェライト組織からなる第1磁性領域と、フェライト組織、フェライト組織よりやや磁化の低い強磁性のマルテンサイト組織、非磁性のオーステナイト組織を含む第1半磁性領域と、主にオーステナイト組織からなる非磁性領域とが連続的かつ一体的に形成されている。これにより、非磁性領域から第1磁性領域に向かって磁化が大きくなるような(第1磁性領域から非磁性領域に向かって磁化が減少するような)組織の管状部材を作製することができる。この結果、従来の機械加工による比例ソレノイドとは全く異なる構造の固定鉄心で、かつ、機械加工にて形成した磁性部と非磁性部のテーパ面を突き合わせ接合したパイプを有する比例ソレノイドと略同様のソレノイド特性(吸引力カーブ)を有する比例ソレノイドを得ることができる。この構造は、マルテンサイト組織の円筒状の強磁性材料を熱処理してオーステナイト組織に変換した上記特許文献3では実現できない構造であると考えられる。また、比例ソレノイドの管状部材は第1磁性領域と第1半磁性領域と非磁性領域が管状部材の軸方向に沿って連続的かつ一体的に形成されているため、管状部材に機械的強度の小さい接合部が設けられない。これにより、比例ソレノイドを高圧下において使用しても、固定鉄心が破断(物理的に分離)するのを抑制することができる。
 また、この発明の第2の局面による比例ソレノイドの製造方法は、主にフェライト組織からなる複合磁性体用材料から構成された管状部材を熱処理することにより、主にフェライト組織からなる磁性領域と主にオーステナイト組織からなる非磁性領域を形成する工程を含む、比例ソレノイドの製造方法であって、主にフェライト組織からなり、質量%で、0.3%以上1.2%以下のC(炭素)を含む複合磁性体用材料から構成された管状部材を準備する工程と、管状部材の非磁性領域形成部分を含む加熱位置を周状に取り囲むように高周波コイルを配置する工程と、高周波コイルに電流を流すことによって、非磁性領域形成部分を1000℃以上1300℃以下の加熱温度まで急速加熱する工程と、5秒以上20秒以下の保持時間の間、非磁性領域形成部分の加熱状態を保持する工程と、加熱した管状部材を急冷することによって、磁性領域と、非磁性領域形成部分に形成された非磁性領域と、磁性領域と非磁性領域との間に形成され、非磁性領域から磁性領域に向かって磁化が大きくなるような磁気勾配を有する半磁性領域とを、管状部材の軸方向に沿って連続的かつ一体的に管状部材に形成する工程と、磁性領域と半磁性領域と非磁性領域とを含む管状部材に、軸方向に移動可能な可動磁性体を挿入する工程と、を含む。
 この発明の第2の局面による比例ソレノイドの製造方法では、上記のように、磁性領域と半磁性領域と非磁性領域とを、互いに接合部を有さずに、同一の管状部材に管状部材の軸方向に沿って連続的かつ一体的に形成する。これにより、管状部材に機械的強度の小さい接合部が設けられないので、高圧下において使用しても破断するのを抑制することが可能な比例ソレノイドを提供することができる。さらに、肉盛溶接などに起因する化合物が磁性領域と非磁性領域との境界などに形成されないので、化合物に起因して磁気特性が変化するのを抑制することができる。
 また、質量%で、0.3%以上1.2%以下のC(炭素)を含む複合磁性体用材料から構成された管状部材の非磁性領域形成部分を1000℃以上1300℃以下の加熱温度まで加熱する。これにより、非磁性領域形成部分において、主に強磁性のフェライト組織からなる複合磁性体用材料に含まれる炭化物を組織中に固溶させることによって、非磁性のオーステナイト組織を安定的に形成することができる。この結果、非磁性領域形成部分にオーステナイト組織からなる非磁性領域を確実に形成することができる。
 また、高周波コイルを用いて、非磁性領域形成部分を1000℃以上1300℃以下の加熱温度まで急速加熱する。これにより、高周波コイルにより非磁性領域形成部分を集中して急速加熱することができるので、非磁性領域形成部分およびその周辺を除く部分(磁性領域が形成される部分)に熱が伝導されるのを抑制することができる。この結果、磁性領域が形成される部分のフェライト組織が変態するのを確実に抑制することができる。
 また、非磁性領域形成部分を1000℃以上1300℃以下の加熱温度まで急速加熱するとともに、急速加熱後、5秒以上20秒以下の保持時間の間、非磁性領域形成部分の加熱状態を保持する。急速加熱および急速加熱後の加熱状態の保持により、非磁性領域形成部分を加熱した際の熱の一部が伝導されることによって、非磁性領域形成部分の周辺(半磁性領域が形成される部分)に非磁性のオーステナイト組織以外に炭化物が残存する不安定組織を形成することができる。この結果、加熱した管状部材を急冷することによって、不安定組織をマルテンサイト組織に変態させることができる。ここで、半磁性領域が形成される部分のうち、非磁性領域形成部分近傍では、熱が比較的多く伝導されるので、不安定組織の形成量を小さくすることができる。また、半磁性領域が形成される部分において、非磁性領域形成部分から離れるに従って熱の伝導量が小さくなるので、不安定組織の形成量を大きくすることができる。この結果、加熱した管状部材を急冷することによって、半磁性領域が形成される部分において、非磁性領域から磁性領域に向かって、非磁性で磁化が小さいオーステナイト組織の存在比を小さくし、強磁性でフェライト組織より若干磁化が小さいマルテンサイト組織の存在比を大きくすることができる。したがって、非磁性領域から磁性領域に向かって磁化が大きくなるような緩やかな磁気勾配を、半磁性領域に容易に形成することができる。
 また、5秒以上の保持時間の間、非磁性領域形成部分の加熱状態を保持することによって、管状部材の厚み方向(径方向)に熱を確実に伝導させることができるので、厚み方向の全体に亘って非磁性領域を確実に形成することができる。また、20秒以下の保持時間の間、非磁性領域形成部分の加熱状態を保持することによって、保持時間が大きいことに起因して非磁性領域形成部分およびその周辺を除く部分(磁性領域が形成される部分)にまで熱が伝導されるのを抑制することができる。
 また、この発明の第3の局面による比例ソレノイドの特性制御方法は、主にフェライト組織からなる複合磁性体用材料から構成された管状部材を熱処理することにより、主にフェライト組織からなる磁性領域と、主にオーステナイト組織からなる非磁性領域とを形成する工程を含む、比例ソレノイドの特性制御方法であって、主にフェライト組織からなり、質量%で、0.3%以上1.2%以下のC(炭素)を含む複合磁性体用材料から構成された管状部材の非磁性領域形成部分を含む加熱位置を周状に取り囲むように高周波コイルを配置する工程と、高周波コイルに電流を流すことによって、非磁性領域形成部分を1000℃以上1300℃以下の加熱温度まで急速加熱する工程と、5秒以上20秒以下の保持時間の間、非磁性領域形成部分の加熱状態を保持する工程と、加熱した管状部材を急冷する工程と、加熱した管状部材を急冷することによって、磁性領域と、非磁性領域形成部分に形成された非磁性領域と、磁性領域と非磁性領域との間に形成され、非磁性領域から磁性領域に向かって磁化が大きくなるような磁気勾配を有する半磁性領域とを、管状部材の軸方向に沿って連続的かつ一体的に管状部材に形成する工程と、磁性領域と半磁性領域と非磁性領域とを含む管状部材に、軸方向に移動可能な可動磁性体を挿入する工程と、を備え、加熱位置、加熱速度、加熱温度、保持時間および保持温度勾配の少なくともいずれか1つを調整することにより、管状部材の磁気特性の分布を制御することによって、比例ソレノイドの特性を制御する。
 この発明の第3の局面による比例ソレノイドの特性制御方法では、上記第2の局面の効果に加えて、上記のように、加熱位置、加熱速度、加熱温度、保持時間および保持温度勾配の少なくともいずれか1つを調整することにより、管状部材の磁気特性の分布を制御する。これにより、加熱位置、加熱速度、加熱温度、保持時間および保持温度勾配の少なくともいずれか1つを調整することにより、平坦領域の範囲を変化させることができるので、所望の平坦領域を有する吸引力カーブを得るように、比例ソレノイドのソレノイド特性(吸引力カーブ)を制御することができる。
 本発明によれば、上記のように、高圧下において使用しても破断するのを抑制することができるとともに、所望の平坦領域を有する吸引力カーブを得ることが可能な比例ソレノイド、その製造方法、および、所望の平坦領域を有する吸引力カーブを得るための比例ソレノイドの特性制御方法を提供することができる。
本発明の一実施形態による比例ソレノイドを示した断面図である。 本発明の一実施形態による比例ソレノイドの吸引力カーブを示した図である。 本発明の一実施形態による固定鉄心を示した断面図である。 本発明の一実施形態による固定鉄心の熱処理領域R周辺を示した拡大断面図、および、熱処理領域R周辺の磁化と組織の存在比とを示すグラフである。 本発明の一実施形態による固定鉄心の製造方法を説明するための模式図である。 本発明の一実施形態による固定鉄心の非磁性領域形成部分に加える熱履歴を示したグラフである。 比較例の比例ソレノイドを示した断面図である。 本発明の第1実施例における、実施例1および比較例1の吸引力カーブを示したグラフである。 図9(a)は、磁化測定に用いる試験片を説明するための図である。図9(b)は、ビッカース硬さ測定、X線回折(XRD)測定およびFE-SEM測定に用いる試験片を説明するための図である。 本発明の第1実施例における、実施例1の磁化およびビッカース硬さの測定結果を示したグラフである。 本発明の第1実施例における、実施例1のX線回折結果を示したグラフである。 図11の半磁性領域と磁性領域とのグラフのうち、2θ/θ=82度近傍を拡大して示した図である。 本発明の第2実施例における、実施例2および比較例2の吸引力カーブを示したグラフである。 本発明の第3実施例における、実施例2、実施例3aおよび実施例3bの吸引力カーブを示したグラフである。 本発明の第3実施例における、比較例2、比較例3aおよび比較例3bの吸引力カーブを示したグラフである。 本発明の第4実施例における、実施例4aおよび実施例4bの吸引力カーブを示したグラフである。 本発明の第4実施例における、実施例5a、実施例5b、実施例5cおよび実施例5dの吸引力カーブを示したグラフである。 本発明の第4実施例における、実施例6a、実施例6b、実施例6cおよび実施例6dの吸引力カーブを示したグラフである。 本発明の第4実施例における、実施例7a、実施例7bおよび実施例7cの吸引力カーブを示したグラフである。 本発明の第5実施例における、実施例8a、実施例8bおよび実施例8cの吸着面からの距離による磁化の変化を示したグラフである。 本発明の第5実施例における、実施例8a、実施例8bおよび実施例8cの吸着面からの距離によるビッカース硬さの変化を示したグラフである。 本発明の第5実施例における、実施例8a、実施例8bおよび実施例8cの各々の領域のFE-SEM画像を示した写真である。 本発明の第5実施例における、実施例8a、実施例8bおよび実施例8cの吸着面からの距離による炭化物量の変化を示したグラフである。 本発明の第5実施例における、実施例8a、実施例8bおよび実施例8cの固定鉄心断面の半磁性領域周辺にトナーを吸着させた状態を示した写真である。 本発明の第5実施例における、実施例8bの固定鉄心の断面を腐食処理し、半磁性領域および非磁性領域の形成を確認した写真である。
 以下、本発明の実施形態を図面に基づいて説明する。
 まず、図1~図3を参照して、本発明の一実施形態による比例ソレノイド100について説明する。
(比例ソレノイドの構成)
 本発明の一実施形態による比例ソレノイド100は、図1に示すように、油圧切替部100a(図1において二重鎖線で模式的に図示)を備える油圧制御弁の一部を構成している。比例ソレノイド100は、ソレノイドに用いるチューブ状の固定鉄心1と、チューブ状の固定鉄心1に挿入されるロッド組立品2と、後部金物3とを備えている。なお、固定鉄心1は、特許請求の範囲の「管状部材」の一例である。また、ロッド組立品2は、特許請求の範囲の「可動磁性体」の一例である。
 固定鉄心1は、軸方向(Z軸方向)に延びる管状の部材である。固定鉄心1は、Z軸方向に延び、内部にロッド組立品2がZ軸方向に移動可能に挿入される孔部11を含む。孔部11は、Z2方向側に形成され、軸方向に直交する径方向(A方向)に大きな収容部11aを有する。また、収容部11aのZ1方向側の端部には、ロッド組立品2の後述する当接部21aが当接する吸着面11bが形成されている。この吸着面11bは、Z軸方向と直交するA方向に広がる面に対して略平行に設けられており、ロッド組立品2の後述する対向面21bがZ軸方向に対向するように形成されている。また、収容部11aは、Z2方向側でZ軸方向に延びるように形成されている。また、孔部11の吸着面11bよりもZ1方向側では、ロッド組立品2のA軸方向の位置を正しく保持するためのベアリング4が挿入されている。なお、ソレノイドに用いるチューブ状の固定鉄心1の詳細な構成については、後述する。
 ロッド組立品2は、A方向に大きな可動鉄心21と、可動鉄心21を貫通するようにZ軸方向に延びる棒状のロッド22とを含んでいる。可動鉄心21は、収容部11aの径よりも若干小さな径を有している。また、可動鉄心21のZ1方向側の端面(対向面21b)には、吸着面11bに当接する当接部21aが配置されている。当接部21aにより、可動鉄心21の対向面21bと吸着面11bとが直接接触するのが抑制されている。また、可動鉄心21の対向面21bにおけるA方向の端部には、傾斜面21cが周状に形成されている。この傾斜面21cは、可動鉄心21のZ1方向側を若干テーパ形状にするために設けられている。また、吸着面11bと対向面21bとは、略全面に亘ってZ軸方向に対向している。これにより、吸着面11bと対向面21bとの間に働く吸引力を大きくすることが可能である。
 また、ロッド組立品2は、非磁性体および強磁性体から構成されている。たとえば、ロッド22は、非磁性体(SUS304など)から構成されているとともに、可動鉄心21は、強磁性体の炭素鋼(SUM23など)から構成されている。
 後部金物3は、収容部11aに接続され、ロッド組立品2のロッド22のZ2方向側の端部が挿入される穴部3aを有している。また、穴部3aには、ベアリング4が配置されることによって、ロッド組立品2を回転可能に軸支している。なお、比例ソレノイド100において、ベアリング4は設けなくてもよい。また、後部金物3のZ1方向側の端部は、ソレノイドに用いるチューブ状の固定鉄心1のZ2方向側の端部と溶接により接合されている。
 また、比例ソレノイド100では、固定鉄心1の少なくとも熱処理領域Rを含む領域を周状に取り囲むように、コイル100bが配置されている。また、コイル100bと所定の隙間を隔てた状態で、固定鉄心1は固定されている。さらに、油圧切替部100aには、ロッド組立品2に対してZ2方向に向かって付勢力を発生させる図示しないばねが配置されている。
 ここで、比例ソレノイド100を備える油圧制御弁では、以下のような操作を行う。まず、コイル100bに所定の大きさの電流を流すことによって、所定の大きさの磁界を発生させる。この磁場により、固定鉄心1と可動鉄心21とが共に磁化される。この結果、可動鉄心21に、固定鉄心1に吸引される吸引力がZ1方向に働く。この際、固定鉄心1は、後に詳述するように、従来の機械加工によって磁性領域を減少させた固定鉄心(図7参照)と同様に磁化が緩やかなカーブを描いて減少する半磁性領域14を有するように熱処理が施されているので、可動鉄心21に働くZ1方向の吸引力は、コイル100bに流れる電流の大きさに対応して、可動鉄心21の位置に拘わらず吸引力が略一定の平坦領域を含む吸引力カーブを示す。これにより、平坦領域において、コイル100bに流れる電流の大きさに比例した吸引力をロッド組立品2に発生させることが可能である。
 なお、本明細書において、「吸引力が略一定」とは、吸引力の値が±10%以内であることを意味することとする。また、「平坦領域」とは、平坦領域内の所定の位置(たとえば後述の実施例では吸着面11bから1.0mmの位置)の吸引力を基準吸引力とし、吸引力が基準吸引力の±10%以内の値となる領域またはその長さを意味することとする。
 したがって、図1に示すように、比例ソレノイド100の外部に設けられたばねの変位量に比例したZ2方向への弾性力と、発生するZ1方向への吸引力とが釣り合うように、コイル100bに流れる電流の大きさを変化させることによって、可動鉄心21の対向面21bを、吸着面11bから所定の距離DだけZ軸方向に離間した位置に位置させることが可能である。この結果、油圧切替部100aにおける可動鉄心21の突出量が変化することによって、油圧切替部100aを流通するオイルの圧力(油圧)の大きさを変化させることが可能である。
 なお、本実施形態の比例ソレノイド100は、たとえば、30MPa以上40MPa以下、さらには45MPa以下の高圧のオイルに対して、油圧の大きさを変化させるような用途に好適に用いることが可能であり、このような高圧を100万回繰り返し印加するサイクル試験を行っても破壊しない。また、本発明の比例ソレノイド100の固定鉄心1は、150MPa程度の非常に大きい圧力が加えられたとしても、破断せずに十分な耐久性を有している。
(固定鉄心の構造)
 次に、図3および図4(a)~図4(d)を参照して、ソレノイドに用いるチューブ状の固定鉄心1の構造について詳細に説明する。図3は固定鉄心1のZ軸方向の断面図、図4(a)は固定鉄心1の熱処理領域R周辺の拡大断面図(上から比較例(機械加工によって形成した磁性部と非磁性部のテーパ面を突き合わせ接合した比例ソレノイド)のテーパ角度θ=60度相当、45度相当、30度相当のソレノイド特性を示す固定鉄心1)、図4(b)は図4(a)に示す各々の固定鉄心1の磁化を示す図、図4(c)は、比較例のテーパ角度θ=45度相当のソレノイド特性を示す固定鉄心1のビッカース硬さ(HV)、図4(d)は、比較例のテーパ角度θ=45度相当のソレノイド特性を示す固定鉄心1の各組織の存在比を示す図である。
 固定鉄心1は、図3および図4(a)~図4(d)に示すように、主に強磁性体であるフェライト組織(α-Fe相)からなる磁性領域12と、主に非磁性体であるオーステナイト組織(γ-Fe相)からなる非磁性領域13と、磁性領域12と非磁性領域13との間に形成され、強磁性体であるマルテンサイト組織(Ms相)を含む半磁性領域14とを含む、複合磁性体材料から構成されている。磁性領域12は、外部磁場により磁化されやすい領域であり、非磁性領域13は、外部磁場によってほとんど磁化されない領域である。なお、半磁性領域14と非磁性領域13との境界14aは、非磁性領域13からZ1方向またはZ2方向にマルテンサイト組織が存在し始める位置である。また、半磁性領域14と磁性領域12との境界14bは、マルテンサイト組織の存在比がフェライト組織の存在比と等しくなる位置である。境界14bより半磁性領域14側ではマルテンサイト組織の存在比のほうが多く、磁性領域12側ではフェライト組織の存在比のほうが多い。図4(a)の各々の領域の位置は図4(b)に示す磁化の値に略対応している。
 非磁性領域13および半磁性領域14は、収容部11aのZ1方向側(吸着面11b側)に形成された熱処理領域Rに設けられている。磁性領域12は、熱処理領域R以外の領域に設けられている。熱処理領域Rは、吸着面11bからZ2方向に離間した位置に設けられている。また、熱処理領域Rは、ソレノイドに用いるチューブ状の固定鉄心1の内表面11cから外表面11dに亘るA方向の全体に形成されている。なお、先述のように、半磁性領域14と磁性領域12との境界14bは、マルテンサイト組織の存在比がフェライト組織の存在比と等しくなる位置であり、磁性領域12の境界14b付近にはわずかにマルテンサイト組織が存在し、熱処理の影響が及ぶ。しかしながら、明確性のため、本明細書では非磁性領域13および半磁性領域14を熱処理領域Rとする。また、本明細書において、磁性領域12が「主にフェライト組織からなる」とは、熱処理の影響が及ばない大部分の領域は実質的にフェライト組織のみであり、熱処理の影響が及ぶ部分においてもフェライト組織が50%以上であるということを意味する。さらに、非磁性領域13が「主にオーステナイト組織からなる」とは、実質的にオーステナイト組織からなり、フェライト組織、マルテンサイト組織が存在しないということを意味する。
 また、磁性領域12と非磁性領域13と半磁性領域14とは、互いに接合部を有さずに、同一の固定鉄心1にZ軸方向に沿って連続的かつ一体的に形成されている。つまり、磁性領域12と非磁性領域13と半磁性領域14とは、溶接およびろう付けなどの接合処理を行わずに、連続的かつ一体的に形成されている。なお、磁性領域12、非磁性領域13および半磁性領域14は、固定鉄心1を構成する、主にフェライト組織からなる磁性領域12と主にオーステナイト組織からなる非磁性領域13とを形成可能な複合磁性体用材料に対して高周波加熱による熱処理を行うことによって、連続的かつ一体的に形成されている。この結果、接合部を有する固定鉄心と異なり、30MPa以上の高圧のオイルに対して油圧の大きさを変化させるような用途に比例ソレノイド100を用いた場合であっても、本実施形態の固定鉄心1は十分な耐久性を有している。また、肉盛溶接などに起因する化合物が磁性領域12と半磁性領域14との境界などに形成されないので、化合物に起因して磁気特性が変化するのを抑制することができる。なお、固定鉄心1を構成する複合磁性体用材料の具体的な組成については、後述する。
 半磁性領域14は、非磁性領域13をZ軸方向に挟み込むように一対形成されている。つまり、半磁性領域14は、非磁性領域13よりも吸着面11b側に位置する第1半磁性領域14cと、非磁性領域13よりも吸着面11bとは反対側に位置する第2半磁性領域14dとを含んでいる。また、磁性領域12は、非磁性領域13および半磁性領域14(熱処理領域R)をZ軸方向に挟み込むように一対形成されている。つまり、磁性領域12は、吸着面11bを含み第1半磁性領域14cよりも吸着面11b側に位置する第1磁性領域12aと、第2半磁性領域14dよりも吸着面11bとは反対側に位置する第2磁性領域12bとを含んでいる。なお、熱処理時の固定鉄心1の形状によっては熱伝導がZ軸方向に異なるため、それぞれの領域は組織的に必ずしもZ軸方向に対称に形成されなくてもよい。たとえば、後述する距離L1および距離L2がZ1方向側とZ2方向側とでそれぞれ異なってもよい。なお、第1磁性領域12aおよび第1半磁性領域14cと、第2磁性領域12bおよび第2半磁性領域14dとのうち、比例ソレノイド100に要求されるソレノイド特性(吸引力カーブ)に主に関与するのは、第1磁性領域12aおよび第1半磁性領域14cのみである。
 図4(c)に示すように、固定鉄心1は、硬さの分布が領域毎に異なるように、具体的には、ビッカース硬さ(HV)が200≦HV≦600の範囲になるように作製されている。そして、磁性領域12および非磁性領域13においてビッカース硬さ(HV)が200≦HV≦300であり、半磁性領域14においてビッカース硬さ(HV)が400≦HV≦600の極大値が存在するように、固定鉄心1が作製されている。
 ここで、本実施形態では、半磁性領域14(第1半磁性領域14cおよび第2半磁性領域14d)は、非磁性領域13から磁性領域12(第1磁性領域12aおよび第2磁性領域12b)に向かって磁化が大きくなるような緩やかな磁気勾配を有している。また、図4(c)に示すように、半磁性領域14は、半磁性領域14の非磁性領域13側では、非磁性領域13から磁性領域12に向かって硬さが大きくなるような硬さ勾配を有している。このことは、機械的強度としての硬さが比較的小さい(ビッカース硬さ(HV)が200~300程度)オーステナイト組織の存在比が小さくなるとともに、硬さが比較的大きい(ビッカース硬さ(HV)が400以上程度)マルテンサイト組織の存在比が大きくなっていることを示している。また、半磁性領域14は、半磁性領域14の磁性領域12側では、非磁性領域13から磁性領域12に向かって硬さが小さくなるような硬さ勾配を有している。このことは、硬さが比較的大きいマルテンサイト組織の存在比が小さくなるとともに、硬さが比較的小さいフェライト組織(ビッカース硬さ(HV)が200~300程度)の存在比が大きくなっていることを示している。すなわち、半磁性領域14は、非磁性領域13から磁性領域12に向かって、硬さが大きくなって半磁性領域14内にビッカース硬さ(HV)が400以上の極大値を有し、その後、小さくなるような硬さ勾配を有している。
 上記のビッカース硬さHVの変化は、以下の組織の存在比についての記述を裏付けるものである。すなわち、図4(d)に示すように、半磁性領域14の非磁性領域13側では、非磁性領域13から磁性領域12に向かって、非磁性のオーステナイト組織(γ-Fe相)の存在比が小さくなるとともに、強磁性のマルテンサイト組織(Ms相)の存在比が大きくなるように構成されている。また、半磁性領域14の磁性領域12側では、非磁性領域13から磁性領域12に向かって、マルテンサイト組織の存在比が小さくなるとともに、マルテンサイト組織よりも強磁性のフェライト組織(α-Fe相)の存在比が大きくなるように構成されている。このことは、半磁性領域14にマルテンサイト組織の存在比の極大値が存在することを意味する。この、フェライト組織よりやや磁化の低いマルテンサイト組織が豊富に存在しながら非磁性のオーステナイト組織からフェライト組織に変化するような組織構成により、図4(b)に示すように、半磁性領域14は、非磁性領域13から磁性領域12に向かって磁化が大きくなるような緩やかな磁気勾配を有している。この結果、半磁性領域14において、先行技術のテーパ面が形成された領域に対応する磁化を生じさせることができる。そして、本実施形態の比例ソレノイド100は、半磁性領域14を適切に変化させることによって、機械加工によって形成した磁性部と非磁性部のテーパ面を突き合わせ接合した、比較例の比例ソレノイドと略同様のソレノイド特性(吸引力カーブ)を得ることができる。
 また、各組織の炭化物量については以下のとおりである。熱処理前の固定鉄心1(後述する管状部材101)を構成する複合磁性体用材料は、後述するように、質量%で0.3%以上1.2%以下の炭素を含んでいる。ここで、質量%で0.3%以上1.2%以下の炭素はフェライト組織内にそのうちのわずかしか固溶しないので、後述する高周波加熱による熱が実質的に加えられなかった磁性領域12では、固溶しなかった炭素が炭化物として存在し、炭化物が多く検出される。一方、高周波加熱によって熱が加えられた領域では、炭化物(炭素)は組織内に固溶しオーステナイト組織を形成するので、非磁性領域13に存在する炭化物はないか、または、非常に少ない。マルテンサイト組織においては一部の炭素が組織内に固溶し、残りは炭化物として析出するので、半磁性領域14では磁性領域12より炭化物が少なく、非磁性領域13より炭化物が多い。つまり、フェライト組織、マルテンサイト組織、オーステナイト組織を含む半磁性領域14に存在する炭化物は、主にオーステナイト組織からなる非磁性領域13に存在する炭化物よりも多く、かつ、主にフェライト組織からなる磁性領域12に存在する炭化物よりも少ない。さらに、先述の、半磁性領域14においてマルテンサイト組織の極大値が存在する組織構成は、半磁性領域14に存在する炭化物が、磁性領域12から非磁性領域13に向かって徐々に減少することを意味している。
 また、半磁性領域14は、内表面11cから外表面11dに向かって、非磁性領域13のZ軸方向の中心Oと、半磁性領域14の非磁性領域13側の端部(境界14a)との距離L1が大きくなるように構成されている。また、半磁性領域14は、内表面11cから外表面11dに向かって、非磁性領域13のZ軸方向の中心Oと、および半磁性領域14の磁性領域12側の端部(境界14b)との距離L2が大きくなるように構成されている。
 なお、非磁性領域13と半磁性領域14との境界14aと固定鉄心1の内表面11cとがなす角度をθx(従来の比例ソレノイドのテーパ角度θに略対応)とすると、角度θxは、ソレノイド特性が対応する比較例の比例ソレノイドのテーパ角度θの大きさと相関が小さいと考えられる。一方、非磁性領域13のZ軸方向の距離に対応する距離L1は、対応する比較例の比例ソレノイドのテーパ角度θと相関があると考えられる。具体的には、非磁性領域13のZ軸方向の距離に対応する距離L1は、対応する比較例のテーパ角度θが大きくなるにつれて小さくなる傾向にある。また、半磁性領域14は、吸着面11bからZ軸方向に離間した位置に形成されている。つまり、半磁性領域14のZ1方向側の端部(境界14b)は、吸着面11bからZ軸方向に離間した位置に位置している。
(複合磁性体用材料の組成)
 次に、ソレノイドに用いるチューブ状の固定鉄心1を構成する複合磁性体用材料の組成について説明する。
 固定鉄心1を構成する複合磁性体用材料は、質量%で、0.3%以上1.2%以下のC(炭素)を含む鉄合金である。なお、固定鉄心1を構成する複合磁性体用材料は、質量%で、0.3%以上1.2%以下のC、0.1%以上3%以下のSi(ケイ素)、0.1%以上4%以下のMn(マンガン)、4%以下のNi(ニッケル)、4%以上20%以下のCr(クロム)、2%以下のAl(アルミニウム)、残部Fe(鉄)および不可避不純物を含有する鉄合金であることが望ましい。また、複合磁性体用材料は、質量%で、0.30%以上1.20%以下のC、0.10%以上3.0%以下のSi(ケイ素)、0.10%以上4.0%以下のMn(マンガン)、4.0%以下のNi(ニッケル)、4.0%以上20.0%以下のCr(クロム)、2.0%以下のAl(アルミニウム)、残部Fe(鉄)および不可避不純物を含有する鉄合金であることがより望ましい。これ以降、元素の含有率の「%」は「質量%」を意味する。
 C:0.30%以上1.20%以下
 Cは、オーステナイト形成元素として、非磁性領域13の形成に有効な元素である。なお、Cが0.30%未満では、非磁性領域13が安定的に形成されにくい。Cが1.20%を超えると複合磁性体(固定鉄心1)の加工性が低下する。このため、Cの含有率は、0.30%以上1.20%以下である。
 Si:0.10%以上3.0%以下
 Siは、複合磁性体用材料において軟磁性特性を向上させて保磁力を小さくする効果がある元素である。なお、Siが0.10%未満では、軟磁性特性向上の効果が小さく、Siが3.0%を超えると複合磁性体(固定鉄心1)の加工性が低下する。このため、Siの含有率は、0.10%以上3.0%以下が望ましい。より望ましいSiの含有率の範囲は、0.30%以上2.5%以下である。
 Mn:0.10%以上4.0%以下
 Mnは、オーステナイト形成元素として、非磁性領域13の形成に有効な元素である。なお、Mnが0.10%未満では、非磁性領域13の形成の効果が小さく、Mnが4.0%を超えると複合磁性体(固定鉄心1)の加工性が低下する。このため、Mnの含有率は、0.10%以上4.0%以下が望ましい。
 Ni:4.0%以下
 Niは、オーステナイト形成元素として、非磁性領域13の形成に有効な元素である。Niが4.0%を超えると複合磁性体(固定鉄心1)の加工性が著しく低下する。このため、Niの含有率は、4.0%以下が望ましい。なお、Niは比較的高価であるので、複合磁性体用材料に含有させなくてもよい。
 Cr:4.0%以上20.0%以下
 Crは、複合磁性体の耐食性を向上させるとともに、電気抵抗率を大きくする効果がある元素である。さらに、Crは、非磁性領域13のオーステナイト組織を安定化させる効果も有する。なお、Crが4.0%未満では、耐食性向上、電気抵抗率上昇およびオーステナイト組織の安定化の効果が小さく、Crが20.0%を超えると、複合磁性体の飽和磁化が著しく低下するとともに、複合磁性体(固定鉄心1)の加工性が低下する。このため、Crの含有率は、4.0%以上20.0%以下が望ましい。
 Al:2.0%以下
 Alは、複合磁性体用材料において軟磁性特性を向上させて保磁力を小さくする効果がある元素である。なお、Alが2.0%を超えると、介在物を形成して複合磁性体(固定鉄心1)の加工性が低下する。このため、Alの含有率は、2.0%以下が望ましい。なお、Alは、上記のように介在物を形成するため、複合磁性体用材料に含有させなくてもよい。
 不可避不純物
 不可避不純物としては、P(リン)、S(硫黄)、O(酸素)およびN(窒素)などの元素が挙げられる。これらの不純物元素は、複合磁性体用材料の磁気特性および加工性などに影響しない範囲として、各々、0.1%以下の範囲で含有させてもよい。
(複合磁性体用材料の製造方法)
 次に、固定鉄心1を構成する複合磁性体用材料の製造方法について簡単に説明する。
 上記組成範囲になるように秤量した原料を真空溶解した後、鋳型を用いて鋳造して鋼塊を作製する。そして、所定の温度(1000℃程度)に加熱して鍛造した後、所定の温度(1000℃程度)に加熱して熱間圧延を行う。これにより、所定の厚みを有する熱間圧延材を作製する。そして、熱間圧延材に対して、研磨、洗浄等を行った後、不活性雰囲気下で焼鈍(900℃程度)を行う。最後に、冷間圧延を行うことによって、主にフェライト組織からなる棒状の複合磁性体用材料を作製する。
(比例ソレノイドの製造方法)
 次に、図1および図4~図6を参照して、比例ソレノイド100の製造方法について説明する。
 まず、図5に示すように、上記棒状の複合磁性体用材料を用いて管状部材101を準備する。なお、この時点では、管状部材101に熱処理領域R(図4参照)は形成されておらず、管状部材101の全体が主にフェライト組織からなる。
 そして、図6に示す加熱工程として、高周波誘導加熱装置102を用いて、管状部材101に高周波熱処理を行う。高周波誘導加熱装置102は、高周波印加部102aと、高周波コイル102bと、回転ステージ102cと、固定治具102dと、放射温度計102eとを有している。高周波印加部102aは、高周波コイル102bに流す交流電流の電流量を制御する機能を有する。なお、回転ステージ102cは、回転軸回りに所定の回転速度で回転する機能を有する。固定治具102dは回転ステージ102c上に管状部材101を固定する機能を有する。
 放射温度計102eは、熱処理部分の温度を非接触で測定する機能を有する。ここで、放射温度計102eを用いて正確な温度測定を行うため、管状部材101の外側表面に黒体塗料(ジャパンセンサー社製JSC3号など)を塗布することが好ましい。さらに、温度をより正確に測定可能な熱電対と、放射温度計102eとを用いて温度を測定して、熱電対の温度データと放射温度計102eの温度データとを比較することによって、放射温度計102eに対して予め校正を行うのが好ましい(熱電対で温度を測定する場合、管状部材101は回転させなくてもよい)。これにより、放射温度計102eにより、正確な温度を非接触で測定することが可能である。また、シミュレーションによる熱解析で管状部材101における熱挙動を確認することによって、熱処理部分の温度をより正確に測定可能となる。
 具体的な高周波加熱の方法としては、まず、管状部材101を、回転軸の延びる方向と管状部材101の延びるZ軸方向とが一致するように、回転ステージ102c上に配置する。そして、固定治具102dにより、回転ステージ102c上に管状部材101を固定する。
 その後、管状部材101の非磁性領域形成部分R1を含む加熱位置H(高周波コイル102bと対向する領域)を周状に取り囲むように高周波コイル102bを配置する。高周波コイル102bのZ軸方向の厚みhは、熱処理領域Rおよび非磁性領域形成部分R1のZ軸方向の寸法に応じて適宜選定されるのがよい。この際、管状部材101の吸着面11bと高周波コイル102bの吸着面11b側(Z1方向側)の端部とがZ軸方向に離れるように、高周波コイル102bを配置する。これにより、高周波コイル102bの端部が位置する非磁性領域形成部分R1の周辺(半磁性領域14が形成される部分)を吸着面11bから離間させることができるので、半磁性領域14と吸着面11bとの間に磁性領域12を確保することができる。この結果、比例ソレノイド100において、平坦領域が形成された吸引力カーブを得ることができる。
 具体的には、吸着面11bと高周波コイル102bの吸着面11b側の端部との距離tが1mm以上3mm以下となるように、高周波コイル102bが配置されることが好ましく、距離tが1.5mm以上2.5mm以下となるように高周波コイル102bが配置されることがより好ましい。ここで、高周波コイル102bのZ軸方向の中心O1が、高周波コイル102bにより加熱される加熱位置HのZ軸方向の中心となる。たとえば、厚みh=10mmである場合、加熱位置Hの中心は、管状部材101の吸着面11bから6mm以上8mm以下の距離dだけ離れた位置に位置することが好ましく、6.5mm以上7.5mm以下の距離dだけ離れた位置に位置することがより好ましい。
 なお、熱処理領域Rは、加熱位置HよりもZ軸方向にやや大きな領域、および非磁性領域形成部分R1は加熱位置HよりもZ軸方向に小さな領域であり、加熱位置Hを変化させる(Z軸方向に加熱位置Hを移動させる)ことによってこれらの位置を変化させることができるので、ロッド組立品2(可動鉄心21)と磁性領域12、非磁性領域13および半磁性領域14との位置関係を異ならせることが可能である。この結果、加熱位置Hを変化させることによって、比例ソレノイド100における吸引力カーブの平坦領域の範囲の大きさ(ソレノイド特性)を変化させることが可能である。
 そして、回転ステージ102cにより管状部材101を所定の回転速度(たとえば、200rpm)で回転させながら、高周波コイル102bに所定の電流量および周波数で交流電流を流す。これにより、非磁性領域形成部分R1およびその近傍(加熱位置H)を、管状部材101の外部から急速加熱する(加熱工程)。この際、周波数は、たとえば、40kHz以上80kHz以下の高周波である。また、少なくとも非磁性領域形成部分R1における加熱速度が100℃/秒以上(好ましくは、150℃/秒以上)250℃/秒以下(好ましくは、200℃/秒以下)の加熱速度になるように、高周波コイル102bに流す交流電流の電流量を変化させる。
 なお、上記加熱速度の範囲において、加熱速度が小さい側では、熱処理によって非磁性のオーステナイト組織以外に炭化物が残存する不安定組織が形成されやすい。すなわち、熱処理後の急冷によって半磁性領域14が形成されやすく、平坦領域の範囲の小さな吸引力カーブを有する固定鉄心1(比例ソレノイド100)が得られやすい。具体的には、100℃/秒以上170℃/秒以下の加熱速度の場合には、テーパ角度θが45度未満である従来の比例ソレノイドに対応する比例ソレノイド100が得られやすい。
 また、加熱速度が大きい側では、熱処理によって非磁性のオーステナイト組織以外に炭化物が残存する不安定組織が形成されにくい。すなわち、熱処理後の急冷によって半磁性領域14が形成されにくく、平坦領域の範囲の大きな吸引力カーブを有する固定鉄心1(比例ソレノイド100)が得られやすい。具体的には、170℃/秒超250℃/秒以下の加熱速度の場合には、テーパ角度θが45度以上である従来の比例ソレノイドに対応する比例ソレノイド100が得られやすい。
 なお、本明細書では、熱処理によって非磁性のオーステナイト組織以外に炭化物が残存する不安定組織が形成されやすく、熱処理後の急冷によって結果として半磁性領域14が形成されやすいことを、単に半磁性領域14が形成されやすいと言うことがある。また、従来(比較例)の比例ソレノイドのテーパ角度θを参照して本発明の比例ソレノイドの特性を論じるが、あくまでソレノイド特性が、所定のテーパ角度θを有する従来の比例ソレノイドに対応するということを意味するものである。つまり、本発明の比例ソレノイド100においても非磁性領域13と半磁性領域14との境界と固定鉄心1の内表面11cとがなす角度θx(図4参照)、および、半磁性領域14と磁性領域12との境界と固定鉄心1の内表面11cとがなす角度θy(図4参照)が、対応する従来(比較例)の比例ソレノイドのテーパ角度θと同じ角度を有していることを意味するものではない。
 また、加熱工程では、非磁性領域形成部分R1における加熱温度が1000℃以上1300℃以下の加熱温度になるまで、非磁性領域形成部分R1(加熱位置H)を加熱する。上記加熱温度の範囲において加熱温度が大きい側では、半磁性領域14が形成されやすいので、平坦領域の範囲の小さな吸引力カーブを有する固定鉄心1(比例ソレノイド100)が得られやすい。すなわち、たとえば、テーパ角度θが45度未満である従来の比例ソレノイドに対応する比例ソレノイド100が得られやすい。また、加熱温度が小さい側では、半磁性領域14が形成されにくいので、平坦領域の範囲の大きな吸引力カーブを有する固定鉄心1(比例ソレノイド100)が得られやすい。すなわち、たとえば、テーパ角度θが45度以上である従来の比例ソレノイドに対応する比例ソレノイド100が得られやすい。
 そして、非磁性領域形成部分R1における加熱温度が1000℃以上1300℃以下の加熱温度になった後、5秒以上20秒以下の保持時間の間、非磁性領域形成部分R1(加熱位置H)の加熱状態を保持する(保持工程)。なお、管状部材101の厚み方向(径方向)に熱を確実に伝導し、非磁性領域13を形成するために、保持時間は10秒以上であるのが好ましく、10秒超であるのがより好ましい。なお、また、熱処理領域Rを除く部分(磁性領域12の部分)にまで熱が伝導されるのを確実に抑制するために、保持時間は15秒以下が好ましい。上記保持時間の範囲において、保持時間が長い側では半磁性領域14が形成されやすいので、平坦領域の範囲の小さな吸引力カーブを有する固定鉄心1(比例ソレノイド100)が得られやすい。すなわち、たとえば、テーパ角度θが45度未満である従来の比例ソレノイドに対応する比例ソレノイド100が得られやすい。また、保持時間が短い側では半磁性領域14が形成されにくいので、平坦領域の範囲の大きな吸引力カーブを有する固定鉄心1(比例ソレノイド100)が得られやすい。すなわち、たとえば、テーパ角度θが45度以上である従来の比例ソレノイドに対応する比例ソレノイド100が得られやすい。
 また、図6に示す保持工程では、少なくとも非磁性領域形成部分R1の保持温度勾配が-20℃/秒以上5℃/秒以下の保持温度勾配範囲に含まれるように、高周波コイル102bに流す交流電流の電流量を変化させるのが好ましい。また、少なくとも非磁性領域形成部分R1の保持温度勾配が-15℃/秒以上0℃/秒以下の保持温度勾配範囲に含まれるように、高周波コイル102bに流す交流電流の電流量を変化させるのがより好ましい。さらに、少なくとも非磁性領域形成部分R1の保持温度勾配が-10℃/秒以上0℃/秒以下の保持温度勾配範囲に含まれるように、高周波コイル102bに流す交流電流の電流量を変化させるのがさらに好ましい。
 また、保持工程における高周波コイル102bに流す交流電流の電流量は、加熱工程における高周波コイル102bに流す交流電流の電流量よりも小さい。ここで、保持温度勾配を0℃/秒(または5℃/秒)に近づけると、半磁性領域14が形成されやすいので、平坦領域の範囲の小さな吸引力カーブを有する固定鉄心1(比例ソレノイド100)が得られやすい。すなわち、たとえば、テーパ角度θが45度未満である従来の比例ソレノイドに対応する比例ソレノイド100が得られやすい。また、保持温度勾配を小さくする(-10℃/秒(または-20℃/秒)に近づける)と、半磁性領域14が形成されにくいので、平坦領域の範囲の大きな吸引力カーブを有する固定鉄心1(比例ソレノイド100)が得られやすい。すなわち、たとえば、テーパ角度θが45度以上である従来の比例ソレノイドに対応する比例ソレノイド100が得られやすい。なお、保持温度勾配の制御手段として、上記したように電流量を変化させる例を説明したが、電流量を変化させる以外に、管状部材101の非磁性領域形成部分R1の加熱中に、管状部材101の内部に流量等が調整された冷却水を流すことなどによっても、保持温度勾配の制御を行うことが可能である。
 上記熱処理により、非磁性領域形成部分R1において、強磁性のフェライト組織がオーステナイト組織に変態するとともに、複合磁性体用材料に含まれる炭化物がオーステナイト組織中に完全に固溶する。このオーステナイト組織は熱的に安定であり、この結果、非磁性領域形成部分R1に非磁性のオーステナイト組織が安定的に形成される。また、非磁性領域形成部分R1の周辺(非磁性領域13の周辺、図4において「I」で指し示す位置)においては、非磁性のオーステナイト組織以外に炭化物(主にM236、MはFeなどの複合磁性体用材料を形成する金属)が残存する不安定組織が形成される。ここで、非磁性領域形成部分R1近傍では、熱の伝導量が大きいので不安定組織の形成量が小さくなる一方、非磁性領域形成部分R1から離れるに従って、熱の伝導量が小さくなり不安定組織の形成量が大きくなる。
 一方、非磁性領域形成部分R1から離間した位置(図4において「II」で指し示す位置)では、安定的なオーステナイト組織が形成されずに、不安定組織のみが形成される。さらに、非磁性領域形成部分R1からより離間した位置(図4において「III」で指し示す位置)では、非磁性領域形成部分R1の熱が十分に伝導されずに、一部のみ不安定組織が形成される一方、残りの部分には、フェライト組織が残存する。また、非磁性領域形成部分R1から十分に離れた位置(図4において「IV」で指し示す位置)では、フェライト組織からオーステナイト組織への変態は生じない。
 保持時間が経過した後、高周波コイル102bに流す電流を停止させるとともに、高周波誘導加熱装置102の近傍の図示しない水槽に管状部材101を浸けることによって、管状部材101を急冷する(図6に示す水冷工程)。ここで、「急冷」とは、150℃/秒以上の冷却速度のことである。水槽の大きさにもよるが冷却水の温度は室温でよい。なお、空冷は、高周波コイル102bへの電流を停止してから管状部材101を水槽に浸けるまでの間に行われる。空冷の時間が長いと吸引力カーブが全体的に下がる傾向にあるので、空冷の時間は短ければ短いほどよく、5秒以内、具体的には0.5秒以上5秒以下程度である。また、急冷方法は水冷に限られない。たとえば、油冷により加熱した管状部材を急冷してもよい。
 ここで、非磁性領域形成部分R1において、急冷後も組織を維持することが可能な安定的なオーステナイト組織が形成されているので、非磁性領域形成部分R1に、主に非磁性のオーステナイト組織からなる非磁性領域13(図4(a)参照)が形成される。
 一方で、非磁性領域形成部分R1の周辺(図4(a)において「I」で指し示す位置)の不安定組織は、急冷により組織が変態してマルテンサイト組織になる。これにより、半磁性領域14が形成される。ここで、半磁性領域14の非磁性領域13近傍では、不安定組織が少ないので、変態するマルテンサイト組織の形成量が小さくなる一方、非磁性領域13から離れるに従って不安定組織が多くなるので、変態するマルテンサイト組織の形成量が大きくなる。この結果、図4(d)に示すように、半磁性領域14の非磁性領域13側では、非磁性領域13から磁性領域12に向かってオーステナイト組織の存在比が小さくなるとともに、マルテンサイト組織の存在比が大きくなる。
 また、半磁性領域14において非磁性領域13からより離間した位置(図4(a)において「III」で指し示す位置)では、一部のみに形成された不安定組織がマルテンサイト組織に変態し、フェライト組織と共存する。ここで、半磁性領域14において非磁性領域13からより離間した位置では、磁性領域12に近づくに従って不安定組織が少なくなるので、半磁性領域14の磁性領域12側では、非磁性領域13から磁性領域12に向かってマルテンサイト組織の存在比が小さくなるとともに、フェライト組織の存在比が大きくなる。
 磁性領域12の半磁性領域14側では、マルテンサイト組織の存在比がフェライト組織の存在比以下となり、非磁性領域形成部分R1から十分に離れた位置(図4において「IV」で指し示す位置)では、マルテンサイト組織への変態が生じていないので、フェライト組織のみになる。
 また、非磁性領域形成部分R1およびその周辺を管状部材101の外部から加熱することによって、管状部材101の外表面11d側は、管状部材101の内表面11c側と比べて熱の影響が大きい。このため、半磁性領域14では、内表面11cから外表面11dに向かって、非磁性領域13のZ軸方向の中心Oと、半磁性領域14の非磁性領域13側の端部(境界14a)との距離L1および半磁性領域14の磁性領域12側の端部(境界14b)との距離L2が大きくなると考えられる。
 ただし、たとえば、非磁性領域13と半磁性領域14との境界14aと管状部材101の内表面11cがなす角度をθx(従来の比例ソレノイドのテーパ角度θに略対応)とすると、境界14aは非磁性領域13から半磁性領域14、さらに磁性領域12へと連続的に組織が変化するうちの、マルテンサイト組織が存在し始める位置であるため、境界14aを正確に特定し角度θxを測定するのは難しい。しかしながら、後述の実施例8a~8cに示すように、簡易的な方法で観察したところ、同様の特性のものを比較した場合、角度θxはテーパ角度θの大きさとは相関がなく、角度θxは70度以上85度以下程度になるようである。このことは、本発明の比例ソレノイド100のソレノイド特性(吸引力カーブ)が、従来の比例ソレノイドのように磁性部分と非磁性部分のテーパ角度θによって決定されるものではなく、本発明の比例ソレノイド100の製造方法の様々な条件設定によってもたらされた管状部材101の組織変化が大きく寄与したものであることを示しており、従来(たとえば、特許文献3)のソレノイドの製造方法からは全く想定されないものである。なお、非磁性領域13のZ軸方向の距離に対応する距離L1は、対応するテーパ角度θと相関があると考えられる。具体的には、対応するテーパ角度θが大きくなるにつれて距離L1は小さくなる傾向が見られる。
 これにより、非磁性領域13から磁性領域12に向かって磁化が大きくなるような緩やかな磁気勾配、および、硬さが大きくなって小さくなるような硬さ勾配を有する半磁性領域14と、磁性領域12と、非磁性領域13とを有するソレノイドに用いるチューブ状の固定鉄心1が作製される。
 ここで、上記に詳細に述べたとおり、加熱速度、加熱温度、保持時間、および、保持温度勾配の少なくともいずれか1つを上記した範囲内で適宜変化させることによって、固定鉄心1の磁気特性の分布を所望の磁気特性の分布に変化させる(制御する)ことが可能である。これにより、平坦領域の長さなど所望のソレノイド特性を有する吸引力カーブを得ることが可能である。また、加熱位置Hの位置を変化させることによっても、固定鉄心1のソレノイド特性を所望のソレノイド特性に変化させる(制御する)ことが可能である。これらのうち、上記の範囲では、保持温度勾配を変化させることによって、比例ソレノイド100の吸引力カーブを最も大きく変化させることが可能である。また、保持温度勾配を変化させる場合よりも劣るものの、加熱速度を変化させることによっても、比例ソレノイド100の吸引力カーブを大きく変化させることが可能である。また、最も変化量が小さいのが保持時間および加熱位置Hを変化させた場合である。したがって、比例ソレノイド100の吸引力カーブを大きく変化させたい場合には、保持温度勾配などを変化させ、比例ソレノイド100の吸引力カーブを微小に変化させたい場合には、保持時間および加熱位置Hを変化させることによって、所望の吸引力カーブを得ることが可能である。つまり、加熱速度、加熱温度、保持時間、加熱位置H、および、保持温度勾配の少なくともいずれか1つまたはいずれかを組み合わせて変化させることによって、比例ソレノイド100において所望の吸引力カーブを得ることが可能である。
 その後、磁性領域12と半磁性領域14と非磁性領域13とを含むソレノイドに用いるチューブ状の固定鉄心1にZ軸方向に移動可能なロッド組立品2、および必要に応じてベアリング4を挿入した状態で、後部金物3を固定鉄心1のZ2方向側の端部に溶接する。これにより、比例ソレノイド100が作製される。
 (第1実施例)
 次に、図1、図5および図7~図9を参照して、第1実施例について説明する。第1実施例では、テーパ角度θが45度である比較例1と同様の吸引力カーブ(ソレノイド特性)を有する、上記実施形態に対応する実施例1の比例ソレノイド100を作製し、その吸引力カーブの測定、固定鉄心1の磁化およびビッカース硬さの測定、結晶構造の解析を行った。
 (実施例1の比例ソレノイド)
 まず、上記実施形態の製造方法に基づいて、実施例1のソレノイドに用いるチューブ状の固定鉄心1を備える比例ソレノイド100を作製した。具体的には、棒状のFe-Cr-Ni-Mn-Al-C合金(YEP-FA1、日立金属製)からなる複合磁性体用材料を用いて、管状部材101を作製した。そして、Z軸方向に10mmの厚みh(図5参照)を有する高周波コイル102bを備える高周波誘導加熱装置102を用いて、熱処理前の固定鉄心1である管状部材101に高周波熱処理を行った。
 詳細には、管状部材101の吸着面11bと高周波コイル102bの吸着面11b側(Z1方向側)の端部とがZ軸方向に2.5mmの距離t(図5参照)だけ離れるように、高周波コイル102bを配置した。つまり、管状部材101の吸着面11bからZ軸方向に7.5mmの距離d(図5参照)だけ離間した加熱位置HのZ軸方向の中心に、高周波コイル102bのZ軸方向の中心O1(図5参照)が位置するように、高周波コイル102bを配置した。なお、加熱位置Hにおける固定鉄心1の厚み(=(外径-内径)/2)は、2.4mmである。
 そして、回転ステージ102cにより管状部材101を200rpmで回転させながら、高周波コイル102bに40kHzで交流電流を流した。また、非磁性領域形成部分R1における加熱速度である昇温速度が190℃/秒になるように、高周波コイル102bに流す交流電流の電流量を80Aに調整した。
 そして、非磁性領域形成部分R1における加熱温度が1250℃の加熱温度になった後、10秒の保持時間の間、非磁性領域形成部分R1の加熱状態を保持した。なお、この保持工程では、非磁性領域形成部分R1の保持温度勾配を示す保持温度速度が0℃/秒になるように、高周波コイル102bに流す交流電流の電流量を55Aに調整した。そして、保持時間が経過した後、高周波コイル102bに流す電流を停止させるとともに、高周波誘導加熱装置102の近傍の図示しない水槽に管状部材101を浸けることによって、管状部材101を急冷した。これにより、実施例1のチューブ状の固定鉄心1を作製した。なお、電流停止から水槽に浸けるまでの時間(空冷時間)は2秒程度であった。
 そして、SUM23(炭素鋼)(可動鉄心21)およびSUS304(ロッド22)からなるロッド組立品2およびベアリング4をソレノイドに用いるチューブ状の固定鉄心1に軸方向に移動可能に挿入した状態で、後部金物3を固定鉄心1のZ2方向側の端部に溶接した。これにより、実施例1の固定鉄心1を備える比例ソレノイド100を作製した。
 また、図7に示す比較例1のソレノイドに用いるチューブ状の固定鉄心301を備える比例ソレノイド300を作製した。具体的には、実施例1の固定鉄心1で用いたものと同じ棒状の複合磁性体用材料からなる磁性部312と、SUS304(JIS規格に準拠)からなる非磁性部313とを備えるチューブ状の固定鉄心301を作製した。なお、比較例1のチューブ状の固定鉄心301では、テーパ接合面301aと固定鉄心301の内表面311cとのなすテーパ角度θが45度となるように、磁性部312と非磁性部313とをろう付け接合した。そして、実施例1と同一のロッド組立品2を固定鉄心301に軸方向に移動可能に挿入した状態で、後部金物3を固定鉄心301のZ2方向側の端部に溶接した。これにより、比較例1の固定鉄心301を備える比例ソレノイド300を作製した。
(吸引力測定)
 そして、実施例1および比較例1の比例ソレノイド100(300)を用いて、吸引力測定を行った。具体的には、ソレノイドに用いるチューブ状の固定鉄心1(301)の所定領域を径方向に取り囲むように、コイル100bを配置した状態で、固定鉄心1(301)およびコイル100bを固定した。なお、コイル100bとして、線径0.48mm、巻数560ターン、抵抗値が5.38Ωの断面矩形状のコイルを用いた。そして、コイルに1.4Aの電流を流して磁界を発生した際の、吸着面11bからの距離Dにおける吸引力を測定した。この際、吸引力をロードセル(LCE-A-500N、共和電業製)を用いて測定した。また、変位センサのヘッド(ZX-LD40、オムロン製)およびアンプ(ZX-LD11N 2M、オムロン製)を用いて、吸着面11bからの距離D(ストローク長さ)を測定した。測定結果を表1および図8に示す。
Figure JPOXMLDOC01-appb-T000001
 表1および図8に示す吸引力測定の結果としては、表1に示すように、距離Dが2.5mm以下の範囲において、実施例1の比例ソレノイド100の比較例1の比例ソレノイド300に対する吸引力の相対比率(=|実施例1の吸引力-比較例1の吸引力|/比較例1の吸引力×100)(%)が10%以下になった。特に、実施例1の比例ソレノイド100の吸引力は、距離Dが0.5mmから2.5mmの範囲において距離Dが1.0mmの位置における吸引力の±10%以内と、2.0mm以上の平坦領域を有しており、0.0mmにおける吸引力と、実施例1の平坦領域と平坦領域以外の境界(たとえば表1では、0.5mmおよび2.5mm)における吸引力との相対比率が10%以下であったので、実施例1の比例ソレノイド100は、比較例1の比例ソレノイド300と略同等の性能を示していることが確認できた。
 この結果、熱処理により、テーパ角度θが45度の比較例1と同様の吸引力カーブ(ソレノイド特性)を有する比例ソレノイドを作製することができることが確認できた。また、実施例1の固定鉄心1は、ろう付けなどによる接合部を有していないので、比較例1の固定鉄心301と異なり、高圧が加えられる用途に用いられたとしても、後述する実施例4a~4cに示すとおり、破断することなく高圧に耐え得ると考えられる。
(磁化およびビッカース硬さ測定)
 次に、実施例1のソレノイドに用いるチューブ状の固定鉄心1に対して、磁化と、機械的強度の硬さの一例としてのビッカース硬さを測定した。具体的には、計11か所の測定位置の各々において、2.5mm(Z軸方向)×2.5mm(A方向)×2mm(厚み方向)の試験片を切り出して、振動試料型磁力計(VSM-5-20、東英工業製)を用いて磁化特性を測定した。より具体的には、図9(a)に示すように、吸着面11bの位置、吸着面11bから1.7mm、2.7mm、4.0mm、6.6mm、7.5mm、8.9mm、11.7mm.12.9mm、13.8mmおよび16mmだけZ軸方向に離間した位置に、それぞれ、試験片の吸着面側の面が位置する状態で、試験片を各々切り出した。また、試験片において、2mmである厚み方向を測定磁化方向(図9(a)において、白抜き矢印で図示)とした。なお、外部印加磁場を最大0.4MA/mとして、0.4MA/mの磁場を印加した際の磁化を試験片の磁化とした。また、測定モードはフルループで、かつ、測定温度は23℃で、磁化測定を行った。測定結果を表2および図10に示す。
 また、ビッカース硬さは、測定位置において、17.0mm(Z軸方向)×5.0mm(A方向)×2.0mm(厚み方向)の試験片を切り出して、マイクロビッカース硬度計(HMV-1AD、島津製作所製)を用いて測定した。具体的には、図9(b)に示すように、吸着面11bの位置に試験片の吸着面側の面が位置する状態で、試験片を切り出した。そして、切り出した板の外周面(図9(b)において、ハッチングが形成されている面)側を鏡面加工して、Z軸方向に0.5mm間隔で、ビッカース硬さを測定した。測定条件としては、試験力を4.903N、荷重時間を15秒とした。測定結果を図10に示す。
Figure JPOXMLDOC01-appb-T000002
 表2および図10に示す磁化測定およびビッカース硬さ測定の結果としては、加熱位置Hの中心(吸着面11bからの距離D=7.5mm)近傍である非磁性領域形成部分R1(非磁性領域13)では、磁化が0.01T以下に十分に小さくなるとともに、ビッカース硬さがHV220程度にまで小さくなった。これにより、非磁性領域13は、非磁性で、かつ、ビッカース硬さが比較的小さいオーステナイト組織から主に構成されていることが確認できた。ここで、表2の距離Dの0.0mmは図9の横軸で示す吸着面からの距離Dの0mmと対応しており、表2の距離Dと図9の横軸で示す吸着面からの距離Dとは対応している。
 一方、非磁性領域形成部分R1(非磁性領域13)から離れるに従って、磁化が大きくなるとともに、ビッカース硬さがHV450程度にまで大きくなった。これにより、半磁性領域14の非磁性領域13側では、非磁性領域13から磁性領域12に向かうに従って、オーステナイト組織の存在比が小さくなるとともに、強磁性で、かつ、ビッカース硬さが大きいマルテンサイト組織の存在比が大きくなったことが確認できた。
 また、非磁性領域形成部分R1(非磁性領域13)からさらに離れるに従って、磁化が若干大きくなるとともに、ビッカース硬さがHV220程度にまで小さくなった。これにより、半磁性領域14の磁性領域12側では、非磁性領域13から磁性領域12に向かうに従って、マルテンサイト組織の存在比が小さくなるとともに、強磁性で、かつ、ビッカース硬さが比較的小さいフェライト組織の存在比が大きくなったことが確認できた。
 これらの結果、半磁性領域14では、非磁性領域13から磁性領域12に向かって磁化が大きくなるような磁気勾配を有していること、硬さ(ビッカース硬さ)が大きくなって小さくなるような硬さ勾配が得られること、すなわち半磁性領域14内にビッカース硬さの極大値を有していること、およびマルテンサイト組織の存在比の極大値を有していることが確認できた。
(結晶構造の解析)
 また、実施例1の比例ソレノイド100に用いるチューブ状の固定鉄心1に対して、磁性領域12、半磁性領域14および非磁性領域13それぞれのX線回折による解析を行った。
 具体的には、上記ビッカース硬さ測定の時と同様に、17.0mm(Z軸方向)×5.0mm(A方向)×2.0mm(厚み方向)の試験片(図9(b)参照)を切り出し、吸着面11bの位置(磁性領域12)、吸着面11bから2mmの位置(半磁性領域14)および吸着面11bから8mmの位置(非磁性領域13)において、X線回折測定(XRD測定)を行った。測定は、X線回折装置(SmartLab リガク製)を用い、X線源はCu線、検出器は半導体検出器、スキャンモードは2θ/θとした。
 測定結果を図11に示す。なお、図11では、フェライト組織(α-Fe)に基づくピーク位置を点線で、オーステナイト組織(γ-Fe)に基づくピーク位置を実線でそれぞれ図示している。磁性領域12ではα-Feのピークが、非磁性領域13ではγ-Feのピークがそれぞれ見られた。このことから、磁性領域12および非磁性領域13は、それぞれ、フェライト組織およびオーステナイト組織を主体とする組織であることが確認できた。また、半磁性領域14ではα-Feおよびγ-Feの両方のピークが確認できた。
 次に、半磁性領域14にマルテンサイト組織が存在するかを確認するため、上記磁性領域12および半磁性領域14の位置において、結晶の(211)面(2θ/θが82度近傍)を局所的に測定した。結果を図12に示す。半磁性領域14のピーク位置は、磁性領域12(フェライト組織)のピーク位置から変化していなかった。つまり、半磁性領域14はピークシフトしていなかった。さらに、半磁性領域14のピークにおける半値幅は、磁性領域12のピークにおける半値幅よりも大きくなった。これらは、マルテンサイト組織のX線回折に見られる特徴である。この結果から、半磁性領域14にはマルテンサイト組織が存在していることが確認できた。
 ビッカース硬さの測定結果および上記X線回折の測定結果を合わせると、半磁性領域14においては、フェライト組織、マルテンサイト組織、オーステナイト組織が存在し、かつ、半磁性領域14中にマルテンサイト組織の極大値が存在するということが確認された。
 (第2実施例)
 次に第2実施例について説明する。第2実施例では、テーパ角度θが30度である比較例2と同様の吸引力カーブ(ソレノイド特性)を有する、上記実施形態に対応する実施例2の比例ソレノイド100を作製し、その吸引力カーブを測定した。
 (実施例2の比例ソレノイド)
 まず、上記実施形態の製造方法に基づいて、実施例2のソレノイドに用いるチューブ状の固定鉄心1を備える比例ソレノイド100を作製した。なお、実施例2では、処理前の固定鉄心である管状部材101の吸着面11bと高周波コイル102bの吸着面11b側(Z1方向側)の端部との距離tがZ軸方向に1.5mm離れるように、高周波コイル102bを配置した。つまり、管状部材101の吸着面11bからZ軸方向に6.5mmの距離dだけ離間した加熱位置HのZ軸方向の中心に、高周波コイル102bのZ軸方向の中心O1が位置するように、高周波コイル102bを配置した。また、非磁性領域形成部分R1における加熱温度が1250℃の加熱温度になった後、15秒の保持時間の間、非磁性領域形成部分R1の加熱状態を保持した。それら以外は、上記実施例1と同様にして、実施例2のチューブ状の固定鉄心1を備える比例ソレノイド100を作製した。つまり、実施例2の固定鉄心1の製造方法では、実施例1の固定鉄心1の製造方法とは加熱位置Hと保持時間とを異ならせた。
 また、図7に示す比較例2のソレノイドに用いるチューブ状の固定鉄心301を備える比例ソレノイド300を作製した。具体的には、テーパ角度θが30度となるように、磁性部312と非磁性部313とをろう付け接合した以外は、上記比較例1と同様にして、比較例2の固定鉄心301を備える比例ソレノイド300を作製した。
 そして、実施例2および比較例2の比例ソレノイド100(300)を用いて、上記第1実施例と同様に、吸引力測定を行った。測定結果を表3および図13に示す。
Figure JPOXMLDOC01-appb-T000003
 吸引力測定の結果としては、表3に示すように、吸着面11bからの距離Dが2.5mm以下の範囲において、実施例2の比例ソレノイド100の比較例2の比例ソレノイド300に対する吸引力の相対比率(=|実施例2の吸引力-比較例2の吸引力|/比較例2の吸引力×100)(%)が10%以下になった。これにより、実施例2の比例ソレノイド100では、比較例2の比例ソレノイド300と同等の性能が得られることが確認できた。この結果、熱処理により、テーパ角度θが30度の比較例2と同様の吸引力カーブ(ソレノイド特性)を有する比例ソレノイドを作製することができることが確認できた。また、実施例2のソレノイドに用いるチューブ状の固定鉄心1は、ろう付けにより接合していないので、比較例2の固定鉄心301と異なり、高圧が加えられる用途に用いられたとしても、高圧に耐え得ると考えられる。
 また、実施例1の比例ソレノイドと実施例2の比例ソレノイドの製法の違いは加熱位置Hと保持時間であり、図8および図13から、これらを異ならせることによって、実施例1の固定鉄心1とは異なる吸引力カーブを有する実施例2の固定鉄心1が作製できることが確認できた。
 (第3実施例)
 次に第3実施例について説明する。第3実施例では、上記第2実施例のソレノイドに用いるチューブ状の固定鉄心1に対して、保持時間または保持温度勾配を異ならせた実施例3aおよび3bの固定鉄心1を備える比例ソレノイド100を作製し、その吸引力カーブを測定した。
 (実施例3aおよび3bの比例ソレノイド)
 保持時間を9秒にした以外は、上記実施例2のソレノイドに用いるチューブ状の固定鉄心1と同様にして、実施例3aの固定鉄心1を備える比例ソレノイド100を作製した。また、保持温度勾配を示す保持温度速度を-10℃/秒にした以外は、上記実施例2のソレノイドに用いるチューブ状の固定鉄心1と同様にして、実施例3bの固定鉄心1を備える比例ソレノイド100を作製した。
 (比較例3aおよび3bの比例ソレノイド)
 テーパ角度θが45度となるように、磁性部312と非磁性部313とをろう付け接合した以外は、上記比較例2と同様にして、比較例3aのソレノイドに用いるチューブ状の固定鉄心301を備える比例ソレノイド300(図7参照)を作製した。また、テーパ角度θが60度となるように、磁性部312と非磁性部313とをろう付け接合した以外は、上記比較例2と同様にして、比較例3bの固定鉄心301を備える比例ソレノイド300を作製した。
(吸引力測定)
 そして、実施例3a、3b、比較例3aおよび3bの比例ソレノイド100(300)を用いて、上記第2実施例と同様に、吸引力測定を行った。また、吸着面11bからの距離Dが1mmの基準位置における吸引力(基準吸引力)を求めた。そして、基準吸引力に対する相対比率(=|距離Dにおける吸引力-基準吸引力|/基準吸引力×100)(%)が10%以下である領域を平坦領域と規定し、平坦領域の長さを求めた。測定結果を表4、図14および図15に示す。
Figure JPOXMLDOC01-appb-T000004
 吸引力測定の結果としては、表4および図14に示すように、実施例2、3aおよび3bの比例ソレノイド100では、各々異なる長さの平坦領域を有する吸引力カーブが得られた。この結果、チューブ状の固定鉄心1に加えた高周波加熱において、保持時間または保持温度勾配を異ならせることによって、吸引力カーブの異なる比例ソレノイド100を作製することが可能であることが確認できた。
 なお、実施例2および3aの結果から、保持時間を短くすると平坦領域が長くなることが確認できた。また、実施例2および3bの結果から、保持温度勾配を小さくすると平坦領域が長くなることが確認できた。これらは、非磁性領域形成部分R1から他の部分に伝導される熱の伝導量が小さくなったため、半磁性領域14(不安定組織)があまり形成されなかったからであると考えられる。
 また、図14および図15に示すように、実施例2、3aおよび3bの比例ソレノイド100では、それぞれ、比較例2、3aおよび3bと同様の吸引力カーブが得られた。この結果、チューブ状の固定鉄心1に加えた高周波加熱において、保持時間または保持温度勾配を変化させることによって、所望の吸引力カーブを適宜作成することができることが確認できた。
 (第4実施例)
 次に第4実施例について説明する。第4実施例では、上記第2実施例のソレノイドに用いるチューブ状の固定鉄心1に対して、パラメータ(加熱位置H、加熱速度、加熱温度、保持時間および保持温度勾配)を異ならせた実施例4a、4b、実施例5a~5d、実施例6a~6dおよび実施例7a~7cの固定鉄心1を備える比例ソレノイド100を作製し、その吸引力カーブを測定した。
(実施例4a~7cの比例ソレノイド)
 実施例4aおよび4bとして、加熱速度を各々異ならせた固定鉄心1を有する比例ソレノイド100を、実施例5a~5dとして、保持時間を各々異ならせた固定鉄心1を有する比例ソレノイド100を、実施例6a~6dとして、保持温度勾配を各々異ならせた固定鉄心1を有する比例ソレノイド100を、実施例7a~7cとして、加熱位置Hを各々異ならせた固定鉄心1を有する比例ソレノイド100を、それぞれ作製した。具体的には、表5に示す条件の通り、上記実施形態の製造方法に基づいて、上記実施例2と異なる条件(表中の下線部分)以外は、実施例2のソレノイドに用いるチューブ状の固定鉄心1と同様にして、それぞれの比例ソレノイド100を作製した。なお、実施例4a~7cの固定鉄心1の作製では、実施例2、3aおよび3bの固定鉄心1の作製から加熱温度を異ならせた。そして、実施例3aおよび3bと同様に、吸引力測定を行った。測定結果を図16~図19に示す。
Figure JPOXMLDOC01-appb-T000005
 図16~図19に示すように、それぞれのパラメータ(加熱速度、保持時間、保持温度勾配、加熱位置H)を様々な値に異ならせることによって、吸引力カーブの異なる比例ソレノイド100を作製することが可能であることが確認できた。
 なお、図16に示すように、加熱速度が大きい側(実施例4b)では、加熱速度が小さい側(実施例4a)と比べて、平坦領域が長くなり、対応するテーパ角度θが大きくなる傾向があることが確認できた。また、図17に示すように、保持時間が小さい側(たとえば、実施例5a)では、保持時間が大きい側(たとえば、実施例5d)と比べて、平坦領域が長くなり、対応するテーパ角度θが大きくなる傾向があることが確認できた。また、図18に示すように、保持温度勾配が小さい側(たとえば、実施例6d)では、保持温度勾配が大きい側(たとえば、実施例6a)と比べて、平坦領域が長くなり、対応するテーパ角度θが大きくなる傾向があることが確認できた。また、図19に示すように、加熱位置Hが吸着面から遠い側(たとえば、実施例7c)では、加熱位置Hが吸着面から近い側(たとえば、実施例7a)と比べて、平坦領域が長くなり、対応するテーパ角度θが大きくなる傾向があることが確認できた。
 さらに、たとえば、図8に示す実施例1(加熱速度190℃/秒、加熱温度1250℃)と、図19に示す実施例5a(加熱速度120℃/秒、加熱温度1200℃)とから、パラメータ(加熱温度、加熱速度、保持時間、保持温度勾配、加熱位置H)の内の2つ以上を変化させることによっても、吸引力カーブの異なる比例ソレノイド100を作製することが確認できた。
 (第5実施例)
 次に第5実施例について説明する。第5実施例では、対応するテーパ角度θが30度、45度および60度である実施例2、3aおよび3bと同様の吸引力カーブを有する実施例8a、8bおよび8cのソレノイドに用いるチューブ状の固定鉄心1を作製して、磁化、耐圧性能、ビッカース硬さを測定した。また、FE-SEMによる組織観察、観察結果から、炭化物量の比較を行った。さらに、θxの観察、腐食処理による非磁性領域、半磁性領域の断面観察を行った。
 (実施例8a、8bおよび8cの固定鉄心)
 実施例8aとして、上記実施例2と同様にして、対応するテーパ角度θが30度であるソレノイドに用いるチューブ状の固定鉄心1を作製した。また、実施例8bおよび8cとして、上記実施例3aおよび3bと同様にして、対応するテーパ角度θが45度および60度である固定鉄心1をそれぞれ作製した。なお、実施例8a~8cの固定鉄心1の厚み(=(外径-内径)/2)は、2.4mmであった。
(磁化測定)
 そして、実施例8a~8cの固定鉄心1を用いて、上記第1実施例と同様に磁化測定を行った。測定結果を図20に示す。
 磁化測定の結果としては、保持時間と保持温度勾配との少なくともいずれか1つの熱処理条件を異ならせることにより磁化が異なる固定鉄心1が得られることが確認できた。この磁化の違いから、実施例8a~8cの固定鉄心1を用いた比例ソレノイド100では、互いに異なる吸引力カーブが得られる。
(耐圧性能測定)
 (参考例および比較例4の固定鉄心)
 耐圧性能測定においては、まず、実施例8a~8cの比較例として、比較例4の固定鉄心を作製した。なお、比較例4の固定鉄心は、比較例1の固定鉄心301(図7参照)と同様に、テーパ接合面と固定鉄心の内表面とのなすテーパ角度θが45度となるように、棒状のFe-Cr-Ni-Mn-Al-C合金からなる複合磁性体用材料からなる磁性部と、SUS304からなる非磁性部とを備える。なお、具体的な比較例4の固定鉄心の製造方法としては、強磁性材料からなる磁性部のテーパ面に非磁性材料をろう付け接合することによって、磁性部のテーパ面と非磁性部のテーパ面とを互いに接合して作製した。また、実施例8a~8cの参考例として、高周波熱処理を行わない以外は実施例8a~8cの固定鉄心の製造方法と同一にした固定鉄心を準備した。
 そして、実施例8a~8c、参考例および比較例4の固定鉄心の耐圧性能を測定するために、静特性破壊試験を行った。静特性破壊試験では、固定鉄心の一端を塞ぎ、他端に圧力ポンプ(UP-21 RIKEN POWER製)に接続された固定鉄心を接続した。そして、圧力ポンプを駆動させることによって、固定鉄心内の圧力を上昇させた。なお、圧力ポンプにより印加可能な最大の圧力は、150MPaである。そして、固定鉄心が破壊した際の圧力を破壊圧とした。また、目視によりふくらみ(変形)および破断の有無を観察した。測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 耐圧性能の測定結果としては、実施例8a~8cのいずれにおいても、参考例と同様に、圧力ポンプにより印加可能な最大の圧力(150MPa)であっても破壊されずに、ふくらみおよび破断が確認できなかった。つまり、実施例8a~8cは、少なくとも150MPaより大きい破壊圧(min150MPa)を有していることが判明した。一方、比較例4では、30MPaの圧力(破壊圧)で、ふくらみおよびろう付け接合部からの破断が生じた。これにより、本実施形態の固定鉄心1は、熱処理前後で耐圧性能が低下することなく、高圧下でも十分に使用することができることが確認できた。さらに、40MPaの高圧を100万回繰り返し印加するサイクル試験(加速試験)、および45MPaの高圧を100万回繰り返し印加するサイクル試験を行ったが、本実施形態の固定鉄心1は、ふくらみ(変形)および破断せずに十分な耐久性を示した。
(ビッカース硬さ測定)
 また、対応するテーパ角度θが30度、45度および60度である実施例8a、8bおよび8cの比例ソレノイド100に用いるチューブ状の固定鉄心1のそれぞれのビッカース硬さ測定を行った。
 具体的には、実施例8a、8bおよび8cの固定鉄心1から第1実施例と同様に、17.0mm(Z軸方向)×5.0mm(A方向)×2.0mm(厚み方向)の試験片(図9(b)参照)を切り出した。そして、切り出した試験片の固定鉄心1の外表面(図9(b)において、ハッチングが形成されている面)側を、ビッカース硬さ測定用に鏡面加工した。
 そして、実施例1と同様にして、実施例8a、8bおよび8cのビッカース硬さを測定した。測定結果を図21に示す。
 図21に示すビッカース硬さ測定の結果を図20の磁化測定の結果と合わせて考察すると、加熱位置Hの中心(吸着面11bからの距離D=6.5mm)近傍では、磁化が0.01T以下に十分に小さくなるとともに、ビッカース硬さ(HV)が250以下程度にまで小さくなった。これにより、非磁性領域13は、非磁性で、かつ、ビッカース硬さが比較的小さいオーステナイト組織から主に構成されていることが確認できた。
 一方、加熱位置Hの中心から離れるに従って、磁化が大きくなるとともに、ビッカース硬さ(HV)が450~500以上程度にまで大きくなった。これにより、半磁性領域14の非磁性領域13側では、非磁性領域13から磁性領域12に向かうに従って、オーステナイト組織の存在比が小さくなるとともに、強磁性で、かつ、ビッカース硬さが大きいマルテンサイト組織の存在比が大きくなったことが確認できた。
 また、加熱位置Hの中心からさらに離れるに従って、磁化が若干大きくなるとともに、ビッカース硬さ(HV)が220程度にまで小さくなった。これにより、半磁性領域14の磁性領域12側では、非磁性領域13から磁性領域12に向かうに従って、マルテンサイト組織の存在比が小さくなるとともに、強磁性で、かつ、ビッカース硬さが比較的小さいフェライト組織の存在比が大きくなったことが確認できた。
 これらの結果、半磁性領域14では、非磁性領域13から磁性領域12に向かって磁化が大きくなるような磁気勾配を有していること、および、硬さ(ビッカース硬さ)が大きくなって小さくなるような硬さ勾配が得られること、すなわち半磁性領域14内にビッカース硬さの極大値を有していること、およびマルテンサイト組織の存在比の極大値を有していることが確認できた。
(金属組織観察)
 次に、上記ビッカース硬さの測定から、実施例8a、8bおよび8cのそれぞれの磁性領域12、半磁性領域14、非磁性領域13の位置を推測し、その部分について金属組織を観察した。具体的には、実施例8a、8bおよび8cの固定鉄心1からビッカース硬さの測定と同様に、17.0mm(Z軸方向)×5.0mm(A方向)×2.0mm(厚み方向)の板を切り出して、ピクリン酸腐食処理を行った。観察は、FE-SEM(JSM-7001F 日本電子製)EDX(JED-2300 SD10 日本電子製)を用い、加速電圧15kV、作動距離(W.D.)10mmとした。それぞれのFE-SEM画像を図22に示す。
 図22より、非磁性領域13では比較的結晶粒径が大きく粒界の明確なオーステナイト組織の特徴が見られた。非磁性領域13では炭化物の析出は見られなかったが、半磁性領域14および磁性領域12では炭化物の析出を確認した。なお、炭化物はFE-SEMの反射電子検出モードによって確認した他、EDXによってもその組成を確認している。磁性領域12では、半磁性領域14と比べて、より多くの炭化物が確認された。
(炭化物量観察)
 次に、各処理条件におけるFE-SEM観察において、観察総面積に対する炭化物量面積の比率を確認した。炭化物量の比率(%)を表7および図23に示す。
Figure JPOXMLDOC01-appb-T000007
 表7および図23に示す観察結果から、実施例8a~8cのすべてにおいて、磁性領域12から非磁性領域13に近づくにつれて炭化物量が徐々に減少し、非磁性領域13では炭化物が検出されないことを確認した。また、テーパ角度θが30度相当であり、平坦領域の長い実施例8aでは、テーパ角度θが60度相当であり、平坦領域が短い実施例8cと比べて、吸着面11bからの距離Dが小さい段階(たとえば、D=3mm)で、炭化物量の減少が見られた。なお、磁性領域12では、炭素がフェライト組織中に固溶しないため炭化物として多く検出される。半磁性領域14では、マルテンサイト組織が一部の炭素を固溶し、マルテンサイト組織に固溶されなかった炭素のみが炭化物として検出されるので、磁性領域12よりも検出される炭化物が減少する。非磁性領域13では、炭素はオーステナイト組織に固溶されるため、炭化物は検出されない。
(角度θxの観察)
 次に、非磁性領域13と半磁性領域14との境界14aと固定鉄心1の内表面11cとがなす角度θx(図4参照)を観察した。具体的には、まず、観察用として、実施例8a~8cの固定鉄心1を軸方向に切断した。そして、切断面の熱処理領域R付近(図4参照)において、吸着面11b側に磁石をひっつけ、磁性粉として少量のトナーを非磁性領域13の中央付近に置き、綿棒を用いて振動を与えて徐々に両側に広げ、トナーが吸着する境界、すなわち、非磁性領域13と半磁性領域14の境界14aを可視化し、角度θxを観察した。なお、円筒状の固定鉄心1を切断したことにより、2箇所(測定箇所1および測定箇所2)の境界14aにおいて、各々角度θxを測定した。結果を表8および図24に示す。
Figure JPOXMLDOC01-appb-T000008
 測定結果としては、実施例8a~8cにおける角度θxは、対応する比較例のテーパ角度θとは相関がなく、70度から85度程度の角度であることがわかった。
(非磁性領域および半磁性領域の観察)
 次に、非磁性領域13および半磁性領域14が形成されていることを腐食処理によって観察した。腐食処理によって金属組織の違いを色のコントラストの違いとして観察できる。具体的には、Z軸方向に切断した実施例8bの固定鉄心1を650℃で1時間熱処理した後、ピクリン酸腐食処理を行った。そして、ピクリン酸腐食処理後の実施例8bの固定鉄心1を観察した。観察結果を図25に示す。
 図25に示すように、実施例8bの固定鉄心1では、非磁性領域13および半磁性領域14が連続的かつ一体的に形成されている様子が確認できた。
[変形例]
 なお、今回開示された実施形態および実施例は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態および実施例の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記実施形態では、半磁性領域14を、吸着面11bからZ軸方向に離間した位置に形成した例を示したが、本発明はこれに限られない。本発明では、半磁性領域と吸着面とをZ軸方向に重なるように形成してもよい。
 また、上記実施形態では、水冷により加熱した管状部材101を急冷した例を示したが、本発明はこれに限られない。本発明では、たとえば、油冷により加熱した管状部材を急冷してもよい。
 また、上記実施形態では、非磁性領域形成部分R1を1000℃以上1300℃以下の加熱温度まで急速加熱するとともに、非磁性領域形成部分R1の保持温度勾配が-20℃/秒以上5℃/秒以下の保持温度勾配範囲に含まれるように、保持時間の間、非磁性領域形成部分R1の加熱状態を保持するとしたが、本発明はこれに限られない。本発明では、非磁性領域形成部分を含む加熱位置を1000℃以上1300℃以下の加熱温度まで急速加熱するとともに、加熱位置の保持温度勾配が-20℃/秒以上5℃/秒以下の保持温度勾配範囲に含まれるように、保持時間の間、加熱位置の加熱状態を保持するようにしてもよい。つまり、加熱位置と非磁性領域形成部分とを等しい領域と見做してもよい。
 また、上記実施形態では、所定の回転速度で管状部材101を回転させながら、非磁性領域形成部分R1を急速加熱する例を示したが、本発明はこれに限られない。本発明では、管状部材を回転させない状態で、非磁性領域形成部分を急速加熱してもよい。
 さらに、吸引力カーブは、可動鉄心21の寸法を変えること、または管状部材の削り出しにより寸法を変えることによっても吸引力カーブを変化することができる。つまり、前述した製造方法に加えて、寸法変更も合わせることで管状部材の磁気特性の分布および比例ソレノイドのソレノイド特性を多種多様に変化させることができる。
 また、本実施形態の高周波誘導加熱装置を、高周波コイルに流す交流電流の電流量を制御する機能だけでなく、交流電流の周波数を制御(可変に)する機能を有するように構成してもよい。交流電流の周波数を変化させることによっても、高周波加熱による半磁性領域および非磁性領域の形成状態を変化させることができ、比例ソレノイドのソレノイド特性を制御することが可能であると考えられる。
 1 固定鉄心(管状部材)
 2 ロッド組立品(可動磁性体)
 11b 吸着面
 12 磁性領域
 12a 磁性領域(第1磁性領域)
 12b 磁性領域(第2磁性領域)
 13 非磁性領域
 14 半磁性領域
 14a 半磁性領域(第1半磁性領域)
 14b 半磁性領域(第2半磁性領域)
 100 比例ソレノイド
 101 管状部材
 Z 軸方向

Claims (14)

  1.  複合磁性体材料により構成された管状部材(101)からなる固定鉄心(1)と、前記管状部材に挿入され、前記管状部材の軸方向に移動可能な可動磁性体(2)と、を有する比例ソレノイド(100)であって、
     前記管状部材は、前記軸方向と直交する面に対して略平行に設けられ前記可動磁性体が対向する吸着面(11b)を有し、
     前記吸着面を含み、主にフェライト組織からなる第1磁性領域(12a)と、前記吸着面から離間した位置に存在し、フェライト組織、マルテンサイト組織、オーステナイト組織を含む第1半磁性領域(14c)と、前記第1半磁性領域よりも前記吸着面から離間した位置に存在し、主にオーステナイト組織からなる非磁性領域(13)とが、前記管状部材の前記軸方向に沿って連続的かつ一体的に形成されている、比例ソレノイド。
  2.  前記管状部材のビッカース硬さ(HV)は、200≦HV≦600の範囲で変化し、
     前記第1磁性領域および前記非磁性領域におけるビッカース硬さ(HV)は、200≦HV≦300であり、前記第1半磁性領域に、400≦HV≦600の範囲のビッカース硬さ(HV)の極大値が存在する、請求項1に記載の比例ソレノイド。
  3.  前記第1半磁性領域に、マルテンサイト組織の存在比の極大値が存在する、請求項2に記載の比例ソレノイド。
  4.  前記第1半磁性領域に存在する炭化物は、前記非磁性領域に存在する炭化物よりも多く、かつ、前記第1磁性領域に存在する炭化物よりも少ない、請求項1に記載の比例ソレノイド。
  5.  前記第1半磁性領域に存在する炭化物は、前記第1磁性領域から前記非磁性領域に向かって徐々に減少する、請求項4に記載の比例ソレノイド。
  6.  前記第1磁性領域と、前記第1半磁性領域と、前記非磁性領域と、前記非磁性領域よりも前記吸着面から離間した位置に存在し、フェライト組織、マルテンサイト組織、オーステナイト組織を含む第2半磁性領域(14d)と、前記第2半磁性領域よりも前記吸着面から離間した位置に存在し、主にフェライト組織からなる第2磁性領域(12b)とが、前記管状部材の前記軸方向に沿って連続的かつ一体的に形成されている、請求項1に記載の比例ソレノイド。
  7.  主にフェライト組織からなる複合磁性体用材料から構成された管状部材(101)を熱処理することにより、主にフェライト組織からなる磁性領域(12)と、主にオーステナイト組織からなる非磁性領域(13)とを形成する工程を含む、比例ソレノイド(100)の製造方法であって、
     主にフェライト組織からなり、質量%で、0.3%以上1.2%以下のC(炭素)を含む複合磁性体用材料から構成された前記管状部材を準備する工程と、
     前記管状部材の非磁性領域形成部分(R1)を含む加熱位置(H)を周状に取り囲むように高周波コイル(102b)を配置する工程と、
     前記高周波コイルに電流を流すことによって、前記非磁性領域形成部分を1000℃以上1300℃以下の加熱温度まで急速加熱する工程と、
     5秒以上20秒以下の保持時間の間、前記非磁性領域形成部分の加熱状態を保持する工程と、
     加熱した前記管状部材を急冷することによって、前記磁性領域と、前記非磁性領域形成部分に形成された前記非磁性領域と、前記磁性領域と前記非磁性領域との間に形成され、前記非磁性領域から前記磁性領域に向かって磁化が大きくなるような磁気勾配を有する半磁性領域(14)とを、前記管状部材の軸方向に沿って連続的かつ一体的に前記管状部材に形成する工程と、
     前記磁性領域と前記半磁性領域と前記非磁性領域とを含む前記管状部材に、前記軸方向に移動可能な可動磁性体(2)を挿入する工程とを含む、比例ソレノイドの製造方法。
  8.  前記非磁性領域形成部分を急速加熱する工程は、100℃/秒以上250℃/秒以下の加熱速度で、前記非磁性領域形成部分を前記加熱温度まで急速加熱する工程を含む、請求項7に記載の比例ソレノイドの製造方法。
  9.  前記非磁性領域形成部分の加熱状態を保持する工程は、前記非磁性領域形成部分の保持温度勾配が-10℃/秒以上0℃/秒以下の保持温度勾配範囲に含まれるように、前記保持時間の間、前記非磁性領域形成部分の加熱状態を保持する工程を含む、請求項7に記載の比例ソレノイドの製造方法。
  10.  前記非磁性領域形成部分を急速加熱する工程は、150℃/秒以上200℃/秒以下の加熱速度で前記非磁性領域形成部分を前記加熱温度まで急速加熱する工程である、請求項8に記載の比例ソレノイドの製造方法。
  11.  前記非磁性領域形成部分を急速加熱する工程は、所定の回転速度で前記管状部材を回転させながら、前記非磁性領域形成部分を急速加熱する工程を含む、請求項7に記載の比例ソレノイドの製造方法。
  12.  前記磁性領域は、前記軸方向と直交する面に対して略平行に設けられ前記可動磁性体が対向する吸着面(11b)を含み、
     前記高周波コイルを配置する工程は、前記吸着面と前記高周波コイルの前記吸着面側の端部とが前記軸方向に離れるように、前記高周波コイルを配置する工程を含む、請求項7に記載の比例ソレノイドの製造方法。
  13.  前記複合磁性体用材料は、質量%で、0.3%以上1.2%以下のC、0.1%以上3%以下のSi(ケイ素)、0.1%以上4%以下のMn(マンガン)、4%以下のNi(ニッケル)、4%以上20%以下のCr(クロム)、2%以下のAl(アルミニウム)、残部Fe(鉄)および不可避不純物を含有する鉄合金である、請求項7に記載の比例ソレノイドの製造方法。
  14.  主にフェライト組織からなる複合磁性体用材料から構成された管状部材(101)を熱処理することにより、主にフェライト組織からなる磁性領域(12)と、主にオーステナイト組織からなる非磁性領域(13)とを形成する工程を含む、比例ソレノイド(100)の特性制御方法であって、
     主にフェライト組織からなり、質量%で、0.3%以上1.2%以下のC(炭素)を含む複合磁性体用材料から構成された前記管状部材の非磁性領域形成部分(R1)を含む加熱位置(H)を周状に取り囲むように高周波コイル(102b)を配置する工程と、
     前記高周波コイルに電流を流すことによって、前記非磁性領域形成部分を1000℃以上1300℃以下の加熱温度まで急速加熱する工程と、
     5秒以上20秒以下の保持時間の間、前記非磁性領域形成部分の加熱状態を保持する工程と、
     加熱した前記管状部材を急冷する工程と、
     加熱した前記管状部材を急冷することによって、前記磁性領域と、前記非磁性領域形成部分に形成された前記非磁性領域と、前記磁性領域と前記非磁性領域との間に形成され、前記非磁性領域から前記磁性領域に向かって磁化が大きくなるような磁気勾配を有する半磁性領域(14)とを、前記管状部材の軸方向に沿って連続的かつ一体的に前記管状部材に形成する工程と、
     前記磁性領域と前記半磁性領域と前記非磁性領域とを含む前記管状部材に、前記軸方向に移動可能な可動磁性体(2)を挿入する工程と、を備え、
     前記加熱位置、加熱速度、前記加熱温度、前記保持時間および保持温度勾配の少なくともいずれか1つを調整することにより、前記管状部材の磁気特性の分布を制御することによって、前記比例ソレノイドの特性を制御する、比例ソレノイドの特性制御方法。
PCT/JP2018/019193 2017-05-22 2018-05-17 比例ソレノイド、その製造方法、および、比例ソレノイドの特性制御方法 WO2018216603A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112018002646.9T DE112018002646T5 (de) 2017-05-22 2018-05-17 Proportionalsolenoid, Verfahren zur Herstellung desselben und Verfahren zum Steuern von Eigenschaften des Proportionalsolenoids
CN201880033599.5A CN110678944B (zh) 2017-05-22 2018-05-17 比例螺线管、其制造方法、以及比例螺线管的特性控制方法
US16/615,700 US11177061B2 (en) 2017-05-22 2018-05-17 Proportional solenoid, method for manufacturing the same, and method for controlling characteristics of proportional solenoid
JP2019520209A JP7099457B2 (ja) 2017-05-22 2018-05-17 比例ソレノイド、その製造方法、および、比例ソレノイドの特性制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-100631 2017-05-22
JP2017100631 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018216603A1 true WO2018216603A1 (ja) 2018-11-29

Family

ID=64396736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019193 WO2018216603A1 (ja) 2017-05-22 2018-05-17 比例ソレノイド、その製造方法、および、比例ソレノイドの特性制御方法

Country Status (5)

Country Link
US (1) US11177061B2 (ja)
JP (1) JP7099457B2 (ja)
CN (1) CN110678944B (ja)
DE (1) DE112018002646T5 (ja)
WO (1) WO2018216603A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113891510B (zh) * 2021-06-16 2024-04-26 安吉热威电热科技有限公司 一种辐射盘结构及该辐射盘上隔热圈的加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340304A (ja) * 1986-08-05 1988-02-20 Ckd Controls Ltd ソレノイドのプランジヤのガイドチユ−ブ製造方法
JPH10212588A (ja) * 1997-01-28 1998-08-11 Aisin Seiki Co Ltd 複合磁性部材の製造法
JP2010510458A (ja) * 2006-11-22 2010-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 固定の磁気回路素子を製造する方法
JP2013028825A (ja) * 2011-07-26 2013-02-07 Tohoku Tokushuko Kk 複合材料及び電磁アクチュエータ

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3050449A (en) * 1959-06-03 1962-08-21 Nat Lead Co Hydrocarbon sampling
US3365861A (en) * 1964-04-09 1968-01-30 Abcor Inc Gas fractionating apparatus
US3633139A (en) * 1970-04-20 1972-01-04 Lisk Co G W Solenoid construction
US3982224A (en) * 1973-08-23 1976-09-21 Mobil Oil Corporation Method and apparatus for transmitting downhole information from a well
US4628928A (en) * 1982-08-09 1986-12-16 Medtronic, Inc. Robotic implantable medical device and/or component restoration system
US4771772A (en) * 1982-08-09 1988-09-20 Medtronic, Inc. Robotic implantable medical device and/or component restoration system
JP2917069B2 (ja) 1991-02-18 1999-07-12 三明電機株式会社 ウエット型ソレノイドにおける筒状ヨークの製造方法
JP3311427B2 (ja) 1993-06-18 2002-08-05 株式会社デンソー 複合磁性部材およびその製法およびこの複合磁性部材を用いた電磁弁
US5429099A (en) * 1994-09-08 1995-07-04 Lectron Products, Inc. Anti-permeation filter for vapor management valve
US6016691A (en) * 1998-02-25 2000-01-25 Siemens Canada Ltd. Calibrated toggle lever of leak detection module pump
JP4712144B2 (ja) 1999-06-18 2011-06-29 三明電機株式会社 2方向性比例ソレノイド
JP3661994B2 (ja) * 2000-12-25 2005-06-22 テクノエクセル株式会社 連結可能型電磁式直動弁ユニット及び電磁式直動弁装置
JP4283263B2 (ja) * 2005-10-20 2009-06-24 本田技研工業株式会社 磁歪式トルクセンサの製造方法
JP4878977B2 (ja) * 2006-09-29 2012-02-15 富士フイルム株式会社 インサート部材、及びこれを備えた多孔質フィルターカートリッジの製造方法
US8242649B2 (en) * 2009-05-08 2012-08-14 Fradella Richard B Low-cost minimal-loss flywheel battery
US20110297753A1 (en) * 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
US9200561B2 (en) * 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US20150252757A1 (en) * 2012-11-12 2015-09-10 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US9905348B2 (en) * 2013-03-13 2018-02-27 Mitsubishi Electric Corporation Electromagnetic operating device
JP6340304B2 (ja) 2013-11-29 2018-06-06 富士フイルム株式会社 パターン形成方法、及び電子デバイスの製造方法
GB201405647D0 (en) * 2014-03-28 2014-05-14 Carbon Air Ltd Transfer method and apparatus
WO2019010433A2 (en) * 2017-07-06 2019-01-10 W. L. Gore & Associates, Inc. CONTAMINATION RESISTANT REGENERABLE DEHYDRATING ELEMENT COMPRISING BENTONITE MATERIAL

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6340304A (ja) * 1986-08-05 1988-02-20 Ckd Controls Ltd ソレノイドのプランジヤのガイドチユ−ブ製造方法
JPH10212588A (ja) * 1997-01-28 1998-08-11 Aisin Seiki Co Ltd 複合磁性部材の製造法
JP2010510458A (ja) * 2006-11-22 2010-04-02 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 固定の磁気回路素子を製造する方法
JP2013028825A (ja) * 2011-07-26 2013-02-07 Tohoku Tokushuko Kk 複合材料及び電磁アクチュエータ

Also Published As

Publication number Publication date
US20200227188A1 (en) 2020-07-16
JP7099457B2 (ja) 2022-07-12
JPWO2018216603A1 (ja) 2020-03-19
US11177061B2 (en) 2021-11-16
CN110678944A (zh) 2020-01-10
DE112018002646T5 (de) 2020-03-05
CN110678944B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
JP3311427B2 (ja) 複合磁性部材およびその製法およびこの複合磁性部材を用いた電磁弁
JP5846793B2 (ja) 複合材料及び電磁アクチュエータ
JP2004277865A (ja) 形状記憶合金及びその製造方法
WO2018216603A1 (ja) 比例ソレノイド、その製造方法、および、比例ソレノイドの特性制御方法
JP2004515644A (ja) 特に電磁アクチュエータの可動コア用の鉄−コバルト合金、およびその製造方法
JP2989977B2 (ja) 燃料噴射装置の固定鉄心の製造方法
JP4837288B2 (ja) ロータ
JP2015103635A (ja) ソレノイドバルブ用コアの製造方法
JP2004534149A (ja) 耐食性磁性合金、同合金より作られた製品及び同製品を利用する方法
JP5233141B2 (ja) 磁歪式応力センサおよびその製造方法
JP2013049918A (ja) 電磁ステンレス鋼及びその製造方法
JP6063845B2 (ja) 構造体およびその製造方法
JP6434900B2 (ja) 電磁制御部品用鉄心部材及びその製造方法
JP2006009044A (ja) 非磁性部を有する強磁性鋼材およびその製造方法
JP2002180215A (ja) 低温磁気安定性に優れた複合磁性部材及び低温磁気安定性に優れた複合磁性部材の製造方法
JP2006300902A (ja) 応力検出方法及び装置
WO2007119412A1 (ja) 閉磁路磁心およびその製造方法
JP2013170996A (ja) 磁歪リング式トルクセンサ、及び磁歪リング式トルクセンサの製造方法
TWI544506B (zh) Electromagnetic ring
JP2528801B2 (ja) 磁気パルス発信器の製造方法
JP4876393B2 (ja) トルク検出装置
JP2004198349A (ja) 磁歪式トルクセンサ、磁歪式トルクセンサ用の軸、磁歪式トルクセンサ用の軸の製造方法
JP5648958B2 (ja) 磁歪力センサ用板状部材の製造方法、磁歪力センサ用リング状部材及び磁歪力センサ用リング状部材の製造方法
JPH10258325A (ja) 複合磁性部材,その製造方法及びこの複合磁性部材を用いた電磁弁
Liu et al. Comparison in Magnetic properties of ferritic stainless steels measured using bar and ring samples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805001

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019520209

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18805001

Country of ref document: EP

Kind code of ref document: A1