WO2018216548A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2018216548A1
WO2018216548A1 PCT/JP2018/018690 JP2018018690W WO2018216548A1 WO 2018216548 A1 WO2018216548 A1 WO 2018216548A1 JP 2018018690 W JP2018018690 W JP 2018018690W WO 2018216548 A1 WO2018216548 A1 WO 2018216548A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
mass addition
sound velocity
wave device
low sound
Prior art date
Application number
PCT/JP2018/018690
Other languages
English (en)
French (fr)
Inventor
和大 瀧川
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018216548A1 publication Critical patent/WO2018216548A1/ja
Priority to US16/674,011 priority Critical patent/US11791798B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02889Means for compensation or elimination of undesirable effects of influence of mass loading
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/14529Distributed tap
    • H03H9/14532Series weighting; Transverse weighting
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode

Definitions

  • the present invention relates to an elastic wave device using a piston mode.
  • an IDT electrode is provided on a piezoelectric substrate.
  • the cross region is in the elastic wave propagation direction. It consists of a central region located in the center in the orthogonal direction and edge regions located on both outer sides of the central region. Further, gap regions are provided on both outer sides of the edge region.
  • the edge area is a low sound speed area whose sound speed is lower than the sound speed in the central area.
  • the gap region is a high sound velocity region where the sound velocity is higher than the sound velocity in the central region.
  • An object of the present invention is to provide an elastic wave device capable of suppressing ripples caused by a low-order transverse mode.
  • An acoustic wave device includes a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate, and the IDT electrode is opposed to each other, a first bus bar and a second bus bar, A plurality of first electrode fingers whose one ends are connected to the first bus bar, and a plurality of ones whose one ends are connected to the second bus bar and which are inserted into the plurality of first electrode fingers.
  • the IDT electrode has the first electrode when the elastic wave propagation direction is the first direction and the direction orthogonal to the elastic wave propagation direction is the second direction.
  • the crossing region is a portion where the finger and the second electrode finger overlap in the first direction, and the crossing region has a central region located on the center side in the second direction.
  • the central region has a lower sound speed than the sound speed in other parts.
  • a first low sound velocity region having a low sound velocity portion, disposed in the crossing region on the first bus bar side of the central region, and having a sound velocity lower than the sound velocity in the other part of the central region;
  • a second low sound velocity region disposed on the second bus bar side of the central region and having a sound velocity lower than the sound velocity in the other portion of the central region, and in the IDT electrode,
  • a first high sound speed region having a sound speed higher than the sound speed in the central region and a second high sound speed region are provided, and the first high sound speed region is the second low sound speed region.
  • the second high sound velocity region is disposed outside in the second direction of the second low sound velocity region.
  • the sound velocity in the first low sound velocity region and the second low sound velocity region is lower than the sound velocity in the low sound velocity portion in the central region.
  • a dimension along the second direction of the low sound velocity part is the second low sound velocity region of the first low sound velocity region and the second low sound velocity region. Less than dimension along direction. In this case, it is difficult to affect the effect of suppressing the high-order transverse mode, and the low-order transverse mode can be effectively suppressed.
  • the low sound velocity portion is provided with a first mass addition film on at least one of the first electrode finger and the second electrode finger. Is configured.
  • the first low sound velocity region and the second low sound velocity region are on the first electrode finger and the second electrode finger.
  • the second mass addition film is provided on at least one side, and the dimension of the first mass addition film along the second direction is the second direction of the second mass addition film. It is smaller than the dimension along. In this case, it is difficult to affect the effect of suppressing the high-order transverse mode, and the low-order transverse mode can be effectively suppressed.
  • the first low sound velocity region and the second low sound velocity region are at least one of the first electrode finger and the second electrode finger.
  • the second mass addition film is provided on one side, and the dimension along the first direction of the first mass addition film is in the first direction of the second mass addition film. Less than the dimension along. In this case, it is difficult to affect the effect of suppressing the high-order transverse mode, and the low-order transverse mode can be effectively suppressed.
  • a plurality of the first mass addition films are provided, and at least of the plurality of first electrode fingers and the plurality of second electrode fingers.
  • a plurality of the first mass addition films are provided on one electrode finger.
  • the plurality of first mass-added films are relative to an axis extending in the first direction at the center in the second direction of the central region. They are arranged in line symmetry.
  • a plurality of the first mass addition films are provided, and the plurality of first mass addition films are in the first direction of the central region. And symmetrically arranged with respect to the center in the second direction.
  • a plurality of the first mass addition films are provided, and the plurality of first mass addition films are in the second direction of the central region. Are arranged in a line along the first direction.
  • a reflector having a plurality of electrode fingers is provided on at least one side of the IDT electrode in the first direction on the piezoelectric substrate. And a third mass addition film is provided on the electrode finger of the reflector.
  • the stripping solution for stripping the resist pattern easily flows into the reflector portion. Thereby, the resist pattern can be more reliably peeled off.
  • an elastic wave device that can suppress ripples caused by a low-order transverse mode.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a relationship between the widths of the first low sound velocity region and the second low sound velocity region and the ripple intensity due to the transverse mode in the elastic wave device of the comparative example.
  • FIG. 3 is a diagram showing the relationship between the widths of the first low sound velocity region and the second low sound velocity region and the intensity of the ripple due to the transverse mode in the elastic wave device according to the first embodiment of the present invention.
  • FIG. 4 is a plan view of an acoustic wave device according to a first modification of the first embodiment of the present invention.
  • FIG. 5 is a plan view of an acoustic wave device according to a second modification of the first embodiment of the present invention.
  • FIG. 6 is a plan view of an acoustic wave device according to a third modification of the first embodiment of the present invention.
  • FIG. 7 is a plan view of an acoustic wave device according to the second embodiment of the present invention.
  • FIG. 8 is a plan view of an acoustic wave device according to a modification of the second embodiment of the present invention.
  • FIG. 9 is a plan view of an acoustic wave device according to the third embodiment of the present invention.
  • FIG. 10 is a plan view of an acoustic wave device according to the fourth embodiment of the present invention.
  • FIG. 10 is a plan view of an acoustic wave device according to the fourth embodiment of the present invention.
  • FIG. 11 is a plan view of an acoustic wave device according to a fifth embodiment of the present invention.
  • FIG. 12 is a plan view of an acoustic wave device according to a sixth embodiment of the present invention.
  • FIG. 13 is a plan view of an acoustic wave device according to a seventh embodiment of the present invention.
  • FIG. 14 is a plan view of an acoustic wave device according to an eighth embodiment of the present invention.
  • FIG. 1 is a plan view of an acoustic wave device according to a first embodiment of the present invention.
  • the acoustic wave device 1 has a piezoelectric substrate 2 as a piezoelectric substrate.
  • the piezoelectric substrate 2 is made of LiNbO 3 .
  • the piezoelectric substrate 2 may be made of a piezoelectric single crystal other than LiNbO 3, such as LiTaO 3, or may be made from a suitable piezoelectric ceramic.
  • the acoustic wave device 1 may be a piezoelectric substrate in which a piezoelectric film is laminated on a support substrate. As the piezoelectric film, the piezoelectric single crystal or the like can be used as appropriate.
  • An IDT electrode 3 is provided on the piezoelectric substrate 2.
  • the IDT electrode 3 includes a first bus bar 4a and a second bus bar 5a facing each other.
  • the IDT electrode 3 has a plurality of first electrode fingers 4b, one end of which is connected to the first bus bar 4a.
  • the IDT electrode 3 has a plurality of second electrode fingers 5b, one end of which is connected to the second bus bar 5a.
  • the plurality of first electrode fingers 4b and the plurality of second electrode fingers 5b are interleaved with each other.
  • the IDT electrode 3 is composed of a laminated metal film in which a NiCr layer, a Pt layer, a Ti layer, an AlCu layer, and a Ti layer are laminated in this order from the piezoelectric substrate 2 side.
  • the material of the IDT electrode 3 is not limited to the above.
  • the IDT electrode 3 may be made of a single layer metal film.
  • the reflector 6A and the reflector 6B are disposed on both sides of the IDT electrode 3 in the first direction x.
  • the reflector 6A and the reflector 6B each have a plurality of electrode fingers 6b.
  • the reflector 6A and the reflector 6B are made of the same material as that of the IDT electrode 3.
  • a reflector may be provided on one side of the IDT electrode 3 in the first direction x.
  • the IDT electrode 3 has a crossing region A, which is a portion where the first electrode finger 4b and the second electrode finger 5b overlap in the first direction x.
  • a direction orthogonal to the first direction x is defined as a second direction y.
  • the direction in which the first electrode finger 4b and the second electrode finger 5b extend in the present embodiment is parallel to the second direction y.
  • the crossing area A has a central area B located on the center side in the second direction y.
  • 4 ⁇ m, where ⁇ is a wavelength defined by the electrode finger pitch of the IDT electrode 3.
  • the duty ratio of the IDT electrode 3 is 0.65.
  • the crossing width is 15 ⁇ .
  • the wavelength ⁇ , duty ratio, and cross width of the IDT electrode 3 are not limited to the above.
  • the first mass addition films 7 are provided on the plurality of first electrode fingers 4b and the plurality of second electrode fingers 5b, respectively.
  • the plurality of first mass addition films 7 are arranged at positions including the center in the second direction y of the central region B, and arranged in a line along the first direction x.
  • membrane 7 should just be provided in at least one among the 1st electrode finger 4b and the 2nd electrode finger 5b, and should just be provided in the center area
  • the first mass addition film 7 is composed of a laminated metal film in which a Ti layer, a Pt layer, and a Ti layer are laminated in this order from the first electrode finger 4b side and the second electrode finger 5b side.
  • the material of the first mass addition film 7 is not limited to the above.
  • the first mass addition film 7 may be made of a single-layer metal film or may be made of a dielectric film.
  • the crossing region A includes a first edge region Ca disposed on the first bus bar 4a side of the central region B, and a second edge region Cb disposed on the second bus bar 5a side of the central region B.
  • the IDT electrode 3 is disposed outside the first edge region Ca in the second direction y of the first edge region Ca and on the outside of the second edge region Cb in the second direction y.
  • a second outer region Db is located in the present embodiment, the first outer region Da is located between the first edge region Ca and the first bus bar 4a.
  • the second outer region Db is located between the second edge region Cb and the second bus bar 5a.
  • the sound speed in the portion where the first mass addition film 7 is provided is lower than the sound speed in the other portions.
  • the speed of sound is the propagation speed of the elastic wave in the first direction x.
  • the low sound velocity portion is configured by providing the first mass addition film 7.
  • V1 the sound speed in a portion other than the low sound speed portion in the central region
  • V2 the sound speed in the low sound speed portion
  • the second mass addition films 8 are provided on the plurality of first electrode fingers 4b and the plurality of second electrode fingers 5b, respectively.
  • the sound speed in the first edge area Ca and the second edge area Cb is lower than the sound speed in the other part of the central area B other than the low sound speed part.
  • the sound speed in the first edge region Ca and the second edge region Cb is V3, V3 ⁇ V1.
  • the first low sound velocity region is provided in the first edge region Ca
  • the second low sound velocity region is provided in the second edge region Cb.
  • the plurality of second mass addition films 8 are provided so that the duty ratio is 0.35.
  • the dimension along the second direction y of the second mass addition film 8 is 0.6 ⁇ .
  • the dimension along the first direction x of the first mass addition film 7 is smaller than the dimension along the first direction x of the second mass addition film 8.
  • the dimension along the second direction y of the first mass addition film 7 is also smaller than the dimension along the second direction y of the second mass addition film 8.
  • membrane 8 is not specifically limited.
  • the second mass addition film 8 is made of the same material as the first mass addition film 7.
  • the second mass addition film 8 may be made of a material different from that of the first mass addition film 7.
  • the first electrode finger 4b is the only part located in the first outer region Da.
  • the second electrode finger 5b is the only part located in the second outer region Db.
  • the first low sound velocity region and the second low sound velocity region are arranged outside the center region B in the second direction y, and the first low sound velocity region and the second low sound velocity region are outside in the second direction y.
  • the first high sound velocity region and the second high sound velocity region are arranged in the first. Thereby, spurious due to the transverse mode can be suppressed.
  • the elastic wave device 1 uses the piston mode.
  • the relationship between the sound speeds is V3 ⁇ V2 ⁇ V1 ⁇ V4.
  • the relationship between the sound speeds as described above is shown in FIG. In addition, it shows that a sound speed is high as it goes to the left side in FIG.
  • the IDT electrode 3, the reflector 6A, and the reflector 6B can be formed by, for example, a lift-off method.
  • the central region B has a low sound velocity part.
  • ripples due to the low-order transverse mode can be suppressed.
  • the low-order transverse mode refers to a third-order transverse mode and a fifth-order transverse mode.
  • the higher order transverse mode refers to a higher order transverse mode than the fifth order.
  • the dimension along the second direction of the first low sound velocity region and the second low sound velocity region is defined as the width of the first low sound velocity region and the second low sound velocity region.
  • FIG. 2 is a diagram showing the relationship between the widths of the first low sound velocity region and the second low sound velocity region and the ripple intensity due to the transverse mode in the elastic wave device of the comparative example.
  • FIG. 3 is a diagram illustrating a relationship between the widths of the first low sound velocity region and the second low sound velocity region and the intensity of the ripple due to the transverse mode in the acoustic wave device according to the first embodiment. 2 and 3, the rhombus plots show the results of the third-order transverse mode.
  • the square plot shows the results of the fifth order transverse mode.
  • the triangular plot shows the results for the 7th order transverse mode.
  • the circular plot shows the results for the 9th order transverse mode.
  • the X-shaped plot shows the results of the 11th order transverse mode.
  • the crossing width of the IDT electrode When the crossing width of the IDT electrode is narrowed, a low-order transverse mode tends to occur.
  • the low-order transverse mode can be suppressed. Therefore, the acoustic wave device can be reduced in size.
  • the dimension of the first mass addition film 7 along the first direction x is smaller than the dimension of the second mass addition film 8 along the first direction x. Is preferred. Thereby, it is difficult to affect the effect of suppressing the high-order transverse mode, and the low-order transverse mode can be effectively suppressed.
  • the dimension along the second direction y of the first mass addition film 7 is preferably smaller than the dimension along the second direction y of the second mass addition film 8. Even in this case, it is difficult to affect the effect of suppressing the high-order transverse mode, and the low-order transverse mode can be effectively suppressed.
  • planar shapes of the first mass addition film 7 and the second mass addition film 8 are rectangular.
  • the planar shapes of the first mass addition film 7 and the second mass addition film 8 are not limited to the above, and may be, for example, elliptical.
  • a second mass addition film 8 is provided on the first edge region Ca and the second edge region Cb on the first electrode finger 4b and the second electrode finger 5b. ing.
  • the second mass addition film 8 may be provided in one of the first edge region Ca and the second edge region Cb on the first electrode finger 4b. The same applies to the second electrode finger 5b.
  • FIG. 4 is a plan view of an acoustic wave device according to a first modification of the first embodiment.
  • the dimension along the first direction x of the first electrode finger 104b and the second electrode finger 105b is the width of the first electrode finger 104b and the second electrode finger 105b.
  • This modification is different from the first embodiment in that the first electrode finger 104b and the second electrode finger 105b have a wide portion 107 and a wide portion 108 that are wider than other portions.
  • the elastic wave device of the present modification has the same configuration as the elastic wave device 1 of the first embodiment.
  • the wide portion 107 is located in a portion where the first mass addition film 7 is provided in the central region.
  • the wide portion 108 is located in the first edge region and the second edge region. Since the wide portion 107 and the first mass addition film 7 are provided, the sound velocity of the low sound velocity portion is lowered.
  • the sound speed of the first low sound speed region and the second low sound speed region is lowered.
  • the first mass addition film 7 and the second mass addition film 8 are not provided, and the sound speed may be lowered by providing the wide portion 107 and the wide portion 108.
  • FIG. 5 is a plan view of an acoustic wave device according to a second modification of the first embodiment.
  • the present modification is different from the first embodiment in that the third mass addition film 117 and the third mass addition film 118 are provided on the plurality of electrode fingers 6b of the reflector 116A and the reflector 116B, respectively. Different.
  • the third mass addition film 117 is configured in the same manner as the first mass addition film 7, and the third mass addition film 118 is configured in the same manner as the second mass addition film 8. Except for the above points, the elastic wave device of the present modification has the same configuration as the elastic wave device 1 of the first embodiment.
  • the third mass addition film 117 of the reflector 116A and the reflector 116B is provided at a position overlapping the plurality of first mass addition films 7 in the IDT electrode 3 in the first direction x.
  • the plurality of third mass addition films 118 on the reflector 116A and the reflector 116B are provided at positions overlapping the plurality of second mass addition films 8 in the IDT electrode 3 in the first direction x. ing.
  • third mass addition film 117 and the third mass addition film 118 may be similarly configured.
  • the position and the number of the third mass addition film 117 and the third mass addition film 118 are not particularly limited.
  • the IDT electrode 3, the reflector 116A, and the reflector 116B of this modification can also be formed by, for example, a lift-off method.
  • the reflector 116A and the reflector 116B include a third mass addition film 117 and a third mass addition film 118 located on the electrode finger 6b.
  • the stripping solution for stripping the resist pattern easily flows into the reflector 116A and the reflector 116B. Thereby, the resist pattern can be more reliably peeled off in the manufacturing process using the lift-off method.
  • FIG. 6 is a plan view of an acoustic wave device according to a third modification of the first embodiment.
  • the arrangement of the first mass addition film 7 is different from that of the first embodiment.
  • the elastic wave device of the present modification has the same configuration as the elastic wave device 1 of the first embodiment. More specifically, the plurality of first mass addition films 7 are arranged so as to be positioned on a line extending in a direction crossing the first direction x. The plurality of first mass addition films 7 are arranged point-symmetrically with respect to the center E in the first direction x and the second direction y of the central region.
  • FIG. 7 is a plan view of the acoustic wave device according to the second embodiment.
  • This embodiment is different from the first embodiment in that the plurality of first mass addition films 7 are arranged in a rhombus shape in a plan view. Except for the above points, the elastic wave device of the present embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • a plurality of first mass addition films 7 are provided on the first electrode fingers 4b. Similarly, a plurality of first mass addition films 7 are provided on the second electrode finger 5b.
  • the plurality of first mass addition films 7 are arranged in line symmetry with respect to the axis F extending in the first direction x at the center in the second direction y of the central region. Further, the plurality of first mass addition films 7 are arranged point-symmetrically with respect to the centers of the central region in the first direction x and the second direction y. Also in the present embodiment, as in the first embodiment, ripples due to low-order transverse modes can be effectively suppressed.
  • FIG. 8 is a plan view of an acoustic wave device according to a modification of the second embodiment.
  • the plurality of first mass addition films 7 are arranged in a substantially elliptical shape in plan view. Even in such a case, ripples due to low-order transverse modes can be effectively suppressed.
  • the IDT electrode 123 is formed by a lift-off method, the resist pattern can be more reliably peeled off.
  • the reflector is provided with a third mass addition film.
  • the ripple due to the low-order transverse mode can be suppressed as in the second modification.
  • the resist pattern can be more reliably peeled off.
  • FIG. 9 is a plan view of the acoustic wave device according to the third embodiment.
  • the plurality of first mass addition films 7 are arranged so as to be positioned on a line extending in the direction crossing the first direction x, similarly to the third modification of the first embodiment.
  • This embodiment differs from the third modification in that the third mass addition film 117 is provided in the same manner as the second modification of the first embodiment.
  • the elastic wave device of the third embodiment has the same configuration as the elastic wave device of the third modification of the first embodiment.
  • FIG. 10 is a plan view of the acoustic wave device according to the fourth embodiment.
  • This embodiment is different from the third embodiment in the arrangement of the first mass addition film 7 in the IDT electrode 23 and the arrangement of the third mass addition film 117 in the reflector 116A and the reflector 116B. Except for the above points, the elastic wave device of the fourth embodiment has the same configuration as the elastic wave device of the third embodiment.
  • the plurality of first mass addition films 7 and the plurality of third mass addition films 117 are arranged so as to be positioned on a line extending in a direction crossing the first direction x.
  • the straight line on which the first mass addition film 7 and the third mass addition film 117 are arranged passes through the center E in the first direction x and the second direction y of the central region.
  • the third mass addition film 117 may also be arranged point-symmetrically with respect to the center E.
  • FIG. 11 is a plan view of the acoustic wave device according to the fifth embodiment.
  • the plurality of first mass addition films 7 are arranged so as to form a rhombus in plan view.
  • This embodiment is different from the second embodiment in that the third mass addition film 117 is provided in the same manner as the second modification of the first embodiment.
  • the elastic wave device of the fifth embodiment has the same configuration as the elastic wave device of the second embodiment.
  • FIG. 12 is a plan view of the elastic wave device according to the sixth embodiment.
  • This embodiment is different from the fifth embodiment in the arrangement of the first mass addition film 7 in the IDT electrode 13 and the arrangement of the third mass addition film 117 in the reflector 116A and the reflector 116B. Except for the above points, the elastic wave device of the sixth embodiment has the same configuration as the elastic wave device of the fifth embodiment.
  • the plurality of first mass addition films 7 and the plurality of third mass addition films 117 are arranged so as to form one rhombus in plan view.
  • a plurality of third mass addition films 117 are provided on the electrode fingers 6b other than the electrode finger 6b farthest from the IDT electrode 13 of the reflector 116A.
  • One third mass addition film 117 is provided on the electrode finger 6b farthest from the IDT electrode 13 of the reflector 116A.
  • a plurality of third mass addition films 117 are provided on the electrode fingers 6b other than the electrode finger 6b farthest from the IDT electrode 13 in the reflector 116B.
  • One third mass addition film 117 is provided on the electrode finger 6b farthest from the IDT electrode 13 of the reflector 116B.
  • a plurality of third mass addition films 117 may be provided on all the electrode fingers 6b.
  • the plurality of third mass addition films 117 in addition to the plurality of first mass addition films 7, also have an axis F extending in the first direction x at the center in the second direction y of the central region. They are arranged symmetrically with respect to the line. Further, the plurality of first mass addition films 7 and the plurality of third mass addition films 117 are arranged point-symmetrically with respect to the centers in the first direction x and the second direction y of the central region.
  • FIG. 13 is a plan view of the acoustic wave device according to the seventh embodiment.
  • the plurality of first mass addition films 7 are arranged so as to form a substantially elliptical shape in plan view.
  • This embodiment is different from the modification of the second embodiment in that the third mass addition film 117 is provided in the same manner as the second modification of the first embodiment.
  • the elastic wave device of the seventh embodiment has the same configuration as the elastic wave device of the modification of the second embodiment.
  • FIG. 14 is a plan view of the acoustic wave device according to the eighth embodiment.
  • This embodiment is different from the seventh embodiment in the arrangement of the first mass addition film 7 in the IDT electrode 123 and the arrangement of the third mass addition film 117 in the reflector 116A and the reflector 116B. Except for the above points, the elastic wave device of the eighth embodiment has the same configuration as the elastic wave device of the seventh embodiment.
  • the plurality of first mass addition films 7 and the plurality of third mass addition films 117 are arranged so as to form one substantially elliptical shape in plan view. Similar to the sixth embodiment, the plurality of first mass addition films 7 and the plurality of third mass addition films 117 are arranged on an axis extending in the first direction x at the center in the second direction y of the central region. They are arranged symmetrically with respect to the line. Further, the plurality of first mass addition films 7 and the plurality of third mass addition films 117 are arranged point-symmetrically with respect to the centers in the first direction x and the second direction y of the central region.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

低次の横モードによるリップルを抑制することができる、弾性波装置を提供する。 弾性波装置1は、圧電基板2(圧電性基板)と、圧電基板2上に設けられているIDT電極3とを備える。IDT電極3は、第1の電極指4bと第2の電極指5bとが第1の方向xにおいて重なり合っている部分である交叉領域Aを有する。交叉領域Aは、第2の方向yにおける中央側に位置している中央領域Bを有する。中央領域Bは、他の部分における音速より音速が低い低音速部を有する。交叉領域Aにおいて、中央領域Bの第1,第2のバスバー4a,5a側に配置されており、かつ中央領域Bの上記他の部分における音速より音速が低い第1,第2の低音速領域が設けられている。IDT電極3において、中央領域Bにおける音速より音速が高い第1,第2の高音速領域が、第1,第2の低音速領域の第2の方向yにおいて外側に設けられている。

Description

弾性波装置
 本発明は、ピストンモードを利用した弾性波装置に関する。
 従来、不要波を抑制するために、ピストンモードを利用した弾性波装置が提案されている。
 例えば、下記の特許文献1には、ピストンモードを利用した弾性波装置の一例が示されている。この弾性波装置では、圧電基板上にIDT電極が設けられている。IDT電極において、弾性波伝搬方向から見たときに複数の第1の電極指と複数の第2の電極指とが重なっている領域を交叉領域としたとき、交叉領域は、弾性波伝搬方向に直交する方向において中央に位置する中央領域と、中央領域の両外側に位置するエッジ領域から構成される。さらに、エッジ領域の両外側にギャップ領域が設けられている。
 エッジ領域は、中央領域における音速よりも音速が低い低音速領域である。ギャップ領域は、中央領域における音速よりも音速が高い高音速領域である。このように、中央領域、低音速領域及び高音速領域をこの順序で配置することにより、弾性波のエネルギーを閉じ込め、かつ横モードによるスプリアスを抑制している。
特開2012-186808号公報
 しかしながら、特許文献1に記載の弾性波装置では、横モードを抑制する最適の条件から外れた場合に、低次の横モードによる大きなリップルが生じることがあった。
 本発明の目的は、低次の横モードによるリップルを抑制することができる、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、圧電性基板と、前記圧電性基板上に設けられているIDT電極とを備え、前記IDT電極が、互いに対向し合う第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続された複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と間挿し合っている複数の第2の電極指と、を有し、弾性波伝搬方向を第1の方向とし、弾性波伝搬方向に直交する方向を第2の方向としたときに、前記IDT電極が、前記第1の電極指と前記第2の電極指とが前記第1の方向において重なり合っている部分である交叉領域を有し、前記交叉領域が、前記第2の方向における中央側に位置している中央領域を有し、前記中央領域が、他の部分における音速より音速が低い低音速部を有し、前記交叉領域において、前記中央領域の前記第1のバスバー側に配置されており、かつ前記中央領域の前記他の部分における音速より音速が低い第1の低音速領域と、前記中央領域の前記第2のバスバー側に配置されており、かつ前記中央領域の前記他の部分における音速より音速が低い第2の低音速領域とが設けられており、前記IDT電極において、前記中央領域における音速より音速が高い第1の高音速領域と、第2の高音速領域とが設けられており、前記第1の高音速領域が前記第1の低音速領域の前記第2の方向において外側に配置されており、前記第2の高音速領域が前記第2の低音速領域の前記第2の方向において外側に配置されている。
 本発明に係る弾性波装置のある特定の局面では、前記第1の低音速領域及び前記第2の低音速領域における音速が前記中央領域の前記低音速部における音速より低い。
 本発明に係る弾性波装置の他の特定の局面では、前記低音速部の前記第2の方向に沿う寸法が、前記第1の低音速領域及び前記第2の低音速領域の前記第2の方向に沿う寸法より小さい。この場合には、高次の横モードを抑制する効果に影響を与え難く、かつ低次の横モードを効果的に抑制することができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記低音速部が、前記第1の電極指上及び前記第2の電極指上のうち少なくとも一方に第1の質量付加膜が設けられることにより構成されている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第1の低音速領域及び前記第2の低音速領域が、前記第1の電極指上及び前記第2の電極指上のうち少なくとも一方に第2の質量付加膜が設けられることにより構成されており、前記第1の質量付加膜の前記第2の方向に沿う寸法が、前記第2の質量付加膜の前記第2の方向に沿う寸法より小さい。この場合には、高次の横モードを抑制する効果に影響を与え難く、かつ低次の横モードを効果的に抑制することができる。
 本発明に係る弾性波装置の別の特定の局面では、前記第1の低音速領域及び前記第2の低音速領域が、前記第1の電極指上及び前記第2の電極指上のうち少なくとも一方に第2の質量付加膜が設けられることにより構成されており、前記第1の質量付加膜の前記第1の方向に沿う寸法が、前記第2の質量付加膜の前記第1の方向に沿う寸法より小さい。この場合には、高次の横モードを抑制する効果に影響を与え難く、かつ低次の横モードを効果的に抑制することができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記第1の質量付加膜が複数設けられており、前記複数の第1の電極指及び前記複数の第2の電極指のうち少なくとも1本の電極指上に、複数の前記第1の質量付加膜が設けられている。この場合には、IDT電極をリフトオフ法により形成する際、レジストパターンを剥離する剥離液が、第1の電極指及び第2の電極指の部分に流入し易くなる。それによって、レジストパターンをより一層確実に剥離することができる。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記複数の第1の質量付加膜が、前記中央領域の前記第2の方向における中心において前記第1の方向に延びる軸に対して線対称に配置されている。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記第1の質量付加膜が複数設けられており、前記複数の第1の質量付加膜が、前記中央領域の前記第1の方向及び前記第2の方向における中心に対して点対称に配置されている。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記第1の質量付加膜が複数設けられており、前記複数の第1の質量付加膜が、前記中央領域の前記第2の方向における中心を含む位置に配置されており、かつ前記第1の方向に沿い一列に配置されている。
 本発明に係る弾性波装置のさらに別の特定の局面では、前記圧電性基板上において、前記IDT電極の前記第1の方向の少なくとも一方側に、複数の電極指を有する反射器が設けられており、前記反射器の前記電極指上に第3の質量付加膜が設けられている。この場合には、リフトオフ法により反射器を形成する際、レジストパターンを剥離する剥離液が、反射器の部分に流入し易くなる。それによって、レジストパターンをより一層確実に剥離することができる。
 本発明によれば、低次の横モードによるリップルを抑制することができる、弾性波装置を提供することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。 図2は、比較例の弾性波装置における、第1の低音速領域及び第2の低音速領域の幅と横モードによるリップルの強度との関係を示す図である。 図3は、本発明の第1の実施形態に係る弾性波装置における、第1の低音速領域及び第2の低音速領域の幅と横モードによるリップルの強度との関係を示す図である。 図4は、本発明の第1の実施形態の第1の変形例に係る弾性波装置の平面図である。 図5は、本発明の第1の実施形態の第2の変形例に係る弾性波装置の平面図である。 図6は、本発明の第1の実施形態の第3の変形例に係る弾性波装置の平面図である。 図7は、本発明の第2の実施形態に係る弾性波装置の平面図である。 図8は、本発明の第2の実施形態の変形例に係る弾性波装置の平面図である。 図9は、本発明の第3の実施形態に係る弾性波装置の平面図である。 図10は、本発明の第4の実施形態に係る弾性波装置の平面図である。 図11は、本発明の第5の実施形態に係る弾性波装置の平面図である。 図12は、本発明の第6の実施形態に係る弾性波装置の平面図である。 図13は、本発明の第7の実施形態に係る弾性波装置の平面図である。 図14は、本発明の第8の実施形態に係る弾性波装置の平面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。
 弾性波装置1は、圧電性基板としての圧電基板2を有する。本実施形態では、圧電基板2はLiNbOからなる。なお、圧電基板2は、LiTaOなどのLiNbO以外の圧電単結晶からなっていてもよく、あるいは、適宜の圧電セラミックスからなっていてもよい。弾性波装置1には、支持基板上に圧電膜が積層されている圧電性基板を用いてもよい。上記圧電膜として、上記圧電単結晶などを適宜用いることができる。
 圧電基板2上にはIDT電極3が設けられている。IDT電極3は、互いに対向し合っている第1のバスバー4a及び第2のバスバー5aを有する。IDT電極3は、第1のバスバー4aに一端が接続されている、複数の第1の電極指4bを有する。さらに、IDT電極3は、第2のバスバー5aに一端が接続されている、複数の第2の電極指5bを有する。複数の第1の電極指4bと複数の第2の電極指5bとは、互いに間挿し合っている。
 IDT電極3は、圧電基板2側から、NiCr層、Pt層、Ti層、AlCu層、Ti層がこの順序で積層された積層金属膜からなる。なお、IDT電極3の材料は上記に限定されない。IDT電極3は単層の金属膜からなっていてもよい。
 IDT電極3に交流電圧を印加すると弾性波が励振される。弾性波伝搬方向を第1の方向xとしたとき、IDT電極3の第1の方向x両側には、反射器6A及び反射器6Bが配置されている。反射器6A及び反射器6Bは、複数の電極指6bをそれぞれ有する。反射器6A及び反射器6Bは、IDT電極3と同様の材料からなる。なお、IDT電極3の第1の方向xの一方側に反射器が設けられていてもよい。
 IDT電極3は、第1の電極指4bと第2の電極指5bとが第1の方向xにおいて重なり合っている部分である交叉領域Aを有する。ここで、第1の方向xに直交する方向を第2の方向yとする。本実施形態における第1の電極指4b及び第2の電極指5bが延びる方向は第2の方向yに平行である。交叉領域Aは、第2の方向y中央側に位置している中央領域Bを有する。
 本実施形態では、IDT電極3の電極指ピッチにより規定される波長をλとしたときに、λ=4μmである。IDT電極3のデューティ比は0.65である。交叉領域Aの第2の方向yに沿う寸法を交叉幅としたときに、交叉幅は15λである。なお、IDT電極3の波長λ、デューティ比及び交叉幅は上記に限定されない。
 中央領域Bにおいては、複数の第1の電極指4b上及び複数の第2の電極指5b上に、第1の質量付加膜7がそれぞれ設けられている。本実施形態では、複数の第1の質量付加膜7は、中央領域Bの第2の方向yにおける中心を含む位置に配置されており、かつ第1の方向xに沿い一列に配置されている。なお、第1の質量付加膜7は、第1の電極指4b及び第2の電極指5bのうち少なくとも一方に設けられていればよく、中央領域Bに少なくとも1つ設けられていればよい。
 第1の質量付加膜7は、第1の電極指4b側及び第2の電極指5b側から、Ti層、Pt層、Ti層がこの順序で積層された積層金属膜からなる。なお、第1の質量付加膜7の材料は上記に限定されない。第1の質量付加膜7は単層の金属膜からなっていてもよく、あるいは誘電体膜からなっていてもよい。
 交叉領域Aは、中央領域Bの第1のバスバー4a側に配置されている第1のエッジ領域Caと、中央領域Bの第2のバスバー5a側に配置されている第2のエッジ領域Cbとを有する。IDT電極3は、第1のエッジ領域Caの第2の方向yにおける外側に配置されている第1の外側領域Daと、第2のエッジ領域Cbの第2の方向yにおける外側に配置されている第2の外側領域Dbとを有する。本実施形態では、第1の外側領域Daは、第1のエッジ領域Caと第1のバスバー4aとの間に位置している。第2の外側領域Dbは、第2のエッジ領域Cbと第2のバスバー5aとの間に位置している。
 中央領域Bにおいては、上記第1の質量付加膜7が設けられた部分における音速が、他の部分における音速より低くなっている。なお、本明細書においては、音速とは、弾性波の第1の方向xにおける伝搬速度である。本実施形態では、第1の質量付加膜7が設けられることにより、低音速部が構成されている。ここで、中央領域の低音速部以外の他の部分における音速をV1とし、低音速部における音速をV2とする。このとき、V2<V1である。
 第1のエッジ領域Ca及び第2のエッジ領域Cbにおいては、複数の第1の電極指4b上及び複数の第2の電極指5b上に第2の質量付加膜8がそれぞれ設けられている。これにより、中央領域Bの低音速部以外の他の部分における音速より第1のエッジ領域Ca及び第2のエッジ領域Cbにおける音速が低くなっている。第1のエッジ領域Ca及び第2のエッジ領域Cbにおける音速をV3としたときに、V3<V1である。このように、第1のエッジ領域Caにおいて第1の低音速領域が設けられており、第2のエッジ領域Cbにおいて第2の低音速領域が設けられている。
 複数の第2の質量付加膜8は、デューティ比が0.35となるように設けられている。第2の質量付加膜8の第2の方向yに沿う寸法は0.6λである。上記第1の質量付加膜7の第1の方向xに沿う寸法は第2の質量付加膜8の第1の方向xに沿う寸法より小さい。これにより、第1の低音速領域及び第2の低音速領域における音速は中央領域Bの低音速部における音速より低くなっており、V3<V2となっている。
 他方、第1の質量付加膜7の第2の方向yに沿う寸法も第2の質量付加膜8の第2の方向yに沿う寸法より小さい。なお、第1の質量付加膜7及び第2の質量付加膜8の寸法の大きさは特に限定されない。第2の質量付加膜8は第1の質量付加膜7と同じ材料からなる。なお、第2の質量付加膜8は第1の質量付加膜7と異なる材料からなっていてもよい。
 図1に示すように、第1の外側領域Daに位置している部分は第1の電極指4bのみである。第2の外側領域Dbに位置している部分は第2の電極指5bのみである。それによって、中央領域Bにおける音速より第1の外側領域Da及び第2の外側領域Dbにおける音速が高くなっている。第1の外側領域Da及び第2の外側領域Dbにおける弾性波の音速をV4としたときに、V1<V4である。このように、第1の外側領域Daにおいて第1の高音速領域が設けられており、第2の外側領域Dbにおいて第2の高音速領域が設けられている。
 中央領域Bの第2の方向yにおける外側に第1の低音速領域及び第2の低音速領域が配置され、第1の低音速領域及び第2の低音速領域の第2の方向yにおける外側に第1の高音速領域及び第2の高音速領域が配置されている。これにより、横モードによるスプリアスを抑制することができる。このように、弾性波装置1はピストンモードを利用している。
 各音速の関係は、V3<V2<V1<V4となっている。上記のような各音速の関係を図1に示す。なお、図1における左側に向かうにつれて音速が高いことを示す。
 IDT電極3、反射器6A及び反射器6Bは、例えば、リフトオフ法などにより形成することができる。
 本実施形態の特徴は、中央領域Bが低音速部を有することにある。それによって、低次の横モードによるリップルを抑制することができる。これを、以下において、本実施形態と比較例とを比較することにより説明する。ここで、本明細書においては、低次の横モードとは、3次の横モード及び5次の横モードをいう。高次の横モードは、5次より高次の横モードをいう。
 第1の低音速領域及び第2の低音速領域の第2の方向に沿う寸法を第1の低音速領域及び第2の低音速領域の幅とする。第1の低音速領域及び第2の低音速領域の幅を異ならせて、第1の実施形態の構成を有する弾性波装置及び上記幅以外は第1の実施形態と同様の構成を有する弾性波装置を複数作製した。他方、中央領域が低音速部を有しない点において第1の実施形態と異なる比較例の弾性波装置を、第1の低音速領域及び第2の低音速領域の幅を異ならせて複数作製した。上記複数の弾性波装置の横モードによるリップルの強度を測定した。
 図2は、比較例の弾性波装置における、第1の低音速領域及び第2の低音速領域の幅と横モードによるリップルの強度との関係を示す図である。図3は、第1の実施形態に係る弾性波装置における、第1の低音速領域及び第2の低音速領域の幅と横モードによるリップルの強度との関係を示す図である。図2及び図3において、菱形のプロットは3次の横モードの結果を示す。正方形のプロットは5次の横モードの結果を示す。三角形のプロットは7次の横モードの結果を示す。円形のプロットは9次の横モードの結果を示す。X字形のプロットは11次の横モードの結果を示す。
 図2に示すように、比較例においては、第1の低音速領域及び第2の低音速領域の幅が0.7λより大きくなり、横モードを抑制する最適の条件から外れると、3次の横モード及び5次の横モードによるリップルが大きくなっていることがわかる。これに対して、図3に示すように、第1の実施形態では、第1の低音速領域及び第2の低音速領域の幅が0.7λより大きい場合などにおいても、3次の横モード及び5次の横モードによるリップルが効果的に抑制されていることがわかる。このように、第1の実施形態では、横モードを抑制する最適の条件から外れても、低次の横モードによるリップルを効果的に抑制することができる。
 IDT電極の交叉幅を狭くすると、低次の横モードが発生し易くなる傾向がある。これに対して、第1の実施形態においては、IDT電極の交叉幅を狭くしても、低次の横モードを抑制することができる。よって、弾性波装置の小型化を図ることができる。
 図1に示す第1の実施形態のように、第1の質量付加膜7の第1の方向xに沿う寸法は、第2の質量付加膜8の第1の方向xに沿う寸法より小さいことが好ましい。それによって、高次の横モードを抑制する効果に影響を与え難く、かつ低次の横モードを効果的に抑制することができる。
 また、第1の質量付加膜7の第2の方向yに沿う寸法は、第2の質量付加膜8の第2の方向yに沿う寸法より小さいことが好ましい。この場合においても、高次の横モードを抑制する効果に影響を与え難く、かつ低次の横モードを効果的に抑制することができる。
 第1の実施形態では、第1の質量付加膜7及び第2の質量付加膜8の平面形状は矩形である。なお、第1の質量付加膜7及び第2の質量付加膜8の平面形状は上記に限定されず、例えば、楕円形などであってもよい。
 図1に示すように、第1の電極指4b上及び第2の電極指5b上には、第1のエッジ領域Ca及び第2のエッジ領域Cb上において第2の質量付加膜8が設けられている。なお、第2の質量付加膜8は、第1の電極指4b上の、第1のエッジ領域Ca及び第2のエッジ領域Cbのうち一方において設けられていてもよい。第2の電極指5b上においても同様である。
 以下において、第1の実施形態の第1~第3の変形例を示す。第1~第3の変形例においても、第1の実施形態と同様に、低次の横モードによるリップルを効果的に抑制することができる。
 図4は、第1の実施形態の第1の変形例に係る弾性波装置の平面図である。
 第1の電極指104b及び第2の電極指105bの第1の方向xに沿う寸法を第1の電極指104b及び第2の電極指105bの幅とする。本変形例は、第1の電極指104b及び第2の電極指105bが、他の部分より幅が広い幅広部107及び幅広部108を有する点において、第1の実施形態と異なる。上記の点以外においては、本変形例の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 より具体的には、幅広部107は中央領域における第1の質量付加膜7が設けられている部分に位置している。幅広部108は第1のエッジ領域及び第2のエッジ領域に位置している。幅広部107及び第1の質量付加膜7が設けられていることにより、低音速部の音速が低くされている。幅広部108及び第2の質量付加膜8が設けられていることにより、第1の低音速領域及び第2の低音速領域の音速が低くされている。なお、第1の質量付加膜7及び第2の質量付加膜8が設けられておらず、幅広部107及び幅広部108が設けられていることにより音速が低くされていてもよい。
 図5は、第1の実施形態の第2の変形例に係る弾性波装置の平面図である。
 本変形例は、反射器116A及び反射器116Bの複数の電極指6b上に第3の質量付加膜117及び第3の質量付加膜118がそれぞれ設けられている点において、第1の実施形態と異なる。なお、第3の質量付加膜117は、第1の質量付加膜7と同様に構成されており、第3の質量付加膜118は第2の質量付加膜8と同様に構成されている。上記の点以外においては、本変形例の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 反射器116A及び反射器116Bの第3の質量付加膜117は、IDT電極3における複数の第1の質量付加膜7と、第1の方向xにおいて重なる位置に設けられている。同様に、反射器116A上及び反射器116B上における複数の第3の質量付加膜118は、IDT電極3における複数の第2の質量付加膜8と、第1の方向xにおいて重なる位置に設けられている。
 なお、第3の質量付加膜117及び第3の質量付加膜118は同様に構成されていてもよい。第3の質量付加膜117及び第3の質量付加膜118の位置及び個数も特に限定されない。
 第1の実施形態と同様に、本変形例のIDT電極3、反射器116A及び反射器116Bも、例えば、リフトオフ法により形成することができる。本変形例では、反射器116A及び反射器116Bは、電極指6b上に位置する第3の質量付加膜117及び第3の質量付加膜118を有する。これにより、レジストパターンを剥離する剥離液が、反射器116A及び反射器116Bの部分に流入し易くなる。それによって、リフトオフ法を用いた製造工程において、レジストパターンをより一層確実に剥離することができる。
 図6は、第1の実施形態の第3の変形例に係る弾性波装置の平面図である。
 本変形例においては、第1の質量付加膜7の配置が第1の実施形態と異なる。上記の点以外においては、本変形例の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。より具体的には、複数の第1の質量付加膜7は、第1の方向xに交叉する方向に延びる線上に位置するように配置されている。複数の第1の質量付加膜7は、中央領域の第1の方向x及び第2の方向yにおける中心Eに対して点対称に配置されている。
 図7は、第2の実施形態に係る弾性波装置の平面図である。
 本実施形態は、平面視において、複数の第1の質量付加膜7が菱形状に並ぶように配置されている点で、第1の実施形態と異なる。上記の点以外においては、本実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。
 第1の電極指4b上に複数の第1の質量付加膜7が設けられている。同様に、第2の電極指5b上に複数の第1の質量付加膜7が設けられている。これにより、IDT電極13をリフトオフ法により形成する際、レジストパターンを剥離する剥離液が、第1の電極指4b及び第2の電極指5bの部分に流入し易くなる。それによって、リフトオフ法を用いた製造工程において、レジストパターンをより一層確実に剥離することができる。
 複数の第1の質量付加膜7は、中央領域の第2の方向yにおける中心において第1の方向xに延びる軸Fに対して線対称に配置されている。さらに、複数の第1の質量付加膜7は、中央領域の第1の方向x及び第2の方向yにおける中心に対して点対称に配置されている。本実施形態においても、第1の実施形態と同様に、低次の横モードによるリップルを効果的に抑制することができる。
 図8は、第2の実施形態の変形例に係る弾性波装置の平面図である。
 本変形例においては、平面視において、複数の第1の質量付加膜7が略楕円形状に並ぶように配置されている。このような場合においても、低次の横モードによるリップルを効果的に抑制することができる。加えて、IDT電極123をリフトオフ法により形成する際、レジストパターンをより一層確実に剥離することができる。
 以下において、第3~第8の実施形態を示す。第3~第8の実施形態においては、図5に示した第1の実施形態の第2の変形例と同様に、反射器に第3の質量付加膜が設けられている。第3~第8の実施形態においても、該第2の変形例と同様に、低次の横モードによるリップルを抑制することができる。さらに、IDT電極及び反射器をリフトオフ法により形成する際、レジストパターンをより一層確実に剥離することができる。
 図9は、第3の実施形態に係る弾性波装置の平面図である。
 本実施形態においては、複数の第1の質量付加膜7は、第1の実施形態の第3の変形例と同様に、第1の方向xに交叉する方向に延びる線上に位置するように配置されている。本実施形態は、第3の質量付加膜117が、第1の実施形態の第2の変形例と同様に設けられている点において、上記第3の変形例と異なる。上記の点以外においては、第3の実施形態の弾性波装置は、第1の実施形態の第3の変形例の弾性波装置と同様の構成を有する。
 図10は、第4の実施形態に係る弾性波装置の平面図である。
 本実施形態は、IDT電極23における第1の質量付加膜7の配置及び反射器116A及び反射器116Bにおける第3の質量付加膜117の配置において、第3の実施形態と異なる。上記の点以外においては、第4の実施形態の弾性波装置は、第3の実施形態の弾性波装置と同様の構成を有する。
 複数の第1の質量付加膜7及び複数の第3の質量付加膜117は、第1の方向xに交叉する方向に延びる線上に位置するように配置されている。なお、本実施形態においては、第1の質量付加膜7及び第3の質量付加膜117が配置されている直線は、中央領域の第1の方向x及び第2の方向yにおける中心Eを通る。このように、複数の第1の質量付加膜7に加えて第3の質量付加膜117も、中心Eに対して点対称に配置されていてもよい。
 図11は、第5の実施形態に係る弾性波装置の平面図である。
 本実施形態においては、第2の実施形態と同様に、複数の第1の質量付加膜7が、平面視において菱形を形成するように配置されている。本実施形態は、第3の質量付加膜117が、第1の実施形態の第2の変形例と同様に設けられている点において、第2の実施形態と異なる。上記の点以外においては、第5の実施形態の弾性波装置は、第2実施形態の弾性波装置と同様の構成を有する。
 図12は、第6の実施形態に係る弾性波装置の平面図である。
 本実施形態は、IDT電極13における第1の質量付加膜7の配置並びに反射器116A及び反射器116Bにおける第3の質量付加膜117の配置において、第5の実施形態と異なる。上記の点以外においては、第6の実施形態の弾性波装置は、第5の実施形態の弾性波装置と同様の構成を有する。
 複数の第1の質量付加膜7及び複数の第3の質量付加膜117は、平面視において、1つの菱形を形成するように配置されている。反射器116Aの、IDT電極13から最も遠い電極指6b以外の電極指6b上には、複数の第3の質量付加膜117が設けられている。反射器116AのIDT電極13から最も遠い電極指6b上には、1つの第3の質量付加膜117が設けられている。同様に、反射器116Bの、IDT電極13から最も遠い電極指6b以外の電極指6b上には、複数の第3の質量付加膜117が設けられている。反射器116BのIDT電極13から最も遠い電極指6b上には、1つの第3の質量付加膜117が設けられている。もっとも、全ての上記電極指6b上に複数の第3の質量付加膜117が設けられていてもよい。
 本実施形態においては、複数の第1の質量付加膜7に加えて複数の第3の質量付加膜117も、中央領域の第2の方向yにおける中心において第1の方向xに延びる軸Fに対して線対称に配置されている。さらに、複数の第1の質量付加膜7及び複数の第3の質量付加膜117は、中央領域の第1の方向x及び第2の方向yにおける中心に対して点対称に配置されている。
 図13は、第7の実施形態に係る弾性波装置の平面図である。
 本実施形態においては、平面視において、複数の第1の質量付加膜7が略楕円形を形成するように配置されている。本実施形態は、第3の質量付加膜117が、第1の実施形態の第2の変形例と同様に設けられている点において、第2の実施形態の変形例と異なる。上記の点以外においては、第7の実施形態の弾性波装置は、第2の実施形態の変形例の弾性波装置と同様の構成を有する。
 図14は、第8の実施形態に係る弾性波装置の平面図である。
 本実施形態は、IDT電極123における第1の質量付加膜7の配置並びに反射器116A及び反射器116Bにおける第3の質量付加膜117の配置において、第7の実施形態と異なる。上記の点以外においては、第8の実施形態の弾性波装置は、第7の実施形態の弾性波装置と同様の構成を有する。
 複数の第1の質量付加膜7及び複数の第3の質量付加膜117は、平面視において、1つの略楕円形を形成するように配置されている。第6の実施形態と同様に、複数の第1の質量付加膜7及び複数の第3の質量付加膜117は、中央領域の第2の方向yにおける中心において第1の方向xに延びる軸に対して線対称に配置されている。さらに、複数の第1の質量付加膜7及び複数の第3の質量付加膜117は、中央領域の第1の方向x及び第2の方向yにおける中心に対して点対称に配置されている。
1…弾性波装置
2…圧電基板
3…IDT電極
4a,5a…第1,第2のバスバー
4b,5b…第1,第2の電極指
6A,6B…反射器
6b…電極指
7,8…第1,第2の質量付加膜
13,23…IDT電極
104b,105b…第1,第2の電極指
107,108…幅広部
116A,116B…反射器
117,118…第3の質量付加膜
123…IDT電極

Claims (11)

  1.  圧電性基板と、
     前記圧電性基板上に設けられているIDT電極と、
    を備え、
     前記IDT電極が、互いに対向し合う第1のバスバー及び第2のバスバーと、前記第1のバスバーに一端が接続された複数の第1の電極指と、前記第2のバスバーに一端が接続されており、かつ前記複数の第1の電極指と間挿し合っている複数の第2の電極指と、を有し、弾性波伝搬方向を第1の方向とし、弾性波伝搬方向に直交する方向を第2の方向としたときに、前記IDT電極が、前記第1の電極指と前記第2の電極指とが前記第1の方向において重なり合っている部分である交叉領域を有し、
     前記交叉領域が、前記第2の方向における中央側に位置している中央領域を有し、前記中央領域が、他の部分における音速より音速が低い低音速部を有し、
     前記交叉領域において、前記中央領域の前記第1のバスバー側に配置されており、かつ前記中央領域の前記他の部分における音速より音速が低い第1の低音速領域と、前記中央領域の前記第2のバスバー側に配置されており、かつ前記中央領域の前記他の部分における音速より音速が低い第2の低音速領域とが設けられており、
     前記IDT電極において、前記中央領域における音速より音速が高い第1の高音速領域と、第2の高音速領域とが設けられており、前記第1の高音速領域が前記第1の低音速領域の前記第2の方向において外側に配置されており、前記第2の高音速領域が前記第2の低音速領域の前記第2の方向において外側に配置されている、弾性波装置。
  2.  前記第1の低音速領域及び前記第2の低音速領域における音速が前記中央領域の前記低音速部における音速より低い、請求項1に記載の弾性波装置。
  3.  前記低音速部の前記第2の方向に沿う寸法が、前記第1の低音速領域及び前記第2の低音速領域の前記第2の方向に沿う寸法より小さい、請求項1または2に記載の弾性波装置。
  4.  前記低音速部が、前記第1の電極指上及び前記第2の電極指上のうち少なくとも一方に第1の質量付加膜が設けられることにより構成されている、請求項1~3のいずれか1項に記載の弾性波装置。
  5.  前記第1の低音速領域及び前記第2の低音速領域が、前記第1の電極指上及び前記第2の電極指上のうち少なくとも一方に第2の質量付加膜が設けられることにより構成されており、
     前記第1の質量付加膜の前記第2の方向に沿う寸法が、前記第2の質量付加膜の前記第2の方向に沿う寸法より小さい、請求項4に記載の弾性波装置。
  6.  前記第1の低音速領域及び前記第2の低音速領域が、前記第1の電極指上及び前記第2の電極指上のうち少なくとも一方に第2の質量付加膜が設けられることにより構成されており、
     前記第1の質量付加膜の前記第1の方向に沿う寸法が、前記第2の質量付加膜の前記第1の方向に沿う寸法より小さい、請求項4または5に記載の弾性波装置。
  7.  前記第1の質量付加膜が複数設けられており、前記複数の第1の電極指及び前記複数の第2の電極指のうち少なくとも1本の電極指上に、複数の前記第1の質量付加膜が設けられている、請求項4~6のいずれか1項に記載の弾性波装置。
  8.  前記複数の第1の質量付加膜が、前記中央領域の前記第2の方向における中心において前記第1の方向に延びる軸に対して線対称に配置されている、請求項7に記載の弾性波装置。
  9.  前記第1の質量付加膜が複数設けられており、前記複数の第1の質量付加膜が、前記中央領域の前記第1の方向及び前記第2の方向における中心に対して点対称に配置されている、請求項4~8のいずれか1項に記載の弾性波装置。
  10.  前記第1の質量付加膜が複数設けられており、前記複数の第1の質量付加膜が、前記中央領域の前記第2の方向における中心を含む位置に配置されており、かつ前記第1の方向に沿い一列に配置されている、請求項4~6のいずれか1項に記載の弾性波装置。
  11.  前記圧電性基板上において、前記IDT電極の前記第1の方向の少なくとも一方側に、複数の電極指を有する反射器が設けられており、
     前記反射器の前記電極指上に第3の質量付加膜が設けられている、請求項1~10のいずれか1項に記載の弾性波装置。
PCT/JP2018/018690 2017-05-22 2018-05-15 弾性波装置 WO2018216548A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/674,011 US11791798B2 (en) 2017-05-22 2019-11-05 Acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017100584 2017-05-22
JP2017-100584 2017-05-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/674,011 Continuation US11791798B2 (en) 2017-05-22 2019-11-05 Acoustic wave device

Publications (1)

Publication Number Publication Date
WO2018216548A1 true WO2018216548A1 (ja) 2018-11-29

Family

ID=64396723

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018690 WO2018216548A1 (ja) 2017-05-22 2018-05-15 弾性波装置

Country Status (2)

Country Link
US (1) US11791798B2 (ja)
WO (1) WO2018216548A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021013568A1 (en) * 2019-07-22 2021-01-28 RF360 Europe GmbH Electro acoustic resonator with reduced spurious modes, rf filter and multiplexer
WO2021039038A1 (ja) * 2019-08-29 2021-03-04 株式会社村田製作所 弾性波装置
WO2021149501A1 (ja) * 2020-01-24 2021-07-29 株式会社村田製作所 弾性波装置
WO2023190369A1 (ja) * 2022-03-29 2023-10-05 株式会社村田製作所 弾性波装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115989635A (zh) * 2020-11-03 2023-04-18 华为技术有限公司 谐振器、滤波器及电子设备
WO2023048140A1 (ja) * 2021-09-21 2023-03-30 株式会社村田製作所 弾性波装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
JP2013544041A (ja) * 2011-03-25 2013-12-09 パナソニック株式会社 高次横モード波を抑制した弾性波デバイス
WO2015182522A1 (ja) * 2014-05-26 2015-12-03 株式会社村田製作所 弾性波装置
WO2016095967A1 (en) * 2014-12-16 2016-06-23 Epcos Ag Electroacoustic transducer with improved suppression of unwanted modes
JP2016178387A (ja) * 2015-03-18 2016-10-06 太陽誘電株式会社 弾性波デバイス
JP2017163481A (ja) * 2016-03-11 2017-09-14 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939987B1 (en) * 2008-10-23 2011-05-10 Triquint Semiconductor, Inc. Acoustic wave device employing reflective elements for confining elastic energy
CN102684639B (zh) 2011-03-07 2016-08-17 特里奎恩特半导体公司 使微调影响和活塞波型不稳定性最小化的声波导器件和方法
CN105264772B (zh) * 2013-05-29 2018-01-12 株式会社村田制作所 弹性波滤波器装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
JP2013544041A (ja) * 2011-03-25 2013-12-09 パナソニック株式会社 高次横モード波を抑制した弾性波デバイス
WO2015182522A1 (ja) * 2014-05-26 2015-12-03 株式会社村田製作所 弾性波装置
WO2016095967A1 (en) * 2014-12-16 2016-06-23 Epcos Ag Electroacoustic transducer with improved suppression of unwanted modes
JP2016178387A (ja) * 2015-03-18 2016-10-06 太陽誘電株式会社 弾性波デバイス
JP2017163481A (ja) * 2016-03-11 2017-09-14 太陽誘電株式会社 弾性波共振器、フィルタおよびマルチプレクサ

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021013568A1 (en) * 2019-07-22 2021-01-28 RF360 Europe GmbH Electro acoustic resonator with reduced spurious modes, rf filter and multiplexer
WO2021039038A1 (ja) * 2019-08-29 2021-03-04 株式会社村田製作所 弾性波装置
US11824513B2 (en) 2019-08-29 2023-11-21 Murata Manufacturing Co., Ltd. Acoustic wave device
WO2021149501A1 (ja) * 2020-01-24 2021-07-29 株式会社村田製作所 弾性波装置
WO2023190369A1 (ja) * 2022-03-29 2023-10-05 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
US11791798B2 (en) 2023-10-17
US20200076404A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
WO2018216548A1 (ja) 弾性波装置
JP5861809B1 (ja) 弾性波装置
JP6245378B2 (ja) 弾性波装置
JP6179594B2 (ja) 弾性波装置
JP5138731B2 (ja) 弾性表面波装置
WO2015156232A1 (ja) 弾性波フィルタ装置
JP6281639B2 (ja) 弾性波装置
WO2018131454A1 (ja) 弾性波装置
WO2015182521A1 (ja) 弾性波装置及びラダー型フィルタ
US10840881B2 (en) Longitudinally coupled resonator acoustic wave filter
WO2018123882A1 (ja) 弾性波装置
WO2017077892A1 (ja) 弾性波装置
WO2019003909A1 (ja) 弾性波装置及び複合フィルタ装置
JP6424958B2 (ja) 弾性波装置
JP2015056746A (ja) 弾性波装置
JP2023123880A (ja) 弾性波装置
WO2018199071A1 (ja) 弾性波装置の製造方法及び弾性波装置
WO2018008252A1 (ja) 弾性波装置
JP2011041082A (ja) 一ポート型弾性波共振子及び弾性波フィルタ装置
KR20210105971A (ko) 탄성파 장치
WO2018193933A1 (ja) 弾性波装置、帯域通過型フィルタ及びマルチプレクサ
WO2017199485A1 (ja) 弾性波装置
US11811387B2 (en) Elastic wave device
WO2016039026A1 (ja) 弾性表面波装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18806359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18806359

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP