WO2018008252A1 - 弾性波装置 - Google Patents

弾性波装置 Download PDF

Info

Publication number
WO2018008252A1
WO2018008252A1 PCT/JP2017/018059 JP2017018059W WO2018008252A1 WO 2018008252 A1 WO2018008252 A1 WO 2018008252A1 JP 2017018059 W JP2017018059 W JP 2017018059W WO 2018008252 A1 WO2018008252 A1 WO 2018008252A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrode fingers
wave device
elastic wave
bus bar
Prior art date
Application number
PCT/JP2017/018059
Other languages
English (en)
French (fr)
Inventor
治樹 京屋
三村 昌和
康政 谷口
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018008252A1 publication Critical patent/WO2018008252A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves

Definitions

  • the present invention relates to an acoustic wave device in which an IDT electrode and a reflector are provided on an acoustic wave element substrate.
  • an acoustic wave device is required to be downsized like other electronic components.
  • the thickness of all electrode fingers of the reflector is increased compared to the thickness of the IDT electrode. Thereby, it is possible to reduce the number of electrode fingers of the reflector, and it is said that downsizing can be promoted.
  • the elastic wave device described in Patent Document 1 has a problem that the longitudinal mode ripple is increased because the thickness of all electrode fingers of the reflector is larger than the thickness of the IDT electrode.
  • an object of the present invention is to provide an elastic wave device that can achieve downsizing and suppression of the influence of longitudinal mode ripple.
  • An acoustic wave device is provided on an acoustic wave element substrate, an IDT electrode that excites an acoustic wave, and a pair of acoustic waves that are excited by the IDT electrode.
  • a reflector, and the reflector has a plurality of electrode fingers, and some of the electrode fingers of the reflector are thicker than the IDT electrode.
  • the part of the electrode fingers is at least one electrode finger other than the electrode finger closest to the IDT electrode in the reflector.
  • the partial electrode fingers are all electrode fingers other than the electrode finger closest to the IDT electrode in the reflector.
  • the size can be further reduced by reducing the number of electrode fingers.
  • the plurality of electrode fingers each have a first electrode layer, and the some electrode fingers are the first electrode layers.
  • a second electrode layer provided on the electrode layer;
  • the second electrode layer is made of a material different from that of the first electrode layer.
  • the second electrode layer is made of a material different from that of the IDT electrode.
  • the IDT electrode includes first and second electrode fingers that are interleaved with each other, and the first electrode finger and the second electrode finger Is defined as a crossing region when viewed in the elastic wave propagation direction, the crossing region includes a central region and a central region in the direction in which the first and second electrode fingers extend.
  • the first and second edge regions provided on one side and the other side, and the first and second high sound velocity regions respectively provided on the outside of the first and second edge regions;
  • the acoustic velocity of the elastic wave in the first and second edge regions is slower than the acoustic velocity of the elastic wave in the central region, and the acoustic velocity of the elastic wave in the first and second high acoustic velocity regions is the center. Has been faster than the speed of sound in the region.
  • the IDT electrode is provided on the first bus bar, the second bus bar arranged to be separated from the first bus bar, and the first bus bar.
  • a base end is electrically connected, a plurality of first electrode fingers whose front ends are extended toward the second bus bar, and a base end is connected to the second bus bar,
  • a plurality of second electrode fingers whose tips extend toward the first bus bar, and a direction perpendicular to the extending direction of the first and second electrode fingers is defined as the width direction
  • a wide width part having a width direction dimension larger than the center in the length direction of the first and second electrode fingers is larger than the center region.
  • At least one of the first and second bus bars has a plurality of openings that are separately arranged along the length direction of the first or second bus bar, and the first and second bus bars are An inner busbar portion that is located on the first or second electrode finger side of the opening and that extends in the length direction of the first and second busbars, and the opening.
  • the thickness of the first and second electrode fingers of the IDT electrode may be the first or second edge region in the first or second edge region. It is thicker than the thickness of the remaining part of the second electrode finger.
  • portions of the first and second electrode fingers that are thicker than the remaining portions have an additional electrode layer.
  • the additional electrode layer is made of the same material as the second electrode layer of the reflector.
  • the formation of the edge region and the formation of the electrode fingers having a thick reflector can be performed in the same process.
  • the thickness of the additional electrode layer and the thickness of the second electrode layer in the reflector are the same. In this case, the manufacturing process can be simplified.
  • the width of the first and second electrode fingers is the first in the central region. , Larger than the width of the second electrode finger.
  • the acoustic wave element substrate is a piezoelectric substrate.
  • the acoustic wave element substrate includes a support substrate and a piezoelectric film laminated directly or indirectly on the support substrate.
  • the elastic wave device of the present invention it is possible to reduce the size and suppress the influence of longitudinal mode ripple.
  • FIG. 1 is a schematic plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a partially cutaway front sectional view showing a main part of the elastic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a partially cutaway front sectional view showing a main part of the acoustic wave device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing the S parameter characteristics of Examples 1 to 3 which are examples of the first embodiment of the present invention and the elastic wave device of Comparative Example 1.
  • FIG. 5 is an enlarged view showing a main part of the S parameter characteristic of FIG.
  • FIG. 6 is a graph showing S parameter characteristics of the elastic wave devices of Example 4 and Comparative Examples 1 and 2.
  • FIG. 1 is a schematic plan view of an acoustic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a partially cutaway front sectional view showing a main part of the elastic wave device according to the first
  • FIG. 7 is a partially cutaway front sectional view for explaining the electrode structure of the acoustic wave device according to the second embodiment of the present invention.
  • FIG. 8 is a front cross-sectional view for explaining a modification of the structure of the electrode finger of the acoustic wave device of the present invention.
  • FIG. 9 is a schematic plan view of an acoustic wave device according to the third embodiment of the present invention.
  • FIG. 10 is a partially cutaway front sectional view for explaining an electrode structure of an acoustic wave device according to the fourth embodiment of the present invention.
  • FIG. 11 is a partially cutaway plan view showing the main part of the IDT electrode of the acoustic wave device according to the fifth embodiment of the present invention.
  • FIG. 1 is a schematic plan view of an elastic wave device according to a first embodiment of the present invention.
  • the elastic wave device 1 has a piezoelectric substrate 2 as an elastic wave element substrate.
  • the piezoelectric substrate 2 is made of a piezoelectric single crystal such as LiTaO 3 or LiNbO 3 .
  • the piezoelectric substrate 2 may be made of piezoelectric ceramics.
  • An IDT electrode 3 is provided on the piezoelectric substrate 2. Reflectors 4 and 5 are provided on both sides of the IDT electrode 3 in the elastic wave propagation direction. Thereby, a 1-port elastic wave resonator is formed.
  • the IDT electrode 3 has first and second bus bars 11 and 12 facing each other. One end of a plurality of first electrode fingers 13 is connected to the first bus bar 11. One end of a plurality of second electrode fingers 14 is connected to the second bus bar 12. The plurality of first electrode fingers 13 and the plurality of second electrode fingers 14 are interleaved with each other.
  • the elastic wave propagation direction is a direction orthogonal to the direction in which the first and second electrode fingers 13 and 14 extend.
  • a region where the first electrode finger 13 and the second electrode finger 14 overlap when viewed from the elastic wave propagation direction is defined as an intersecting region R.
  • the intersecting region R has a central region A0 and first and second edge regions A1 and A2 provided on both sides of the central region A0 in the direction in which the first and second electrode fingers 13 and 14 extend.
  • the first and second edge regions A1 and A2 are provided so that the acoustic velocity of the elastic wave in the first and second edge regions A1 and A2 is lower than the acoustic velocity of the elastic wave in the central region A0.
  • the thicknesses of the first and second electrode fingers 13 and 14 are larger than the thickness in the central region A0.
  • the thickness of the first and second electrode fingers in the edge region is schematically shown with hatching.
  • the first and second high sound velocity regions H are located outside the first and second edge regions A1 and A2, respectively.
  • an outer side means the side away from a center area
  • the sound velocity of the elastic wave in the first and second high sound velocity regions H is faster than the sound velocity of the elastic wave in the central region A0.
  • the transverse mode ripple is suppressed.
  • the reflectors 4 and 5 have a structure in which both ends of a plurality of electrode fingers 15a to 15d and 16a to 16d are short-circuited.
  • the plurality of electrode fingers 15a to 15d and the plurality of electrode fingers 16a to 16d hatching of the remaining electrode fingers 15b to 15d and 16b to 16d excluding the electrode fingers 15a and 16a closest to the IDT electrode 3 is hatched. It is shown.
  • the hatched hatching means that the thickness of the electrode fingers is increased as in the case of the first and second edge regions A1 and A2 in the IDT electrode 3.
  • FIG. 2 is a partially cutaway front sectional view for explaining the main part of the acoustic wave device 1.
  • FIG. 2 shows a cross section of a portion along the line BB in FIG.
  • the plurality of electrode fingers 16 a to 16 d have a first electrode layer 161.
  • the electrode finger 16 a closest to the IDT electrode 3 has only the first electrode layer 161.
  • the remaining electrode fingers 16b to 16d have a second electrode layer 162 provided on the first electrode layer 161.
  • the remaining electrodes 16b to 16d are relatively thick.
  • the thickness of the first and second electrode fingers 13 and 14 of the IDT electrode 3 is the same as that of the first electrode layer 161. Accordingly, the electrode fingers 16b to 16d are thicker than the first and second electrode fingers 13 and 14 of the IDT electrode 3.
  • the first electrode layer 161 is made of the same material as the first and second electrode fingers 13 and 14. Therefore, the first electrode layer 161 can be formed in the same process as the first and second electrode fingers 13 and 14. However, the first electrode layer 161 may have a thickness different from that of the first and second electrode fingers 13 and 14. Further, the first electrode layer 161 may be made of a material different from that of the first and second electrode fingers 13 and 14.
  • the second electrode layer 162 is made of a material different from that of the first electrode layer 161.
  • the second electrode layer 162 may be made of the same material as the first electrode layer 161.
  • the thickness of the electrode fingers 16b to 16d is increased.
  • the portion where the thickness is increased may reach a high sound velocity region H outside the intersecting region R.
  • the thickness is increased.
  • FIG. 3 shows a cross section of a portion along the line CC in FIG.
  • additional electrode layers 13 a and 14 a are stacked on the first electrode finger 13 and the second electrode finger 14.
  • the additional electrode layers 13a and 14a are made of the same material as the second electrode layer 162 and have the same thickness. Therefore, the second electrode layer 162 can be provided in the same process as the additional electrode layers 13a and 14a. But the 2nd electrode layer 162 may differ in thickness from the additional electrode layers 13a and 14a, and may consist of a different material.
  • all the electrode fingers 16b to 16d other than the electrode finger 16a closest to the IDT electrode 3 are relatively thick. However, at least one of the remaining electrode fingers 16b to 16d other than the electrode finger 16a closest to the IDT electrode 3 only needs to be relatively thick.
  • the remaining electrode fingers 16b to 16d other than the electrode finger 16a closest to the IDT electrode 3 are desirably relatively thick. Thereby, the number of electrode fingers in the reflector 5 can be further reduced. Accordingly, the size can be further reduced.
  • the reflector 5 was demonstrated, the reflector 4 is also the same.
  • the feature of the acoustic wave device 1 is that the reflectors 4 and 5 are provided with a plurality of electrode fingers 15b to 15d and 16b to 16d having a large thickness, thereby enabling a reduction in size. Furthermore, another feature of the acoustic wave device 1 is that the influence of longitudinal mode ripple can be suppressed by relatively increasing the thickness of at least a part of the electrode fingers 15b to 15d and 16b to 16d. is there.
  • FIG. 4 is a diagram showing S parameter characteristics of the acoustic wave devices of Examples 1 to 3 and Comparative Example 1 below.
  • FIG. 5 is an enlarged view of the characteristics in the vicinity of 0.882 to 0.889 GHz where the longitudinal mode response in FIG. 4 appears.
  • the horizontal axis indicates the unit of MHz.
  • Example 1 a LiNbO 3 single crystal substrate was used as the piezoelectric substrate 2.
  • the number of pairs of electrode fingers in the IDT electrode 3 is 40, the size of the intersecting region R, that is, the intersecting width is 100 ⁇ m, and the size along the extending direction of the first and second electrode fingers 13 and 14 in the central region A0 is 95.84 ⁇ m.
  • the dimension along the extending direction of the first and second electrode fingers 13 and 14 in the first and second edge regions A1 and A2 was 2.08 ⁇ m.
  • the width direction dimension of the first electrode finger 13 and the second electrode 14 was 1 ⁇ m, and the wavelength determined by the electrode finger pitch was 4 ⁇ m.
  • the thickness of the first and second electrode fingers 13 and 14 in the central region A0 was 329.1 nm.
  • the thicknesses of the additional electrode layers 13a and 14a were 31.2 nm.
  • the width direction dimensions of the electrode fingers 15a to 15d and 16a to 16d were 1 ⁇ m, and the wavelength determined by the electrode finger pitch was 4 ⁇ m.
  • the reflectors 4 and 5 are shown as having four electrode fingers 15a to 15d and 16a to 16d. However, in this embodiment, the number of electrode fingers of the reflectors 4 and 5 is There were 11 each.
  • the thickness of the electrode fingers 15a and 16a closest to the IDT electrode 3 was 329.1 nm.
  • the thicknesses of the electrode fingers 15b to 15d and 16b to 16d are the same as those of the first and second edge regions A1 and A2, and the thickness of the second electrode layer 162 is equal to the thickness of the additional electrode layers 13a and 14a.
  • Pt / Al As a material for the IDT electrode 3 and the reflectors 4 and 5, Pt / Al was used.
  • the second electrode layer 162 and the additional electrode layers 13a and 14a were made of Pt.
  • Examples 2 and 3 and Comparative Example 1 were the same as Example 1 except for the following points.
  • Example 2 In contrast to Example 1, in Example 2, the second electrode layer was not provided in the electrode finger in the center of the elastic wave propagation direction in the reflector, and the second electrode layer was provided in the remaining electrode fingers.
  • Example 3 in the reflector, the second electrode layer was not provided on one electrode finger located on the outermost side in the elastic wave propagation direction, and the second electrode layer was provided on the remaining electrode fingers.
  • the second electrode layer was provided on all the electrode fingers of the reflector.
  • the resonance frequency of the main response in the acoustic wave resonators of Examples 1 to 3 and Comparative Example 1 is 903.5 MHz, and the longitudinal mode response appears in the vicinity of 0.885 GHz.
  • the solid line shows the result of Example 1
  • the one-dot chain line shows the result of Example 2
  • the two-dot chain line shows the result of Example 3
  • the broken line shows the result of Comparative Example 1.
  • Comparative Example 1 is the same as Comparative Example 1 described above.
  • the configurations of the acoustic wave resonators of Example 4 and Comparative Example 2 are as follows.
  • the materials of the piezoelectric substrate 2 and the IDT electrode 3 were the same as in Example 1.
  • the number of electrode fingers of the IDT electrode 3 was 40 pairs, and the number of electrode fingers per reflector was 11.
  • the thicknesses of the IDT electrode 3 and the electrode finger were made equal.
  • the second electrode layer 162 made of a Pt film was provided so as to have a thickness of 31.2 nm.
  • Example 4 was the same as Example 1 except for the above.
  • the second electrode layer was not provided on all the electrode fingers of the reflector.
  • Comparative Example 2 is the same as Example 4 in other points.
  • Example 4 it can be seen that the influence of the response in the longitudinal mode is small.
  • the longitudinal mode ripple is the same as in the first to third embodiments. It can be seen that the influence of is suppressed.
  • FIG. 7 is a partially cutaway front sectional view for explaining the main part of the acoustic wave device according to the second embodiment of the present invention.
  • the remaining electrode fingers 16b to 16d other than the electrode finger 16a closest to the IDT electrode are thickened.
  • the second electrode layer 162 is not provided, and the film formation is performed so that the thickness of the electrode fingers 16b to 16d is increased.
  • the relatively thick electrode fingers 16b to 16d may be provided by simply increasing the thickness without providing the second electrode layer 162.
  • FIG. 8 is a front sectional view showing a modification of the structure of the electrode fingers of the reflector according to the present invention.
  • the electrode finger 16b of the reflector is provided with the second electrode layer 162 on the first electrode layer 161 as in the first embodiment.
  • the first electrode layer 161 and the second electrode layer 162 are each composed of a stacked body of a plurality of electrode layers 161a to 161c and 162a to 162c.
  • each of the first electrode layer 161 and the second electrode layer 162 may be a stack of a plurality of electrode layers.
  • the first and second electrode fingers 13 and 14 in the IDT electrode 3 may also have a structure in which a plurality of electrode layers are stacked other than the edge regions A1 and A2.
  • the additional electrode layers 13a and 14a described above may also be a laminate of a plurality of electrode layers.
  • the electrode fingers 15a and 16a closest to the IDT electrode 3 in the reflectors 4 and 5 are not limited to a single electrode layer, and may be a laminate of a plurality of electrode layers.
  • FIG. 9 is a schematic plan view of an elastic wave device according to a third embodiment of the present invention.
  • the widths of the first and second electrode fingers 13B and 14B are thicker than the remaining electrode finger portions in the edge region of the IDT electrode 3.
  • the edge region may be provided by providing the wide portions 13b and 14b.
  • a structure in which an additional electrode layer is provided and a structure in which the thick portions 13b and 14b are provided may be used in combination.
  • the electrode fingers 15b to 15d and 16b to 16d are relatively thick so as to be hatched. Therefore, the size can be reduced as in the first embodiment. Therefore, also in the third embodiment, it is possible to reduce the size and suppress the influence of the longitudinal mode ripple.
  • FIG. 10 is a partially cutaway front sectional view for explaining the electrode structure of the acoustic wave device according to the fourth embodiment of the present invention.
  • the electrode finger 16b of the reflector 5 is made thin like the electrode finger 16a.
  • the fourth embodiment shown in FIG. 10 is the same as the structure of FIG. 2 of the first embodiment. Accordingly, the same parts are denoted by the same reference numerals, and the description thereof is omitted.
  • the plurality of electrode fingers 16 a and 16 b are relatively thin, and the plurality of electrode fingers 16 c and 16 d are thicker than the IDT electrode 3. May be.
  • FIG. 11 is a partially cutaway plan view showing the main part of the IDT electrode of the acoustic wave device according to the fifth embodiment of the present invention.
  • the IDT electrode has first and second bus bars facing each other.
  • the plurality of first electrode fingers 23 are provided with thick width portions 23a
  • the plurality of second electrode fingers 24 are provided with thick width portions 24a and 24b.
  • the wide portion 23a by shifting the direction of the position of extension of the electrode fingers of 24a and 24b, region V22 is provided the sound velocity is V 22.
  • Sound velocity of the region V22 is lower than the acoustic velocity V 21 in the central region V21. Further, in the region V23 is the gap area, the acoustic velocity V 23 is also higher than the acoustic velocity V 22 or the acoustic velocity V 21.
  • the first bus bar 21 has an inner bus bar portion 21A and an outer bus bar portion 21C.
  • a plurality of openings 25 are provided along the elastic wave propagation direction.
  • the inner bus bar portion 21 ⁇ / b> A and the outer bus bar portion 21 ⁇ / b> C are connected by a connecting portion 26.
  • the connecting portion 26 is located on the extension of the first electrode finger 23.
  • the sound speeds V 24 and V 26 of the inner bus bar portion 21A and the outer bus bar portion 21C are sufficiently lowered, whereas in the region V25 where the opening 25 is provided, the sound velocity V 25 is smaller than that of the gap region V23. which is equivalent to the speed of sound V 23.
  • the elastic wave device of the fifth embodiment is the same as the elastic wave device of the first embodiment except that the IDT electrode is configured as described above. Therefore, also in the elastic wave device of the fifth embodiment, the reflector can be downsized by providing a plurality of thick electrode fingers.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

小型化と、縦モードリップルの影響の抑制とを図り得る弾性波装置を提供する。 IDT電極3で励振された弾性波を反射させる反射器4,5が設けられている弾性波装置1。反射器4,5は、複数本の電極指15a~15d,16a~16dを有する。IDT電極3に最も近い電極指15a,16aを除く残りの電極指15b~15d,16b~16dにおいて、少なくとも1本の電極指の厚みが、IDT電極3の中央領域A0における電極指13,14の厚みよりも厚くされている。

Description

弾性波装置
 本発明は、弾性波素子基板上にIDT電極及び反射器が設けられている、弾性波装置に関する。
 従来、弾性波装置では、他の電子部品と同様に小型化が求められている。下記の特許文献1に記載の弾性波装置では、IDT電極の厚みに比べて、反射器の全ての電極指の厚みが厚くされている。それによって、反射器の電極指の本数を少なくすることが可能となり、小型化を進め得るとされている。
特開2006-238153号公報
 しかしながら、特許文献1に記載の弾性波装置では、IDT電極の厚みに比べて、反射器の全ての電極指の厚みが厚くされているので、縦モードリップルが大きくなるという問題があった。
 したがって、本発明の目的は、小型化と、縦モードリップルの影響の抑制とを図り得る、弾性波装置を提供することにある。
 本発明に係る弾性波装置は、弾性波素子基板と、前記弾性波素子基板上に設けられており、弾性波を励振するIDT電極と、前記IDT電極で励振された弾性波を反射させる一対の反射器とを備え、前記反射器が複数本の電極指を有し、前記反射器の前記複数本の電極指のうち、一部の電極指が、前記IDT電極よりも厚くされている。
 本発明に係る弾性波装置のある特定の局面では、前記一部の電極指が、前記反射器において、前記IDT電極に最も近い電極指以外の少なくとも1本の電極指である。
 本発明に係る弾性波装置の他の特定の局面では、前記一部の電極指が、前記反射器において、前記IDT電極に最も近い電極指以外の全ての電極指である。この場合には、電極指の本数を減らすことにより、小型化をより一層図ることができる。
 本発明に係る弾性波装置の別の特定の局面では、前記反射器において、前記複数本の電極指が、それぞれ第1の電極層を有し、前記一部の電極指が、前記第1の電極層上に設けられた第2の電極層を有する。
 本発明に係る弾性波装置の他の特定の局面では、前記第2の電極層が、前記第1の電極層と異なる材料からなる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第2の電極層が、前記IDT電極と異なる材料からなる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記IDT電極が、互いに間挿し合う第1及び第2の電極指を有し、前記第1の電極指と前記第2の電極指とが、弾性波伝搬方向にみたときに重なり合っている領域を交差領域としたときに、該交差領域が、前記第1,第2の電極指が延びる方向において、中央領域と、前記中央領域の一方側及び他方側に設けられた第1,第2のエッジ領域と、前記第1,第2のエッジ領域の外側にそれぞれ設けられた第1,第2の高音速領域と、を有し、前記第1,第2のエッジ領域における弾性波の音速が、前記中央領域における弾性波の音速よりも遅くされており、前記第1,第2の高音速領域における弾性波の音速が、前記中央領域における音速よりも速くされている。
 本発明に係る弾性波装置の他の特定の局面では、前記IDT電極が、第1のバスバーと、前記第1のバスバーと隔てられて配置された第2のバスバーと、前記第1のバスバーに基端が電気的に接続されており、先端が前記第2のバスバーに向かって延ばされている複数本の第1の電極指と、前記第2のバスバーに基端が接続されており、先端が前記第1のバスバーに向かって延ばされている複数本の第2の電極指とを有し、前記第1及び第2の電極指の延びる方向と直交する方向を幅方向としたときに、前記第1及び第2の電極指の少なくとも一方において、前記第1及び第2の電極指の長さ方向中央に比べて幅方向寸法が大きくされている太幅部が、中央領域よりも前記基端側および前記先端側のうちの少なくとも一方の側に設けられており、前記第1及び第2のバスバーの少なくとも一方が前記第1または第2のバスバーの長さ方向に沿って分離配置された複数の開口部を有し、前記第1及び第2のバスバーが、前記開口部よりも前記第1または第2の電極指側に位置しており、かつ前記第1及び第2のバスバーの長さ方向に延びる内側バスバー部と、前記開口部が設けられている中央バスバー部と、前記内側バスバー部と、前記中央バスバー部を挟んで反対側に位置している外側バスバー部とを有する。
 本発明に係る弾性波装置の別の特定の局面では、前記IDT電極の前記第1及び第2の電極指の厚みが、前記第1及び第2のエッジ領域の少なくとも一方において、当該第1または第2の電極指の残りの部分の厚みよりも厚くされている。
 本発明に係る弾性波装置の他の特定の局面では、前記第1及び第2の電極指において、前記残りの部分より厚くされている部分が、追加電極層を有する。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記追加電極層が、前記反射器の前記第2の電極層と同じ材料からなる。この場合には、エッジ領域の形成と、反射器の厚みの厚い電極指の形成を、同じ工程で行なうことができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記追加電極層の厚みと、前記反射器における前記第2の電極層の厚みとが同一である。この場合には、製造工程の簡略化を図ることができる。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記第1,第2のエッジ領域の少なくとも一方において、前記第1,第2の電極指の幅が、前記中央領域における前記第1,第2の電極指の幅よりも大きくされている。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記弾性波素子基板が、圧電基板である。
 本発明に係る弾性波装置のさらに他の特定の局面では、前記弾性波素子基板が、支持基板と、支持基板上に直接または間接に積層された圧電膜とを有する。
 本発明に係る弾性波装置によれば、小型化を図ることができ、かつ縦モードリップルの影響を抑制することができる。
図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。 図2は、本発明の第1の実施形態の弾性波装置の要部を示す部分切欠き正面断面図である。 図3は、本発明の第1の実施形態に係る弾性波装置の要部を示す部分切欠き正面断面図である。 図4は、本発明の第1の実施形態の実施例である実施例1~3と、比較例1の弾性波装置のSパラメータ特性を示す図である。 図5は、図4のSパラメータ特性の要部を拡大して示す図である。 図6は、実施例4及び比較例1,2の弾性波装置のSパラメータ特性を示す図である。 図7は、本発明の第2の実施形態に係る弾性波装置の電極構造を説明するための部分切欠き正面断面図である。 図8は、本発明の弾性波装置の電極指の構造の変形例を説明するための正面断面図である。 図9は、本発明の第3の実施形態に係る弾性波装置の模式的平面図である。 図10は、本発明の第4の実施形態に係る弾性波装置の電極構造を説明するための部分切欠き正面断面図である。 図11は、本発明の第5の実施形態に係る弾性波装置のIDT電極の要部を示す部分切欠平面図である。
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。
 図1は、本発明の第1の実施形態に係る弾性波装置の模式的平面図である。
 弾性波装置1は、弾性波素子基板としての圧電基板2を有する。圧電基板2は、LiTaOまたはLiNbOなどの圧電単結晶からなる。圧電基板2は、圧電セラミックスからなるものであってもよい。
 圧電基板2上に、IDT電極3が設けられている。IDT電極3の弾性波伝搬方向両側に反射器4,5が設けられている。それによって、1ポート型の弾性波共振子が構成されている。
 IDT電極3は、対向し合う第1,第2のバスバー11,12を有する。第1のバスバー11に、複数本の第1の電極指13の一端が接続されている。第2のバスバー12に、複数本の第2の電極指14の一端が接続されている。複数本の第1の電極指13及び複数本の第2の電極指14は、互いに間挿し合っている。
 弾性波伝搬方向は、第1,第2の電極指13,14が延びる方向と直交する方向である。
 弾性波伝搬方向からみたときに、第1の電極指13と第2の電極指14とが重なり合っている領域を交差領域Rとする。交差領域Rは、第1,第2の電極指13,14が延びる方向において、中央領域A0と、中央領域A0の両側に設けられた第1,第2のエッジ領域A1,A2とを有する。
 第1,第2のエッジ領域A1,A2における弾性波の音速が、中央領域A0における弾性波の音速よりも低くなるように、第1,第2のエッジ領域A1,A2が設けられている。本実施形態では、第1,第2のエッジ領域A1,A2において、第1,第2の電極指13,14の厚みが、中央領域A0における厚みよりも厚くされている。このエッジ領域において第1,第2の電極指の厚みが厚くされていることを、図1等において、斜線のハッチングを付して模式的に示す。
 上記第1,第2のエッジ領域A1,A2の外側には、第1,第2の高音速領域Hがそれぞれ位置している。なお、外側とは、第1,第2の電極指13,14の延びる方向において、中央領域から遠ざかる側をいう。そして、第1,第2の高音速領域Hにおける弾性波の音速は、中央領域A0における弾性波の音速よりも速くなっている。
 上記中央領域A0、第1,第2のエッジ領域A1,A2及び外側の高音速領域Hを設けることにより、横モードリップルが抑圧されている。
 図1に示すように、反射器4,5は、複数本の電極指15a~15d,16a~16dの両端を短絡した構造を有する。複数本の電極指15a~15d及び複数本の電極指16a~16dにおいては、IDT電極3に最も近い側の電極指15a,16aを除く残りの電極指15b~15d,16b~16dに斜線のハッチングが示されている。
 斜線のハッチングは、IDT電極3における第1,第2のエッジ領域A1,A2の場合と同様に、電極指の厚みが厚くされていることを意味する。
 図2は、弾性波装置1の要部を説明するための部分切欠き正面断面図である。
 図2は、図1のB-B線に沿う部分の断面を示す。
 図2に示すように、反射器5では、複数本の電極指16a~16dは、第1の電極層161を有する。そして、IDT電極3に最も近い電極指16aは、第1の電極層161のみを有する。これに対して、残りの電極指16b~16dは、第1の電極層161上に設けられた第2の電極層162を有する。それによって、残りの電極16b~16dの厚みが相対的に厚くされている。また、IDT電極3の第1,第2の電極指13,14の厚みは、第1の電極層161と同じとされている。従って、電極指16b~16dの厚みは、IDT電極3の第1,第2の電極指13,14の厚みよりも厚くされている。
 上記第1の電極層161は、第1,第2の電極指13,14と同じ材料からなる。従って、第1の電極層161は、第1,第2の電極指13,14と同じ工程で形成することができる。もっとも、第1の電極層161は、第1,第2の電極指13,14と異なる厚みを有していてもよい。また、第1の電極層161は、第1,第2の電極指13,14と異なる材料からなるものであってもよい。
 本実施形態では、第2の電極層162は、第1の電極層161と異なる材料からなる。もっとも、第2の電極層162は、第1の電極層161と同じ材料からなるものであってもよい。
 なお、図1では、交差領域Rにおいて、電極指16b~16dの厚みが厚くされていた。この厚みが厚くされている部分は、交差領域Rの外側の高音速領域Hに至っていてもよい。
 図1に示す反射器4においても、電極指15b~15dは、同様に第2の電極層を有するため、厚みが厚くされている。
 また、図3に図1のC-C線に沿う部分の断面を示す。エッジ領域A2においては、第1の電極指13及び第2の電極指14上に、追加電極層13a,14aが積層されている。追加電極層13a,14aは、第2の電極層162と同じ材料からなり、かつ同じ厚みとされている。従って、第2の電極層162は、追加電極層13a,14aと同一工程で設けることができる。もっとも、第2の電極層162は、追加電極層13a,14aと、厚みが異なっていてもよく、異なる材料からなるものであってもよい。
 また、本実施形態では、IDT電極3に最も近い電極指16a以外の全ての電極指16b~16dにおいて、厚みが相対的に厚くされていた。しかしながら、IDT電極3に最も近い電極指16a以外の残りの電極指16b~16dのうち、少なくとも1本の電極指において、厚みが相対的に厚くされておればよい。
 好ましくは、本実施形態のように、IDT電極3に最も近い電極指16aを除く、残りの電極指16b~16dの全てにおいて、厚みが相対的に厚くされていることが望ましい。それによって、反射器5における電極指の本数をより少なくすることができる。従って、小型化をより一層図ることができる。
 なお、反射器5について説明したが、反射器4も同様である。
 弾性波装置1の特徴は、反射器4,5において、厚みが厚い複数本の電極指15b~15d,16b~16dが設けられていることにより、小型化を図り得ることにある。さらに、弾性波装置1の他の特徴は、電極指15b~15d,16b~16dの少なくとも一部において厚みが相対的に厚くされていることによって、縦モードリップルの影響を抑制することができることにある。
 これを、図4~図7を参照して説明する。
 図4は、以下の実施例1~3、比較例1の弾性波装置のSパラメータ特性を示す図である。また、図5は、図4中の縦モードの応答が現れている0.882~0.889GHz付近の特性を拡大して示す図である。なお、図5では、横軸はMHzの単位で示されている。
 なお、実施例1~3及び比較例1の構成は以下の通りである。
 実施例1では、圧電基板2として、LiNbO単結晶基板を用いた。IDT電極3における電極指の対数は40対とし、交差領域Rの寸法すなわち交差幅は100μmとし、中央領域A0の第1,第2の電極指13,14の延びる方向に沿う寸法は95.84μm、第1,第2のエッジ領域A1,A2の第1,第2の電極指13,14の延びる方向に沿う寸法は2.08μmとした。第1の電極指13及び第2の電極14の幅方向寸法は1μmとし、電極指ピッチで定める波長は4μmとした。
 中央領域A0における第1,第2の電極指13,14の厚みは329.1nmとした。追加電極層13a,14aの厚みは31.2nmとした。
 反射器4,5においては、電極指15a~15d,16a~16dの幅方向寸法は1μmとし、電極指ピッチで定まる波長は4μmとした。なお、図1では、反射器4,5は、4本の電極指15a~15d,16a~16dを有するように図示したが、本実施例では、反射器4,5の電極指の本数は、それぞれ11本とした。IDT電極3に最も近い電極指15a,16aの厚みは、329.1nmとした。電極指15b~15d,16b~16dの厚みは、第1,第2のエッジ領域A1,A2と同様とし、第2の電極層162の厚みは、追加電極層13a,14aの厚みと等しくした。
 上記IDT電極3及び反射器4,5の材料としては、Pt/Alを用いた。第2の電極層162及び追加電極層13a,14aはPtで構成した。
 実施例2,3及び比較例1は、下記の点を除いては、上記実施例1と同様とした。
 上記実施例1に対し、実施例2では、反射器における弾性波伝搬方向中央の電極指において、第2の電極層を設けず、残りの電極指に第2の電極層を設けた。
 実施例3では、反射器において、弾性波伝搬方向において最も外側に位置している1本の電極指に第2の電極層を設けず、残りの電極指に第2の電極層を設けた。
 比較例1では、反射器の全ての電極指に第2の電極層を設けた。
 実施例1~3及び比較例1の弾性波共振子における主たる応答の共振周波数は903.5MHzであり、縦モードの応答は、0.885GHz付近に現れている。実線が実施例1の結果を、一点鎖線が実施例2の結果を、二点鎖線が実施例3の結果を、破線が比較例1の結果を示す。
 図4及び図5から明らかなように、比較例1では、縦モードによる応答が大きいのに対し、実施例1~3によれば、縦モードによる応答の影響が小さいことがわかる。特に、実施例1では、縦モードによる応答の影響をより一層効果的に抑制し得ることがわかる。
 次に、実施例4及び比較例1,2の弾性波装置のSパラメータ特性を図6に示す。比較例1は、前述した比較例1と同一である。実施例4及び比較例2の弾性波共振子の構成は以下の通りである。
 圧電基板2、IDT電極3の材料は実施例1と同様とした。実施例4では、IDT電極3の電極指の対数を40対、反射器1つあたりの電極指の本数を11本とした。そして、反射器4,5におけるIDT電極3に近い側の4本の電極指において、IDT電極3と電極指の厚みを等しくした。他方、残りの7本の電極指については、Pt膜からなる第2の電極層162を31.2nmの厚みになるように設けた。
 実施例4は、上記以外は実施例1と同様とした。
 比較例2では、反射器の全ての電極指に、第2の電極層は設けなかった。
 比較例2は、その他の点は、実施例4と同様である。
 図6において、実線が実施例4の結果を、破線が比較例1の結果を、一点鎖線が比較例2の結果を示す。
 図6から明らかなように、比較例1では、矢印Dで示すように、0.883GHz付近において、縦モードの応答が大きく現れている。
 これに対して、実施例4では、縦モードの応答の影響が小さいことがわかる。
 また、比較例2に比べても、実施例4によれば、縦モードの影響を効果的に抑制し得ることがわかる。
 実施例4から明らかなように、IDT電極3に最も近い電極指以外の残りの電極指の一部の電極指の厚みを厚くした場合においても、実施例1~3と同様に、縦モードリップルの影響が抑制されることがわかる。
 図7は、本発明の第2の実施形態に係る弾性波装置の要部を説明するための部分切欠き正面断面図である。第2の実施形態の弾性波装置では、図7に示すように、反射器5Aにおいて、IDT電極に最も近い電極指16a以外の残りの電極指16b~16dの厚みが厚くされている。もっとも、本実施形態では、第2の電極層162を設けることなく、成膜に際し、電極指16b~16dの厚みが厚くなるように成膜が行なわれている。このように、第2の電極層162を設けずに、単に厚みを厚くすることにより、相対的に厚い電極指16b~16dを設けてもよい。
 図8は、本発明における反射器の電極指の構造の変形例を示す正面断面図である。反射器の電極指16bは、第1の実施形態のように、第1の電極層161上に第2の電極層162が設けられている。ここでは、第1の電極層161及び第2の電極層162が、それぞれ、複数の電極層161a~161c及び162a~162cの積層体からなる。このように、第1の電極層161及び第2の電極層162は、それぞれ、複数の電極層を積層したものであってもよい。
 IDT電極3における第1,第2の電極指13,14についても、エッジ領域A1,A2以外において、複数の電極層を積層した構造を有していてもよい。前述した追加電極層13a,14aについても、複数の電極層の積層体であってもよい。
 また、反射器4,5におけるIDT電極3に最も近い電極指15a,16aについても、単一の電極層のものに限らず、複数の電極層の積層体であってもよい。
 図9は、本発明の第3の実施形態に係る弾性波装置の模式的平面図である。本実施形態の弾性波装置では、IDT電極3のエッジ領域において、第1,第2の電極指13B,14Bの幅が残りの電極指部分よりも太くされている。このように、太幅部13b,14bを設けることにより、エッジ領域を設けてもよい。
 また、上記第1の実施形態のように、追加電極層を設けた構造と、上記太幅部13b,14bを設けた構造とを併用してもよい。
 第3の実施形態においても、電極指15b~15d,16b~16dが、斜線のハッチングを付されているように、相対的に厚くされている。従って、第1の実施形態と同様に、小型化が図られる。よって、第3の実施形態においても、小型化と縦モードリップルの影響の抑制を図ることができる。
 図10は、本発明の第4の実施形態に係る弾性波装置の電極構造を説明するための部分切欠き正面断面図である。第4の実施形態では、反射器5の電極指16bが、電極指16aと同様に薄くされている。その他の構造は、図10に示した第4の実施形態は、第1の実施形態の図2の構造と同一である。従って、同一部分については同一の参照番号を付することによりその説明を省略する。第4の実施形態のように、反射器5において、複数本の電極指16a,16bの厚みが相対的に薄く、複数本の電極指16c,16dの厚みがIDT電極3の厚みより厚くされていてもよい。
 図11は、本発明の第5の実施形態に係る弾性波装置のIDT電極の要部を示す部分切欠平面図である。第5の実施形態の弾性波装置では、IDT電極が、対向し合う第1,第2のバスバーを有する。図11では、第1のバスバー21側のみが図示されているが、第2のバスバー側も同様の構造とされている。ここでは、複数本の第1の電極指23において、太幅部23aが設けられており、複数本の第2の電極指24に太幅部24a,24bが設けられている。太幅部23a,24a及び24bの電極指の延びる方向の位置をずらすことにより、音速がV22である領域V22が設けられている。この領域V22の音速は、中央領域V21における音速V21よりも低くなっている。また、ギャップ領域である領域V23では、音速V23が音速V22や音速V21よりも高められている。
 他方、第1のバスバー21は、内側バスバー部21Aと、外側バスバー部21Cとを有する。内側バスバー部21Aと外側バスバー部21Cとの間の部分において、複数の開口部25が弾性波伝搬方向に沿って設けられている。また、内側バスバー部21Aと外側バスバー部21Cとが、連結部26により連結されている。連結部26は、第1の電極指23の延長上に位置している。また、内側バスバー部21A及び外側バスバー部21Cの音速V24,V26は、十分低められているのに対し、開口部25が設けられている領域V25では、音速V25は、ギャップ領域V23の音速V23と同等とされている。第5の実施形態の弾性波装置のIDT電極が上記のように構成されていることを除いては、第1の実施形態の弾性波装置と同様である。従って、第5の実施形態の弾性波装置においても、反射器において、厚みが厚い複数本の電極指が設けられていることにより小型化を図ることができる。
1…弾性波装置
2…圧電基板
3…IDT電極
4,5,5A…反射器
11,12…第1,第2のバスバー
13,14…第1,第2の電極指
13a,14a…追加電極層
13b,14b…太幅部
13B,14B…第1,第2の電極指
15a~15d,16a~16d…電極指
161,162…第1,第2の電極層
161a~161c,162a~162c…電極層
21…第1のバスバー
21A…内側バスバー部
21C…外側バスバー部
23,24…電極指
23a,24a,24b…太幅部
25…開口部
26…連結部
A0…中央領域
A1,A2…エッジ領域
H…高音速領域
R…交差領域

Claims (15)

  1.  弾性波素子基板と、
     前記弾性波素子基板上に設けられており、弾性波を励振するIDT電極と、
     前記IDT電極で励振された弾性波を反射させる一対の反射器とを備え、
     前記反射器が複数本の電極指を有し、
     前記反射器の前記複数本の電極指のうち、一部の電極指が、前記IDT電極よりも厚くされている、弾性波装置。
  2.  前記一部の電極指が、前記反射器において、前記IDT電極に最も近い電極指以外の少なくとも1本の電極指である、請求項1に記載の弾性波装置。
  3.  前記一部の電極指が、前記反射器において、前記IDT電極に最も近い電極指以外の全ての電極指である、請求項2に記載の弾性波装置。
  4.  前記反射器において、前記複数本の電極指が、それぞれ第1の電極層を有し、前記一部の電極指が、前記第1の電極層上に設けられた第2の電極層を有する、請求項1~3のいずれか一項に記載の弾性波装置。
  5.  前記第2の電極層が、前記第1の電極層と異なる材料からなる、請求項4に記載の弾性波装置。
  6.  前記第2の電極層が、前記IDT電極と異なる材料からなる、請求項4または5に記載の弾性波装置。
  7.  前記IDT電極が、互いに間挿し合う第1及び第2の電極指を有し、前記第1の電極指と前記第2の電極指とが、弾性波伝搬方向にみたときに重なり合っている領域を交差領域としたときに、該交差領域が、前記第1,第2の電極指が延びる方向において、中央領域と、前記中央領域の一方側及び他方側に設けられた第1,第2のエッジ領域と、前記第1,第2のエッジ領域の外側にそれぞれ設けられた第1,第2の高音速領域と、を有し、前記第1,第2のエッジ領域における弾性波の音速が、前記中央領域における弾性波の音速よりも遅くされており、前記第1,第2の高音速領域における弾性波の音速が、前記中央領域における音速よりも速くされている、請求項1~6のいずれか一項に記載の弾性波装置。
  8.  前記IDT電極が、第1のバスバーと、前記第1のバスバーと隔てられて配置された第2のバスバーと、前記第1のバスバーに基端が電気的に接続されており、先端が前記第2のバスバーに向かって延ばされている複数本の第1の電極指と、前記第2のバスバーに基端が接続されており、先端が前記第1のバスバーに向かって延ばされている複数本の第2の電極指とを有し、
     前記第1及び第2の電極指の延びる方向と直交する方向を幅方向としたときに、前記第1及び第2の電極指の少なくとも一方において、前記第1及び第2の電極指の長さ方向中央に比べて幅方向寸法が大きくされている太幅部が、中央領域よりも前記基端側および前記先端側のうちの少なくとも一方の側に設けられており、
     前記第1及び第2のバスバーの少なくとも一方が前記第1または第2のバスバーの長さ方向に沿って分離配置された複数の開口部を有し、
     前記第1及び第2のバスバーが、前記開口部よりも前記第1または第2の電極指側に位置しており、かつ前記第1及び第2のバスバーの長さ方向に延びる内側バスバー部と、前記開口部が設けられている中央バスバー部と、前記内側バスバー部と、前記中央バスバー部を挟んで反対側に位置している外側バスバー部とを有する、請求項1~6のいずれか一項に記載の弾性波装置。
  9.  前記IDT電極の前記第1及び第2の電極指の厚みが、前記第1及び第2のエッジ領域の少なくとも一方において、当該第1または第2の電極指の残りの部分の厚みよりも厚くされている、請求項7または8に記載の弾性波装置。
  10.  前記第1及び第2の電極指において、前記残りの部分より厚くされている部分が、追加電極層を有する、請求項9に記載の弾性波装置。
  11.  前記追加電極層が、前記反射器の前記第2の電極層と同じ材料からなる、請求項10に記載の弾性波装置。
  12.  前記追加電極層の厚みと、前記反射器における前記第2の電極層の厚みとが同一である、請求項11に記載の弾性波装置。
  13.  前記第1,第2のエッジ領域の少なくとも一方において、前記第1,第2の電極指の幅が、前記中央領域における前記第1,第2の電極指の幅よりも大きくされている、請求項7~12のいずれか一項に記載の弾性波装置。
  14.  前記弾性波素子基板が、圧電基板である、請求項1~13のいずれか一項に記載の弾性波装置。
  15.  前記弾性波素子基板が、支持基板と、支持基板上に直接または間接に積層された圧電膜とを有する、請求項1~14のいずれか一項に記載の弾性波装置。
PCT/JP2017/018059 2016-07-07 2017-05-12 弾性波装置 WO2018008252A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-134759 2016-07-07
JP2016134759 2016-07-07

Publications (1)

Publication Number Publication Date
WO2018008252A1 true WO2018008252A1 (ja) 2018-01-11

Family

ID=60912439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018059 WO2018008252A1 (ja) 2016-07-07 2017-05-12 弾性波装置

Country Status (1)

Country Link
WO (1) WO2018008252A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113206653A (zh) * 2020-01-31 2021-08-03 株式会社村田制作所 弹性波滤波器
WO2023035235A1 (zh) * 2021-09-10 2023-03-16 华为技术有限公司 谐振器、滤波器及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290194A (ja) * 2001-03-27 2002-10-04 Toshiba Corp 弾性表面波装置
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
WO2014192755A1 (ja) * 2013-05-29 2014-12-04 株式会社村田製作所 弾性波フィルタ装置
JP2015111923A (ja) * 2011-03-25 2015-06-18 スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 高次横モード波を抑制した弾性波デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002290194A (ja) * 2001-03-27 2002-10-04 Toshiba Corp 弾性表面波装置
JP2013518455A (ja) * 2010-01-25 2013-05-20 エプコス アーゲー 横方向放射損失を低減させ,横方向モードの抑制により性能を高めた電気音響変換器
JP2015111923A (ja) * 2011-03-25 2015-06-18 スカイワークス・パナソニック フィルターソリューションズ ジャパン株式会社 高次横モード波を抑制した弾性波デバイス
WO2014192755A1 (ja) * 2013-05-29 2014-12-04 株式会社村田製作所 弾性波フィルタ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113206653A (zh) * 2020-01-31 2021-08-03 株式会社村田制作所 弹性波滤波器
CN113206653B (zh) * 2020-01-31 2024-04-02 株式会社村田制作所 弹性波滤波器
WO2023035235A1 (zh) * 2021-09-10 2023-03-16 华为技术有限公司 谐振器、滤波器及电子设备

Similar Documents

Publication Publication Date Title
JP5861809B1 (ja) 弾性波装置
KR102329740B1 (ko) 탄성파 장치
JP6179594B2 (ja) 弾性波装置
JP6354839B2 (ja) 弾性波フィルタ装置
JP6281639B2 (ja) 弾性波装置
JP6245378B2 (ja) 弾性波装置
WO2014192755A1 (ja) 弾性波フィルタ装置
JP2019080093A (ja) 弾性波装置
JP7014319B2 (ja) 弾性波装置
WO2015182521A1 (ja) 弾性波装置及びラダー型フィルタ
JP6103146B2 (ja) ラダー型フィルタ
KR102584698B1 (ko) 탄성파 장치 및 래더형 필터
WO2014034492A1 (ja) 弾性波装置及びフィルタ装置
JP6717389B2 (ja) 縦結合共振子型弾性波フィルタ
KR102441867B1 (ko) 탄성파 장치
WO2018131360A1 (ja) 弾性波装置
WO2018216548A1 (ja) 弾性波装置
US20200212889A1 (en) Acoustic wave filter device
JP6874861B2 (ja) 弾性波装置
KR20180123562A (ko) 탄성파 장치
WO2017077892A1 (ja) 弾性波装置
WO2018008252A1 (ja) 弾性波装置
JP2015056746A (ja) 弾性波装置
US20230261634A1 (en) Acoustic wave device and ladder filter
JP6607323B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP