WO2018214753A1 - 一种从水果中连续制备果胶和纤维的方法 - Google Patents

一种从水果中连续制备果胶和纤维的方法 Download PDF

Info

Publication number
WO2018214753A1
WO2018214753A1 PCT/CN2018/086472 CN2018086472W WO2018214753A1 WO 2018214753 A1 WO2018214753 A1 WO 2018214753A1 CN 2018086472 W CN2018086472 W CN 2018086472W WO 2018214753 A1 WO2018214753 A1 WO 2018214753A1
Authority
WO
WIPO (PCT)
Prior art keywords
residue
water
fiber
pectin
continuously preparing
Prior art date
Application number
PCT/CN2018/086472
Other languages
English (en)
French (fr)
Inventor
吕广
王姣姣
史杰
Original Assignee
河北兄弟伊兰食品科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北兄弟伊兰食品科技股份有限公司 filed Critical 河北兄弟伊兰食品科技股份有限公司
Publication of WO2018214753A1 publication Critical patent/WO2018214753A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/231Pectin; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • A23L33/22Comminuted fibrous parts of plants, e.g. bagasse or pulp
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0045Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Galacturonans, e.g. methyl ester of (alpha-1,4)-linked D-galacturonic acid units, i.e. pectin, or hydrolysis product of methyl ester of alpha-1,4-linked D-galacturonic acid units, i.e. pectinic acid; Derivatives thereof

Definitions

  • the invention belongs to the field of foods, and in particular relates to a method for continuously preparing pectin and fibers from fruits.
  • the insoluble fiber in the dietary fiber has water holding capacity and swelling property.
  • insoluble fibers swell under certain process conditions, increase the viscosity of the system, and its own dispersion and suspension can provide suspension force in the system, reduce the aggregation and settlement of proteins, and maintain the stability of the system.
  • the fiber belongs to the food raw material, not the food additive, and can replace the additive in the food to achieve the effect of cleaning the label. The researchers found that among the many insoluble fibers, citrus fibers have the best water swelling effect.
  • the citrus fiber AQplus produced by Herbafood in Germany has a good application result in this respect.
  • Other citrus fibres such as CIFIFI's 100FG, 125FG, 100M40, and CEAMSA's 7000 and 7000F have good application in beverages, dairy products, meat products and bakery products, but have a poor water swelling effect compared to AQ.
  • CIFIFI's 100FG, 125FG, 100M40, and CEAMSA's 7000 and 7000F have good application in beverages, dairy products, meat products and bakery products, but have a poor water swelling effect compared to AQ.
  • When added in liquid products it is not added to form a good suspension system to maintain the stability of the system.
  • AQ products have complex processes, high cost, and there is room for improvement in application properties.
  • the object of the present invention is to provide a method for continuously preparing pectin and fiber from fruits in order to overcome the deficiencies of the prior art, to realize the process of continuously preparing pectin and fiber, and at the same time effectively improve the water swelling and suspension of the finished fiber product. stability.
  • a method for continuously preparing pectin and fiber from fruits comprising the steps of:
  • Step 1 the fruit is juiced and separated to obtain a solid component, and the solid component is heat treated by high temperature hot water and filtered to obtain a filtrate and a residue;
  • Step 2 adding the residue to the water under high temperature conditions under acidic conditions and filtering to obtain the filtrate 2 and the residue 2;
  • Step 3 combining the filtrate 1 and the filtrate 2 to remove impurities, and extracting the pectin;
  • step 4 the residue 2 is subjected to high-temperature alkali treatment, then bleached or bleached, and then subjected to high-temperature alkali treatment, and then the solid matter is collected to obtain a residue 3, wherein the high-temperature alkali treatment is to add the residue 2 to the water and heat the alkali under alkaline conditions. deal with;
  • Step 5 mixing the residue III, water and dispersant, adjusting the pH to 6-8, homogenizing and drying to obtain a finished fiber product.
  • the step of separating the fruit after juice extraction in the step 1 may be a process of extracting the fruit and then washing the peel and the pulp to obtain a solid component, or drying and pulverizing to obtain a solid component.
  • the drying temperature may be 50-100 °C.
  • the high temperature hot water heat preservation treatment in the step 1 may be to disperse the solid component in water and keep it at 90-100 ° C for 5-30 minutes.
  • the solid component is subjected to high temperature hot water heat treatment, and the solid component may be converted into a dry matter weight, and the weight ratio of the dry matter to the water is 1:15-1:25, and then the water is added. Heat insulation treatment.
  • adding the residue to the water in the step 2 may be carried out by first converting the residue into a dry matter weight, and then adding water in a weight ratio of dry matter to water of 1:15-1:25.
  • the high temperature heat treatment under the acidic condition in the step 2 may be carried out by adding the residue to the water, adjusting the pH to 1-2.5, and maintaining the temperature at 70-85 ° C for 60-120 min.
  • the pectin is extracted in the step 3 by extracting pectin by ethanol precipitation. Further, the ethanol is precipitated into ethanol having a mass concentration of 80-95%, and the pH is 1-2.5, and the time is 1-2 h.
  • the high-temperature alkali treatment in the step 4 may be that the residue 2 is added to water, the pH is adjusted to be alkaline, and then the temperature is raised to 75-95 ° C, and the temperature is maintained for 30-120 min. Further, the pH is adjusted to a range of 7.5-14.
  • adding the residue 2 to the water in the step 4 may first convert the residue into a dry matter weight, and then add water in a weight ratio of dry matter to water of 1:15-1:25.
  • the bleaching process in the step 4 may be to disperse the residue 2 in water, add 1-2% by volume of H 2 O 2 , and then seal and incubate at 30-60 ° C for 10-30 min. Filtered and washed with water.
  • the ratio of the residue 3, the water and the dispersing agent in the step 5 may be the conversion of the residue 3 into the dry matter weight, and the weight ratio of the dry matter to the water is 1:40-1:70 plus water; Add %-40% to the dispersant.
  • the dispersing agent in step 5 may be sodium carboxymethylcellulose, and the temperature at which the residue 3, water and dispersing agent are mixed may be 40-65 °C.
  • the homogenization temperature in step 5 may be 40-65 ° C
  • the homogenization pressure may be 10-30 MPa
  • the number of homogenization may be 1-3 times.
  • a method for continuously preparing pectin and fiber from fruits comprising the steps of:
  • step (1) Weigh the dry powder in step (1), add water at a solid-liquid ratio of 1:15-1:25, heat at 90-100 °C for 5-30 min, filter, collect the filtrate and residue for use;
  • step (3) Weigh the residue in step (2) and convert it into dry matter weight. Add water according to the solid-liquid ratio 1:15-1:25, adjust the pH to 1-2.5, keep warm at 70-85 °C for 60-120 min, and filter. Collect filtrate and residue for use;
  • step (2) Combine the filtrates in step (2) and step (3), centrifuge, filter to remove impurities, concentrate, add ethanol with a concentration of 80-95%, precipitate pH value 1-2.5, time 1-2h , extracting pectin;
  • step (6) taking the filter residue in step (5), converted into dry matter weight, according to the solid-liquid ratio 1:15-1:25 water, adjust the pH to alkaline, 75-95 ° C insulation 30-120min;
  • step (6) The solution in the step (6) is cooled to 30-60 ° C, and H 2 O 2 in a volume ratio of 1-2% is added, sealed, and kept at 30-60 ° C for 10-30 min, filtered and washed with water, and the residue is collected for use;
  • step (7) Take the residue in step (7), convert it into dry matter weight, add 40-65 ° C water according to the solid-liquid ratio 1:40-1:70, and add 0%-40% carboxymethyl by dry matter weight.
  • Base cellulose sodium stirring for 15min, adjusting the solution pH 6-8, 40-65 ° C for homogenization, homogenization pressure 10-30MPa, the number of homogenization times 1-3 times;
  • the homogenized solution in the step (8) is dried using a spray drying or drum drying apparatus to obtain a finished fiber product.
  • the fruit in step 1 may be citrus fruits.
  • the pectin or fiber finished product prepared above is used in foods.
  • the invention extracts pectin and fiber from the pomace at one time, reduces the cost of the two raw materials, and maximizes economic benefits.
  • the latter as a raw material for food, provides a better thickening and suspending solution for liquid foods, achieving the effect of cleaning labels and improving product quality, and has more market prospects.
  • the invention extracts pectin and citrus fiber by using the peeled pulp and pulp as raw materials, and extracts the pectin, and the citrus fiber prepared by using the residue generated in the production process can reach the quality of the foreign fiber or even better, and can be used in the beverage. It has great market prospects with alternative additives in dairy products, providing better suspension and thickening effects, achieving the effect of cleaning labels and improving product quality.
  • the invention adopts high-temperature hot water heat preservation treatment on the solid component separated by fruit juice extraction, so that the fiber absorbs water and swells, becomes loose and soft, obviously improves the efficiency of fiber treatment in the later stage, and at the same time, inactivates pectinase at high temperature, which is beneficial to improve
  • the extraction rate and quality of pectin can effectively increase the viscosity of peanut milk, reduce wall hanging, and improve the dispersion of system fibers.
  • the fiber After the pectin is extracted by acid treatment, the fiber aggregates and crystallizes under acidic conditions, and the direct processing can not achieve a better thickening and suspending effect, and the high temperature alkali treatment enables aggregation and crystallization of fibers and fiber network.
  • the reduction of the hydrogen bond is more conducive to the dispersion of the fiber, and can effectively improve the water swelling ability of the fiber.
  • the fiber when the fiber is extracted, the fiber is also prepared by an acid-base process, but the purpose of the alkali treatment is only to remove the alkali-soluble impurities, the treatment temperature is low, and the treatment time is short, and the present invention reduces the fiber bundle by high-temperature alkali treatment.
  • the reduction of hydrogen bonds in the crystal fiber and the fiber network is more conducive to the dispersion of the fiber, can effectively improve the water swellability of the fiber, and effectively inhibit the aggregation during the application of the fiber.
  • the high temperature alkali treatment can effectively increase the viscosity of the peanut milk, reduce the wall hanging, and improve the suspension capacity of the system and the dispersibility of the fiber.
  • the bleaching treatment of the present invention can achieve the same effect before and after the alkali treatment, and can be carried out according to actual conditions.
  • the invention completely opens the aggregated and crystallized fibers by high-pressure shearing by homogenization, disperses the fibers and improves the water swellability, and achieves superior application effects.
  • the surface of the fiber has a polar carbonyl group and a hydroxyl group, and the carboxyl group in the sodium carboxymethyl cellulose (CMC) used in the present invention can form a hydrogen bond with a polar group on the surface of the fiber or interact with van der Waals force.
  • the fiber is wrapped therein and the homogenized fiber is more uniformly dispersed in the water by electrostatic force, and is not easily re-aggregated to achieve better water swellability.
  • CMC plays a role of dispersing and expanding the fiber in the present invention.
  • the invention adopts the mixing of fiber, water and dispersing agent, and homogenizes, and the homogenization can make the fiber rapidly disperse and absorb water under external pressure to further improve the dispersibility thereof, and at the same time, the used CMC plays the role of dispersing and expanding fiber in the invention.
  • the invention firstly makes the fiber fully swelled by the high temperature hot water heat preservation treatment (cooking process), and at the same time, the high temperature inactivates the pectinase, which is more favorable for the subsequent high temperature acid treatment for the extraction of the pectin, so that the extraction is more complete and thorough; the high temperature acid
  • the treatment can make the pectin fully dissolve and solution, and extract it by ethanol precipitation.
  • the subsequent high-temperature alkali treatment can dissolve and remove impurities on the one hand, and more importantly, promote the fiber to further disperse, improve the water swelling capacity of the fiber, and then pass through the subsequent homogenization.
  • each step successively undertakes each other and promotes each other, thereby synergistically improving the characteristics of the final fiber product.
  • the invention extracts pectin from fruits, especially from citrus pomace, and then prepares the fiber, and the cost of the two raw materials is greatly reduced, and the promising prospect is further promoted.
  • the prepared fiber in the invention can be used as a food material to provide a better thickening and suspending solution for liquid food, and has the effect of cleaning the label and improving the quality of the product, and has more market prospects.
  • Figure 1 is a roadmap for preparing peanut milk provided by the present invention.
  • This embodiment provides a method for continuously preparing pectin and fiber from fruits, comprising the following steps:
  • Step 1 the fruit is juiced and separated to obtain a solid component, and the solid component is treated by high temperature hot water heat preservation and filtered to obtain a filtrate and a residue;
  • Step 2 adding the residue to the water under high temperature conditions under acidic conditions and filtering to obtain the filtrate 2 and the residue 2;
  • Step 3 combining the filtrate 1 and the filtrate 2 to remove impurities, and extracting the pectin;
  • step 4 the residue 2 is subjected to high-temperature alkali treatment, then bleached or bleached, and then subjected to high-temperature alkali treatment, and then the solid matter is collected to obtain a residue 3, wherein the high-temperature alkali treatment is to add the residue 2 to the water and heat the alkali under alkaline conditions. deal with;
  • Step 5 mixing the residue III, water and dispersant, adjusting the pH to 6-8, homogenizing and drying to obtain a finished fiber product.
  • the specific method and process control may include the following steps:
  • step (1) Weigh the dry powder in step (1), add water at a solid-liquid ratio of 1:15-1:25, heat at 90-100 °C for 5-30 min, filter, collect the filtrate and residue for use;
  • step (3) Weigh the residue in step (2) and convert it into dry matter weight. Add water according to the solid-liquid ratio 1:15-1:25, adjust the pH to 1-2.5, keep warm at 70-85 °C for 60-120 min, and filter. Collect filtrate and residue for use;
  • step (2) Combine the filtrates in step (2) and step (3), centrifuge, filter to remove impurities, concentrate, add ethanol with a concentration of 80-95%, precipitate pH value 1-2.5, time 1-2h , extracting pectin;
  • step (6) taking the filter residue in step (5), converted into dry matter weight, according to the solid-liquid ratio 1:15-1:25 water, adjust the pH to alkaline, 75-95 ° C heat preservation 3-120 min;
  • step (6) The solution in the step (6) is cooled to 30-60 ° C, and H 2 O 2 in a volume ratio of 1-2% is added, sealed, and kept at 30-60 ° C for 10-30 min, filtered and washed with water, and the residue is collected for use;
  • step (7) Take the residue in step (7), convert it into dry matter weight, add 40-65 ° C water according to the solid-liquid ratio 1:40-1:70, and add 0%-40% carboxymethyl by dry matter weight.
  • Base cellulose sodium stirring for 15min, adjusting the solution pH 6-8, 40-65 ° C for homogenization, homogenization pressure 10-30MPa, the number of homogenization times 1-3 times;
  • the homogenized solution in the step (8) is dried using a spray drying or drum drying apparatus to obtain a finished fiber product.
  • Example 1 The dry powder in the step (1) of Example 1 was added, water was added according to a solid-liquid ratio of 1:15, and the mixture was kept at 90 ° C for 30 min, filtered, and the filtrate and the residue were collected for use.
  • the prepared fiber (except for heat preservation cooking, the other steps are the same) is applied to peanut milk, and the specific results are shown in the following table.
  • the viscosity measurement method is 61# rotor, 100r, 30s.
  • the heat-digested fiber is used in peanut milk, the sample has high viscosity, small particle size, good suspension effect, and the wall is thin when poured. Therefore, the present embodiment can make the dried fiber in the step (1) swell and swell, which is more advantageous for the next step of treatment, the method is simple and effective, and the process is easy to control.
  • Example 1 The residue in the step (2) of Example 1 was weighed and converted into a dry matter weight. Water was added at a solid-liquid ratio of 1:25, the pH was adjusted to 1-2, and the temperature was maintained at 75 ° C for 120 min. The filtrate was collected and the residue was collected.
  • m 1 is the weight of the residue weighed
  • w 1 is the moisture content of the residue
  • w 1 was quickly measured using a METTLER TOLEDO moisture analyzer.
  • Fibers treated with different pH acids were applied to peanut milk. The specific results are shown in the table below.
  • the viscosity measurement method is 61# rotor, 100r, 30s.
  • Example 1 A certain amount of residue in the step (3) of Example 1 was weighed, and the dry matter weight was converted. Water was added at a solid-liquid ratio of 1:20 to adjust the pH to 8-14, and the temperature was maintained at 85 ° C for 60 minutes. Among them, the dry matter conversion method is the same as above.
  • Fibers treated with different pH alkalis were applied to peanut milk. The specific results are shown in the table below.
  • the viscosity measurement method is 61# rotor, 100r, 30s.
  • Fibers treated under different homogenization conditions were applied to peanut milk. The specific results are shown in the table below.
  • the viscosity measurement method is 61# rotor, 100r, 30s.
  • the fiber which has not been homogenized has a slightly poor water swelling capacity, and the corresponding peanut milk sample has low viscosity, thick wall and adhesion at the bottom, which can be effectively improved after the homogenization process.
  • the compounded CMC can be used as a dispersing agent.
  • CMC collides with the fiber particles and rubs, so that CMC is adsorbed on the surface of the fiber to form a protective film to prevent fiber aggregation and effectively improve the system. Viscosity.
  • Fresh citrus fruits are juiced, and the rind of peel and pulp is dried at 65 ° C, crushed, passed through a 80 mesh sieve, and the dry powder is collected under the sieve for use.
  • 40 g of dry powder was weighed, added to water at 100 ° C at a solid-liquid ratio of 1:20, incubated at 100 ° C for 5 min, filtered, and the residue was collected for use.
  • the residue is converted into dry matter weight, water is added at a solid-liquid ratio of 1:20, pH 2 is adjusted, and the temperature is maintained at 80 ° C for 90 min.
  • Residue 3 is converted into dry matter weight, hot water is weighed according to 1:60 solid-liquid ratio, and CMC with 10% by weight of residue dry matter is added, stirred for 15 min, pH 7 of the solution is adjusted, homogenization is carried out at 50 ° C, and the homogenization pressure is 20 MPa.
  • the homogenized solution was dried at a drying temperature of 65 °C. The dried material is collected, crushed, and passed through an 80 mesh sieve. The sieved product is the finished fiber product and collected for use.
  • the viscosity measurement method is 61# rotor, 100r, 30s.
  • the fibers prepared in this example and AQ have good application effects in peanut milk, and the fibers prepared in this example are significantly superior to the AQ fiber products in terms of long-term application stability.
  • Other samples have weak suspension capacity and poor dispersion, which cannot meet the needs of the product.
  • the dispersibility of AQ in peanut milk gradually decreased and aggregation occurred. Therefore, the fiber prepared by the invention has better application effect.
  • the method of the invention can prepare the citrus fiber with excellent application effect at a lower cost, achieve the purpose of cleaning the product label and improve the economic benefit, and use the fiber belonging to the food ingredient to replace the suspension colloid as the beverage system.
  • Suspension and yoghurt thickening provide a new method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Nutrition Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Botany (AREA)
  • Sustainable Development (AREA)
  • Mycology (AREA)
  • Dispersion Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

一种从水果中连续制备果胶和纤维的方法,先将水果榨汁后分离得到固体成分,将固体成分经高温热水保温处理并过滤,得滤液一与残渣一;然后将残渣一加入水中在酸性条件下高温保温处理并过滤,得滤液二与残渣二;再将滤液一与滤液二合并后去杂,提取果胶;残渣二经过先高温碱处理后再进行漂白或先漂白后再进行高温碱处理,然后收集固体物,得到残渣三,其中高温碱处理为将残渣二加入水中在碱性条件下高温保温处理;最后将残渣三、水和分散剂混合后调节pH至6-8,均质、干燥,得到纤维成品。该方法得到的纤维成品,具有优良的分散性、吸水膨胀性与长期使用稳定性。

Description

一种从水果中连续制备果胶和纤维的方法 技术领域
本发明属于食品领域,具体涉及一种从水果中连续制备果胶和纤维的方法。
背景技术
当今国际食品结构正朝着纤维食品的方向调整。日本、美国的消费需求也以每年10%速度增长。在欧美市场,将膳食/纤维加入食品中已经流行多年,而在日本、台湾、韩国加入膳食纤维的食品销量在不断增加。在中国也已有一些饮品中添加了膳食纤维。调查数据显示,全球膳食纤维市场规模在2020年将达到43.1亿美元,复合年增长率将达13.2%。可以肯定,在不久的将来,膳食纤维饮品或食品将在中国得到进一步发展。
目前,膳食纤维在食品中的应用多作为功能性成分出现,在改善食品稳定状态方面的研究较少;对膳食纤维的研究多集中在膳食纤维的提取、含量测定及改性研究(增加可溶性纤维含量)方面,针对不溶性膳食纤维的应用研究较少。
膳食纤维中的不溶性纤维具有持水力和膨胀性。应用于饮料和乳制品中,不溶性纤维在一定工艺条件下吸水膨胀,增加体系粘度,并且其自身的分散和悬浮可以在体系中提供悬浮力,减少蛋白的聚集沉降,维持体系稳定。并且纤维属于食品原料,而非食品添加剂,在食品中可替代添加剂,达到清洁标签的效果。研究者对比发现,在众多不溶性纤维中,柑橘类纤维的吸水膨胀效果最佳。
德国Herbafood公司生产的柑橘纤维AQplus,在此方面应用验证结果良好。市场其他柑橘纤维如CITRIFI公司的100FG、125FG、100M40,以及CEAMSA公司的7000和7000F,在饮料、乳制品、肉制品和烘焙制品中应用效果良好,但与AQ相比吸水膨胀效果较差,在液态产品中使用时额外添加也不可形成良好的悬浮体系,维持体系稳定。但AQ产品工艺复杂,价格成本高,并且应用性质还有提升空间。
发明内容
本发明的目的在于为了克服以上现有技术的不足而提供一种从水果中连续制备果胶和纤维的方法,实现连续制备果胶与纤维的过程,同时有效提高纤维成品的吸水膨胀性与悬浮稳定性。
本发明的技术方案如下:
一种从水果中连续制备果胶和纤维的方法,包括以下步骤:
步骤1,将水果榨汁后分离得到固体成分,将固体成分经高温热水保温处理并过滤,得滤液 一与残渣一;
步骤2,将残渣一加入水中在酸性条件下高温保温处理并过滤,得滤液二与残渣二;
步骤3,将滤液一与滤液二合并后去杂,提取果胶;
步骤4,残渣二经过先高温碱处理后再进行漂白或先漂白后再进行高温碱处理,然后收集固体物,得到残渣三,其中高温碱处理为将残渣二加入水中在碱性条件下高温保温处理;
步骤5,将残渣三、水和分散剂混合后调节pH至6-8,均质、干燥,得到纤维成品。
进一步地,步骤1中将水果榨汁后分离得到固体成分的过程可以为将水果榨汁后将果皮和果肉清洗干净得到固体成分,或烘干、粉碎,得到固体成分。更进一步地,所述烘干的温度可以为50-100℃。
进一步地,步骤1中所述高温热水保温处理可以为将固体成分分散于水中,在90-100℃条件下保温5-30分钟。
进一步地,步骤1中所述将固体成分经高温热水保温处理可以为先将固体成分换算成干物质重量,按照干物质与水的重量比为1:15-1:25加水,然后再进行加热保温处理。
进一步地,步骤2中所述将残渣一加入水中可以为先将残渣一换算成干物质重量,然后按照干物质与水重量比为1:15-1:25加水。
进一步地,步骤2中所述酸性条件下高温保温处理可以为将残渣一加入水中,调节pH为1-2.5,在70-85℃条件下保温60-120min。
进一步地,步骤3中提取果胶的方式为通过乙醇沉析提取果胶。更进一步地,乙醇沉析为加入质量浓度80-95%的乙醇沉析,沉析pH值1-2.5,时间1-2h。
进一步地,步骤4中所述高温碱处理可以为将残渣二加入水中,调节pH至碱性,然后升温至75-95℃,保温30-120min。更进一步地,调节pH范围为7.5-14。
进一步地,步骤4中所述将残渣二加入水中可以为先将残渣二换算成干物质重量,然后按照干物质与水重量比为1:15-1:25加水。
进一步地,步骤4中所述漂白的过程可以为将残渣二分散于水中,加入体积百分比为1-2%的H 2O 2,然后进行密封,在30-60℃条件下保温10-30min,过滤后水洗。
进一步地,步骤5中残渣三、水和分散剂的比例可以为将残渣三换算成干物质重量,按照干物质与水的重量比为1:40-1:70加水;按照干物质重量的0%-40%加入分散剂。
进一步地,步骤5中分散剂可以为羧甲基纤维素钠,残渣三、水和分散剂混合的温度可以为40-65℃。
进一步地,步骤5中均质温度可以为40-65℃,均质压力可以为10-30MPa,均质次数可以为1-3次。
一种从水果中连续制备果胶和纤维的方法,包括以下步骤:
(1)将水果榨汁,将果皮和果肉的渣滓冲洗干净后备用或50-100℃烘干,粉碎,收集备用;
(2)称取步骤(1)中的干粉,按固液比1:15-1:25加水,90-100℃保温5-30min,过滤,收集滤液、残渣备用;
(3)称取步骤(2)中的残渣,换算成干物质重量,按固液比1:15-1:25加水,调节pH为1-2.5,70-85℃保温60-120min,过滤,收集滤液、残渣备用;
(4)将步骤(2)和步骤(3)中的滤液合并,离心、过滤去除杂质,浓缩,加入质量浓度80-95%的乙醇沉析,沉析pH值1-2.5,时间1-2h,提取果胶;
(5)取步骤(3)中的残渣经胶体磨磨浆,40-80目过滤,收集滤渣备用;
(6)取步骤(5)中的滤渣,换算成干物质重量,按固液比1:15-1:25加水,调节pH至碱性,75-95℃保温30-120min;
(7)将步骤(6)中的溶液降温至30-60℃,并加入体积比1-2%的H 2O 2,密封,30-60℃保温10-30min,过滤水洗,收集残渣备用;
(8)取步骤(7)中的残渣,换算成干物质重量,按固液比1:40-1:70加入40-65℃的水,并加入干物质重量0%-40%的羧甲基纤维素钠,搅拌15min,调节溶液pH6-8,40-65℃进行均质,均质压力10-30MPa,均质次数为1-3次;
(9)将步骤(8)中均质后的溶液使用喷雾干燥或滚筒干燥设备进行干燥,得到纤维成品。
进一步地,以上所述的从水果中连续制备果胶和纤维的方法,步骤1中所述水果可以为柑橘类水果。
以上制备得到的果胶或纤维成品在食品中的应用。
本发明一次性从果渣中提取果胶与纤维,降低两个原材料的成本,达到经济效益最大化。同时后者作为食品原料,为液态食品提供更优的增稠与悬浮方案,达到清洁标签并提升产品品质的效果,更具市场前景。
本发明以榨汁后的果皮和果肉为原料,提取果胶与柑橘纤维,提取果胶后,使用生产过程中产生的残渣所制备的柑橘纤维可达到国外纤维的品质甚至更优,可以在饮料与乳制品中替代添加剂,提供更好的悬浮和增稠效果,达到清洁标签及提高产品质量的效果,具有很大的市场前景。
本发明通过对水果榨汁后分离得到的固体成分进行高温热水保温处理,使得纤维吸水溶胀,变松散与柔软,明显提高了后期纤维处理的效率,同时高温灭活果胶酶,有利于提高果 胶的提取率和品质,可以有效提高花生奶的粘度,减少挂壁,提高体系纤维的分散性。
本发明经过酸处理提取果胶后,纤维在酸性条件下聚集及结晶程度较高,直接进行加工不能达到较好的增稠与悬浮效果,而通过高温碱处理能使聚集及结晶纤维以及纤维网络中的氢键减少,更有利于纤维的分散,能有效提高纤维的吸水膨胀能力。
现有技术中在提取纤维时也有采取酸碱工艺处理制备纤维,但碱处理的目的只是为了除去碱溶性杂质,处理温度低,处理时间短,而本发明通过高温碱处理,使得纤维束变小,结晶纤维及纤维网络中的氢键减少,更有利于纤维的分散,能有效提高纤维吸水膨胀能力,并有效抑制纤维应用过程中的聚集。通过高温碱处理可以有效提高花生奶的粘度,减少挂壁,提高体系的悬浮能力和纤维的分散性。
本发明漂白处理在碱处理前后都可以达到相同的效果,可根据实际情况进行。
本发明通过均质使聚集及结晶纤维通过高压剪切的方法完全打开,使纤维分散并提高其吸水膨胀能力,达到较优的应用效果。
纤维表面具有极性羰基基团和羟基基团,本发明采用的羧甲基纤维素钠(CMC)中的羧基可与纤维表面上的极性基团形成氢键或以范德华力相互作用,将纤维包裹在其中并通过静电力使均质后的纤维更均匀的分散在水中不易重新聚集,达到更优吸水膨胀能力,CMC在本发明中起到了分散与膨化纤维的作用。
本发明采用了纤维、水和分散剂混合后进行均质,均质可以使纤维在外界压力下迅速分散吸水膨胀,进一步提升其分散性,同时,采用的CMC在本发明中发挥分散与膨化纤维的作用,在均质的机械力下与纤维充分的摩擦,从而吸附在纤维表面,形成保护膜,进一步阻止了纤维的聚集,通过采用CMC结合均质,达到了意料不到的效果。
本发明首先通过高温热水保温处理(蒸煮工艺)使得纤维充分润涨,同时进行高温灭活果胶酶,更有利于后续高温酸处理对于果胶的提取,使得提取更充分更彻底;高温酸处理可以使得果胶充分溶解与溶液中,利用乙醇沉析提取出来,后续高温碱处理一方面可以溶解去杂,更重要的是促使纤维进一步分散,提高纤维吸水膨胀能力,然后在通过后续均质工艺结合分散剂将纤维的分散于吸水膨胀性能进一步固化,得到成品。本发明的制备过程中,各步骤先后相互承接,相互促进,协同提升了最终纤维产品的特性。
本发明从水果中尤其是从柑橘类果渣中提取果胶后再制备纤维,两种原料的成本均大幅的降低,更具推广前景。
本发明中的制备得到的纤维可作为食品原料为液态食品提供更优的增稠与悬浮方案,达到清洁标签并提升产品品质的效果,更具市场前景。
附图说明
图1为本发明提供的花生奶的制备路线图。
具体实施方式:
以下实施例中所述的花生奶的制备过程如图1所示。
实施例1
本实施例提供一种从水果中连续制备果胶和纤维的方法,包括以下步骤:
步骤1,将水果榨汁后分离得到固体成分,将固体成分经高温热水保温处理并过滤,得滤液一与残渣一;
步骤2,将残渣一加入水中在酸性条件下高温保温处理并过滤,得滤液二与残渣二;
步骤3,将滤液一与滤液二合并后去杂,提取果胶;
步骤4,残渣二经过先高温碱处理后再进行漂白或先漂白后再进行高温碱处理,然后收集固体物,得到残渣三,其中高温碱处理为将残渣二加入水中在碱性条件下高温保温处理;
步骤5,将残渣三、水和分散剂混合后调节pH至6-8,均质、干燥,得到纤维成品。
进一步地,在其中一个具体事例中,具体方法及工艺控制可以包括以下步骤:
(1)将水果榨汁,将果皮和果肉的渣滓冲洗干净后备用或50-100℃烘干,粉碎,收集备用;
(2)称取步骤(1)中的干粉,按固液比1:15-1:25加水,90-100℃保温5-30min,过滤,收集滤液、残渣备用;
(3)称取步骤(2)中的残渣,换算成干物质重量,按固液比1:15-1:25加水,调节pH为1-2.5,70-85℃保温60-120min,过滤,收集滤液、残渣备用;
(4)将步骤(2)和步骤(3)中的滤液合并,离心、过滤去除杂质,浓缩,加入质量浓度80-95%的乙醇沉析,沉析pH值1-2.5,时间1-2h,提取果胶;
(5)取步骤(3)中的残渣经胶体磨磨浆,40-80目过滤,收集滤渣备用;
(6)取步骤(5)中的滤渣,换算成干物质重量,按固液比1:15-1:25加水,调节pH至碱性,75-95℃保温3-120min;
(7)将步骤(6)中的溶液降温至30-60℃,并加入体积比1-2%的H 2O 2,密封,30-60℃保温10-30min,过滤水洗,收集残渣备用;
(8)取步骤(7)中的残渣,换算成干物质重量,按固液比1:40-1:70加入40-65℃的水,并加入干物质重量0%-40%的羧甲基纤维素钠,搅拌15min,调节溶液pH6-8,40-65℃进行均质,均质压力10-30MPa,均质次数为1-3次;
(9)将步骤(8)中均质后的溶液使用喷雾干燥或滚筒干燥设备进行干燥,得到纤维成品。
实施例2
本实施例中,以柑橘类水果进行制备果胶和纤维为例,对于实施例1中提供的不同制备工艺过程,分别进行如下试验:
1.高温热水保温处理过程
取实施例1步骤(1)中的干粉,按照固液比1:15加水,90℃保温30min,过滤,收集滤液、残渣备用。
将制备的纤维(除保温蒸煮,其他步骤相同)应用于花生奶中,具体结果见下表。
纤维处理方式 pH 粘度cp 粒径nm 悬浮沉淀高度 倾倒现象
保温蒸煮 7.26 7.68 237.9 无明显界限 挂壁较细
未保温蒸煮 7.29 6.00 241.5 0.7cm 挂壁粗
注:粘度测量方法为61#转子,100r,30s。
由以上数据可知,经过保温蒸煮的纤维应用在花生奶中,样品粘度高,粒径较小,悬浮效果好,且倾倒时挂壁较细。因此,本实施例可以令步骤(1)中干燥的纤维吸水膨胀,更有利于下一步的处理,方法简便、有效,过程易于控制。
2.高温酸处理过程
称取实施例1步骤(2)中的残渣,换算成干物质重量,按固液比1:25加水,调节pH为1-2,75℃保温120min,过滤,收集滤液、残渣备用。
干物质重量换算方式:m=m 1(1-w 1)
其中,m为干物质重量;
m 1为称取的残渣重量;
w 1为称取残渣的水分含量;
注:w 1利用梅特勒-托利多水分测定仪快速测定。
将不同pH酸处理的纤维(其他处理步骤相同)应用在花生奶中,具体结果见下表。
酸处理pH pH 粘度 粒径nm 悬浮沉淀高度 倾倒现象 果胶得率%
1 7.15 7.32 232.5 无明显界限 挂壁较细 12.55
2 7.15 7.37 224.6 无明显界限 挂比较细 12.88
3 7.15 7.56 235.5 4cm,颜色浅 挂比较细 10.36
4 7.15 7.44 237.9 4cm 挂壁较粗 8.27
注:粘度测量方法为61#转子,100r,30s。
由以上数据可知,不同pH酸处理条件下制备的纤维,应用性能相差较少,但pH越高, 花生奶挂壁逐渐明显、变粗,且随着pH值的升高,果胶的得率下降,因此,在本实施例pH范围内,在保证果胶尽可能的提取完全,保证纤维的应用效果。
3.高温碱处理过程
称取实施例1步骤(3)中一定量的残渣,换算干物质重量,按固液比1:20加水,调节pH为8-14,85℃保温60min。其中,干物质换算方法与以上相同。
将不同pH碱处理的纤维(其他处理步骤相同)应用在花生奶中,具体结果见下表。
碱处理pH pH 粘度 粒径nm 悬浮沉淀高度 倾倒现象
未碱处理 6.93 7.51 231.2 1.7cm 挂壁粗
8 6.90 8.22 200.8 无明显界限 挂壁细
10 6.88 8.40 202.6 无明显界限 无挂壁
13 6.87 8.46 202.8 无明显界限 无挂壁
14 6.89 8.52 201.3 4cm 挂壁细
注:粘度测量方法为61#转子,100r,30s。
由以上数据可知,提取完果胶的残渣经过碱处理步骤后纤维的吸水膨胀能力提升。但pH过高时,纤维氢键断裂严重,纤维分子间作用力过低,悬浮性有所下降。因此,不同pH碱处理条件下制备的纤维,应用性能差距明显。pH过低或者过高都影响纤维的增稠剂悬浮效果。在本实施例pH范围内,纤维应用性能良好。
4.均质处理过程
称取实施例1步骤(7)中一定量的残渣,换算干物质重量,按固液比1:50称取热水,加入残渣干物质重量0%-30%的羧甲基纤维素钠(CMC),搅拌15min,调节溶液pH7,60℃均质一遍,均质压力25MPa。其中,干物质换算方法与实施例2相同。
将不同均质条件处理的纤维(其他处理步骤相同)应用在花生奶中,具体结果见下表。
均质条件 pH 粘度 粒径nm 悬浮沉淀高度 倾倒现象
未均质 6.86 6.24 204.9 8mm,颜色深 挂壁粗,底部粘
0%CMC均质 6.85 6.56 217.6 1.2cm 挂壁粗
10%CMC均质 6.86 7.32 206.7 4.5cm,颜色浅 挂壁细
20%CMC均质 6.85 7.40 219.5 6cm,颜色浅 挂壁细
30%CMC均质 6.85 7.46 218.6 5cm 挂壁细
40%CMC均质 6.85 7.52 221.3 4cm 挂壁较粗
注:粘度测量方法为61#转子,100r,30s。
由以上数据可知,没有经过均质处理的纤维吸水膨胀能力略差,对应的花生奶样品粘度低,挂壁粗,且底部出现粘连,经过均质工艺后可以有效改善这一情况。
复配的CMC可以作为分散剂,均质时,在机械力作用下,CMC与纤维颗粒间发生碰撞、摩擦,从而使CMC吸附在纤维表面,形成保护膜,阻止纤维的聚集,能有效提升体系粘度。
但CMC用量过大时,会对纤维的析水膨胀效果造成消极影响。在本实施例均质条件范围内,纤维应用性能良好。
实施例3
将新鲜柑橘类水果榨汁,将果皮和果肉的渣滓65℃烘干,粉碎,过80目筛,筛下干粉收集备用。称取40g干粉,按固液比1:20加入100℃的水,100℃保温5min,过滤,收集残渣一备用。将残渣一换算干物质重量,按固液比1:20加水,调节pH2,80℃保温90min,
过滤,收集残渣二。将残渣二换算干物质重量,按固液比1:20称水,调节pH12,80℃保温90min,降温至40℃,加入体积比6%的H 2O 2,40℃保温20min,过滤,收集残渣三。将残渣三换算干物质重量,按固液比1:60称取热水,加入残渣干物质重量10%的CMC,搅拌15min,调节溶液pH7,50℃均质一遍,均质压力20MPa。将均质后的溶液干燥,干燥温度65℃。收集干燥物,粉碎,过80目筛,筛下物即为纤维成品,收集备用。
对于以上得到的纤维成品,与目前市面上其他不同纤维在花生奶中进行应用,进行应用效果对比,具体见下表。
Figure PCTCN2018086472-appb-000001
注:粘度测量方法为61#转子,100r,30s。
根据以上数据可以看出,本实施例制备得到的纤维与AQ在花生奶中应用效果良好,且本实施例制备的纤维在长期应用稳定性方面要显著优于AQ纤维产品。而其他样品悬浮能力弱,分散性差,不能满足产品需要。放置过程中,AQ在花生奶中的分散性逐渐降低,发生聚集。因此,本发明制备得到的纤维在的应用效果更优。
综上所述,采用本发明的方法,可以在较低成本下制备得到应用效果优异的柑橘纤维, 达到清洁产品标签、提高经济效益的目的,利用属于食品配料的纤维替代悬浮胶体,为饮料体系悬浮和酸奶增稠提供新的方法。

Claims (19)

  1. 一种从水果中连续制备果胶和纤维的方法,其特征在于,包括以下步骤:
    步骤1,将水果榨汁后分离得到固体成分,将固体成分经高温热水保温处理并过滤,得滤液一与残渣一;
    步骤2,将残渣一加入水中在酸性条件下高温保温处理并过滤,得滤液二与残渣二;
    步骤3,将滤液一与滤液二合并后去杂,提取果胶;
    步骤4,残渣二经过先高温碱处理后再进行漂白或先漂白后再进行高温碱处理,然后收集固体物,得到残渣三,其中高温碱处理为将残渣二加入水中在碱性条件下高温保温处理;
    步骤5,将残渣三、水和分散剂混合后调节pH至6-8,均质、干燥,得到纤维成品。
  2. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤1中将水果榨汁后分离得到固体成分的过程为将水果榨汁后将果皮和果肉清洗干净得到固体成分,或烘干、粉碎,得到固体成分。
  3. 根据权利要求2所述的从水果中连续制备果胶和纤维的方法,其特征在于,所述烘干的温度为50-100℃。
  4. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤1中所述高温热水保温处理为将固体成分分散于水中,在90-100℃条件下保温5-30分钟。
  5. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤1中所述将固体成分经高温热水保温处理为先将固体成分换算成干物质重量,按照干物质与水的重量比为1:15-1:25加水,然后再进行加热保温处理。
  6. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤2中所述将残渣一加入水中为先将残渣一换算成干物质重量,然后按照干物质与水重量比为1:15-1:25加水。
  7. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤2中所述酸性条件下高温保温处理为将残渣一加入水中,调节pH为1-2.5,在70-85℃条件下保温60-120min。
  8. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤3中提取果胶的方式为通过乙醇沉析提取果胶。
  9. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤4中所述高温碱处理为将残渣二加入水中,调节pH至碱性,然后升温至75-95℃,保温30-120min。
  10. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤4中所述将残渣二加入水中为先将残渣二换算成干物质重量,然后按照干物质与水重量比为1:15- 1:25加水。
  11. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤4中所述漂白的过程为将残渣二分散于水中,加入体积百分比为1-2%的H2O2,然后进行密封,在30-60℃条件下保温10-30min,过滤后水洗。
  12. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤5中残渣三、水和分散剂的比例为将残渣三换算成干物质重量,按照干物质与水的重量比为1:40-1:70加水;按照干物质重量的0%-40%加入分散剂。
  13. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤5中分散剂为羧甲基纤维素钠,残渣三、水和分散剂混合的温度为40-65℃。
  14. 根据权利要求1所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤5中均质温度40-65℃,均质压力10-30MPa,均质次数为1-3次。
  15. 根据权利要求8所述的从水果中连续制备果胶和纤维的方法,所述乙醇沉析为加入质量浓度80-95%的乙醇沉析,沉析pH值1-2.5,时间1-2h。
  16. 根据权利要求9所述的从水果中连续制备果胶和纤维的方法,调节pH至碱性的pH范围为7.5-14。
  17. 一种从水果中连续制备果胶和纤维的方法,其特征在于,包括以下步骤:
    (1)将水果榨汁,将果皮和果肉的渣滓冲洗干净后备用或50-100℃烘干,粉碎,收集备用;
    (2)称取步骤(1)中的固体成分,按固液比1:15-1:25加水,90-100℃保温5-30min,过滤,收集滤液、残渣备用;
    (3)称取步骤(2)中的残渣,换算成干物质重量,按固液比1:15-1:25加水,调节pH为1-2.5,70-85℃保温60-120min,过滤,收集滤液、残渣备用;
    (4)将步骤(2)和步骤(3)中的滤液合并,离心、过滤去除杂质,浓缩,加入质量浓度80-95%的乙醇沉析,沉析pH值1-2.5,时间1-2h,提取果胶;
    (5)取步骤(3)中的残渣经胶体磨磨浆,40-80目过滤,收集滤渣备用;
    (6)取步骤(5)中的滤渣,换算成干物质重量,按固液比1:15-1:25加水,调节pH至碱性,75-95℃保温30-120min;
    (7)将步骤(6)中的溶液降温至30-60℃,并加入体积比1-2%的H2O2,密封,30-60℃保温10-30min,过滤水洗,收集残渣备用;
    (8)取步骤(7)中的残渣,换算成干物质重量,按固液比1:40-1:70加入40-65℃的水,并加入干物质重量0%-40%的羧甲基纤维素钠,搅拌15min,调节溶液pH6-8,40-65℃进行均 质,均质压力10-30MPa,均质次数为1-3次;
    (9)将步骤(8)中均质后的溶液使用喷雾干燥或滚筒干燥设备进行干燥,得到纤维成品。
  18. 根据权利要求1或17所述的从水果中连续制备果胶和纤维的方法,其特征在于,步骤1中所述水果为柑橘类水果。
  19. 权利要求1或17制备得到的果胶或纤维成品在食品中的应用。
PCT/CN2018/086472 2017-05-22 2018-05-11 一种从水果中连续制备果胶和纤维的方法 WO2018214753A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710363722.7A CN107319509B (zh) 2017-05-22 2017-05-22 一种从水果中连续制备果胶和纤维的方法
CN201710363722.7 2017-05-22

Publications (1)

Publication Number Publication Date
WO2018214753A1 true WO2018214753A1 (zh) 2018-11-29

Family

ID=60193595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/086472 WO2018214753A1 (zh) 2017-05-22 2018-05-11 一种从水果中连续制备果胶和纤维的方法

Country Status (2)

Country Link
CN (1) CN107319509B (zh)
WO (1) WO2018214753A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108294109A (zh) * 2018-02-02 2018-07-20 河北兄弟伊兰食品科技股份有限公司 乳酸菌饮料的增稠稳定剂及乳酸菌饮料和两者的制备方法
CN108013148B (zh) * 2018-02-02 2021-11-02 河北兄弟伊兰食品科技股份有限公司 一种悬浮稳定剂和悬浮颗粒花生奶饮品及两者的制备方法
CN108175105A (zh) * 2018-02-02 2018-06-19 河北兄弟伊兰食品科技股份有限公司 一种从提取果胶后的渣滓中制备柑橘纤维的工艺方法
CN108142557A (zh) * 2018-02-02 2018-06-12 河北兄弟伊兰食品科技股份有限公司 常温酸奶增稠稳定剂及常温酸奶和两者的制备方法
CN108308594A (zh) * 2018-02-02 2018-07-24 河北兄弟伊兰食品科技股份有限公司 悬浮乳化稳定剂及其制备的复合蛋白饮料和两者制备方法
CN109259250A (zh) * 2018-07-24 2019-01-25 华南理工大学 一种高持水性柑橘膳食纤维及其制备方法
CN109832632A (zh) * 2019-04-08 2019-06-04 河北兄弟伊兰食品科技股份有限公司 一种高分散性柑橘纤维的工业制备方法
CN111990655A (zh) * 2020-07-31 2020-11-27 河北乐檬生物科技有限公司 一种固态食品中使用的柑橘纤维及其制备方法与应用
CN115989867B (zh) * 2022-12-07 2024-05-28 广东金骏康生物技术有限公司 一种用于减肥的柑橘果粉组合物及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100998381A (zh) * 2006-12-12 2007-07-18 南昌大学 高纯度纳米谷物膳食纤维的生产方法
CN102018202A (zh) * 2009-09-22 2011-04-20 大庆九环菊芋生物产业有限公司 一种从菊芋渣和/或菊苣渣中连续提取果胶、膳食纤维的方法
CN103263514A (zh) * 2013-05-23 2013-08-28 浙江省柑桔研究所 一种柑橘皮黄酮、低分子果胶和纤维素的联合提取方法
CN104222889A (zh) * 2014-09-10 2014-12-24 中国科学院过程工程研究所 一种枸杞可溶性膳食纤维及其制备方法
CN105838755A (zh) * 2016-05-04 2016-08-10 陕西师范大学 一种从含果胶植物残渣中提取天然果胶的生物学方法
CN106146687A (zh) * 2016-09-28 2016-11-23 中国科学院重庆绿色智能技术研究院 一种提取柑橘皮渣中果胶的方法
WO2016202986A1 (en) * 2015-06-17 2016-12-22 Dupont Nutrition Biosciences Aps Process for extraction of pectin
CN106519066A (zh) * 2016-09-27 2017-03-22 济南米铎碳新能源科技有限公司 利用果树枝、果皮(渣)生产膳食纤维并联产果胶的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2730252B1 (fr) * 1995-02-08 1997-04-18 Generale Sucriere Sa Cellulose microfibrillee et son procede d'obtention a partir de pulpe de vegetaux a parois primaires, notamment a partir de pulpe de betteraves sucrieres.
CN103965371A (zh) * 2014-04-04 2014-08-06 施健 一种果胶的制备工艺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100998381A (zh) * 2006-12-12 2007-07-18 南昌大学 高纯度纳米谷物膳食纤维的生产方法
CN102018202A (zh) * 2009-09-22 2011-04-20 大庆九环菊芋生物产业有限公司 一种从菊芋渣和/或菊苣渣中连续提取果胶、膳食纤维的方法
CN103263514A (zh) * 2013-05-23 2013-08-28 浙江省柑桔研究所 一种柑橘皮黄酮、低分子果胶和纤维素的联合提取方法
CN104222889A (zh) * 2014-09-10 2014-12-24 中国科学院过程工程研究所 一种枸杞可溶性膳食纤维及其制备方法
WO2016202986A1 (en) * 2015-06-17 2016-12-22 Dupont Nutrition Biosciences Aps Process for extraction of pectin
CN105838755A (zh) * 2016-05-04 2016-08-10 陕西师范大学 一种从含果胶植物残渣中提取天然果胶的生物学方法
CN106519066A (zh) * 2016-09-27 2017-03-22 济南米铎碳新能源科技有限公司 利用果树枝、果皮(渣)生产膳食纤维并联产果胶的方法
CN106146687A (zh) * 2016-09-28 2016-11-23 中国科学院重庆绿色智能技术研究院 一种提取柑橘皮渣中果胶的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GROHMANN, K. ET AL.: "Fractionation and Pretreatment of Orange Peel by Dilute Acid Hydrolysis", BIORESOURCE TECHNOLOGY, vol. 54, 31 December 1995 (1995-12-31), XP055548986 *
ZANG, YUHONG: "Research on Series Extraction Technique of Valuable Elements from Orange Peels", SCIENCE -ENGINEERING (A), CHINESE SELECTED DOCTORAL DISSERTATIONS AND MASTER'S THESES FULL-TEXT DATABASES (MASTER, 15 June 2007 (2007-06-15) *

Also Published As

Publication number Publication date
CN107319509B (zh) 2020-07-14
CN107319509A (zh) 2017-11-07

Similar Documents

Publication Publication Date Title
WO2018214753A1 (zh) 一种从水果中连续制备果胶和纤维的方法
CN102488253B (zh) 一种活性海藻提取物的制备方法
CN102524701B (zh) 果渣膳食纤维及其制备方法
CN104725527B (zh) 一种甜菜果胶及其提取方法
CN101697828A (zh) 一种红薯汁饮料及其制备方法
US20220232871A1 (en) Natural composite materials derived from seaweed and methods of making the same
CN110477404A (zh) 一种柑橘属果皮均质改性制备柑橘纤维的方法
CN113317515A (zh) 一种高持水力和膨胀力的柑橘膳食纤维及其制备方法
CN111096447A (zh) 银耳浆及其制备方法和应用、增稠剂及其制备方法
JP5954886B2 (ja) アルコール性懸濁飲料
CN114369564B (zh) 一种枳雀来源外泌体的制备方法和应用
US20120190831A1 (en) Methods for Steam Flash Extraction of Pectin
CN109259128A (zh) 一种火龙果粉及其加工方法
WO2020221273A1 (zh) 一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶
WO2019184320A1 (zh) 一种利用菊苣/芋粕联产凝胶型和乳化型果胶的方法
CN1041163C (zh) 花生饮料的制造方法
CN103319624A (zh) 一种以果皮为原料制备酰胺化果胶的方法
CN114920856A (zh) 一种利用珠芽魔芋精粉制备高白魔芋胶的方法
CN115572493A (zh) 一种果蔬原料制备天然植物色粉的方法
CN105341839A (zh) 一种清热去火瓜蒌仁精粉的制备方法
CN113264965B (zh) 一种采用橙皮制备橙皮苷的方法
CN107114553A (zh) 一种高纯度黑米蛋白的生产方法
CN112335864A (zh) 一种银耳蒂头果冻的制备方法
CN112314822A (zh) 一种黑木耳原汁及其制备方法
US2022470A (en) Process of making pectous material and product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18805056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18805056

Country of ref document: EP

Kind code of ref document: A1