WO2020221273A1 - 一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶 - Google Patents

一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶 Download PDF

Info

Publication number
WO2020221273A1
WO2020221273A1 PCT/CN2020/087673 CN2020087673W WO2020221273A1 WO 2020221273 A1 WO2020221273 A1 WO 2020221273A1 CN 2020087673 W CN2020087673 W CN 2020087673W WO 2020221273 A1 WO2020221273 A1 WO 2020221273A1
Authority
WO
WIPO (PCT)
Prior art keywords
modified soybean
soybean fiber
gellan gum
water
composite gel
Prior art date
Application number
PCT/CN2020/087673
Other languages
English (en)
French (fr)
Inventor
赵强忠
陈碧芬
赵谋明
林恋竹
Original Assignee
华南理工大学
广东稳邦生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学, 广东稳邦生物科技有限公司 filed Critical 华南理工大学
Publication of WO2020221273A1 publication Critical patent/WO2020221273A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/206Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin
    • A23L29/238Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of vegetable origin from seeds, e.g. locust bean gum or guar gum
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/269Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents of microbial origin, e.g. xanthan or dextran
    • A23L29/272Gellan
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/20Reducing nutritive value; Dietetic products with reduced nutritive value
    • A23L33/21Addition of substantially indigestible substances, e.g. dietary fibres
    • A23L33/22Comminuted fibrous parts of plants, e.g. bagasse or pulp
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F4/00Monocomponent artificial filaments or the like of proteins; Manufacture thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production

Definitions

  • the invention belongs to the technical field of food processing, and specifically relates to a modified soybean fiber and a high-performance composite gel prepared in cooperation with gellan gum.
  • Soybeans will produce by-products-soybean dregs (accounting for 15-20% of the total soybeans) in the production of soybean oil, soybean protein isolate, tofu and other products.
  • Okara has a rough taste and is prone to spoilage. It is usually used as animal feed or agricultural waste. At the same time, it can cause environmental pollution due to improper handling. Therefore, how to develop and use bean dregs in depth has become an urgent problem for scientific researchers.
  • Okara contains about 60% insoluble fiber and 15% protein, which is a rich source of soybean fiber.
  • soybean fiber mainly focuses on the conversion of insoluble fiber into soluble fiber through methods such as ultrafine pulverization, high-pressure homogenization, biological fermentation, etc., which are directly added to beverages and baked goods to improve the sensory and rheological properties of the product.
  • the conversion rate of soluble fiber in the process is low, only about 20%, and its application is very single, with low added value.
  • less attention has been paid to the insoluble fiber itself, focusing on the use of high-energy media grinding, high-pressure homogenization, and chemical solvent methods to extract insoluble fibers to explore the effects of the above methods on the properties of insoluble fibers.
  • Gellan gum is a new type of microbial polysaccharide, with 2 molecules of ⁇ -(1,3)-D-glucose, 1 molecule of ⁇ -(1,4)-D-glucuronic acid and 1 molecule of ⁇ -(1,4) -L-rhamnose is a linear polysaccharide composed of tetrasaccharide repeating structural units.
  • Gellan gum has the advantages of safety, non-toxicity, high temperature resistance, acid resistance, and biodegradability. It is currently widely used in jelly, desserts, beverages, candies and pet food as thickeners and stabilizers. However, gellan gum is expensive.
  • the dosage of gellan gum is reduced by compounding xanthan gum, guar gum or carboxymethyl cellulose to meet the requirements of people's food taste and texture.
  • the amount of compound colloid used in the above compounding methods is relatively large, usually above 1%, and it mainly improves the texture characteristics such as the viscosity and elasticity of the gellan gum system.
  • the glue strength has no significant influence, and its application in high-strength gel foods such as sausages is limited.
  • the primary purpose of the present invention is to provide a method for preparing modified soybean fiber.
  • Another object of the present invention is to provide a modified soybean fiber prepared by the above method.
  • Another object of the present invention is to provide a high-performance composite gel prepared by the above-mentioned modified soybean fiber and gellan gum.
  • a preparation method of modified soybean fiber includes the following preparation steps:
  • the dried bean dregs are crushed, sieved, and mixed with water.
  • the resulting mixed system is cooked at a pH of 10-12 and a temperature of 105-120°C, and then a pH of 10-12 and a temperature of 40-60.
  • the obtained dispersion liquid is centrifuged to collect the precipitate, the precipitate is re-dissolved in water, the pH value is adjusted to neutral, centrifuged, and the obtained precipitate is spray-dried to obtain modified soybean fiber.
  • the sieving is 80-120 mesh sieve.
  • dry bean dregs are pulverized and sieved, and the ratio of material to liquid mixed with water is 1: (20-40) g/ml (w/v).
  • the time of the cooking treatment is 30 to 90 minutes.
  • the rotation speed of the stirring treatment is 600-1000 rpm, and the time is 30-90 min.
  • centrifugal force of the first centrifugation is 1000-4500g, and the centrifugation time is 20-30 min;
  • the centrifugal force of the second centrifugation is 6000-7500g, and the centrifugation time is 20-30 min.
  • the material-to-liquid ratio of the precipitate re-dissolved in water is 1: (20-40) g/ml (w/v).
  • a modified soybean fiber prepared by the above method is a modified soybean fiber prepared by the above method.
  • the high-performance composite gel prepared by the above modified soybean fiber and gellan gum is prepared by the following method: adding modified soybean fiber and gellan gum to water, shearing, stirring and mixing uniformly to obtain a high-performance composite gel .
  • the added mass fraction of the modified soybean fiber is 0.5-2.0%, and the added mass fraction of the gellan gum is 0.2%.
  • the invention adopts the hot alkali cooking method to treat the bean dregs, the hot steam penetrates into the bean dregs to promote fiber expansion, which can improve the effect of the lye and the fiber, thereby separating the tightly bound soybean fiber from the protein, so that the purity can reach more than 90%.
  • the tight molecular chain structure of the fiber is opened to release a large amount of free hydroxyl groups, which improves the water holding capacity, swelling power and viscosity of soybean fiber. Due to the improvement of the above-mentioned functional properties, the modified soybean fiber and gellan gum exhibit a synergistic effect when preparing the composite gel.
  • the modified soybean fiber has a higher water holding capacity in the composite gel and can fill the network
  • the pores promote the formation of a dense network structure and further enhance the gel capacity and gel properties of the composite gel.
  • the composite gel prepared by modified soybean fiber and gellan gum not only exhibits the texture characteristics of high hardness and good elasticity, but also has the advantages of high gel strength and strong water holding capacity, which can provide diversified gel characteristics for food , Which broadens its scope of application.
  • insoluble fiber also has good physiological activities, such as regulating intestinal function, lowering blood fat, improving diabetes, etc., and is a good nutritional dietary supplement.
  • the composite gel prepared by the present invention not only has good gel characteristics, but also has lower cost compared with traditional polysaccharide composite gel, and at the same time has certain physiological functions, which is the core of the protection of the present invention.
  • the technology of the present invention has great economic value and practical significance for the application of modified soybean fiber and gellan gum in the food field.
  • the preparation method of the present invention is simple to operate, adopts the hot-alkali cooking method to treat the bean dregs, effectively separates the soybean fiber, and specifically improves the water holding capacity, swelling power and the viscosity of the aqueous dispersion of the soybean fiber.
  • the present invention breaks through the application limitation of soybean fiber, and utilizes the synergistic effect of modified soybean fiber and gellan gum to significantly improve the gel strength, hardness, elasticity and water holding capacity of the composite gel.
  • the soybean fiber in the present invention has physiological functions such as regulating intestinal function, reducing blood fat, improving diabetes, and is a good nutritional dietary supplement.
  • the modified soybean fiber-gellan gum composite gel prepared by the present invention is applied to food systems, which can reduce the cost of gellan gum, and also provides diversified gel characteristics for food, and expands modified soybean fiber and Application range of gellan gum.
  • Figure 1 is the appearance of the modified soybean fiber-gellan gum composite gel (A: no modified soybean fiber is added; B: modified soybean fiber is added, the addition amount from left to right is 0.5%, 1.0%, 1.5 %, 2.0% (w/v)).
  • the dried okara is crushed and passed through an 80-mesh sieve to obtain okara powder.
  • a water dispersion of soybean dregs was prepared according to the material-to-liquid ratio of 1:20g/ml, and the pH of the aqueous dispersion was adjusted to 10.0 with a 2mol/L NaOH solution, and then it was placed in an autoclave for steaming at 105°C for 60 minutes. Then adjust the pH to 10.0, and then stir at 40°C and 1000 rpm for 60 min. After falling to room temperature, centrifuge at 4500g for 20min at high speed, take the precipitate, and re-dissolve the precipitate in purified water to make the material-liquid ratio 1:20g/ml.
  • the modified soybean fiber is obtained after precipitation spray drying.
  • the dried okara is crushed and passed through a 100-mesh sieve to obtain okara powder.
  • a water dispersion of soybean dregs was prepared according to the material-to-liquid ratio of 1:30g/ml, and the pH of the aqueous dispersion was adjusted to 11.0 with a 2mol/L NaOH solution, and then it was placed in an autoclave for steaming at 110°C for 30 minutes. Then adjust the pH to 11.0, and then stir at 800 rpm for 90 min at a constant temperature of 50°C. After falling to room temperature, centrifuge at 3000g for 25min at high speed, take the precipitate, and re-dissolve the precipitate in purified water to make the material-liquid ratio 1:30g/ml.
  • the modified soybean fiber is obtained after precipitation spray drying.
  • the dried okara is crushed and passed through a 120-mesh sieve to obtain okara powder.
  • a water dispersion of soybean dregs was prepared according to the material-to-liquid ratio of 1:40g/ml, and the pH of the aqueous dispersion was adjusted to 12.0 with a 2mol/L NaOH solution, and then it was placed in an autoclave for steaming at 120°C for 90 minutes. Then adjust the pH to 12.0, and then stir at 60°C and 600 rpm for 30 minutes.
  • Water holding capacity measurement method Weigh the mass of a 10mL centrifuge tube in advance (denoted as m 1 , g), then weigh 0.2 g of modified soybean fiber (denoted as m 0 , g) in the centrifuge tube, and slowly move to the centrifuge tube Add 5 mL of distilled water, mix well and let stand at room temperature for 30 minutes, then centrifuge at 6000 ⁇ g for 20 minutes, carefully pour out the supernatant, and weigh again (denoted as m 2 , g).
  • the formula for calculating water holding capacity of modified soybean fiber is as follows:
  • Expansion force measurement method Weigh 0.1g modified soybean fiber (denoted as m 3 , g) into a 15 mL test tube with a stopper, and read the fiber volume (denoted as V 1 , mL). Slowly add 10 mL of distilled water, and after mixing, let it stand at room temperature for 24 hours, and read the fiber volume at this time (denoted as V 2 , mL).
  • V 1 , mL the fiber volume at this time
  • Method for measuring the viscosity of aqueous dispersion prepare an aqueous dispersion of modified soybean fiber with a concentration of 1% (w/v), and measure the shear rheological properties of the aqueous dispersion with a Haake MARS III rotary rheometer (Thermo Fisher Scientific, USA) .
  • the Herschel-Bulkley model is used to study the relationship between the shear stress and the shear rate of the modified soybean fiber aqueous dispersion:
  • is the shear stress (Pa)
  • ⁇ 0 is the yield stress (Pa)
  • K is the consistency coefficient (Pa ⁇ s n )
  • Is the shear rate (s -1 )
  • n is the flow index (dimensionless).
  • modified soybean fiber-gellan gum composite gel add modified soybean fiber with mass fraction of 0, 0.5%, 1.0%, 1.5%, 2.0% and 0.2% gellan gum into the water, and pass through high speed The dispersing machine 10,000 rpm shear for 1 min, followed by stirring at 90°C for 30 min, and cooling to room temperature to obtain a high-performance composite gel.
  • the appearance of the obtained modified soybean fiber-gellan gum composite gel is shown in Figure 1 (A: no modified soybean fiber is added; B: modified soybean fiber is added, the addition amount from left to right is 0.5% and 1.0 respectively %, 1.5%, 2.0% (w/v)).
  • Gel strength measurement method Use a texture analyzer (Stable Micro System, UK) to measure the strength of the gel, using a P/0.5S metal spherical probe.
  • the parameters are set to: compression mode, compression depth is 12mm, trigger force is 1g, and the speed of the probe before, during and after the test is 2, 1, and 2mm/s respectively.
  • Texture property measurement method Use a texture analyzer (Stable Micro System, UK) to measure the texture properties of the gel, using AB/E cylindrical plastic probes.
  • the parameters are set to: compression mode, compression depth is 10mm, trigger force is 5g, the probe's velocity before, during, and after testing are respectively 2, 1, 2mm/s, and there is no delay between two compression cycles.
  • Water retention measurement method freeze-dry the gel for 24 hours to obtain a dry gel. Weigh about 0.2g of dry gel (denoted as m 0 , g) (while ensuring that the size and shape of each sample are consistent), put it into a beaker containing 50g of distilled water, let it stand for 2 hours, and then carefully absorb the gel. Take it out, place it on a 200-mesh filter cloth and filter for 30 minutes, and weigh the mass of the dry gel after absorbing water (denoted as m 1 , g).
  • the formula for calculating the water holding capacity of the gel is as follows:
  • Table 1 shows the water holding capacity, swelling force, viscosity of the modified soybean fibers obtained in Examples 1 to 3 and the fitting condition of some parameters of the Herschel-Bulkley model.
  • Table 2 shows the gel strength, hardness, elasticity and water holding capacity of modified soybean fiber (0-2.0% (w/v))-gellan gum (0.2% (w/v)) composite gel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Jellies, Jams, And Syrups (AREA)

Abstract

一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶,属于食品加工技术领域。将干燥的豆渣经粉碎、过筛后与水混合,所得混合体系在pH值为10~12,温度为105~120℃条件下蒸煮处理,然后在pH值为10~12,温度为40~60℃条件下搅拌处理,所得分散液经离心取沉淀,将沉淀复溶于水中,调节pH值至中性,离心,所得沉淀经喷雾干燥,得到改性大豆纤维。将改性大豆纤维与结冷胶加入到水中,经剪切、搅拌混合均匀,得到高性能复合凝胶。改性大豆纤维与结冷胶通过协同增效作用形成高性能复合凝胶,复合凝胶的凝胶强度、硬度、弹性及持水力均得到显著提高。

Description

一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶 技术领域
本发明属于食品加工技术领域,具体涉及一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶。
背景技术
大豆在生产大豆油、大豆分离蛋白、豆腐等产品的过程中会产生副产品——豆渣(占大豆总量的15~20%)。豆渣口感粗糙且易于腐败变质,通常被当作动物饲料或农业废弃物,同时会因处理不当造成环境污染。因此,如何深入开发和利用豆渣已经成为了科研工作者迫切需要解决的问题。
豆渣含有约60%的不溶性纤维和15%的蛋白质,是大豆纤维的丰富来源。目前对大豆纤维的开发主要集中于通过超微粉碎、高压均质、生物发酵等方法将不溶性纤维转化为可溶性纤维后,直接添加于饮料、烘焙食品中以改善产品的感官和流变特性,但过程中可溶性纤维的转化率较低,仅为20%左右,并且其应用非常单一,附加值低。而对不溶性纤维本身的关注较少,侧重于采用高能介质研磨、高压均质、化学溶剂法提取不溶性纤维,探究上述方法对不溶性纤维性质的影响,但这些研究中存在三个问题:(1)提取方法对设备要求高,操作复杂,或提取时反复运用酸、碱、螯合剂等化学试剂,加大后处理的难度;(2)未在提取过程中针对性地提升大豆纤维的功能特性以便直接应用,只是单一性地提高某些功能特性如持水力/持油力/膨胀力等;(3)开发力度不够,忽略了大豆纤维的亲水特性,此特性将有助于大豆纤维制备凝胶。因此,如果能合理高效提取大豆纤维,综合提升其功能特性,进一步应用于食品工业中,将极大地推动大豆副产物精深加工的发展。
结冷胶是一种新型微生物多糖,以2分子β-(1,3)-D-葡萄糖、1分子β-(1,4)-D-葡萄糖醛酸和1分子α-(1,4)-L-鼠李糖为四糖重复结构单元所组成的线形多聚糖。结冷胶具有安全无毒、耐高温、耐酸、可生物降解等优点,目前作为增稠剂、稳定剂等被广泛应用于果冻、甜点、饮料、糖果和宠物食品中。但结冷胶价格昂贵,在实际生产中通过复配黄原胶、瓜尔豆胶或羧甲基纤维素等方式来降低结冷胶的用量,以满足人们食品的口感、质构的要求。但以上复配方式中复配胶体的使用量较大,通常在1%以上,而且主要对结冷胶体系的粘性、弹性等质构特性进行改善,而对结冷胶的凝胶能力和凝胶强度未有显著影响,其应用在高强度凝胶食品如香肠中受到一定限制。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种改性大豆纤维的制备方法。
本发明的另一目的在于提供一种通过上述方法制备得到的改性大豆纤维。
本发明的再一目的在于提供上述改性大豆纤维协同结冷胶制备的高性能复合凝胶。
本发明目的通过以下技术方案实现:
一种改性大豆纤维的制备方法,包括如下制备步骤:
将干燥的豆渣经粉碎、过筛后与水混合,所得混合体系在pH值为10~12,温度为105~120℃条件下蒸煮处理,然后在pH值为10~12,温度为40~60℃条件下搅拌处理,所得分散液经离心取沉淀,将沉淀复溶于水中,调节pH值至中性,离心,所得沉淀经喷雾干燥,得到改性大豆纤维。
进一步地,所述过筛是过80~120目筛。
进一步地,所述干燥的豆渣经粉碎、过筛后与水混合的料液比为1:(20~40)g/ml(w/v)。
进一步地,所述蒸煮处理的时间为30~90min。
进一步地,所述搅拌处理的转速为600~1000rpm,时间为30~90min。
进一步地,所述第一次离心的离心力为1000~4500g,离心时间为20~30min;所述第二次离心的离心力为6000~7500g,离心时间为20~30min。
进一步地,所述沉淀复溶于水中的料液比为1:(20~40)g/ml(w/v)。
一种改性大豆纤维,通过上述方法制备得到。
上述改性大豆纤维协同结冷胶制备的高性能复合凝胶,通过如下方法制备得到:将改性大豆纤维与结冷胶加入到水中,经剪切、搅拌混合均匀,得到高性能复合凝胶。
进一步地,所述改性大豆纤维加量的质量分数为0.5~2.0%,所述结冷胶加入的质量分数为0.2%。
本发明采用热碱蒸煮法处理豆渣,热蒸汽渗入到豆渣内部促使纤维膨胀,可提高碱液与纤维的作用程度,从而将紧密结合的大豆纤维与蛋白质分离,使其纯度达到90%以上,同时将纤维紧密的分子链结构打开,大量释放游离羟基,提高了大豆纤维的持水力、膨胀力及粘度等功能特性。由于上述功能特性的提高,改性大豆纤维与结冷胶在制备复合凝胶时表现出协同增效作用,改性大豆纤维在复合凝胶中具有较高的持水能力,并且能够通过填充网络孔隙来促进致密网络结构的形成,进一步增强复合凝胶的凝胶能力和凝胶特性。改性大豆纤维协同结冷胶制备的复合凝胶不仅表现出硬度大、弹性好的质构特性,而且还具有凝胶强度高、持水力强等优点,可以为食品提供多样化的凝胶特性,拓宽了其应用范围。此外,不溶性纤维还具有较好的生理活性,如调节肠道功能、降低血脂、改善糖尿病等,是一种良好的营养膳食补充剂。本发明制备的复合凝胶不仅具有良好的凝胶特性,而且相对于传统的多糖复合凝胶而言成本更低,同时具有一定的生理功能,这正是本发明保护的核心之处。本发明技术对改性大豆纤维和结冷胶在食品领域的应用具有重大的经济价值和现实意义。
本发明的制备方法及所得到的产物具有如下优点及有益效果:
(1)本发明的制备方法操作简单,采用热碱蒸煮法处理豆渣,在有效分离 大豆纤维的同时针对性改善了大豆纤维的持水力、膨胀力及其水分散液粘度。
(2)本发明突破了大豆纤维的应用局限,利用改性大豆纤维与结冷胶的协同增效作用,显著提升了复合凝胶的凝胶强度、硬度、弹性及持水力。
(3)本发明中大豆纤维具备调节肠道功能、降低血脂、改善糖尿病等生理功能,是一种良好的营养膳食补充剂。
(4)本发明制备的改性大豆纤维-结冷胶复合凝胶运用到食品体系中,能降低结冷胶的使用成本,也为食品提供多样化的凝胶特性,扩大改性大豆纤维和结冷胶的应用范围。
附图说明
图1为改性大豆纤维-结冷胶复合凝胶的外观图(A:未添加改性大豆纤维;B:添加改性大豆纤维,从左至右添加量分别是0.5%、1.0%、1.5%、2.0%(w/v))。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
将干燥的豆渣经粉碎、过80目筛后得到豆渣粉。按料液比1:20g/ml配制豆渣水分散液,采用2mol/L的NaOH溶液调节水分散液的pH至10.0,然后将其放入高压灭菌釜中105℃蒸煮60min。然后调节pH至10.0,随后在40℃、1000rpm搅拌60min。降至室温后,4500g高速离心20min,取其沉淀,沉淀复溶于纯净水中使得料液比为1:20g/ml,用2mol/L的HCl溶液调节水分散液的pH至中性。然后将分散液在7500g高速离心20min,取其沉淀。沉淀喷雾干燥后得到改性大豆纤维。
实施例2
将干燥豆渣经粉碎、过100目筛后得到豆渣粉。按料液比1:30g/ml配制豆渣水分散液,采用2mol/L的NaOH溶液调节水分散液的pH至11.0,然后将其放入高压灭菌釜中110℃蒸煮30min。然后调节pH至11.0,随后在50℃恒温下以800rpm的速率搅拌90min。降至室温后,3000g高速离心25min,取其沉淀,沉淀复溶于纯净水中使得料液比为1:30g/ml,用2mol/L的HCl溶液调节水分散液的pH至中性。然后将分散液在6000g高速离心25min,取其沉淀。沉淀喷雾干燥后得到改性大豆纤维。
实施例3
将干燥的豆渣经粉碎、过120目筛后得到豆渣粉。按料液比1:40g/ml配制豆渣水分散液,采用2mol/L的NaOH溶液调节水分散液的pH至12.0,然后将其放入高压灭菌釜中120℃蒸煮90min。然后调节pH至12.0,随后在60℃、600rpm搅拌30min。降至室温后,1000g高速离心30min,取其沉淀,沉淀复溶于纯净水中使得料液比为1:40g/ml,用2mol/L的HCl溶液调节水分散液的pH至中性。然后将分散液在7000g高速离心30min,取其沉淀。沉淀喷雾干燥后得到改性大豆纤维。
对以上实施例1~3所得改性大豆纤维的持水力、膨胀力和水分散液粘度进行测定:
持水力的测定方法:预先称重10mL离心管的质量(记为m 1,g),再称取0.2g改性大豆纤维(记为m 0,g)置于离心管中,向离心管缓慢加入5mL蒸馏水,混匀后室温静置30min,然后6000×g离心20min,小心倒去上清液,再次称重(记为m 2,g)。改性大豆纤维的持水力计算公式如下:
Figure PCTCN2020087673-appb-000001
膨胀力的测定方法:称取0.1g改性大豆纤维(记为m 3,g)于15mL具塞试管中,读取纤维体积(记为V 1,mL)。缓慢加入10mL蒸馏水,混匀后室温 静置24h,读取此时纤维体积(记为V 2,mL)。改性大豆纤维的膨胀力计算公式如下:
Figure PCTCN2020087673-appb-000002
水分散液粘度的测定方法:配制浓度1%(w/v)的改性大豆纤维水分散液,采用Haake MARSⅢ旋转流变仪(美国Thermo Fisher Scientific公司)测定水分散液的剪切流变特性。吸取2.9mL样品于流变仪样品台上,所用转子为P60TiL Polished,参数设置为:温度25±1℃,板间距1mm,剪切速率在300s内由0升到100s -1,线性取点100个考察粘度随剪切速率的变化情况。通过Herschel-Bulkley模型来研究改性大豆纤维水分散液的剪切应力与剪切速率之间的关系:
Figure PCTCN2020087673-appb-000003
其中τ是剪切应力(Pa),τ 0是屈服应力(Pa),K为稠度系数(Pa·s n),
Figure PCTCN2020087673-appb-000004
是剪切速率(s -1),n是流动指数(无量纲)。
改性大豆纤维-结冷胶复合凝胶的制备及性能表征:
改性大豆纤维-结冷胶复合凝胶的制备:分别将质量分数为0、0.5%、1.0%、1.5%、2.0%的改性大豆纤维与0.2%的结冷胶加入到水中,经高速分散机10000rpm剪切1min,随后90℃恒温搅拌30min,冷却至室温,得到高性能复合凝胶。所得改性大豆纤维-结冷胶复合凝胶的外观图如图1所示(A:未添加改性大豆纤维;B:添加改性大豆纤维,从左至右添加量分别是0.5%、1.0%、1.5%、2.0%(w/v))。
凝胶强度测定方法:利用质构分析仪(英国Stable Micro System公司)测定凝胶的强度,使用P/0.5S金属球形探头。参数设置为:压缩模式,压缩深度为12mm,触发力为1g,探头在测试前、测试中、测试后的速率分别为2、1、2mm/s。
质构特性测定方法:利用质构分析仪(英国Stable Micro System公司)测定凝胶的质构特性,使用AB/E圆柱形塑料探头。参数设置为:压缩模式,压缩深度为10mm,触发力为5g,探头在测试前、测试中、测试后的速率分别为2、1、 2mm/s,两个压缩循环间没有延迟。
持水力测定方法:将凝胶冷冻干燥24h以获得干凝胶。称取约0.2g干凝胶(记为m 0,g)(同时保证每个样品的大小和形状一致),放入装有50g蒸馏水的烧杯中,静置2h,然后将吸水后凝胶小心取出,置于200目滤布上过滤30min,称取干凝胶吸水后的质量(记为m 1,g)。凝胶的持水力计算公式如下:
Figure PCTCN2020087673-appb-000005
表1为实施例1~3所得改性大豆纤维的持水力、膨胀力、粘度及Herschel-Bulkley模型部分参数拟合情况。
表1
Figure PCTCN2020087673-appb-000006
由表1可知,与豆渣相比,实施例1~3所得改性大豆纤维的持水力、膨胀力、粘度及稠度系数均增大,最高可达到豆渣的3.17倍、6.86倍、5.15倍及6.90倍。这些功能特性的改善将促进纤维与结冷胶协同形成致密网络结构,增强束缚水的能力,来制备高性能凝胶。
表2为改性大豆纤维(0~2.0%(w/v))-结冷胶(0.2%(w/v))复合凝胶的凝胶强度、硬度、弹性和持水力。
表2
Figure PCTCN2020087673-appb-000007
Figure PCTCN2020087673-appb-000008
由表2可知,添加改性大豆纤维后,复合凝胶的凝胶强度、硬度、弹性和持水力均有明显增大,且随着添加量的增加,凝胶强度、硬度及弹性呈现增长趋势,说明改性大豆纤维可以提高复合凝胶的凝胶能力,改善凝胶特性,这与图1复合凝胶的外观状态的结果一致,改性大豆纤维协同结冷胶的复合凝胶(图1中B)不易流动,凝胶强度高于单独的结冷胶凝胶(图1中A);而持水力逐渐降低,这是因为改性大豆纤维的添加量较大时,形成的复合凝胶紧凑而致密,使得凝胶与水的接触面积减小,持水力减弱。与文献报道的数据对比可知,当结冷胶用量为0.2%(w/v)时,加入2.0%(w/v)的改性大豆纤维最高可使凝胶强度提高2.08倍,达到0.3%(w/v)结冷胶凝胶的强度。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种改性大豆纤维的制备方法,其特征在于包括如下制备步骤:
    将干燥的豆渣经粉碎、过筛后与水混合,所得混合体系在pH值为10~12,温度为105~120℃条件下蒸煮处理,然后在pH值为10~12,温度为40~60℃条件下搅拌处理,所得分散液经离心取沉淀,将沉淀复溶于水中,调节pH值至中性,离心,所得沉淀经喷雾干燥,得到改性大豆纤维。
  2. 根据权利要求1所述的一种改性大豆纤维的制备方法,其特征在于:所述过筛是过80~120目筛。
  3. 根据权利要求1所述的一种改性大豆纤维的制备方法,其特征在于:所述干燥的豆渣经粉碎、过筛后与水混合的料液比为1:(20~40)g/ml。
  4. 根据权利要求1所述的一种改性大豆纤维的制备方法,其特征在于:所述蒸煮处理的时间为30~90min。
  5. 根据权利要求1所述的一种改性大豆纤维的制备方法,其特征在于:所述搅拌处理的转速为600~1000rpm,时间为30~90min。
  6. 根据权利要求1所述的一种改性大豆纤维的制备方法,其特征在于:所述第一次离心的离心力为1000~4500g,离心时间为20~30min;所述第二次离心的离心力为6000~7500g,离心时间为20~30min。
  7. 根据权利要求1所述的一种改性大豆纤维的制备方法,其特征在于:所述沉淀复溶于水中的料液比为1:(20~40)g/ml。
  8. 一种改性大豆纤维,其特征在于:通过权利要求1~7任一项所述的方法制备得到。
  9. 权利要求8所述的改性大豆纤维协同结冷胶制备的高性能复合凝胶,其特征在于通过如下方法制备得到:将改性大豆纤维与结冷胶加入到水中,经剪切、搅拌混合均匀,得到高性能复合凝胶。
  10. 根据权利要求9所述的改性大豆纤维协同结冷胶制备的高性能复合凝 胶,其特征在于:所述改性大豆纤维加量的质量分数为0.5~2.0%,所述结冷胶加入的质量分数为0.2%。
PCT/CN2020/087673 2019-04-29 2020-04-29 一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶 WO2020221273A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910352774.3 2019-04-29
CN201910352774.3A CN110089728B (zh) 2019-04-29 2019-04-29 一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶

Publications (1)

Publication Number Publication Date
WO2020221273A1 true WO2020221273A1 (zh) 2020-11-05

Family

ID=67446229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087673 WO2020221273A1 (zh) 2019-04-29 2020-04-29 一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶

Country Status (2)

Country Link
CN (1) CN110089728B (zh)
WO (1) WO2020221273A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110089728B (zh) * 2019-04-29 2022-08-09 华南理工大学 一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶
CN113150324B (zh) * 2021-04-13 2023-02-14 华南理工大学 一种TEMPO氧化牛大力渣纤维素/结冷胶pH响应型水凝胶及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0593292A1 (en) * 1992-10-14 1994-04-20 Protein Technologies International, Inc. A fiber material of increased soluble dietary fibre and a process for its production
US20060093720A1 (en) * 2004-10-28 2006-05-04 Ed Tatz Pumpable, semi-solid low calorie sugar substitute compositions
CN105325883A (zh) * 2015-09-30 2016-02-17 山东省高唐蓝山集团总公司 具有降糖、降脂作用的改性大豆膳食纤维粉的制备方法
CN107232613A (zh) * 2017-07-04 2017-10-10 华南理工大学 一种超声辅助热碱法联合提取大豆纤维和豆渣蛋白的方法
CN107242578A (zh) * 2017-07-04 2017-10-13 华南理工大学 一种均质辅助碱法联合提取大豆纤维和豆渣蛋白的方法
CN109329755A (zh) * 2018-09-06 2019-02-15 临邑禹王植物蛋白有限公司 一种新型改性豆渣膳食纤维-蛋白降糖配方粉的制作方法
CN110089728A (zh) * 2019-04-29 2019-08-06 华南理工大学 一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0593292A1 (en) * 1992-10-14 1994-04-20 Protein Technologies International, Inc. A fiber material of increased soluble dietary fibre and a process for its production
US20060093720A1 (en) * 2004-10-28 2006-05-04 Ed Tatz Pumpable, semi-solid low calorie sugar substitute compositions
CN105325883A (zh) * 2015-09-30 2016-02-17 山东省高唐蓝山集团总公司 具有降糖、降脂作用的改性大豆膳食纤维粉的制备方法
CN107232613A (zh) * 2017-07-04 2017-10-10 华南理工大学 一种超声辅助热碱法联合提取大豆纤维和豆渣蛋白的方法
CN107242578A (zh) * 2017-07-04 2017-10-13 华南理工大学 一种均质辅助碱法联合提取大豆纤维和豆渣蛋白的方法
CN109329755A (zh) * 2018-09-06 2019-02-15 临邑禹王植物蛋白有限公司 一种新型改性豆渣膳食纤维-蛋白降糖配方粉的制作方法
CN110089728A (zh) * 2019-04-29 2019-08-06 华南理工大学 一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BIFEN CHEN; YONGJIAN CAI; TONGXUN LIU; LIHUA HUANG; XINLUN DENG; QIANGZHONG ZHAO; MOUMING ZHAO: "Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments,", FOOD HYDROCOLLOIDS, vol. 93, 30 January 2019 (2019-01-30), pages 167 - 175, XP055750412, ISSN: 0268-005X, DOI: 10.1016/j.foodhyd.2019.01.058 *
CHEN BIFEN; CAI YONGJIAN; LIU TONGXUN; HUANG LIHUA; ZHAO XIUJIE; ZHAO MOUMING; DENG XINLUN; ZHAO QIANGZHONG: "Formation and performance of high acyl gellan hydrogel affected by the addition of physical-chemical treated insoluble soybean fiber,", FOOD HYDROCOLLOIDS, vol. 101, 21 November 2019 (2019-11-21), pages 1 - 10, XP086021958, ISSN: 0268-005X, DOI: 10.1016/j.foodhyd.2019.105526 *
MIKI ISHIHARA, HATSUE MORITAKA, SHIGEHIRO NAITO, HIROYASU FUKUBA: "Effect of Soybean Dietary Fiber on the Thermal and Rheological Properties of Gellan Gum Gels", NIHON KASEI GAKKAISHI, vol. 51, no. 1, 31 December 2000 (2000-12-31), pages 33 - 40, XP009524083, ISSN: 0913-5227, DOI: 10.11428/jhej1987.51.33 *
MIKI ISHIHARA; HATSUE MORITAKA; SHIGEHIRO NAITO; HIROYASU FUKUBA: "Effect of Soybean Dietary Fiber on the Sensory Attributes of Gellan Gum Gel", JOURNAL OF HOME ECONOMICS OF JAPAN, vol. 52, no. 2, 15 February 2001 (2001-02-15), pages 175 - 180, XP009524082, ISSN: 0913-5227, DOI: :10.11428/jhej1987.52.175 *

Also Published As

Publication number Publication date
CN110089728A (zh) 2019-08-06
CN110089728B (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
CN106905440B (zh) 一种银耳多糖提取的方法
JP6733061B2 (ja) 活性化ペクチン含有バイオマス組成物、製品および製造方法
WO2020221273A1 (zh) 一种改性大豆纤维及其协同结冷胶制备的高性能复合凝胶
CN104725527B (zh) 一种甜菜果胶及其提取方法
CN102657329A (zh) 银耳可溶性组合饮品及其制备工艺
JP2006320320A (ja) 海藻高温抽出組成物、海藻熱処理組成物及びそれらの製造方法並びに海藻高温抽出組成物又は海藻熱処理組成物を含む調味料、化粧料、食品及び健康食品
JP2006320320A5 (zh)
CN104739777B (zh) 一种单味中药粉末的制备方法
WO2013051146A1 (ja) 低分子量化こんにゃくグルコマンナンの製造方法およびこの方法により得られる低分子量化こんにゃくグルコマンナン
CN105919106A (zh) 一种黑枸杞原花青素口服液及其制备方法
JP2019172995A (ja) 柑橘果皮由来ナノファイバー及びその製造方法
Wang et al. Physicochemical and rheological properties of pomelo albedo pectin and its interaction with konjac glucomannan
CN113317515A (zh) 一种高持水力和膨胀力的柑橘膳食纤维及其制备方法
CN106317253A (zh) 一种人参浆果果胶及其提取方法
Kumar et al. Extraction, isolation and evaluation Trigonella foenum-graecum as mucoadhesive agent for nasal gel drug delivery
Li et al. Effects of Abelmoschus manihot gum content, heating temperature and salt ions on the texture and rheology properties of konjac gum/Abelmoschus manihot gum composite gel
CN104305027A (zh) 一种性温保健苦瓜颗粒及其制备方法
CN101249059A (zh) 一种保湿面膜及其制备方法
CN102408494A (zh) 一种灰树花多糖zzk组分及其制备方法
Huang et al. Change in chemical composition and enhancement of intestinal microflora of acid hydrolyzed polysaccharides from Zizyphus jujube and Sterculia lychnophora
CN111777691A (zh) 辛夷多糖的提取方法
CN105601948B (zh) 一种利用茶多酚降低车前子多糖黏度的方法
CN101716292B (zh) 一种经柱纯化制备竹叶黄酮提取物的方法
CN101775162A (zh) 一种壳聚糖包囊魔芋的组合物及其制备工艺和用途
CN115644250A (zh) 一种核桃饮料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC DATED 25.02.2022 (EPO FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 20798488

Country of ref document: EP

Kind code of ref document: A1