WO2018214216A1 - Oled器件的封装组件及封装方法、显示装置 - Google Patents

Oled器件的封装组件及封装方法、显示装置 Download PDF

Info

Publication number
WO2018214216A1
WO2018214216A1 PCT/CN2017/089705 CN2017089705W WO2018214216A1 WO 2018214216 A1 WO2018214216 A1 WO 2018214216A1 CN 2017089705 W CN2017089705 W CN 2017089705W WO 2018214216 A1 WO2018214216 A1 WO 2018214216A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern region
layer
conductive layer
oled device
barrier layer
Prior art date
Application number
PCT/CN2017/089705
Other languages
English (en)
French (fr)
Inventor
李文杰
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/541,550 priority Critical patent/US20180342698A1/en
Publication of WO2018214216A1 publication Critical patent/WO2018214216A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/87Arrangements for heating or cooling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8794Arrangements for heating and cooling

Definitions

  • the present invention relates to the field of display, and in particular to a package assembly, a package method, and a display device for an OLED (Organic Light Emitting Diode) device.
  • OLED Organic Light Emitting Diode
  • the traditional use of the liquid crystal display is that it does not need to use a backlight, by making an organic film on the substrate, the organic film is wrapped between the cathode and the anode metal, applying voltage to the two electrodes Then the organic film will glow. Since the organic material of the organic film is very sensitive to water vapor and oxygen, the water/oxygen permeation will greatly reduce the life of the OLED device. Therefore, in order to meet the market demand for its service life and stability, the industry has very strict requirements for the packaging effect of the OLED device. high.
  • the OLED device is generally packaged in a thin film package manner. As shown in FIG. 1, a package film 12 covering the OLED device 11 is formed on the OLED device 11, and the package film 12 is alternately deposited by the barrier layer 121 and the buffer layer 122. .
  • the barrier layer 121 serves as an effective barrier layer for water/oxygen, and its main component is inorganic, and defects such as pinholes, particles, and the like may occur during preparation.
  • the main component of the buffer layer 122 is an organic substance that functions to cover the defects of the barrier layer 121 to achieve planarization.
  • IJP inkjet printing
  • the present invention provides a package assembly and packaging method for an OLED device, and a display device, which can help improve the rapid heat dissipation capability of the OLED device and prevent droplet overflow when the package film is formed by the inkjet printing technology.
  • a heat conducting layer formed on the first barrier layer, wherein a side of the heat conducting layer away from the OLED device is provided with a first pattern region and a second pattern region, and a thickness of the heat conductive layer in the first pattern region is smaller than a thickness thereof in the second pattern region;
  • a second barrier layer covering the buffer layer and the heat conductive layer.
  • a display device includes a package assembly of an OLED device, and the package assembly of the OLED device includes:
  • a heat conducting layer formed on the first barrier layer, wherein a side of the heat conducting layer away from the OLED device is provided with a first pattern region and a second pattern region, and a thickness of the heat conductive layer in the first pattern region is smaller than a thickness thereof in the second pattern region;
  • a second barrier layer covering the buffer layer and the heat conductive layer.
  • first pattern region and the second pattern region being disposed on a side of the heat conduction layer away from the OLED device, wherein the thickness of the heat conduction layer in the first pattern region is smaller than the thickness thereof in the second pattern region;
  • the second barrier layer is covered on the buffer layer and the heat conductive layer.
  • the present invention is designed to provide a heat conductive layer between the first barrier layer and the second barrier layer, that is, to provide a heat conductive layer in the package film of the OLED device, which helps to improve the rapid heat dissipation capability of the OLED device, and the heat conduction layer is far away.
  • One side of the OLED device is patterned, the thickness of the heat conductive layer in the first pattern region is smaller than the thickness of the second pattern region, and the droplets formed by the inkjet printing technology to form the buffer layer are prevented by the first pattern region, thereby preventing The droplet overflows.
  • FIG. 1 is a schematic cross-sectional view showing a package assembly of an OLED device in the prior art
  • FIG. 2 is a cross-sectional view showing a display device according to an embodiment of the present invention.
  • Figure 3 is a plan view showing the structure of the first embodiment of the buffer layer and the heat conductive layer shown in Figure 2;
  • Figure 4 is a plan view showing the structure of the second embodiment of the buffer layer and the heat conducting layer shown in Figure 2;
  • Figure 5 is a plan view showing the structure of the third embodiment of the buffer layer and the heat conductive layer shown in Figure 2;
  • Figure 6 is a plan view showing the structure of the fourth embodiment of the buffer layer and the heat conductive layer shown in Figure 2;
  • Figure 7 is a schematic view of a process for producing the buffer layer and the heat conductive layer shown in Figure 2;
  • Figure 8 is a plan view showing the structure of a mask for producing the heat conductive layer shown in Figure 5;
  • FIG. 9 is a schematic flow chart of a method of packaging an OLED device according to an embodiment of the invention.
  • FIG. 2 is a display device according to an embodiment of the present invention.
  • the display device includes an OLED device 20 and a package assembly of the OLED device 20.
  • the package assembly may include a substrate substrate 21, a first barrier layer 22, a thermally conductive layer 23, and a buffer layer 24.
  • the OLED device 20 is carried on the substrate substrate 21, and the OLED device 20 may be a bottom light emitting device, that is, the substrate substrate 21 is disposed in the light emitting direction of the OLED device 20.
  • the substrate substrate 21 may be a transparent glass substrate or a transparent plastic substrate.
  • the substrate substrate 21 may be a bendable transparent PI (Polyimide, PI) substrate.
  • the first barrier layer 22 is a structure that covers the OLED device 20. Specifically, the first barrier layer 22 may cover the upper surface and each side of the OLED device 20, and the first barrier layer 22 is smooth from the side of the OLED device 20.
  • the first barrier layer 22 may have a thickness of 100 nanometers to 2 micrometers, and the material of manufacture may be inorganic materials such as silicon nitride, silicon oxide, silicon oxynitride, aluminum nitride, and aluminum oxidation. Matter, aluminum oxynitride.
  • the present invention can form the first barrier layer 22 without using a mask, such as a sputtering method, a PECVD (Plasma Enhanced Chemical Vapor Deposition) method, and an ALD (Atomic layer deposition) layer. Any of the deposition methods The first barrier layer 22 is formed.
  • a mask such as a sputtering method, a PECVD (Plasma Enhanced Chemical Vapor Deposition) method, and an ALD (Atomic layer deposition) layer. Any of the deposition methods The first barrier layer 22 is formed.
  • the side of the heat conduction layer 23 away from the OLED device 20 has a predetermined pattern.
  • the predetermined pattern may include a first pattern region 231 and a second pattern region 232, and the heat conduction layer 23 may be exposed in the first pattern region 231.
  • the surface of a barrier layer 22, that is, the first pattern region 231 is a cutout region, and the first pattern region 231 includes a plurality of strip-shaped regions alternately arranged in a direction parallel to the substrate substrate 21 (horizontal direction), each strip shape The area is rectangular.
  • the present invention may also provide the strip-shaped region into other shapes, such as a teardrop shape; for example, as shown in FIG. 4, the strip-shaped region may have an elliptical shape; for example, referring to FIG. 5, the strip-shaped region may further include a vertical
  • the first sub-region 233 and the second sub-region 234 are alternately connected in order, and the first sub-region 233 and the second sub-region 234 may both be rectangular, and the width of the first sub-region 233 in the horizontal direction is smaller than the second sub-region 234.
  • the width referring to FIG. 6, the first pattern region 231 may also have a mesh structure.
  • the entire heat conductive layer 23 can be patterned by an etching process to obtain the heat conductive layer 23.
  • a full surface heat conducting layer 230 is covered on the first barrier layer 22 by a thermal evaporation method.
  • the material forming the entire surface of the heat conducting layer 230 may be a metal having good heat conductivity, for example, a silver having a purity greater than or equal to 99.99%, and the vacuum degree of the sealed cavity required by the thermal evaporation method is less than 5*10 -5 Pa, and the steam is hot.
  • the plating temperature may be 1000 to 1500 ° C, and the vapor deposition rate is 5 to 15 ⁇ / sec, so that a full surface heat conduction layer 230 having a thickness of 50 to 500 nm can be obtained. Then, the entire surface heat conducting layer 230 is etched to remove a portion of the entire surface heat conducting layer 230 in the first pattern region 231.
  • the present invention can also directly form the heat conductive layer 23 having a predetermined pattern based on the mask.
  • a mask plate is placed on the first barrier layer 22 to form a heat conductive layer 23 having the pattern shown in FIG. 5.
  • the present invention can adopt a mask 80 as shown in FIG.
  • the diaphragm 80 includes a hollowed out region 81 and a non-hollowed region 82, the hollowed out region 81 includes a first region 811 and a second region 812 that are electrically connected to each other, and the width of the first region 811 in the horizontal direction is smaller than the width of the second region 812, and
  • the first area 811 and the second area 812 may both be rectangular.
  • a thermally conductive material is deposited on the first barrier layer 22 through the hollow region 81 of the mask 80 by a thermal evaporation method, thereby forming a thermally conductive layer 23 having a pattern as shown in FIG.
  • the present invention can horizontally move the mask 80 to a predetermined region after one thermal evaporation process, and perform steam steaming again.
  • Plating process First pattern area 231 and second designed according to first barrier layer 22 The pattern and number of pattern areas 232 are used to determine the distance and number of movements to form a thermally conductive layer 23 having a predetermined pattern.
  • the present invention can also employ the ALD method or the Sputtering method, and in combination with the mask 80 to form the heat conductive layer 23 having a predetermined pattern.
  • the heat conductive layer 23 may be made of copper, gold, aluminum or an alloy thereof.
  • the buffer layer 24 may be formed only on the first pattern region 231 of the heat conductive layer 23, and the thickness of the buffer layer 24 is the same as the thickness of the heat conductive layer 23.
  • the buffer layer 24 can also cover the first pattern region 231 and the second pattern region 232 of the heat conductive layer 23 at the same time, that is, the buffer layer 24 is a full surface structure completely covering the heat conductive layer 23.
  • the material of the buffer layer 24 may be an organic material such as an epoxy resin, a silicon-based polymer, or PMMA (polymethyl methacrylate).
  • the present invention can form the buffer layer 24 without a mask, thereby saving the design and production cost of the mask, and reducing the production and manufacturing costs of the entire package assembly.
  • the present invention may employ any one of an inkjet printing method, an ODF (One Drop Filling) method, and a nozzle printing method.
  • the epoxy resin solution is dropped on the first pattern region 231 of the heat conductive layer 23, and then left in an environment of 80 to 100 ° C for 60 to 90 minutes to be cured to form the buffer layer 24.
  • the present invention can also cure the epoxy resin solution by UV (Ultraviolet, UV irradiation or radiation) curing to form the buffer layer 24.
  • the first barrier layer 22 is an effective barrier layer for water/oxygen
  • the buffer layer 24 is used to cover the first barrier layer 22 for planarization
  • the heat conduction layer 23 is used for heat conduction and heat dissipation
  • the heat conduction layer 23 and the buffer layer 24 and the first barrier layer 22 can be considered as a package film of the OLED device 20.
  • the heat conductive layer 23 of the present invention helps to improve the rapid heat dissipation capability of the OLED device 20, and the first pattern region 231 can accommodate droplets when the buffer layer 24 is formed by inkjet printing or the like, and the liquid is prevented. Drip overflow.
  • the package assembly of an embodiment of the present invention may further include a second barrier layer 25 covering the buffer layer and the heat conductive layer.
  • the second barrier layer 25 may be made of the same material as the first barrier layer 22.
  • the present invention can form the second barrier layer 25 without a mask, for example, using the ODF method, the inkjet printing method, and the nozzle printing method to form the second barrier layer 25 to save cost.
  • the side of the second barrier layer 25 away from the buffer layer 24 may be a smooth plane.
  • the present invention does not cause a slight gully at the attachment surface of the smooth surface and the protective film or the touch film, thereby It is possible to avoid the occurrence of a bubble when the OLED device 20 is displayed.
  • FIG. 9 illustrates a method of packaging an OLED device according to an embodiment of the invention.
  • the encapsulation method may include the following steps S91-S95.
  • the substrate substrate includes, but is not limited to, a transparent glass substrate, a transparent plastic substrate, for example, when the flexible display device is fabricated, the substrate substrate may be a bendable transparent PI substrate.
  • the OLED device is carried on a substrate substrate.
  • the OLED device is carried on a substrate substrate, and the OLED device may be a bottom light emitting device, that is, the substrate substrate is disposed in a light emitting direction of the OLED device.
  • the first barrier layer is a structure covering the OLED device. Specifically, the first barrier layer may cover the upper surface and each side of the OLED device, and the first barrier layer is a smooth plane away from one side of the OLED device.
  • the first barrier layer may have a thickness of 100 nanometers to 2 micrometers, and the material of manufacture may be inorganic materials such as silicon nitride, silicon oxide, silicon oxynitride, aluminum nitride, aluminum oxide. And aluminum oxynitride.
  • the present invention can form the first barrier layer without using a mask, for example, forming the first barrier layer by any one of a sputtering method, a PECVD method, and an ALD method.
  • the side of the heat conducting layer away from the OLED device has a predetermined pattern, and the predetermined pattern may include a first pattern region and a second pattern region, and the heat conductive layer may expose a surface of the first barrier layer in the first pattern region, that is, the first pattern region is hollowed out
  • the first pattern region includes a plurality of strip-shaped regions alternately spaced apart in a direction parallel to the substrate substrate, each strip region being rectangular.
  • the present invention may also provide the strip-shaped region into other shapes, such as a teardrop shape or an elliptical shape; for example, the strip-shaped region may further include a first sub-region and a second sub-region alternately connected in the vertical direction, the first sub-region.
  • the region and the second sub-region may both be rectangular, and the width of the first sub-region in the horizontal direction is smaller than the width of the second sub-region.
  • the first pattern region may also have a mesh structure.
  • an entire surface heat conductive layer can be patterned by an etching process to obtain the above heat conductive layer.
  • a thermal conductive layer is applied to the first barrier layer by a thermal evaporation method.
  • the material forming the entire surface heat conductive layer may be a metal with good heat conductivity, such as silver with a purity of greater than or equal to 99.99%, and the vacuum degree of the sealed cavity required by the thermal evaporation method is less than 5*10 -5 Pa, thermal evaporation
  • the required temperature may be 1000 to 1500 ° C, and the vapor deposition rate is 5 to 15 ⁇ / sec, so that a whole surface heat conductive layer having a thickness of 50 to 500 nm can be obtained.
  • the entire surface of the heat conducting layer is etched to remove a portion of the entire surface of the heat conducting layer in the first pattern region.
  • the present invention can also form a thermally conductive layer having a predetermined pattern based on a mask.
  • a mask is placed on the first barrier layer to form a thermally conductive layer having the pattern shown in FIG. 5, the mask includes a hollowed out area and a non-hollowed area, and the hollowed out area includes a mutual conduction One region and the second region, and the width of the first region in the horizontal direction is smaller than the width of the second region, and the first region and the second region may both be rectangular.
  • a thermal evaporation method is employed to deposit a thermally conductive material on the first barrier layer through the hollow region of the mask to form a thermally conductive layer.
  • the present invention can horizontally move the mask to a predetermined region after the primary thermal evaporation process, and perform the thermal evaporation process again.
  • the distance and the number of movements are determined according to the pattern and number of the first pattern area and the second pattern area designed by the first barrier layer, thereby forming a heat conductive layer having a predetermined pattern.
  • the present invention can also employ an ALD method or a Sputtering method, and combine with the mask to form a thermally conductive layer having a predetermined pattern.
  • the material for manufacturing the heat conductive layer may also be copper, gold, aluminum, and alloys thereof.
  • the buffer layer may be formed only in the first pattern region of the heat conductive layer, and the thickness of the buffer layer is the same as the thickness of the heat conductive layer.
  • the buffer layer can also cover the first pattern region and the second pattern region of the heat conductive layer at the same time, that is, the buffer layer is a full surface structure completely covering the heat conductive layer.
  • the material of the buffer layer can be organic, such as epoxy resin, silicon based polymer, PMMA.
  • the present invention can form the buffer layer without a mask, thereby saving the design and production cost of the mask, thereby reducing the production and manufacturing costs of the entire package assembly.
  • the present invention may employ any one of an inkjet printing method, an ODF method, and a nozzle printing method, and the epoxy resin solution is dropped into the first pattern region of the heat conductive layer. Then, it is left in an environment of 80 to 100 ° C for 60 to 90 minutes to be cured to form a buffer layer.
  • the invention can also be adopted The epoxy resin solution is cured by UV curing to form a buffer layer.
  • the second barrier layer may be made of the same material as the first barrier layer.
  • the present invention can form the second barrier layer without using a mask, for example, forming a second barrier layer by using any one of an ODF method, an inkjet printing method, and a nozzle printing method to save cost.
  • the side of the second barrier layer away from the buffer layer may be a smooth plane.
  • a protective film or a touch film having a touch function is attached to a side of the second barrier layer away from the buffer layer, the present invention does not cause a slight gully on the attachment surface of the smooth surface and the protective film or the touch film, thereby enabling Avoid bubble when displaying OLED devices.
  • the above-described packaging method of the OLED device can be used to produce a package assembly having the structure shown in FIG. 2, and thus has the same advantageous effects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供一种OLED器件的封装组件及封装方法、显示装置。在封装OLED器件(20)的封装薄膜中设置导热层(23),导热层远离OLED器件的一侧设置有沿预定方向交错设置的第一图案区(231)和第二图案区(232),导热层在第一图案区的厚度小于其在第二图案区的厚度。

Description

OLED器件的封装组件及封装方法、显示装置 【技术领域】
本发明涉及显示领域,具体涉及一种OLED(Organic Light Emitting Diode,有机发光二极管)器件的封装组件及封装方法、显示装置。
【背景技术】
OLED作为新一代的显示器,与传统的液晶显示器的不用之处在于其无需采用背光源,通过在衬底基板上制作有机薄膜,有机薄膜被包裹在阴极和阳极金属之间,给两电极施加电压,则有机薄膜就会发光。由于有机薄膜的有机材料对水汽和氧气非常敏感,水/氧的渗透会大大缩减OLED器件的寿命,因此为了达到市场对其使用寿命和稳定性的要求,业界对OLED器件的封装效果的要求非常高。
当前,业界对OLED器件一般采用薄膜封装方式进行封装,如图1所示,在OLED器件11上形成覆盖OLED器件11的封装薄膜12,该封装薄膜12由阻挡层121和缓冲层122交替沉积形成。阻挡层121作为水/氧的有效阻挡层,其主要成分为无机物,并且其在制备过程中会出现针孔(Pinholes)、异物(Particle)等缺陷。缓冲层122的主要成分为有机物,其作用为覆盖阻挡层121的缺陷以实现平坦化。为了提高材料利用率以节省成本,现有技术一般采用喷墨打印(Ink-jet printing,IJP)方法形成缓冲层122,如何防止形成缓冲层122的液滴溢流非常关键。另外,OLED器件11的轻薄化设计趋势,使其布线较为密集,如何提高OLED器件11的快速散热能力也非常重要。
【发明内容】
有鉴于此,本发明提供一种OLED器件的封装组件及封装方法、显示装置,能够有助于提高OLED器件的快速散热能力,并且防止采用喷墨打印技术形成封装薄膜时产生液滴溢流。
本发明一实施例的OLED器件的封装组件,包括:
衬底基材,用于承载OLED器件;
覆盖OLED器件的第一阻挡层;
形成于第一阻挡层上的导热层,导热层远离OLED器件的一侧设置有第一图案区和第二图案区,导热层在第一图案区的厚度小于其在第二图案区的厚度;
形成于导热层的第一图案区的缓冲层;
覆盖缓冲层和导热层的第二阻挡层。
本发明一实施例的显示装置,包括OLED器件的封装组件,所述OLED器件的封装组件包括:
衬底基材,用于承载OLED器件;
覆盖OLED器件的第一阻挡层;
形成于第一阻挡层上的导热层,导热层远离OLED器件的一侧设置有第一图案区和第二图案区,导热层在第一图案区的厚度小于其在第二图案区的厚度;
形成于导热层的第一图案区的缓冲层;
覆盖缓冲层和导热层的第二阻挡层。
本发明一实施例的OLED器件的封装方法,包括:
提供一衬底基材;
将OLED器件承载于衬底基材上;
在OLED器件上覆盖第一阻挡层;
在第一阻挡层上形成导热层,导热层远离OLED器件的一侧设置有第一图案区和第二图案区,导热层在第一图案区的厚度小于其在第二图案区的厚度;
在导热层的第一图案区形成缓冲层;
在缓冲层和导热层上覆盖第二阻挡层。
有益效果:本发明设计在第一阻挡层和第二阻挡层之间设置导热层,即在OLED器件的封装薄膜中设置导热层,有助于提高OLED器件的快速散热能力,并且,导热层远离OLED器件的一侧进行了图案化设计,导热层在第一图案区的厚度小于其在第二图案区的厚度,通过第一图案区容纳采用喷墨打印技术形成缓冲层的液滴,能够防止液滴溢流。
【附图说明】
图1是现有技术中OLED器件的封装组件的剖面示意图;
图2是本发明一实施例的显示装置的剖面示意图;
图3是图2所示缓冲层和导热层第一实施例的结构俯视图;
图4是图2所示缓冲层和导热层第二实施例的结构俯视图;
图5是图2所示缓冲层和导热层第三实施例的结构俯视图;
图6是图2所示缓冲层和导热层第四实施例的结构俯视图;
图7是用于制得图2所示缓冲层和导热层的场景示意图;
图8是用于制得图5所示导热层的掩膜板的结构俯视图;
图9是本发明一实施例的OLED器件的封装方法的流程示意图。
【具体实施方式】
下面将结合本发明实施例中的附图,对本发明所提供的各个示例性的实施例的技术方案进行清楚、完整地描述。在不冲突的情况下,下述各个实施例以及实施例中的特征可以相互组合。
请参阅图2,为本发明一实施例的显示装置。所述显示装置包括OLED器件20以及该OLED器件20的封装组件。所述封装组件可以包括衬底基材21、第一阻挡层22、导热层23及缓冲层24。
OLED器件20承载于衬底基材21上,OLED器件20可以为底发光器件,即衬底基材21设置于OLED器件20的出光方向上。该衬底基材21可以为透明玻璃基板或透明塑料基板,例如,在制作柔性显示装置时,衬底基材21可采用可弯折的透明PI(Polyimide,PI)基板。
第一阻挡层22为覆盖OLED器件20的结构,具体地,第一阻挡层22可以覆盖OLED器件20的上表面以及各个侧面,并且第一阻挡层22远离OLED器件20的一面为光滑平面。所述第一阻挡层22的厚度可以为100纳米~2微米,其制造材料可以为无机物,例如硅的氮化物、硅的氧化物、硅的氮氧化物、铝的氮化物、铝的氧化物、铝的氮氧化物。另外,本发明无需掩膜板即可形成第一阻挡层22,例如采用Sputtering(溅射)方法、PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子增强化学气相沉积)方法以及ALD(Atomic layer deposition,原子层沉积)方法中的任一 种形成所述第一阻挡层22。
导热层23远离OLED器件20的一侧具有预定图案,参阅图2和图3,该预定图案可以包括第一图案区231和第二图案区232,导热层23在第一图案区231可以暴露第一阻挡层22的表面,即第一图案区231为镂空区,第一图案区231包括沿平行于衬底基材21方向(水平方向)交替间隔设置的多个带状区域,每一带状区域呈矩形。
当然,本发明也可以设置带状区域为其他形状,例如水滴形;再例如,如图4所示,带状区域可以呈椭圆形;又例如,参阅图5,带状区域还可以包括沿垂直方向依次交替连接的第一子区域233和第二子区域234,第一子区域233和第二子区域234可以均为矩形,且沿水平方向第一子区域233的宽度小于第二子区域234的宽度。另外,参阅图6,第一图案区231还可以呈网状结构。
本发明可以采用刻蚀工艺对一整面导热层进行图案化处理得到上述导热层23。如图7所示,首先,采用热蒸镀方法在第一阻挡层22上覆盖一整面导热层230。其中,形成一整面导热层230的材料可以为导热良好的金属,例如纯度大于或等于99.99%的银,热蒸镀方法所需密封腔体的真空度小于5*10-5Pa,热蒸镀所需温度可以为1000~1500℃,蒸镀率为5~15埃/秒,从而可制得厚度为50~500nm的一整面导热层230。然后,对该一整面导热层230进行刻蚀处理,以去除一整面导热层230在第一图案区231的部分。
当然,本发明也可以基于掩膜板直接形成具有预定图案的导热层23。具体而言:首先,在第一阻挡层22上放置掩膜板,以形成具有图5所示图案的导热层23为例,本发明可采用如图8所示的掩膜板80,该掩膜板80包括镂空区81和非镂空区82,镂空区81包括相互导通的第一区域811和第二区域812,且沿水平方向第一区域811的宽度小于第二区域812的宽度,且第一区域811和第二区域812可以均为矩形。然后,采用热蒸镀方法使得导热材料通过掩膜板80的镂空区81沉积在第一阻挡层22上,从而形成具有如图5所示图案的导热层23。
当掩膜板80的镂空区81的数量小于导热层23的第一图案区231的数量时,本发明可以在一次热蒸镀制程之后,水平移动掩膜板80至预定区域,再次进行热蒸镀制程。根据第一阻挡层22所设计的第一图案区231和第二 图案区232的图形和数量来确定移动的距离和次数,从而形成具有预定图案的导热层23。
当然,本发明还可以采用ALD方法或Sputtering方法,并结合所述掩膜板80形成具有预定图案的导热层23。
并且,导热层23的制造材料还可以为铜、金、铝及其合金。
继续参阅图2~图7,缓冲层24可以仅形成于导热层23的第一图案区231,此时缓冲层24的厚度与导热层23的厚度相同。当然,缓冲层24也可以同时覆盖导热层23的第一图案区231和第二图案区232,即缓冲层24为完全覆盖导热层23的一整面结构。
缓冲层24的制造材料可以为有机物,例如环氧树脂、硅基聚合物、PMMA(聚甲基丙烯酸甲酯)。本发明无需掩膜板即可形成所述缓冲层24,从而节省掩膜板的设计与生产成本,降低整个封装组件的生产与制造成本。例如,对于粘度为5~100cPs(厘泊)的环氧树脂溶液,本发明可以采用喷墨打印方法、ODF(One Drop Filling,滴注)方法和喷嘴印刷(Nozzle printing)方法中的任一种,将环氧树脂溶液滴注于导热层23的第一图案区231,而后在80~100℃的环境中放置60~90分钟,从而固化形成缓冲层24。当然,本发明也可以采用UV(Ultraviolet,紫外线照射或辐射)固化方式对环氧树脂溶液进行固化,以形成缓冲层24。
在本发明中,第一阻挡层22为水/氧的有效阻挡层,缓冲层24用于覆盖第一阻挡层22以实现平坦化,导热层23用于导热及散热,导热层23、缓冲层24和第一阻挡层22可视为OLED器件20的封装薄膜。相比较与现有技术,本发明的导热层23有助于提高OLED器件20的快速散热能力,并且第一图案区231可以容纳采用喷墨打印等方法形成缓冲层24时的液滴,防止液滴溢流。
请继续参阅图2,本发明一实施例的封装组件还可以包括覆盖缓冲层和导热层的第二阻挡层25。该第二阻挡层25的制造材料可以与第一阻挡层22的制造材料相同。本发明无需掩膜板即可形成所述第二阻挡层25,例如采用ODF方法、喷墨打印方法和喷嘴印刷方法中的任一种形成第二阻挡层25,以节省成本。
第二阻挡层25远离缓冲层24的一面可以为光滑平面。在第二阻挡层 25远离缓冲层24的一面贴附保护膜或具有触控(touch sensor)功能的触控膜时,本发明不会在光滑平面与保护膜或触控膜的贴附处出现微小的沟壑,从而能够避免在OLED器件20显示时出现bubble(泡影)。
请参阅图9,为本发明一实施例的OLED器件的封装方法。所述封装方法可以包括以下步骤S91~S95。
S91:提供一衬底基材。
该衬底基材包括但不限于透明玻璃基板、透明塑料基板,例如,在制作柔性显示装置时,衬底基材可采用可弯折的透明PI基板。
S92:将OLED器件承载于衬底基材上。
OLED器件承载于衬底基材上,OLED器件可以为底发光器件,即衬底基材设置于OLED器件的出光方向上。
S93:在OLED器件上覆盖第一阻挡层。
第一阻挡层为覆盖OLED器件的结构,具体地,第一阻挡层可以覆盖OLED器件的上表面以及各个侧面,并且第一阻挡层远离OLED器件的一面为光滑平面。所述第一阻挡层的厚度可以为100纳米~2微米,其制造材料可以为无机物,例如硅的氮化物、硅的氧化物、硅的氮氧化物、铝的氮化物、铝的氧化物以及铝的氮氧化物。另外,本发明无需掩膜板即可形成第一阻挡层,例如采用Sputtering方法、PECVD方法以及ALD方法中的任一种形成所述第一阻挡层。
S94:在第一阻挡层上形成导热层,导热层远离OLED器件的一侧设置有第一图案区和第二图案区,导热层在第一图案区的厚度小于其在第二图案区的厚度。
导热层远离OLED器件的一侧具有预定图案,该预定图案可以包括第一图案区和第二图案区,导热层在第一图案区可以暴露第一阻挡层的表面,即第一图案区为镂空区,第一图案区包括沿平行于衬底基材方向交替间隔设置的多个带状区域,每一带状区域呈矩形。
当然,本发明也可以设置带状区域为其他形状,例如水滴形、椭圆形;又例如,带状区域还可以包括沿垂直方向依次交替连接的第一子区域和第二子区域,第一子区域和第二子区域可以均为矩形,且沿水平方向第一子区域的宽度小于第二子区域的宽度。另外,第一图案区还可以呈网状结构。
本发明可以采用刻蚀工艺对一整面导热层进行图案化处理得到上述导热层。具体而言:首先,采用热蒸镀方法在第一阻挡层上覆盖一整面导热层。其中,形成一整面导热层的材料可以为导热良好的金属,例如纯度大于或等于99.99%的银,热蒸镀方法所需密封腔体的真空度小于5*10-5Pa,热蒸镀所需温度可以为1000~1500℃,蒸镀率为5~15埃/秒,从而可制得厚度为50~500nm的一整面导热层。然后,对该一整面导热层进行刻蚀处理,以去除一整面导热层在第一图案区的部分。
当然,本发明也可以基于掩膜板形成具有预定图案的导热层。具体而言:首先,在第一阻挡层上放置掩膜板,以形成具有图5所示图案的导热层为例,掩膜板包括镂空区和非镂空区,镂空区包括相互导通的第一区域和第二区域,且沿水平方向第一区域的宽度小于第二区域的宽度,第一区域和第二区域可以均为矩形。然后,采用热蒸镀方法使得导热材料通过掩膜板的镂空区沉积在第一阻挡层上,从而形成导热层。
当掩膜板的镂空区的数量小于第一图案区的数量时,本发明可以在一次热蒸镀制程之后,水平移动掩膜板至预定区域,再次进行热蒸镀制程。根据第一阻挡层所设计的第一图案区和第二图案区的图形和数量来确定移动的距离和次数,从而形成具有预定图案的导热层。
当然,本发明还可以采用ALD方法或Sputtering方法,并结合所述掩膜板形成具有预定图案的导热层。
并且,导热层的制造材料还可以为铜、金、铝及其合金。
S95:在导热层的第一图案区形成缓冲层。
缓冲层可以仅形成于导热层的第一图案区,此时缓冲层的厚度与导热层的厚度相同。当然,缓冲层也可以同时覆盖导热层的第一图案区和第二图案区,即缓冲层为完全覆盖导热层的一整面结构。
缓冲层的制造材料可以为有机物,例如环氧树脂、硅基聚合物、PMMA。本发明无需掩膜板即可形成所述缓冲层,从而节省掩膜板的设计与生产成本,从而降低整个封装组件的生产与制造成本。例如对于粘度为5~100cPs的环氧树脂溶液,本发明可以采用喷墨打印方法、ODF方法和喷嘴印刷方法中的任一种,将环氧树脂溶液滴注于导热层的第一图案区,而后在80~100℃的环境中放置60~90分钟,从而固化形成缓冲层。当然,本发明也可以采 用UV固化方式对环氧树脂溶液进行固化,以形成缓冲层。
S96:在缓冲层和导热层上覆盖第二阻挡层。
该第二阻挡层的制造材料可以与第一阻挡层的制造材料相同。本发明无需掩膜板即可形成所述第二阻挡层,例如采用ODF方法、喷墨打印方法和喷嘴印刷方法中的任一种形成第二阻挡层,以节省成本。
第二阻挡层远离缓冲层的一面可以为光滑平面。在第二阻挡层远离缓冲层的一面贴附保护膜或具有触控功能的触控膜时,本发明不会在光滑平面与保护膜或触控膜的贴附处出现微小的沟壑,从而能够避免在OLED器件显示时出现bubble。
上述OLED器件的封装方法可用于制得具有图2所示结构的封装组件,因此具有与其相同的有益效果。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种OLED器件的封装组件,其中,所述封装组件包括:
    衬底基材,用于承载OLED器件;
    覆盖所述OLED器件的第一阻挡层;
    形成于所述第一阻挡层上的导热层,所述导热层远离所述OLED器件的一侧设置有第一图案区和第二图案区,所述导热层在第一图案区的厚度小于其在所述第二图案区的厚度;
    形成于所述导热层的第一图案区的缓冲层;
    覆盖所述缓冲层和所述导热层的第二阻挡层。
  2. 根据权利要求1所述的封装组件,其中,所述导热层在所述第一图案区暴露所述第一阻挡层的表面。
  3. 根据权利要求2所述的封装组件,其中,所述第一图案区包括交替间隔设置的多个带状区域,或所述第一图案区为网状结构。
  4. 根据权利要求2所述的封装组件,其中,所述带状区域包括矩形、椭圆形及水滴形中的至少一种。
  5. 一种显示装置,其中,所述显示装置包括OLED器件的封装组件,所述OLED器件的封装组件包括:
    衬底基材,用于承载OLED器件;
    覆盖所述OLED器件的第一阻挡层;
    形成于所述第一阻挡层上的导热层,所述导热层远离所述OLED器件的一侧设置有第一图案区和第二图案区,所述导热层在第一图案区的厚度小于其在所述第二图案区的厚度;
    形成于所述导热层的第一图案区的缓冲层;
    覆盖所述缓冲层和所述导热层的第二阻挡层。
  6. 根据权利要求5所述的显示装置,其中,所述导热层在所述第一图案区暴露所述第一阻挡层的表面。
  7. 根据权利要求6所述的显示装置,其中,所述第一图案区包括交替间隔设置的多个带状区域,或所述第一图案区为网状结构。
  8. 根据权利要求6所述的显示装置,其中,所述带状区域包括矩形、 椭圆形及水滴形中的至少一种。
  9. 一种OLED器件的封装方法,其中,所述封装方法包括:
    提供一衬底基材;
    将OLED器件承载于所述衬底基材上;
    在所述OLED器件上覆盖第一阻挡层;
    在所述第一阻挡层上形成导热层,所述导热层远离所述OLED器件的一侧设置有第一图案区和第二图案区,所述导热层在第一图案区的厚度小于其在所述第二图案区的厚度;
    在所述导热层的第一图案区形成缓冲层;
    在所述缓冲层和所述导热层上覆盖第二阻挡层。
  10. 根据权利要求9所述的封装方法,其中,所述导热层在所述第一图案区暴露所述第一阻挡层的表面。
  11. 根据权利要求10所述的封装方法,其中,
    在所述第一阻挡层上形成导热层,包括:
    在所述第一阻挡层上覆盖一整面导热层;
    对所述一整面导热层进行刻蚀处理,以去除所述一整面导热层在第一图案区的部分;
    在所述导热层的第一图案区形成缓冲层,包括:
    采用喷墨打印技术在所述导热层的第一图案区填充有机溶液;
    对所述有机溶液进行固化,以形成缓冲层。
  12. 根据权利要求10所述的封装方法,其中,
    在所述第一阻挡层上形成导热层,包括:
    在所述第一阻挡层上设置具有镂空区和非镂空区的掩膜板;
    将导热材料通过所述掩膜板的镂空区沉积在所述第一阻挡层上;
    在所述导热层的第一图案区形成缓冲层,包括:
    采用喷墨打印技术在所述导热层的第一图案区填充有机溶液;
    对所述有机溶液进行固化,以形成缓冲层。
  13. 根据权利要求9所述的封装方法,其中,所述第一图案区包括交替间隔设置的多个带状区域,或所述第一图案区为网状结构。
  14. 根据权利要求9所述的封装方法,其中,所述带状区域包括矩形、 椭圆形及水滴形中的至少一种。
PCT/CN2017/089705 2017-05-26 2017-06-23 Oled器件的封装组件及封装方法、显示装置 WO2018214216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/541,550 US20180342698A1 (en) 2017-05-26 2017-06-23 Oled device packaging component, packaging method and display device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710384079.6 2017-05-26
CN201710384079.6A CN107154465A (zh) 2017-05-26 2017-05-26 Oled器件的封装组件及封装方法、显示装置

Publications (1)

Publication Number Publication Date
WO2018214216A1 true WO2018214216A1 (zh) 2018-11-29

Family

ID=59794125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089705 WO2018214216A1 (zh) 2017-05-26 2017-06-23 Oled器件的封装组件及封装方法、显示装置

Country Status (3)

Country Link
US (1) US20180342698A1 (zh)
CN (1) CN107154465A (zh)
WO (1) WO2018214216A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754392B (zh) * 2020-06-05 2022-02-01 友達光電股份有限公司 顯示裝置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417544A (zh) * 2018-04-13 2018-08-17 业成科技(成都)有限公司 散热元件、应用其的电子装置和电子装置的制作方法
CN109686855A (zh) * 2018-12-04 2019-04-26 武汉华星光电半导体显示技术有限公司 一种薄膜封装结构及薄膜封装方法
CN109817833B (zh) * 2019-02-27 2021-07-23 云谷(固安)科技有限公司 显示器件、显示面板及显示装置
CN110265571A (zh) * 2019-06-12 2019-09-20 武汉华星光电半导体显示技术有限公司 封装体、显示面板及显示面板的封装方法
CN110335970B (zh) * 2019-07-15 2022-01-18 京东方科技集团股份有限公司 柔性显示基板及其制造方法、柔性显示装置
CN110752315B (zh) * 2019-11-06 2021-04-27 深圳市华星光电半导体显示技术有限公司 一种显示面板及其制备方法
CN110911582A (zh) * 2019-11-28 2020-03-24 云谷(固安)科技有限公司 显示面板及显示装置
CN111312920A (zh) * 2020-02-17 2020-06-19 合肥鑫晟光电科技有限公司 一种显示装置及其制作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659074A (zh) * 2015-03-17 2015-05-27 京东方科技集团股份有限公司 一种oled基板、其制造方法、面板及显示装置
CN105470409A (zh) * 2016-01-04 2016-04-06 京东方科技集团股份有限公司 一种oled封装结构及其制作方法、显示器件
CN106384743A (zh) * 2016-10-20 2017-02-08 武汉华星光电技术有限公司 Oled显示器及其制作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949389B2 (en) * 2002-05-02 2005-09-27 Osram Opto Semiconductors Gmbh Encapsulation for organic light emitting diodes devices
US6812637B2 (en) * 2003-03-13 2004-11-02 Eastman Kodak Company OLED display with auxiliary electrode
KR100510821B1 (ko) * 2003-06-09 2005-08-30 한국전자통신연구원 미세 구조물이 형성된 기판과 그 기판의 제조방법
CN204011490U (zh) * 2014-09-04 2014-12-10 京东方科技集团股份有限公司 一种有机电致发光器件及显示装置
CN105575979A (zh) * 2016-03-07 2016-05-11 京东方科技集团股份有限公司 阵列基板及其制备方法、显示面板和显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104659074A (zh) * 2015-03-17 2015-05-27 京东方科技集团股份有限公司 一种oled基板、其制造方法、面板及显示装置
CN105470409A (zh) * 2016-01-04 2016-04-06 京东方科技集团股份有限公司 一种oled封装结构及其制作方法、显示器件
CN106384743A (zh) * 2016-10-20 2017-02-08 武汉华星光电技术有限公司 Oled显示器及其制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI754392B (zh) * 2020-06-05 2022-02-01 友達光電股份有限公司 顯示裝置

Also Published As

Publication number Publication date
CN107154465A (zh) 2017-09-12
US20180342698A1 (en) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2018214216A1 (zh) Oled器件的封装组件及封装方法、显示装置
WO2018214215A1 (zh) Oled器件的封装组件及封装方法、显示装置
US11251410B2 (en) Flexible display substrate and method for manufacturing the same
CN105449121B (zh) Oled器件的封装方法、oled封装器件及显示装置
US10263215B2 (en) OLED device packaged by thin film and thin film packaging method of OLED device
WO2016165233A1 (zh) 有机发光二极管显示面板及其制作方法、显示装置
CN109904336B (zh) 电子装置基板及制造方法/显示装置
WO2016026225A1 (zh) 一种有机发光显示装置及有机发光二极管的封装方法
US10446785B2 (en) Light-emitting substrate and method for manufacturing the same
US11316136B2 (en) Manufacturing method of flexible display device and flexible display device
CN108493225B (zh) 显示器件的封装方法、显示装置及其制作方法
WO2016019638A1 (zh) 像素单元及其制作方法、显示面板、显示装置
JP6113633B2 (ja) 有機el表示装置及びその製造方法
WO2018223473A1 (zh) 一种oled器件及制造方法
WO2019030887A1 (ja) 電気光学装置およびその製造方法
WO2014205898A1 (zh) 像素界定层及其制作方法、显示基板及显示装置
JP7000335B2 (ja) 表示基板の製造方法、表示基板および表示装置
WO2022222399A1 (zh) 显示基板以及显示装置
WO2019051920A1 (zh) Oled显示面板的封装方法
WO2020238767A1 (zh) 一种显示面板、显示面板的制备方法以及显示装置
WO2018099079A1 (zh) 阵列基板和显示装置
WO2020057251A1 (zh) 封装基板、电子装置、封装方法和压合模具
CN106653696B (zh) 一种用于制作阵列基板的方法
TWI629781B (zh) 製造有機發光二極體顯示器之方法以及製造觸控面板之方法
US20190081277A1 (en) Oled display panel packaging method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15541550

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17910809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17910809

Country of ref document: EP

Kind code of ref document: A1