WO2018212228A1 - ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム - Google Patents

ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム Download PDF

Info

Publication number
WO2018212228A1
WO2018212228A1 PCT/JP2018/018896 JP2018018896W WO2018212228A1 WO 2018212228 A1 WO2018212228 A1 WO 2018212228A1 JP 2018018896 W JP2018018896 W JP 2018018896W WO 2018212228 A1 WO2018212228 A1 WO 2018212228A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hard coat
formula
layer
curable composition
Prior art date
Application number
PCT/JP2018/018896
Other languages
English (en)
French (fr)
Inventor
芝本明弘
前谷臣治
西田一博
宇佐大輔
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to JP2019518834A priority Critical patent/JPWO2018212228A1/ja
Priority to CN201880032557.XA priority patent/CN110621723A/zh
Priority to KR1020197036747A priority patent/KR20200007894A/ko
Priority to US16/614,007 priority patent/US20200079910A1/en
Publication of WO2018212228A1 publication Critical patent/WO2018212228A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/306Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3254Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen
    • C08G59/3281Epoxy compounds containing three or more epoxy groups containing atoms other than carbon, hydrogen, oxygen or nitrogen containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/06Preparatory processes
    • C08G77/08Preparatory processes characterised by the catalysts used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/70Siloxanes defined by use of the MDTQ nomenclature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14827Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using a transfer foil detachable from the insert
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/24Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer not being coherent before laminating, e.g. made up from granular material sprinkled onto a substrate
    • B32B2037/243Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/72Cured, e.g. vulcanised, cross-linked
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2383/00Polysiloxanes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a polyorganosilsesquioxane, a curable composition containing the polyorganosilsesquioxane, and a cured product thereof.
  • the present invention also relates to a transfer film (in particular, an in-mold injection molding transfer film) having a hard coat layer formed from a hard coat liquid (hard coat agent) containing the polyorganosilsesquioxane, a hard coat film.
  • a transfer film in particular, an in-mold injection molding transfer film having a hard coat layer formed from a hard coat liquid (hard coat agent) containing the polyorganosilsesquioxane, a hard coat film.
  • the present invention also relates to an in-mold molded product to which a transfer layer of the transfer film is transferred.
  • An in-mold injection molding method is used as a manufacturing method in which the surface of a plastic product is decorated with wood grain and hard coating.
  • the in-mold injection molding method forms a release layer on one side of a base film, and laminates a transfer layer (a layer in which a hard coat layer, an anchor coat layer, a colored layer, an adhesive layer, etc. are laminated) on the release layer. Insert the transfer film into the mold, place the base film side in close contact with the inner surface of the mold, close the mold, and inject the molten thermoplastic resin into the mold from the transfer layer side. Then, when the mold is opened and the molded product is taken out, the release layer and the hard coat layer are peeled off to transfer the transfer layer to the outermost surface to obtain a molded product.
  • UV acrylic monomer is mainly used (for example, see Patent Document 1).
  • nanoparticles are added to the hard coat layer in order to further improve the pencil hardness of the hard coat layer surface.
  • the pencil hardness of the transfer film having the hard coat layer using the UV acrylic monomer described above is about 2H, and it cannot be said that the film has sufficient surface hardness yet.
  • the curing shrinkage of the hard coat layer may be reduced.
  • nanoparticles are added to the hard coat layer, if the compatibility between the nanoparticles and the UV acrylic monomer is poor, there is a problem that the nanoparticles aggregate and the hard coat layer is whitened.
  • the surface of the uncured or semi-cured hard coat layer after applying a hard coat solution or the like to the release layer of the base film and drying needs to be tack-free. This is because if the surface has tackiness, the blocking resistance is lowered and it is difficult to wind it on a roll.
  • the object of the present invention is to form a hard coat layer having a high surface hardness by an in-mold injection molding method, and to form a tack-free coating film in an uncured or semi-cured stage and to wind it up as a roll
  • Another object of the present invention is to provide a polyorganosilsesquioxane suitable as a material for a hard coat layer of a transfer film.
  • Another object of the present invention is to form a hard coat layer having a high surface hardness by an in-mold injection molding method, and to form a tack-free coating film at an uncured or semi-cured stage and wind it as a roll. It is to provide a transfer film that can be removed.
  • Another object of the present invention is to provide an in-mold molded product having a high surface hardness to which the transfer layer of the transfer film is transferred.
  • the use of transfer films having a hard coat layer has been expanding in recent years.
  • the hard coat layer of a transfer film has a particularly high surface hardness. It is also required to have excellent heat resistance.
  • the hard coat layer in the transfer film using the UV acrylic monomer described above cannot be said to be sufficient from the viewpoint of such heat resistance.
  • a hard coat film having a hard coat layer is generally required to have high flexibility and workability in addition to high surface hardness. This is because if the flexibility and workability are poor, the roll-to-roll manufacturing and processing cannot be performed and high production costs are required.
  • the present inventors have a silsesquioxane structural unit (unit structure) containing a polymerizable functional group, and a specific structure ratio (a ratio of T3 and T2 forms, a silsesquioxane containing a polymerizable functional group).
  • a specific structure ratio a ratio of T3 and T2 forms, a silsesquioxane containing a polymerizable functional group.
  • the proportion of structural units) is controlled in a specific range, the number average molecular weight is high, and the molecular weight dispersity is controlled in a specific range.
  • R 1 represents a group containing a polymerizable functional group.
  • R a is a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group.
  • An alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom is shown.
  • R b represents a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group.
  • An alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom is shown.
  • R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the molar ratio of the structural unit represented by [the structural unit represented by the formula (I) / the structural unit represented by the formula (II)] is 20 or more and 500 or less, and the total amount of the siloxane structural unit (100 mol%).
  • the structural unit represented by the above formula (1) and the following formula (4) [In formula (4), R 1 is the same as that in formula (1). R c is the same as in formula (II). ]
  • the number average molecular weight is 2500 to 50000, and the molecular weight dispersity (weight average molecular weight / number average molecular weight) is 1.0 to 4.0.
  • a polyorganosilsesquioxane is provided.
  • the polyorganosilsesquioxane further comprises the following formula (2) [In the formula (2), R 2 represents a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted group.
  • R 2 represents a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted group.
  • An alkenyl group of You may have the structural unit represented by these.
  • R 2 may be a substituted or unsubstituted aryl group.
  • the polymerizable functional group may be an epoxy group.
  • R 1 is represented by the following formula (1a) [In Formula (1a), R 1a represents a linear or branched alkylene group. ]
  • a group represented by the following formula (1d) [In formula (1d), R 1d represents a linear or branched alkylene group. ]
  • the group represented by these may be sufficient.
  • the present invention also provides a curable composition comprising polyorganosilsesquioxane.
  • the curable composition may further contain a curing catalyst.
  • the curing catalyst may be a photocationic polymerization initiator.
  • the curing catalyst may be a thermal cationic polymerization initiator.
  • the curing catalyst may be a radical photopolymerization initiator.
  • the curing catalyst may be a thermal radical polymerization initiator.
  • the curable composition may further contain a vinyl ether compound.
  • the curable composition may further contain a vinyl ether compound having a hydroxyl group in the molecule.
  • the curable composition may be a curable composition for forming a hard coat layer.
  • the present invention also provides a cured product of the curable composition.
  • the present invention also provides a transfer film in which a hard coat layer is laminated on a base material and a release layer formed on at least one surface of the base material, the hard coat layer comprising the hard coat layer.
  • a transfer film comprising a curable composition for forming a coat layer is provided.
  • an anchor coat layer and an adhesive layer may be further laminated in this order on the hard coat layer.
  • the transfer film may further include at least one colored layer.
  • the hard coat layer may have a thickness of 3 to 150 ⁇ m.
  • the transfer film may be a transfer film used for in-mold injection molding.
  • the present invention also provides an in-mold molded product in which a layer (transfer layer) excluding the substrate on which the release layer is formed is transferred from the transfer film.
  • the present invention is a hard coat film having a base material and a hard coat layer formed on at least one surface of the base material, wherein the hard coat layer is a curable composition for forming the hard coat layer.
  • a hard coat film characterized by being a cured product layer of a product.
  • the thickness of the hard coat layer may be 1 to 200 ⁇ m.
  • the hard coat film may be manufactured in a roll-to-roll manner.
  • the hard coat film may have a surface protective film on the surface of the hard coat layer.
  • the present invention also includes a step A for feeding a substrate wound in a roll shape, and applying the curable composition for forming a hard coat layer to at least one surface of the fed substrate, and then the curable composition. Including a step B of forming a hard coat layer by curing and a step C of winding the obtained hard coat film again on a roll, and performing steps A to C continuously.
  • a method for producing a hard coat film is provided.
  • the polyorganosilsesquioxane of the present invention Since the polyorganosilsesquioxane of the present invention has the above-described structure, a high surface is obtained by performing in-mold injection molding using a transfer film having a hard coat layer containing the polyorganosilsesquioxane as an essential component. A molded product coated with a hard coat layer having hardness can be manufactured.
  • the uncured or semi-cured hard coat layer containing the polyorganosilsesquioxane of the present invention is tack-free and can be wound and handled in a roll shape, and a transfer film including the hard coat layer can be rolled. Since it can be handled by a toe roll, it can be suitably used for in-mold injection molding. For this reason, the transfer film of the present invention is excellent in both quality and cost.
  • FIG. 2 is a 1 H-NMR chart of an intermediate epoxy group-containing polyorganosilsesquioxane obtained in Production Example 1.
  • FIG. 3 is a 29 Si-NMR chart of the intermediate epoxy group-containing polyorganosilsesquioxane obtained in Production Example 1.
  • FIG. 2 is a 1 H-NMR chart of the epoxy group-containing polyorganosilsesquioxane of the present invention obtained in Example 1.
  • FIG. 2 is a 29 Si-NMR chart of the epoxy group-containing polyorganosilsesquioxane of the present invention obtained in Example 1.
  • FIG. 3 is a 1 H-NMR chart of the epoxy group-containing polyorganosilsesquioxane of the present invention obtained in Example 3.
  • FIG. 3 is a 1 H-NMR chart of the epoxy group-containing polyorganosilsesquioxane of the present invention obtained in Example 3.
  • FIG. 3 is a 29 Si-NMR chart of the epoxy group-containing polyorganosilsesquioxane of the present invention obtained in Example 3.
  • FIG. 2 is a 1 H-NMR chart of an intermediate acrylic group-containing polyorganosilsesquioxane obtained in Production Example 2.
  • FIG. 3 is a 29 Si-NMR chart of the intermediate acrylic group-containing polyorganosilsesquioxane obtained in Production Example 2.
  • FIG. 4 is a 1 H-NMR chart of the acrylic group-containing polyorganosilsesquioxane of the present invention obtained in Example 4.
  • FIG. It is a 29 Si-NMR chart of the acrylic group-containing polyorganosilsesquioxane of the present invention obtained in Example 4.
  • the polyorganosilsesquioxane (silsesquioxane) of the present invention has a structural unit represented by the following formula (1); a structural unit represented by the following formula (I) (referred to as “T3 body”).
  • the molar ratio of the structural unit represented by the following formula (II) (sometimes referred to as “T2 form”) [the structural unit represented by the formula (I) / the formula (II)
  • the structural unit represented by the following formula (1) with respect to the total amount (100 mol%) of the siloxane structural unit and may be described later.
  • the ratio (total amount) of the structural unit represented by the formula (4) is 55 to 100 mol%; the number average molecular weight is 2500 to 50000, and the molecular weight dispersity [weight average molecular weight / number average molecular weight] is 1.0 to 4.0.
  • the structural unit represented by the above formula (1) is a silsesquioxane structural unit (so-called T unit) generally represented by [RSiO 3/2 ].
  • R represents a hydrogen atom or a monovalent organic group, and the same applies to the following.
  • the structural unit represented by the above formula (1) is formed by hydrolysis and condensation reaction of a corresponding hydrolyzable trifunctional silane compound (specifically, for example, a compound represented by the following formula (a)). Is done.
  • R 1 in the formula (1) represents a group containing a polymerizable functional group (monovalent group). That is, the polyorganosilsesquioxane of the present invention has a cationic curable compound (a compound having a cationic polymerizable functional group) or a radical curable compound (a radical polymerizable functional group having at least a polymerizable functional group in the molecule). Compound).
  • the “cationic polymerizable functional group” in the group containing the polymerizable functional group is not particularly limited as long as it has cationic polymerizability, and examples thereof include an epoxy group, an oxetane group, a vinyl ether group, and a vinylphenyl group. Can be mentioned.
  • the “radical polymerizable functional group” in the group containing the polymerizable functional group is not particularly limited as long as it has radical polymerizability.
  • (meth) acryloxy group, (meth) acrylamide group, vinyl Group, vinylthio group and the like As the polymerizable functional group, an epoxy group, a (meth) acryloxy group, and the like are preferable from the viewpoint of the surface hardness (for example, 4H or more) of the cured product, and an epoxy group is particularly preferable.
  • Examples of the group containing the polymerizable functional group include known or commonly used groups having a polymerizable functional group, and are not particularly limited. However, the viewpoint of curability of the curable composition, surface hardness and heat resistance of the cured product, and the like.
  • the group represented by the following formula (1a), the group represented by the following formula (1b), the group represented by the following formula (1c), and the group represented by the following formula (1d) are preferable, and more preferable.
  • R 1a represents a linear or branched alkylene group.
  • the linear or branched alkylene group include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, and a decamethylene group.
  • Examples thereof include a linear or branched alkylene group having 1 to 10 carbon atoms.
  • R 1a is preferably a linear alkylene group having 1 to 4 carbon atoms or a branched alkylene group having 3 or 4 carbon atoms, more preferably from the viewpoint of the surface hardness or curability of the cured product.
  • R 1b represents a linear or branched alkylene group, and examples thereof include the same groups as R 1a .
  • R 1b is preferably a linear alkylene group having 1 to 4 carbon atoms or a branched alkylene group having 3 or 4 carbon atoms, more preferably from the viewpoint of the surface hardness or curability of the cured product.
  • R ⁇ 1c> shows a linear or branched alkylene group, and the group similar to R ⁇ 1a> is illustrated.
  • R 1c is preferably a linear alkylene group having 1 to 4 carbon atoms or a branched alkylene group having 3 or 4 carbon atoms, more preferably from the viewpoint of the surface hardness or curability of the cured product.
  • An ethylene group, a trimethylene group, and a propylene group and more preferably an ethylene group and a trimethylene group.
  • R 1d represents a linear or branched alkylene group, and examples thereof include the same groups as R 1a .
  • R 1d is preferably a linear alkylene group having 1 to 4 carbon atoms or a branched alkylene group having 3 or 4 carbon atoms, more preferably from the viewpoint of the surface hardness or curability of the cured product.
  • R 1 in formula (1) is particularly a group represented by the above formula (1a), wherein R 1a is an ethylene group [in particular, 2- (3 ′, 4′-epoxycyclohexyl) Ethyl group] is preferable.
  • Examples of the group containing an oxetane group include known or commonly used groups having an oxetane ring, and are not particularly limited. And a group obtained by substituting one or more hydrogen atoms (usually one or more, preferably one hydrogen atom) with an oxetane group.
  • Examples of the group containing a vinyl ether group include known or commonly used groups having a vinyl ether group, and are not particularly limited.
  • the vinyl ether group itself, an alkyl group (preferably having a carbon number of 1 to 10, more preferably a carbon number).
  • a vinyloxymethyl group, a 2- (vinyloxy) ethyl group, a 3- (vinyloxy) propyl group, and the like are preferable.
  • Examples of the group containing a vinylphenyl group include known or commonly used groups having a vinylphenyl group, and are not particularly limited.
  • the vinylphenyl group itself, an alkyl group (preferably having 1 to 10 carbon atoms, more preferably).
  • 4-vinylphenyl group, 3-vinylphenyl group, 2-vinylphenyl group and the like are preferable.
  • Examples of the group containing the (meth) acryloxy group include known or conventional groups having a (meth) acryloxy group, and are not particularly limited.
  • the (meth) acryloxy group itself, an alkyl group (preferably Is a group formed by substituting a (meth) acryloxy group for a hydrogen atom (usually one or more, preferably one hydrogen atom) of an alkyl group having 1 to 10 carbon atoms, more preferably an alkyl group having 1 to 5 carbon atoms. It is done.
  • 2-((meth) acryloxy) ethyl group, 3-((meth) acryloxy) propyl group and the like are preferable.
  • Examples of the group containing the (meth) acrylamide group include known or conventional groups having a (meth) acrylamide group, and are not particularly limited.
  • the (meth) acrylamide group itself, an alkyl group (preferably having a carbon number) And a group obtained by substituting a (meth) acrylamide group for a hydrogen atom (usually one or more, preferably one hydrogen atom) of 1 to 10, more preferably an alkyl group having 1 to 5 carbon atoms.
  • 2-((meth) acrylamide) ethyl group, 3-((meth) acrylamide) propyl group and the like are preferable.
  • Examples of the group containing a vinyl group include known or commonly used groups having a vinyl group, and are not particularly limited. And a group obtained by substituting one or more hydrogen atoms (usually one or more, preferably one hydrogen atom) with a vinyl group. From the viewpoint of curability of the curable composition and heat resistance of the cured product, a vinyl group, a vinylmethyl group, a 2-vinylethyl group, a 3-vinylpropyl group, and the like are preferable.
  • Examples of the group containing a vinylthio group include known or conventional groups having a vinylthio group, and are not particularly limited.
  • the vinylthio group itself, an alkyl group (preferably having 1 to 10 carbon atoms, more preferably having 1 to 10 carbon atoms).
  • a vinylthiomethyl group, 2- (vinylthio) ethyl group, 3- (vinylthio) propyl group and the like are preferable.
  • R ⁇ 1 > in Formula (1) the group containing an epoxy group and the group containing a (meth) acryloxy group are preferable, Especially, it is group represented by the said Formula (1a), Comprising: R ⁇ 1a> A group which is an ethylene group [among others, 2- (3 ′, 4′-epoxycyclohexyl) ethyl group], 3- (acryloxy) propyl group and 3- (methacryloxy) propyl group are preferable.
  • the polyorganosilsesquioxane of the present invention may have only one type of structural unit represented by the above formula (1), or two or more types of structural units represented by the above formula (1). You may have.
  • the polyorganosilsesquioxane of the present invention is represented by the following formula (2) in addition to the structural unit represented by the above formula (1) as the silsesquioxane structural unit [RSiO 3/2 ]. You may have a unit.
  • the structural unit represented by the above formula (2) is a silsesquioxane structural unit (T unit) generally represented by [RSiO 3/2 ]. That is, the structural unit represented by the above formula (2) is a hydrolysis and condensation reaction of a corresponding hydrolyzable trifunctional silane compound (specifically, for example, a compound represented by the following formula (b)). It is formed by.
  • R 2 in the above formula (2) is a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted group
  • An alkenyl group of As said aryl group, a phenyl group, a tolyl group, a naphthyl group etc. are mentioned, for example.
  • Examples of the aralkyl group include a benzyl group and a phenethyl group.
  • Examples of the cycloalkyl group include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, and the like.
  • Examples of the alkyl group include linear or branched alkyl groups such as methyl group, ethyl group, propyl group, n-butyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group, and isopentyl group. Groups.
  • alkenyl group linear or branched alkenyl groups, such as a vinyl group, an allyl group, and an isopropenyl group, are mentioned, for example.
  • the above-mentioned substituted aryl group, substituted aralkyl group, substituted cycloalkyl group, substituted alkyl group, and substituted alkenyl group are each a hydrogen atom or main chain. Part or all of the case is an ether group, ester group, carbonyl group, siloxane group, halogen atom (fluorine atom, etc.), acrylic group, methacryl group, mercapto group, amino group, and hydroxy group (hydroxyl group). And a group substituted with at least one selected.
  • R 2 is preferably a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, more preferably a substituted or unsubstituted aryl group, more preferably a phenyl group. is there.
  • the proportion of each of the above silsesquioxane structural units (the structural unit represented by the formula (1), the structural unit represented by the formula (2)) It is possible to adjust appropriately according to the composition of the raw material (hydrolyzable trifunctional silane) for forming the slag.
  • the polyorganosilsesquioxane of the present invention is not limited to the structural unit represented by the above formula (1) and the structural unit represented by the formula (2), and is further represented by the above structural formula (1).
  • the structural unit etc. which are represented by following formula (3) etc. are mentioned, for example. Can be mentioned.
  • the ratio of the structural unit (T3 body) represented by the above formula (I) and the structural unit (T2 body) represented by the above formula (II) [T3 body / T2 body] ] Is 20 or more and 500 or less as described above.
  • the lower limit of the ratio [T3 / T2] is preferably 21, more preferably 23, and even more preferably 25.
  • the upper limit of the ratio [T3 / T2] is preferably 100, more preferably 50, and still more preferably 40.
  • R a in the above formula (I) (formula (I ') in the R a same) and formula (II) in the R b (wherein (II') in the R b versa), respectively, polymerizable A group containing a functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or hydrogen Indicates an atom.
  • R a and R b are the same as R 1 in the above formula (1) and R 2 in the above formula (2).
  • R a in the formula (I) and R b in the formula (II) were bonded to silicon atoms in the hydrolyzable trifunctional silane compound used as the raw material of the polyorganosilsesquioxane of the present invention, respectively. It is derived from a group (a group other than an alkoxy group and a halogen atom; for example, R 1 , R 2 and a hydrogen atom in the following formulas (a) to (c)).
  • R c in the formula (II) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • alkyl group having 1 to 4 carbon atoms include linear or branched alkyl groups having 1 to 4 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, and an isobutyl group. .
  • the alkyl group represented by R c in the formula (II) is generally an alkoxy group in the hydrolyzable silane compound used as a raw material for the polyorganosilsesquioxane of the present invention (for example, X 1 to X 3 described later). Derived from an alkyl group forming an alkoxy group or the like.
  • the ratio [T3 body / T2 body] in the polyorganosilsesquioxane of the present invention can be determined, for example, by 29 Si-NMR spectrum measurement. 29 In the Si-NMR spectrum, the silicon atom in the structural unit (T3 form) represented by the formula (I) is different from the silicon atom in the structural unit (T2 form) represented by the formula (II). In order to show a signal (peak) in (chemical shift), the ratio [T3 body / T2 body] can be obtained by calculating the integration ratio of these respective peaks.
  • the polyorganosilsesquioxane of the present invention has a structural unit represented by the above formula (1) and R 1 is a 2- (3 ′, 4′-epoxycyclohexyl) ethyl group.
  • R 1 is a 2- (3 ′, 4′-epoxycyclohexyl) ethyl group.
  • the signal of the silicon atom in the structure (T3 form) represented by the above formula (I) appears at ⁇ 64 to ⁇ 70 ppm
  • the silicon atom in the structure (T2 form) represented by the above formula (II) appears.
  • the signal appears at -54 to -60 ppm.
  • the ratio [T3 body / T2 body] can be obtained by calculating the integral ratio of the signal (T3 body) of ⁇ 64 to ⁇ 70 ppm and the signal (T2 body) of ⁇ 54 to ⁇ 60 ppm. it can.
  • R 1 is a group containing a polymerizable functional group other than 2- (3 ′, 4′-epoxycyclohexyl) ethyl group
  • [T3 body / T2 body] can be obtained in the same manner.
  • the 29 Si-NMR spectrum of the polyorganosilsesquioxane of the present invention can be measured, for example, with the following apparatus and conditions.
  • Measuring apparatus Trade name “JNM-ECA500NMR” (manufactured by JEOL Ltd.)
  • Solvent Deuterated chloroform Accumulated times: 1800 times Measurement temperature: 25 ° C
  • the ratio [T3 / T2] of the polyorganosilsesquioxane of the present invention is 20 or more and 500 or less, indicating that the abundance of T2 with respect to T3 in the polyorganosilsesquioxane of the present invention. Is relatively small, meaning that the hydrolysis / condensation reaction of silanol is more advanced.
  • T2 body examples include a structural unit represented by the following formula (4), a structural unit represented by the following formula (5), a structural unit represented by the following formula (6), and the like.
  • R 2 in R 1 and the following formula (5) in the following equation (4) is the same as R 2 in R 1 and the formula in the formula (1) (2).
  • R c in the formula (4) to (6) like the R c in Formula (II), a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the polyorganosilsesquioxane of the present invention may have any cage-type, incomplete cage-type, ladder-type, or random-type silsesquioxane structure. You may have in combination.
  • the total amount of siloxane structural units in the polyorganosilsesquioxane of the present invention [total siloxane structural units; total amount of M units, D units, T units, and Q units] (100 mol%).
  • the proportion (total amount) of the structural unit and the structural unit represented by the above formula (4) is 55 to 100 mol%, preferably 65 to 100 mol%, more preferably 80 to 99, as described above. Mol%.
  • hardenability of a curable composition improves and the surface hardness and adhesiveness of hardened
  • the ratio of each siloxane structural unit in the polyorganosilsesquioxane of this invention is computable by the composition of a raw material, NMR spectrum measurement, etc., for example.
  • the total amount of siloxane structural units in the polyorganosilsesquioxane of the present invention [total siloxane structural units; total amount of M units, D units, T units, and Q units] (100 mol%).
  • the proportion (total amount) of the structural units represented by the above formula (5) is not particularly limited, but is preferably 0 to 70 mol%, more preferably 0 to 60 mol%, and still more preferably 0 to It is 40 mol%, particularly preferably 1 to 15 mol%.
  • the ratio of the structural unit represented by the formula (1) and the structural unit represented by the formula (4) can be relatively increased by setting the ratio to 70 mol% or less, the curable composition The curability of the cured product is improved, and the surface hardness and adhesiveness of the cured product tend to be higher. On the other hand, when the ratio is 1 mol% or more, the gas barrier property of the cured product tends to be improved.
  • the total amount of siloxane structural units in the polyorganosilsesquioxane of the present invention [all siloxane structural units; total amount of M units, D units, T units, and Q units] (100 mol%).
  • the ratio (total amount) of the structural unit represented by the structural unit represented by the formula (2), the structural unit represented by the formula (4), and the structural unit represented by the formula (5) is particularly limited. However, it is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%. By setting the above ratio to 60 mol% or more, the surface hardness and adhesiveness of the cured product tend to be higher.
  • the number average molecular weight (Mn) in terms of standard polystyrene by gel permeation chromatography of the polyorganosilsesquioxane of the present invention is 2500 to 50000, preferably 2800 to 10000, more preferably 3000 to 8000.
  • the number average molecular weight is 2500 or more, the surface of the uncured or semi-cured hard coat layer is likely to be tack-free, the anti-blocking property is improved, and it is easy to wind up on a roll. It can be preferably used as a component of a hard coat layer of a transfer film for injection molding, and the heat resistance, scratch resistance, and adhesion of the cured product are further improved.
  • the number average molecular weight to 50000 or less compatibility with other components in the curable composition is improved, and the heat resistance of the cured product is further improved.
  • the molecular weight dispersity (Mw / Mn) in terms of standard polystyrene by gel permeation chromatography of the polyorganosilsesquioxane of the present invention is 1.0 to 4.0, preferably 1.1. To 3.0, more preferably 1.2 to 2.5.
  • the molecular weight dispersity is 1.0 to 4.0 or less, the surface hardness and adhesiveness of the cured product become higher.
  • the molecular weight dispersity is 1.1 or more, it tends to be liquid, and the handleability tends to be improved.
  • the number average molecular weight and molecular weight dispersity of the polyorganosilsesquioxane of this invention can be measured with the following apparatus and conditions.
  • Measuring device Product name “LC-20AD” (manufactured by Shimadzu Corporation)
  • Eluent THF, sample concentration 0.1-0.2% by weight
  • Flow rate 1 mL / min
  • Detector UV-VIS detector (trade name “SPD-20A”, manufactured by Shimadzu Corporation)
  • Molecular weight Standard polystyrene conversion
  • the 5% weight loss temperature (T d5 ) in the air atmosphere of the polyorganosilsesquioxane of the present invention is not particularly limited, but is preferably 330 ° C. or higher (for example, 330 to 450 ° C.), more preferably 340 ° C. or higher. More preferably, it is 350 ° C. or higher.
  • T d5 The 5% weight loss temperature in the air atmosphere of the polyorganosilsesquioxane of the present invention is not particularly limited, but is preferably 330 ° C. or higher (for example, 330 to 450 ° C.), more preferably 340 ° C. or higher. More preferably, it is 350 ° C. or higher.
  • the 5% weight reduction temperature is 330 ° C. or higher, the heat resistance of the cured product tends to be further improved.
  • the polyorganosilsesquioxane of the present invention has a ratio [T3 / T2] of 20 or more and 500 or less, a number average molecular weight of 2500 to 50000, and a molecular weight dispersity of 1.0 to 4.0. Therefore, the 5% weight loss temperature is controlled to 330 ° C. or higher.
  • the 5% weight reduction temperature is a temperature at the time when 5% of the weight before heating is reduced when heated at a constant rate of temperature increase, and serves as an index of heat resistance.
  • the 5% weight loss temperature can be measured by TGA (thermogravimetric analysis) under an air atmosphere at a temperature rising rate of 5 ° C./min.
  • the polyorganosilsesquioxane of the present invention can be produced by a known or conventional polysiloxane production method, and is not particularly limited.
  • one or two or more hydrolyzable silane compounds are hydrolyzed and It can be produced by a method of condensation.
  • a hydrolyzable trifunctional silane compound compound represented by the following formula (a)
  • a hydrolyzable trifunctional silane compound for forming the structural unit represented by the above formula (1) is essential. It is necessary to use it as a hydrolyzable silane compound.
  • a compound represented by the following formula (a) which is a hydrolyzable silane compound for forming a silsesquioxane structural unit (T unit) in the polyorganosilsesquioxane of the present invention.
  • the polyorganosilsesquioxane of the present invention can be produced by hydrolysis and condensation of a compound represented by the following formula (b) and a compound represented by the following formula (c). .
  • the compound represented by the above formula (a) is a compound that forms the structural unit represented by the formula (1) in the polyorganosilsesquioxane of the present invention.
  • R 1 in the formula (a) represents a group containing a polymerizable functional group, similarly to R 1 in the formula (1). That is, R 1 in the formula (a) is a group represented by the above formula (1a), a group represented by the above formula (1b), a group represented by the above formula (1c), or the above formula (1d).
  • X 1 in the above formula (a) represents an alkoxy group or a halogen atom.
  • the alkoxy group for X 1 include alkoxy groups having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.
  • the halogen atom in X 1 for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X 1 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • the three X 1 may be the same or different.
  • the compound represented by the above formula (b) is a compound that forms the structural unit represented by the formula (2) in the polyorganosilsesquioxane of the present invention.
  • R 2 in formula (b) like the R 2 in the formula (2), a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted An alkyl group, or a substituted or unsubstituted alkenyl group.
  • R 2 in formula (b) is preferably a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, more preferably a substituted or unsubstituted aryl group, More preferred is a phenyl group.
  • X 2 in the above formula (b) represents an alkoxy group or a halogen atom.
  • Specific examples of X 2 include those exemplified as X 1 .
  • X 2 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • the three X 2 may be the same or different.
  • the compound represented by the above formula (c) is a compound that forms the structural unit represented by the formula (3) in the polyorganosilsesquioxane of the present invention.
  • X 3 in the above formula (c) represents an alkoxy group or a halogen atom.
  • Specific examples of X 3 include those exemplified as X 1 .
  • X 3 is preferably an alkoxy group, more preferably a methoxy group or an ethoxy group.
  • the three X 3 may be the same or different.
  • hydrolyzable silane compound a hydrolyzable silane compound other than the compounds represented by the above formulas (a) to (c) may be used in combination.
  • hydrolyzable trifunctional silane compounds other than the compounds represented by the above formulas (a) to (c) hydrolyzable monofunctional silane compounds that form M units, hydrolyzable bifunctional silanes that form D units
  • hydrolyzable tetrafunctional silane compounds that form compounds and Q units.
  • the amount and composition of the hydrolyzable silane compound can be appropriately adjusted according to the desired structure of the polyorganosilsesquioxane of the present invention.
  • the amount of the compound represented by the above formula (a) is not particularly limited, but is preferably 55 to 100 mol%, more preferably based on the total amount (100 mol%) of the hydrolyzable silane compound to be used. Is from 65 to 100 mol%, more preferably from 80 to 99 mol%.
  • the amount of the compound represented by the above formula (b) is not particularly limited, but is preferably 0 to 70 mol%, more preferably based on the total amount (100 mol%) of the hydrolyzable silane compound to be used. Is 0 to 60 mol%, more preferably 0 to 40 mol%, particularly preferably 1 to 15 mol%.
  • the ratio of the compound represented by the formula (a) and the compound represented by the formula (b) (the ratio of the total amount) to the total amount (100 mol%) of the hydrolyzable silane compound to be used is not particularly limited.
  • the amount is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%.
  • hydrolysis and condensation reaction of these hydrolysable silane compounds can also be performed simultaneously, or can also be performed sequentially.
  • the order which performs reaction is not specifically limited.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound may be carried out in one step or in two or more steps, but in order to efficiently produce the polyorganosilsesquioxane of the present invention.
  • the hydrolysis and condensation reaction is preferably performed in two or more stages (preferably two stages).
  • the ratio [T3 body / T2 body] is 5 or more and less than 20 in the first stage hydrolysis and condensation reaction, and the number average molecular weight Polyorganosilsesquioxane having a molecular weight of 1000 to 3000 (hereinafter referred to as “intermediate polyorganosilsesquioxane”).
  • the intermediate polyorganosilsesquioxane is further hydrolyzed.
  • the first stage hydrolysis and condensation reaction can be performed in the presence or absence of a solvent.
  • a solvent examples include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate.
  • aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene
  • ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • methyl acetate and ethyl acetate
  • Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol Etc. Among them, ketone and ether are preferable.
  • a solvent can also be used individually by 1 type and can also be used in combination of 2 or more type.
  • the amount of the solvent used in the first stage hydrolysis and condensation reaction is not particularly limited, and the desired reaction time is within the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the total amount of the hydrolyzable silane compound. It can adjust suitably according to etc.
  • the first stage hydrolysis and condensation reaction is preferably allowed to proceed in the presence of a catalyst and water.
  • the catalyst may be an acid catalyst or an alkali catalyst, but an alkali catalyst is preferable in order to suppress decomposition of a polymerizable functional group such as an epoxy group.
  • Examples of the acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid, trifluoromethanesulfonic acid, p -Sulfonic acids such as toluenesulfonic acid; solid acids such as activated clay; Lewis acids such as iron chloride.
  • Examples of the alkali catalyst include alkali metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; alkaline earth metals such as magnesium hydroxide, calcium hydroxide, and barium hydroxide.
  • Hydroxides carbonates of alkali metals such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; carbonates of alkaline earth metals such as magnesium carbonate; lithium hydrogen carbonate, sodium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate Alkali metal hydrogen carbonates such as cesium hydrogen carbonate; organic acid salts of alkali metals such as lithium acetate, sodium acetate, potassium acetate and cesium acetate (for example, acetate); organic acids of alkaline earth metals such as magnesium acetate Salt (eg acetate); lithium methoxide, sodium methoxy Alkali metal alkoxides such as sodium ethoxide, sodium isopropoxide, potassium ethoxide and potassium t-butoxide; alkali metal phenoxides such as sodium phenoxide; triethylamine, N-methylpiperidine, 1,8-diazabicyclo [5.4 0.0] undec-7-ene, amines such as 1,5-diaza
  • the amount of the catalyst used in the first stage hydrolysis and condensation reaction is not particularly limited, and is suitably within the range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. Can be adjusted.
  • the amount of water used in the first stage hydrolysis and condensation reaction is not particularly limited, and is appropriately adjusted within the range of 0.5 to 20 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. be able to.
  • the method for adding water in the hydrolysis and condensation reaction in the first stage is not particularly limited, and the total amount of water to be used (total amount used) may be added all at once or sequentially. Good. When adding sequentially, you may add continuously and may add intermittently.
  • reaction conditions for the hydrolysis and condensation reaction in the first stage are selected so that the ratio [T3 / T2] in the intermediate polyorganosilsesquioxane is 5 or more and less than 20. This is very important.
  • the reaction temperature of the first stage hydrolysis and condensation reaction is not particularly limited, but is preferably 40 to 100 ° C., more preferably 45 to 80 ° C. By controlling the reaction temperature within the above range, the ratio [T3 / T2] tends to be more efficiently controlled to 5 or more and less than 20.
  • the reaction time for the first stage hydrolysis and condensation reaction is not particularly limited, but is preferably 0.1 to 10 hours, more preferably 1.5 to 8 hours.
  • the hydrolysis and condensation reaction in the first stage can be performed under normal pressure, or can be performed under pressure or under reduced pressure.
  • the atmosphere at the time of performing the first stage hydrolysis and condensation reaction is not particularly limited, for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as under air. Although it may be present, an inert gas atmosphere is preferred.
  • the intermediate polyorganosilsesquioxane is obtained by the hydrolysis and condensation reaction in the first stage. After completion of the first stage hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress decomposition of the polymerizable functional group such as ring opening of the epoxy group.
  • the intermediate polyorganosilsesquioxane can be separated from, for example, separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, or a combination thereof. It may be separated and purified by means or the like.
  • the intermediate polyorganosilsesquioxane obtained by the first stage hydrolysis and condensation reaction is subjected to the second stage hydrolysis and condensation reactions to produce the polyorganosilsesquioxane of the present invention. can do.
  • the second stage hydrolysis and condensation reaction can be carried out in the presence of a solvent or in the absence.
  • the solvents mentioned in the first-stage hydrolysis and condensation reaction can be used.
  • the intermediate polyorganosilsesquioxane containing the reaction solvent, extraction solvent, etc. for the first stage hydrolysis and condensation reaction is distilled as it is or partly. You may use what you did.
  • a solvent can also be used individually by 1 type and can also be used in combination of 2 or more type.
  • the amount used is not particularly limited, and is within the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the intermediate polyorganosilsesquioxane. Thus, it can be appropriately adjusted according to the desired reaction time and the like.
  • the second-stage hydrolysis and condensation reaction is preferably allowed to proceed in the presence of a catalyst and water.
  • the catalyst the catalyst mentioned in the first stage hydrolysis and condensation reaction can be used.
  • an alkali catalyst is preferable.
  • alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and cesium hydroxide
  • alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate.
  • a catalyst can also be used individually by 1 type and can also be used in combination of 2 or more type. Further, the catalyst can be used in a state dissolved or dispersed in water, a solvent or the like.
  • the amount of the catalyst used in the second stage hydrolysis and condensation reaction is not particularly limited, and is preferably 0.01 to 10000 ppm, more preferably 0 with respect to the intermediate polyorganosilsesquioxane (1000000 ppm). Within the range of 1 to 1000 ppm, it can be adjusted as appropriate.
  • the amount of water used in the second-stage hydrolysis and condensation reaction is not particularly limited, and is preferably 10 to 100,000 ppm, more preferably 100 to 20000 ppm relative to the intermediate polyorganosilsesquioxane (1000000 ppm). Within the range, it can be adjusted as appropriate. If the amount of water used is greater than 100,000 ppm, the polyorganosilsesquioxane ratio [T3 / T2] and the number average molecular weight tend to be difficult to control within a predetermined range.
  • the method for adding water in the hydrolysis and condensation reaction in the second stage is not particularly limited, and the total amount of water to be used (total amount used) may be added all at once or sequentially. Good. When adding sequentially, you may add continuously and may add intermittently.
  • the ratio [T3 / T2] in the polyorganosilsesquioxane of the present invention is 20 or more and 500 or less, and the number average molecular weight is 2500 to 50000. It is important to select reaction conditions such that The reaction temperature for the hydrolysis and condensation reaction in the second stage varies depending on the catalyst used and is not particularly limited, but is preferably 5 to 200 ° C, more preferably 30 to 100 ° C. By controlling the reaction temperature within the above range, the ratio [T3 body / T2 body] and the number average molecular weight tend to be more efficiently controlled within the desired range.
  • the reaction time for the hydrolysis and condensation reaction in the second stage is not particularly limited, but is preferably 0.5 to 1000 hours, more preferably 1 to 500 hours.
  • a desired ratio [T3 body / T2 body] the polyorganosilsesquioxane of the present invention having a number average molecular weight can also be obtained.
  • the second stage hydrolysis and condensation reaction can be performed under normal pressure, or under pressure or under reduced pressure.
  • the atmosphere at the time of performing the hydrolysis and condensation reaction in the second stage is not particularly limited, and for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as under air. Although it may be present, an inert gas atmosphere is preferred.
  • the polyorganosilsesquioxane of the present invention is obtained by the hydrolysis and condensation reaction in the second stage. After completion of the hydrolysis and condensation reaction in the second stage, it is preferable to neutralize the catalyst in order to suppress decomposition of the polymerizable functional group such as ring opening of the epoxy group.
  • the polyorganosilsesquioxane of the present invention is combined with, for example, separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, and the like. Separation and purification may be performed by separation means or the like.
  • the polyorganosilsesquioxane of the present invention has the above-described configuration, an uncured or semi-cured hard coat layer coated with a curable composition containing the polyorganosilsesquioxane as an essential component becomes tack-free. Since the blocking resistance is improved, the film can be wound and handled on a roll. For example, it can be suitably used as a component of a hard coat layer of an in-mold injection transfer film. Further, by curing the curable composition, a cured product having high surface hardness and heat resistance and excellent flexibility and workability can be formed. Moreover, the hardened
  • the curable composition of the present invention is a curable composition (curable resin composition) containing the polyorganosilsesquioxane of the present invention as an essential component.
  • the curable composition of the present invention further contains other components such as a curing catalyst (particularly a photocationic polymerization initiator and a radical polymerizable initiator), a surface conditioner or a surface modifier. Also good.
  • the polyorganosilsesquioxane of the present invention can be used singly or in combination of two or more.
  • the content (blending amount) of the polyorganosilsesquioxane of the present invention in the curable composition of the present invention is not particularly limited, but is 70 with respect to the total amount (100% by weight) of the curable composition excluding the solvent.
  • the content is preferably not less than 100% by weight and more preferably less than 100% by weight, more preferably 80 to 99.8% by weight, still more preferably 90 to 99.5% by weight.
  • the content of the polyorganosilsesquioxane of the present invention is set to less than 100% by weight, it is possible to contain a curing catalyst, thereby allowing the curing of the curable composition to proceed more efficiently. There is a tendency to be able to.
  • the ratio of the polyorganosilsesquioxane of the present invention to the total amount (100 wt%) of the cationic curable compound or radical curable compound contained in the curable composition of the present invention is not particularly limited, but is 70 to 100 wt%. It is preferably 75 to 98% by weight, more preferably 80 to 95% by weight. By setting the content of the polyorganosilsesquioxane of the present invention to 70% by weight or more, the surface hardness and adhesiveness of the cured product tend to be further improved.
  • the curable composition of the present invention preferably further contains a curing catalyst.
  • a curing catalyst it is particularly preferable to include a cationic polymerization initiator or a radical polymerization initiator as a curing catalyst in that the curing time until tack-free can be shortened.
  • the cationic polymerization initiator is a compound that can initiate or accelerate the cationic polymerization reaction of a cationically curable compound such as the polyorganosilsesquioxane of the present invention. Although it does not specifically limit as said cationic polymerization initiator, For example, a photocationic polymerization initiator (photoacid generator), a thermal cationic polymerization initiator (thermal acid generator), etc. are mentioned.
  • photocationic polymerization initiator known or commonly used photocationic polymerization initiators can be used.
  • sulfonium salts salts of sulfonium ions and anions
  • iodonium salts salts of iodonium ions and anions
  • Selenium salt senium ion and anion salt
  • ammonium salt ammonium ion and anion salt
  • phosphonium salt phosphonium ion and anion salt
  • transition metal complex ion and anion salt etc.
  • sulfonium salt examples include [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium tris (pentafluoroethyl) trifluorophosphate, triphenylsulfonium salt, tri-p-tolylsulfonium salt, Tri-o-tolylsulfonium salt, tris (4-methoxyphenyl) sulfonium salt, 1-naphthyldiphenylsulfonium salt, 2-naphthyldiphenylsulfonium salt, tris (4-fluorophenyl) sulfonium salt, tri-1-naphthylsulfonium salt, Tri-2-naphthylsulfonium salt, tris (4-hydroxyphenyl) sulfonium salt, diphenyl [4- (phenylthio) phenyl] s
  • diphenyl [4- (phenylthio) phenyl] sulfonium salt examples include diphenyl [4- (phenylthio) phenyl] sulfonium hexafluoroantimonate and diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate. .
  • UV9380C trade name “UV9380
  • selenium salt examples include triaryl selenium such as triphenyl selenium salt, tri-p-tolyl selenium salt, tri-o-tolyl selenium salt, tris (4-methoxyphenyl) selenium salt, and 1-naphthyldiphenyl selenium salt.
  • Salts Diaryl phenacyl selenium salts, diphenyl benzyl selenium salts, diaryl selenium salts such as diphenyl methyl selenium salts; monoaryl selenium salts such as phenyl methyl benzyl selenium salts; trialkyl selenium salts such as dimethyl phenacyl selenium salts, etc. .
  • ammonium salt examples include tetramethylammonium salt, ethyltrimethylammonium salt, diethyldimethylammonium salt, triethylmethylammonium salt, tetraethylammonium salt, trimethyl-n-propylammonium salt, and trimethyl-n-butylammonium salt.
  • Pyrodium salts such as alkylammonium salts; N, N-dimethylpyrrolidinium salts, N-ethyl-N-methylpyrrolidinium salts; N, N′-dimethylimidazolinium salts, N, N′-diethylimidazolinium salts, etc.
  • Imidazolinium salts such as N, N′-dimethyltetrahydropyrimidinium salt, N, N′-diethyltetrahydropyrimidinium salt; N, N-dimethylmorpholinium salt, N, N -Diethylmorpholine Morpholinium salts such as um salt; piperidinium salts such as N, N-dimethylpiperidinium salt and N, N-diethylpiperidinium salt; pyridinium salts such as N-methylpyridinium salt and N-ethylpyridinium salt; N, N 'Imidazolium salts such as dimethylimidazolium salt; Quinolium salts such as N-methylquinolium salt; Isoquinolium salts such as N-methylisoquinolium salt; Thiazonium salts such as benzylbenzothiazonium salt; And the like.
  • the phosphonium salts include tetraarylphosphonium salts such as tetraphenylphosphonium salts, tetra-p-tolylphosphonium salts, and tetrakis (2-methoxyphenyl) phosphonium salts; triarylphosphonium salts such as triphenylbenzylphosphonium salts; Examples thereof include tetraalkylphosphonium salts such as benzylphosphonium salt, tributylbenzylphosphonium salt, tetraethylphosphonium salt, tetrabutylphosphonium salt, and triethylphenacylphosphonium salt.
  • tetraarylphosphonium salts such as tetraphenylphosphonium salts, tetra-p-tolylphosphonium salts, and tetrakis (2-methoxyphenyl) phosphonium salts
  • triarylphosphonium salts such as triphen
  • Examples of the salt of the transition metal complex ion include salts of chromium complex cations such as ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-toluene) Cr + and ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-xylene) Cr +. And salts of iron complex cations such as ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-toluene) Fe + and ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-xylene) Fe + .
  • anion constituting the above-described salt examples include SbF 6 ⁇ , PF 6 ⁇ , BF 4 ⁇ , (CF 3 CF 2 ) 3 PF 3 ⁇ , (CF 3 CF 2 CF 2 ) 3 PF 3 ⁇ , (C 6 F 5 ) 4 B ⁇ , (C 6 F 5 ) 4 Ga ⁇ , sulfonate anion (trifluoromethanesulfonate anion, pentafluoroethanesulfonate anion, nonafluorobutanesulfonate anion, methanesulfonate anion, benzenesulfonate Anion, p-toluenesulfonate anion, etc.), (CF 3 SO 2 ) 3 C ⁇ , (CF 3 SO 2 ) 2 N ⁇ , perhalogenate ion, halogenated sulfonate ion, sulfate ion, carbonate
  • thermal cationic polymerization initiator examples include arylsulfonium salts, aryliodonium salts, allene-ion complexes, quaternary ammonium salts, aluminum chelates, and boron trifluoride amine complexes.
  • arylsulfonium salts examples include hexafluoroantimonate salts.
  • trade names “SP-66” and “SP-77” manufactured by ADEKA Corporation
  • trade names “Sun Aid SI-60L” and “Sun Aid SI-80L” Commercial products such as “Sun-Aid SI-100L” and “Sun-Aid SI-150L” (manufactured by Sanshin Chemical Industry Co., Ltd.) can be used.
  • the aluminum chelate examples include ethyl acetoacetate aluminum diisopropylate and aluminum tris (ethyl acetoacetate).
  • the boron trifluoride amine complex include boron trifluoride monoethylamine complex, boron trifluoride imidazole complex, and boron trifluoride piperidine complex.
  • the radical polymerization initiator is a compound capable of initiating or accelerating the radical polymerization reaction of a radical curable compound such as the polyorganosilsesquioxane of the present invention.
  • the radical polymerization initiator is not particularly limited, and examples thereof include a photo radical polymerization initiator and a thermal radical polymerization initiator.
  • photo radical polymerization initiator examples include benzophenone, acetophenone benzyl, benzyl dimethyl ketone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, dimethoxyacetophenone, dimethoxyphenylacetophenone, diethoxyacetophenone, diphenyl disulfite, Orthobenzoyl methyl benzoate, ethyl 4-dimethylaminobenzoate (Nippon Kayaku Co., Ltd., trade name “Kayacure EPA”, etc.), 2,4-diethylthioxanthone (Nippon Kayaku Co., Ltd., trade name) “Kayacure DETX”, etc.), 2-methyl-1- [4- (methyl) phenyl] -2-morpholinopropanone-1 (manufactured by Ciba Gaigi Co., Ltd., trade name “Irgacure 90
  • Aminobenzene derivatives such as phenylalkane compounds, tetra (t-butylperoxycarbonyl) benzophenone, benzyl, 2-hydroxy-2-methyl-1-phenyl-propan-1-one, 4,4-bisdiethylaminobenzophenone, 2, 2′-bis (2-chlorophenyl) -4,5,4 ′, 5′-tetraphenyl-1,2′-biimidazole (manufactured by Hodogaya Chemical Co., Ltd., trade name “B-CIM”, etc.), etc.
  • phenylalkane compounds tetra (t-butylperoxycarbonyl) benzophenone
  • benzyl 2-hydroxy-2-methyl-1-phenyl-propan-1-one
  • 4,4-bisdiethylaminobenzophenone 2, 2′-bis (2-chlorophenyl) -4,5,4 ′, 5′-tetraphenyl-1,2′
  • 1,6-bis (trichloromethyl) -4- (4-methoxynaphthalen-1-yl) -1,3,5-to Halomethyl triazines compounds such as azine, 2-trichloromethyl-5- (2-benzofuran-2-yl - ethenyl) -1,3,4 oxadiazole, and the like halomethyl oxadiazole compounds, and the like.
  • a photosensitizer can be added as needed.
  • thermal radical polymerization initiator examples include hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, peroxydicarbonate, peroxyketal, and ketone peroxide (specifically, benzoyl peroxide, t-butylperoxy-2-ethylhexanoate, 2,5-dimethyl-2,5-di (2-ethylhexanoyl) peroxyhexane, t-butylperoxybenzoate, t-butylperoxide, cumene hydro Peroxide, dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-dibutylperoxyhexane, 2,4-dichlorobenzoyl peroxide, 1,4-di (2-t- Butyl peroxyisopropyl) benzene 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane
  • one type of curing catalyst can be used alone, or two or more types can be used in combination.
  • the content (blending amount) of the curing catalyst in the curable composition of the present invention is not particularly limited, but is 0.01 to 3.0 parts by weight with respect to 100 parts by weight of the polyorganosilsesquioxane of the present invention. It is preferably 0.05 to 3.0 parts by weight, more preferably 0.1 to 1.0 parts by weight (for example, 0.3 to 1.0 parts by weight).
  • the content of the curing catalyst is 0.01 parts by weight or more, the curing reaction can be efficiently and sufficiently advanced, and the surface hardness and adhesiveness of the cured product tend to be further improved.
  • the content of the curing catalyst is 3.0 parts by weight or less, the storability of the curable composition tends to be further improved, and coloring of the cured product tends to be suppressed.
  • the curable composition of the present invention further includes a cationic curable compound other than the polyorganosilsesquioxane of the present invention (sometimes referred to as “other cationic curable compounds”) and / or the polyorganosyl of the present invention. It may contain a radical curable compound other than sesquioxane (sometimes referred to as "other radical curable compound”).
  • other cationic curable compounds known or conventional cationic curable compounds can be used, and are not particularly limited.
  • another cationic curable compound can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • epoxy compound the well-known thru
  • numerator can be used, although it does not specifically limit,
  • Examples of the alicyclic epoxy compound include known or conventional compounds having one or more alicyclic rings and one or more epoxy groups in the molecule, and are not particularly limited.
  • a compound having an epoxy group (referred to as “alicyclic epoxy group”) composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring; (2) the epoxy group is directly bonded to the alicyclic ring by a single bond.
  • compounds having an alicyclic ring and a glycidyl ether group in the molecule (glycidyl ether type epoxy compound) and the like.
  • Y represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, an alkenylene group in which part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. And a group in which a plurality of are connected.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group, and the like.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, and a trimethylene group.
  • divalent alicyclic hydrocarbon group examples include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group, 1,3-cyclopentylene group, And divalent cycloalkylene groups (including cycloalkylidene groups) such as cyclohexylene group, 1,4-cyclohexylene group and cyclohexylidene group.
  • alkenylene group in the alkenylene group in which part or all of the carbon-carbon double bond is epoxidized include, for example, vinylene group, propenylene group, 1-butenylene group And straight-chain or branched alkenylene groups having 2 to 8 carbon atoms such as 2-butenylene group, butadienylene group, pentenylene group, hexenylene group, heptenylene group, octenylene group and the like.
  • the epoxidized alkenylene group is preferably an alkenylene group in which all of the carbon-carbon double bonds are epoxidized, more preferably 2 to 4 carbon atoms in which all of the carbon-carbon double bonds are epoxidized. Alkenylene group.
  • alicyclic epoxy compound represented by the above formula (i) include (3,4,3 ′, 4′-diepoxy) bicyclohexyl, and the following formulas (i-1) to (i-10) ) And the like.
  • l and m each represents an integer of 1 to 30.
  • R ′ in the following formula (i-5) is an alkylene group having 1 to 8 carbon atoms, and among them, a linear or branched chain having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group, an isopropylene group, etc. -Like alkylene groups are preferred.
  • n1 to n6 each represents an integer of 1 to 30.
  • Other examples of the alicyclic epoxy compound represented by the above formula (i) include 2,2-bis (3,4-epoxycyclohexyl) propane and 1,2-bis (3,4-epoxycyclohexyl). ) Ethane, 2,3-bis (3,4-epoxycyclohexyl) oxirane, bis (3,4-epoxycyclohexylmethyl) ether and the like.
  • Examples of the compound (2) in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (ii).
  • R ′′ is a group obtained by removing p hydroxyl groups (—OH) from the structural formula of p-valent alcohol (p-valent organic group), and p and n each represent a natural number.
  • the divalent alcohol [R ′′ (OH) p ] include polyhydric alcohols (such as alcohols having 1 to 15 carbon atoms) such as 2,2-bis (hydroxymethyl) -1-butanol.
  • p is preferably 1 to 6
  • n is preferably 1 to 30.
  • n in each group in () (inside the outer parenthesis) may be the same or different.
  • Examples of the compound (3) having an alicyclic ring and a glycidyl ether group in the molecule include glycidyl ethers of alicyclic alcohols (particularly, alicyclic polyhydric alcohols). More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy) Compound obtained by hydrogenating bisphenol A type epoxy compound such as cyclohexyl] propane (hydrogenated bisphenol A type epoxy compound); bis [o, o- (2,3-epoxypropoxy) cyclohexyl] methane, bis [o , P- (2,3-epoxypropoxy) cyclohexyl] methane, bis [p, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2, 3-Epoxypropoxy)
  • aromatic epoxy compound examples include epibis type glycidyl ether type epoxy resins obtained by condensation reaction of bisphenols [for example, bisphenol A, bisphenol F, bisphenol S, fluorene bisphenol and the like] and epihalohydrin; High molecular weight epibis type glycidyl ether type epoxy resin obtained by addition reaction of bis type glycidyl ether type epoxy resin with the above bisphenols; phenols [eg, phenol, cresol, xylenol, resorcin, catechol, bisphenol A, bisphenol F, bisphenol S, etc.] and aldehyde [eg, formaldehyde, acetaldehyde, benzaldehyde, hydroxybenzaldehyde, salicy A novolak alkyl type glycidyl ether type epoxy resin obtained by further condensing polyhydric alcohols obtained by condensation reaction with aldehyde and the like with epihalohydrin; two phenol skeletons are
  • Examples of the aliphatic epoxy compound include a glycidyl ether of an alcohol having no q-valent cyclic structure (q is a natural number); a monovalent or polyvalent carboxylic acid [for example, acetic acid, propionic acid, butyric acid, stearic acid, Adipic acid, sebacic acid, maleic acid, itaconic acid, etc.] glycidyl ester; epoxidized oils and fats having double bonds such as epoxidized linseed oil, epoxidized soybean oil, epoxidized castor oil; polyolefins such as epoxidized polybutadiene (poly Epoxidized product of alkadiene).
  • a monovalent or polyvalent carboxylic acid for example, acetic acid, propionic acid, butyric acid, stearic acid, Adipic acid, sebacic acid, maleic acid, itaconic acid, etc.
  • glycidyl ester e
  • Examples of the alcohol having no q-valent cyclic structure include monohydric alcohols such as methanol, ethanol, 1-propyl alcohol, isopropyl alcohol and 1-butanol; ethylene glycol, 1,2-propanediol, 1 Divalent alcohols such as 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol; Examples include trihydric or higher polyhydric alcohols such as glycerin, diglycerin, erythritol, trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol, and sorbitol. That.
  • the q-valent alcohol may be polyether polyol, polyester polyol, polycarbonate polyo
  • oxetane compound examples include known or commonly used compounds having one or more oxetane rings in the molecule, and are not particularly limited.
  • the vinyl ether compound may be a known or conventional compound having one or more vinyl ether groups in the molecule, and is not particularly limited.
  • 2-hydroxyethyl vinyl ether ethylene glycol monovinyl ether
  • 3-hydroxy Propyl vinyl ether 2-hydroxypropyl vinyl ether
  • 2-hydroxyisopropyl vinyl ether 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 2-hydroxybutyl vinyl ether, 3-hydroxyisobutyl vinyl ether, 2-hydroxyisobutyl vinyl ether, 1-methyl-3 -Hydroxypropyl vinyl ether, 1-methyl-2-hydroxypropyl vinyl ether, 1-hydroxymethylpropyl vinyl ether
  • 4-hydroxycyclohexyl vinyl ether 1,6-hexanediol monovinyl ether, 1,6-hexanediol divinyl ether, 1,8-octanediol divinyl ether, 1,4-cyclohexanedimethanol monovinyl ether
  • the curable composition of the present invention it is preferable to use a vinyl ether compound in combination with the polyorganosilsesquioxane of the present invention as another cationic curable compound.
  • a vinyl ether compound in combination with the polyorganosilsesquioxane of the present invention as another cationic curable compound.
  • the other cationic curable compound particularly when a vinyl ether compound having one or more hydroxyl groups in the molecule is used, the surface hardness is higher, and further, heat-resistant yellowing (yellowing due to heating hardly occurs).
  • a cured product having excellent characteristics can be obtained. For this reason, an in-mold injection molded product and a hard coat film using the cured product of higher quality and higher durability, the transfer film of the present invention can be obtained.
  • the number of hydroxyl groups in the molecule of the vinyl ether compound having one or more hydroxyl groups in the molecule is not particularly limited, but is preferably 1 to 4, more preferably 1 or 2.
  • examples of vinyl ether compounds having one or more hydroxyl groups in the molecule include 2-hydroxyethyl vinyl ether (ethylene glycol monovinyl ether), 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 2-hydroxyisopropyl.
  • radical curable compound a known or conventional radical curable compound can be used, and is not particularly limited, and examples thereof include (meth) acrylic compounds other than the polyorganosilsesquioxane of the present invention.
  • another radical curable compound can also be used individually by 1 type, and can also be used in combination of 2 or more type.
  • the (meth) acrylic compound a known or conventional compound having one or more (meth) acrylic groups in the molecule can be used, and is not particularly limited.
  • trimethylolpropane tri (meth) acrylate Trimethylolethane tri (meth) acrylate, tetramethylolmethane tri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, pentaglycerol tri (meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate , Pentaerythritol tetra (meth) acrylate, glycerin tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipenta Risuri penta (meth) acrylate,
  • the content (mixing amount) of other cation curable compounds and / or other radical curable compounds in the curable composition of the present invention is not particularly limited, but the polyorganosilsesquioxane of the present invention and other cations are not limited.
  • 50% by weight or less (for example, 0 to 50% by weight) is preferable with respect to the total amount of the curable compound and the other radical curable compound (100% by weight; the total amount of the cationic curable compound and the radical curable compound). It is preferably 30% by weight or less (for example, 0 to 30% by weight), more preferably 10% by weight or less.
  • the content (blending amount) of the vinyl ether compound (particularly, the vinyl ether compound having one or more hydroxyl groups in the molecule) in the curable composition of the present invention is not particularly limited, but the polyorganosilsesquioxane of the present invention,
  • the amount is preferably 0.01 to 10% by weight, more preferably 0%, based on the total amount of the other cationic curable compound and the other radical curable compound (100% by weight; the total amount of the cationic curable compound and the radical curable compound). 0.05 to 9% by weight, more preferably 1 to 8% by weight.
  • the surface hardness of the cured product becomes higher, and the surface hardness is extremely high even when the irradiation amount of active energy rays (for example, ultraviolet rays) is lowered. There is a tendency to get things.
  • active energy rays for example, ultraviolet rays
  • the content of the vinyl ether compound having one or more hydroxyl groups in the molecule within the above range, in addition to particularly high surface hardness of the cured product, there is a tendency to further improve its heat-resistant yellowing. is there.
  • the curable composition of the present invention further includes, as other optional components, precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate.
  • Inorganic fillers such as carbon black, silicon carbide, silicon nitride and boron nitride, inorganic fillers obtained by treating these fillers with organosilicon compounds such as organohalosilanes, organoalkoxysilanes and organosilazanes; silicone resins, epoxy resins , Organic resin fine powders such as fluororesins; fillers such as conductive metal powders such as silver and copper, curing aids, solvents (organic solvents, etc.), stabilizers (antioxidants, ultraviolet absorbers, light stabilizers) , Heat stabilizers, heavy metal deactivators, etc.), flame retardants (phosphorous flame retardants, halogen flame retardants, inorganic flame retardants, etc.), difficult Auxiliaries, reinforcing materials (other fillers, etc.), nucleating agents, coupling agents (silane coupling agents, etc.), lubricants, waxes, plasticizers, mold release agents, impact resistance improvers, hue improvers, clearing
  • the curable composition of the present invention is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature or while heating as necessary.
  • the curable composition of the present invention can be used as a one-component composition in which each component is mixed in advance, for example, two or more components stored separately.
  • the curable composition of the present invention is not particularly limited, but is preferably liquid at normal temperature (about 25 ° C.). More specifically, the curable composition of the present invention has a viscosity at 25 ° C. of a liquid diluted to 20% of a solvent [particularly, a curable composition (solution) in which the proportion of methyl isobutyl ketone is 20% by weight]. 300 to 20000 mPa ⁇ s, more preferably 500 to 10000 mPa ⁇ s, and still more preferably 1000 to 8000 mPa ⁇ s. There exists a tendency for the heat resistance of hardened
  • the viscosity of the curable composition of the present invention was measured using a viscometer (trade name “MCR301”, manufactured by Anton Paar) with a swing angle of 5%, a frequency of 0.1 to 100 (1 / s), and temperature: It is measured at 25 ° C.
  • the curable composition can be cured by advancing the polymerization reaction of the cationic curable compound or radical curable compound (such as the polyorganosilsesquioxane of the present invention) in the curable composition of the present invention, A cured product (sometimes referred to as “cured product of the present invention”) can be obtained.
  • the curing method can be appropriately selected from well-known methods and is not particularly limited, and examples thereof include a method of irradiation with active energy rays and / or heating.
  • the active energy ray for example, any of infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like can be used.
  • ultraviolet rays are preferable in terms of excellent handleability.
  • Conditions for curing the curable composition of the present invention by irradiation with active energy rays depend on the type and energy of the active energy rays to be irradiated, the shape and size of the cured product, etc. Although it can be appropriately adjusted and is not particularly limited, it is preferably about 1 to 1000 mJ / cm 2 , for example, when irradiated with ultraviolet rays.
  • irradiation with active energy rays for example, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, sunlight, an LED lamp, a laser, or the like can be used.
  • a heating treatment annealing and aging
  • conditions for curing the curable composition of the present invention by heating are not particularly limited, but are preferably 30 to 200 ° C., and more preferably 50 to 190 ° C., for example.
  • the curing time can be appropriately set.
  • the curable composition of the present invention can be cured to form a cured product having high surface hardness and heat resistance and excellent flexibility and workability.
  • the curable composition of the present invention particularly includes a “curable composition for forming a hard coat layer” (“hard coat liquid”, “hard coat agent” and the like for forming a hard coat layer in a hard coat film. And may be particularly preferably used.
  • the curable composition of the present invention is used as a curable composition for forming a hard coat layer, and a hard coat film having a hard coat layer formed from the composition is flexible while maintaining high hardness and high heat resistance. It can be manufactured and processed by roll-to-roll.
  • the curable composition of the present invention is tack-free on the surface of an uncured or semi-cured hard coat layer coated and dried on a release layer provided on a substrate, and has anti-blocking properties. Since it improves, it is possible to handle it by winding it into a roll, and furthermore, a hard coat layer having a high surface hardness can be formed by transferring and curing the hard coat layer on the surface of the molded product. . Accordingly, the curable composition of the present invention can be preferably used as a curable composition for forming a hard coat layer for forming a hard coat layer of a transfer film used for in-mold injection molding. .
  • the transfer film of the present invention is a film having a substrate and an uncured or semi-cured hard coat layer on a release layer formed on at least one surface of the substrate, the uncured film
  • a semi-cured hard coat layer is formed by the curable composition of the present invention (a curable composition for forming a hard coat layer.
  • hard coat agent of the present invention it may be referred to as “hard coat agent of the present invention”.
  • uncured means that the polymerizable functional group of the polyorganosilsesquioxane of the present invention contained in the curable composition for forming a hard coat layer (hard coat agent) of the present invention has not undergone a polymerization reaction. means.
  • Semi-curing means a state in which a part of the polymerizable functional group undergoes a polymerization reaction and an unreacted polymerizable functional group remains.
  • an uncured or semi-cured hard coat layer formed by the curable composition (hard coat agent) of the present invention was simply transferred to a “hard coat layer” and molded product.
  • the hard coat layer may be referred to as a “cured hard coat layer”.
  • the base material in the transfer film of the present invention is a base material of the transfer film, and refers to a portion constituting other than the transfer layer including the hard coat layer of the present invention.
  • the transfer layer is a layer excluding the substrate on which the release layer is formed in the transfer film of the present invention, and refers to a portion transferred to the surface of the molded product.
  • a plastic base material such as a plastic base material, a metal base material, a ceramic base material, a semiconductor base material, a glass base material, a paper base material, a wood base material (wood base material), and the base material whose surface is a coating surface Thru
  • a plastic substrate (a substrate made of a plastic material) is preferable.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); Polyimide; Polycarbonate; Polyamide; Polyacetal; Polyphenylene oxide; Polyphenylene sulfide; Polyether Sulfone; Polyetheretherketone; Norbornene monomer homopolymer (addition polymer, ring-opening polymer, etc.), Norbornene monomer and olefin monomer copolymer (addition polymer, such as norbornene and ethylene copolymer) And cyclic olefin copolymers such as ring-opening polymers), cyclic polyolefins such as derivatives thereof; vinyl polymers (for example, acrylic resins such as polymethyl methacrylate (PMMA), police Styrene, butadiene resin (ABS resin, etc.); vinylidene polymers (eg, polyvinylidene chloride,
  • the plastic substrate it is preferable to use a substrate excellent in heat resistance, moldability, and mechanical strength, more preferably a polyester film (particularly PET, PEN), a cyclic polyolefin film, a polycarbonate film, a TAC film. , PMMA film.
  • the plastic substrate is made of an antioxidant, an ultraviolet absorber, a light stabilizer, a heat stabilizer, a crystal nucleating agent, a flame retardant, a flame retardant aid, a filler, a plasticizer, and an impact modifier.
  • Other additives such as reinforcing agents, dispersants, antistatic agents, foaming agents, antibacterial agents and the like may be included.
  • an additive can also be used individually by 1 type and can also be used in combination of 2 or more type.
  • the plastic substrate may have a single-layer configuration or a multilayer (lamination) configuration, and the configuration (structure) is not particularly limited.
  • the above-mentioned plastic substrate is a “plastic film / other layer” in which a layer other than the transfer layer of the present invention (sometimes referred to as “other layer”) is formed on at least one surface of the plastic film.
  • It may be a plastic substrate having a laminated structure such as “other layer / plastic film / other layer”.
  • the other layers include hard coat layers other than the hard coat layer constituting the transfer film of the present invention.
  • the above-mentioned plastic material etc. are mentioned, for example.
  • Roughening, easy adhesion, antistatic treatment, sandblasting (sandmat treatment), corona discharge treatment, plasma treatment, chemical etching treatment, watermat treatment, flame are applied to part or all of the surface of the plastic substrate.
  • Known or conventional surface treatments such as treatment, acid treatment, alkali treatment, oxidation treatment, ultraviolet irradiation treatment, silane coupling agent treatment, etc. may be applied.
  • the plastic substrate may be an unstretched film or a stretched film (uniaxially stretched film, biaxially stretched film, etc.).
  • the plastic base material is, for example, a method of forming the above plastic material into a film shape to form a plastic base material (plastic film), and if necessary, an appropriate layer (for example, the above-mentioned other layers) with respect to the plastic film.
  • a layer or the like, or an appropriate surface treatment for example, a layer or the like, or an appropriate surface treatment.
  • a commercial item can also be used as said plastic base material.
  • the thickness of the substrate is not particularly limited, and can be appropriately selected from, for example, a range of 0.01 to 10000 ⁇ m. However, from the viewpoint of moldability, shape followability, handleability, etc., 2 to 250 ⁇ m is preferable. 5 to 100 ⁇ m is more preferable, and 20 to 100 ⁇ m is more preferable.
  • the release layer in the transfer film of the present invention is a layer that constitutes at least one surface layer of the substrate in the transfer film of the present invention, and is provided to easily peel the transfer layer from the substrate. Is a layer.
  • the transfer layer can be reliably and easily transferred from the transfer film to the transfer target (molded product), and the substrate sheet can be reliably peeled off.
  • the peel strength between the release layer and the hard coat layer is not particularly limited, but is preferably 30 to 500 mN / 24 mm, more preferably 40 to 300 mN / 24 mm, and still more preferably 50. ⁇ 200 mN / 24 mm.
  • the peel strength is within this range, the hard coat layer does not peel during normal handling, and the hard coat tends to be easily peeled simultaneously with the transfer to the molded product.
  • the peel strength between the hard coat layer and the release layer of the present invention can be measured according to JIS Z0237.
  • the release layer in the transfer film of the present invention may be formed only on one surface (one side) of the substrate, or may be formed on both surfaces (both sides). In addition, the release layer in the transfer film of the present invention may be formed on only a part or on the entire surface of each surface of the substrate.
  • a publicly known release agent can be used without particular limitation, and examples thereof include unsaturated ester resins, epoxy resins, epoxy-melamine resins, aminoalkyd resins, At least one selected from acrylic resins, melamine resins, silicon resins, fluorine resins, cellulose resins, urea resin resins, polyolefin resins, paraffin resins, and cycloolefin resins can be used.
  • the release layer is preferably a melamine resin or a cycloolefin resin, and in particular, 2-norbornene / ethylene copolymer.
  • a cycloolefin copolymer resin (COC resin) such as a coalescence is preferable.
  • a publicly known release processing method can be used without any particular limitation.
  • the above resin is dispersed or dissolved in a solvent (eg, alcohols such as methanol and butanol, aromatic hydrocarbons such as toluene and xylene, tetrahydrofuran, etc.), bar coat, Mayer bar coat, gravure coat, roll coat, etc.
  • a release layer can be formed by coating, drying, and heating at 80 to 200 ° C. by a known coating method.
  • the thickness of the release layer is not particularly limited, and can usually be selected from the range of 0.01 to 5 ⁇ m, preferably 0.1 to 3.0 ⁇ m.
  • the hard coat layer of the present invention in the transfer film of the present invention is a layer constituting at least one surface layer in the release layer, and is uncured by drying the curable composition (hard coat agent) of the present invention. Or a semi-cured layer partially cured.
  • the semi-cured hard coat layer can be formed by partially curing the uncured hard coat layer by the above-mentioned active energy ray irradiation or heating.
  • the uncured or semi-cured hard coat layer of the present invention has a low tack property and excellent blocking resistance so that the resin does not adhere when the finger is brought into contact with the surface, and can be wound and handled in a roll shape. It is.
  • the hard coat layer of the present invention in the transfer film of the present invention may be formed only on one release layer (one side) of the substrate, or formed on both release layers (both sides). It may be. Further, the hard coat layer of the present invention in the transfer film of the present invention may be formed on only a part of the surface of each of the release layers, or may be formed on the entire surface.
  • the method for laminating the hard coat layer of the present invention on the release layer of the transfer film of the present invention is not particularly limited, but the curable composition (hard coat agent) of the present invention is formed on the release layer by a known method. ) Is applied and dried to form an uncured hard coat layer, or further, a semi-hardened hard coat layer is formed by irradiating or heating an activation energy ray to the uncured hard coat layer.
  • a coating method of the curable composition (hard coat agent) of the present invention a known coating method can be used without limitation, and examples thereof include bar coater coating, Mayer bar coating, air knife coating, and gravure coating. Examples thereof include offset printing, offset printing, flexographic printing, and screen printing.
  • the heating temperature for forming the hard coat layer is not particularly limited, but can be suitably selected from 50 to 200 ° C.
  • the heating time is not particularly limited, but can be appropriately selected from 1 to 60 minutes.
  • the conditions for irradiating the hard coat layer with the activation energy rays are not particularly limited, and can be appropriately selected from the conditions for forming the above-described cured product, for example.
  • the thickness of the hard coat layer in the transfer film of the present invention is not particularly limited, but is preferably 1 to 200 ⁇ m, More preferably, it is 3 to 150 ⁇ m.
  • the hard coat layer of the present invention is thin (for example, when the thickness is 5 ⁇ m or less), it is possible to maintain a high surface hardness (for example, a pencil hardness of 5 H or more).
  • it is thick for example, when the thickness is 50 ⁇ m or more
  • the haze of the hard coat layer in the transfer film of the present invention is not particularly limited, but is preferably 1.5% or less, more preferably 1.0% or less in the case of a thickness of 50 ⁇ m.
  • the lower limit of haze is not particularly limited, but is 0.1%, for example.
  • the haze of the hard coat layer of the present invention can be measured according to JIS K7136.
  • the total light transmittance of the hard coat layer in the transfer film of the present invention is not particularly limited, but is preferably 85% or more, more preferably 90% or more in the case of a thickness of 50 ⁇ m.
  • the upper limit of the total light transmittance is not particularly limited, but is 99%, for example.
  • an anchor coat layer and an adhesive layer are further laminated in this order on the hard coat layer. Furthermore, when using the transfer film of the present invention as a decorative film, at least one colored layer is laminated. Although the lamination position of the colored layer is not particularly limited, an embodiment in which one layer or two or more layers are preferably laminated between the anchor coat layer and the adhesive layer is preferable.
  • the anchor coat layer in the transfer film of the present invention is provided in order to improve the adhesion between the hard coat layer and the adhesive layer or the colored layer.
  • the resin for anchor coating of the present invention further includes, as other optional components, wax, silica, plasticizer, leveling agent, surfactant, dispersant, antifoaming agent, ultraviolet absorber, ultraviolet stabilizer, antioxidant, etc.
  • wax silica
  • plasticizer leveling agent
  • surfactant dispersant
  • antifoaming agent ultraviolet absorber
  • ultraviolet stabilizer antioxidant
  • the anchor coat layer is obtained by applying a coating solution obtained by dissolving the above resin in a solvent to the hard coat layer of the present invention by a known coating method such as bar coating, Mayer bar coating, gravure coating, roll coating, and drying. If necessary, it can be formed by heating.
  • the temperature for heating when forming the anchor coat layer is not particularly limited, but can be suitably selected from 50 to 200 ° C.
  • the heating time is not particularly limited, but can be appropriately selected from 10 seconds to 60 minutes.
  • the thickness of the anchor coat layer is usually about 0.1 to 20 ⁇ m, and preferably in the range of 0.5 to 5 ⁇ m.
  • the anchor coat layer of the present invention may be formed using a commercially available anchor coat agent.
  • the commercially available anchor coating agent include K468HP anchor (epoxy resin anchor coating agent manufactured by Toyo Ink Co., Ltd.) and TM-VMAC (acrylic polyol resin anchor coating agent manufactured by Dainichi Seika Kogyo Co., Ltd.).
  • the adhesive layer in the transfer film of the present invention is provided to transfer a transfer layer (including a hard coat layer, an anchor coat layer and a colored layer, which are optionally laminated) to a molded product with good adhesiveness.
  • a transfer layer including a hard coat layer, an anchor coat layer and a colored layer, which are optionally laminated
  • the adhesive layer include those composed of a heat-sensitive adhesive, a pressure-sensitive adhesive, and the like, but in the present invention, heat sealing that exhibits adhesion to a molded product by heating and pressing as necessary.
  • a layer is preferred.
  • the resin used for the adhesive layer include acrylic resins, vinyl chloride resins, vinyl acetate resins, vinyl chloride-vinyl acetate copolymer resins, styrene-acrylic copolymer resins, polyester resins, and polyamide resins.
  • acrylic resins and vinyl chloride-vinyl acetate copolymer resins are particularly preferable.
  • the acrylic resin used in the adhesive layer of the present invention is not particularly limited.
  • polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, methyl (meth) acrylate-butyl (meth) examples thereof include acrylic resins such as acrylate copolymers, methyl (meth) acrylate-styrene copolymers, and modified acrylic resins such as fluorine, and these can be used as one kind or a mixture of two or more kinds.
  • (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, and 2-hydroxyethyl
  • Acrylic polyol obtained by copolymerizing (meth) acrylate having a hydroxyl group in the molecule such as (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate
  • Acrylic polyol obtained by copolymerizing (meth) acrylate having a hydroxyl group in the molecule such as (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate
  • (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethy
  • the vinyl chloride-vinyl acetate copolymer resin those having a vinyl acetate content of about 5 to 20% by mass and an average degree of polymerization of about 350 to 900 are usually used. If necessary, the vinyl chloride-vinyl acetate copolymer resin may be further copolymerized with a carboxylic acid such as maleic acid or fumaric acid.
  • a subcomponent resin if necessary, other resins, for example, resins such as thermoplastic polyester resins, thermoplastic urethane resins, chlorinated polyethylene, chlorinated polypropylene, and other chlorinated polyolefin resins. May be mixed.
  • the adhesive layer one or two or more solutions or emulsions of the above resins that can be applied are applied by a known coating method such as bar coating, Mayer bar coating, gravure coating, roll coating, and dried. And if necessary, it can be formed by heating.
  • the temperature at the time of heating at the time of forming the adhesive layer is not particularly limited, but can be suitably selected from 50 to 200 ° C.
  • the heating time is not particularly limited, but can be appropriately selected from 10 seconds to 60 minutes.
  • the thickness of the adhesive layer is preferably about 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, from the viewpoint that the transfer film can be efficiently transferred to a molded product.
  • organic UV absorbers such as benzophenone compounds, benzotriazole compounds, oxalic acid anilide compounds, cyanoacrylate compounds, salicylate compounds, zinc, titanium, cerium, tin, iron, etc.
  • An additive of fine particles having an inorganic ultraviolet absorbing ability such as an oxide of the above may be blended.
  • a coloring pigment, a white pigment, an extender pigment, a filler, an antistatic agent, an antioxidant, a fluorescent brightening agent, and the like can be used as necessary.
  • a commercially available product may be used as the adhesive of the present invention.
  • Examples of commercially available adhesives include K588HP adhesive gloss A varnish (vinyl chloride-vinyl acetate copolymer resin adhesive manufactured by Toyo Ink Co., Ltd.) and PSHP780 (acrylic resin adhesive manufactured by Toyo Ink Co., Ltd.). .
  • the colored layer in the transfer film of the present invention is provided when a decorative film for transferring a picture layer and / or a concealing layer to a molded product is provided.
  • the pattern layer is a layer provided for expressing a pattern such as a pattern or characters
  • the concealing layer is generally a solid layer and is provided for concealing coloring such as injection resin. Is a layer.
  • a decorative layer may be formed alone in addition to the case of being provided inside the pattern layer in order to enhance the pattern of the pattern layer.
  • the pattern layer according to the present invention is a layer provided to express a pattern, a character, and a pattern-like pattern.
  • the pattern of the pattern layer is arbitrary, for example, a pattern composed of wood grain, stone grain, cloth grain, sand grain, geometric pattern, character, and the like can be mentioned.
  • the colored layer is usually a known printing method such as gravure printing, offset printing, silk screen printing, transfer printing from a transfer sheet, sublimation transfer printing, ink jet printing on the hard coat layer or anchor coat layer. By forming by, it can form between a hard-coat layer and an adhesive bond layer, or between an anchor-coat layer and an adhesive bond layer.
  • the thickness of the colored layer is preferably 3 to 40 ⁇ m, more preferably 10 to 30 ⁇ m from the viewpoint of design.
  • the binder resin for printing ink used for forming the colored layer include polyester resins, polyurethane resins, acrylic resins, vinyl acetate resins, vinyl chloride-vinyl acetate copolymer resins, and cellulose resins.
  • the main component is an acrylic resin alone or a mixture of an acrylic resin and a vinyl chloride-vinyl acetate copolymer resin.
  • acrylic resins include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, methyl (meth) acrylate-styrene copolymer.
  • acrylic resins such as polymers and modified acrylic resins by fluorine, and these can be used as one kind or a mixture of two or more kinds.
  • (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, and 2-hydroxyethyl
  • Acrylic polyol obtained by copolymerizing (meth) acrylate having a hydroxyl group in the molecule such as (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate
  • Acrylic polyol obtained by copolymerizing (meth) acrylate having a hydroxyl group in the molecule such as (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate
  • (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethy
  • the vinyl chloride-vinyl acetate copolymer resin those having a vinyl acetate content of about 5 to 20% by mass and an average degree of polymerization of about 350 to 900 are usually used. If necessary, the vinyl chloride-vinyl acetate copolymer resin may be further copolymerized with a carboxylic acid such as maleic acid or fumaric acid.
  • resins such as thermoplastic polyester resins, thermoplastic urethane resins, chlorinated polyethylene, chlorinated polypropylene, and other chlorinated polyolefin resins. May be mixed.
  • Examples of the colorant used in the colored layer according to the present invention include aluminum, chromium, nickel, tin, titanium, iron phosphide, copper, gold, silver, brass and other metals, alloys, and scale-like foil powders of metal compounds.
  • Pearl made of foil powder such as metallic pigment, mica-like iron oxide, titanium dioxide coated mica, titanium dioxide coated bismuth oxychloride, bismuth oxychloride, titanium dioxide coated talc, fish scale foil, colored titanium dioxide coated mica, basic lead carbonate Glossy (pearl) pigments, fluorescent pigments such as strontium aluminate, calcium aluminate, barium aluminate, zinc sulfide, calcium sulfide, white inorganic pigments such as titanium dioxide, zinc white, antimony trioxide, zinc white, petal, vermilion , Inorganic pigments such as ultramarine, cobalt blue, titanium yellow, yellow lead, carbon black, isoindolinone Chromatography, Hansa Yellow A, quinacridone red, can be mixed Permanent Red 4R, phthalocyanine blue, indanthrene blue RS, (including dyes) organic pigments such as aniline black one or more.
  • fluorescent pigments such as strontium aluminate, calcium
  • a metal thin film layer or the like may be further formed for the purpose of improving the designability.
  • the metal thin film layer can be formed by using a metal such as aluminum, chromium, gold, silver, or copper by a method such as vacuum deposition or sputtering. This metal thin film layer may be provided on the entire surface or may be partially provided in a pattern.
  • the printing ink used for forming the colored layer should be appropriately added with an anti-settling agent, a curing catalyst, an ultraviolet absorber, an antioxidant, a leveling agent, a thickener, an antifoaming agent, a lubricant, and the like. Can do.
  • the printing ink is provided in a form in which the above components are usually dissolved or dispersed in a solvent.
  • Any solvent can be used as long as it dissolves or disperses the binder resin, and an organic solvent and / or water can be used.
  • the organic solvent include hydrocarbons such as toluene and xylene, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, cellosolve acetate, and butyl cellosolve acetate, and alcohols.
  • the transfer film of the present invention includes a low reflection layer, an antistatic layer, and an ultraviolet absorption layer as required in addition to the above-mentioned base material, release layer, hard coat layer, anchor coat layer, adhesive layer, and colored layer.
  • a layer, a near infrared ray blocking layer, an electromagnetic wave absorbing layer, and the like may be laminated in any order.
  • the thickness of the transfer film of the present invention is not particularly limited, and can be appropriately selected from the range of 1 to 10000 ⁇ m. Is more preferably from 150 to 150 ⁇ m, further preferably from 25 to 150 ⁇ m.
  • the hard coat layer of the transfer film of the present invention is tack-free and excellent in blocking resistance and can be wound and handled in a roll shape, it can be suitably used as a transfer film for in-mold injection molding. it can.
  • the transfer film of the present invention was continuously transported by a transport roll or the like into a mold composed of a fixed mold and a movable mold, and the base film side was in contact with the fixed mold surface, and appropriate position adjustment was made. Later, the movable mold moves and clamps. Then, the thermoplastic resin previously melted by heat is injected and filled from the transfer layer side of the transfer film into the mold at high temperature and high pressure, and after quenching, the mold is opened, and the hard coat layer of the present invention is the outermost surface.
  • the molded product (in-mold molded product) transferred to the can be taken out.
  • the hard coat layer of the present invention When the hard coat layer of the present invention is uncured or semi-cured, the hard coat layer may be cured by irradiation with active energy rays and / or heating.
  • the conditions when the hard coat layer is irradiated with active energy rays and / or heated are not particularly limited, and can be appropriately selected from, for example, the conditions when forming the above-described cured product.
  • the pencil hardness on the surface of the molded product can be made extremely high. Preferably 5H or more, more preferably 6H or more.
  • the pencil hardness can be evaluated according to the method described in JIS K5600-5-4.
  • a molded product (in-mold molded product) manufactured by the in-mold injection molding method using the transfer film of the present invention has a very high surface hardness, and the pattern and pattern are clearly transferred. It can be preferably used for any molded product that requires characteristics.
  • the transfer film of the present invention can be applied to various exterior molded products that require high surface hardness, scratch resistance, design, and durability, such as car interior and exterior products such as automobile dashboards and housings of home appliances. It can be preferably used.
  • the hard coat film of the present invention is a film having a substrate and a hard coat layer formed on at least one surface of the substrate, wherein the hard coat layer is a curable composition (hard It is a hard coat layer (cured product layer of the curable composition of the present invention) formed by a curable composition for forming a coat layer).
  • a curable composition hard It is a hard coat layer (cured product layer of the curable composition of the present invention) formed by a curable composition for forming a coat layer).
  • the hard coat layer of the present invention in the hard coat film of the present invention may be formed only on one surface (one surface) of the substrate, or may be formed on both surfaces (both surfaces). .
  • the hard coat layer of the present invention in the hard coat film of the present invention may be formed on only a part or on the entire surface of each surface of the substrate.
  • the base material in the hard coat film of the present invention is a base material of the hard coat film, and refers to a portion other than the hard coat layer of the present invention.
  • a base material well-known, such as a plastic base material, a metal base material, a ceramic base material, a semiconductor base material, a glass base material, a paper base material, a wood base material (wood base material), and the base material whose surface is a coating surface Thru
  • a plastic substrate (a substrate made of a plastic material) is preferable.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); Polyimide; Polycarbonate; Polyamide; Polyacetal; Polyphenylene oxide; Polyphenylene sulfide; Polyether Sulfone; Polyetheretherketone; Norbornene monomer homopolymer (addition polymer, ring-opening polymer, etc.), Norbornene monomer and olefin monomer copolymer (addition polymer, such as norbornene and ethylene copolymer) And cyclic olefin copolymers such as ring-opening polymers), cyclic polyolefins such as derivatives thereof; vinyl polymers (for example, acrylic resins such as polymethyl methacrylate (PMMA), police Styrene, butadiene resin (ABS resin, etc.); vinylidene polymers (eg, polyvinylidene chloride,
  • a substrate excellent in transparency is used as the plastic substrate.
  • a polyester film particularly PET, PEN
  • a cyclic polyolefin film a polycarbonate film
  • TAC film a TAC film
  • PMMA film a polymethyl methacrylate film
  • the plastic substrate is made of an antioxidant, an ultraviolet absorber, a light stabilizer, a heat stabilizer, a crystal nucleating agent, a flame retardant, a flame retardant aid, a filler, a plasticizer, and an impact modifier.
  • Other additives such as reinforcing agents, dispersants, antistatic agents, foaming agents, antibacterial agents and the like may be included.
  • an additive can also be used individually by 1 type and can also be used in combination of 2 or more type.
  • the plastic substrate may have a single-layer configuration or a multilayer (lamination) configuration, and the configuration (structure) is not particularly limited.
  • the above-mentioned plastic substrate is “plastic film / other layer” in which a layer other than the hard coat layer of the present invention (sometimes referred to as “other layer”) is formed on at least one surface of the plastic film.
  • it may be a plastic substrate having a laminated structure such as “other layer / plastic film / other layer”.
  • the other layers include hard coat layers other than the hard coat layer of the present invention.
  • the above-mentioned plastic material etc. are mentioned, for example.
  • Roughening, easy adhesion, antistatic treatment, sandblasting (sandmat treatment), corona discharge treatment, plasma treatment, chemical etching treatment, watermat treatment, flame are applied to part or all of the surface of the plastic substrate.
  • Known or conventional surface treatments such as treatment, acid treatment, alkali treatment, oxidation treatment, ultraviolet irradiation treatment, silane coupling agent treatment, etc. may be applied.
  • the plastic substrate may be an unstretched film or a stretched film (uniaxially stretched film, biaxially stretched film, etc.).
  • the plastic base material is, for example, a method of forming the above plastic material into a film shape to form a plastic base material (plastic film), and if necessary, an appropriate layer (for example, the above-mentioned other layers) with respect to the plastic film.
  • a layer or the like, or an appropriate surface treatment for example, a layer or the like, or an appropriate surface treatment.
  • a commercial item can also be used as said plastic base material.
  • the thickness of the substrate is not particularly limited, but can be appropriately selected from a range of 0.01 to 10,000 ⁇ m, for example.
  • the hard coat layer of the present invention in the hard coat film of the present invention is a layer constituting at least one surface layer in the hard coat film of the present invention, and the curable composition of the present invention (curable composition for forming a hard coat layer). It is a layer (cured product layer) formed by a cured product (resin cured product) obtained by curing the product.
  • the thickness of the hard coat layer of the present invention (the thickness of each hard coat layer when the hard coat layer of the present invention is provided on both surfaces of the substrate) is not particularly limited, but is preferably 1 to 200 ⁇ m, more preferably 3 ⁇ 150 ⁇ m.
  • the hard coat layer of the present invention is thin (for example, when the thickness is 5 ⁇ m or less), it is possible to maintain a high surface hardness (for example, the pencil hardness is set to H or more).
  • it is thick for example, when the thickness is 50 ⁇ m or more
  • the haze of the hard coat layer of the present invention is not particularly limited, but is preferably 1.5% or less, more preferably 1.0% or less in the case of a thickness of 50 ⁇ m.
  • the lower limit of haze is not particularly limited, but is 0.1%, for example. By setting the haze to 1.0% or less, for example, the haze tends to be suitable for use in applications that require very high transparency (for example, surface protection sheets for displays such as touch panels).
  • the haze of the hard coat layer of the present invention can be measured according to JIS K7136.
  • the total light transmittance of the hard coat layer of the present invention is not particularly limited, but is preferably 85% or more, more preferably 90% or more in the case of a thickness of 50 ⁇ m.
  • the upper limit of the total light transmittance is not particularly limited, but is 99%, for example. By setting the total light transmittance to 85% or more, for example, it tends to be suitable for use in applications that require extremely high transparency (for example, surface protection sheets for displays such as touch panels).
  • the total light transmittance of the hard coat layer of the present invention can be measured according to JIS K7361-1.
  • the hard coat film of the present invention may further have a surface protective film on the surface of the hard coat layer of the present invention.
  • a surface protective film When the hard coat film of the present invention has a surface protective film, the punchability of the hard coat film tends to be further improved. In the case of having a surface protective film in this way, for example, even if the hardness of the hard coat layer is very high and peeling or cracking from the base material is likely to occur at the time of punching, such a problem occurs. It is possible to perform punching using a Thomson blade without causing it to occur.
  • the surface protective film a known or commonly used surface protective film can be used, and is not particularly limited.
  • a film having a pressure-sensitive adhesive layer on the surface of a plastic film can be used.
  • the plastic film include polyester (polyethylene terephthalate, polyethylene naphthalate, etc.), polyolefin (polyethylene, polypropylene, cyclic polyolefin, etc.), polystyrene, acrylic resin, polycarbonate, epoxy resin, fluorine resin, silicone resin, diacetate resin, Examples thereof include plastic films formed from plastic materials such as triacetate resin, polyarylate, polyvinyl chloride, polysulfone, polyethersulfone, polyetheretherimide, polyimide, and polyamide.
  • the adhesive layer examples include acrylic adhesives, natural rubber adhesives, synthetic rubber adhesives, ethylene-vinyl acetate copolymer adhesives, ethylene- (meth) acrylate copolymer adhesives, Examples thereof include a pressure-sensitive adhesive layer formed of one or more known or commonly used pressure-sensitive adhesives such as a styrene-isoprene block copolymer pressure-sensitive adhesive and a styrene-butadiene block copolymer pressure-sensitive adhesive.
  • various additives for example, an antistatic agent, a slip agent, etc.
  • the plastic film and the pressure-sensitive adhesive layer may each have a single layer configuration, or may have a multilayer (multi-layer) configuration.
  • the thickness of a surface protection film is not specifically limited, It can select suitably.
  • Examples of the surface protective film include the product name “Sanitek” series (manufactured by Sanei Kaken Co., Ltd.), the product name “E-MASK” series (manufactured by Nitto Denko Corporation), and the product name “Mastak” series (Fujimori Industry (commercially available products such as the product name “Hitarex” series (manufactured by Hitachi Chemical Co., Ltd.) and the product name “Alphan” series (manufactured by Oji F-Tex Co., Ltd.) are available from the market.
  • the hard coat film of the present invention can be produced in accordance with a known or commonly used method for producing a hard coat film, and the production method is not particularly limited.
  • the hard coat film of the present invention is applied to at least one surface of the substrate. It can be produced by applying a curable composition (a curable composition for forming a hard coat layer), removing the solvent by drying as necessary, and then curing the curable composition (curable composition layer). .
  • the conditions for curing the curable composition are not particularly limited, and can be appropriately selected from, for example, the conditions for forming the cured product described above.
  • the hard coat layer of the present invention in the hard coat film of the present invention is more than the curable composition of the present invention (a curable composition for forming a hard coat layer) capable of forming a cured product having excellent flexibility and processability. Since it is the formed hard coat layer, the hard coat film of the present invention can be produced by a roll-to-roll method. By producing the hard coat film of the present invention by a roll-to-roll method, the productivity can be remarkably increased. As a method for producing the hard coat film of the present invention by a roll-to-roll method, a known or conventional roll-to-roll method can be adopted, and is not particularly limited.
  • the curable composition of the present invention (a curable composition for forming a hard coat layer) to at least one surface of the fed substrate, and then drying the solvent as necessary.
  • the step of forming the hard coat layer of the present invention by curing the curable composition (curable composition layer) (step B), and then the obtained hard coat film again in a roll And a step of continuously carrying out these steps (steps A to C).
  • the method may include steps other than steps A to C.
  • the thickness of the hard coat film of the present invention is not particularly limited, and can be appropriately selected from the range of 1 to 10,000 ⁇ m.
  • the pencil hardness of the hard coat layer surface of the present invention of the hard coat film of the present invention is not particularly limited, but is preferably H or more, more preferably 2H or more, and even more preferably 6H or more.
  • the pencil hardness can be evaluated according to the method described in JIS K5600-5-4.
  • the haze of the hard coat film of the present invention is not particularly limited, but is preferably 1.5% or less, more preferably 1.0% or less.
  • the lower limit of haze is not particularly limited, but is 0.1%, for example.
  • the haze of the hard coat film of the present invention can be easily controlled within the above range by using, for example, the above-mentioned transparent substrate as a substrate.
  • the haze can be measured according to JIS K7136.
  • the total light transmittance of the hard coat film of the present invention is not particularly limited, but is preferably 85% or more, more preferably 90% or more.
  • the upper limit of the total light transmittance is not particularly limited, but is 99%, for example.
  • the total light transmittance of the hard coat film of the present invention can be easily controlled within the above range by using, for example, the above-mentioned transparent substrate as the substrate.
  • the total light transmittance can be measured according to JIS K7361-1.
  • the hard coat film of the present invention has flexibility while maintaining high hardness and high heat resistance, and can be manufactured and processed in a roll-to-roll system, so it has high quality and high productivity. Also excellent.
  • the surface protective film is provided on the surface of the hard coat layer of the present invention, the punching processability is also excellent. For this reason, it can be preferably used for any application that requires such characteristics.
  • the hard coat film of the present invention can be used as, for example, a surface protective film for various products, a surface protective film for various product members or parts, and also used as a constituent material for various products, members or parts thereof.
  • the products include display devices such as liquid crystal displays and organic EL displays; input devices such as touch panels; solar cells; various home appliances; various electric and electronic products; portable electronic terminals (for example, game machines, personal computers, tablets, Smartphones, mobile phones, etc.) and various electrical and electronic products; various optical devices.
  • display devices such as liquid crystal displays and organic EL displays
  • input devices such as touch panels; solar cells; various home appliances; various electric and electronic products; portable electronic terminals (for example, game machines, personal computers, tablets, Smartphones, mobile phones, etc.) and various electrical and electronic products; various optical devices.
  • portable electronic terminals for example, game machines, personal computers, tablets, Smartphones, mobile phones, etc.
  • various electrical and electronic products for example, game machines, personal computers, tablets, Smartphones, mobile phones, etc.
  • various optical devices for example, an aspect used in a laminate of a hard coat film and a transparent conductive film in a touch panel, etc. It is done.
  • the molecular weight of the product was measured using Alliance HPLC system 2695 (manufactured by Waters), Refractive Index Detector 2414 (manufactured by Waters), column: Tskel GMH HR- M ⁇ 2 (manufactured by Tosoh Corp.), guard column: Tskel guard column H HR L (manufactured by Tosoh Corp.), column oven: COLUMN HEATER U-620 (manufactured by Sugai), solvent: THF, measurement conditions: 40 ° C. Further, the ratio of T2 body to T3 body [T3 body / T2 body] in the product was measured by 29 Si-NMR spectrum measurement using JEOL ECA500 (500 MHz).
  • FIG. 1 shows a 1 H-NMR chart and FIG. 2 shows a 29 Si-NMR chart of the obtained intermediate epoxy group-containing polyorganosilsesquioxane.
  • Example 1 Production of Epoxy Group-Containing Polyorganosilsesquioxane of the Present Invention (1)
  • the intermediate epoxy group-containing polyorganosilsesquioxane obtained in Production Example 1 was placed in a 1000 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube under a nitrogen stream.
  • the molecular weight was measured by sampling at 80 ° C.
  • Example 2 Production of Epoxy Group-Containing Polyorganosilsesquioxane of the Present Invention (2) Intermediate epoxy group-containing polyorganosyl obtained in the same manner as in Production Example 1 under a nitrogen stream in a 1000 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube A mixture (75 g) containing sesquioxane was charged, and 100 ppm (5.6 mg) of potassium carbonate and 2000 ppm (112 mg) of water with respect to the net content (56.2 g) of the intermediate epoxy group-containing polyorganosilsesquioxane. ), And when the molecular weight was measured by sampling when heated at 80 ° C.
  • Example 3 Production of Epoxy Group-Containing Polyorganosilsesquioxane of the Present Invention (3) Intermediate epoxy group-containing polyorganosyl obtained in the same manner as in Production Example 1 under a nitrogen stream in a 1000 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube A mixture (75 g) containing sesquioxane was charged, and 100 ppm (5.6 mg) of potassium carbonate and 2000 ppm (112 mg) of water with respect to the net content (56.2 g) of the intermediate epoxy group-containing polyorganosilsesquioxane. ) When added and heated at 80 ° C.
  • Production Example 2 Production of intermediate acrylic group-containing polyorganosilsesquioxane A 1000 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube was charged with 3- 370 mmol (80 g) of (acryloxy) propyltrimethoxysilane and 320 g of acetone were charged, and the temperature was raised to 50 ° C. After adding 10.144 g of a 5% aqueous potassium carbonate solution (3.67 mmol as potassium carbonate) in 5 minutes, 3670.0 mmol of water (66.08 g) was added over 20 minutes to the mixture thus obtained. Added. There was no significant temperature rise during the addition.
  • a 5% aqueous potassium carbonate solution 3.67 mmol as potassium carbonate
  • the polycondensation reaction was performed for 2 hours under a nitrogen stream while maintaining the temperature at 50 ° C. Thereafter, simultaneously with cooling the reaction solution, 160 g of methyl isobutyl ketone and 99.056 g of 5% saline were added. This solution was transferred to a 1 L separatory funnel, and 160 g of methyl isobutyl ketone was added again, followed by washing with water.
  • aqueous layer is extracted, washed with water until the lower layer solution is neutral, and after the upper layer solution is separated, the solvent is distilled off from the upper layer solution under conditions of 1 mmHg and 50 ° C., and methyl isobutyl ketone 22 71 g of a colorless transparent liquid product (intermediate acrylic group-containing polyorganosilsesquioxane) containing 0.5% by weight was obtained.
  • a colorless transparent liquid product intermediate acrylic group-containing polyorganosilsesquioxane
  • the ratio [T3 body / T2 body] of the T2 body and T3 body calculated from the 29 Si-NMR spectrum of the product was 13.4.
  • FIG. 7 shows a 1 H-NMR chart and FIG. 8 shows a 29 Si-NMR chart of the obtained intermediate acrylic group-containing polyorganosilsesquioxane, respectively.
  • Example 4 Production of acrylic group-containing polyorganosilsesquioxane of the present invention (1) Into a 1000 ml flask (reaction vessel) equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen inlet tube, the intermediate acrylic group-containing polyorganosilsesquioxane obtained in Production Example 2 was placed under a nitrogen stream. Into the intermediate acrylic group-containing polyorgano, 10 ppm (0.55 mg) of potassium hydroxide and 2000 ppm (110 mg) of water are added to the net content of silsesquioxane (55.0 g). When the molecular weight was measured by sampling at the time of heating at 40 ° C.
  • Nb / Et (2-norbornene-ethylene copolymer “TOPAS (registered trademark) 6017S-04” manufactured by Topas Advanced Polymers GmbH, glass transition temperature of 178 ° C.) and 1 part by weight of PVDC (polyvinylidene chloride)
  • release film A As the base material layer, a biaxially stretched polyethylene terephthalate film ("Embret S50" manufactured by Unitika Ltd., thickness 50 ⁇ m) was used, and the release agent coating solution A was coated on one side of this film by the Mayer bar coating method. The film was dried at a temperature of 100 ° C. for 1 minute to form a release layer having a thickness of 0.3 ⁇ m, and a release film A was obtained.
  • Embret S50 manufactured by Unitika Ltd., thickness 50 ⁇ m
  • a hard coat coating liquid A is coated on the release layer surface of the release film A by the Mayer bar coating method, dried at a temperature of 80 ° C. for 2 minutes, and further dried at a temperature of 150 ° C. for 8 minutes to give a thickness of 40 ⁇ m.
  • a hard coat layer was formed. When the surface of the obtained hard coat layer was touched with a finger, it was confirmed that no resin adhered to the finger and no surface tackiness was exhibited (tack-free).
  • K468HP anchor an epoxy resin anchor coat agent manufactured by Toyo Ink Co., Ltd. is coated by the Mayer bar coating method and dried at a temperature of 80 ° C.
  • K588HP adhesive gloss A varnish (vinyl chloride-vinyl acetate copolymer resin adhesive manufactured by Toyo Ink) was coated by the Mayer bar coating method and dried at a temperature of 80 ° C. for 30 seconds. An adhesive layer having a thickness of 4 ⁇ m was formed to obtain a transfer film A.
  • Transfer film A is placed in the mold of SE130DU-CI (Sumitomo Heavy Industries, Ltd., all-electric two-material injection molding machine), and transparent ABS (Toyolac, grade 920-555, manufactured by Toray Industries, Inc.)
  • the molded body 1 having an uncured hard coat layer was obtained by injection molding at 50 ° C. and a resin temperature of 230 ° C.
  • the hard coat surface of the obtained hard coat layer uncured molded body 1 is irradiated with ultraviolet rays from a high-pressure mercury lamp (manufactured by Eye Graphics Co., Ltd.) for about 10 seconds (accumulated light amount: about 400 mJ / cm 2 ). After that, an annealing treatment was further performed at 60 ° C. for 1 week to obtain a molded body 1 in which the hard coat layer was cured.
  • Comparative Example 1 Production of transfer film B and molded body ( production of transfer film B)
  • the hard coat layer was formed by coating Seika Beam HT-S (urethane acrylate hard coat agent manufactured by Dainichi Seika Kogyo Co., Ltd.) by the Mayer bar coating method, drying at 100 ° C. for 1 minute, and then a high-pressure mercury lamp ( Transfer film A except that a semi-hardened hard coat layer having a thickness of 4.5 ⁇ m was formed by UV curing (accumulated light amount: about 30 mJ / cm 2 ) for about 2 seconds with ultraviolet rays from Igraphics.
  • a transfer film B was obtained in the same manner.
  • R 1 represents a group containing a polymerizable functional group.
  • R a is a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group.
  • An alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom is shown.
  • R b represents a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group.
  • An alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom is shown.
  • R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the molar ratio of the structural unit represented by [the structural unit represented by the formula (I) / the structural unit represented by the formula (II)] is 20 or more and 500 or less, and the total amount of the siloxane structural unit (100 mol%).
  • the structural unit represented by the above formula (1) and the following formula (4) [In formula (4), R 1 is the same as that in formula (1). R c is the same as in formula (II). ]
  • the number average molecular weight is 2500 to 50000, and the molecular weight dispersity (weight average molecular weight / number average molecular weight) is 1.0 to 4.0. Polyorganosilsesquioxane.
  • R 1 is represented by the following formula (1a) [In Formula (1a), R 1a represents a linear or branched alkylene group (preferably an ethylene group, a trimethylene group, more preferably an ethylene group).
  • the above R 1 is a group containing a (meth) acryloxy group (preferably a 2-((meth) acryloxy) ethyl group or a 3-((meth) acryloxy) propyl group).
  • R 1 is 2- (3 ′, 4′-epoxycyclohexyl) ethyl group], 3- (acryloxy) propyl group or 3- (methacryloxy) propyl group
  • R 2 represents a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted group.
  • the lower limit of the ratio [T3 body / T2 body] of the structural unit (T3 body) represented by the above formula (I) and the structural unit (T2 body) represented by the above formula (II) is 21 ( The polyorganosilsesquioxane according to any one of [1] to [11], which is preferably 23, more preferably 25). [13] The polyorganosilsesquioxy according to any one of the above [1] to [12], wherein the upper limit of the [T3 body / T2 body] is 100 (preferably 50, more preferably 40) Sun.
  • the ratio (total amount) of the structural unit represented by the above formula (1) and the structural unit represented by the above formula (4) to the total amount (100 mol%) of the siloxane structural unit is 65 to 100 mol%.
  • the ratio (total amount) of the structural unit represented by the above formula (2) and the structural unit represented by the above formula (5) to the total amount (100 mol%) of the siloxane structural unit is 0 to 70 mol%.
  • a curable composition comprising the polyorganosilsesquioxane according to any one of [1] to [19].
  • the content (blending amount) of the polyorganosilsesquioxane is 70 wt% or more and less than 100 wt% (preferably 80 wt%) with respect to the total amount (100 wt%) of the curable composition excluding the solvent.
  • the curable composition according to the above [20] which is ⁇ 99.8 wt%, more preferably 90 to 99.5 wt%.
  • the ratio of the polyorganosilsesquioxane to the total amount (100% by weight) of the cationic curable compound or radical curable compound contained in the curable composition is 70 to 100% by weight (preferably 75 to 98).
  • the curable composition according to [23], wherein the curing catalyst is a photocationic polymerization initiator.
  • the content (blending amount) of the curing catalyst is 0.01 to 3.0 parts by weight (preferably 0.05 to 3.0 parts by weight) with respect to 100 parts by weight of the polyorganosilsesquioxane.
  • the content (blending amount) of the vinyl ether compound is the total amount of the cationic curable compound and the radical curable compound in the curable composition ( 100%) is 0.01 to 10% by weight (preferably 0.05 to 9% by weight, more preferably 1 to 8% by weight), and the curability according to [29] or [30] above Composition.
  • the curable composition according to any one of [20] to [31] which is a curable composition for forming a hard coat layer.
  • the thickness of the base material is 0.01 to 10,000 ⁇ m (preferably 2 to 250 ⁇ m, more preferably 5 to 100 ⁇ m, still more preferably 20 to 100 ⁇ m), according to the above [34] or [35] Transfer film.
  • the above [34] to [35], wherein the peel strength between the release layer and the hard coat layer is 30 to 500 mN / 24 mm (preferably 40 to 300 mN / 24 mm, more preferably 50 to 200 mN / 24 mm).
  • the transfer film as described in any one of the above.
  • the component forming the release layer is an unsaturated ester resin, an epoxy resin, an epoxy-melamine resin, an aminoalkyd resin, an acrylic resin, a melamine resin, a silicon resin, a fluorine resin, At least one selected from a cellulose resin, a urea resin resin, a polyolefin resin, a paraffin resin, and a cycloolefin resin (preferably a cycloolefin resin, particularly preferably a cycloolefin such as a 2-norbornene-ethylene copolymer)
  • the transfer film according to any one of [34] to [37], which is a copolymer resin).
  • the anchor coat layer is made of phenol resin, alkyd resin, melamine resin, epoxy resin, urea resin, unsaturated polyester resin, urethane resin, thermosetting polyimide, silicone resin, vinyl chloride-vinyl acetate copolymer Any of the above [34] to [46], which is at least one selected from the group consisting of a coalesced resin, acrylic resin, chlorinated rubber, polyamide resin, nitrified cotton resin, and cyclic polyolefin resin (preferably an epoxy resin)
  • the transfer film according to one.
  • the resin used for the adhesive layer is an acrylic resin, a vinyl chloride resin, a vinyl acetate resin, a vinyl chloride-vinyl acetate copolymer resin, a styrene-acrylic copolymer resin, a polyester resin, and
  • Film [50]
  • the transfer film has a thickness of 1 to 10000 ⁇ m (preferably 2 to 250 ⁇ m, more preferably 5 to 150 ⁇ m, still more preferably 25 to 150 ⁇ m).
  • the transfer film according to one.
  • An in-mold molded product obtained by transferring a layer (transfer layer) excluding the substrate on which the release layer is formed from the transfer film according to [52].
  • the substrate is a polyester film (particularly, polyethylene terephthalate, polyethylene naphthalate), a cyclic polyolefin film, a polycarbonate film, a triacetyl cellulose film, or a polymethyl methacrylate film. the film.
  • a method for producing a film
  • the uncured or semi-cured hard coat layer containing the polyorganosilsesquioxane of the present invention is tack-free and can be wound and handled in a roll shape, and a transfer film including the hard coat layer can be rolled. It can be handled with a toe roll. Therefore, the curable composition of the present invention can be preferably used as a curable composition for forming a hard coat layer of a transfer film or a hard coat film used for in-mold injection molding.

Abstract

本発明は、インモールド射出成型によって、高い表面硬度を有するハードコート層を形成でき、かつタックフリーの塗膜を形成してロールとして巻き取り可能な転写用フィルムのハードコート層の材料として好適なポリオルガノシルセスキオキサンを提供することを目的にする。 本発明は、下記式(1)で表される構成単位を有し、下記式(I)で表される構成単位と、下記式(II)で表される構成単位のモル比[式(I)で表される構成単位/式(II)で表される構成単位]が20以上500以下であり、シロキサン構成単位の全量(100モル%)に対する下記式(1)で表される構成単位及び下記式(4)で表される構成単位の割合が55~100モル%であり、数平均分子量が2500~50000、分子量分散度(重量平均分子量/数平均分子量)が1.0~4.0であることを特徴とするポリオルガノシルセスキオキサン、及び該ポリオルガノシルセスキオキサンを含む硬化性組成物に関する。

Description

ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム
 本発明は、ポリオルガノシルセスキオキサン、並びに該ポリオルガノシルセスキオキサンを含む硬化性組成物及びその硬化物に関する。また、本発明は、上記ポリオルガノシルセスキオキサンを含むハードコート液(ハードコート剤)より形成されたハードコート層を有する転写用フィルム(特に、インモールド射出成型転写用フィルム)、ハードコートフィルムに関する。また、本発明は、該転写用フィルムの転写層が転写されたインモールド成型品に関する。本願は、2017年5月17日に日本に出願した、特願2017-098511の優先権を主張し、その内容をここに援用する。
 プラスチック製品の表面に、木目などの装飾やハードコート性を施す製造工法として、インモールド射出成型法が用いられている。インモールド射出成型法は、基材フィルムの片面に離型層を形成し、離型層上に転写層(ハードコート層、アンカーコート層、着色層、接着層等を積層した層)を積層した転写用フィルムを金型内に挿入し、基材フィルム側を金型内面に密着するように設置し、金型を閉じた後に溶融した熱可塑性樹脂を金型内に転写層側から射出充填させた後、金型を開き成形物を取り出す際に、離型層とハードコート層が剥離することで、最表面に転写層を転写して成型品を得るものである。このようなインモールド射出成型転写用フィルムにおけるハードコート層を形成するための材料としては、主に、UVアクリルモノマーが使用されている(例えば、特許文献1参照)。上記ハードコート層表面の鉛筆硬度をさらに向上させるために、ハードコート層にナノ粒子が添加される例もある。
特開2014-231221号公報
 しかしながら、上述のUVアクリルモノマーを使用したハードコート層を有する転写用フィルムの鉛筆硬度は2H程度であり、未だ十分な表面硬度を有するものとは言えなかった。一般に、より硬度を高くするにはUVアクリルモノマーを多官能としたり、ハードコート層を厚膜化する方法が考えられるが、このような方法を採った場合には、ハードコート層の硬化収縮が大きくなり、その結果、ハードコート層にクラックが発生してしまうという問題があった。また、ハードコート層にナノ粒子を添加する場合には、該ナノ粒子とUVアクリルモノマーとの相溶性が悪いとナノ粒子が凝集し、ハードコート層が白化するという問題があった。
 また、基材フィルムの離型層にハードコート液等を塗工、乾燥後の未硬化又は半硬化のハードコート層の表面はタックフリーである必要がある。表面にタック性があると耐ブロッキング性が低下し、ロールに巻き取ることが困難になるからである。
 従って、本発明の目的は、インモールド射出成型法によって、高い表面硬度を有するハードコート層を形成でき、かつ未硬化又は半硬化の段階ではタックフリーの塗膜を形成してロールとして巻き取り可能な転写用フィルムのハードコート層の材料として好適なポリオルガノシルセスキオキサンを提供することにある。
 また、本発明の他の目的は、インモールド射出成型法によって、高い表面硬度を有するハードコート層を形成でき、かつ未硬化又は半硬化の段階ではタックフリーの塗膜を形成してロールとして巻き取り可能な転写用フィルムを提供することにある。
 また、本発明の他の目的は、上記転写用フィルムの転写層が転写され、高い表面硬度を有するインモールド成型品を提供することである。
 さらに、ハードコート層を有する転写用フィルムが使用される用途は近年ますます拡大しており、転写用フィルムが有するハードコート層には、上述のように高い表面硬度を有することに加えて、特に、優れた耐熱性を有することも要求されている。上述のUVアクリルモノマーを使用した転写用フィルムにおけるハードコート層は、このような耐熱性の観点でも十分なものとは言えなかった。
 また、ハードコート層を有するハードコートフィルムには、一般に、高い表面硬度に加えて、可とう性や加工性も高いことも求められる。可とう性や加工性に乏しいと、ロールトゥロール方式での製造や加工をすることができず、高い生産コストがかかるからである。
 本発明者らは、重合性官能基を含むシルセスキオキサン構成単位(単位構造)を有し、特定の構造の割合(T3体とT2体の割合、重合性官能基を含むシルセスキオキサン構成単位の割合)が特定範囲に制御され、高い数平均分子量を有し、かつ分子量分散度が特定範囲に制御されたポリオルガノシルセスキオキサンによると、該ポリオルガノシルセスキオキサンを含む未硬化又は半硬化のハードコート層の表面がタックフリーとなってロール状に巻き取って取り扱うことが可能であり、さらに、該ハードコート層を有する転写用フィルムを用いてインモールド射出成型を行うと、高い表面硬度を有するハードコート層で被覆された成型品を製造できることを見出した。本発明は、これらの知見に基づいて完成されたものである。
 すなわち、本発明は、下記式(1)
Figure JPOXMLDOC01-appb-C000010
[式(1)中、R1は、重合性官能基を含有する基を示す。]
で表される構成単位を有し、下記式(I)
Figure JPOXMLDOC01-appb-C000011
[式(I)中、Raは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。]
で表される構成単位と、下記式(II)
Figure JPOXMLDOC01-appb-C000012
[式(II)中、Rbは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。Rcは、水素原子又は炭素数1~4のアルキル基を示す。]
で表される構成単位のモル比[式(I)で表される構成単位/式(II)で表される構成単位]が20以上500以下であり、シロキサン構成単位の全量(100モル%)に対する上記式(1)で表される構成単位及び下記式(4)
Figure JPOXMLDOC01-appb-C000013
[式(4)中、R1は、式(1)におけるものと同じ。Rcは、式(II)におけるものと同じ。]
で表される構成単位の割合が55~100モル%であり、数平均分子量が2500~50000、分子量分散度(重量平均分子量/数平均分子量)が1.0~4.0であることを特徴とするポリオルガノシルセスキオキサンを提供する。
 前記ポリオルガノシルセスキオキサンは、さらに、下記式(2)
Figure JPOXMLDOC01-appb-C000014
[式(2)中、R2は、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。]
で表される構成単位を有していてもよい。
 前記ポリオルガノシルセスキオキサンにおいて、前記R2は、置換若しくは無置換のアリール基であってもよい。
 前記ポリオルガノシルセスキオキサンにおいて、前記重合性官能基は、エポキシ基であってもよい。
 前記ポリオルガノシルセスキオキサンにおいて、前記R1は、下記式(1a)
Figure JPOXMLDOC01-appb-C000015
[式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、下記式(1b)
Figure JPOXMLDOC01-appb-C000016
[式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、下記式(1c)
Figure JPOXMLDOC01-appb-C000017
[式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、又は、下記式(1d)
Figure JPOXMLDOC01-appb-C000018
[式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基であってもよい。
 また、本発明は、ポリオルガノシルセスキオキサンを含む硬化性組成物を提供する。
 前記硬化性組成物は、さらに、硬化触媒を含んでいてもよい。
 前記硬化性組成物において、前記硬化触媒は光カチオン重合開始剤であってもよい。
 前記硬化性組成物において、前記硬化触媒は熱カチオン重合開始剤であってもよい。
 前記硬化性組成物において、前記硬化触媒は光ラジカル重合開始剤であってもよい。
 前記硬化性組成物において、前記硬化触媒は熱ラジカル重合開始剤であってもよい。
 前記硬化性組成物は、さらに、ビニルエーテル化合物を含んでいてもよい。
 前記硬化性組成物は、さらに、分子内に水酸基を有するビニルエーテル化合物を含んでいてもよい。
 前記硬化性組成物は、ハードコート層形成用硬化性組成物であってもよい。
 また、本発明は、前記硬化性組成物の硬化物を提供する。
 また、本発明は、基材と、該基材の少なくとも一方の表面に形成された離型層上に、ハードコート層が積層された転写用フィルムであって、該ハードコート層が、前記ハードコート層形成用硬化性組成物を含むことを特徴とする転写用フィルムを提供する。
 前記転写用フィルムにおいて、前記ハードコート層上に、アンカーコート層及び接着剤層が、この順でさらに積層されていてもよい。
 前記転写用フィルムは、さらに、少なくとも1層の着色層を含んでいてもよい。
 前記転写用フィルムにおいて、前記ハードコート層の厚さが3~150μmであってもよい。
 前記転写用フィルムは、インモールド射出成型に使用される転写用フィルムであってもよい。
 また、本発明は、前記の転写用フィルムから前記離型層が形成された基材を除いた層(転写層)が転写されたインモールド成型品を提供する。
 また、本発明は、基材と、該基材の少なくとも一方の表面に形成されたハードコート層とを有するハードコートフィルムであって、該ハードコート層が、前記ハードコート層形成用硬化性組成物の硬化物層であることを特徴とするハードコートフィルムを提供する。
 前記ハードコートフィルムにおいて、前記ハードコート層の厚さは1~200μmであってもよい。
 前記ハードコートフィルムは、ロールトゥロール方式での製造が可能であってもよい。
 前記ハードコートフィルムは、前記ハードコート層表面に表面保護フィルムを有していてもよい。
 また、本発明は、ロール状に巻いた基材を繰り出す工程Aと、繰り出した基材の少なくとも一方の表面に前記ハードコート層形成用硬化性組成物を塗布し、次いで、該硬化性組成物を硬化させることによりハードコート層を形成する工程Bと、その後、得られたハードコートフィルムを再びロールに巻き取る工程Cとを含み、工程A~Cを連続的に実施することを特徴とするハードコートフィルムの製造方法を提供する。
 本発明のポリオルガノシルセスキオキサンは上記構成を有するため、該ポリオルガノシルセスキオキサンを必須成分として含むハードコート層を有する転写用フィルムを用いてインモールド射出成型を行うことにより、高い表面硬度を有するハードコート層で被覆された成型品を製造することができる。また、本発明のポリオルガノシルセスキオキサンを含む未硬化又は半硬化のハードコート層がタックフリーとなってロール状に巻き取って取り扱うことができ、該ハードコート層を含む転写用フィルムをロールトゥロールで取り扱うことが可能であるため、インモールド射出成型に好適に使用することができる。このため、本発明の転写用フィルムは、品質面とコスト面の両方において優れる。
製造例1で得られた中間体エポキシ基含有ポリオルガノシルセスキオキサンの1H-NMRチャートである。 製造例1で得られた中間体エポキシ基含有ポリオルガノシルセスキオキサンの29Si-NMRチャートである。 実施例1で得られた本発明のエポキシ基含有ポリオルガノシルセスキオキサンの1H-NMRチャートである。 実施例1で得られた本発明のエポキシ基含有ポリオルガノシルセスキオキサンの29Si-NMRチャートである。 実施例3で得られた本発明のエポキシ基含有ポリオルガノシルセスキオキサンの1H-NMRチャートである。 実施例3で得られた本発明のエポキシ基含有ポリオルガノシルセスキオキサンの29Si-NMRチャートである。 製造例2で得られた中間体アクリル基含有ポリオルガノシルセスキオキサンの1H-NMRチャートである。 製造例2で得られた中間体アクリル基含有ポリオルガノシルセスキオキサンの29Si-NMRチャートである。 実施例4で得られた本発明のアクリル基含有ポリオルガノシルセスキオキサンの1H-NMRチャートである。 実施例4で得られた本発明のアクリル基含有ポリオルガノシルセスキオキサンの29Si-NMRチャートである。
[ポリオルガノシルセスキオキサン]
 本発明のポリオルガノシルセスキオキサン(シルセスキオキサン)は、下記式(1)で表される構成単位を有し;下記式(I)で表される構成単位(「T3体」と称する場合がある)と、下記式(II)で表される構成単位(「T2体」と称する場合がある)のモル比[式(I)で表される構成単位/式(II)で表される構成単位;「T3体/T2体」と記載する場合がある]が20以上500以下であり;シロキサン構成単位の全量(100モル%)に対する下記式(1)で表される構成単位及び後述の式(4)で表される構成単位の割合(総量)が55~100モル%であり;数平均分子量が2500~50000、分子量分散度[重量平均分子量/数平均分子量]が1.0~4.0であることを特徴とする。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 上記式(1)で表される構成単位は、一般に[RSiO3/2]で表されるシルセスキオキサン構成単位(いわゆるT単位)である。なお、上記式中のRは、水素原子又は一価の有機基を示し、以下においても同じである。上記式(1)で表される構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(a)で表される化合物)の加水分解及び縮合反応により形成される。
 式(1)中のR1は、重合性官能基を含有する基(一価の基)を示す。即ち、本発明のポリオルガノシルセスキオキサンは、分子内に重合性官能基を少なくとも有する、カチオン硬化性化合物(カチオン重合性官能基を有する化合物)又はラジカル硬化性化合物(ラジカル重合性官能基を有する化合物)である。
 上記重合性官能基を含有する基における「カチオン重合性官能基」としては、カチオン重合性を有するものである限り特に限定されず、例えば、エポキシ基、オキセタン基、ビニルエーテル基、ビニルフェニル基等が挙げられる。
 上記重合性官能基を含有する基における「ラジカル重合性官能基」としては、ラジカル重合性を有するものである限り特に限定されず、例えば、(メタ)アクリルオキシ基、(メタ)アクリルアミド基、ビニル基、ビニルチオ基等が挙げられる。
 重合性官能基としては、硬化物の表面硬度(例えば、4H以上)の観点から、エポキシ基、(メタ)アクリルオキシ基等が好ましく、エポキシ基が特に好ましい。
 上記重合性官能基を含有する基としては、重合性官能基を有する公知乃至慣用の基が挙げられ、特に限定されないが、硬化性組成物の硬化性、硬化物の表面硬度や耐熱性の観点で、下記式(1a)で表される基、下記式(1b)で表される基、下記式(1c)で表される基、下記式(1d)で表される基が好ましく、より好ましくは下記式(1a)で表される基、下記式(1c)で表される基、さらに好ましくは下記式(1a)で表される基である。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 上記式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基を示す。直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、デカメチレン基等の炭素数1~10の直鎖又は分岐鎖状のアルキレン基が挙げられる。中でも、R1aとしては、硬化物の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1bとしては、硬化物の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1cとしては、硬化物の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基を示し、R1aと同様の基が例示される。中でも、R1dとしては、硬化物の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 式(1)中のR1としては、特に、上記式(1a)で表される基であって、R1aがエチレン基である基[中でも、2-(3’,4’-エポキシシクロヘキシル)エチル基]が好ましい。
 上記オキセタン基を含有する基としては、オキセタン環を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、オキセタン基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)をオキセタン基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物の耐熱性の観点で、3-オキセタニル基、オキセタン-3-イルメチル基、3-エチルオキセタン-3-イルメチル基、2-(オキセタン-3-イル)エチル基、2-(3-エチルオキセタン-3-イル)エチル基、3-(オキセタン-3-イルメトキシ)プロピル基、3-(3-エチルオキセタン-3-イルメトキシ)プロピル基等が好ましい。
 上記ビニルエーテル基を含有する基としては、ビニルエーテル基を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、ビニルエーテル基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)をビニルエーテル基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物の耐熱性の観点で、ビニルオキシメチル基、2-(ビニルオキシ)エチル基、3-(ビニルオキシ)プロピル基等が好ましい。
 上記ビニルフェニル基を含有する基としては、ビニルフェニル基を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、ビニルフェニル基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)をビニルフェニル基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物の耐熱性の観点で、4-ビニルフェニル基、3-ビニルフェニル基、2-ビニルフェニル基等が好ましい。
 上記(メタ)アクリルオキシ基を含有する基としては、(メタ)アクリルオキシ基を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、(メタ)アクリルオキシ基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)を(メタ)アクリルオキシ基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物の耐熱性の観点で、2-((メタ)アクリルオキシ)エチル基、3-((メタ)アクリルオキシ)プロピル基等が好ましい。
 上記(メタ)アクリルアミド基を含有する基としては、(メタ)アクリルアミド基を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、(メタ)アクリルアミド基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)を(メタ)アクリルアミド基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物の耐熱性の観点で、2-((メタ)アクリルアミド)エチル基、3-((メタ)アクリルアミド)プロピル基等が好ましい。
 上記ビニル基を含有する基としては、ビニル基を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、ビニル基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)をビニル基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物の耐熱性の観点で、ビニル基、ビニルメチル基、2-ビニルエチル基、3-ビニルプロピル基等が好ましい。
 上記ビニルチオ基を含有する基としては、ビニルチオ基を有する公知乃至慣用の基が挙げられ、特に限定されないが、例えば、ビニルチオ基そのもの、アルキル基(好ましくは炭素数1~10、より好ましくは炭素数1~5のアルキル基)の水素原子(通常1つ以上、好ましくは1つの水素原子)をビニルチオ基で置換してなる基が挙げられる。硬化性組成物の硬化性、硬化物の耐熱性の観点で、ビニルチオメチル基、2-(ビニルチオ)エチル基、3-(ビニルチオ)プロピル基等が好ましい。
 式(1)中のR1としては、エポキシ基を含有する基、(メタ)アクリルオキシ基を含有する基が好ましく、特に、上記式(1a)で表される基であって、R1aがエチレン基である基[中でも、2-(3’,4’-エポキシシクロヘキシル)エチル基]、3-(アクリルオキシ)プロピル基、3-(メタクリルオキシ)プロピル基が好ましい。
 本発明のポリオルガノシルセスキオキサンは、上記式(1)で表される構成単位を1種のみ有するものであってもよいし、上記式(1)で表される構成単位を2種以上有するものであってもよい。
 本発明のポリオルガノシルセスキオキサンは、シルセスキオキサン構成単位[RSiO3/2]として、上記式(1)で表される構成単位以外にも、下記式(2)で表される構成単位を有していてもよい。
Figure JPOXMLDOC01-appb-C000026
 上記式(2)で表される構成単位は、一般に[RSiO3/2]で表されるシルセスキオキサン構成単位(T単位)である。即ち、上記式(2)で表される構成単位は、対応する加水分解性三官能シラン化合物(具体的には、例えば、後述の式(b)で表される化合物)の加水分解及び縮合反応により形成される。
 上記式(2)中のR2は、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。上記アリール基としては、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。上記アラルキル基としては、例えば、ベンジル基、フェネチル基等が挙げられる。上記シクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。上記アルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。上記アルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基等の直鎖又は分岐鎖状のアルケニル基が挙げられる。
 上述の置換アリール基、置換アラルキル基、置換シクロアルキル基、置換アルキル基、置換アルケニル基としては、上述のアリール基、アラルキル基、シクロアルキル基、アルキル基、アルケニル基のそれぞれにおける水素原子又は主鎖骨格の一部若しくは全部が、エーテル基、エステル基、カルボニル基、シロキサン基、ハロゲン原子(フッ素原子等)、アクリル基、メタクリル基、メルカプト基、アミノ基、及びヒドロキシ基(水酸基)からなる群より選択された少なくとも1種で置換された基が挙げられる。
 中でも、R2としては、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基が好ましく、より好ましくは置換若しくは無置換のアリール基、さらに好ましくはフェニル基である。
 本発明のポリオルガノシルセスキオキサンにおける上述の各シルセスキオキサン構成単位(式(1)で表される構成単位、式(2)で表される構成単位)の割合は、これらの構成単位を形成するための原料(加水分解性三官能シラン)の組成により適宜調整することが可能である。
 本発明のポリオルガノシルセスキオキサンは、上記式(1)で表される構成単位及び式(2)で表される構成単位以外にも、さらに、上記式(1)で表される構成単位及び式(2)で表される構成単位以外のシルセスキオキサン構成単位[RSiO3/2]、[R3SiO1/2]で表される構成単位(いわゆるM単位)、[R2SiO2/2]で表される構成単位(いわゆるD単位)、及び[SiO4/2]で表される構成単位(いわゆるQ単位)からなる群より選択される少なくとも1種のシロキサン構成単位を有していてもよい。なお、上記式(1)で表される構成単位及び式(2)で表される構成単位以外のシルセスキオキサン構成単位としては、例えば、下記式(3)で表される構成単位等が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 本発明のポリオルガノシルセスキオキサンにおける上記式(I)で表される構成単位(T3体)と、上記式(II)で表される構成単位(T2体)の割合[T3体/T2体]は、上述のように20以上500以下である。上記割合[T3体/T2体]の下限値は、好ましくは21、より好ましくは23、さらに好ましくは25である。上記割合[T3体/T2体]を20以上とすることにより、未硬化又は半硬化のハードコート層としたときの表面がタックフリーになりやすく、耐ブロッキング性が向上して、ロールに巻き取り取りやすくなり、インモールド射出成型の転写用フィルムのハードコート層の成分として好ましく使用することができ、また、硬化物やハードコート層の表面硬度や接着性が著しく向上する。一方、上記割合[T3体/T2体]の上限値は、好ましくは100、より好ましくは50、さらに好ましくは40である。上記割合[T3体/T2体]を500以下とすることにより、硬化性組成物における他の成分との相溶性が向上し、粘度も抑制もされるため、取扱いが容易となり、ハードコート層として塗工しやすくなる。
 なお、上記式(I)で表される構成単位をより詳細に記載すると、下記式(I’)で表される。また、上記式(II)で表される構成単位をより詳細に記載すると、下記式(II’)で表される。下記式(I’)で表される構造中に示されるケイ素原子に結合した3つの酸素原子はそれぞれ、他のケイ素原子(式(I’)に示されていないケイ素原子)と結合している。一方、下記式(II’)で表される構造中に示されるケイ素原子の上と下に位置する2つの酸素原子はそれぞれ、他のケイ素原子(式(II’)に示されていないケイ素原子)に結合している。即ち、上記T3体及びT2体は、いずれも対応する加水分解性三官能シラン化合物の加水分解及び縮合反応により形成される構成単位(T単位)である。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 上記式(I)中のRa(式(I’)中のRaも同じ)及び式(II)中のRb(式(II’)中のRbも同じ)は、それぞれ、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。Ra及びRbの具体例としては、上記式(1)におけるR1、上記式(2)におけるR2と同様のものが例示される。なお、式(I)中のRa及び式(II)中のRbは、それぞれ、本発明のポリオルガノシルセスキオキサンの原料として使用した加水分解性三官能シラン化合物におけるケイ素原子に結合した基(アルコキシ基及びハロゲン原子以外の基;例えば、後述の式(a)~(c)におけるR1、R2、水素原子等)に由来する。
 上記式(II)中のRc(式(II’)中のRcも同じ)は、水素原子又は炭素数1~4のアルキル基を示す。炭素数1~4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基等の炭素数1~4の直鎖又は分岐鎖状のアルキル基が挙げられる。式(II)中のRcにおけるアルキル基は、一般的には、本発明のポリオルガノシルセスキオキサンの原料として使用した加水分解性シラン化合物におけるアルコキシ基(例えば、後述のX1~X3としてのアルコキシ基等)を形成するアルキル基に由来する。
 本発明のポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]は、例えば、29Si-NMRスペクトル測定により求めることができる。29Si-NMRスペクトルにおいて、上記式(I)で表される構成単位(T3体)におけるケイ素原子と、上記式(II)で表される構成単位(T2体)におけるケイ素原子とは、異なる位置(化学シフト)にシグナル(ピーク)を示すため、これらそれぞれのピークの積分比を算出することにより、上記割合[T3体/T2体]が求められる。具体的には、例えば、本発明のポリオルガノシルセスキオキサンが、上記式(1)で表され、R1が2-(3’,4’-エポキシシクロヘキシル)エチル基である構成単位を有する場合には、上記式(I)で表される構造(T3体)におけるケイ素原子のシグナルは-64~-70ppmに現れ、上記式(II)で表される構造(T2体)におけるケイ素原子のシグナルは-54~-60ppmに現れる。従って、この場合、-64~-70ppmのシグナル(T3体)と-54~-60ppmのシグナル(T2体)の積分比を算出することによって、上記割合[T3体/T2体]を求めることができる。R1が2-(3’,4’-エポキシシクロヘキシル)エチル基以外の重合性官能基を含む基である場合も、同様にして[T3体/T2体]を求めることができる。
 本発明のポリオルガノシルセスキオキサンの29Si-NMRスペクトルは、例えば、下記の装置及び条件により測定することができる。
 測定装置:商品名「JNM-ECA500NMR」(日本電子(株)製)
 溶媒:重クロロホルム
 積算回数:1800回
 測定温度:25℃
 本発明のポリオルガノシルセスキオキサンの上記割合[T3体/T2体]が20以上、500以下であることは、本発明のポリオルガノシルセスキオキサンにおいてT3体に対してT2体の存在量が相対的に少なく、シラノールの加水分解・縮合反応がより進行していることを意味する。このようなT2体としては、例えば、下記式(4)で表される構成単位、下記式(5)で表される構成単位、下記式(6)で表される構成単位等が挙げられる。下記式(4)におけるR1及び下記式(5)におけるR2は、それぞれ上記式(1)におけるR1及び上記式(2)におけるR2と同じである。下記式(4)~(6)におけるRcは、式(II)におけるRcと同じく、水素原子又は炭素数1~4のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 本発明のポリオルガノシルセスキオキサンは、カゴ型、不完全カゴ型、ラダー型、ランダム型のいずれのシルセスキオキサン構造を有していてもよく、これらシルセスキオキサン構造の2以上を組み合わせて有していてもよい。
 本発明のポリオルガノシルセスキオキサンにおけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(1)で表される構成単位及び上記式(4)で表される構成単位の割合(総量)は、上述のように、55~100モル%であり、好ましくは65~100モル%、さらに好ましくは80~99モル%である。上記割合を55モル%以上とすることにより、硬化性組成物の硬化性が向上し、また、硬化物の表面硬度や接着性が著しく高くなる。なお、本発明のポリオルガノシルセスキオキサンにおける各シロキサン構成単位の割合は、例えば、原料の組成やNMRスペクトル測定等により算出できる。
 本発明のポリオルガノシルセスキオキサンにおけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(2)で表される構成単位及び上記式(5)で表される構成単位の割合(総量)は、特に限定されないが、0~70モル%が好ましく、より好ましくは0~60モル%、さらに好ましくは0~40モル%、特に好ましくは1~15モル%である。上記割合を70モル%以下とすることにより、相対的に式(1)で表される構成単位及び式(4)で表される構成単位の割合を多くすることができるため、硬化性組成物の硬化性が向上し、硬化物の表面硬度や接着性がより高くなる傾向がある。一方、上記割合を1モル%以上とすることにより、硬化物のガスバリア性が向上する傾向がある。
 本発明のポリオルガノシルセスキオキサンにおけるシロキサン構成単位の全量[全シロキサン構成単位;M単位、D単位、T単位、及びQ単位の全量](100モル%)に対する、上記式(1)で表される構成単位、上記式(2)で表される構成単位、上記式(4)で表される構成単位、及び上記式(5)で表される構成単位の割合(総量)は、特に限定されないが、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。上記割合を60モル%以上とすることにより、硬化物の表面硬度や接着性がより高くなる傾向がある。
 本発明のポリオルガノシルセスキオキサンのゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)は、上述のように、2500~50000であり、好ましくは2800~10000、より好ましくは3000~8000である。数平均分子量を2500以上とすることにより、未硬化又は半硬化のハードコート層としたときの表面がタックフリーになりやすく、耐ブロッキング性が向上して、ロールに巻き取り取りやすくなり、インモールド射出成型の転写用フィルムのハードコート層の成分として好ましく使用することができ、また、硬化物の耐熱性、耐擦傷性、接着性がより向上する。一方、数平均分子量を50000以下とすることにより、硬化性組成物における他の成分との相溶性が向上し、硬化物の耐熱性がより向上する。
 本発明のポリオルガノシルセスキオキサンのゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は、上述のように、1.0~4.0であり、好ましくは1.1~3.0、より好ましくは1.2~2.5である。分子量分散度を4.0以下とすることにより、硬化物の表面硬度や接着性がより高くなる。一方、分子量分散度を1.1以上とすることにより、液状となりやすく、取り扱い性が向上する傾向がある。
 なお、本発明のポリオルガノシルセスキオキサンの数平均分子量、分子量分散度は、下記の装置及び条件により測定することができる。
 測定装置:商品名「LC-20AD」((株)島津製作所製)
 カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)
 測定温度:40℃
 溶離液:THF、試料濃度0.1~0.2重量%
 流量:1mL/分
 検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)
 分子量:標準ポリスチレン換算
 本発明のポリオルガノシルセスキオキサンの空気雰囲気下における5%重量減少温度(Td5)は、特に限定されないが、330℃以上(例えば、330~450℃)が好ましく、より好ましくは340℃以上、さらに好ましくは350℃以上である。5%重量減少温度が330℃以上であることにより、硬化物の耐熱性がより向上する傾向がある。特に、本発明のポリオルガノシルセスキオキサンが、上記割合[T3体/T2体]が20以上500以下であって、数平均分子量が2500~50000、分子量分散度が1.0~4.0であるものであることにより、その5%重量減少温度は330℃以上に制御される。なお、5%重量減少温度は、一定の昇温速度で加熱した時に加熱前の重量の5%が減少した時点での温度であり、耐熱性の指標となる。上記5%重量減少温度は、TGA(熱重量分析)により、空気雰囲気下、昇温速度5℃/分の条件で測定することができる。
 本発明のポリオルガノシルセスキオキサンは、公知乃至慣用のポリシロキサンの製造方法により製造することができ、特に限定されないが、例えば、1種又は2種以上の加水分解性シラン化合物を加水分解及び縮合させる方法により製造できる。但し、上記加水分解性シラン化合物としては、上述の式(1)で表される構成単位を形成するための加水分解性三官能シラン化合物(下記式(a)で表される化合物)を必須の加水分解性シラン化合物として使用する必要がある。
 より具体的には、例えば、本発明のポリオルガノシルセスキオキサンにおけるシルセスキオキサン構成単位(T単位)を形成するための加水分解性シラン化合物である下記式(a)で表される化合物、必要に応じてさらに、下記式(b)で表される化合物、下記式(c)で表される化合物を、加水分解及び縮合させる方法により、本発明のポリオルガノシルセスキオキサンを製造できる。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 上記式(a)で表される化合物は、本発明のポリオルガノシルセスキオキサンにおける式(1)で表される構成単位を形成する化合物である。式(a)中のR1は、上記式(1)におけるR1と同じく、重合性官能基を含有する基を示す。即ち、式(a)中のR1としては、上記式(1a)で表される基、上記式(1b)で表される基、上記式(1c)で表される基、上記式(1d)で表される基が好ましく、より好ましくは上記式(1a)で表される基、上記式(1c)で表される基、さらに好ましくは上記式(1a)で表される基、特に好ましくは上記式(1a)で表される基であって、R1aがエチレン基である基[中でも、2-(3’,4’-エポキシシクロヘキシル)エチル基]である。
 上記式(a)中のX1は、アルコキシ基又はハロゲン原子を示す。X1におけるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等の炭素数1~4のアルコキシ基等が挙げられる。また、X1におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。中でもX1としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX1は、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(b)で表される化合物は、本発明のポリオルガノシルセスキオキサンにおける式(2)で表される構成単位を形成する化合物である。式(b)中のR2は、上記式(2)におけるR2と同じく、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。即ち、式(b)中のR2としては、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基が好ましく、より好ましくは置換若しくは無置換のアリール基、さらに好ましくはフェニル基である。
 上記式(b)中のX2は、アルコキシ基又はハロゲン原子を示す。X2の具体例としては、X1として例示したものが挙げられる。中でも、X2としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX2は、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(c)で表される化合物は、本発明のポリオルガノシルセスキオキサンにおける式(3)で表される構成単位を形成する化合物である。上記式(c)中のX3は、アルコキシ基又はハロゲン原子を示す。X3の具体例としては、X1として例示したものが挙げられる。中でも、X3としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX3は、それぞれ同一であってもよいし、異なっていてもよい。
 上記加水分解性シラン化合物としては、上記式(a)~(c)で表される化合物以外の加水分解性シラン化合物を併用してもよい。例えば、上記式(a)~(c)で表される化合物以外の加水分解性三官能シラン化合物、M単位を形成する加水分解性単官能シラン化合物、D単位を形成する加水分解性二官能シラン化合物、Q単位を形成する加水分解性四官能シラン化合物等が挙げられる。
 上記加水分解性シラン化合物の使用量や組成は、所望する本発明のポリオルガノシルセスキオキサンの構造に応じて適宜調整できる。例えば、上記式(a)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、55~100モル%が好ましく、より好ましくは65~100モル%、さらに好ましくは80~99モル%である。
 また、上記式(b)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、0~70モル%が好ましく、より好ましくは0~60モル%、さらに好ましくは0~40モル%、特に好ましくは1~15モル%である。
 さらに、使用する加水分解性シラン化合物の全量(100モル%)に対する式(a)で表される化合物と式(b)で表される化合物の割合(総量の割合)は、特に限定されないが、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。
 また、上記加水分解性シラン化合物として2種以上を併用する場合、これらの加水分解性シラン化合物の加水分解及び縮合反応は、同時に行うこともできるし、逐次行うこともできる。上記反応を逐次行う場合、反応を行う順序は特に限定されない。
 上記加水分解性シラン化合物の加水分解及び縮合反応は、1段階で行ってもよいし、2段階以上に分けて行ってもよいが、本発明のポリオルガノシルセスキオキサンを効率よく製造するためには、2段階以上(好ましくは、2段階)で加水分解及び縮合反応を行うことが好ましい。以下に、加水分解性シラン化合物の加水分解及び縮合反応を2段階で行う態様について説明するが、本発明のポリオルガノシルセスキオキサンの製造方法はこれに限定されない。
 本発明の加水分解及び縮合反応を2段階で行う場合、好ましくは、第1段目の加水分解及び縮合反応で、上記割合[T3体/T2体]が5以上20未満であり、数平均分子量が1000~3000であるポリオルガノシルセスキオキサン(以下、「中間体ポリオルガノシルセスキオキサン」と称する)を得、第2段目で、該中間体ポリオルガノシルセスキオキサンを、さらに加水分解及び縮合反応に付すことにより、本発明のポリオルガノシルセスキオキサンを得ることができる。
 第1段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。中でも溶媒の存在下で行うことが好ましい。上記溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール等が挙げられる。上記溶媒としては、中でも、ケトン、エーテルが好ましい。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 第1段目の加水分解及び縮合反応における溶媒の使用量は、特に限定されず、加水分解性シラン化合物の全量100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。
 第1段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、酸触媒であってもアルカリ触媒であってもよいが、エポキシ基等の重合性官能基の分解を抑制するためにはアルカリ触媒が好ましい。上記酸触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸等の鉱酸;リン酸エステル;酢酸、蟻酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸;活性白土等の固体酸;塩化鉄等のルイス酸等が挙げられる。上記アルカリ触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩;炭酸マグネシウム等のアルカリ土類金属の炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム等のアルカリ金属の有機酸塩(例えば、酢酸塩);酢酸マグネシウム等のアルカリ土類金属の有機酸塩(例えば、酢酸塩);リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、カリウムエトキシド、カリウムt-ブトキシド等のアルカリ金属のアルコキシド;ナトリウムフェノキシド等のアルカリ金属のフェノキシド;トリエチルアミン、N-メチルピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等のアミン類(第3級アミン等);ピリジン、2,2’-ビピリジル、1,10-フェナントロリン等の含窒素芳香族複素環化合物等が挙げられる。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。
 第1段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.002~0.200モルの範囲内で、適宜調整することができる。
 第1段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.5~20モルの範囲内で、適宜調整することができる。
 第1段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。
 第1段目の加水分解及び縮合反応の反応条件としては、特に、中間体ポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が5以上20未満となるような反応条件を選択することが重要である。第1段目の加水分解及び縮合反応の反応温度は、特に限定されないが、40~100℃が好ましく、より好ましくは45~80℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]をより効率的に5以上20未満に制御できる傾向がある。また、第1段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.1~10時間が好ましく、より好ましくは1.5~8時間である。また、第1段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第1段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。
 上記第1段目の加水分解及び縮合反応により、中間体ポリオルガノシルセスキオキサンが得られる。上記第1段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等の重合性官能基の分解を抑制するために触媒を中和することが好ましい。また、中間体ポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。
 第1段目の加水分解及び縮合反応により得られた中間体ポリオルガノシルセスキオキサンを、第2段目の加水分解及び縮合反応に付すことにより、本発明のポリオルガノシルセスキオキサンを製造することができる。
 第2段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。第2段目の加水分解及び縮合反応を溶媒の存在下で行う場合、第1段目の加水分解及び縮合反応で挙げられた溶媒を用いることができる。第2段目の加水分解及び縮合反応の溶媒としては、第1段目の加水分解及び縮合反応の反応溶媒、抽出溶媒等を含む中間体ポリオルガノシルセスキオキサンをそのまま、又は一部留去したものを用いてもよい。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 第2段目の加水分解及び縮合反応において溶媒を使用する場合、その使用量は、特に限定されず、中間体ポリオルガノシルセスキオキサン100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。
 第2段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、第1段目の加水分解及び縮合反応で挙げられた触媒を用いることができ、エポキシ基等の重合性官能基の分解を抑制するためには、好ましくはアルカリ触媒であり、さらに好ましくは水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩である。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。
 第2段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、中間体ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは0.01~10000ppm、より好ましくは0.1~1000ppmの範囲内で、適宜調整することができる。
 第2段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、中間体ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは10~100000ppm、より好ましくは100~20000ppmの範囲内で、適宜調整することができる。水の使用量が100000ppmよりも大きいと、ポリオルガノシルセスキオキサンの割合[T3体/T2体]や数平均分子量が、所定の範囲に制御しにくくなる傾向がある。
 第2段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。
 第2段目の加水分解及び縮合反応の反応条件としては、特に、本発明のポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が20以上500以下、数平均分子量が2500~50000となるような反応条件を選択することが重要である。第2段目の加水分解及び縮合反応の反応温度は、使用する触媒により変動し、特に限定されないが、5~200℃が好ましく、より好ましくは30~100℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]、数平均分子量をより効率的に所望の範囲に制御できる傾向がある。また、第2段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.5~1000時間が好ましく、より好ましくは1~500時間である。
 また、上記反応温度の範囲内にて加水分解及び縮合反応を行いながら適時サンプリングを行って、上記割合[T3体/T2体]、数平均分子量をモニターしながら反応を行うことによって、所望の割合[T3体/T2体]、数平均分子量を有する本発明のポリオルガノシルセスキオキサンを得ることもできる。
 第2段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第2段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。
 上記第2段目の加水分解及び縮合反応により、本発明のポリオルガノシルセスキオキサンが得られる。上記第2段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等の重合性官能基の分解を抑制するために触媒を中和することが好ましい。また、本発明のポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。
 本発明のポリオルガノシルセスキオキサンは上述の構成を有するため、該ポリオルガノシルセスキオキサンを必須成分として含む硬化性組成物を塗工した未硬化又は半硬化のハードコート層はタックフリーとなり、耐ブロッキング性が向上するため、ロールに巻き取って取り扱うことが可能になり、例えば、インモールド射出成転写用フィルムのハードコート層の成分として好適に使用することができる。また、当該硬化性組成物を硬化させることにより、高い表面硬度かつ耐熱性を有し、可とう性及び加工性に優れた硬化物を形成できる。また、接着性に優れた硬化物を形成できる。
[硬化性組成物]
 本発明の硬化性組成物は、上述の本発明のポリオルガノシルセスキオキサンを必須成分として含む硬化性組成物(硬化性樹脂組成物)である。後述のように、本発明の硬化性組成物は、さらに、硬化触媒(特に光カチオン重合開始剤、ラジカル重合性開始剤)や表面調整剤あるいは表面改質剤等のその他の成分を含んでいてもよい。
 本発明の硬化性組成物において本発明のポリオルガノシルセスキオキサンは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の硬化性組成物における本発明のポリオルガノシルセスキオキサンの含有量(配合量)は、特に限定されないが、溶媒を除く硬化性組成物の全量(100重量%)に対して、70重量%以上、100重量%未満が好ましく、より好ましくは80~99.8重量%、さらに好ましくは90~99.5重量%である。本発明のポリオルガノシルセスキオキサンの含有量を70重量%以上とすることにより、硬化物の表面硬度や接着性がより向上する傾向がある。一方、本発明のポリオルガノシルセスキオキサンの含有量を100重量%未満とすることにより、硬化触媒を含有させることができ、これにより硬化性組成物の硬化をより効率的に進行させることができる傾向がある。
 本発明の硬化性組成物に含まれるカチオン硬化性化合物又はラジカル硬化性化合物の全量(100重量%)に対する本発明のポリオルガノシルセスキオキサンの割合は、特に限定されないが、70~100重量%が好ましく、より好ましくは75~98重量%、さらに好ましくは80~95重量%である。本発明のポリオルガノシルセスキオキサンの含有量を70重量%以上とすることにより、硬化物の表面硬度や接着性がより向上する傾向がある。
 本発明の硬化性組成物は、さらに、硬化触媒を含むことが好ましい。中でも、よりタックフリーとなるまでの硬化時間が短縮できる点で、硬化触媒としてカチオン重合開始剤又はラジカル重合開始剤を含むことが特に好ましい。
 上記カチオン重合開始剤は、本発明のポリオルガノシルセスキオキサン等のカチオン硬化性化合物のカチオン重合反応を開始乃至促進することができる化合物である。上記カチオン重合開始剤としては、特に限定されないが、例えば、光カチオン重合開始剤(光酸発生剤)、熱カチオン重合開始剤(熱酸発生剤)等が挙げられる。
 上記光カチオン重合開始剤としては、公知乃至慣用の光カチオン重合開始剤を使用することができ、例えば、スルホニウム塩(スルホニウムイオンとアニオンとの塩)、ヨードニウム塩(ヨードニウムイオンとアニオンとの塩)、セレニウム塩(セレニウムイオンとアニオンとの塩)、アンモニウム塩(アンモニウムイオンとアニオンとの塩)、ホスホニウム塩(ホスホニウムイオンとアニオンとの塩)、遷移金属錯体イオンとアニオンとの塩等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 上記スルホニウム塩としては、例えば、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、トリフェニルスルホニウム塩、トリ-p-トリルスルホニウム塩、トリ-o-トリルスルホニウム塩、トリス(4-メトキシフェニル)スルホニウム塩、1-ナフチルジフェニルスルホニウム塩、2-ナフチルジフェニルスルホニウム塩、トリス(4-フルオロフェニル)スルホニウム塩、トリ-1-ナフチルスルホニウム塩、トリ-2-ナフチルスルホニウム塩、トリス(4-ヒドロキシフェニル)スルホニウム塩、ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩、4-(p-トリルチオ)フェニルジ-(p-フェニル)スルホニウム塩等のトリアリールスルホニウム塩;ジフェニルフェナシルスルホニウム塩、ジフェニル4-ニトロフェナシルスルホニウム塩、ジフェニルベンジルスルホニウム塩、ジフェニルメチルスルホニウム塩等のジアリールスルホニウム塩;フェニルメチルベンジルスルホニウム塩、4-ヒドロキシフェニルメチルベンジルスルホニウム塩、4-メトキシフェニルメチルベンジルスルホニウム塩等のモノアリールスルホニウム塩;ジメチルフェナシルスルホニウム塩、フェナシルテトラヒドロチオフェニウム塩、ジメチルベンジルスルホニウム塩等のトリアルキルスルホニウム塩等が挙げられる。
 上記ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩としては、例えば、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロホスファート等を使用できる。
 上記ヨードニウム塩としては、例えば、商品名「UV9380C」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、ビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート45%アルキルグリシジルエーテル溶液)、商品名「RHODORSIL PHOTOINITIATOR 2074」(ローディア・ジャパン(株)製、テトラキス(ペンタフルオロフェニル)ボレート=[(1-メチルエチル)フェニル](メチルフェニル)ヨードニウム)、商品名「WPI-124」(和光純薬工業(株)製)、ジフェニルヨードニウム塩、ジ-p-トリルヨードニウム塩、ビス(4-ドデシルフェニル)ヨードニウム塩、ビス(4-メトキシフェニル)ヨードニウム塩等が挙げられる。
 上記セレニウム塩としては、例えば、トリフェニルセレニウム塩、トリ-p-トリルセレニウム塩、トリ-o-トリルセレニウム塩、トリス(4-メトキシフェニル)セレニウム塩、1-ナフチルジフェニルセレニウム塩等のトリアリールセレニウム塩;ジフェニルフェナシルセレニウム塩、ジフェニルベンジルセレニウム塩、ジフェニルメチルセレニウム塩等のジアリールセレニウム塩;フェニルメチルベンジルセレニウム塩等のモノアリールセレニウム塩;ジメチルフェナシルセレニウム塩等のトリアルキルセレニウム塩等が挙げられる。
 上記アンモニウム塩としては、例えば、テトラメチルアンモニウム塩、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、トリエチルメチルアンモニウム塩、テトラエチルアンモニウム塩、トリメチル-n-プロピルアンモニウム塩、トリメチル-n-ブチルアンモニウム塩等のテトラアルキルアンモニウム塩;N,N-ジメチルピロリジウム塩、N-エチル-N-メチルピロリジウム塩等のピロリジウム塩;N,N’-ジメチルイミダゾリニウム塩、N,N’-ジエチルイミダゾリニウム塩等のイミダゾリニウム塩;N,N’-ジメチルテトラヒドロピリミジウム塩、N,N’-ジエチルテトラヒドロピリミジウム塩等のテトラヒドロピリミジウム塩;N,N-ジメチルモルホリニウム塩、N,N-ジエチルモルホリニウム塩等のモルホリニウム塩;N,N-ジメチルピペリジニウム塩、N,N-ジエチルピペリジニウム塩等のピペリジニウム塩;N-メチルピリジニウム塩、N-エチルピリジニウム塩等のピリジニウム塩;N,N’-ジメチルイミダゾリウム塩等のイミダゾリウム塩;N-メチルキノリウム塩等のキノリウム塩;N-メチルイソキノリウム塩等のイソキノリウム塩;ベンジルベンゾチアゾニウム塩等のチアゾニウム塩;ベンジルアクリジウム塩等のアクリジウム塩等が挙げられる。
 上記ホスホニウム塩としては、例えば、テトラフェニルホスホニウム塩、テトラ-p-トリルホスホニウム塩、テトラキス(2-メトキシフェニル)ホスホニウム塩等のテトラアリールホスホニウム塩;トリフェニルベンジルホスホニウム塩等のトリアリールホスホニウム塩;トリエチルベンジルホスホニウム塩、トリブチルベンジルホスホニウム塩、テトラエチルホスホニウム塩、テトラブチルホスホニウム塩、トリエチルフェナシルホスホニウム塩等のテトラアルキルホスホニウム塩等が挙げられる。
 上記遷移金属錯体イオンの塩としては、例えば、(η5-シクロペンタジエニル)(η6-トルエン)Cr+、(η5-シクロペンタジエニル)(η6-キシレン)Cr+等のクロム錯体カチオンの塩;(η5-シクロペンタジエニル)(η6-トルエン)Fe+、(η5-シクロペンタジエニル)(η6-キシレン)Fe+等の鉄錯体カチオンの塩等が挙げられる。
 上述の塩を構成するアニオンとしては、例えば、SbF6 -、PF6 -、BF4 -、(CF3CF23PF3 -、(CF3CF2CF23PF3 -、(C654-、(C654Ga-、スルホン酸アニオン(トリフルオロメタンスルホン酸アニオン、ペンタフルオロエタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、メタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、p-トルエンスルホン酸アニオン等)、(CF3SO23-、(CF3SO22-、過ハロゲン酸イオン、ハロゲン化スルホン酸イオン、硫酸イオン、炭酸イオン、アルミン酸イオン、ヘキサフルオロビスマス酸イオン、カルボン酸イオン、アリールホウ酸イオン、チオシアン酸イオン、硝酸イオン等が挙げられる。
 上記熱カチオン重合開始剤としては、例えば、アリールスルホニウム塩、アリールヨードニウム塩、アレン-イオン錯体、第4級アンモニウム塩、アルミニウムキレート、三フッ化ホウ素アミン錯体等が挙げられる。
 上記アリールスルホニウム塩としては、例えば、ヘキサフルオロアンチモネート塩等が挙げられる。本発明の硬化性組成物においては、例えば、商品名「SP-66」、「SP-77」(以上、(株)ADEKA製);商品名「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-150L」(以上、三新化学工業(株)製)等の市販品を使用することができる。上記アルミニウムキレートとしては、例えば、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。また、上記三フッ化ホウ素アミン錯体としては、例えば、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素イミダゾール錯体、三フッ化ホウ素ピペリジン錯体等が挙げられる。
 上記ラジカル重合開始剤は、本発明のポリオルガノシルセスキオキサン等のラジカル硬化性化合物のラジカル重合反応を開始乃至促進することができる化合物である。上記ラジカル重合開始剤としては、特に限定されないが、例えば、光ラジカル重合開始剤、熱ラジカル重合開始剤等が挙げられる。
 前記光ラジカル重合開始剤としては、例えば、ベンゾフェノン、アセトフェノンベンジル、ベンジルジメチルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ジメトキシアセトフェノン、ジメトキシフェニルアセトフェノン、ジエトキシアセトフェノン、ジフェニルジサルファイト、オルトベンゾイル安息香酸メチル、4-ジメチルアミノ安息香酸エチル(日本化薬(株)製、商品名「カヤキュアEPA」等)、2,4-ジエチルチオキサンソン(日本化薬(株)製、商品名「カヤキュアDETX」等)、2-メチル-1-[4-(メチル)フェニル]-2-モルホリノプロパノン-1(チバガイギ-(株)製、商品名「イルガキュア907」等)、1-ヒドロキシシクロヘキシルフェニルケトン(チバガイギ-(株)製、商品名「イルガキュア184」等)、2-ジメチルアミノ-2-(4-モルホリノ)ベンゾイル-1-フェニルプロパン等の2-アミノ-2-ベンゾイル-1-フェニルアルカン化合物、テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、ベンジル、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、4,4-ビスジエチルアミノベンゾフェノン等のアミノベンゼン誘導体、2,2’-ビス(2-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾ-ル(保土谷化学(株)製、商品名「B-CIM」等)等のイミダゾール化合物、2,6-ビス(トリクロロメチル)-4-(4-メトキシナフタレン-1-イル)-1,3,5-トリアジン等のハロメチル化トリアジン化合物、2-トリクロロメチル-5-(2-ベンゾフラン2-イル-エテニル)-1,3,4-オキサジアゾール等のハロメチルオキサジアゾール化合物等を挙げることができる。また、必要に応じて、光増感剤を加えることができる。
 前記熱ラジカル重合開始剤としては、例えば、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシケタール、ケトンパーオキサイド等(具体的には、ベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)パーオキシヘキサン、t-ブチルパーオキシベンゾエート、t-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジブチルパーオキシヘキサン、2,4-ジクロロベンゾイルパーオキサイド、1,4-ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、メチルエチルケトンパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート等)等の有機過酸化物類を挙げることができる。
 なお、本発明の硬化性組成物において硬化触媒は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本発明の硬化性組成物における上記硬化触媒の含有量(配合量)は、特に限定されないが、本発明のポリオルガノシルセスキオキサン100重量部に対して、0.01~3.0重量部が好ましく、より好ましくは0.05~3.0重量部、さらに好ましくは0.1~1.0重量部(例えば、0.3~1.0重量部)である。硬化触媒の含有量を0.01重量部以上とすることにより、硬化反応を効率的に十分に進行させることができ、硬化物の表面硬度や接着性がより向上する傾向がある。一方、硬化触媒の含有量を3.0重量部以下とすることにより、硬化性組成物の保存性がいっそう向上したり、硬化物の着色が抑制される傾向がある。
 本発明の硬化性組成物は、さらに、本発明のポリオルガノシルセスキオキサン以外のカチオン硬化性化合物(「その他のカチオン硬化性化合物」と称する場合がある)及び/又は本発明のポリオルガノシルセスキオキサン以外のラジカル硬化性化合物(「その他のラジカル硬化性化合物」と称する場合がある)を含んでいてもよい。その他のカチオン硬化性化合物としては、公知乃至慣用のカチオン硬化性化合物を使用することができ、特に限定されないが、例えば、本発明のポリオルガノシルセスキオキサン以外のエポキシ化合物、オキセタン化合物、ビニルエーテル化合物等が挙げられる。なお、本発明の硬化性組成物においてその他のカチオン硬化性化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記エポキシ化合物としては、分子内に1以上のエポキシ基(オキシラン環)を有する公知乃至慣用の化合物を使用することができ、特に限定されないが、例えば、脂環式エポキシ化合物(脂環式エポキシ樹脂)、芳香族エポキシ化合物(芳香族エポキシ樹脂)、脂肪族エポキシ化合物(脂肪族エポキシ樹脂)等が挙げられる。
 上記脂環式エポキシ化合物としては、分子内に1個以上の脂環と1個以上のエポキシ基とを有する公知乃至慣用の化合物が挙げられ、特に限定されないが、例えば、(1)分子内に脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(「脂環エポキシ基」と称する)を有する化合物;(2)脂環にエポキシ基が直接単結合で結合している化合物;(3)分子内に脂環及びグリシジルエーテル基を有する化合物(グリシジルエーテル型エポキシ化合物)等が挙げられる。
 上記(1)分子内に脂環エポキシ基を有する化合物としては、下記式(i)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000036
 上記式(i)中、Yは単結合又は連結基(1以上の原子を有する二価の基)を示す。上記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。
 上記二価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。上記二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられる。
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8の直鎖又は分岐鎖状のアルケニレン基等が挙げられる。特に、上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。
 上記式(i)で表される脂環式エポキシ化合物の代表的な例としては、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、下記式(i-1)~(i-10)で表される化合物等が挙げられる。なお、下記式(i-5)、(i-7)中のl、mは、それぞれ1~30の整数を表す。下記式(i-5)中のR’は炭素数1~8のアルキレン基であり、中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(i-9)、(i-10)中のn1~n6は、それぞれ1~30の整数を示す。また、上記式(i)で表される脂環式エポキシ化合物としては、その他、例えば、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、1,2-ビス(3,4-エポキシシクロヘキシル)エタン、2,3-ビス(3,4-エポキシシクロヘキシル)オキシラン、ビス(3,4-エポキシシクロヘキシルメチル)エーテル等が挙げられる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 上述の(2)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(ii)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000039
 式(ii)中、R"は、p価のアルコールの構造式からp個の水酸基(-OH)を除いた基(p価の有機基)であり、p、nはそれぞれ自然数を表す。p価のアルコール[R"(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコール(炭素数1~15のアルコール等)等が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるnは同一でもよく異なっていてもよい。上記式(ii)で表される化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等が挙げられる。
 上述の(3)分子内に脂環及びグリシジルエーテル基を有する化合物としては、例えば、脂環式アルコール(特に、脂環式多価アルコール)のグリシジルエーテルが挙げられる。より詳しくは、例えば、2,2-ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、2,2-ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]プロパンなどのビスフェノールA型エポキシ化合物を水素化した化合物(水素化ビスフェノールA型エポキシ化合物);ビス[o,o-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[o,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[p,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]メタンなどのビスフェノールF型エポキシ化合物を水素化した化合物(水素化ビスフェノールF型エポキシ化合物);水素化ビフェノール型エポキシ化合物;水素化フェノールノボラック型エポキシ化合物;水素化クレゾールノボラック型エポキシ化合物;ビスフェノールAの水素化クレゾールノボラック型エポキシ化合物;水素化ナフタレン型エポキシ化合物;トリスフェノールメタンから得られるエポキシ化合物の水素化エポキシ化合物;下記芳香族エポキシ化合物の水素化エポキシ化合物等が挙げられる。
 上記芳香族エポキシ化合物としては、例えば、ビスフェノール類[例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フルオレンビスフェノール等]と、エピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂;これらのエピビスタイプグリシジルエーテル型エポキシ樹脂を上記ビスフェノール類とさらに付加反応させることにより得られる高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂;フェノール類[例えば、フェノール、クレゾール、キシレノール、レゾルシン、カテコール、ビスフェノールA、ビスフェノールF、ビスフェノールS等]とアルデヒド[例えば、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ヒドロキシベンズアルデヒド、サリチルアルデヒド等]とを縮合反応させて得られる多価アルコール類を、さらにエピハロヒドリンと縮合反応させることにより得られるノボラック・アルキルタイプグリシジルエーテル型エポキシ樹脂;フルオレン環の9位に2つのフェノール骨格が結合し、かつこれらフェノール骨格のヒドロキシ基から水素原子を除いた酸素原子に、それぞれ、直接又はアルキレンオキシ基を介してグリシジル基が結合しているエポキシ化合物等が挙げられる。
 上記脂肪族エポキシ化合物としては、例えば、q価の環状構造を有しないアルコール(qは自然数である)のグリシジルエーテル;一価又は多価カルボン酸[例えば、酢酸、プロピオン酸、酪酸、ステアリン酸、アジピン酸、セバシン酸、マレイン酸、イタコン酸等]のグリシジルエステル;エポキシ化亜麻仁油、エポキシ化大豆油、エポキシ化ひまし油等の二重結合を有する油脂のエポキシ化物;エポキシ化ポリブタジエン等のポリオレフィン(ポリアルカジエンを含む)のエポキシ化物等が挙げられる。なお、上記q価の環状構造を有しないアルコールとしては、例えば、メタノール、エタノール、1-プロピルアルコール、イソプロピルアルコール、1-ブタノール等の一価のアルコール;エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の二価のアルコール;グリセリン、ジグリセリン、エリスリトール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトール等の三価以上の多価アルコール等が挙げられる。また、q価のアルコールは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール等であってもよい。
 上記オキセタン化合物としては、分子内に1以上のオキセタン環を有する公知乃至慣用の化合物が挙げられ、特に限定されないが、例えば、3,3-ビス(ビニルオキシメチル)オキセタン、3-エチル-3-(ヒドロキシメチル)オキセタン、3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、3-エチル-3-[(フェノキシ)メチル]オキセタン、3-エチル-3-(ヘキシルオキシメチル)オキセタン、3-エチル-3-(クロロメチル)オキセタン、3,3-ビス(クロロメチル)オキセタン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、ビス{[1-エチル(3-オキセタニル)]メチル}エーテル、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビシクロヘキシル、1,4-ビス[(3-エチル-3-オキセタニル)メトキシメチル]シクロヘキサン、1,4-ビス{〔(3-エチル-3-オキセタニル)メトキシ〕メチル}ベンゼン、3-エチル-3-{〔(3-エチルオキセタン-3-イル)メトキシ〕メチル)}オキセタン、キシリレンビスオキセタン、3-エチル-3-{[3-(トリエトキシシリル)プロポキシ]メチル}オキセタン、オキセタニルシルセスキオキサン、フェノールノボラックオキセタン等が挙げられる。
 上記ビニルエーテル化合物としては、分子内に1以上のビニルエーテル基を有する公知乃至慣用の化合物を使用することができ、特に限定されないが、例えば、2-ヒドロキシエチルビニルエーテル(エチレングリコールモノビニルエーテル)、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,6-ヘキサンジオールジビニルエーテル、1,8-オクタンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールジビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールジビニルエーテル、p-キシレングリコールモノビニルエーテル、p-キシレングリコールジビニルエーテル、m-キシレングリコールモノビニルエーテル、m-キシレングリコールジビニルエーテル、o-キシレングリコールモノビニルエーテル、o-キシレングリコールジビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールモノビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールモノビニルエーテル、トリエチレングリコールジビニルエーテル、テトラエチレングリコールモノビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエチレングリコールモノビニルエーテル、ペンタエチレングリコールジビニルエーテル、オリゴエチレングリコールモノビニルエーテル、オリゴエチレングリコールジビニルエーテル、ポリエチレングリコールモノビニルエーテル、ポリエチレングリコールジビニルエーテル、ジプロピレングリコールモノビニルエーテル、ジプロピレングリコールジビニルエーテル、トリプロピレングリコールモノビニルエーテル、トリプロピレングリコールジビニルエーテル、テトラプロピレングリコールモノビニルエーテル、テトラプロピレングリコールジビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールジビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールジビニルエーテル、ポリプロピレングリコールモノビニルエーテル、ポリプロピレングリコールジビニルエーテル、イソソルバイドジビニルエーテル、オキサノルボルネンジビニルエーテル、フェニルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、オクチルビニルエーテル、シクロヘキシルビニルエーテル、ハイドロキノンジビニルエーテル、1,4-ブタンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパンジビニルエーテル、トリメチロールプロパントリビニルエーテル、ビスフェノールAジビニルエーテル、ビスフェノールFジビニルエーテル、ヒドロキシオキサノルボルナンメタノールジビニルエーテル、1,4-シクロヘキサンジオールジビニルエーテル、ペンタエリスリトールトリビニルエーテル、ペンタエリスリトールテトラビニルエーテル、ジペンタエリスリトールペンタビニルエーテル、ジペンタエリスリトールヘキサビニルエーテル等が挙げられる。
 本発明の硬化性組成物においては、本発明のポリオルガノシルセスキオキサンとともにその他のカチオン硬化性化合物としてビニルエーテル化合物を併用することが好ましい。これにより、硬化物の表面硬度がより高くなる傾向がある。特に、本発明の硬化性組成物を活性エネルギー線(特に紫外線)の照射により硬化させる場合には、活性エネルギー線の照射量を低くした場合であっても表面硬度が非常に高い硬化物が優れた生産性で(例えば、エージングのための熱処理を施す必要がない等)得られるという利点がある。このため、硬化物、本発明の転写用フィルムを用いたインモールド射出成型品やハードコートフィルムの製造ライン速度をより高くすることが可能となり、これらの生産性がいっそう向上する。
 また、その他のカチオン硬化性化合物として、特に、分子内に1個以上の水酸基を有するビニルエーテル化合物を使用した場合には、表面硬度がより高く、さらに、耐熱黄変性(加熱による黄変が生じにくい特性)に優れた硬化物が得られるという利点がある。このため、いっそう高品質かつ高耐久性の硬化物、本発明の転写用フィルムを用いたインモールド射出成型品やハードコートフィルムが得られる。分子内に1個以上の水酸基を有するビニルエーテル化合物が分子内に有する水酸基の数は、特に限定されないが、1~4個が好ましく、より好ましくは1又は2個である。具体的には、分子内に1個以上の水酸基を有するビニルエーテル化合物としては、例えば、2-ヒドロキシエチルビニルエーテル(エチレングリコールモノビニルエーテル)、3-ヒドロキシプロピルビニルエーテル、2-ヒドロキシプロピルビニルエーテル、2-ヒドロキシイソプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、3-ヒドロキシブチルビニルエーテル、2-ヒドロキシブチルビニルエーテル、3-ヒドロキシイソブチルビニルエーテル、2-ヒドロキシイソブチルビニルエーテル、1-メチル-3-ヒドロキシプロピルビニルエーテル、1-メチル-2-ヒドロキシプロピルビニルエーテル、1-ヒドロキシメチルプロピルビニルエーテル、4-ヒドロキシシクロヘキシルビニルエーテル、1,6-ヘキサンジオールモノビニルエーテル、1,8-オクタンジオールジビニルエーテル、1,4-シクロヘキサンジメタノールモノビニルエーテル、1,3-シクロヘキサンジメタノールモノビニルエーテル、1,2-シクロヘキサンジメタノールモノビニルエーテル、p-キシレングリコールモノビニルエーテル、m-キシレングリコールモノビニルエーテル、o-キシレングリコールモノビニルエーテル、ジエチレングリコールモノビニルエーテル、トリエチレングリコールモノビニルエーテル、テトラエチレングリコールモノビニルエーテル、ペンタエチレングリコールモノビニルエーテル、オリゴエチレングリコールモノビニルエーテル、ポリエチレングリコールモノビニルエーテル、トリプロピレングリコールモノビニルエーテル、テトラプロピレングリコールモノビニルエーテル、ペンタプロピレングリコールモノビニルエーテル、オリゴプロピレングリコールモノビニルエーテル、ポリプロピレングリコールモノビニルエーテル、ペンタエリスリトールトリビニルエーテル、ジペンタエリスリトールペンタビニルエーテル等が挙げられる。
 その他のラジカル硬化性化合物としては、公知乃至慣用のラジカル硬化性化合物を使用することができ、特に限定されないが、例えば、本発明のポリオルガノシルセスキオキサン以外の(メタ)アクリル化合物が挙げられる。なお、本発明の硬化性組成物においてその他のラジカル硬化性化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記(メタ)アクリル化合物としては、分子内に1以上の(メタ)アクリル基を有する公知乃至慣用の化合物を使用することができ、特に限定されないが、例えば、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ペンタグリセロールトリ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリス((メタ)アクリロイルオキシエチル)イソシアヌレート等の多官能アクリル酸エステルを挙げることができる。
 本発明の硬化性組成物におけるその他のカチオン硬化性化合物及び/又はその他のラジカル硬化性化合物の含有量(配合量)は、特に限定されないが、本発明のポリオルガノシルセスキオキサン、その他のカチオン硬化性化合物とその他のラジカル硬化性化合物の総量(100重量%;カチオン硬化性化合物とラジカル硬化性化合物の全量)に対して、50重量%以下(例えば、0~50重量%)が好ましく、より好ましくは30重量%以下(例えば、0~30重量%)、さらに好ましくは10重量%以下である。その他のカチオン硬化性化合物及び/又はその他のラジカル硬化性化合物の含有量を50重量%以下(特に10重量%以下)とすることにより、硬化物の耐擦傷性がより向上する傾向がある。一方、その他のカチオン硬化性化合物及び/又はその他のラジカル硬化性化合物の含有量を10重量%以上とすることにより、硬化性組成物や硬化物に対して所望の性能(例えば、硬化性組成物に対する速硬化性や粘度調整等)を付与することができる場合がある。
 本発明の硬化性組成物におけるビニルエーテル化合物(特に、分子内に1個以上の水酸基を有するビニルエーテル化合物)の含有量(配合量)は、特に限定されないが、本発明のポリオルガノシルセスキオキサン、その他のカチオン硬化性化合物とその他のラジカル硬化性化合物の総量(100重量%;カチオン硬化性化合物とラジカル硬化性化合物の全量)に対して、0.01~10重量%が好ましく、より好ましくは0.05~9重量%、さらに好ましくは1~8重量%である。ビニルエーテル化合物の含有量を上記範囲に制御することにより、硬化物の表面硬度がより高くなり、活性エネルギー線(例えば、紫外線)の照射量を低くした場合であっても表面硬度が非常に高い硬化物が得られる傾向がある。特に、分子内に1個以上の水酸基を有するビニルエーテル化合物の含有量を上記範囲に制御することにより、硬化物の表面硬度が特に高くなることに加えて、その耐熱黄変性もいっそう向上する傾向がある。
 本発明の硬化性組成物は、さらに、その他任意の成分として、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、硬化助剤、溶剤(有機溶剤等)、安定化剤(酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定化剤、重金属不活性化剤など)、難燃剤(リン系難燃剤、ハロゲン系難燃剤、無機系難燃剤など)、難燃助剤、補強材(他の充填剤など)、核剤、カップリング剤(シランカップリング剤等)、滑剤、ワックス、可塑剤、離型剤、耐衝撃改良剤、色相改良剤、透明化剤、レオロジー調整剤(流動性改良剤など)、加工性改良剤、着色剤(染料、顔料など)、帯電防止剤、分散剤、表面調整剤(消泡剤、レベリング剤、ワキ防止剤など)、表面改質剤(スリップ剤など)、艶消し剤、消泡剤、抑泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤、光増感剤、発泡剤などの慣用の添加剤を含んでいてもよい。これらの添加剤は1種を単独で、又は2種以上を組み合わせて使用できる。
 本発明の硬化性組成物は、特に限定されないが、上記の各成分を室温で又は必要に応じて加熱しながら攪拌・混合することにより調製することができる。なお、本発明の硬化性組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。
 本発明の硬化性組成物は、特に限定されないが、常温(約25℃)で液体であることが好ましい。より具体的には、本発明の硬化性組成物は、溶媒20%に希釈した液[特に、メチルイソブチルケトンの割合が20重量%である硬化性組成物(溶液)]の25℃における粘度として、300~20000mPa・sが好ましく、より好ましくは500~10000mPa・s、さらに好ましくは1000~8000mPa・sである。上記粘度を300mPa・s以上とすることにより、硬化物の耐熱性がより向上する傾向がある。一方、上記粘度を20000mPa・s以下とすることにより、硬化性組成物の調製や取り扱いが容易となり、また、硬化物中に気泡が残存しにくくなる傾向がある。なお、本発明の硬化性組成物の粘度は、粘度計(商品名「MCR301」、アントンパール社製)を用いて、振り角5%、周波数0.1~100(1/s)、温度:25℃の条件で測定される。
[硬化物]
 本発明の硬化性組成物におけるカチオン硬化性化合物又はラジカル硬化性化合物(本発明のポリオルガノシルセスキオキサン等)の重合反応を進行させることにより、該硬化性組成物を硬化させることができ、硬化物(「本発明の硬化物」と称する場合がある)を得ることができる。硬化の方法は、周知の方法より適宜選択でき、特に限定されないが、例えば、活性エネルギー線の照射、及び/又は、加熱する方法が挙げられる。上記活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等のいずれを使用することもできる。中でも、取り扱い性に優れる点で、紫外線が好ましい。
 本発明の硬化性組成物を活性エネルギー線の照射により硬化させる際の条件(活性エネルギー線の照射条件等)は、照射する活性エネルギー線の種類やエネルギー、硬化物の形状やサイズ等に応じて適宜調整することができ、特に限定されないが、紫外線を照射する場合には、例えば1~1000mJ/cm2程度とすることが好ましい。なお、活性エネルギー線の照射には、例えば、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、カーボンアーク、メタルハライドランプ、太陽光、LEDランプ、レーザー等を使用することができる。活性エネルギー線の照射後には、さらに加熱処理(アニール、エージング)を施してさらに硬化反応を進行させることができる。
 一方、本発明の硬化性組成物を加熱により硬化させる際の条件は、特に限定されないが、例えば、30~200℃が好ましく、より好ましくは50~190℃である。硬化時間は適宜設定可能である。
 本発明の硬化性組成物は上述のように、硬化させることによって、高い表面硬度かつ耐熱性を有し、可とう性及び加工性に優れた硬化物を形成できる。従って、本発明の硬化性組成物は、特に、ハードコートフィルムにおけるハードコート層を形成するための「ハードコート層形成用硬化性組成物」(「ハードコート液」や「ハードコート剤」等と称される場合がある)として特に好ましく使用できる。本発明の硬化性組成物をハードコート層形成用硬化性組成物として用い、該組成物より形成されたハードコート層を有するハードコートフィルムは、高硬度及び高耐熱性を維持しながら、可とう性を有し、ロールトゥロールでの製造や加工が可能である。
 また、本発明の硬化性組成物は、基材上に設けた離型層上に塗工・乾燥させた未硬化又は半硬化のハードコート層の表面がタックフリーとなって、耐ブロッキング性が向上することから、ロール状に巻き取って取り扱うことが可能であり、さらに、該ハードコート層を成型品表面に転写・硬化させることにより、高い表面硬度を有するハードコート層を形成することができる。従って、本発明の硬化性組成物は、特に、インモールド射出成型に使用される転写用フィルムのハードコート層を形成するためのハードコート層形成用硬化性組成物としても好ましく使用することができる。
[転写用フィルム]
 本発明の転写用フィルムは、基材と、該基材の少なくとも一方の表面に形成された離型層上に、未硬化又は半硬化のハードコート層とを有するフィルムであって、上記未硬化又は半硬化のハードコート層が、本発明の硬化性組成物(ハードコート層形成用硬化性組成物。以下、「本発明のハードコート剤」と称する場合がある。)により形成されることを特徴としている。ここで、未硬化とは、本発明のハードコート層形成用硬化性組成物(ハードコート剤)に含まれる本発明のポリオルガノシルセスキオキサンの重合性官能基が重合反応していない状態を意味する。また、半硬化とは、該重合性官能基の一部が重合反応し、未反応の重合性官能基が残存している状態を意味する。なお、本明細書においては、本発明の硬化性組成物(ハードコート剤)により形成された未硬化又は半硬化のハードコート層を、単に「ハードコート層」、成型品に転写・硬化されたハードコート層を、「硬化ハードコート層」と称する場合がある。
 本発明の転写用フィルムにおける基材は、転写用フィルムの基材であって、本発明のハードコート層を含む転写層以外を構成する部分をいう。ここで、転写層とは、本発明の転写用フィルムにおいて、離形層が形成された基材を除いた層であり、成型品の表面に転写される部分をいう。上記基材としては、プラスチック基材、金属基材、セラミックス基材、半導体基材、ガラス基材、紙基材、木基材(木製基材)、表面が塗装表面である基材等の公知乃至慣用の基材を用いることができ、特に限定されない。中でも、プラスチック基材(プラスチック材料により構成された基材)が好ましい。
 上記プラスチック基材を構成するプラスチック材料は、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ポリイミド;ポリカーボネート;ポリアミド;ポリアセタール;ポリフェニレンオキサイド;ポリフェニレンサルファイド;ポリエーテルスルホン;ポリエーテルエーテルケトン;ノルボルネン系モノマーの単独重合体(付加重合体や開環重合体等)、ノルボルネンとエチレンの共重合体等のノルボルネン系モノマーとオレフィン系モノマーの共重合体(付加重合体や開環重合体等の環状オレフィンコポリマー等)、これらの誘導体等の環状ポリオレフィン;ビニル系重合体(例えば、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリスチレン、ポリ塩化ビニル、アクリロニトリル-スチレン-ブタジエン樹脂(ABS樹脂)等);ビニリデン系重合体(例えば、ポリ塩化ビニリデン等);トリアセチルセルロース(TAC)等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;メラミン樹脂;ユリア樹脂;マレイミド樹脂;シリコーン等の各種プラスチック材料が挙げられる。なお、上記プラスチック基材は、1種のみのプラスチック材料により構成されたものであってもよいし、2種以上のプラスチック材料により構成されたものであってもよい。
 中でも、上記プラスチック基材としては、耐熱性、成形性、機械強度に優れた基材を用いることが好ましく、より好ましくはポリエステルフィルム(特に、PET、PEN)、環状ポリオレフィンフィルム、ポリカーボネートフィルム、TACフィルム、PMMAフィルムである。
 上記プラスチック基材は、必要に応じて、酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定剤、結晶核剤、難燃剤、難燃助剤、充填剤、可塑剤、耐衝撃性改良剤、補強剤、分散剤、帯電防止剤、発泡剤、抗菌剤等のその他の添加剤を含んでいてもよい。なお、添加剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記プラスチック基材は、単層の構成を有していてもよいし、多層(積層)の構成を有していてもよく、その構成(構造)は特に限定されない。例えば、上記プラスチック基材は、プラスチックフィルムの少なくとも一方の表面に本発明の転写層以外の層(「その他の層」と称する場合がある)が形成された、「プラスチックフィルム/その他の層」又は「その他の層/プラスチックフィルム/その他の層」等の積層構成を有するプラスチック基材であってもよい。上記その他の層としては、例えば、本発明の転写用フィルムを構成するハードコート層以外のハードコート層等が挙げられる。なお、上記その他の層を構成する材料としては、例えば、上述のプラスチック材料等が挙げられる。
 上記プラスチック基材の表面の一部又は全部には、粗化処理、易接着処理、静電気防止処理、サンドブラスト処理(サンドマット処理)、コロナ放電処理、プラズマ処理、ケミカルエッチング処理、ウォーターマット処理、火炎処理、酸処理、アルカリ処理、酸化処理、紫外線照射処理、シランカップリング剤処理等の公知乃至慣用の表面処理が施されていてもよい。なお、上記プラスチック基材は、未延伸フィルムであってもよいし、延伸フィルム(一軸延伸フィルム、二軸延伸フィルム等)であってもよい。
 上記プラスチック基材は、例えば、上述のプラスチック材料をフィルム状に成形してプラスチック基材(プラスチックフィルム)とする方法、必要に応じてさらに上記プラスチックフィルムに対して適宜な層(例えば、上記その他の層等)を形成したり、適宜な表面処理を施す方法等の、公知乃至慣用の方法により製造することができる。なお、上記プラスチック基材としては、市販品を使用することもできる。
 上記基材の厚みは、特に限定されず、例えば、0.01~10000μmの範囲から適宜選択することができるが、成型性や形状追従性、取り扱い性等の観点から、2~250μmが好ましく、5~100μmがより好ましく、20~100μmがさらに好ましい。
 本発明の転写用フィルムにおける離型層は、本発明の転写用フィルムにおける基材の少なくとも一方の表面層を構成する層であり、転写層の基材からの剥離を容易に行うために設けられる層である。離型層を設けることで、転写用フィルムから転写層を確実かつ容易に被転写体(成型品)へ転写させ、基材シートを確実に剥離することができる。
 本発明の転写用フィルムにおいて、離形層とハードコート層の剥離強度は、特に限定されるものではないが、30~500mN/24mmが好ましく、より好ましくは40~300mN/24mm、さらに好ましくは50~200mN/24mmである。剥離強度がこの範囲にあることにより、通常の取扱い時にはハードコート層が剥離することなく、成型品への転写と同時にハードコートを容易に剥離できる傾向がある。本発明のハードコート層と離型層の剥離強度は、JIS Z0237に準拠して測定することができる。
 なお、本発明の転写フィルムにおける離型層は、上記基材の一方の表面(片面)のみに形成されていてもよいし、両方の表面(両面)に形成されていてもよい。
 また、本発明の転写用フィルムにおける離型層は、上記基材のそれぞれの表面において、一部のみに形成されていてもよいし、全面に形成されていてもよい。
 前記離型層を形成する成分としては、公知公用の離型剤を特に制限なく使用することができ、例えば、不飽和エステル系樹脂、エポキシ系樹脂、エポキシ-メラミン系樹脂、アミノアルキド系樹脂、アクリル系樹脂、メラミン系樹脂、シリコン系樹脂、フッ素系樹脂、セルロース系樹脂、尿素樹脂系樹脂、ポリオレフィン系樹脂、パラフィン系樹脂、シクロオレフィン系樹脂から選ばれる少なくとも一種を使用することができる。転写層において上記離型層と接する本発明のハードコート層との剥離性の観点から、前記離型層としては、メラミン系樹脂、シクロオレフィン系樹脂が好ましく、特に、2-ノルボルネン・エチレン共重合体等のシクロオレフィン共重合体樹脂(COC樹脂)が好ましい。
 前記離型層を基材表面に形成する方法も、公知公用の離型処理法を特に制限なく使用することができる。例えば、上記樹脂を溶媒(例、メタノール、ブタノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素、テトラヒドロフラン等)に分散又は溶解して、バーコート、メイヤーバーコート、グラビアコート、ロールコート等の公知のコーティング方法で塗工、乾燥し、80~200℃で加熱することにより、離型層を形成することができる。離型層の厚さも特に限定されず、通常、0.01~5μm、好ましくは0.1~3.0μmの範囲から選択できる。
 本発明の転写用フィルムにおける本発明のハードコート層は、上記離型層における少なくとも一方の表面層を構成する層であり、本発明の硬化性組成物(ハードコート剤)を乾燥させた未硬化の層、又は一部硬化させた半硬化の層である。半硬化のハードコート層は、未硬化のハードコート層を上述の活性エネルギー線照射又は加熱により硬化を一部進行させることにより形成することができる。
 本発明の未硬化又は半硬化のハードコート層は、指を表面に接触させた際に樹脂が付着しない低タック性と優れた耐ブロッキング性を有し、ロール状に巻回して取り扱うことが可能である。
 なお、本発明の転写用フィルムにおける本発明のハードコート層は、上記基材の一方の離型層(片面)のみに形成されていてもよいし、両方の離型層(両面)に形成されていてもよい。
 また、本発明の転写用フィルムにおける本発明のハードコート層は、上記離型層のそれぞれの表面において、一部のみに形成されていてもよいし、全面に形成されていてもよい。
 本発明の転写用フィルムの離型層上に本発明のハードコート層を積層させる方法としては、特に限定されないが、公知の方法で離型層上に本発明の硬化性組成物(ハードコート剤)を塗工・乾燥させて未硬化のハードコート層を形成させるか、さらに未硬化のハードコート層に活性化エネルギー線照射又は加熱を行い半硬化のハードコート層を形成させる方法が挙げられる。本発明の硬化性組成物(ハードコート剤)の塗工方法としては、公知のコーティング方法を制限なく使用することができ、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷等が挙げられる。
 ハードコート層を形成する際の加熱温度は、特に限定されないが、好ましくは50~200℃から適宜選択することができる。加熱時間も特に限定されないが、好ましくは1~60分から適宜選択することができる。
 ハードコート層に活性化エネルギー線を照射する条件は、特に限定されず、例えば、上述の硬化物を形成する際の条件から適宜選択可能である。
 本発明の転写用フィルムにおけるハードコート層の厚み(基材の両面に本発明のハードコート層を有する場合は、それぞれのハードコート層の厚み)は、特に限定されないが、1~200μmが好ましく、より好ましくは3~150μmである。特に、本発明のハードコート層は、薄い場合(例えば、厚み5μm以下の場合)であっても、表面の高硬度を維持すること(例えば、鉛筆硬度を5H以上とすること)が可能である。また、厚い場合(例えば、厚み50μm以上の場合)であっても、硬化収縮等に起因するクラック発生等の不具合が生じにくいため、厚膜化によって鉛筆硬度を著しく高めること(例えば、鉛筆硬度を9H以上とすること)が可能である。
 本発明の転写用フィルムにおけるハードコート層のヘイズは、特に限定されないが、50μmの厚みの場合で、1.5%以下が好ましく、より好ましくは1.0%以下である。なお、ヘイズの下限は、特に限定されないが、例えば、0.1%である。ヘイズを特に1.0%以下とすることにより、例えば、本発明の転写用フィルムを加飾フィルムとして使用する場合に、模様、絵柄等を鮮明に転写できるため好ましい。本発明のハードコート層のヘイズは、JIS K7136に準拠して測定することができる。
 本発明の転写用フィルムにおけるハードコート層の全光線透過率は、特に限定されないが、50μmの厚みの場合で、85%以上が好ましく、より好ましくは90%以上である。なお、全光線透過率の上限は、特に限定されないが、例えば、99%である。全光線透過率を85%以上とすることにより、例えば、本発明の転写用フィルムを加飾フィルムとして使用する場合に、模様、絵柄等を鮮明に転写できるため好ましい。本発明のハードコート層の全光線透過率は、JIS K7361-1に準拠して測定することができる。
 本発明の転写用フィルムは、好ましくは、ハードコート層上に、アンカーコート層及び接着剤層が、この順でさらに積層される。さらに、本発明の転写用フィルムを加飾フィルムとして使用する場合には、少なくとも1層の着色層が積層される。着色層の積層位置は特に限定されないが、好ましくは、アンカーコート層と接着剤層との間に1層又は2層以上積層される態様が好ましい。
 本発明の転写用フィルムにおけるアンカーコート層は、ハードコート層と、接着剤層又は着色層等との密着性を向上させるために設けられるものである。アンカーコート層は、着色層の模様、絵柄等を鮮明に転写するためには、透明又は半透明な層であることが好ましく、フェノール樹脂、アルキド樹脂、メラミン系樹脂(例えば、メチル化メラミン樹脂、ブチル化メラミン樹脂、メチルエーテル化メラミン樹脂、ブチルエーテル化メラミン樹脂、メチルブチル混合エーテル化メラミン樹脂等)、エポキシ系樹脂(例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能エポキシ樹脂、可撓性エポキシ樹脂、臭素化エポキシ樹脂、グリシジルエステル型エポキシ樹脂、高分子型エポキシ樹脂、ビフェニル型エポキシ樹脂等)、尿素樹脂、不飽和ポリエステル樹脂、ウレタン系樹脂[例えば、イソシアネート基を2個以上持ったポリイソシアネート化合物(O=C=N-R-N=C=O)と、水酸基を2個以上持ったポリオール化合物(HO-R’-OH)、ポリアミン(H2N-R”-NH2)、または水などの活性水素(-NH2,-NH,-CONH-など)を持った化合物などとの反応により得ることができるウレタン樹脂]、熱硬化性ポリイミド、シリコーン樹脂等の熱硬化性樹脂や、塩化ビニル-酢酸ビニル共重合体樹脂、アクリル樹脂(例えば、アクリルポリオール系樹脂等)、塩化ゴム、ポリアミド樹脂、硝化綿樹脂、環状ポリオレフィン系樹脂等の熱可塑性樹脂等の1種単独又は2種以上の混合物が用いられるが、特にエポキシ系樹脂が好ましい。
 本発明のアンカーコート用樹脂は、さらに、その他任意の成分として、ワックス、シリカ、可塑剤、レベリング剤、界面活性剤、分散剤、消泡剤、紫外線吸収剤、紫外線安定剤、酸化防止剤などの慣用の添加剤を、本発明の効果を損なわない範囲で含んでいてもよい。これらの添加剤は1種を単独で、又は2種以上を組み合わせて使用できる。
 アンカーコート層は、上記樹脂を溶媒に溶解した塗工液を、本発明のハードコート層上に、バーコート、メイヤーバーコート、グラビアコート、ロールコート等の公知のコーティング方法で塗布、乾燥して、必要により加熱して形成することができる。
 アンカーコート層を形成する際に加熱する場合の温度は、特に限定されないが、好ましくは50~200℃から適宜選択することができる。加熱時間も特に限定されないが、好ましくは10秒~60分から適宜選択することができる。
 アンカーコート層の厚みは、通常、0.1~20μm程度であり、好ましくは、0.5~5μmの範囲である。
 本発明のアンカーコート層は、市販のアンカーコート剤を用いて形成してもよい。市販のアンカーコート剤としては、例えば、K468HPアンカー(東洋インキ株式会社製エポキシ樹脂系アンカーコート剤)、TM-VMAC(大日精化工業株式会社製アクリルポリオール樹脂系アンカーコート剤)などが挙げられる。
 本発明の転写用フィルムにおける接着剤層は、転写層(ハードコート層、所望により積層されるアンカーコート層、及び着色層を含む)を、接着性良く成型品に転写するために設けられるものである。接着剤層としては、感熱接着剤や加圧接着剤などで構成されるものが挙げられるが、本発明においては、必要に応じて加熱及び加圧によって、成型品に対する密着性を発現するヒートシール層であることが好ましい。接着剤層に用いられる樹脂としては、例えば、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、塩化ビニル-酢酸ビニル系共重合樹脂、スチレン-アクリル系共重合樹脂、ポリエステル系樹脂、ポリアミド系樹脂などの樹脂の1種単独又は2種以上の混合物が用いられるが、特に、アクリル系樹脂、塩化ビニル-酢酸ビニル系共重合樹脂が好ましい。
 本発明の接着剤層に用いられるアクリル系樹脂としては、特に限定されないが、例えば、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、メチル(メタ)アクリレート-ブチル(メタ)アクリレート共重合体、メチル(メタ)アクリレート-スチレン共重合体などのアクリル系樹脂、フッ素などによる変性アクリル樹脂が挙げられ、これらを1種又は2種以上の混合物として用いることができる。この他、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレートなどの(メタ)アクリル酸アルキルエステルと、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなどの分子中に水酸基を有する(メタ)アクリル酸エステルと、を共重合させて得られるアクリルポリオールを用いることもできる。また、塩化ビニル-酢酸ビニル系共重合体樹脂としては、通常、酢酸ビニル含有量が5~20質量%程度、平均重合度350~900程度のものが用いられる。必要に応じ、塩化ビニル-酢酸ビニル系共重合体樹脂にさらにマレイン酸、フマル酸などのカルボン酸を共重合させても良い。この他、副成分の樹脂として、必要に応じて、適宜その他の樹脂、例えば、熱可塑性ポリエステル系樹脂、熱可塑性ウレタン系樹脂、塩素化ポリエチレン、塩素化ポリプロピレンなどの塩素化ポリオレフィン系樹脂などの樹脂を混合しても良い。
 接着剤層は、上記樹脂の1種又は2種以上の溶液又はエマルジョンなど塗布可能な形態にしたものを、バーコート、メイヤーバーコート、グラビアコート、ロールコート等の公知のコーティング方法で塗布、乾燥して、必要により加熱して形成することができる。
 接着剤層を形成する際に加熱する場合の温度は、特に限定されないが、好ましくは50~200℃から適宜選択することができる。加熱時間も特に限定されないが、好ましくは10秒~60分から適宜選択することができる。
 接着剤層の厚みとしては、転写用フィルムを接着性良く、かつ効率的に成型品に転写し得るという点から、0.1~10μm程度が好ましく、0.5~5μmがより好ましい。
 接着剤層には、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シュウ酸アニリド系化合物、シアノアクリレート系化合物、サリシレート系化合物などの有機系の紫外線吸収剤や、また亜鉛、チタン、セリウム、スズ、鉄などの酸化物のような無機系の紫外線吸収能を有する微粒子の添加剤を配合してもよい。また、添加剤として、着色顔料、白色顔料、体質顔料、充填剤、帯電防止剤、酸化防止剤、蛍光増白剤なども適宜、必要に応じて使用することができる。
 本発明の接着剤としては、市販品を用いてもよい。市販の接着剤としては、例えば、K588HP接着グロスAワニス(東洋インキ株式会社製塩化ビニル-酢酸ビニル共重合樹脂系接着剤)、PSHP780(東洋インキ株式会社製アクリル樹脂系接着剤)などが挙げられる。
 本発明の転写フィルムにおける着色層は、絵柄層及び/又は隠蔽層を成型品に転写するための加飾フィルムとする場合に設けられるものである。ここで、絵柄層は、模様や文字などとパターン状の絵柄を表現するために設けられる層であり、隠蔽層は、通常全面ベタ層であり射出樹脂などの着色等を隠蔽するために設けられる層である。隠蔽層には、絵柄層の絵柄を引き立てるために絵柄層の内側に設けられる場合の外、それ単独で装飾層を形成する場合がある。
 本発明に係る絵柄層は、模様や文字などとパターン状の絵柄を表現するために設けられる層である。絵柄層の絵柄は任意であるが、例えば、木目、石目、布目、砂目、幾何学模様、文字などからなる絵柄を挙げることができる。
 着色層は、通常は、上記のハードコート層又はアンカーコート層に印刷インキでグラビア印刷、オフセット印刷、シルクスクリーン印刷、転写シートからの転写印刷、昇華転写印刷、インキジェット印刷などの公知の印刷法により形成することで、ハードコート層と接着剤層との間、又はアンカーコート層と接着剤層との間に形成することができる。着色層の厚みは、意匠性の観点から3~40μmが好ましく、10~30μmがより好ましい。
 着色層の形成に用いられる印刷インキのバインダー樹脂としては、ポリエステル系樹脂、ポリウレタン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、塩化ビニル-酢酸ビニル系共重合体樹脂、セルロース系樹脂などを好ましく挙げることができるが、アクリル系樹脂単独又はアクリル系樹脂と塩化ビニル-酢酸ビニル系共重合体樹脂との混合物を主成分とするのが好ましい。これらの中では、アクリル系樹脂、塩化ビニル-酢酸ビニル系共重合体樹脂又は別のアクリル系樹脂を混合すると印刷適性、成形適性がより良好となり好ましい。ここで、アクリル系樹脂としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、メチル(メタ)アクリレート-ブチル(メタ)アクリレート共重合体、メチル(メタ)アクリレート-スチレン共重合体などのアクリル系樹脂、フッ素などによる変性アクリル樹脂が挙げられ、これらを1種又は2種以上の混合物として用いることができる。この他、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレートなどの(メタ)アクリル酸アルキルエステルと、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなどの分子中に水酸基を有する(メタ)アクリル酸エステルと、を共重合させて得られるアクリルポリオールを用いることもできる。また、塩化ビニル-酢酸ビニル系共重合体樹脂としては、通常、酢酸ビニル含有量が5~20質量%程度、平均重合度350~900程度のものが用いられる。必要に応じ、塩化ビニル-酢酸ビニル系共重合体樹脂にさらにマレイン酸、フマル酸などのカルボン酸を共重合させても良い。アクリル系樹脂と塩化ビニル-酢酸ビニル系共重合体樹脂との混合比は、アクリル系樹脂/塩化ビニル-酢酸ビニル系共重合体樹脂=1/9~9/1(質量比)程度である。この他、副成分の樹脂として、必要に応じて、適宜その他の樹脂、例えば、熱可塑性ポリエステル系樹脂、熱可塑性ウレタン系樹脂、塩素化ポリエチレン、塩素化ポリプロピレンなどの塩素化ポリオレフィン系樹脂などの樹脂を混合しても良い。
 本発明に係る着色層に用いられる着色剤としては、アルミニウム、クロム、ニッケル、錫、チタン、リン化鉄、銅、金、銀、真鍮などの金属、合金、又は金属化合物の鱗片状箔粉からなるメタリック顔料、マイカ状酸化鉄、二酸化チタン被覆雲母、二酸化チタン被覆オキシ塩化ビスマス、オキシ塩化ビスマス、二酸化チタン被覆タルク、魚鱗箔、着色二酸化チタン被覆雲母、塩基性炭酸鉛などの箔粉からなる真珠光沢(パール)顔料、アルミン酸ストロンチウム、アルミン酸カルシウム、アルミン酸バリウム、硫化亜鉛、硫化カルシウムなどの蛍光顔料、二酸化チタン、亜鉛華、三酸化アンチモンなどの白色無機顔料、亜鉛華、弁柄、朱、群青、コバルトブルー、チタン黄、黄鉛、カーボンブラックなどの無機顔料、イソインドリノンイエロー、ハンザイエローA、キナクリドンレッド、パーマネントレッド4R、フタロシアニンブルー、インダスレンブルーRS、アニリンブラックなどの有機顔料(染料も含む)を1種又は2種以上混合して用いることができる。
 このような着色層は、本発明の転写用フィルムに意匠性を付与するために設けられる層であるが、意匠性を向上させる目的で、さらに金属薄膜層などを形成しても良い。金属薄膜層の形成は、アルミニウム、クロム、金、銀、銅などの金属を用いて、真空蒸着、スパッタリングなどの方法で製膜することができる。この金属薄膜層は全面に設けても、部分的にパターン状に設けても良い。
 着色層の形成に用いられる印刷インキは、上記成分の他に、沈降防止剤、硬化触媒、紫外線吸収剤、酸化防止剤、レベリング剤、増粘剤、消泡剤、滑剤などを適宜添加することができる。印刷インキは、上記成分を、通常溶剤に溶解又は分散した態様で提供される。溶剤としては、バインダー樹脂を溶解又は分散させるものであれば良く、有機溶剤及び/又は水を使用することができる。有機溶剤としては、トルエン、キシレンなどの炭化水素類、アセトン、メチルエチルケトンなどのケトン類、酢酸エチル、セロソルブアセテート、ブチルセロソルブアセテートなどのエステル類、アルコール類が挙げられる。
 本発明の転写用フィルムは、上記の基材、離形層、ハードコート層、アンカーコート層、接着剤層、着色層の他に、所望に応じて、低反射層、帯電防止層、紫外線吸収層、近赤外線遮断層、電磁波吸収層などを任意の順番で積層させてもよい。
 本発明の転写用フィルムの厚みは、特に限定されず、1~10000μmの範囲から適宜選択することができが、成型性や形状追従性、取り扱い性等の観点から、2~250μmが好ましく、5~150μmがより好ましく、25~150μmがさらに好ましい。
 本発明の転写用フィルムのハードコート層は、タックフリーで耐ブロッキング性に優れ、ロール状に巻き取って取り扱うことが可能であるため、インモールド射出成型の転写用フィルムとして、好適に用いることができる。例えば、固定金型と可動金型よりなる金型内に搬送ロールなどで本発明の転写用フィルムが連続的に搬送され、基材フィルム側が固定金型面と接し、適切な位置調整がなされた後に、可動金型が移動して型締めする。そして、あらかじめ熱により溶融させた熱可塑性樹脂を、高温高圧で金型内に転写用フィルムの転写層側より射出充填し、急冷した後で金型を開き、本発明のハードコート層が最表面に転写された成型品(インモールド成型品)を取り出すことができる。
 上記成形品の本発明のハードコート層が未硬化又は半硬化である場合は、該ハードコート層を活性エネルギー線の照射、及び/又は、加熱してハードコート層を硬化させてもよい。ハードコート層を活性エネルギー線の照射、及び/又は、加熱する際の条件は、特に限定されず、例えば、上述の硬化物を形成する際の条件から適宜選択可能である。
 本発明の転写用フィルムの転写層が成形品に転写された後に、成型品の最表面に本発明の硬化ハードコート層が形成されるため、成型品表面の鉛筆硬度を非常に高くすることができ、好ましくは5H以上、より好ましくは6H以上である。なお、鉛筆硬度は、JIS K5600-5-4に記載の方法に準じて評価することができる。
 本発明の転写用フィルムを使用してインモールド射出成型法により製造された成形品(インモールド成型品)は、表面硬度が非常に高く、絵柄、模様が鮮明に転写されるため、このような特性が要求されるあらゆる成型品に好ましく使用することができる。本発明の転写用フィルムは、例えば、自動車のダッシュボード等の車内外装品、家電製品の筐体等の高い表面硬度と耐擦傷性、意匠性、耐久性が要求される各種の外装成型品に好適に使用することができる。
[ハードコートフィルム]
 本発明のハードコートフィルムは、基材と、該基材の少なくとも一方の表面に形成されたハードコート層とを有するフィルムであって、上記ハードコート層が、本発明の硬化性組成物(ハードコート層形成用硬化性組成物)により形成されたハードコート層(本発明の硬化性組成物の硬化物層)であることを特徴としている。
 なお、本発明のハードコートフィルムにおける本発明のハードコート層は、上記基材の一方の表面(片面)のみに形成されていてもよいし、両方の表面(両面)に形成されていてもよい。
 また、本発明のハードコートフィルムにおける本発明のハードコート層は、上記基材のそれぞれの表面において、一部のみに形成されていてもよいし、全面に形成されていてもよい。
 本発明のハードコートフィルムにおける基材は、ハードコートフィルムの基材であって、本発明のハードコート層以外を構成する部分をいう。上記基材としては、プラスチック基材、金属基材、セラミックス基材、半導体基材、ガラス基材、紙基材、木基材(木製基材)、表面が塗装表面である基材等の公知乃至慣用の基材を用いることができ、特に限定されない。中でも、プラスチック基材(プラスチック材料により構成された基材)が好ましい。
 上記プラスチック基材を構成するプラスチック材料は、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ポリイミド;ポリカーボネート;ポリアミド;ポリアセタール;ポリフェニレンオキサイド;ポリフェニレンサルファイド;ポリエーテルスルホン;ポリエーテルエーテルケトン;ノルボルネン系モノマーの単独重合体(付加重合体や開環重合体等)、ノルボルネンとエチレンの共重合体等のノルボルネン系モノマーとオレフィン系モノマーの共重合体(付加重合体や開環重合体等の環状オレフィンコポリマー等)、これらの誘導体等の環状ポリオレフィン;ビニル系重合体(例えば、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリスチレン、ポリ塩化ビニル、アクリロニトリル-スチレン-ブタジエン樹脂(ABS樹脂)等);ビニリデン系重合体(例えば、ポリ塩化ビニリデン等);トリアセチルセルロース(TAC)等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;メラミン樹脂;ユリア樹脂;マレイミド樹脂;シリコーン等の各種プラスチック材料が挙げられる。なお、上記プラスチック基材は、1種のみのプラスチック材料により構成されたものであってもよいし、2種以上のプラスチック材料により構成されたものであってもよい。
 中でも、上記プラスチック基材としては、本発明のハードコートフィルムとして透明性に優れたハードコートフィルムを得ることを目的とする場合には、透明性に優れた基材(透明基材)を用いることが好ましく、より好ましくはポリエステルフィルム(特に、PET、PEN)、環状ポリオレフィンフィルム、ポリカーボネートフィルム、TACフィルム、PMMAフィルムである。
 上記プラスチック基材は、必要に応じて、酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定剤、結晶核剤、難燃剤、難燃助剤、充填剤、可塑剤、耐衝撃性改良剤、補強剤、分散剤、帯電防止剤、発泡剤、抗菌剤等のその他の添加剤を含んでいてもよい。なお、添加剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記プラスチック基材は、単層の構成を有していてもよいし、多層(積層)の構成を有していてもよく、その構成(構造)は特に限定されない。例えば、上記プラスチック基材は、プラスチックフィルムの少なくとも一方の表面に本発明のハードコート層以外の層(「その他の層」と称する場合がある)が形成された、「プラスチックフィルム/その他の層」又は「その他の層/プラスチックフィルム/その他の層」等の積層構成を有するプラスチック基材であってもよい。上記その他の層としては、例えば、本発明のハードコート層以外のハードコート層等が挙げられる。なお、上記その他の層を構成する材料としては、例えば、上述のプラスチック材料等が挙げられる。
 上記プラスチック基材の表面の一部又は全部には、粗化処理、易接着処理、静電気防止処理、サンドブラスト処理(サンドマット処理)、コロナ放電処理、プラズマ処理、ケミカルエッチング処理、ウォーターマット処理、火炎処理、酸処理、アルカリ処理、酸化処理、紫外線照射処理、シランカップリング剤処理等の公知乃至慣用の表面処理が施されていてもよい。なお、上記プラスチック基材は、未延伸フィルムであってもよいし、延伸フィルム(一軸延伸フィルム、二軸延伸フィルム等)であってもよい。
 上記プラスチック基材は、例えば、上述のプラスチック材料をフィルム状に成形してプラスチック基材(プラスチックフィルム)とする方法、必要に応じてさらに上記プラスチックフィルムに対して適宜な層(例えば、上記その他の層等)を形成したり、適宜な表面処理を施す方法等の、公知乃至慣用の方法により製造することができる。なお、上記プラスチック基材としては、市販品を使用することもできる。
 上記基材の厚みは、特に限定されないが、例えば、0.01~10000μmの範囲から適宜選択することができる。
 本発明のハードコートフィルムにおける本発明のハードコート層は、本発明のハードコートフィルムにおける少なくとも一方の表面層を構成する層であり、本発明の硬化性組成物(ハードコート層形成用硬化性組成物)を硬化させることにより得られる硬化物(樹脂硬化物)により形成された層(硬化物層)である。
 本発明のハードコート層の厚み(基材の両面に本発明のハードコート層を有する場合は、それぞれのハードコート層の厚み)は、特に限定されないが、1~200μmが好ましく、より好ましくは3~150μmである。特に、本発明のハードコート層は、薄い場合(例えば、厚み5μm以下の場合)であっても、表面の高硬度を維持すること(例えば、鉛筆硬度をH以上とすること)が可能である。また、厚い場合(例えば、厚み50μm以上の場合)であっても、硬化収縮等に起因するクラック発生等の不具合が生じにくいため、厚膜化によって鉛筆硬度を著しく高めること(例えば、鉛筆硬度を9H以上とすること)が可能である。
 本発明のハードコート層のヘイズは、特に限定されないが、50μmの厚みの場合で、1.5%以下が好ましく、より好ましくは1.0%以下である。なお、ヘイズの下限は、特に限定されないが、例えば、0.1%である。ヘイズを特に1.0%以下とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本発明のハードコート層のヘイズは、JIS K7136に準拠して測定することができる。
 本発明のハードコート層の全光線透過率は、特に限定されないが、50μmの厚みの場合で、85%以上が好ましく、より好ましくは90%以上である。なお、全光線透過率の上限は、特に限定されないが、例えば、99%である。全光線透過率を85%以上とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本発明のハードコート層の全光線透過率は、JIS K7361-1に準拠して測定することができる。
 本発明のハードコートフィルムは、さらに、本発明のハードコート層表面に表面保護フィルムを有していてもよい。本発明のハードコートフィルムが表面保護フィルムを有することにより、ハードコートフィルムの打ち抜き加工性がいっそう向上する傾向がある。このように表面保護フィルムを有する場合には、例えば、ハードコート層の硬度が非常に高く、打ち抜き加工時に基材からの剥離やクラックが発生しやすいものであっても、このような問題を生じさせることなくトムソン刃を使用した打ち抜き加工を行うことができる。
 上記表面保護フィルムとしては、公知乃至慣用の表面保護フィルムを使用することができ、特に限定されないが、例えば、プラスチックフィルムの表面に粘着剤層を有するものが使用できる。上記プラスチックフィルムとしては、例えば、ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート等)、ポリオレフィン(ポリエチレン、ポリプロピレン、環状ポリオレフィン等)、ポリスチレン、アクリル樹脂、ポリカーボネート、エポキシ樹脂、フッ素樹脂、シリコーン樹脂、ジアセテート樹脂、トリアセテート樹脂、ポリアリレート、ポリ塩化ビニル、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルイミド、ポリイミド、ポリアミド等のプラスチック材料より形成されたプラスチックフィルムが挙げられる。上記粘着剤層としては、例えば、アクリル系粘着剤、天然ゴム系粘着剤、合成ゴム系粘着剤、エチレン-酢酸ビニル共重合体系粘着剤、エチレン-(メタ)アクリル酸エステル共重合体系粘着剤、スチレン-イソプレンブロック共重合体系粘着剤、スチレン-ブタジエンブロック共重合体系粘着剤等の公知乃至慣用の粘着剤の1種以上より形成された粘着剤層が挙げられる。上記粘着剤層中には、各種の添加剤(例えば、帯電防止剤、スリップ剤等)が含まれていてもよい。なお、プラスチックフィルム、粘着剤層は、それぞれ単層構成を有していてもよいし、多層(複層)構成を有していてもよい。また、表面保護フィルムの厚みは、特に限定されず、適宜選択することができる。
 表面保護フィルムとしては、例えば、商品名「サニテクト」シリーズ((株)サンエー化研製)、商品名「E-MASK」シリーズ(日東電工(株)製)、商品名「マスタック」シリーズ(藤森工業(株)製)、商品名「ヒタレックス」シリーズ(日立化成工業(株)製)、商品名「アルファン」シリーズ(王子エフテックス(株)製)等の市販品が市場より入手可能である。
 本発明のハードコートフィルムは、公知乃至慣用のハードコートフィルムの製造方法に準じて製造することができ、その製造方法は特に限定されないが、例えば、上記基材の少なくとも一方の表面に本発明の硬化性組成物(ハードコート層形成用硬化性組成物)を塗布し、必要に応じて溶剤を乾燥によって除去した後、該硬化性組成物(硬化性組成物層)を硬化させることにより製造できる。硬化性組成物を硬化させる際の条件は、特に限定されず、例えば、上述の硬化物を形成する際の条件から適宜選択可能である。
 特に、本発明のハードコートフィルムにおける本発明のハードコート層は、可とう性及び加工性に優れた硬化物を形成できる本発明の硬化性組成物(ハードコート層形成用硬化性組成物)より形成されたハードコート層であるため、本発明のハードコートフィルムは、ロールトゥロール方式での製造が可能である。本発明のハードコートフィルムをロールトゥロール方式で製造することにより、その生産性を著しく高めることが可能である。本発明のハードコートフィルムをロールトゥロール方式で製造する方法としては、公知乃至慣用のロールトゥロール方式の製造方法を採用することができ、特に限定されないが、例えば、ロール状に巻いた基材を繰り出す工程(工程A)と、繰り出した基材の少なくとも一方の表面に本発明の硬化性組成物(ハードコート層形成用硬化性組成物)を塗布し、次いで、必要に応じて溶剤を乾燥によって除去した後、該硬化性組成物(硬化性組成物層)を硬化させることにより本発明のハードコート層を形成する工程(工程B)と、その後、得られたハードコートフィルムを再びロールに巻き取る工程(工程C)とを必須の工程として含み、これら工程(工程A~C)を連続的に実施する方法等が挙げられる。なお、当該方法は、工程A~C以外の工程を含んでいてもよい。
 本発明のハードコートフィルムの厚みは、特に限定されず、1~10000μmの範囲から適宜選択することができる。
 本発明のハードコートフィルムの本発明のハードコート層表面の鉛筆硬度は、特に限定されないが、H以上が好ましく、より好ましくは2H以上、さらに好ましくは6H以上である。なお、鉛筆硬度は、JIS K5600-5-4に記載の方法に準じて評価することができる。
 本発明のハードコートフィルムのヘイズは、特に限定されないが、1.5%以下が好ましく、より好ましくは1.0%以下である。なお、ヘイズの下限は、特に限定されないが、例えば、0.1%である。ヘイズを特に1.0%以下とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本発明のハードコートフィルムのヘイズは、例えば、基材として上述の透明基材を使用することによって容易に上記範囲に制御することができる。なお、ヘイズは、JIS K7136に準拠して測定することができる。
 本発明のハードコートフィルムの全光線透過率は、特に限定されないが、85%以上が好ましく、より好ましくは90%以上である。なお、全光線透過率の上限は、特に限定されないが、例えば、99%である。全光線透過率を特に90%以上とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本発明のハードコートフィルムの全光線透過率は、例えば、基材として上述の透明基材を使用することによって容易に上記範囲に制御することができる。なお、全光線透過率は、JIS K7361-1に準拠して測定することができる。
 本発明のハードコートフィルムは、高硬度及び高耐熱性を維持しながら、可とう性を有し、ロールトゥロール方式での製造や加工が可能であるため、高い品質を有し、生産性にも優れる。特に、本発明のハードコート層表面に表面保護フィルムを有する場合には、打ち抜き加工性にも優れる。このため、このような特性が要求されるあらゆる用途に好ましく使用することができる。本発明のハードコートフィルムは、例えば、各種製品における表面保護フィルム、各種製品の部材又は部品における表面保護フィルム等として使用することもできるし、また、各種製品やその部材又は部品の構成材として使用することもできる。上記製品としては、例えば、液晶ディスプレイ、有機ELディスプレイなどの表示装置;タッチパネルなどの入力装置:太陽電池;各種家電製品;各種電気・電子製品;携帯電子端末(例えば、ゲーム機器、パソコン、タブレット、スマートフォン、携帯電話等)の各種電気・電子製品;各種光学機器等が挙げられる。また、本発明のハードコートフィルムが各種製品やその部材又は部品の構成材として使用される態様としては、例えば、タッチパネルにおけるハードコートフィルムと透明導電フィルムの積層体等に使用される態様等が挙げられる。
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。なお、生成物の分子量の測定は、Alliance HPLCシステム 2695(Waters製)、Refractive Index Detector 2414(Waters製)、カラム:Tskgel GMHHR-M×2(東ソー(株)製)、ガードカラム:Tskgel guard column HHRL(東ソー(株)製)、カラムオーブン:COLUMN HEATER U-620(Sugai製)、溶媒:THF、測定条件:40℃により行った。また、生成物におけるT2体とT3体の割合[T3体/T2体]の測定は、JEOL ECA500(500MHz)による29Si-NMRスペクトル測定により行った。
製造例1:中間体エポキシ基含有ポリオルガノシルセスキオキサンの製造
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下で2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン277.2ミリモル(68.30g)、フェニルトリメトキシシラン3.0ミリモル(0.56g)、及びアセトン275.4gを仕込み、50℃に昇温した。このようにして得られた混合物に、5%炭酸カリウム水溶液7.74g(炭酸カリウムとして2.8ミリモル)を5分で添加した後、水2800.0ミリモル(50.40g)を20分かけて添加した。なお、添加の間、著しい温度上昇は起こらなかった。その後、50℃のまま、重縮合反応を窒素気流下で5時間行った。
 その後、反応溶液を冷却すると同時に、メチルイソブチルケトン137.70gと5%食塩水100.60gとを投入した。この溶液を1Lの分液ロートに移し、再度メチルイソブチルケトン137.70gを投入し、水洗を行った。分液後、水層を抜き取り、下層液が中性になるまで水洗を行い、上層液を分取した後、1mmHg、50℃の条件で上層液から溶媒を留去し、メチルイソブチルケトンを25.04重量%含有する無色透明で液状の生成物(中間体エポキシ基含有ポリオルガノシルセスキオキサン)を75.18g得た。
 生成物を分析したところ、数平均分子量は2235であり、分子量分散度は1.54であった。上記生成物の29Si-NMRスペクトルから算出されるT2体とT3体の割合[T3体/T2体]は11.9であった。
 得られた中間体エポキシ基含有ポリオルガノシルセスキオキサンの1H-NMRチャートを図1、29Si-NMRチャートを図2にそれぞれ示す。
実施例1:本発明のエポキシ基含有ポリオルガノシルセスキオキサンの製造(1)
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下に製造例1で得られた中間体エポキシ基含有ポリオルガノシルセスキオキサンを含む混合物(75g)を仕込み、中間体エポキシ基含有ポリオルガノシルセスキオキサンの正味含有量(56.2g)に対して水酸化カリウムを100ppm(5.6mg)、水を2000ppm(112mg)添加し、80℃で18時間加熱した時点でサンプリングして分子量を測定したところ、数平均分子量Mnが6000まで上昇しており、その後室温まで冷却し、メチルイソブチルケトンを300mL添加し、水を300mL添加し、水洗を繰り返すことでアルカリ成分を除去して濃縮すると、メチルイソブチルケトンを25重量%含有する無色透明で液状の生成物(本発明のエポキシ基含有ポリオルガノシルセスキオキサン1)を74.5g得た。
 生成物を分析したところ、数平均分子量は6176であり、分子量分散度は2.31であった。上記生成物の29Si-NMRスペクトルから算出されるT2体とT3体の割合[T3体/T2体]は50.2であった。
 得られたエポキシ基含有ポリオルガノシルセスキオキサン1の1H-NMRチャートを図3、29Si-NMRチャートを図4にそれぞれ示す。
実施例2:本発明のエポキシ基含有ポリオルガノシルセスキオキサンの製造(2)
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下に製造例1と同様の方法で得られた中間体エポキシ基含有ポリオルガノシルセスキオキサンを含む混合物(75g)を仕込み、中間体エポキシ基含有ポリオルガノシルセスキオキサンの正味含有量(56.2g)に対して炭酸カリウムを100ppm(5.6mg)、水を2000ppm(112mg)添加し、80℃で18時間加熱した時点でサンプリングして分子量を測定したところ、数平均分子量Mnが4800まで上昇しており、その後室温まで冷却し、メチルイソブチルケトンを300mL添加し、水を300mL添加し、水洗を繰り返すことでアルカリ成分を除去して濃縮すると、メチルイソブチルケトンを25重量%含有する無色透明で液状の生成物(本発明のエポキシ基含有ポリオルガノシルセスキオキサン2)を74.5g得た。
実施例3:本発明のエポキシ基含有ポリオルガノシルセスキオキサンの製造(3)
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下に製造例1と同様の方法で得られた中間体エポキシ基含有ポリオルガノシルセスキオキサンを含む混合物(75g)を仕込み、中間体エポキシ基含有ポリオルガノシルセスキオキサンの正味含有量(56.2g)に対して炭酸カリウムを100ppm(5.6mg)、水を2000ppm(112mg)添加し、80℃で3時間加熱した時点でサンプリングして分子量を測定したところ、数平均分子量Mnが3500まで上昇しており、その後室温まで冷却し、メチルイソブチルケトンを300mL添加し、水を300mL添加し、水洗を繰り返すことでアルカリ成分を除去して濃縮すると、メチルイソブチルケトンを25重量%含有する無色透明で液状の生成物(本発明のエポキシ基含有ポリオルガノシルセスキオキサン3)を74.5g得た。
 生成物を分析したところ、数平均分子量は3500であり、分子量分散度は2.14であった。上記生成物の29Si-NMRスペクトルから算出されるT2体とT3体の割合[T3体/T2体]は21であった。
 得られたエポキシ基含有ポリオルガノシルセスキオキサン3の1H-NMRチャートを図5、29Si-NMRチャートを図6にそれぞれ示す。
製造例2:中間体アクリル基含有ポリオルガノシルセスキオキサンの製造
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下で3-(アクリルオキシ)プロピルトリメトキシシラン370ミリモル(80g)、及びアセトン320gを仕込み、50℃に昇温した。このようにして得られた混合物に、5%炭酸カリウム水溶液10.144g(炭酸カリウムとして3.67ミリモル)を5分で添加した後、水3670.0ミリモル(66.08g)を20分かけて添加した。なお、添加の間、著しい温度上昇は起こらなかった。その後、50℃のまま、重縮合反応を窒素気流下で2時間行った。
 その後、反応溶液を冷却すると同時に、メチルイソブチルケトン160gと5%食塩水99.056gとを投入した。この溶液を1Lの分液ロートに移し、再度メチルイソブチルケトン160gを投入し、水洗を行った。分液後、水層を抜き取り、下層液が中性になるまで水洗を行い、上層液を分取した後、1mmHg、50℃の条件で上層液から溶媒を留去し、メチルイソブチルケトンを22.5重量%含有する無色透明で液状の生成物(中間体アクリル基含有ポリオルガノシルセスキオキサン)を71g得た。
 生成物を分析したところ、数平均分子量は2051であり、分子量分散度は1.29であった。上記生成物の29Si-NMRスペクトルから算出されるT2体とT3体の割合[T3体/T2体]は13.4であった。
 得られた中間体アクリル基含有ポリオルガノシルセスキオキサンの1H-NMRチャートを図7、29Si-NMRチャートを図8にそれぞれ示す。
実施例4:本発明のアクリル基含有ポリオルガノシルセスキオキサンの製造(1)
 温度計、攪拌装置、還流冷却器、及び窒素導入管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下に製造例2で得られた中間体アクリル基含有ポリオルガノシルセスキオキサンを含む混合物(71g)を仕込み、中間体アクリル基含有ポリオルガノにシルセスキオキサンの正味含有量(55.0g)に対して水酸化カリウムを10ppm(0.55mg)、水を2000ppm(110mg)添加し、40℃で30時間加熱した時点でサンプリングして分子量を測定したところ、数平均分子量Mnが5693まで上昇しており、その後室温まで冷却し、メチルイソブチルケトンを300mL添加し、水を300mL添加し、水洗を繰り返すことでアルカリ成分を除去して濃縮すると、メチルイソブチルケトンを25重量%含有する無色透明で液状の生成物(本発明のアクリル基含有ポリオルガノシルセスキオキサン)を71g得た。
 生成物を分析したところ、数平均分子量は5693であり、分子量分散度は2.58であった。上記生成物の29Si-NMRスペクトルから算出されるT2体とT3体の割合[T3体/T2体]は47.3であった。
 得られたアクリル基含有ポリオルガノシルセスキオキサン1の1H-NMRチャートを図9、29Si-NMRチャートを図10にそれぞれ示す。
実施例5:転写フィルム及び成型体の製造
(離型剤塗工液Aの調製)
 Nb/Et(2-ノルボルネン・エチレン共重合体、Topas Advanced Polymers GmbH社製「TOPAS(登録商標)6017S-04」、ガラス転移温度178℃)100重量部及びPVDC(ポリ塩化ビニリデン)1重量部を、固形分濃度が5重量%となるように、トルエン及びテトラヒドロフランの混合溶媒(トルエン/テトラヒドロフラン=70/30(重量比))に添加し、加温して溶解し、離型剤塗工液Aを調製した。
(離型フィルムAの作製)
 基材層として、二軸延伸ポリエチレンテレフタレートフィルム(ユニチカ(株)製「エンブレットS50」、厚み50μm)を用い、このフィルムの片面に、離型剤塗工液Aをメイヤーバーコーティング法によりコーティングし、100℃の温度で1分間乾燥して、厚み0.3μmの離型層を形成し、離型フィルムAを得た。
(ハードコート塗工液Aの調製)
 実施例3で得られたエポキシ基含有ポリオルガノシルセスキオキサン3(数平均分子量Mn3500)100重量部、CPI-210S(サンアプロ株式会社製光カチオン重合開始剤)1.13重量部を、固形分濃度が70重量%となるように、メチルイソブチルケトンに添加し、ハードコート塗工液Aを調製した。
(転写フィルムAの作製)
 離型フィルムAの離型層面上に、ハードコート塗工液Aをメイヤーバーコーティング法によりコーティングし、80℃の温度で2分間乾燥し、さらに150℃の温度で8分間乾燥して厚み40μmのハードコート層を形成した。得られたハードコート層の表面を指で触ったところ、指に樹脂が付着せず、表面粘着性を示さない(タックフリーである)ことが確認された。このハードコート層上に、K468HPアンカー(東洋インキ株式会社製エポキシ樹脂系アンカーコート剤)をメイヤーバーコーティング法によりコーティングし、80℃の温度で30秒間乾燥して、厚み1μmのアンカーコート層を形成し、さらにこのアンカーコート層上に、K588HP接着グロスAワニス(東洋インキ製塩化ビニル-酢酸ビニル共重合樹脂系接着剤)をメイヤーバーコーティング法によりコーティングし、80℃の温度で30秒間乾燥して、厚み4μmの接着剤層を形成し、転写フィルムAを得た。
(成形体1の作製)
 SE130DU-CI(住友重機械工業株式会社製全電動二材射出成型機)の金型内に転写フィルムAを設置し、透明ABS(東レ株式会社製トヨラック、グレード920-555)を、金型温度50℃、樹脂温度230℃で射出成型することにより未硬化のハードコート層を有する成形体1を得た。得られたハードコート層未硬化の成形体1のハードコート面に、高圧水銀ランプ(アイグラフィックス社製)からの紫外線を約10秒間照射(積算光量約400mJ/cm2)して紫外線硬化処理した後、さらに60℃で1週間アニール処理を行うことによりハードコート層が硬化された成形体1を得た。
比較例1:転写フィルムB及び成型体の製造
(転写フィルムBの作製)
 ハードコート層の形成を、セイカビームHT-S(大日精化工業株式会社製ウレタンアクリレート系ハードコート剤)をメイヤーバーコーティング法によりコーティングし、100℃の温度で1分間乾燥した後、高圧水銀ランプ(アイグラフィックス社製)からの紫外線で約2秒間UV硬化処理(積算光量約30mJ/cm2)することにより、厚み4.5μmの半硬化のハードコート層を形成したこと以外は転写フィルムAと同様の方法で、転写フィルムBを得た。
(成形体2の作製)
 転写フィルムAの代わりに転写フィルムBを用いたこと、および射出成形後の処理を高圧水銀ランプ(アイグラフィックス社製)からの紫外線を約25秒間照射(積算光量約900mJ/cm2)として、半硬化ハードコート層を硬化したこと以外は成形体1と同様の方法でハードコート層が硬化された成形体2を得た。
(硬度の評価)
 得られた成形体1及び2の鉛筆硬度を、JIS-K-5600に規定される鉛筆硬度の評価方法に従い評価した。この評価方法による結果を表1に示す。
Figure JPOXMLDOC01-appb-T000040
 上記で説明した本発明のバリエーションを以下に付記する。
[1]下記式(1)
Figure JPOXMLDOC01-appb-C000041
[式(1)中、R1は、重合性官能基を含有する基を示す。]
で表される構成単位を有し、下記式(I)
Figure JPOXMLDOC01-appb-C000042
[式(I)中、Raは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。]
で表される構成単位と、下記式(II)
Figure JPOXMLDOC01-appb-C000043
[式(II)中、Rbは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。Rcは、水素原子又は炭素数1~4のアルキル基を示す。]
で表される構成単位のモル比[式(I)で表される構成単位/式(II)で表される構成単位]が20以上500以下であり、シロキサン構成単位の全量(100モル%)に対する上記式(1)で表される構成単位及び下記式(4)
Figure JPOXMLDOC01-appb-C000044
[式(4)中、R1は、式(1)におけるものと同じ。Rcは、式(II)におけるものと同じ。]
で表される構成単位の割合が55~100モル%であり、数平均分子量が2500~50000、分子量分散度(重量平均分子量/数平均分子量)が1.0~4.0であることを特徴とするポリオルガノシルセスキオキサン。
[2]前記重合性官能基が、カチオン重合性官能基、又はラジカル重合性官能基である、前記[1]に記載のポリオルガノシルセスキオキサン。
[3]前記カチオン重合性官能基が、エポキシ基、オキセタン基、ビニルエーテル基、及びビニルフェニル基からなる群から選ばれる少なくとも1種(好ましくはエポキシ基)である、前記[2]に記載のポリオルガノシルセスキオキサン。
[4]前記ラジカル重合性官能基が、(メタ)アクリルオキシ基、(メタ)アクリルアミド基、ビニル基、及びビニルチオ基からなる群から選ばれる少なくとも1種(好ましくは(メタ)アクリルオキシ基)である、前記[2]に記載のポリオルガノシルセスキオキサン。
[5]前記重合性官能基が、エポキシ基、又は(メタ)アクリルオキシ基である、前記[1]~[4]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[6]前記重合性官能基が、エポキシ基である、前記[1]~[5]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[7]前記R1が、下記式(1a)
Figure JPOXMLDOC01-appb-C000045
[式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基(好ましくはエチレン基、トリメチレン基、より好ましくはエチレン基)を示す。]
で表される基、下記式(1b)
Figure JPOXMLDOC01-appb-C000046
[式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基(好ましくはエチレン基、トリメチレン基、より好ましくはトリメチレン基)を示す。]
で表される基、下記式(1c)
Figure JPOXMLDOC01-appb-C000047
[式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基(好ましくはエチレン基、トリメチレン基、より好ましくはトリメチレン基)を示す。]
で表される基、又は、下記式(1d)
Figure JPOXMLDOC01-appb-C000048
[式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基(好ましくはエチレン基、トリメチレン基、より好ましくはエチレン基)を示す。]
で表される基である、前記[1]~[6]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[8]前記R1が、(メタ)アクリルオキシ基を含有する基(好ましくは2-((メタ)アクリルオキシ)エチル基、又は3-((メタ)アクリルオキシ)プロピル基)である、前記[1]~[7]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[9]前記R1が、2-(3’,4’-エポキシシクロヘキシル)エチル基]、3-(アクリルオキシ)プロピル基、又は3-(メタクリルオキシ)プロピル基である、前記[1]~[8]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[10]さらに、下記式(2)
Figure JPOXMLDOC01-appb-C000049
[式(2)中、R2は、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。]
で表される構成単位を有する、前記[1]~[9]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[11]前記R2が、置換若しくは無置換のアリール基(好ましくはフェニル基)である、前記[10]に記載のポリオルガノシルセスキオキサン。
[12]上記式(I)で表される構成単位(T3体)と、上記式(II)で表される構成単位(T2体)の割合[T3体/T2体]の下限値が21(好ましくは23、より好ましくは25)である、前記[1]~[11]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[13]前記[T3体/T2体]の上限値が100(好ましくは50、より好ましくは40)である、前記[1]~[12]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[14]シロキサン構成単位の全量(100モル%)に対する、上記式(1)で表される構成単位及び上記式(4)で表される構成単位の割合(総量)が、65~100モル%(好ましくは80~99モル%)である、前記[1]~[13]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[15]シロキサン構成単位の全量(100モル%)に対する、上記式(2)で表される構成単位及び上記式(5)で表される構成単位の割合(総量)が、0~70モル%(好ましくは0~60モル%、より好ましくは0~40モル%、特に好ましくは1~15モル%)である、前記[1]~[14]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[16]シロキサン構成単位の全量(100モル%)に対する、上記式(1)で表される構成単位、上記式(2)で表される構成単位、上記式(4)で表される構成単位、及び上記式(5)で表される構成単位の割合(総量)が、60~100モル%(好ましくは70~100モル%、より好ましくは80~100モル%)である、前記[1]~[15]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[17]数平均分子量(Mn)が、2800~10000(好ましくは3000~8000)である、前記[1]~[16]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[18]分子量分散度(Mw/Mn)が、1.1~3.0(好ましくは1.2~2.5)である、前記[1]~[17]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[19]空気雰囲気下における5%重量減少温度(Td5)が、330℃以上(例えば、330~450℃、好ましくは340℃以上、より好ましくは350℃以上)である、前記[1]~[18]のいずれか1つに記載のポリオルガノシルセスキオキサン。
[20]前記[1]~[19]のいずれか1つに記載のポリオルガノシルセスキオキサンを含む硬化性組成物。
[21]前記ポリオルガノシルセスキオキサンの含有量(配合量)が、溶媒を除く硬化性組成物の全量(100重量%)に対して、70重量%以上、100重量%未満(好ましくは80~99.8重量%、より好ましくは90~99.5重量%)である、前記[20]に記載の硬化性組成物。
[22]前記硬化性組成物に含まれるカチオン硬化性化合物又はラジカル硬化性化合物の全量(100重量%)に対する前記ポリオルガノシルセスキオキサンの割合が、70~100重量%(好ましくは75~98重量%、より好ましくは80~95重量%)である、前記[20]又は[21]に記載の硬化性組成物。
[23]さらに、硬化触媒を含む、前記[20]~[22]のいずれか1つに記載の硬化性組成物。
[24]前記硬化触媒が光カチオン重合開始剤である、前記[23]に記載の硬化性組成物。
[25]前記硬化触媒が熱カチオン重合開始剤である、前記[23]に記載の硬化性組成物。
[26]前記硬化触媒が光ラジカル重合開始剤である、前記[23]に記載の硬化性組成物。
[27]前記硬化触媒が熱ラジカル重合開始剤である、前記[23]に記載の硬化性組成物。
[28]前記硬化触媒の含有量(配合量)が、前記ポリオルガノシルセスキオキサン100重量部に対して、0.01~3.0重量部(好ましくは0.05~3.0重量部、より好ましくは0.1~1.0重量部、さらに好ましくは0.3~1.0重量部)である、前記[23]~[28]のいずれか1つに記載の硬化性組成物。
[29]さらに、ビニルエーテル化合物を含む、前記[20]~[28]のいずれか1つに記載の硬化性組成物。
[30]さらに、分子内に水酸基を有するビニルエーテル化合物を含む、前記[20]~[29]のいずれか1つに記載の硬化性組成物。
[31]前記ビニルエーテル化合物(特に、分子内に1個以上の水酸基を有するビニルエーテル化合物)の含有量(配合量)が、前記硬化性組成物中のカチオン硬化性化合物とラジカル硬化性化合物の全量(100%)に対して、0.01~10重量%(好ましくは0.05~9重量%、より好ましくは1~8重量%)である、前記[29]又は[30]に記載の硬化性組成物。
[32]ハードコート層形成用硬化性組成物である、前記[20]~[31]のいずれか1つに記載の硬化性組成物。
[33]前記[20]~[32]のいずれか1つに記載の硬化性組成物の硬化物。
[34]基材と、該基材の少なくとも一方の表面に形成された離型層上に、ハードコート層が積層された転写用フィルムであって、該ハードコート層が、前記[32]に記載の硬化性組成物を含むことを特徴とする転写用フィルム。
[35]前記基材が、ポリエステルフィルム(特に、ポリエチレンテレフタレート、ポリエチレンナフタレート)、環状ポリオレフィンフィルム、ポリカーボネートフィルム、トリアセチルセルロースフィルム、又はポリメチルメタクリレートフィルムである、前記[34]に記載の転写用フィルム。
[36]前記基材の厚みが、0.01~10000μm(好ましくは2~250μm、より好ましくは5~100μm、さらに好ましくは20~100μm)である、前記[34]又は[35]に記載の転写用フィルム。
[37]前記離形層と前記ハードコート層の剥離強度が、30~500mN/24mm(好ましくは40~300mN/24mm、より好ましくは50~200mN/24mm)である、前記[34]~[35]のいずれか1つに記載の転写用フィルム。
[38]前記離型層を形成する成分が、不飽和エステル系樹脂、エポキシ系樹脂、エポキシ-メラミン系樹脂、アミノアルキド系樹脂、アクリル系樹脂、メラミン系樹脂、シリコン系樹脂、フッ素系樹脂、セルロース系樹脂、尿素樹脂系樹脂、ポリオレフィン系樹脂、パラフィン系樹脂、及びシクロオレフィン系樹脂から選ばれる少なくとも一種(好ましくはシクロオレフィン系樹脂、特に好ましくは2-ノルボルネン・エチレン共重合体等のシクロオレフィン共重合体樹脂)である、前記[34]~[37]のいずれか1つに記載の転写用フィルム。
[39]離型層の厚さが、0.01~5μm(好ましくは0.1~3.0μm)である、前記[34]~[38]のいずれか1つに記載の転写用フィルム。
[40]前記ハードコート層の厚さが、1~200μm(好ましくは3~150μm)である、前記[34]~[39]のいずれか1つに記載の転写用フィルム。
[41]前記ハードコート層の50μmの厚みのヘイズが、1.5%以下(好ましくは1.0%以下)である、前記[34]~[40]のいずれか1つに記載の転写用フィルム。
[42]前記ハードコート層の50μmの厚みのヘイズが、0.1%以上である、前記[34]~[41]のいずれか1つに記載の転写用フィルム。
[43]前記ハードコート層の50μmの厚みの全光線透過率が、85%以上(好ましくは90%以上)である、前記[34]~[42]のいずれか1つに記載の転写用フィルム。
[44]前記ハードコート層の50μmの厚みの全光線透過率が、99%以下である、前記[34]~[43]のいずれか1つに記載の転写用フィルム。
[45]前記ハードコート層上に、アンカーコート層及び接着剤層が、この順でさらに積層される、前記[34]~[44]のいずれか1つに記載の転写用フィルム。
[46]さらに、少なくとも1層の着色層を含む、前記[34]~[45]のいずれか1つに記載の転写用フィルム。
[47]前記アンカーコート層が、フェノール樹脂、アルキド樹脂、メラミン系樹脂、エポキシ系樹脂、尿素樹脂、不飽和ポリエステル樹脂、ウレタン系樹脂、熱硬化性ポリイミド、シリコーン樹脂、塩化ビニル-酢酸ビニル共重合体樹脂、アクリル樹脂、塩化ゴム、ポリアミド樹脂、硝化綿樹脂、及び環状ポリオレフィン系樹脂からなる群から選ばれる少なくとも1種(好ましくはエポキシ樹脂)である、前記[34]~[46]のいずれか1つに記載の転写用フィルム。
[48]前記アンカーコート層の厚みが、0.1~20μm(好ましくは、0.5~5μm)である、前記[34]~[47]のいずれか1つに記載の転写用フィルム。
[49]前記接着剤層に用いられる樹脂が、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、塩化ビニル-酢酸ビニル系共重合樹脂、スチレン-アクリル系共重合樹脂、ポリエステル系樹脂、及びポリアミド系樹脂からなる群から選ばれる少なくとも1種(好ましくは、アクリル系樹脂、塩化ビニル-酢酸ビニル系共重合樹脂)である、前記[34]~[48]のいずれか1つに記載の転写用フィルム。
[50]前記接着剤層の厚みが、0.1~10μm(好ましくは0.5~5μm)である、前記[34]~[49]のいずれか1つに記載の転写用フィルム。
[51]前記転写用フィルムの厚みが、1~10000μm(好ましくは2~250μm、より好ましくは5~150μmが、さらに好ましくは25~150μm)である、前記[34]~[50]のいずれか1つに記載の転写用フィルム。
[52]インモールド射出成型に使用される転写用フィルムである、前記[34]~[51]のいずれか1つに記載の転写用フィルム。
[53]前記[52]に記載の転写用フィルムから前記離型層が形成された基材を除いた層(転写層)が転写されたインモールド成型品。
[54]基材と、該基材の少なくとも一方の表面に形成されたハードコート層とを有するハードコートフィルムであって、該ハードコート層が、前記[32]に記載の硬化性組成物の硬化物層であることを特徴とするハードコートフィルム。
[55]前記基材が、ポリエステルフィルム(特に、ポリエチレンテレフタレート、ポリエチレンナフタレート)、環状ポリオレフィンフィルム、ポリカーボネートフィルム、トリアセチルセルロースフィルム、又はポリメチルメタクリレートフィルムである、前記[54]に記載のハードコートフィルム。
[56]前記基材の厚みが、0.01~10000μmである、前記[54]又は[55]に記載のハードコートフィルム。
[57]前記ハードコート層の厚さが1~200μm(好ましくは3~150μm)である、前記[54]~[56]のいずれか1つに記載のハードコートフィルム。
[58]前記ハードコート層の50μmの厚みのヘイズが、1.5%以下(好ましくは1.0%以下)である、前記[54]~[57]のいずれか1つに記載のハードコートフィルム。
[59]前記ハードコート層の50μmの厚みのヘイズが、0.1%以上である、前記[54]~[58]のいずれか1つに記載のハードコートフィルム。
[60]前記ハードコート層の50μmの厚みの全光線透過率が、85%以上(好ましくは90%以上)である、前記[54]~[59]のいずれか1つに記載のハードコートフィルム。
[61]前記ハードコート層の50μmの厚みの全光線透過率が、99%以下である、前記[54]~[60]のいずれか1つに記載のハードコートフィルム。
[62]ロールトゥロール方式での製造が可能な、前記[54]~[61]のいずれか1つに記載のハードコートフィルム。
[63]さらに、前記ハードコート層表面に表面保護フィルムを有する、前記[54]~[62]のいずれか1つに記載のハードコートフィルム。
[64]前記ハードコートフィルムの厚みが、1~10000μmである、前記[54]~[63]のいずれか1つに記載のハードコートフィルム。
[65]前記ハードコートフィルムのヘイズが、1.5%以下(好ましくは1.0%以下)である、前記[54]~[64]のいずれか1つに記載のハードコートフィルム。
[66]前記ハードコートフィルムのヘイズが、0.1%以上である、前記[54]~[65]のいずれか1つに記載のハードコートフィルム。
[67]前記ハードコートフィルムの全光線透過率が、85%以上(好ましくは90%以上)である、前記[54]~[66]のいずれか1つに記載のハードコートフィルム。
[68]前記ハードコートフィルムの全光線透過率が、99%以下である、前記[54]~[67]のいずれか1つに記載のハードコートフィルム。
[65]ロール状に巻いた基材を繰り出す工程Aと、繰り出した基材の少なくとも一方の表面に前記[32]に記載の硬化性組成物を塗布し、次いで、該硬化性組成物を硬化させることによりハードコート層を形成する工程Bと、その後、得られたハードコートフィルムを再びロールに巻き取る工程Cとを含み、工程A~Cを連続的に実施することを特徴とするハードコートフィルムの製造方法。
 本発明のポリオルガノシルセスキオキサンを必須成分として含む硬化性組成物を含むハードコート層を有する転写用フィルムを用いてインモールド射出成型を行うことにより、高い表面硬度を有するハードコート層で被覆された成型品を製造することができる。また、本発明のポリオルガノシルセスキオキサンを含む未硬化又は半硬化のハードコート層がタックフリーとなってロール状に巻き取って取り扱うことができ、該ハードコート層を含む転写用フィルムをロールトゥロールで取り扱うことが可能である。従って、本発明の硬化性組成物は、特に、インモールド射出成型に使用される転写用フィルムやハードコートフィルムのハードコート層形成用硬化性組成物として好ましく使用できる。

Claims (26)

  1.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式(1)中、R1は、重合性官能基を含有する基を示す。]
    で表される構成単位を有し、下記式(I)
    Figure JPOXMLDOC01-appb-C000002
    [式(I)中、Raは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。]
    で表される構成単位と、下記式(II)
    Figure JPOXMLDOC01-appb-C000003
    [式(II)中、Rbは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。Rcは、水素原子又は炭素数1~4のアルキル基を示す。]
    で表される構成単位のモル比[式(I)で表される構成単位/式(II)で表される構成単位]が20以上500以下であり、シロキサン構成単位の全量(100モル%)に対する上記式(1)で表される構成単位及び下記式(4)
    Figure JPOXMLDOC01-appb-C000004
    [式(4)中、R1は、式(1)におけるものと同じ。Rcは、式(II)におけるものと同じ。]
    で表される構成単位の割合が55~100モル%であり、数平均分子量が2500~50000、分子量分散度(重量平均分子量/数平均分子量)が1.0~4.0であることを特徴とするポリオルガノシルセスキオキサン。
  2.  さらに、下記式(2)
    Figure JPOXMLDOC01-appb-C000005
    [式(2)中、R2は、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。]
    で表される構成単位を有する請求項1に記載のポリオルガノシルセスキオキサン。
  3.  前記R2が、置換若しくは無置換のアリール基である請求項2に記載のポリオルガノシルセスキオキサン。
  4.  前記重合性官能基が、エポキシ基である、請求項1~3のいずれか1項に記載のポリオルガノシルセスキオキサン。
  5.  前記R1が、下記式(1a)
    Figure JPOXMLDOC01-appb-C000006
    [式(1a)中、R1aは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基、下記式(1b)
    Figure JPOXMLDOC01-appb-C000007
    [式(1b)中、R1bは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基、下記式(1c)
    Figure JPOXMLDOC01-appb-C000008
    [式(1c)中、R1cは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基、又は、下記式(1d)
    Figure JPOXMLDOC01-appb-C000009
    [式(1d)中、R1dは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基である請求項1~4のいずれか1項に記載のポリオルガノシルセスキオキサン。
  6.  請求項1~5のいずれか1項に記載のポリオルガノシルセスキオキサンを含む硬化性組成物。
  7.  さらに、硬化触媒を含む請求項6に記載の硬化性組成物。
  8.  前記硬化触媒が光カチオン重合開始剤である請求項7に記載の硬化性組成物。
  9.  前記硬化触媒が熱カチオン重合開始剤である請求項7に記載の硬化性組成物。
  10.  前記硬化触媒が光ラジカル重合開始剤である請求項7に記載の硬化性組成物。
  11.  前記硬化触媒が熱ラジカル重合開始剤である請求項7に記載の硬化性組成物。
  12.  さらに、ビニルエーテル化合物を含む請求項6~11のいずれか1項に記載の硬化性組成物。
  13.  さらに、分子内に水酸基を有するビニルエーテル化合物を含む請求項6~12のいずれか1項に記載の硬化性組成物。
  14.  ハードコート層形成用硬化性組成物である請求項6~13のいずれか1項に記載の硬化性組成物。
  15.  請求項6~14のいずれか1項に記載の硬化性組成物の硬化物。
  16.  基材と、該基材の少なくとも一方の表面に形成された離型層上に、ハードコート層が積層された転写用フィルムであって、該ハードコート層が、請求項14に記載の硬化性組成物を含むことを特徴とする転写用フィルム。
  17.  前記ハードコート層上に、アンカーコート層及び接着剤層が、この順でさらに積層される請求項16に記載の転写用フィルム。
  18.  さらに、少なくとも1層の着色層を含む請求項16又は17に記載の転写用フィルム。
  19.  前記ハードコート層の厚さが3~150μmである請求項16~18のいずれか1項に記載の転写用フィルム。
  20.  インモールド射出成型に使用される転写用フィルムである、請求項16~19のいずれか1項に記載の転写用フィルム。
  21.  請求項20に記載の転写用フィルムから前記離型層が形成された基材を除いた層(転写層)が転写されたインモールド成型品。
  22.  基材と、該基材の少なくとも一方の表面に形成されたハードコート層とを有するハードコートフィルムであって、該ハードコート層が、請求項14に記載の硬化性組成物の硬化物層であることを特徴とするハードコートフィルム。
  23.  前記ハードコート層の厚さが1~200μmである請求項22に記載のハードコートフィルム。
  24.  ロールトゥロール方式での製造が可能な請求項22又は23に記載のハードコートフィルム。
  25.  さらに、前記ハードコート層表面に表面保護フィルムを有する請求項22~24のいずれか1項に記載のハードコートフィルム。
  26.  ロール状に巻いた基材を繰り出す工程Aと、繰り出した基材の少なくとも一方の表面に請求項14に記載の硬化性組成物を塗布し、次いで、該硬化性組成物を硬化させることによりハードコート層を形成する工程Bと、その後、得られたハードコートフィルムを再びロールに巻き取る工程Cとを含み、工程A~Cを連続的に実施することを特徴とするハードコートフィルムの製造方法。
PCT/JP2018/018896 2017-05-17 2018-05-16 ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム WO2018212228A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019518834A JPWO2018212228A1 (ja) 2017-05-17 2018-05-16 ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム
CN201880032557.XA CN110621723A (zh) 2017-05-17 2018-05-16 聚有机倍半硅氧烷、转印用膜、模内成型品以及硬涂膜
KR1020197036747A KR20200007894A (ko) 2017-05-17 2018-05-16 폴리오르가노실세스퀴옥산, 전사용 필름, 인 몰드 성형품 및 하드 코트 필름
US16/614,007 US20200079910A1 (en) 2017-05-17 2018-05-16 Polyorganosilsesquioxane, transfer film, in-mold molded article, and hard coat film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017098511 2017-05-17
JP2017-098511 2017-05-17

Publications (1)

Publication Number Publication Date
WO2018212228A1 true WO2018212228A1 (ja) 2018-11-22

Family

ID=64273910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018896 WO2018212228A1 (ja) 2017-05-17 2018-05-16 ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム

Country Status (6)

Country Link
US (1) US20200079910A1 (ja)
JP (1) JPWO2018212228A1 (ja)
KR (1) KR20200007894A (ja)
CN (1) CN110621723A (ja)
TW (1) TW201902997A (ja)
WO (1) WO2018212228A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020235274A1 (ja) * 2019-05-17 2020-11-26
WO2021060055A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法、及びハードコートフィルムを含む物品
WO2022014674A1 (ja) * 2020-07-16 2022-01-20 東山フイルム株式会社 インサート成形用ハードコートフィルムおよびインサート成形品の製造方法
WO2022044968A1 (ja) * 2020-08-28 2022-03-03 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート
WO2022044969A1 (ja) * 2020-08-28 2022-03-03 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート
JP2022537795A (ja) * 2019-09-25 2022-08-30 エルジー・ケム・リミテッド 光学積層体およびこれを含むフレキシブルディスプレイ装置
WO2023238836A1 (ja) * 2022-06-10 2023-12-14 東亞合成株式会社 シルセスキオキサン誘導体及びその製造方法、硬化性組成物、ハードコート剤、硬化物、ハードコート、並びに、基材
WO2023238835A1 (ja) * 2022-06-10 2023-12-14 東亞合成株式会社 シルセスキオキサン誘導体及びその製造方法、硬化性組成物、ハードコート剤、硬化物、ハードコート、並びに、基材
TWI837235B (zh) 2018-12-04 2024-04-01 日商播磨化成股份有限公司 附有硬塗層之模製樹脂及其製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11692108B2 (en) * 2018-08-17 2023-07-04 Sk Innovation Co., Ltd. Composition for forming hard coating layer, preparation method of hard coating film, and hard coating film prepared using the same
US11693154B2 (en) * 2018-08-23 2023-07-04 Sk Innovation Co., Ltd. Antireflection hard coating film and preparation method thereof
US11693155B2 (en) * 2018-08-23 2023-07-04 Sk Innovation Co., Ltd. Antireflection hard coating film and preparation method thereof
KR20220128423A (ko) * 2020-03-27 2022-09-20 후지필름 가부시키가이샤 하드 코트층 형성용 조성물, 하드 코트 필름, 하드 코트 필름의 제조 방법 및 하드 코트 필름을 구비한 물품
CN113665263A (zh) * 2021-09-10 2021-11-19 朱宏达 一种真空热转印花膜

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179811A (ja) * 2006-12-28 2008-08-07 Asahi Kasei Corp シロキサン誘導体及びその硬化物
WO2015087686A1 (ja) * 2013-12-13 2015-06-18 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
WO2016204014A1 (ja) * 2015-06-17 2016-12-22 株式会社ダイセル 硬化性組成物
JP2017008142A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、ハードコートフィルム、及び硬化物
JP2017008144A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、ハードコートフィルム、及び硬化物
JP2017008145A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル 硬化性組成物、接着シート、積層物及び装置
JP2017008147A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、接着シート、積層物及び装置
JP2017008148A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、ハードコートフィルム、及び硬化物
JP2017008143A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002960A1 (de) * 2005-01-21 2006-08-03 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Kompositzusammensetzung für mikrogemusterte Schichten mit hohem Relaxationsvermögen, hoher chemischer Beständigkeit und mechanischer Stabilität
MY154045A (en) * 2012-05-25 2015-04-27 Daicel Corp Curable resin composition and cured product thereof, encapsulating agent, and optical semiconductor device
CN104129189B (zh) 2013-05-02 2017-09-29 荒川化学工业株式会社 转印用装饰膜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008179811A (ja) * 2006-12-28 2008-08-07 Asahi Kasei Corp シロキサン誘導体及びその硬化物
WO2015087686A1 (ja) * 2013-12-13 2015-06-18 株式会社ダイセル ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
WO2016204014A1 (ja) * 2015-06-17 2016-12-22 株式会社ダイセル 硬化性組成物
JP2017008142A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、ハードコートフィルム、及び硬化物
JP2017008144A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、ハードコートフィルム、及び硬化物
JP2017008145A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル 硬化性組成物、接着シート、積層物及び装置
JP2017008147A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、接着シート、積層物及び装置
JP2017008148A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、ハードコートフィルム、及び硬化物
JP2017008143A (ja) * 2015-06-17 2017-01-12 株式会社ダイセル ポリオルガノシルセスキオキサン

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI837235B (zh) 2018-12-04 2024-04-01 日商播磨化成股份有限公司 附有硬塗層之模製樹脂及其製造方法
WO2020235274A1 (ja) * 2019-05-17 2020-11-26 富士フイルム株式会社 ハードコートフィルム、ハードコートフィルムを備えた物品、及び画像表示装置
JPWO2020235274A1 (ja) * 2019-05-17 2020-11-26
JP7377261B2 (ja) 2019-05-17 2023-11-09 富士フイルム株式会社 ハードコートフィルム、ハードコートフィルムを備えた物品、及び画像表示装置
JP2022537795A (ja) * 2019-09-25 2022-08-30 エルジー・ケム・リミテッド 光学積層体およびこれを含むフレキシブルディスプレイ装置
JP7287599B2 (ja) 2019-09-25 2023-06-06 エルジー・ケム・リミテッド 光学積層体およびこれを含むフレキシブルディスプレイ装置
WO2021060055A1 (ja) * 2019-09-27 2021-04-01 富士フイルム株式会社 ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法、及びハードコートフィルムを含む物品
JPWO2021060055A1 (ja) * 2019-09-27 2021-04-01
JP7280963B2 (ja) 2019-09-27 2023-05-24 富士フイルム株式会社 ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法、及びハードコートフィルムを含む物品
WO2022014674A1 (ja) * 2020-07-16 2022-01-20 東山フイルム株式会社 インサート成形用ハードコートフィルムおよびインサート成形品の製造方法
JP2022031615A (ja) * 2020-07-16 2022-02-22 東山フイルム株式会社 インサート成形用ハードコートフィルムおよびインサート成形品の製造方法
JP6991605B1 (ja) 2020-07-16 2022-02-03 東山フイルム株式会社 インサート成形用ハードコートフィルムおよびインサート成形品の製造方法
WO2022044969A1 (ja) * 2020-08-28 2022-03-03 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート
WO2022044968A1 (ja) * 2020-08-28 2022-03-03 株式会社ダイセル ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート
WO2023238836A1 (ja) * 2022-06-10 2023-12-14 東亞合成株式会社 シルセスキオキサン誘導体及びその製造方法、硬化性組成物、ハードコート剤、硬化物、ハードコート、並びに、基材
WO2023238835A1 (ja) * 2022-06-10 2023-12-14 東亞合成株式会社 シルセスキオキサン誘導体及びその製造方法、硬化性組成物、ハードコート剤、硬化物、ハードコート、並びに、基材

Also Published As

Publication number Publication date
US20200079910A1 (en) 2020-03-12
KR20200007894A (ko) 2020-01-22
JPWO2018212228A1 (ja) 2020-03-19
TW201902997A (zh) 2019-01-16
CN110621723A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2018212228A1 (ja) ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム
JP6219250B2 (ja) ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
CN110494466B (zh) 固化性组合物、固化物及硬涂膜
JP6795498B2 (ja) 硬化性組成物、及び成形体
CN107735253B (zh) 损伤恢复膜
WO2018207914A1 (ja) カールが抑制されたハードコートフィルム及びその製造方法
CN110546001B (zh) 层叠体
CN111093963B (zh) 成形体
JP6956517B2 (ja) 転写用フィルム、及びインモールド成型品
JP2018177952A (ja) 硬化性組成物、硬化物及びハードコートフィルム
JP2017008144A (ja) ポリオルガノシルセスキオキサン、硬化性組成物、ハードコートフィルム、及び硬化物
JP6737926B2 (ja) ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物
WO2021215106A1 (ja) ポリオルガノシルセスキオキサン、積層体、及び表面被覆成形体
WO2022044968A1 (ja) ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート
JP6595812B2 (ja) ポリオルガノシルセスキオキサン、硬化性組成物、ハードコートフィルム、及び硬化物
WO2022044969A1 (ja) ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18801775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518834

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197036747

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18801775

Country of ref document: EP

Kind code of ref document: A1