WO2022044969A1 - ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート - Google Patents

ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート Download PDF

Info

Publication number
WO2022044969A1
WO2022044969A1 PCT/JP2021/030428 JP2021030428W WO2022044969A1 WO 2022044969 A1 WO2022044969 A1 WO 2022044969A1 JP 2021030428 W JP2021030428 W JP 2021030428W WO 2022044969 A1 WO2022044969 A1 WO 2022044969A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
substituted
present disclosure
unsubstituted
Prior art date
Application number
PCT/JP2021/030428
Other languages
English (en)
French (fr)
Inventor
寛弘 川原
知子 足立
明弘 芝本
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2022044969A1 publication Critical patent/WO2022044969A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils

Definitions

  • the present disclosure relates to polyorganosyl sesquioxane, a curable composition containing the polyorganosyl sesquioxane, a cured product thereof, and a hard coat film comprising the cured product.
  • the present disclosure relates to a transfer film containing the curable composition as a hardcourt layer.
  • the present disclosure also relates to an adhesive sheet containing the curable composition as an adhesive layer.
  • silsesquioxane is a network-type polymer or polyhedral cluster obtained by hydrolyzing a trifunctional silane.
  • silsesquioxane those having a random structure, a ladder structure, and a cage-type structure are known.
  • Patent Document 1 Such a polymer silsesquioxane is described in, for example, Patent Document 1 below.
  • silsesquioxane which is a cage-type structure
  • octahedral silsesquioxane (T 8 ) which is a regular hexahedron structure
  • tetramer silsesquioxane T 10
  • Such a cage-type silsesquioxane is described in, for example, Patent Document 2 below.
  • the cured products obtained from the conventional high molecular weight polyorganosilsesquioxane and cage-type silsesquioxane tend to have insufficient hardness, and there is a limit to the flexibility when bent. Therefore, the cured product so far cannot be used in applications that require high hardness and high bending resistance, and its use as a material for hard coats has been limited. Further, the conventional high molecular weight silsesquioxane has a problem that it is difficult to dissolve in a solvent such as an organic solvent as the molecular weight increases, and it becomes difficult to process it into a material for a hard coat.
  • an object of the present disclosure can be a cured product having high surface hardness and bending resistance while having high heat resistance characteristic of polyorganosyl sesquioxane, and is a material for a hard coat film. It is an object of the present invention to provide a polyorganosylsesquioxane suitable for the above. Another object of the present invention is to provide a polyorganosylsesquioxane having a high molecular weight and having high solubility in a solvent such as an organic solvent.
  • the inventors of the present disclosure have a cured product of a curable composition containing silsesquioxane having a structure in which two or more cage-type silsesquioxane having a specific composition formula are condensed and having a molecular weight of 8000 or less.
  • silsesquioxane has excellent surface hardness and bending resistance while having high heat resistance, and is very useful as a hard coat layer in a hard coat film or a transfer film, and an adhesive layer in an adhesive sheet. ..
  • the silsesquioxane has a high molecular weight but has high solubility in a solvent such as an organic solvent. The invention of the present disclosure has been completed based on these findings.
  • the present disclosure comprises at least one selected from the group consisting of cage-type silsesquioxane represented by the following composition formulas (1), composition formulas (2), composition formulas (3) and composition formulas (4).
  • R 1 in the formula (1) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c is an alkyl group having 1 to 4 carbon atoms or hydrogen.
  • R 2 in the formula (2) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other. Indicates an alkyl group or hydrogen atom of.) -Equation (3): [R 3 SiO 3/2 ] 8 [R 3 SiO 2/2 (OR c )] 2 (R 3 in the formula (3) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively.
  • R c has 1 to 4 carbon atoms independently of each other.
  • R 4 in the formula (4) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other. Indicates an alkyl group or hydrogen atom of.
  • the group containing the polymerizable functional group is represented by the following formula (1A).
  • R 1A represents a linear or branched alkylene group.
  • the following formula (1B) [In formula (1b), R 1B represents a linear or branched alkylene group.
  • the following formula (1C) [In formula (1c), R 1C represents a linear or branched alkylene group.
  • Group represented by or the following formula (1D) [In formula (1d), R 1D represents a linear or branched alkylene group. ]
  • Provided is the polyorganosylsesquioxane which is a group represented by.
  • the present disclosure comprises polymerization of R 1 in the composition formula (1), R 2 in the composition formula (2), R 3 in the composition formula (3), and R 4 in the composition formula (4) as a whole.
  • the polyorganosylsesquioxane in which the proportion of the group containing a sex functional group is 30% or more.
  • the molar ratio of the structural unit represented by the following formula (I) and the structural unit represented by the following formula (II) [the structural unit represented by the formula (I) / the structural unit (II).
  • the polyorganosylsesquioxane having a constituent unit represented by 1 or more and 500 or less is provided.
  • [R a SiO 3/2 ] (I) [In formula (I), Ra is a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group.
  • R b is a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group.
  • R c indicates a hydrogen atom or an alkyl group having 1 to 4 carbon atoms]
  • the present disclosure also provides the polyorganosylsesquioxane having a number average molecular weight of 2000 to 50,000.
  • the present disclosure also provides the polyorganosylsesquioxane having a molecular weight dispersion (weight average molecular weight / number average molecular weight) of 1.0 to 4.0.
  • the present disclosure also provides a curable composition containing the polyorganosylsesquioxane.
  • the present disclosure further provides the curable composition containing a curing catalyst.
  • the present disclosure also provides the curable composition in which the curing catalyst is a light or thermal polymerization initiator.
  • the present disclosure further provides the curable composition containing a polymerization stabilizer.
  • the present disclosure also provides the curable composition, which is a curable composition for forming a hard coat layer.
  • the present disclosure also provides the curable composition, which is a curable composition for an adhesive.
  • the present disclosure also provides a cured product of the curable composition.
  • the present disclosure also provides a hard coat film in which a base material and a hard coat layer, which is a cured product, formed on at least one surface of the base material are laminated.
  • the present disclosure provides a transfer film in which a hard coat layer, which is a layer containing the curable composition, is laminated on a base material and a release layer formed on at least one surface of the base material. offer.
  • the present disclosure provides the transfer film in which an anchor coat layer and an adhesive layer are further laminated in this order on the hard coat layer.
  • the present disclosure further provides the transfer film including at least one colored layer.
  • the present disclosure also provides the transfer film having a thickness of the hard coat layer of 3 to 150 ⁇ m.
  • the present disclosure also provides an adhesive sheet having a substrate and an adhesive layer which is a layer containing the curable composition on at least one surface of the substrate.
  • the present disclosure also comprises a substrate and an adhesive layer, which is a layer containing the silane coupling agent and the curable composition, on at least one surface of the substrate.
  • an adhesive sheet in which the adhesive layer is provided on the surface of the anchor coat layer.
  • the cured product (for example, a hard coat layer) obtained from the curable composition containing the polyorganosyl sesquioxane of the present disclosure has high heat resistance, high surface hardness and bending resistance. Therefore, by using a hard coat film or a transfer film having the hard coat layer, a molded product (product) having high surface hardness and bending resistance can be manufactured. Further, the polyorganosylsesquioxane of the present disclosure is a high molecular weight polyorganosylsesquioxane, but has high solubility in a solvent such as an organic solvent.
  • the amount of the solvent used can be reduced, and the uncured or semi-cured hard coat layer becomes tack-free and rolls. Since the film can be wound up and handled in a roll-to-roll manner and the film containing the hardcourt layer can be handled, it is excellent in both quality and cost.
  • the curable composition containing the polyorganosylsesquioxane of the present disclosure as an essential component can form a cured product (adhesive) having high heat resistance and excellent flexibility, and thus an adhesive (for example, a laminated semiconductor). It can also be preferably used as a curable composition).
  • FIG. 3 is an UPLC-MS chart of the epoxy group-containing condensed silsesquioxane of the present disclosure obtained in Example 1.
  • the polyorganosilsesquioxane of the present disclosure is selected from the group consisting of cage-type silsesquioxane represented by the following composition formulas (1), composition formula (2), composition formula (3) and composition formula (4).
  • a sill having a molecular weight of 8000 or less preferably 1500 to 7500, more preferably 1800 to 7000, still more preferably 2000 to 6500, which is a condensate of two or more cage-type silsesquioxane containing at least one of the above.
  • Includes sesquioxane hereinafter, may be referred to as "condensed silsesquioxane of the present disclosure").
  • R 1 in the formula (1) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c is an alkyl group having 1 to 4 carbon atoms or hydrogen.
  • R 2 in the formula (2) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other. Indicates an alkyl group or hydrogen atom of.) -Equation (3): [R 3 SiO 3/2 ] 8 [R 3 SiO 2/2 (OR c )] 2 (R 3 in the formula (3) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively.
  • R c has 1 to 4 carbon atoms independently of each other.
  • R 4 in the formula (4) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other. Indicates an alkyl group or hydrogen atom of.
  • the structural unit represented by [R 3 SiO 3/2 ] and the structural unit represented by [R 4 SiO 3/2 ] in the composition formula (4) are represented by the following formula (I). It is included in the unit (hereinafter, may be referred to as "T3 body" in the present specification).
  • R a in the above formula (I) and R b in the formula (II ) are a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted group. Cycloalkyl group, substituted or unsubstituted alkyl group, substituted or unsubstituted alkenyl group, or hydrogen atom. Further, R c in the above formula (II) represents an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • the structural unit represented by the above formula (I) will be described in more detail by the following formula (I'). Further, if the structural unit represented by the above formula (II) is described in more detail, it is represented by the following formula (II').
  • Each of the three oxygen atoms bonded to the silicon atom represented in the structure represented by the following formula (I') is bonded to another silicon atom (silicon atom not represented by the formula (I')). ..
  • the two oxygen atoms located above and below the silicon atom shown in the structure represented by the following formula (II') are each other silicon atom (silicon atom not shown in the formula (II')). It is combined. That is, both the T3 body and the T2 body are silsesquioxane constituent units (so-called T units) formed by the hydrolysis and condensation reaction of the corresponding hydrolyzable trifunctional silane compounds.
  • R a in the above formula (I') and R b and R c in the above formula (II') are the same groups as described above.
  • the alkyl group in R c in the formula (II) is generally an alkoxy group in the hydrolyzable silane compound used as a raw material for the polyorganosylsesquioxane of the present disclosure (for example, the formulas (A) to (A) described later). It is derived from an alkyl group forming (an alkoxy group as X 1 to X 3 in (C)).
  • the cage-type silsesquioxane represented by the above composition formula (1) has eight [R 1 SiO 3/2 ] structural units (T3 bodies) and one [R 1 SiO 2/2 (OR).
  • the structural unit (T2 body) represented by c )] is silsesquioxane that binds to each other via a siloxane bond (Si—O—Si) to form a cage-shaped structure.
  • the specific structure of the cage-type silsesquioxane represented by the composition formula (1) is not particularly limited as long as the composition formula (1) is satisfied, but for example, the cage represented by the following formula (1'). Examples include type silsesquioxane.
  • R 1a to R 1i in the formula (1') are independently synonymous with R 1 in the composition formula (1).
  • R c in the formula (1') is also synonymous with R c in the composition formula (1).
  • the cage-type silsesquioxane represented by the above composition formula (2) has six [R 2 SiO 3/2 ] structural units (T3 bodies) and two [R 2 SiO 2/2 (OR).
  • the structural unit (T2 body) represented by c )] is silsesquioxane that binds to each other via a siloxane bond (Si—O—Si) to form a cage-shaped structure.
  • the specific structure of the cage-type silsesquioxane represented by the above composition formula (2) is not particularly limited as long as the above composition formula (2) is satisfied, and for example, the following formula (2') or (2 ") Examples thereof include a cage-type silsesquioxane represented by.
  • R 2a to R 2h in the formula (2') and R 2i to R 2p in the formula (2 ") are independently synonymous with R 2 in the composition formula (2').
  • (2 ′′) are also independently synonymous with R c in the composition formula (2 ) .
  • the cage-type silsesquioxane represented by the above composition formula (3) has eight [R 3 SiO 3/2 ] structural units (T3 bodies) and two [R 3 SiO 2/2 (OR).
  • the structural unit (T2 body) represented by c )] is silsesquioxane that binds to each other via a siloxane bond (Si—O—Si) to form a cage-shaped structure.
  • the specific structure of the cage-type silsesquioxane represented by the above composition formula (3) is not particularly limited as long as the above composition formula (3) is satisfied, and for example, the following formulas (3') and (3 ") Alternatively, a cage-type silsesquioxane represented by (3''') can be mentioned.
  • R 3a to R 3j in the formula (3'), R 3k to R 3t in the formula (3 "), R 3u to R 3z in the formula (3"'), and R 3aa to R 3dd are independent of each other. Therefore, it is synonymous with R 3 in the composition formula (3).
  • R c in the formulas (3 ′), (3 ′′) and the formula (3 ′ ′′) are also independently of the composition formula (3). Is synonymous with R c in.
  • the cage-type silsesquioxane represented by the above composition formula (4) has a structural unit (T3 body) represented by 10 [R 4 SiO 3/2 ] and two [R 4 SiO 2/2 (.
  • the structural unit (T2 body) represented by OR c )] is silsesquioxane that binds to each other via a siloxane bond (Si—O—Si) to form a cage-shaped structure.
  • the specific structure of the cage-type silsesquioxane represented by the composition formula (4) is not particularly limited as long as the composition formula (4) is satisfied, and is, for example, the following formula (4') or (4 ").
  • the represented cage-type silsesquioxane can be mentioned.
  • R 4a to R 4l in the formula (4') and R 4m to R 4x in the formula (4 ") are independently synonymous with R 4 in the composition formula (4').
  • (4 ′′) are also independently synonymous with R c in the composition formula (4 ) .
  • the condensed silsesquioxane of the present disclosure is a cage-type silsesquioxane represented by a composition formula other than the above composition formulas (1), composition formula (2), composition formula (3) and composition formula (4). It may be included as long as the effect of the invention of the present disclosure is not impaired.
  • Examples of the composition formulas other than the composition formula (1), the composition formula (2), the composition formula (3), and the composition formula (4) include the following composition formulas (5) to (8).
  • R 5 in the formula (5) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other.
  • R 6 in the formula (6) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other. Indicates an alkyl group or hydrogen atom of.) -Equation (7): [R 7 SiO 3/2 ] 10 [R 7 SiO 2/2 (OR c )] 1 (R 7 in the formula (7) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively.
  • R c is an alkyl group having 1 to 4 carbon atoms or hydrogen.
  • R 8 in the formula (8) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c is an alkyl group having 1 to 4 carbon atoms or hydrogen. Indicates an atom.
  • the condensed silsesquioxane of the present disclosure includes those in which the cage-type silsesquioxane represented by the above composition formulas (1) to (8) is mixed. That is, the condensed silsesquioxane of the present disclosure has the above composition formula (1), composition formula (2), composition formula (3), composition formula (4), composition formula (5), composition formula (6), composition. It may be a condensate of two or more cage-type silsesquioxane containing at least one selected from the group consisting of cage-type silsesquioxane represented by the formula (7) and the composition formula (8). ..
  • the "cationically polymerizable functional group" in the group containing the polymerizable functional group is not particularly limited as long as it has a cationically polymerizable property, and for example, an epoxy group, an oxetane group, a vinyl ether group, a vinylphenyl group and the like can be used. Can be mentioned.
  • the "radical polymerizable functional group” in the group containing the polymerizable functional group is not particularly limited as long as it has radical polymerizable properties, and is, for example, a (meth) acryloyloxy group, a (meth) acrylamide group, and vinyl. Groups, vinylthio groups and the like can be mentioned.
  • an epoxy group As the polymerizable functional group, an epoxy group, a (meth) acryloyloxy group and the like are preferable, and an epoxy group is more preferable, from the viewpoint of the surface hardness of the cured product (for example, 4H or more).
  • R 1 in the composition formula (1) R 1a to R 1i in the formula (1'), R 2 in the composition formula (2), R 2a to R 2h in the formula (2'), the formula (2).
  • R 2i to R 2p in the formula (3) R 3 in the composition formula (3), R 3a to R 3j in the formula (3'), R 3k to R 3t in the formula (3 ′′), and the formula (3').
  • '') R 3u ⁇ R 3z , R 3aa ⁇ R 3dd in composition formula ( 4 ), R 4a ⁇ R 4l in formula (4'), R 4m ⁇ in formula (4 ′′).
  • the group containing the polymerizable functional group in R b in a and the formula (II ) is not particularly limited, but a group containing an epoxy group is preferable, and the curability of the curable composition, the surface hardness of the cured product and the like are preferable. From the viewpoint of heat resistance, a group represented by the following formula (1A), a group represented by the formula (1B), a group represented by the formula (1C), and a group represented by the formula (1D) are preferable. It is preferably a group represented by the following formula (1A), a group represented by the formula (1C), and more preferably a group represented by the following formula (1A).
  • R 1A represents a linear or branched alkylene group.
  • the linear or branched alkylene group include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a decamethylene group and the like.
  • Examples thereof include a linear or branched alkylene group having 1 to 10 carbon atoms.
  • R 1A a linear alkylene group having 1 to 4 carbon atoms and a branched alkylene group having 3 or 4 carbon atoms are preferable, and more preferable, from the viewpoint of surface hardness and curability of the cured product. It is an ethylene group, a trimethylene group, a propylene group, more preferably an ethylene group or a trimethylene group.
  • R 1B represents a linear or branched alkylene group, and a group similar to R 1A is exemplified.
  • R 1B a linear alkylene group having 1 to 4 carbon atoms and a branched alkylene group having 3 or 4 carbon atoms are preferable, and more preferable, from the viewpoint of surface hardness and curability of the cured product. It is an ethylene group, a trimethylene group, a propylene group, more preferably an ethylene group or a trimethylene group.
  • R 1C represents a linear or branched alkylene group, and a group similar to R 1A is exemplified.
  • R 1C a linear alkylene group having 1 to 4 carbon atoms and a branched alkylene group having 3 or 4 carbon atoms are preferable, and more preferable, from the viewpoint of surface hardness and curability of the cured product. It is an ethylene group, a trimethylene group, a propylene group, more preferably an ethylene group or a trimethylene group.
  • R 1D represents a linear or branched alkylene group, and a group similar to R 1A is exemplified.
  • R 1D a linear alkylene group having 1 to 4 carbon atoms and a branched alkylene group having 3 or 4 carbon atoms are preferable, and more preferable, from the viewpoint of surface hardness and curability of the cured product. It is an ethylene group, a trimethylene group, a propylene group, more preferably an ethylene group or a trimethylene group.
  • R 1 in the composition formula (1) R 1a to R 1i in the formula (1'), R 2 in the composition formula (2), R 2a to R 2h in the formula (2'), the formula (2).
  • R 2i to R 2p in the formula (3) R 3 in the composition formula (3), R 3a to R 3j in the formula (3'), R 3k to R 3t in the formula (3 ′′), and the formula (3').
  • '') R 3u ⁇ R 3z , R 3aa ⁇ R 3dd in composition formula ( 4 ), R 4a ⁇ R 4l in formula (4'), R 4m ⁇ in formula (4 ′′).
  • a group containing an epoxy group is preferable, and the group represented by the above formula (1A), where R 1A is an ethylene group.
  • 2- (3', 4'-epoxide cyclohexyl) ethyl group is more preferable.
  • '') R 3u ⁇ R 3z , R 3aa ⁇ R 3dd in the composition formula (4), R 4a ⁇ R 4l in the formula ( 4 '), R 4m ⁇ in the formula (4 ′′).
  • Examples of the aryl group in the substituted or unsubstituted aryl group of R b in a and the formula (II ) include a phenyl group, a tolyl group, a naphthyl group and the like.
  • '') R 3u ⁇ R 3z , R 3aa ⁇ R 3dd in the composition formula (4), R 4a ⁇ R 4l in the formula ( 4 '), R 4m ⁇ in the formula (4 ′′).
  • Examples of the above-mentioned aralkyl group in the substituted or unsubstituted aralkyl group of R b in a and the formula (II ) include a benzyl group, a phenethyl group and the like.
  • '') R 3u ⁇ R 3z , R 3aa ⁇ R 3dd in the composition formula (4), R 4a ⁇ R 4l in the formula ( 4 '), R 4m ⁇ in the formula (4 ′′).
  • Examples of the cycloalkyl group in the substituted or unsubstituted cycloalkyl group of R b in a and the formula (II ) include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group and the like.
  • R 1 in the composition formula (1) R 1a to R 1i in the formula (1'), R 2 in the composition formula (2), R 2a to R 2h in the formula (2'), the formula (2).
  • R 2i to R 2p in the formula (3) R 3 in the composition formula (3), R 3a to R 3j in the formula (3'), R 3k to R 3t in the formula (3 ′′), and the formula (3').
  • R 3u to R 3z R 3aa to R 3dd in composition formula ( 4 ), R 4a to R 4l in formula (4'), R 4m in formula (4 ′′) ⁇ R 4x , R 5 in composition formula (5), R 6 in composition formula (6), R 7 in composition formula (7), R 8 in composition formula (8), R in formula (I)
  • alkyl group in the substituted or unsubstituted alkyl group of R b in formula (II ) include methyl group, ethyl group, propyl group, n-butyl group, isopropyl group, isobutyl group and s-butyl. Examples thereof include a linear or branched alkyl group such as a group, a t-butyl group and an isopentyl group.
  • R 1 in the composition formula (1) R 1a to R 1i in the formula (1'), R 2 in the composition formula (2), R 2a to R 2h in the formula (2'), the formula (2).
  • R 2i to R 2p in the formula (3) R 3 in the composition formula (3), R 3a to R 3j in the formula (3'), R 3k to R 3t in the formula (3 ′′), and the formula (3').
  • '') R 3u ⁇ R 3z , R 3aa ⁇ R 3dd in composition formula ( 4 ), R 4a ⁇ R 4l in formula (4'), R 4m ⁇ in formula (4 ′′).
  • alkenyl group in the substituted or unsubstituted alkenyl group of R 8 in the formula (II) include a linear or branched alkenyl group such as a vinyl group, an allyl group and an isopropenyl group. ..
  • the number of groups containing a polymerizable functional group in R 1 in the above composition formula (1) is preferably 3 to 9, more preferably 5 to 9, still more preferably 7 to 9, and even more preferably 9 (all).
  • the group containing a polymerizable functional group in R 2 in the above composition formula (2) is preferably 3 to 8, more preferably 5 to 8, still more preferably 7 to 8, and even more preferably 8 (all polymerized).
  • the number of groups containing a polymerizable functional group in R 3 in the above composition formula (3) is preferably 3 to 10, more preferably 5 to 10, still more preferably 7 to 10, and even more preferably 10 (all).
  • the number of groups containing a polymerizable functional group in R 4 in the above composition formula (4) is preferably 3 to 12, more preferably 5 to 12, still more preferably 7 to 12, and even more preferably 12 (all).
  • the number of groups containing these polymerizable functional groups is preferably large from the viewpoint of curability when the curable composition is obtained and the surface hardness of the cured product.
  • R 1 in the above composition formula (1) R 2 in the composition formula (2), R 3 in the composition formula (3), and the composition formula (4).
  • the ratio of the group containing the polymerizable functional group (for example, the group containing the epoxy group) to the whole of R 4 in the whole (the number of groups containing the polymerizable functional group / the number of all R 1 to R 4 ) is, for example. It is 30% or more, preferably 50% or more, and more preferably 80% or more.
  • the ratio of the group containing the polymerizable functional group is preferably high from the viewpoint of curability when the curable composition is obtained and the surface hardness of the cured product, and is preferably equal to or higher than the above value.
  • the polyorganosylsesquioxane of the present disclosure has a molar ratio of the structural unit (T3 body) represented by the above formula (I) and the structural unit (T2 body) represented by the above formula (II) [formula (I). ) /
  • the structural unit represented by the formula (II); T3 body / T2 body] is, for example, 1 or more and 500 or less.
  • the structural unit represented by the above formula (I) and the structural unit represented by the formula (II) are the composition formula (1), the composition formula (2), the composition formula (3), and the composition formula (4).
  • T3 and T2 bodies that make up the cage-type silsesquioxane, and all other silsesquioxane (complete cage-type silsesquioxane, ladder-type silsesquioxane, random-type siles). It contains T3 and T2 bodies (such as sesquioxane).
  • the lower limit of the ratio [T3 / T2] is 1 as described above, preferably 2, more preferably 3, more preferably 4, more preferably 6, more preferably 7, more preferably 8. It is more preferably 8, more preferably 10, more preferably 20, and even more preferably 40.
  • the upper limit of the ratio [T3 / T2] is preferably 500, more preferably 400, more preferably 300, more preferably 100, more preferably 50, more preferably 40, and more preferably 30. It is more preferably 25, more preferably 20, more preferably 18, and even more preferably 18.
  • the polyorganosilsesquioxane of the present disclosure is a constituent unit represented by [(R) 3SiO 1/2 ] in addition to the above-mentioned silsesquioxane constituent unit [RSiO 3/2 ] (T unit). From a group consisting of (so-called M unit), a structural unit represented by [(R) 2 SiO 2/2 ] (so-called D unit), and a structural unit represented by [SiO 4/2 ] (so-called Q unit). It may have at least one siloxane building block of choice. Examples of the silsesquioxane structural unit other than the structural unit represented by the above formula (I) include a structural unit represented by [HSiO 3/2 ]. In addition, R in the above formula indicates a hydrogen atom or a monovalent organic group.
  • the above ratio [T3 / T2] in the polyorganosylsesquioxane of the present disclosure can be determined, for example, by 29 Si-NMR spectrum measurement. 29 In the Si-NMR spectrum, the silicon atom in the structural unit (T3 body) represented by the above formula (I) and the silicon atom in the structural unit (T2 body) represented by the above formula (II) are at different positions. Since a signal (peak) is shown in (chemical shift), the above ratio [T3 / T2] can be obtained by calculating the integration ratio of each of these peaks.
  • the signal of the silicon atom in the structure (T3 body) represented by the above formula (I) appears at -64 to -70 ppm
  • the signal of the silicon atom in the structure (T2 body) represented by the above formula (II) is -54. Appears at ⁇ -60 ppm. Therefore, in this case, the above ratio [T3 body / T2 body] can be obtained by calculating the integral ratio of the signal (T3 body) of ⁇ 64 to ⁇ 70 ppm and the signal (T2 body) of ⁇ 54 to -60 ppm. can.
  • the 29 Si-NMR spectrum of the polyorganosyl sesquioxane of the present disclosure can be measured, for example, by the following devices and conditions.
  • Measuring device "Brucker AVANCE (600MHz)" (manufactured by Brucker) Solvent: Deuterated chloroform Cumulative number: 8000 times Measurement temperature: 25 ° C
  • Sample: Polyorganosylsesquioxane / Acetylacetone Chromium (III) / Deuterated chloroform (1% tetramethylsilane) 2.0: 0.10: 4.0 (weight ratio)
  • the ratio of each silsesquioxane constituent unit in the polyorganosilsesquioxane of the present disclosure can be appropriately adjusted by the composition of the raw material (hydrolyzable trifunctional silane) for forming these constituent units. ..
  • the condensed silsesquioxane of the present disclosure is one of the cage-type silsesquioxane represented by the above composition formulas (1), composition formula (2), composition formula (3) and composition formula (4). Two or more (eg, 2-5, preferably 2-3, more preferably 2) in one species, or two or more (eg, 2-5, preferably 2-3, more preferably 2) in two or more species were condensed. It is a thing.
  • composition means a hydroxyl group represented by -OR c in the above composition formula (1), composition formula (2), composition formula (3) and composition formula (4) (-OR c is an alkoxy group).
  • hydrolyzed hydroxyl groups are dehydrated to form a siloxane bond (Si—O—Si).
  • composition formulas (2), composition formula (3) and composition formula (4) Since the cage-type silsesquioxane represented by the above composition formulas (2), composition formula (3) and composition formula (4) has two groups represented by -OR c in the molecule, these are condensed.
  • the polyorganosylsesquioxane of the present disclosure described above has a structure in which these cage-shaped structures are linearly connected.
  • the cage-type silsesquioxane represented by the composition formula (1) has only one group represented by ⁇ OR c in the molecule, the cage-type structure described above is linearly connected. Condenses at the end.
  • the condensed silsesquioxane of the present disclosure does not have a cage-type structure derived from the cage-type silsesquioxane represented by the above composition formulas (2), composition formula (3) and composition formula (4).
  • Two of the cage-type silsesquioxane represented by the above composition formula (1) may be condensed.
  • the condensed silsesquioxane of the present disclosure is each cage type derived from the cage type silsesquioxane represented by the above composition formulas (1), composition formula (2), composition formula (3) and composition formula (4).
  • the condensed form of the structural unit is not particularly limited, and may be a random type or a block type.
  • the condensed silsesquioxane of the present disclosure contains a cage-type structure derived from the cage-type silsesquioxane represented by the above formula (2'), it is represented by the following formula (2a) in the molecule. It has a repeating structure with a cage-type silsesquioxane structure.
  • each symbol in the above formula (2a) has the same meaning as the above formula (2'). Further, when the condensed silsesquioxane of the present disclosure contains a cage-type structure derived from the cage-type silsesquioxane represented by the above formula (2 "), it is represented by the following formula (2b) in the molecule. It has a repeating structure with a cage-type silsesquioxane structure.
  • each symbol in the above formula (2b) has the same meaning as the above formula (2 ").
  • the condensed silsesquioxane of the present disclosure contains a cage-type structure derived from the cage-type silsesquioxane represented by the above formula (3'), it is represented by the following formula (3a) in the molecule. It has a repeating structure with a cage-type silsesquioxane structure.
  • each symbol in the above formula (3a) has the same meaning as the above formula (3'). Further, when the condensed silsesquioxane of the present disclosure contains a cage-type structure derived from the cage-type silsesquioxane represented by the above formula (3 "), it is represented by the following formula (3b) in the molecule. It has a repeating structure with a cage-type silsesquioxane structure.
  • each symbol in the above formula (3b) has the same meaning as the above formula (3 ").
  • the condensed silsesquioxane of the present disclosure contains a cage-type structure derived from the cage-type silsesquioxane represented by the above formula (3'''), it is represented by the following formula (3c) in the molecule. It has a repeating structure of a cage-type silsesquioxane structure.
  • each symbol in the above formula (3c) has the same meaning as the above formula (3''').
  • the condensed silsesquioxane of the present disclosure contains a cage-type structure derived from the cage-type silsesquioxane represented by the above formula (4'), it is represented by the following formula (4a) in the molecule. It has a repeating structure with a cage-type silsesquioxane structure.
  • each symbol in the above formula (4a) has the same meaning as the above formula (4'). Further, when the condensed silsesquioxane of the present disclosure contains a cage-type structure derived from the cage-type silsesquioxane represented by the above formula (4 "), it is represented by the following formula (4b) in the molecule. It has a repeating structure with a cage-type silsesquioxane structure.
  • each symbol in the above formula (4b) has the same meaning as the above (4 ").
  • the condensed silsesquioxane of the present disclosure contains a cage-type structure derived from the cage-type silsesquioxane represented by the above formula (1')
  • the following formula (1a) is used at both ends or one end thereof. It has a cage-type silsesquioxane structure represented by and / or a cage-type silsesquioxane structure represented by the following formula (1b).
  • R 1j to R 1r in the above formula (1b) are synonymous with R 1a to R 1i in the above (1').
  • the condensed silsesquioxane of the present disclosure includes, for example, two or more condensates in one kind such as a condensate of cage-type silsesquioxane represented by the two composition formulas (1), and the composition formula (1). It contains two or more different condensates such as a condensation of a cage-type silsesquioxane represented by the above formula (2) and a cage-type silsesquioxane represented by the above composition formula (2). Among them, the condensed silsesquioxane of the present disclosure includes one cage-type silsesquioxane represented by the composition formula (1) and another cage-type silsesquioxane represented by the composition formula (1).
  • a condensate of any one of sesquioxane is preferred.
  • the product silsesquioxane for example, one of the groups represented by -OR c in the above formula (1') and the two groups represented by -OR c in the above formula (2') are condensed.
  • Examples thereof include condensed silsesquioxane represented by the following formula (1a-2a) formed in the above.
  • the substituents (R 1a to R 1i and R 2a to R 2h ) in the formula (1a-2b) are the same as those in the formulas (1a) and (2b).
  • one cage-type silsesquioxane represented by the composition formula (1) and another cage-type silsesquioxane represented by the composition formula (1) are represented by the following formula (1a-1b) formed by condensing the groups represented by ⁇ OR c in the two formulas (1 ′), for example.
  • Condensed silsesquioxane can be mentioned.
  • the substituents (R 1a to R 1r ) in the formula (1a-1b) are the same as those in the formulas (1a) and (1b).
  • one cage-type silsesquioxane represented by the composition formula (2) and another cage-type silsesquioxane represented by the composition formula (2) are the same as those in the formula (2a).
  • the polyorganosilsesquioxane of the present disclosure is a cage-type (structure) silsesquioxane (that is, a complete cage-type) in which the three-dimensional structure of silica such as a regular hexahedron structure is completely free of cleavage.
  • a cage-type silsesquioxane represented by the above composition formula (1), composition formula (2), composition formula (3), composition formula (4), etc. is not condensed (that is,).
  • Incomplete cage-type silsesquioxane may be contained in a monomeric cage-type silsesquioxane.
  • both the complete cage type silsesquioxane and the incomplete cage type silsesquioxane are collectively referred to as a monomeric cage type silsesquioxane.
  • the content of the monomeric cage-type silsesquioxane in the polyorganosilsesquioxane of the present disclosure is, for example, 5% by weight or more, preferably 10% by weight, based on the total amount of the polyorganosilsesquioxane of the present disclosure. As described above, it is more preferably 20% by weight or more, for example, 50% by weight or less, preferably 40% by weight or less, and more preferably 20% by weight or less.
  • the surface hardness of the cured product can be further improved.
  • the polyorganosilsesquioxane of the present disclosure may have a cage-type silsesquioxane other than the condensed silsesquioxane of the present disclosure. Further, the polyorganosilsesquioxane of the present disclosure may have a ladder-type or random-type silsesquioxane structure in addition to the cage-type silsesquioxane. Further, it may have two or more of these silsesquioxane structures in combination.
  • the content of the condensed silsesquioxane of the present disclosure in the polyorganosylsesquioxane of the present disclosure is 20% by weight or more (preferably 25 to 90% by weight) with respect to the total amount of the polyorganosylsesquioxane of the present disclosure. , More preferably 30 to 80% by weight, still more preferably 40 to 70% by weight).
  • the content of the cage-type silsesquioxane is, for example, 40 to 99.5% by weight, preferably 45 to 98% by weight, more preferably 50 to 96% by weight, based on the total amount of the polyorganosilsesquioxane of the present disclosure. include.
  • the number average molecular weight (Mn) of the polyorganosylsesquioxane of the present disclosure in terms of standard polystyrene by gel permeation chromatography is, for example, 2000 to 50000, preferably 2500 to 40,000, and more preferably 3000 to 30000.
  • Mn number average molecular weight
  • the surface of the uncured or semi-cured hardcoat layer tends to be tack-free, the blocking resistance is improved, and it becomes easy to wind up on a roll. Therefore, by setting the number average molecular weight to 2000 or more, it can be preferably used as a component of the hard coat layer of the in-mold injection molded transfer film, and the cured product has heat resistance, scratch resistance, and adhesiveness. Improve more.
  • the number average molecular weight to 50,000 or less, the compatibility with other components in the curable composition is improved, and the heat resistance of the cured product is further improved.
  • the molecular weight dispersion (Mw / Mn) of the polyorganosylsesquioxane of the present disclosure in terms of standard polystyrene by gel permeation chromatography is, for example, 1.0 to 4.0, preferably 1.1 to 3.0. , More preferably 1.2 to 2.5.
  • Mw / Mn The molecular weight dispersion
  • the solubility in a solvent becomes good, and the surface hardness and adhesiveness of the cured product become higher.
  • the molecular weight dispersion is 1.1 or more, it tends to be liquid and the handleability tends to be improved.
  • the number average molecular weight and molecular weight dispersion of the polyorganosylsesquioxane disclosed in the present disclosure can be determined by GPC measurement. Further, the contents of the above-mentioned monomer cage type silsesquioxane and condensed silsesquioxane in the polyorganosilsesquioxane of the present disclosure can be obtained from the area ratio of the area value of the corresponding peak in the GPC measurement. can. GPC measurement can be performed by the following devices and conditions.
  • Measuring device Product name "GPC semi-micro system” (manufactured by Shimadzu Corporation) Detector: RI detector (manufactured by Shoko Science Co., Ltd.) Columns: KF-G4A (guard column), KF-602, and KF-603 (manufactured by Shoko Science Co., Ltd.) Flow velocity: 0.6 mL / min Measurement temperature: 40 ° C Measurement time: 13 min Injection amount: 20 ⁇ L Eluent: THF, sample concentration 0.1-0.2 wt% Molecular weight: Standard polystyrene conversion
  • the 5% weight loss temperature (T d5 ) of the polyorganosylsesquioxane of the present disclosure in an air atmosphere is not particularly limited, but is preferably 330 ° C. or higher (for example, 330 to 450 ° C.), and more preferably 340 ° C. or higher. , More preferably 350 ° C. or higher.
  • T d5 The 5% weight loss temperature of the polyorganosylsesquioxane of the present disclosure in an air atmosphere is not particularly limited, but is preferably 330 ° C. or higher (for example, 330 to 450 ° C.), and more preferably 340 ° C. or higher. , More preferably 350 ° C. or higher.
  • the 5% weight loss temperature is 330 ° C. or higher, the heat resistance of the cured product tends to be further improved.
  • the polyorganosylsesquioxane of the present disclosure has the above ratio [T3 / T2] of 1 or more and 500 or less, a number average molecular weight of 2000 to 50,000, and a molecular weight dispersion of 1.0 to 4.0.
  • the 5% weight loss temperature of the cured product becomes 330 ° C. or higher.
  • the 5% weight loss temperature is the temperature at which 5% of the weight before heating is reduced when heated at a constant temperature rise rate, and is an index of heat resistance.
  • the 5% weight loss temperature can be measured by TGA (thermogravimetric analysis) under an air atmosphere and a heating rate of 5 ° C./min.
  • the polyorganosylsesquioxane of the present disclosure can be produced by a known or conventional method for producing a polysiloxane, and is not particularly limited, but for example, one or more hydrolyzable silane compounds are hydrolyzed and used. It can be produced by a method of condensing.
  • the hydrolyzable silane compound it is necessary to use a hydrolyzable trifunctional silane compound (a compound represented by the following formula (a)) as an essential hydrolyzable silane compound.
  • a compound represented by the following formula (a) which is a hydrolyzable silane compound for forming a silsesquioxane structural unit (T unit) in the polyorganosilsesquioxane of the present disclosure.
  • the compound represented by the following formula (b) and the compound represented by the following formula (c) are further hydrolyzed and condensed by the above composition formula (1) and composition formula (2).
  • the compound represented by the above formula (A) forms a structural unit represented by [ RA SiO 3/2 ] or [ RA SiO 2/2 (OR c )] in the condensed silsesquioxane of the present disclosure. It is a compound that RA in the formula ( A ) is R 1 in the composition formula (1), R 2 in the composition formula (2), R 3 in the composition formula (3), and R 4 in the composition formula (4). (I.e., a substituent containing a polymerizable functional group) as well as (that is, a substituent in the cage-type silsesquioxane) is shown.
  • the RA in the formula ( A ) is a group represented by the above formula (1A), a group represented by the above formula (1B), and a group represented by the above formula (1C) as a group containing a polymerizable functional group.
  • the group is preferably the group represented by the above formula (1D), more preferably the group represented by the above formula (1A), the group represented by the above formula (1C), and further preferably the above formula (1A).
  • X 1 in the above formula (A) represents an alkoxy group or a halogen atom.
  • the alkoxy group in X 1 include an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group and an isobutyloxy group.
  • the halogen atom in X 1 include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like. Among them, as X 1 , an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable.
  • the three X 1s may be the same or different.
  • the compound represented by the above formula ( B ) forms a structural unit represented by [RB SiO 3/2 ] or [ RB SiO 2/2 (OR c )] in the condensed silsesquioxane of the present disclosure. It is a compound that RB in the formula ( B ) is a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted alkyl group. Indicates an alkenyl group.
  • the RB in the formula ( B ) is preferably a substituted or unsubstituted aryl group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, more preferably a substituted or unsubstituted aryl group, and further preferably. Is a phenyl group.
  • X 2 in the above formula (B) represents an alkoxy group or a halogen atom.
  • Specific examples of X 2 include those exemplified as X 1 .
  • X 2 an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable.
  • the three X 2s may be the same or different.
  • the compound represented by the above formula (C) is a compound forming a structural unit represented by [HSiO 3/2 ] or [HSiO 2/2 (OR c )] in the condensed silsesquioxane of the present disclosure.
  • X 3 in the above formula (C) represents an alkoxy group or a halogen atom.
  • Specific examples of X 3 include those exemplified as X 1 .
  • X3 an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable.
  • the three X3s may be the same or different.
  • hydrolyzable silane compound a hydrolyzable silane compound other than the compounds represented by the formulas (A) to (C) may be used in combination.
  • a hydrolyzable trifunctional silane compound other than the compounds represented by the above formulas (A) to (C) a hydrolyzable monofunctional silane compound forming M units, and a hydrolytic bifunctional silane forming D units.
  • examples thereof include compounds, hydrolyzable tetrafunctional silane compounds forming Q units, and the like.
  • the amount and composition of the hydrolyzable silane compound used can be appropriately adjusted according to the desired structure of the polyorganosylsesquioxane of the present disclosure.
  • the amount of the compound represented by the above formula (A) is not particularly limited, but is preferably 30 to 100 mol%, preferably 55 to 100 mol%, based on the total amount (100 mol%) of the hydrolyzable silane compound used. It is more preferably 100 mol%, more preferably 65 to 100 mol%, still more preferably 80 to 99 mol%.
  • the amount of the compound represented by the above formula (B) is not particularly limited, but is preferably 0 to 70 mol%, more preferably 0 to 70 mol%, based on the total amount (100 mol%) of the hydrolyzable silane compound used. Is 0 to 60 mol%, more preferably 0 to 40 mol%, still more preferably 1 to 15 mol%.
  • the ratio (ratio of the total amount) of the compound represented by the formula (A) and the compound represented by the formula (B) to the total amount (100 mol%) of the hydrolyzable silane compound used is not particularly limited. It is preferably 60 to 100 mol%, more preferably 70 to 100 mol%, still more preferably 80 to 100 mol%.
  • hydrolysis and condensation reactions of these hydrolyzable silane compounds can be carried out simultaneously or sequentially.
  • the order in which the reactions are carried out is not particularly limited.
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound may be carried out in one step or may be carried out in two or more steps, but in order to efficiently produce the polyorganosylsesquioxane of the present disclosure. It is preferable to carry out the hydrolysis and condensation reaction in two or more steps (preferably two steps).
  • the hydrolysis and condensation reaction of the hydrolyzable silane compound is carried out in two steps will be described, but the method for producing the polyorganosylsesquioxane of the present disclosure is not limited thereto.
  • the hydrolysis and condensation reaction of the present disclosure is carried out in two steps, preferably, in the first step of the hydrolysis and condensation reaction, the above ratio [T3 / T2] is 1 or more and less than 20, and the number average molecular weight.
  • the above ratio [T3 / T2] is 1 or more and less than 20, and the number average molecular weight.
  • intermediate polyorganosylsesquioxane 1000 to 3000 polyorganosylsesquioxane (hereinafter referred to as "intermediate polyorganosylsesquioxane") is obtained, and in the second stage, the intermediate polyorganosylsesquioxane is further added.
  • the polyorganosylsesquioxane of the present disclosure can be obtained.
  • the first-stage hydrolysis and condensation reaction can be carried out in the presence or absence of a solvent. Above all, it is preferable to carry out in the presence of a solvent.
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate.
  • Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol. And so on.
  • ketones and ethers are preferable as the solvent. It should be noted that one type of solvent may be used alone, or two or more types may be used in combination.
  • the amount of the solvent used in the first-stage hydrolysis and condensation reaction is not particularly limited, and the desired reaction time is in the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the total amount of the hydrolyzable silane compound. Etc., it can be adjusted as appropriate.
  • the first stage hydrolysis and condensation reaction is preferably carried out in the presence of a catalyst and water.
  • the catalyst may be an acid catalyst or an alkaline catalyst, but an alkaline catalyst is preferable in order to suppress decomposition of a polymerizable functional group such as an epoxy group.
  • the acid catalyst include mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid, trifluoromethanesulfonic acid and p.
  • alkaline catalyst examples include hydroxides of alkali metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide and cesium hydroxide; alkaline earth metals such as magnesium hydroxide, calcium hydroxide and barium hydroxide.
  • Alkaline metal carbonate such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate
  • Alkaline earth metal carbonate such as magnesium carbonate
  • Alkaline metal hydrogen carbonates such as cesium hydrogen carbonate
  • alkali metal organic acid salts such as lithium acetate, sodium acetate, potassium acetate, cesium acetate (eg acetate)
  • alkaline earth metal organic acids such as magnesium acetate Salts (eg, acetates)
  • alkali metal alkoxides such as lithium methoxyd, sodium methoxyd, sodium ethoxydo, sodium isopropoxide, potassium ethoxydo, potassium t-butoxide
  • alkali metal phenoxide such as sodium phenoxide
  • triethylamine N-Methylpiperidin, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-d
  • Etc. examples thereof include nitrogen-containing aromatic heterocyclic compounds such as pyridine, 2,2'-bipyridyl and 1,10-phenanthroline. It should be noted that one type of catalyst may be used alone, or two or more types may be used in combination. Further, the catalyst can also be used in a state of being dissolved or dispersed in water, a solvent or the like.
  • the amount of the catalyst used in the first-stage hydrolysis and condensation reaction is not particularly limited, and is appropriately within the range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. Can be adjusted.
  • the amount of water used in the first-stage hydrolysis and condensation reaction is not particularly limited, and is appropriately adjusted within the range of 0.5 to 20 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. be able to.
  • the method for adding water in the first-stage hydrolysis and condensation reaction is not particularly limited, and the total amount of water used (total amount used) may be added all at once or sequentially. good. When added sequentially, it may be added continuously or intermittently.
  • reaction conditions for the first-stage hydrolysis and condensation reaction it is possible to select reaction conditions such that the ratio [T3 / T2] in the intermediate polyorganosylsesquioxane is 1 or more and less than 20. is important.
  • the reaction temperature of the first-stage hydrolysis and condensation reaction is not particularly limited, but is preferably 40 to 100 ° C, more preferably 45 to 80 ° C. By controlling the reaction temperature within the above range, the ratio [T3 / T2] tends to be more efficiently controlled to 1 or more and less than 20.
  • the reaction time of the hydrolysis and condensation reaction in the first stage is not particularly limited, but is preferably 0.1 to 10 hours, more preferably 1.5 to 8 hours.
  • the first-stage hydrolysis and condensation reaction can be carried out under normal pressure, under pressure or under reduced pressure.
  • the atmosphere for performing the hydrolysis and condensation reaction in the first stage is not particularly limited, and may be, for example, under an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or in the presence of oxygen such as under air. It may be present, but it is preferably in an inert gas atmosphere.
  • the intermediate polyorganosylsesquioxane is obtained by the hydrolysis and condensation reaction of the first stage. After the completion of the first-stage hydrolysis and condensation reaction, it is preferable to neutralize the catalyst in order to suppress the decomposition of the polymerizable functional group such as ring opening of the epoxy group. Further, the intermediate polyorganosylsesquioxane is separated by, for example, water washing, acid washing, alkaline washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography and other separation means, or a combination thereof. It may be separated and purified by means or the like. Further, the reaction solution containing the intermediate polyorganosylsesquioxane may be subjected to the first stage hydrolysis and condensation reaction.
  • the intermediate polyorganosylsesquioxane obtained by the first-stage hydrolysis and condensation reaction is subjected to the second-stage hydrolysis and condensation reaction to produce the polyorganosylsesquioxane of the present disclosure. can do.
  • the second-stage hydrolysis and condensation reaction can be carried out in the presence or absence of a solvent.
  • the solvent mentioned in the first-stage hydrolysis and condensation reaction can be used.
  • the solvent for the hydrolysis and condensation reaction in the second stage the intermediate polyorganosylsesquioxane containing the reaction solvent for the hydrolysis and condensation reaction in the first stage, the extraction solvent, etc. may be used as it is, or a part or all of it.
  • the distilled material may be used. Further, a solvent having a higher boiling point than the solvent used for the hydrolysis and condensation reaction in the first stage is added to the reaction solution containing the intermediate polyorganosylsesquioxane, and then the solvent is heated and distilled off to obtain the solvent. It can be done in turn. It should be noted that one type of solvent may be used alone, or two or more types may be used in combination.
  • the amount used is not particularly limited and is in the range of 0 to 2000 parts by weight with respect to 100 parts by weight of the intermediate polyorganosylsesquioxane. Therefore, it can be appropriately adjusted according to the desired reaction time and the like.
  • the second stage hydrolysis and condensation reaction is preferably carried out in the presence of a catalyst and water.
  • a catalyst the catalyst mentioned in the first stage hydrolysis and condensation reaction can be used, and in order to suppress the decomposition of polymerizable functional groups such as epoxy groups, an alkaline catalyst is preferable, and further.
  • hydroxides of alkali metals such as sodium hydroxide, potassium hydroxide and cesium hydroxide; carbonates of alkali metals such as lithium carbonate, sodium carbonate, potassium carbonate and cesium carbonate.
  • one type of catalyst may be used alone, or two or more types may be used in combination.
  • the catalyst can also be used in a state of being dissolved or dispersed in water, a solvent or the like.
  • the catalyst used for the first-stage hydrolysis and condensation reaction can be used as it is for the second-stage hydrolysis and condensation reaction.
  • the amount of the catalyst used in the second-stage hydrolysis and condensation reaction is not particularly limited, and is preferably 0.01 to 10000 ppm, more preferably 0, with respect to the intermediate polyorganosylsesquioxane (1000000 ppm). It can be appropriately adjusted within the range of 1 to 1000 ppm.
  • the amount of water used in the hydrolysis and condensation reactions of the second stage is not particularly limited, and is preferably 10 to 100,000 ppm, more preferably 100 to 20,000 ppm, based on the intermediate polyorganosylsesquioxane (1000000 ppm). It can be adjusted as appropriate within the range of. When the amount of water used is larger than 100,000 ppm, the ratio of polyorganosylsesquioxane [T3 / T2] and the number average molecular weight tend to be difficult to control within a predetermined range.
  • the method of adding the water in the hydrolysis and condensation reaction of the second stage is not particularly limited, and the total amount of water used (total amount used) may be added all at once or sequentially. good. When added sequentially, it may be added continuously or intermittently. Further, the water used for the hydrolysis and condensation reaction in the first stage can be used as it is, or the remaining water obtained by distilling a part thereof can be used.
  • the above ratio [T3 / T2] in the polyorganosylsesquioxane of the present disclosure is 20 or more and 500 or less, and the number average molecular weight is 2000 to 50,000. It is important to select such reaction conditions.
  • the reaction temperature of the hydrolysis and condensation reaction in the second stage varies depending on the catalyst used and is not particularly limited, but is preferably 5 to 200 ° C, more preferably 30 to 150 ° C, still more preferably 80 to 120 ° C. be. By controlling the reaction temperature within the above range, the ratio [T3 body / T2 body] and the number average molecular weight tend to be controlled more efficiently within the desired range.
  • the reaction time of the hydrolysis and condensation reaction in the second stage is not particularly limited, but is preferably 0.5 to 1000 hours, more preferably 1 to 500 hours, and even more preferably 5 to 200 hours. Further, a desired ratio is obtained by performing timely sampling while performing hydrolysis and condensation reactions within the above reaction temperature range, and performing the reaction while monitoring the above ratio [T3 / T2] and the number average molecular weight. [T3 / T2], the polyorganosylsesquioxane of the present disclosure having a number average molecular weight can also be obtained.
  • the second-stage hydrolysis and condensation reaction can be carried out under normal pressure, under pressure or under reduced pressure.
  • the atmosphere for performing the hydrolysis and condensation reaction in the second stage is not particularly limited, and may be, for example, under any of an inert gas atmosphere such as a nitrogen atmosphere and an argon atmosphere, and an oxygen presence such as under air. It may be present, but it is preferably in an inert gas atmosphere.
  • the polyorganosylsesquioxane of the present disclosure can be obtained by the hydrolysis and condensation reaction of the second stage. After the completion of the hydrolysis and condensation reaction in the second stage, it is preferable to neutralize the catalyst in order to suppress the decomposition of the polymerizable functional group such as the ring opening of the epoxy group.
  • the polyorganosylsesquioxane of the present disclosure is combined with, for example, separation means such as water washing, acid washing, alkali washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography, and the like, and a combination thereof. It may be separated and purified by a separation means or the like.
  • the polyorganosilsesquioxane of the present disclosure contains a condensed silsesquioxane having a structure in which two or more cage-type silsesquioxane are linearly condensed, it is compared with the conventional polyorganosylsesquioxane. It is considered that they tend to have excellent curability. Therefore, the cured product of the curable composition containing the polyorganosylsesquioxane of the present disclosure is excellent in high surface hardness and heat resistance. Further, the polyorganosylsesquioxane of the present disclosure is excellent in solubility in a solvent such as an organic solvent.
  • “Two or more cage-type silsesquioxanes are linearly condensed” is represented by the above composition formula (1), composition formula (2), composition formula (3), and / or composition formula (4). It means that two or more of the cage-type silsesquioxane are condensed in series rather than three-dimensionally, resulting in the formation of a linear condensate. Further, when the polyorganosilsesquioxane of the present disclosure contains a cage-type silsesquioxane having three hydroxyl groups represented by ⁇ OR c as in the above composition formulas (5) and (6).
  • the curable composition of the present disclosure is a curable composition (curable resin composition) containing the above-mentioned polyorganosylsesquioxane of the present disclosure as an essential component.
  • the curable compositions of the present disclosure further comprise a curing catalyst (eg, photocationic polymerization initiator, radical polymerizable initiator), surface conditioner or surface modifier, polymerization stabilizer, silane coupling. It may contain other components such as agents.
  • the curable composition of the present disclosure can be used as a curable composition for forming a hard coat layer or a curable composition for an adhesive (for example, a curable composition for a laminated semiconductor) depending on its use.
  • the polyorganosylsesquioxane of the present disclosure may be used alone or in combination of two or more.
  • the content (blending amount) of the polyorganosylsesquioxane of the present disclosure in the curable composition of the present disclosure is not particularly limited, but is 70 with respect to the total amount (100% by weight) of the curable composition excluding the solvent. It is preferably 80% by weight or more and less than 100% by weight, more preferably 80 to 99.8% by weight, and further preferably 90 to 99.5% by weight.
  • the content of the polyorganosylsesquioxane of the present disclosure is not particularly limited, but is 70 with respect to the total amount (100% by weight) of the curable composition excluding the solvent. It is preferably 80% by weight or more and less than 100% by weight, more preferably 80 to 99.8% by weight, and further preferably 90 to 99.5% by weight.
  • a curing catalyst can be contained, whereby the curing of the curable composition can proceed more efficiently. There is a tendency to be able to do it.
  • the ratio of the polyorganosylsesquioxane of the present disclosure to the total amount (100% by weight) of the cationically curable compound or the radical curable compound contained in the curable composition of the present disclosure is not particularly limited, but is 70 to 100% by weight. Is preferable, more preferably 75 to 98% by weight, still more preferably 80 to 95% by weight.
  • the curable composition of the present disclosure preferably further contains a curing catalyst.
  • a curing catalyst it is preferable to include a light or thermal polymerization initiator as the curing catalyst, and it is more preferable to include a cationic polymerization initiator or a radical polymerization initiator, in that the curing time until it becomes more tack-free can be shortened.
  • one type of curing catalyst may be used alone, or two or more types may be used in combination.
  • the above-mentioned cationic polymerization initiator is a compound capable of initiating or accelerating the cationic polymerization reaction of a cationically curable compound such as the polyorganosylsesquioxane of the present disclosure.
  • the cationic polymerization initiator is not particularly limited, and examples thereof include a photocationic polymerization initiator (photoacid generator), a thermal cationic polymerization initiator (thermal acid generator), and the like.
  • a known or conventional photocationic polymerization initiator can be used, for example, a sulfonium salt (salt of sulfonium ion and anion), iodonium salt (salt of iodonium ion and anion).
  • a sulfonium salt salt of sulfonium ion and anion
  • iodonium salt salt of iodonium ion and anion
  • Selenium salt salt of selenium ion and anion
  • ammonium salt salt of ammonium ion and anion
  • phosphonium salt salt of transition metal complex ion and anion
  • sulfonium salt examples include [4- (4-biphenylylthio) phenyl] -4-biphenylylphenylsulfonium tris (pentafluoroethyl) trifluorophosphate, triphenylsulfonium salt, and tri-p-tolylsulfonium salt.
  • Tri-o-tolylsulfonium salt tris (4-methoxyphenyl) sulfonium salt, 1-naphthyldiphenylsulfonium salt, 2-naphthyldiphenylsulfonium salt, tris (4-fluorophenyl) sulfonium salt, tri-1-naphthylsulfonium salt, Triaryl such as tri-2-naphthyl sulfonium salt, tris (4-hydroxyphenyl) sulfonium salt, diphenyl [4- (phenylthio) phenyl] sulfonium salt, 4- (p-tolylthio) phenyldi- (p-phenyl) sulfonium salt, etc.
  • Diarylsulfonium salt such as diphenylphenacil sulfonium salt, diphenyl4-nitrophenacil sulfonium salt, diphenylbenzylsulfonium salt, diphenylmethylsulfonium salt; phenylmethylbenzylsulfonium salt, 4-hydroxyphenylmethylbenzylsulfonium salt, 4- Monoaryl sulfonium salts such as methoxyphenyl methyl benzyl sulfonium salt; trialkyl sulfonium salts such as dimethyl phenacil sulfonium salt, phenacil tetrahydrothiophenium salt, dimethyl benzyl sulfonium salt and the like can be mentioned.
  • diphenyl [4- (phenylthio) phenyl] sulfonium salt for example, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluoroantimonate, diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate and the like can be used. ..
  • UV9380C manufactured by
  • selenium salt examples include triaryl selenium salts, tri-p-tolyl selenium salts, tri-o-tolyl selenium salts, tris (4-methoxyphenyl) selenium salts, 1-naphthyldiphenyl selenium salts and the like. Salts; diallyl selenium salts such as diphenylphenacyl selenium salt, diphenylbenzyl selenium salt, diphenylmethyl selenium salt; monoaryl selenium salts such as phenylmethyl benzyl selenium salt; trialkyl selenium salts such as dimethyl phenacyl selenium salt and the like. ..
  • ammonium salt examples include tetra (tetramethylammonium salt, ethyltrimethylammonium salt, diethyldimethylammonium salt, triethylmethylammonium salt, tetraethylammonium salt, trimethyl-n-propylammonium salt, trimethyl-n-butylammonium salt and the like).
  • Alkylammonium salt; Pyrrolidium salt such as N, N-dimethylpyrrolidium salt, N-ethyl-N-methylpyrrolidium salt; N, N'-dimethylimidazolinium salt, N, N'-diethylimidazolinium salt, etc.
  • Imidazolinium salt such as N, N'-dimethyltetrahydropyrimidium salt, N, N'-diethyltetrahydropyrimidium salt; N, N-dimethylmorpholinium salt, N, N -Morholinium salt such as diethylmorpholinium salt; piperidinium salt such as N, N-dimethylpiperidinium salt, N, N-diethylpiperidinium salt; pyridinium salt such as N-methylpyridinium salt and N-ethylpyridinium salt.
  • Imidazolium salts such as N, N'-dimethylimidazolium salt; quinolium salts such as N-methylquinolium salt; isoquinolium salts such as N-methylisoquinolium salt; thiazonium salts such as benzylbenzothiazonium salt; Examples thereof include acridium salts such as benzyl acridium salts.
  • the phosphonium salt examples include tetraarylphosphonium salts such as tetraphenylphosphonium salt, tetra-p-tolylphosphonium salt and tetrakis (2-methoxyphenyl) phosphonium salt; triarylphosphonium salt such as triphenylbenzylphosphonium salt; triethyl.
  • tetraalkylphosphonium salts such as benzylphosphonium salt, tributylbenzylphosphonium salt, tetraethylphosphonium salt, tetrabutylphosphonium salt and triethylphenacylphosphonium salt.
  • Examples of the salt of the transition metal complex ion include salts of chromium complex cations such as ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-toluene) Cr + and ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-xylene) Cr + . ; Salts of iron complex cations such as ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-toluene) Fe + , ( ⁇ 5-cyclopentadienyl) ( ⁇ 6-xylene) Fe + and the like can be mentioned.
  • Examples of the anions constituting the above-mentioned salt include SbF 6- , PF 6- , BF 4- , (CF 3 CF 2 ) 3 PF 3- , (CF 3 CF 2 CF 2 ) 3 PF 3- , (C).
  • thermal cationic polymerization initiator examples include aryl sulfonium salts, aryl iodonium salts, allen-ion complexes, quaternary ammonium salts, aluminum chelates, boron trifluoride amine complexes and the like.
  • aryl sulfonium salt examples include hexafluoroantimonate salt and the like.
  • trade names "SP-66” and “SP-77” all manufactured by ADEKA Corporation
  • trade names "Sun Aid SI-60L” and “Sun Aid SI-80L” can be used.
  • the aluminum chelate include ethyl acetoacetate aluminum diisopropyrate and aluminum tris (ethyl acetoacetate).
  • the boron trifluoride amine complex examples include a boron trifluoride monoethylamine complex, a boron trifluoride imidazole complex, and a boron trifluoride piperidine complex.
  • the radical polymerization initiator is a compound capable of initiating or promoting a radical polymerization reaction of a radical curable compound such as polyorganosylsesquioxane of the present disclosure.
  • examples of the radical polymerization initiator include a photoradical polymerization initiator, a thermal radical polymerization initiator and the like.
  • photoradical polymerization initiator examples include benzophenone, acetophenone benzyl, benzyldimethylketone, benzoin, benzoinmethyl ether, benzoin ethyl ether, benzoin isopropyl ether, dimethoxyacetophenone, dimethoxyphenylacetophenone, diethoxyacetophenone, and diphenyldisulfite.
  • Methyl orthobenzoyl benzoate ethyl 4-dimethylaminobenzoate (manufactured by Nippon Kayaku Co., Ltd., trade name "Kayacure EPA”, etc.), 2,4-diethylthioxanson (manufactured by Nippon Kayaku Co., Ltd., trade name) "Kayacure DETX” etc.), 2-Methyl-1- [4- (methyl) phenyl] -2-morpholinopropanone-1 (manufactured by Ciba Gaigi Co., Ltd., trade name "Irgacure 907" etc.), 1-hydroxycyclohexyl 2-Amino-2-benzoyl-1-phenyl such as phenylketone (manufactured by Ciba Geigy Co., Ltd., trade name "Irgacure 184", etc.), 2-dimethylamino-2- (4-morpholino) benzoyl-1
  • Aminobenzene derivatives such as alkane compounds, tetra (t-butylperoxycarbonyl) benzophenone, benzyl, 2-hydroxy-2-methyl-1-phenyl-propane-1-one, 4,4-bisdiethylaminobenzophenone, 2,2 '-Bis (2-chlorophenyl) -4,5,4', 5'-tetraphenyl-1,2'-bimidazol (manufactured by Hodoya Chemical Co., Ltd., trade name "B-CIM", etc.), etc.
  • alkane compounds tetra (t-butylperoxycarbonyl) benzophenone
  • benzyl 2-hydroxy-2-methyl-1-phenyl-propane-1-one
  • 4,4-bisdiethylaminobenzophenone 2,2 '-Bis (2-chlorophenyl) -4,5,4', 5'-tetraphenyl-1,2'-bimida
  • Imidazole compounds such as 2,6-bis (trichloromethyl) -4- (4-methoxynaphthalen-1-yl) -1,3,5-triazine, 2-trichloromethyl-5- (2-trichloromethyl-5- (2-)
  • halomethyl oxadiazole compounds such as benzofuran 2-yl-ethenyl) -1,3,4-oxadiazole.
  • a photosensitizer can be added as needed.
  • thermal radical polymerization initiator examples include hydroperoxide, dialkyl peroxide, peroxyester, diacyl peroxide, peroxydicarbonate, peroxyketal, ketone peroxide and the like (specifically, benzoyl peroxide, t).
  • the content (blending amount) of the curing catalyst in the curable composition of the present disclosure is 0.01 with respect to 100 parts by weight of the total amount of the polyorganosylsesquioxane of the present disclosure and other cationic curable compounds described below. It is preferably ⁇ 3.0 parts by weight, more preferably 0.05 to 3.0 parts by weight, and further preferably 0.1 to 1.0 part by weight (for example, 0.3 to 1.0 part by weight).
  • the content of the curing catalyst is 3.0 parts by weight or more, the curing reaction can be efficiently and sufficiently proceeded, and the surface hardness and adhesiveness of the cured product tend to be further improved.
  • the content of the curing catalyst is 3.0 parts by weight or less, the storage stability of the curable composition tends to be further improved, and the coloring of the cured product tends to be suppressed.
  • the curable compositions of the present disclosure further include cationic curable compounds other than the polyorganosyl sesquioxane of the present disclosure (sometimes referred to as "other cationic curable compounds") and / or the polyorganosyl of the present disclosure. It may contain a radical curable compound other than sesquioxane (sometimes referred to as "other radical curable compounds").
  • a known or commonly used cation-curable compound can be used, and examples thereof include epoxy compounds other than the polyorganosylsesquioxane of the present disclosure, oxetane compounds, vinyl ether compounds and the like.
  • one of the other cationic curable compounds may be used alone, or two or more thereof may be used in combination.
  • the epoxy compound a known or commonly used compound having one or more epoxy groups (oxylan rings) in the molecule can be used, and the present invention is not particularly limited, but for example, an alicyclic epoxy compound (an alicyclic epoxy resin) can be used. ), Aromatic epoxy compounds (aromatic epoxy resins), aliphatic epoxy compounds (aliphatic epoxy resins) and the like.
  • Examples of the alicyclic epoxy compound include known and commonly used compounds having one or more alicyclics and one or more epoxy groups in the molecule, and are not particularly limited, but for example, (1) in the molecule.
  • a compound having an epoxy group (referred to as "alicyclic epoxy group") composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic; (2) The epoxy group is directly bonded to the alicyclic by a single bond.
  • Compounds having an alicyclic and a glycidyl ether group in the molecule (glycidyl ether type epoxy compound) and the like can be mentioned.
  • Examples of the compound (1) having an alicyclic epoxy group in the molecule include a compound represented by the following formula (i).
  • Y represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, an alkenylene group in which a part or all of a carbon-carbon double bond is epoxidized, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and the like. Examples thereof include a group in which a plurality of groups are linked.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms, a divalent alicyclic hydrocarbon group and the like.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, a propylene group and a trimethylene group.
  • Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene group, 1,3-cyclopentylene group, cyclopentylidene group, 1,2-cyclohexylene group and 1,3-.
  • Examples thereof include a divalent cycloalkylene group (including a cycloalkylidene group) such as a cyclohexylene group, a 1,4-cyclohexylene group and a cyclohexylidene group.
  • a divalent cycloalkylene group such as a cyclohexylene group, a 1,4-cyclohexylene group and a cyclohexylidene group.
  • alkenylene group in the alkenylene group in which a part or all of the carbon-carbon double bond is epoxidized include a vinylene group, a propenylene group, and a 1-butenylene group.
  • an alkenylene group in which the entire carbon-carbon double bond is epoxidized is preferable, and more preferably, an alkenylene group having 2 to 4 carbon atoms in which the entire carbon-carbon double bond is epoxidized. Is.
  • Typical examples of the alicyclic epoxy compound represented by the above formula (i) are (3,4,3', 4'-diepoxy) bicyclohexyl, and the following formulas (i-1) to (i-10). ), And the like.
  • l and m in the following formulas (i-5) and (i-7) represent integers of 1 to 30, respectively.
  • R'in the following formula (i-5) is an alkylene group having 1 to 8 carbon atoms, and among them, a linear or branched chain having 1 to 3 carbon atoms such as a methylene group, an ethylene group, a propylene group and an isopropylene group.
  • the shape of the alkylene group is preferable.
  • N1 to n6 in the following formulas (i-9) and (i-10) represent integers of 1 to 30, respectively.
  • Examples of the alicyclic epoxy compound represented by the above formula (i) include 2,2-bis (3,4-epoxycyclohexyl) propane and 1,2-bis (3,4-epoxycyclohexyl).
  • Examples of the compound in which the epoxy group is directly bonded to the alicyclic (2) by a single bond include a compound represented by the following formula (ii).
  • R " is a group (p-valent organic group) obtained by removing p hydroxyl groups (-OH) from the structural formula of the p-valent alcohol, and p and n each represent a natural number.
  • the valent alcohol [R "(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms) and the like.
  • p is preferably 1 to 6
  • n is preferably 1 to 30.
  • n in each group in () (inside the outer parentheses) may be the same or different.
  • Examples of the compound having an alicyclic and an alicyclic ether group in the above-mentioned (3) molecule include an alicyclic alcohol (for example, an alicyclic polyhydric alcohol) glycidyl ether. More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy)).
  • an alicyclic alcohol for example, an alicyclic polyhydric alcohol
  • glycidyl ether More specifically, for example, 2,2-bis [4- (2,3-epoxypropoxy) cyclohexyl] propane, 2,2-bis [3,5-dimethyl-4- (2,3-epoxypropoxy)).
  • Cyclohexyl A compound obtained by hydrogenating a bisphenol A type epoxy compound such as propane (hydrided bisphenol A type epoxy compound); bis [o, o- (2,3-epoxypropoxy) cyclohexyl] methane, bis [o , P- (2,3-epoxypropoxy) cyclohexyl] methane, bis [p, p- (2,3-epoxypropoxy) cyclohexyl] methane, bis [3,5-dimethyl-4- (2,5-dimethylpropoxy) 3-Epoxypropoxy) Cyclohexyl] A compound obtained by hydrogenating a bisphenol F type epoxy compound such as methane (hydrided bisphenol F type epoxy compound); hydrided biphenol type epoxy compound; hydrided phenol novolak type epoxy compound; hydride cresol Novolak type epoxy compound; bisphenol A hydride cresol novolak type epoxy compound; hydride naphthalene type epoxy compound; hydride epoxy compound of
  • the aromatic epoxy compound examples include epibis-type glycidyl ether type epoxy resins obtained by a condensation reaction between bisphenols and epihalohydrin; these epibis-type glycidyl ether type epoxy resins are further subjected to an addition reaction with the bisphenols.
  • Examples thereof include epoxy compounds.
  • Examples of the aliphatic epoxy compound include glycidyl ethers of alcohols having no q-valent cyclic structure (q is a natural number); glycidyl esters of monovalent or polyvalent carboxylic acids; epoxidized flaxseed oil and epoxidized soybean oil. , Epoxy compounds of fats and oils having a double bond such as epoxidized castor oil; epoxide compounds of polyolefins (including polyalkaziene) such as epoxidized polybutadiene.
  • Examples of the oxetane compound include known and commonly used compounds having one or more oxetane rings in the molecule.
  • Examples of the vinyl ether compound include known and commonly used compounds having one or more vinyl ether groups in the molecule.
  • the present invention is not particularly limited, and examples thereof include (meth) acrylic compounds other than the polyorganosyl sesquioxane of the present disclosure. ..
  • examples of the (meth) acrylic compound include known and commonly used compounds having one or more (meth) acrylic groups in the molecule.
  • the content (blending amount) of the other cation-curable compound and / or the other radical-curable compound in the curable composition of the present disclosure is not particularly limited, but the polyorganosylsesquioxane and other cations of the present disclosure are not particularly limited.
  • 50% by weight or less (for example, 0 to 50% by weight) is preferable with respect to the total amount of the curable compound and other radical curable compounds (100% by weight; the total amount of the cationically curable compound and the radical curable compound). It is preferably 30% by weight or less (for example, 0 to 30% by weight), and more preferably 10% by weight or less.
  • the curable composition of the present disclosure may further contain a polymerization stabilizer.
  • the polymerization stabilizer is a compound having an action of suppressing the progress of cation polymerization by trapping cations, saturate the ability of the polymerization stabilizer to trap cations, and proceed with polymerization at the stage of deactivation. Since the curable composition of the present disclosure contains a polymerization stabilizer, it is possible to suppress the progress of polymerization for a long period of time after coating and drying to form an adhesive layer, and the timing at which adhesiveness is required. It is possible to form an adhesive layer having excellent storage stability, which exhibits excellent adhesiveness by heating with. When the curable composition of the present disclosure is a curable composition for an adhesive, it is preferable to contain a polymerization stabilizer.
  • polymerization stabilizer examples include bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate and poly ([6- (1,1,3,3-tetramethylbutyl) imino-1, 3,5-Triazine-2,4-diyl] [(2,2,6,6-tetramethyl-4-piperidyl) imino] Hexamethylene [(2,2,6,6-tetramethyl-4-piperidyl) Imino]), Tetrakiss (2,2,6,6-tetramethyl-4-piperidyl) Butane-1,2,3,4-tetracarboxylate, 2,2,6,6-tetramethyl-4-piperidi Nylbenzoate, (mixed 2,2,6,6-tetramethyl-4-piperidyl / tridecyl) -1,2,3,4-butanetetracarboxylate, 3,9-bis (2,3-di-t) -Butyl-4-methylphenoxy) -2,4,8,10-te
  • the above-mentioned polymerization stabilizer may be used alone or in combination of two or more.
  • the curable composition for an adhesive of the present disclosure preferably contains two or more kinds of polymerization stabilizers.
  • the curable composition for adhesives is remarkably excellent in storage stability, it is more difficult for the adhesive to partially cure during drying, and it tends to be more excellent in the adhesiveness of the cured product to the adherend. ..
  • the content (blending amount) thereof is not particularly limited, but when the polyorganosylsesquioxane of the present disclosure (other cationic curable compounds) is contained. Is preferably 0.005 parts by weight or more, preferably 0.01 to 10 parts by weight, and more preferably 0.02 with respect to 100 parts by weight (total amount of polyorganosylsesquioxane and other cationically curable compounds). ⁇ 1 part by weight. When the content is 0.005 part by weight or more, partial curing of the adhesive during drying is less likely to occur, and the adhesiveness of the cured product to the adherend tends to be more excellent.
  • the total amount of the polymerization stabilizer is the polyorganosyl sesquioxane of the present disclosure (when other cationic curable compounds are contained, the polyorganosyl sesquioxane and other cationic curable compounds).
  • the total amount of the compound is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 1 part by weight, based on 100 parts by weight.
  • the content (blending amount) of the polymerization stabilizer is not particularly limited, but is 1 part by weight or more with respect to 100 parts by weight of the curing catalyst. Is preferable, more preferably 3 to 200 parts by weight, still more preferably 5 to 150 parts by weight. When the content is 1 part by weight or more, partial curing of the adhesive during drying is less likely to occur, and the adhesiveness of the cured product to the adherend tends to be more excellent.
  • the total amount of the polymerization stabilizers is preferably 100 to 200 parts by weight, more preferably 110 to 150 parts by weight, based on 100 parts by weight of the curing catalyst.
  • the curable composition of the present disclosure may preferably further contain a solvent.
  • the solvent include water, organic solvents and the like, as long as they can dissolve the polyorganosyl sesquioxane of the present disclosure and additives used as necessary and do not inhibit the polymerization. There are no particular restrictions.
  • the solvent is one or two solvents having a boiling point (at 1 atm) of 170 ° C. or lower (for example, toluene, butyl acetate, methyl isobutyl ketone, xylene, mesitylene, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, etc.). It is preferable to use more than seeds.
  • the solvent may be used in an appropriate amount depending on the use of the curable composition.
  • the amount of the solvent used is, for example, about 30 to 80% by weight, preferably 40 to 70% by weight, and more preferably 50 to 60% by weight as the concentration of the non-volatile component contained in the curable composition of the present disclosure. If the amount of the solvent used is excessive, the viscosity of the curable composition tends to be low, and it tends to be difficult to form a layer having an appropriate film thickness. On the other hand, if the amount of the solvent used is too small, the viscosity of the curable composition becomes too high, and it tends to be difficult to apply the curable composition uniformly.
  • the curable compositions of the present disclosure further include precipitated silica, wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, as any other components.
  • precipitated silica wet silica, fumed silica, calcined silica, titanium oxide, alumina, glass, quartz, aluminosilicate, iron oxide, zinc oxide, calcium carbonate, as any other components.
  • Organic resin fine powder such as fluororesin; filler such as conductive metal powder such as silver and copper, curing aid, stabilizer, flame retardant, flame retardant aid, reinforcing material, nucleating agent, lubricant, wax, Plastics, mold release agents, impact resistance improvers, hue improvers, clearing agents, rhology adjusters, processability improvers, colorants, antistatic agents, dispersants, surface conditioners, surface modifiers, matte It may contain conventional additives such as agents, defoamers, defoamers, defoamers, antibacterial agents, preservatives, viscosity modifiers, thickeners, photosensitizers, foaming agents and the like. These additives may be used alone or in combination of two or more.
  • the curable composition of the present disclosure is not particularly limited, but can be prepared by stirring and mixing each of the above components at room temperature or, if necessary, while heating.
  • the curable composition of the present disclosure can be used as a one-component composition in which each component is mixed in advance and used as it is, or for example, two or more components stored separately.
  • the curable composition of the present disclosure is not particularly limited, but is preferably a liquid at room temperature (about 25 ° C.). More specifically, the curable composition of the present disclosure has a viscosity at 25 ° C. of a solution diluted to a solvent of 20% [for example, a curable composition (solution) in which the proportion of methyl isobutyl ketone is 20% by weight]. , 300 to 20000 mPa ⁇ s, more preferably 500 to 10000 mPa ⁇ s, still more preferably 1000 to 8000 mPa ⁇ s. By setting the viscosity to 300 mPa ⁇ s or more, the heat resistance of the cured product tends to be further improved.
  • the viscosity of the curable composition of the present disclosure is determined by using a viscometer (trade name "MCR301", manufactured by Anton Pearl Co., Ltd.), a swing angle of 5%, a frequency of 0.1 to 100 (1 / s), and a temperature: Measured at 25 ° C.
  • the curable composition By advancing the polymerization reaction of the cationically curable compound or the radical curable compound in the curable composition of the present disclosure, the curable composition can be cured, and the cured product (referred to as "cured product of the present disclosure"). In some cases) can be obtained.
  • the curing method can be appropriately selected from well-known methods, and is not particularly limited, and examples thereof include irradiation with active energy rays and / or heating.
  • the active energy ray for example, any of infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, ⁇ rays, ⁇ rays, ⁇ rays and the like can be used. Of these, ultraviolet rays are preferable because they are easy to handle.
  • the conditions for curing the curable composition of the present disclosure by irradiation with active energy rays depend on the type and energy of the active energy rays to be irradiated, the shape and size of the cured product, and the like. It can be adjusted as appropriate, and is not particularly limited, but is preferably about 1 to 1000 mJ / cm 2 when irradiating with ultraviolet rays.
  • active energy rays for example, a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a carbon arc, a metal halide lamp, sunlight, an LED lamp, a laser, or the like can be used.
  • further heat treatment annealing, aging
  • the conditions for curing the curable composition of the present disclosure by heating are not particularly limited, but are preferably, for example, 30 to 200 ° C, more preferably 50 to 190 ° C.
  • the curing time can be set as appropriate.
  • the curable composition of the present disclosure can be cured to form a cured product having high surface hardness and heat resistance, and excellent bending resistance and workability. Therefore, the curable composition of the present disclosure is referred to as a "hard coat layer forming curable composition" ("hard coat liquid”, “hard coat agent”, etc. for forming a hard coat layer in a hard coat film. It can be preferably used as an adhesive for laminated semiconductors.
  • the curable composition of the present disclosure is used as a curable composition for forming a hardcoat layer, and a hardcoat film having a hardcoat layer formed from the composition is flexible while maintaining high hardness and high heat resistance. It has properties and is suitable for roll-to-roll manufacturing and processing.
  • the curable composition of the present disclosure when used as a curable composition for adhesiveness, it is cured at a low temperature to obtain a cured product having excellent crack resistance, heat resistance, adhesiveness to an adherend, and adhesion. Since it can be formed, the adhesive layer does not crack or peel even when a cold impact is applied, and a reliable device can be formed.
  • the surface of the uncured or semi-cured hard coat layer coated and dried on the release layer provided on the substrate becomes tack-free, and the blocking resistance is improved. Since it is improved, it can be wound up in a roll and handled, and further, by transferring and curing the hard coat layer on the surface of the molded product, a hard coat layer having a high surface hardness can be formed. .. Therefore, the curable composition of the present disclosure can also be preferably used as a hard coat layer forming curable composition for forming a hard coat layer having excellent bending resistance.
  • the hard coat film of the present disclosure is a hard coat film in which a base material and a hard coat layer formed on at least one surface of the base material are laminated, and the hard coat layer is the curable composition of the present disclosure. It is a hard coat layer (cured product layer of the curable composition of the present disclosure) formed of a material (curable composition for forming a hard coat layer).
  • FIG. 9 is a schematic view (cross-sectional view) showing an embodiment of the hard-coated film of the present disclosure. 1 is a hard coat film, 11 is a hard coat layer, and 12 is a base material.
  • the hard coat layer in the hard coat film of the present disclosure may be formed on only one surface (one side) of the above-mentioned base material, or may be formed on both surfaces (both sides).
  • the hard coat layer in the hard coat film of the present disclosure may be formed only partially or on the entire surface of each surface of the above-mentioned base material.
  • the base material in the hard coat film of the present disclosure is the base material of the hard coat film and refers to a portion constituting a portion other than the hard coat layer.
  • the base material include a plastic base material, a metal base material, a ceramic base material, a semiconductor base material, a glass base material, a paper base material, a wood base material (wooden base material), and a base material whose surface is a coated surface.
  • a plastic base material a base material made of a plastic material is preferable.
  • the plastic material constituting the plastic substrate is not particularly limited, and is, for example, a polyester such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN); a polyimide; a polycarbonate; a polyamide; a polyacetal; a polyphenylene oxide; a polyphenylene sulfide; a polyether.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • a polyimide a polycarbonate
  • a polyamide a polyamide
  • a polyacetal a polyphenylene oxide
  • a polyphenylene sulfide a polyether.
  • ABS resin Vinylidene-based polymer
  • Vinylidene-based polymer for example, polyvinylidene chloride, etc.
  • Cellulous resin such as triacetyl cellulose (TAC); Epoxy resin; Phenolic resin; Melamine resin; Uria resin; Maleimide resin; Silicone, etc.
  • TAC triacetyl cellulose
  • Epoxy resin Epoxy resin
  • Phenolic resin Melamine resin
  • Uria resin Uria resin
  • Maleimide resin Silicone
  • the plastic base material may be made of only one kind of plastic material, or may be made of two or more kinds of plastic materials.
  • a base material having excellent transparency is used.
  • a polyester film for example, PET, PEN
  • a cyclic polyolefin film for example, PET, PEN
  • a polycarbonate film for example, PET, PEN
  • a PMMA film for example, PMMA
  • the above-mentioned plastic base material may be used as an antioxidant, an ultraviolet absorber, a light-resistant stabilizer, a heat stabilizer, a crystal nucleating agent, a flame retardant, a flame retardant aid, a filler, a plasticizer, and an impact resistance improving agent, if necessary. , Reinforcing agents, dispersants, antistatic agents, foaming agents, antibacterial agents and the like. It should be noted that one type of additive may be used alone, or two or more types may be used in combination.
  • the plastic base material may have a single-layer structure or a multi-layer (laminated) structure, and the structure (structure) thereof is not particularly limited.
  • the plastic substrate is a "plastic film / other layer" in which a layer other than the hard coat layer of the present disclosure (sometimes referred to as "other layer") is formed on at least one surface of the plastic film.
  • it may be a plastic base material having a laminated structure such as "other layer / plastic film / other layer”.
  • the other layers include hard coat layers other than the hard coat layer of the present disclosure.
  • the material constituting the other layer include the above-mentioned plastic material and the like.
  • the plastic base material may be an unstretched film or a stretched film.
  • the plastic base material may be, for example, a method of molding the above plastic material into a film to form a plastic base material (plastic film), and if necessary, an appropriate layer (for example, the above other) with respect to the plastic film. It can be produced by a known or conventional method such as a method of forming a layer or the like or applying an appropriate surface treatment. As the plastic base material, a commercially available product can also be used.
  • the thickness of the base material is not particularly limited, but can be appropriately selected from the range of, for example, 0.01 to 10,000 ⁇ m.
  • the hard coat layer in the hard coat film of the present disclosure is a layer constituting at least one surface layer in the hard coat film of the present disclosure, and the curable composition of the present disclosure (curable composition for forming a hard coat layer) is used. It is a layer (cured product layer) formed of a cured product (resin cured product) obtained by curing.
  • the thickness of the hard coat layer of the present disclosure (when the hard coat layers are provided on both sides of the substrate, the thickness of each hard coat layer) is not particularly limited, but is preferably 1 to 200 ⁇ m, more preferably 3 to 150 ⁇ m. be.
  • the hard coat layer of the present disclosure can maintain high surface hardness (for example, the pencil hardness is 3H or more) even when it is thin (for example, when the thickness is 5 ⁇ m or less). Further, even when the thickness is thick (for example, when the thickness is 50 ⁇ m or more), problems such as cracks due to curing shrinkage are unlikely to occur, so that the pencil hardness is remarkably increased by thickening the film (for example, the pencil hardness is increased). 9H or more) is possible.
  • the haze of the hard coat layer is not particularly limited, but is preferably 1.5% or less, more preferably 1.0% or less in the case of a thickness of 50 ⁇ m.
  • the lower limit of haze is not particularly limited, but is, for example, 0.1%. By setting the haze to 1.0% or less, it tends to be suitable for use in, for example, applications that require extremely high transparency (for example, a surface protective sheet for a display such as a touch panel).
  • the haze of the hardcourt layer of the present disclosure can be measured in accordance with JIS K7136.
  • the total light transmittance of the hard coat layer is not particularly limited, but is preferably 85% or more, more preferably 90% or more in the case of a thickness of 50 ⁇ m.
  • the upper limit of the total light transmittance is not particularly limited, but is, for example, 99%. By setting the total light transmittance to 85% or more, it tends to be suitable for use in, for example, applications requiring extremely high transparency (for example, a surface protective sheet for a display such as a touch panel).
  • the total light transmittance of the hard coat layer of the present disclosure can be measured according to JIS K7361-1.
  • the hard coat film of the present disclosure may further have a surface protective film on the surface of the hard coat layer of the present disclosure. Since the hard-coated film of the present disclosure has a surface protective film, the punching processability of the hard-coated film tends to be further improved. When the surface protective film is provided in this way, for example, even if the hardness of the hard coat layer is very high and peeling or cracking from the substrate is likely to occur during punching, such a problem occurs. Punching using a Thomson blade can be performed without making it. As the surface protective film, a known or commonly used surface protective film can be used.
  • the hard-coated film of the present disclosure can be produced according to a known or conventional method for producing a hard-coated film, and the production method is not particularly limited.
  • the present disclosure is made on at least one surface of the above-mentioned substrate. It can be produced by applying a curable composition (curable composition for forming a hard coat layer), removing the solvent by drying if necessary, and then curing the curable composition (curable composition layer). ..
  • the conditions for curing the curable composition are not particularly limited, and for example, they can be appropriately selected from the conditions for forming the above-mentioned cured product.
  • the hard coat layer of the present disclosure in the hard coat film of the present disclosure is formed from the curable composition of the present disclosure (curable composition for forming a hard coat layer) capable of forming a cured product having excellent bending resistance and processability. Since it is a hard coat layer, the hard coat film of the present disclosure can be manufactured by a roll-to-roll method. By manufacturing the hard-coated film of the present disclosure by a roll-to-roll method, it is possible to significantly increase its productivity. As a method for producing the hard coat film of the present disclosure by a roll-to-roll method, a known or conventional roll-to-roll method can be adopted, and the present invention is not particularly limited, but for example, a base material wound in a roll shape.
  • Step A and the curable composition of the present disclosure are applied to at least one surface of the drawn base material, and then the solvent is dried if necessary.
  • the step of forming the hard coat layer of the present disclosure by curing the curable composition (curable composition layer) (step B), and then rolling the obtained hard coat film again into a roll. Examples thereof include a winding step (step C) as an essential step, and a method of continuously carrying out these steps (steps A to C).
  • the method may include steps other than steps A to C.
  • the thickness of the hard-coated film of the present disclosure is not particularly limited and can be appropriately selected from the range of 1 to 10000 ⁇ m.
  • the pencil hardness of the surface of the hard coat layer of the hard coat film of the present disclosure is preferably 4H or more, more preferably 5H or more, still more preferably 6H or more.
  • the pencil hardness can be evaluated according to the method described in JIS K5600-5-4.
  • the haze of the hard-coated film of the present disclosure is not particularly limited, but is preferably 1.5% or less, more preferably 1.0% or less.
  • the lower limit of haze is not particularly limited, but is, for example, 0.1%. By setting the haze to 1.0% or less, it tends to be suitable for use in, for example, applications that require extremely high transparency (for example, a surface protective sheet for a display such as a touch panel).
  • the haze of the hard-coated film of the present disclosure can be easily controlled within the above range by using, for example, the above-mentioned transparent substrate as the substrate.
  • the haze can be measured according to JIS K7136.
  • the total light transmittance of the hard-coated film of the present disclosure is not particularly limited, but is preferably 85% or more, and more preferably 90% or more.
  • the upper limit of the total light transmittance is not particularly limited, but is, for example, 99%. By setting the total light transmittance to 90% or more, it tends to be suitable for use in, for example, applications that require extremely high transparency (for example, a surface protective sheet for a display such as a touch panel).
  • the total light transmittance of the hard-coated film of the present disclosure can be easily controlled in the above range by using, for example, the above-mentioned transparent base material as the base material.
  • the total light transmittance can be measured according to JIS K7361-1.
  • the hard-coated film of the present disclosure has flexibility while maintaining high hardness and high heat resistance, and can be manufactured and processed by a roll-to-roll method, so that it has high quality and productivity. Is also excellent.
  • the surface protective film is provided on the surface of the hard coat layer of the present disclosure, the punching processability is also excellent. Therefore, it can be preferably used in all applications that require such characteristics.
  • the hard-coated film of the present disclosure can be used, for example, as a surface protective film in various products, a surface protective film in members or parts of various products, or as a constituent material of various products or members or parts thereof. You can also do it.
  • Examples of the above products include display devices such as liquid crystal displays and organic EL displays; input devices such as touch panels: solar cells; various home appliances; various electric / electronic products; portable electronic terminals (for example, game devices, personal computers, tablets, etc.). Various electric and electronic products (smartphones, mobile phones, etc.); various optical devices, etc. can be mentioned.
  • display devices such as liquid crystal displays and organic EL displays
  • input devices such as touch panels: solar cells
  • various home appliances various electric / electronic products
  • portable electronic terminals for example, game devices, personal computers, tablets, etc.
  • Various electric and electronic products smarttphones, mobile phones, etc.
  • various optical devices, etc. can be mentioned.
  • the hard coat film of the present disclosure is used as a constituent material of various products and their members or parts, for example, an embodiment in which a hard coat film and a transparent conductive film are laminated in a touch panel and the like can be mentioned. Be done.
  • the transfer film (transfer hardcoat film) of the present disclosure is a film having a base material and an uncured or semi-cured hardcoat layer on a release layer formed on at least one surface of the base material.
  • the uncured or semi-cured hard coat layer may be referred to as a curable composition of the present disclosure (a curable composition for forming a hard coat layer (hereinafter, "the hard coat agent of the present disclosure”). ) Is included.
  • uncured means that the polymerizable functional group of the polyorganosylsesquioxane of the present disclosure contained in the curable composition for forming a hardcoat layer (hardcoat agent) of the present disclosure is used. It means a state in which no polymerization reaction has occurred.
  • semi-curing means a state in which a part of the polymerizable functional group has undergone a polymerization reaction and an unreacted polymerizable functional group remains.
  • the uncured or semi-cured hard coat layer formed by the curable composition (hard coat agent) of the present disclosure is simply a "hard coat layer", which is a hard coat layer transferred and cured to a molded product. Is sometimes referred to as a “cured hardcourt layer”.
  • FIG. 10 is a schematic view (cross-sectional view) showing an embodiment of the transfer film of the present disclosure. 2 is a transfer film, 21 is a base material, and 22 is a release layer, 23 is a hard coat layer (uncured or semi-cured hard coat layer), 24 is an anchor coat layer, 25 is a colored layer, and 26 is an adhesive layer.
  • the base material in the transfer film of the present disclosure refers to a portion of the base material of the transfer film other than the transfer layer including the hard coat layer of the present disclosure.
  • the transfer layer is a layer excluding the base material on which the release layer is formed in the transfer film of the present disclosure, and refers to a portion transferred to the surface of the molded product.
  • the base material mentioned in the above hard coat film can be used, but among them, a plastic base material (plastic film) is preferable as the base material.
  • the thickness of the base material can be appropriately selected from the range of, for example, 0.01 to 10000 ⁇ m, but is preferably 2 to 250 ⁇ m, more preferably 5 to 100 ⁇ m, from the viewpoint of moldability, shape followability, handleability, and the like. It is preferably 20 to 100 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the release layer in the transfer film of the present disclosure is a layer constituting at least one surface layer of the base material in the transfer film of the present disclosure, and is provided to easily peel off the transfer layer from the base material. It is a layer. By providing the release layer, the transfer layer can be reliably and easily transferred from the transfer film to the transferred body (molded product), and the base material can be reliably peeled off.
  • the peel strength between the release layer and the hard coat layer is not particularly limited, but is preferably 30 to 500 mN / 24 mm, more preferably 40 to 300 mN / 24 mm, and further preferably 50. It is ⁇ 200mN / 24mm.
  • the peel strength is in this range, the hard coat layer does not peel off during normal handling, and the hard coat tends to be easily peeled off at the same time as transfer to the molded product.
  • the peel strength between the hard coat layer and the release layer of the present disclosure can be measured in accordance with JIS Z0237.
  • the release layer in the transfer film of the present disclosure may be formed on only one surface (one side) of the above-mentioned base material, or may be formed on both surfaces (both sides). Further, the release layer in the transfer film of the present disclosure may be formed only partially or on the entire surface of each surface of the above-mentioned base material.
  • a known and publicly available release agent can be used without particular limitation.
  • an unsaturated ester resin, an epoxy resin, an epoxy-melamine resin, an aminoalkyd resin, and an acrylic can be used.
  • At least one selected from a based resin, a melamine based resin, a silicon resin, a fluorine resin, a cellulose resin, a urea resin resin, a polyolefin resin, a paraffin resin, and a cycloolefin resin can be used.
  • the release layer is preferably a melamine-based resin or a cycloolefin-based resin, and is preferably a 2-norbornene / ethylene copolymer or the like. Cycloolefin copolymer resin (COC resin) is more preferable.
  • a known and publicly available release treatment method can be used without particular limitation.
  • the above resin is dispersed or dissolved in a solvent (eg, alcohols such as methanol and butanol, aromatic hydrocarbons such as toluene and xylene, tetrahydrofuran and the like), and bar coat, Mayer bar coat, gravure coat, roll coat and the like.
  • the release layer can be formed by coating, drying, and heating at 80 to 200 ° C. by a known coating method.
  • the thickness of the release layer is also not particularly limited, and can be usually selected from the range of 0.01 to 5 ⁇ m, preferably 0.1 to 3.0 ⁇ m.
  • the hard coat layer in the transfer film of the present disclosure is a layer constituting at least one surface layer of the release layer, and is an uncured layer obtained by drying the curable composition (hard coat agent) of the present disclosure. Alternatively, it is a partially cured semi-cured layer.
  • the semi-cured hard coat layer can be formed by partially advancing the curing of the uncured hard coat layer by irradiation with the above-mentioned active energy rays or heating.
  • the uncured or semi-cured hardcoat layer of the present disclosure has low tack resistance and excellent blocking resistance to which the resin does not adhere when a finger is brought into contact with the surface, and can be wound and handled in a roll shape. Is.
  • the hard coat layer in the transfer film of the present disclosure may be formed on only one release layer (one side) of the above-mentioned base material, or may be formed on both release layers (both sides). good. Further, the hard coat layer of the present disclosure in the transfer film of the present disclosure may be formed only partially or may be formed on the entire surface of each surface of the release layer.
  • the method for laminating the hard coat layer on the release layer of the transfer film of the present disclosure is not particularly limited, but the curable composition (hard coat agent) of the present disclosure is applied onto the release layer by a known method.
  • examples thereof include a method of forming an uncured hard coat layer by working and drying, or further irradiating the uncured hard coat layer with activation energy rays or heating to form a semi-cured hard coat layer.
  • known coating methods can be used without limitation, and for example, bar coater coating, Mayer bar coating, air knife coating, and gravure coating can be used. Engineering, offset printing, flexographic printing, screen printing, etc. may be mentioned.
  • the heating temperature at the time of forming the hard coat layer is not particularly limited, but can be appropriately selected from 50 to 200 ° C.
  • the heating time is not particularly limited, but preferably 1 to 60 minutes can be appropriately selected.
  • the conditions for irradiating the hard coat layer with the activation energy rays are not particularly limited, and for example, they can be appropriately selected from the conditions for forming the cured product described above.
  • the thickness of the hard coat layer in the transfer film of the present disclosure is not particularly limited, but is preferably 1 to 200 ⁇ m, more preferably. It is 3 to 150 ⁇ m. Even when the hard coat layer is thin (for example, when the thickness is 5 ⁇ m or less), it is possible to maintain high surface hardness (for example, the pencil hardness is 5 H or more). Further, even when the thickness is thick (for example, when the thickness is 50 ⁇ m or more), problems such as cracks due to curing shrinkage are unlikely to occur, so that the pencil hardness is remarkably increased by thickening the film (for example, the pencil hardness is increased). 9H or more) is possible.
  • the haze of the hard coat layer in the transfer film of the present disclosure is not particularly limited, but is preferably 1.5% or less, more preferably 1.0% or less in the case of a thickness of 50 ⁇ m.
  • the lower limit of haze is not particularly limited, but is, for example, 0.1%. By setting the haze to 1.0% or less, for example, when the transfer film of the present disclosure is used as a decorative film, patterns, patterns and the like can be clearly transferred, which is preferable.
  • the haze of the hardcourt layer of the present disclosure can be measured in accordance with JIS K7136.
  • the total light transmittance of the hard coat layer in the transfer film of the present disclosure is not particularly limited, but is preferably 85% or more, more preferably 90% or more in the case of a thickness of 50 ⁇ m.
  • the upper limit of the total light transmittance is not particularly limited, but is, for example, 99%. By setting the total light transmittance to 85% or more, for example, when the transfer film of the present disclosure is used as a decorative film, patterns, patterns and the like can be clearly transferred, which is preferable.
  • the total light transmittance of the hard coat layer of the present disclosure can be measured according to JIS K7361-1.
  • an anchor coat layer and an adhesive layer are further laminated on the hard coat layer in this order.
  • at least one colored layer is laminated.
  • the stacking position of the colored layer is not particularly limited, but it is preferable that one layer or two or more layers are laminated between the anchor coat layer and the adhesive layer.
  • the anchor coat layer in the transfer film of the present disclosure is provided to improve the adhesion between the hard coat layer and the adhesive layer, the colored layer, or the like.
  • the anchor coat layer is preferably a transparent or translucent layer in order to clearly transfer the pattern, pattern, etc. of the colored layer, and is preferably a phenol resin, an epoxy resin, or a melamine-based resin (for example, a methylated melamine resin, etc.).
  • Vinyl chloride-vinyl acetate copolymer resin acrylic resin (for example, acrylic polyol resin, etc.), rubber chloride, polyamide resin, vitrified cotton resin, thermoplastic resin such as cyclic polyolefin resin, etc., alone or 2 Epoxy-based resins are preferred, although mixtures of more than one species are used.
  • the anchor coating resin is commonly used as a wax, silica, a plasticizer, a leveling agent, a surfactant, a dispersant, an antifoaming agent, an ultraviolet absorber, an ultraviolet stabilizer, an antioxidant and the like.
  • Additives may be included to the extent that the effects of the present disclosure are not impaired. These additives may be used alone or in combination of two or more.
  • the anchor coat layer is formed by applying a coating solution in which the above resin is dissolved in a solvent onto the hard coat layer of the present disclosure by a known coating method such as bar coat, Mayer bar coat, gravure coat, roll coat and the like, and drying. , Can be formed by heating if necessary.
  • the temperature at the time of heating when forming the anchor coat layer is not particularly limited, but can be appropriately selected from 50 to 200 ° C.
  • the heating time is not particularly limited, but is preferably 10 seconds to 60 minutes.
  • the thickness of the anchor coat layer is usually about 0.1 to 20 ⁇ m, preferably in the range of 0.5 to 5 ⁇ m.
  • the anchor coat layer of the present disclosure may be formed by using a commercially available anchor coat agent.
  • commercially available anchor coating agents include K468HP anchor (epoxy resin-based anchor coating agent manufactured by Toyo Ink Co., Ltd.) and TM-VMAC (acrylic polyol resin-based anchor coating agent manufactured by Dainichiseika Kogyo Co., Ltd.).
  • the adhesive layer in the transfer film of the present disclosure is provided to transfer a transfer layer (including a hard coat layer, an anchor coat layer optionally laminated, and a colored layer) to a molded product with good adhesiveness.
  • the adhesive layer include those composed of a heat-sensitive adhesive, a pressure adhesive, and the like, but in the present disclosure, a heat seal that develops adhesion to a molded product by heating and pressurizing as necessary. It is preferably a layer.
  • the resin used for the adhesive layer include acrylic resin, vinyl chloride resin, vinyl acetate resin, vinyl chloride-vinyl acetate copolymer resin, styrene-acrylic copolymer resin, polyester resin, and polyamide resin. A single type of resin such as a resin or a mixture of two or more types is used, but an acrylic resin and a vinyl chloride-vinyl acetate copolymer resin are preferable.
  • acrylic resin used for the adhesive layer of the present disclosure examples include polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, and methyl (meth) acrylate-butyl (meth) acrylate copolymer.
  • Acrylic resins such as methyl (meth) acrylate-styrene copolymers and modified acrylic resins such as fluorine can be mentioned, and these can be used as one kind or a mixture of two or more kinds.
  • (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl (meth) acrylate, and 2-hydroxyethyl
  • Acrylic polyol obtained by copolymerizing a (meth) acrylic acid ester having a hydroxyl group in a molecule such as meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate.
  • Acrylic polyol obtained by copolymerizing a (meth) acrylic acid ester having a hydroxyl group in a molecule such as meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate.
  • the vinyl chloride-vinyl acetate-based copolymer resin a resin having a vinyl acetate content of about 5 to 20% by mass and an average degree of polymerization of about 350 to 900 is usually used. If necessary, a vinyl chloride-vinyl acetate-based copolymer resin may be further copolymerized with a carboxylic acid such as maleic acid or fumaric acid.
  • a resin such as a thermoplastic polyester resin, a thermoplastic urethane resin, a chlorinated polyethylene, a chlorinated polyolefin resin such as chlorinated polypropylene, etc. May be mixed.
  • the adhesive layer is made into a form that can be applied, such as a solution or emulsion of one or more of the above resins, and is applied and dried by a known coating method such as bar coat, Mayer bar coat, gravure coat, and roll coat. Then, if necessary, it can be formed by heating.
  • the temperature for heating when forming the adhesive layer can be appropriately selected from 50 to 200 ° C.
  • the heating time can be appropriately selected from 10 seconds to 60 minutes.
  • the thickness of the adhesive layer is preferably about 0.1 to 10 ⁇ m, more preferably 0.5 to 5 ⁇ m, from the viewpoint that the transfer film can be transferred to the molded product efficiently and with good adhesiveness.
  • the adhesive layer includes organic ultraviolet absorbers such as benzophenone compounds, benzotriazole compounds, oxalic acid anilide compounds, cyanoacrylate compounds and salicylate compounds, and zinc, titanium, cerium, tin, iron and the like.
  • organic ultraviolet absorbers such as benzophenone compounds, benzotriazole compounds, oxalic acid anilide compounds, cyanoacrylate compounds and salicylate compounds, and zinc, titanium, cerium, tin, iron and the like.
  • An inorganic fine particle additive having an ultraviolet absorbing ability such as an oxide of the above may be blended.
  • a coloring pigment, a white pigment, an extender pigment, a filler, an antistatic agent, an antioxidant, a fluorescent whitening agent and the like can be appropriately used as needed.
  • the adhesive a commercially available product may be used.
  • examples of commercially available adhesives include K588HP Adhesive Gloss A Varnish (vinyl chloride-vinyl acetate copolymer resin adhesive manufactured by Toyo Ink Co., Ltd.) and PSHP780 (acrylic resin adhesive manufactured by Toyo Ink Co., Ltd.). ..
  • the colored layer in the transfer film of the present disclosure is provided when the pattern layer and / or the concealing layer is used as a decorative film for transferring to a molded product.
  • the pattern layer is a layer provided for expressing a pattern such as a pattern or characters
  • the concealing layer is usually a solid layer on the entire surface and is provided for concealing coloring or the like of an injection resin or the like. It is a layer.
  • the concealing layer may form a decorative layer by itself, as well as when it is provided inside the pattern layer in order to enhance the pattern of the pattern layer.
  • the pattern layer according to the present disclosure is a layer provided for expressing a pattern-like pattern with patterns, characters, and the like.
  • the pattern of the pattern layer is arbitrary, and examples thereof include patterns consisting of wood grain, stone grain, cloth grain, sand grain, geometric pattern, and characters.
  • the colored layer is usually a known printing method such as gravure printing, offset printing, silk screen printing, transfer printing from a transfer sheet, sublimation transfer printing, and ink jet printing with printing ink on the above-mentioned hard coat layer or anchor coat layer. It can be formed between the hard coat layer and the adhesive layer, or between the anchor coat layer and the adhesive layer.
  • the thickness of the colored layer is preferably 3 to 40 ⁇ m, more preferably 10 to 30 ⁇ m from the viewpoint of designability.
  • the binder resin for the printing ink used for forming the colored layer include polyester resin, polyurethane resin, acrylic resin, vinyl acetate resin, vinyl chloride-vinyl acetate copolymer resin, and cellulose resin.
  • the main component is the acrylic resin alone or a mixture of the acrylic resin and the vinyl chloride-vinyl acetate copolymer resin.
  • the acrylic resin includes polymethyl (meth) acrylate, polyethyl (meth) acrylate, polybutyl (meth) acrylate, methyl (meth) acrylate-butyl (meth) acrylate copolymer, and methyl (meth) acrylate-styrene.
  • acrylic resins such as polymers and modified acrylic resins such as fluorine, and these can be used as one kind or a mixture of two or more kinds.
  • (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl (meth) acrylate, and 2-hydroxyethyl
  • Acrylic polyol obtained by copolymerizing a (meth) acrylic acid ester having a hydroxyl group in a molecule such as meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate.
  • Acrylic polyol obtained by copolymerizing a (meth) acrylic acid ester having a hydroxyl group in a molecule such as meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 2-hydroxy-3-phenoxypropyl (meth) acrylate.
  • the vinyl chloride-vinyl acetate-based copolymer resin a resin having a vinyl acetate content of about 5 to 20% by mass and an average degree of polymerization of about 350 to 900 is usually used. If necessary, a vinyl chloride-vinyl acetate-based copolymer resin may be further copolymerized with a carboxylic acid such as maleic acid or fumaric acid.
  • the mixing ratio of the acrylic resin and the vinyl chloride-vinyl acetate-based copolymer resin is about 1/9 to 9/1 (mass ratio) of the acrylic resin / vinyl chloride-vinyl acetate-based copolymer resin.
  • a resin such as a thermoplastic polyester resin, a thermoplastic urethane resin, a chlorinated polyethylene, a chlorinated polyolefin resin such as chlorinated polypropylene, etc. May be mixed.
  • the colorant used for the coloring layer is a metallic pigment made of a metal, alloy, or metal compound scaly foil powder such as aluminum, chromium, nickel, tin, titanium, iron phosphate, copper, gold, silver, and brass. , Mica-like iron oxide, titanium dioxide-coated mica, titanium dioxide-coated bismuth oxychloride, bismuth oxychloride, titanium dioxide-coated talc, fish scale foil, colored titanium dioxide-coated mica, pearl luster (pearl) consisting of foil powder such as basic lead carbonate ) Pigments, fluorescent pigments such as strontium aluminate, calcium aluminate, barium aluminate, zinc sulfide, calcium sulfide, white inorganic pigments such as titanium dioxide, zinc flower, antimony trioxide, zinc flower, petals, vermilion, ultramarine, Inorganic pigments such as cobalt blue, titanium yellow, yellow lead, carbon black, and organic pigments such as isoindolinone
  • Such a colored layer is a layer provided to impart designability to the transfer film of the present disclosure, but a metal thin film layer or the like may be further formed for the purpose of improving the designability.
  • the metal thin film layer can be formed by using a metal such as aluminum, chromium, gold, silver, or copper by a method such as vacuum deposition or sputtering.
  • the metal thin film layer may be provided on the entire surface or may be partially provided in a pattern.
  • the printing ink used to form the colored layer should be appropriately added with an antioxidant, a curing catalyst, an ultraviolet absorber, an antioxidant, a leveling agent, a thickener, an antifoaming agent, a lubricant and the like. Can be done.
  • the printing ink is provided in a mode in which the above components are usually dissolved or dispersed in a solvent.
  • the solvent any solvent may be used as long as it dissolves or disperses the binder resin, and an organic solvent and / or water can be used.
  • organic solvent examples include hydrocarbons such as toluene and xylene, ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate, cellosolve acetate and butyl cellosolve acetate, and alcohols.
  • the transfer film of the present disclosure includes a low reflection layer, an antistatic layer, and an ultraviolet absorption layer, if desired.
  • the layers, the near-infrared ray blocking layer, the electromagnetic wave absorbing layer, and the like may be laminated in any order.
  • the thickness of the transfer film of the present disclosure is not particularly limited and can be appropriately selected from the range of 1 to 10000 ⁇ m, but 2 to 250 ⁇ m is preferable from the viewpoint of moldability, shape followability, handleability and the like. ⁇ 150 ⁇ m is more preferable, and 25 to 150 ⁇ m is even more preferable.
  • the hard coat layer of the transfer film of the present disclosure is tack-free, has excellent blocking resistance, and can be wound up in a roll and handled, it can be suitably used as a transfer film for in-mold injection molding.
  • the transfer film of the present disclosure is continuously conveyed into a mold consisting of a fixed mold and a movable mold by a transfer roll or the like, and the base film side is in contact with the fixed mold surface, and appropriate position adjustment is made. Later, the movable mold moves and molds.
  • thermoplastic resin melted by heat in advance is injected and filled into the mold at high temperature and high pressure from the transfer layer side of the transfer film, and after quenching, the mold is opened and the hard coat layer of the present disclosure is on the outermost surface. It is possible to take out the molded product (in-mold molded product) transferred to.
  • the hard coat layer of the present disclosure of the above-mentioned molded product When the hard coat layer of the present disclosure of the above-mentioned molded product is uncured or semi-cured, the hard coat layer may be cured by irradiating the hard coat layer with active energy rays and / or heating it.
  • the conditions for irradiating the hard coat layer with active energy rays and / or heating are not particularly limited, and for example, they can be appropriately selected from the conditions for forming the above-mentioned cured product.
  • the cured hard coat layer of the present disclosure is formed on the outermost surface of the molded product, so that the pencil hardness of the surface of the molded product can be made very high. It is possible, preferably 5H or more, and more preferably 6H or more.
  • the pencil hardness can be evaluated according to the method described in JIS K5600-5-4.
  • the molded product (in-mold molded product) manufactured by the in-mold injection molding method using the transfer film of the present disclosure has a very high surface hardness, and the pattern and the pattern are clearly transferred. It can be preferably used for all molded products that require characteristics.
  • the transfer film of the present disclosure is used for various exterior molded products that require high surface hardness, scratch resistance, designability, and durability, for example, interior / exterior parts such as automobile dashboards and housings of home appliances. It can be suitably used.
  • Adhesive sheet Adhesion formed from the curable composition of the present disclosure on at least one surface of a substrate by using the curable composition of the present disclosure (curable composition for adhesiveness, curable composition for laminated semiconductor). An adhesive sheet having an agent layer can be obtained.
  • FIG. 11 is a schematic view (cross-sectional view) showing an embodiment of the adhesive sheet of the present disclosure. 3 is an adhesive sheet, 31 is an adhesive layer, 32 is a base material, and 33 is an anchor coat layer.
  • the adhesive sheet can be obtained, for example, by applying the curable composition of the present disclosure (adhesive curable composition, curable composition for laminated semiconductor) to a substrate and further drying it if necessary. Can be done.
  • the method of application is not particularly limited, and well-known and conventional means can be used.
  • the drying means and conditions are not particularly limited, and conditions that can remove volatile substances such as a solvent as much as possible can be set, and well-known and commonly used means can be used.
  • the adhesive layer can be formed by quickly removing volatile components such as a solvent while suppressing the progress of the curing reaction by heating and drying.
  • the adhesive layer thus obtained does not have adhesiveness below 50 ° C., and develops adhesiveness by heating at a temperature at which damage to electronic components such as semiconductor chips can be suppressed, and then rapidly. Has the property of hardening to.
  • the adhesive sheet includes not only a sheet shape but also a sheet shape such as a film shape, a tape shape, and a plate shape.
  • the adhesive sheet may be a single-sided adhesive sheet having an adhesive layer on only one side of the base material, or a double-sided adhesive sheet having an adhesive layer on both sides of the base material.
  • at least one adhesive layer may be an adhesive layer formed from the curable composition of the present disclosure, and the other may be the adhesive layer.
  • An adhesive layer (other adhesive layer) other than the adhesive layer may be used.
  • a well-known and commonly used base material can be used, and is not particularly limited, but for example, a plastic base material, a metal base material, or a ceramic base material. Examples thereof include materials, semiconductor base materials, glass base materials, paper base materials, wood base materials, and base materials whose surface is a painted surface.
  • the base material in the adhesive sheet of the present disclosure may be a so-called release liner.
  • the adhesive sheet of the present disclosure may have only one layer of the base material, or may have two or more layers. Further, the thickness of the base material is not particularly limited, and can be appropriately selected in the range of, for example, 1 to 10000 ⁇ m.
  • the adhesive sheet may have only one adhesive layer formed from the curable composition of the present disclosure, or may have two or more kinds of the adhesive layer.
  • the thickness of the adhesive layer in the adhesive sheet is not particularly limited, and can be appropriately selected in the range of, for example, 0.1 to 10000 ⁇ m.
  • an adhesive sheet having excellent crack resistance, heat resistance, adhesiveness to an object to be adhered, and adhesion is obtained.
  • the adhesive sheet having the adhesive layer provided on the surface of the anchor coat layer is excellent in crack resistance, heat resistance, adhesiveness to an object to be adhered, and adhesiveness.
  • the adhesive sheet may have only one anchor coat layer, or it may have two or more kinds of anchor coat layers.
  • the thickness of the anchor coat layer can be appropriately selected in the range of, for example, 0.001 to 10000 ⁇ m.
  • the adhesive sheet may have other layers (for example, an intermediate layer, an undercoat layer, etc.) in addition to the base material, the adhesive layer, and the anchor coat layer.
  • the laminate obtained by using the adhesive sheet is a three-dimensional laminate of semiconductor chips, it has higher integration and power saving than the conventional semiconductor. Therefore, if the laminate is used, the laminate can be used. It is possible to provide smaller and higher-performance electronic devices while improving the mounting density.
  • the number average molecular weight and the degree of molecular weight dispersion of the product were measured under the following GPC conditions. Further, the contents of the monomer cage type silsesquioxane and the condensed silsesquioxane in the product were determined from the area ratio of the area value of the corresponding peak in the GPC measurement. The ratio of T2 to T3 [T3 / T2] in the product was measured by 29 Si-NMR spectrum measurement by Brucker NMR (600 MHz).
  • UPLC-MS was performed with the following equipment and conditions.
  • Example 1 Production of the epoxy group-containing polyorganosylsesquioxane of the present disclosure (1) 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 277 in a 1000 ml flask (reaction vessel) equipped with a thermometer, stirrer, reflux condenser, nitrogen inlet tube, and Dean Stark tube under a nitrogen stream. .2 mmol (68.30 g), 3.0 mmol (0.56 g) of phenyltrimethoxysilane, and 275.4 g of acetone were charged and heated to 50 ° C.
  • the epoxy group-containing polyorganosylsesquioxane obtained in Example 1 was measured under the above UPLC-MS conditions.
  • the peak silsesquioxane having a retention time of 3.86 minutes is represented by the composition formula (1) (all R 1s are 2- (3', 4'-epoxycyclohexyl) ethyl groups).
  • Condensed silsesquioxane in which two of the oxanes are condensed, and silsesquioxane having a peak retention time of 1.81 minutes are composed of the composition formula (1) (all R 1s are 2- (3', 4'-epoxy). Cage-type silsesquioxane represented by (cyclohexyl) ethyl group) and cage-type sill represented by composition formula (2) (all R 2s are 2- (3', 4'-epoxycyclohexyl) ethyl groups). It can be identified as a condensed succioxane in which sesquioxane is condensed. The estimated structure of condensed silsesquioxane with peak retention times of 3.86 minutes and 1.81 minutes is shown below. ⁇ Silcesquioxane with a peak retention time of 3.86 minutes
  • All R 1s in the above formula are 2- (3', 4'-epoxycyclohexyl) ethyl groups.
  • All R 1 and R 2 in the above formula are 2- (3', 4'-epoxycyclohexyl) ethyl groups.
  • Example 2 Production of the epoxy group-containing polyorganosylsesquioxane of the present disclosure (2) 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane 277 in a 1000 ml flask (reaction vessel) equipped with a thermometer, stirrer, reflux condenser, nitrogen inlet tube, and Dean Stark tube under a nitrogen stream. .2 mmol (68.30 g), 3.0 mmol (0.56 g) of phenyltrimethoxysilane, and 275.4 g of acetone were charged and heated to 50 ° C.
  • Comparative Example 1 Production of Epoxide Group-Containing Polyorganosylsesquioxane In a 1000 ml flask (reaction vessel) equipped with a thermometer, agitator, a reflux condenser, a nitrogen introduction tube, and a Dean-Stark tube, under a nitrogen stream. 3.0 mmol (0.56 g) of phenyltrimethoxysilane and 275.4 g of acetone were charged, and the temperature was raised to 50 ° C. To the mixture thus obtained, 7.74 g (2.8 mmol as potassium carbonate) of a 5% aqueous potassium carbonate solution was added in 5 minutes, and then 2800.0 mmol (50.40 g) of water was added over 20 minutes.
  • Reference Example 1 Production of Hard Coat Film 100 parts by weight of the epoxy group-containing polyorganosyl sesquioxane obtained in Example 1, 20 parts by weight of methyl isobutyl ketone (manufactured by Kanto Chemical Co., Ltd.), and curing catalyst 1 ([ A mixed solution of 1 part by weight of diphenyl [4- (phenylthio) phenyl] sulfonium tris (pentafluoroethyl) trifluorophosphate]) is prepared and used as a hard coat solution (curable composition).
  • the hard coat liquid obtained above is applied onto a PET film (trade name "KEB03 W", manufactured by Teijin DuPont Film Co., Ltd.) using a wire bar so that the thickness of the hard coat layer after curing is 5 ⁇ m. After the film is spread and applied, it is left in an oven at 70 ° C. for 10 minutes (pre-baking), and then irradiated with ultraviolet rays (irradiation conditions (irradiation amount): 312 mJ / cm 2 , irradiation intensity: 80 W / cm 2 ). Finally, the coating film of the hard coat liquid is cured by heat treatment (aging) at 80 ° C. for 2 hours to prepare a hard coat film having a hard coat layer.
  • the hard-coated film obtained above is evaluated in various ways by the following methods.
  • (1) Haze and total light transmittance The haze and total light transmittance of the hard-coated film obtained above are measured using a haze meter (NDH-300A, manufactured by Nippon Denshoku Kogyo Co., Ltd.).
  • Bending resistance (cylindrical mandrel method); The bending resistance of the hardcourt film obtained above by the mandrel test is evaluated using a cylindrical mandrel according to JIS K5600-5-1.
  • R 1 in the formula (1) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c is an alkyl group having 1 to 4 carbon atoms or hydrogen.
  • R 2 in the formula (2) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other. Indicates an alkyl group or hydrogen atom of.) -Equation (3): [R 3 SiO 3/2 ] 8 [R 3 SiO 2/2 (OR c )] 2 (R 3 in the formula (3) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively.
  • R c has 1 to 4 carbon atoms independently of each other.
  • R 4 in the formula (4) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other. Indicates an alkyl group or hydrogen atom of.)
  • the above-mentioned silsesquioxane is a condensate obtained by further condensing at least one selected from the group consisting of cage-type silsesquioxane represented by the following composition formulas (5) to (8). Polyorganosylsesquioxane as described in.
  • R 5 in the formula (5) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other.
  • R 6 in the formula (6) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c has 1 to 4 carbon atoms independently of each other. Indicates an alkyl group or hydrogen atom of.) -Equation (7): [R 7 SiO 3/2 ] 10 [R 7 SiO 2/2 (OR c )] 1 (R 7 in the formula (7) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively.
  • R c is an alkyl group having 1 to 4 carbon atoms or hydrogen.
  • R 8 in the formula (8) is independently a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, respectively. It is a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, or a hydrogen atom, and at least one is a group containing a polymerizable functional group.
  • R c is an alkyl group having 1 to 4 carbon atoms or hydrogen. Indicates an atom.
  • Appendix 3 The polyorganosylsesquioki according to Appendix 1 or 2, wherein the group containing the polymerizable functional group is a cationically polymerizable functional group (preferably an epoxy group, an oxetane group, a vinyl ether group, or a vinylphenyl group). Sun.
  • Appendix 4 Any of Appendix 1 to 3, wherein the group containing the polymerizable functional group is a radically polymerizable functional group (preferably (meth) acryloyloxy group, (meth) acrylamide group, vinyl group, or vinylthio group).
  • Appendix 5 The polyorganosylsesquioxane according to any one of Supplementary notes 1 to 4, wherein the polymerizable functional group is an epoxy group or a (meth) acryloyloxy group.
  • Appendix 6 The group containing the above-mentioned polymerizable functional group is represented by the following formula (1A). [In formula (1A), R 1A represents a linear or branched alkylene group. ] The following formula (1B) [In formula (1B), R 1B represents a linear or branched alkylene group. ] The following formula (1C) [In formula (1C), R 1C represents a linear or branched alkylene group.
  • R 1D represents a linear or branched alkylene group.
  • R 1A , R 1B , R 1C , and R 1D are linear alkylenes having 1 to 4 carbon atoms, respectively.
  • Appendix 8 The number of groups containing a polymerizable functional group in R 1 in the above composition formula (1) is 3 to 9 (preferably 5 to 9, more preferably 7 to 9, still more preferably 9).
  • the polyorganosilsesquioxane according to any one of Supplementary note 1 to 7.
  • the group containing a polymerizable functional group in R 2 in the above composition formula (2) is 3 to 8 (preferably 5 to 8, more preferably 7 to 8, still more preferably 8).
  • the number of groups containing a polymerizable functional group in R 3 in the above composition formula (3) is 3 to 10 (preferably 5 to 10, more preferably 7 to 10, still more preferably 10).
  • the number of groups containing a polymerizable functional group in R 4 in the composition formula (4) is preferably 3 to 12 (preferably 5 to 12, more preferably 7 to 12, still more preferably 12). ).
  • [Appendix 12] Polymerizability of R 1 in the composition formula (1), R 2 in the composition formula (2), R 3 in the composition formula (3), and R 4 in the composition formula (4) as a whole.
  • the molar ratio of the structural unit (T3 body) represented by the following formula (I) and the structural unit (T2 body) represented by the following formula (II) [the structural unit represented by the formula (I). / Structural unit represented by the formula (II); T3 body / T2 body] is 1 or more (preferably 2 or more, more preferably 3 or more, more preferably 4 or more, more preferably 6 or more, more preferably 7).
  • the polyorganosylsesquioxane according to any one of the above, more preferably 8 or more, more preferably 10 or more, more preferably 15 or more, still more preferably 20 or more).
  • Ra is a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group.
  • R b is a group containing a polymerizable functional group, a substituted or unsubstituted aryl group, a substituted or unsubstituted aralkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted group.
  • R c indicates a hydrogen atom or an alkyl group having 1 to 4 carbon atoms]
  • the molar ratio [T3 / T2] of the above (T3) to (T2) is 500 or less (preferably 400 or less, more preferably 300 or less, more preferably 100 or less, more preferably 50 or less. , More preferably 40 or less, more preferably 30 or less, still more preferably 25 or less).
  • Organosylsesquioxane [Appendix 16] The polyorganosilsesquioxane according to any one of Supplementary notes 1 to 15, which comprises a monomeric cage-type silsesquioxane. [Appendix 17] The content of the monomeric cage-type silsesquioxane is 5% by weight or more (preferably 10% by weight or more, more preferably 20% by weight or more) with respect to the total amount of the polyorganosylsesquioxane.
  • the polyorganosylsesquioxane according to any one of Supplementary note 1 to 16.
  • the content of the monomer cage type silsesquioxane is 50% by weight or less (preferably 40% by weight or less, more preferably 20% by weight or less) with respect to the total amount of the polyorganosylsesquioxane.
  • the content of condensed silsesquioxane in the polyorganosylsesquioxane is 20% by weight or more (preferably 25 to 90% by weight, more preferably) with respect to the total amount of the polyorganosylsesquioxane.
  • the number average molecular weight (Mn) of the condensed silsesquioxane in terms of standard polystyrene by gel permeation chromatography is 2000 to 50,000 (preferably 2500 to 40,000, more preferably 3000 to 30000), Appendix 19. Polyorganosilsesquioxane as described in.
  • the number average molecular weight (Mn) in terms of standard polystyrene by gel permeation chromatography is 2000 to 50000 (preferably 2500 to 40,000, more preferably 3000 to 30000), any one of Supplements 1 to 20.
  • the molecular weight dispersion (Mw / Mn) in terms of standard polystyrene by gel permeation chromatography is 1.0 to 4.0 (preferably 1.1 to 3.0, more preferably 1.2 to 2. 5)
  • the polyorganosyl sesquioxane according to any one of Supplementary note 1 to 21.
  • the 5% weight loss temperature (T d5 ) in an air atmosphere is 330 ° C. or higher (for example, 330 to 450 ° C., preferably 340 ° C. or higher, more preferably 350 ° C. or higher), according to Supplementary notes 1 to 22.
  • the polyorganosilsesquioxane according to any one.
  • [Appendix 24] A curable composition containing the polyorganosyl sesquioxane according to any one of the appendices 1 to 23.
  • the content of polyorganosylsesquioxane is 70 to 100% by weight (preferably 80 to 99.8% by weight) with respect to the total amount (100% by weight) of the curable composition excluding the solvent.
  • the ratio of the polyorganosylsesquioxane to the total amount (100% by weight) of the cationically curable compound or the radical curable compound is 70 to 100% by weight (preferably 75 to 98% by weight, more preferably 80% by weight).
  • Supplementary Note 27 The curable composition according to any one of Supplementary note 24 to 26, which comprises a curing catalyst.
  • Appendix 28 The curable composition according to Annex 27, which comprises a photopolymerization initiator or a thermal polymerization initiator as the curing catalyst.
  • Appendix 29 The curable composition according to Appendix 27 or 28, which comprises a cationic polymerization initiator or a radical polymerization initiator as the curing catalyst.
  • Appendix 30 The curable composition according to Appendix 29, wherein the cationic polymerization initiator is a photocationic polymerization initiator or a thermal cationic polymerization initiator.
  • the photocationic polymerization initiator is one or more photocationic polymerization initiators selected from the group consisting of a sulfonium salt, an iodonium salt, a selenium salt, an ammonium salt, a phosphonium salt, and a salt of a transition metal complex ion and an anion.
  • the thermal cation polymerization initiator is one or more selected from the group consisting of an aryl sulfonium salt, an aryl iodonium salt, an allen-ion complex, a quaternary ammonium salt, an aluminum chelate, and a boron trifluoride amine complex.
  • the photoradical polymerization initiator is one or more selected from the group consisting of a 2-amino-2-benzoyl-1-phenylalkane compound, an imidazole compound, a halomethylated triazine compound, and a halomethyloxadiazole compound.
  • the curable composition according to Appendix 33 which is a photoradical polymerization initiator.
  • the content (blending amount) of the above-mentioned other cation-curable compound and / or the above-mentioned other radical-curable compound is the above-mentioned polyorganosylsesquioxane, the above-mentioned other cation-curable compound, and the above-mentioned other.
  • the curable composition according to any one of Supplementary note 36 to 40 which is 50% by weight or less (preferably 30% by weight or less, more preferably 10% by weight or less) with respect to the total amount of the radical curable compound.
  • Supplementary Note 42 The curable composition according to any one of Supplementary note 24 to 41, which contains a polymerization stabilizer.
  • the curable composition according to Appendix 42 which is one or more polymerization stabilizers selected from the group consisting of hindered amine compounds, sulfonium sulfate compounds, and phosphite compounds as the polymerization stabilizer.
  • the content of the polymerization stabilizer is 0.005 parts by weight or more (preferably 0.01 to 10 parts by weight, more preferably 0.02) with respect to 100 parts by weight of the polyorganosylsesquioxane. ⁇ 1 part by weight)
  • the curable composition according to Appendix 42 or 43 is one or more polymerization stabilizers selected from the group consisting of hindered amine compounds, sulfonium sulfate compounds, and phosphite compounds as the polymerization stabilizer.
  • the amount of the solvent used is 30 to 80% by weight (preferably 40 to 70% by weight, more preferably 50 to 60% by weight) as the concentration of the non-volatile component contained in the curable composition.
  • the curable composition according to any one of Supplementary note 24 to 46 which is a liquid at room temperature (about 25 ° C.).
  • the curable composition according to any one of the appendices 24 to 47 which has a viscosity at 25 ° C. of 300 to 20000 mPa ⁇ s (preferably 500 to 10000 mPa ⁇ s, more preferably 1000 to 8000 mPa ⁇ s). thing.
  • the base material is a plastic base material, a metal base material, a ceramic base material, a semiconductor base material, a glass base material, a paper base material, a wood base material, or a base material whose surface is a painted surface.
  • Appendix 54 The hard-coated film according to Appendix 52 or 53, wherein the thickness of the base material is 0.01 to 10,000 ⁇ m.
  • Appendix 55 The hard coat film according to any one of the appendices 52 to 54, wherein the hard coat layer has a thickness of 1 to 200 ⁇ m (preferably 3 to 150 ⁇ m).
  • [Appendix 69] Use of the curable composition according to Appendix 50 for an adhesive layer in an adhesive sheet having a substrate and an adhesive layer on at least one surface of the substrate.
  • the substrate has an anchor coat layer containing a silane coupling agent and an adhesive layer which is a layer containing the curable composition according to the appendix 50 on at least one surface of the substrate. , An adhesive sheet in which the adhesive layer is provided on the surface of the anchor coat layer.
  • [Appendix 71] Use of the curable composition according to any one of Supplementary note 22 to 48 as a curable composition for forming a hard coat layer.
  • [Appendix 72] Use of the curable composition according to any one of Supplementary note 22 to 48 as a curable composition for an adhesive.
  • [Appendix 73] Use of the cured product according to Appendix 51 for a hard coat layer in a hard coat film having a base material and a hard coat layer.
  • Appendix 74] The curable composition according to Appendix 49 to a hardcoat layer in a transfer film in which a hardcoat layer is formed on a substrate and a release layer formed on at least one surface of the substrate. Use of things.
  • Appendix 75] An anchor coat layer containing a silane coupling agent and an adhesive layer are provided on at least one surface of the base material, and the adhesive layer is provided on the surface of the anchor coat layer.
  • the polyorganosylsesquioxane of the present disclosure can be used as a hard coat film or a raw material for an adhesive sheet.

Abstract

ポリオルガノシルセスキオキサンの特徴である高い耐熱性を有しつつ、高い表面硬度および屈曲性を有する硬化物とすることができ、ハードコートフィルムの材料として好適なポリオルガノシルセスキオキサンを提供する。本開示のポリオルガノシルセスキオキサンは、下記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンからなる群から選ばれる少なくとも1種を含むかご型シルセスキオキサンが2以上縮合した縮合物であり、分子量が8000以下であるシルセスキオキサンを含む。 ・式(1):[R1SiO3/28[R1SiO2/2(ORc)]1 ・式(2):[R2SiO3/26[R2SiO2/2(ORc)]2 ・式(3):[R3SiO3/28[R3SiO2/2(ORc)]2 ・式(4):[R4SiO3/210[R4SiO2/2(ORc)]2 [式中の説明は、本明細書に記載のとおりである]

Description

ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート
 本開示は、ポリオルガノシルセスキオキサン、並びに当該ポリオルガノシルセスキオキサンを含む硬化性組成物及びその硬化物、そして当該硬化物からなるハードコートフィルムに関する。本開示は、当該硬化性組成物をハードコート層として含む転写用フィルムに関する。また、本開示は、当該硬化性組成物を接着剤層として含む接着シートに関する。本願は、2020年8月28日に日本に出願した特願2020-145085号の優先権を主張し、その内容をここに援用する。
 ポリオルガノシルセスキオキサン(シルセスキオキサン)は、3官能性シランを加水分解することで得られるネットワーク型ポリマー又は多面体クラスターのことである。シルセスキオキサンとしては、ランダム構造、ラダー構造、かご型構造を有するものが知られている。これまでに知られている分子量が例えば3000以上の高分子量のシルセスキオキサンは、その多くがランダム構造やラダー構造を有するものであった。このような高分子シルセスキオキサンについては、例えば下記特許文献1に記載されている。
 また、かご型構造であるシルセスキオキサンは、シロキサン結合により三次元に閉環した構造を有し、シリカの立方体構造を中心に各頂点に有機官能基を持つ物質の総称である。当該立方体構造としては、主に、正六面体構造である8量体シルセスキオキサン(T8)、側錐五角柱構造である10量体シルセスキオキサン(T10)が知られている。このようなかご型シルセスキオキサンについては、例えば下記特許文献2に記載されている。
特開2013-35918号公報 特開2000-334881号公報
 しかし、これまでの高分子量のポリオルガノシルセスキオキサンやかご型シルセスキオキサンから得られた硬化物は、硬度が不足する傾向があり、折り曲げたときの屈曲性にも限界があった。よって、これまでの当該硬化物は、高硬度及び高い耐屈曲性が求められる用途に用いることができず、ハードコート向け材料としての用途が限られていた。また、これまでの高分子シルセスキオキサンは、分子量が高くなるにつれて有機溶剤などの溶剤に溶けにくく、ハードコート向け材料等への加工が困難となるという問題があった。
 従って、本開示の発明の目的は、ポリオルガノシルセスキオキサンの特徴である高い耐熱性を有しつつ、高い表面硬度および耐屈曲性を有する硬化物とすることができ、ハードコートフィルムの材料として好適なポリオルガノシルセスキオキサンを提供することにある。また、高分子量のポリオルガノシルセスキオキサンでありながら、有機溶剤などの溶剤への高い溶解性を有するポリオルガノシルセスキオキサンを提供することにある。
 また、本開示の発明の目的は、当該ポリオルガノシルセスキオキサンを含む硬化性組成物を提供することにある。
 さらに、当該硬化性組成物の硬化物、当該硬化物であるハードコート層を有するハードコートフィルムを提供することにある。
 さらに、本開示の発明の他の目的は、当該硬化性組成物を含むハードコート層を有する転写フィルムを提供することにある。
 また、本開示の発明の他の目的は、当該硬化性組成物を含む接着剤層を有する接着シートを提供することにある。
 本開示の発明者らは、特定の組成式を有するかご型シルセスキオキサンの2以上が縮合した構造を有し、分子量が8000以下であるシルセスキオキサンを含む硬化性組成物の硬化物が、高い耐熱性を有しつつ、優れた表面硬度及び耐屈曲性を有し、ハードコートフィルムや転写用フィルムにおけるハードコート層、接着シートにおける接着剤層として非常に有用であることを見出した。また、該シルセスキオキサンは高分子量でありながら、有機溶剤などの溶剤への高い溶解性を有することも見出した。本開示の発明は、これらの知見に基づいて完成されたものである。
 すなわち、本開示は、下記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンからなる群から選ばれる少なくとも1種を含むかご型シルセスキオキサンが2以上縮合した縮合物であり、分子量が8000以下であるシルセスキオキサンを含むポリオルガノシルセスキオキサンを提供する。
・式(1):[R1SiO3/28[R1SiO2/2(ORc)]1
(式(1)中のR1は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、炭素数1~4のアルキル基又は水素原子を示す。)
・式(2):[R2SiO3/26[R2SiO2/2(ORc)]2
(式(2)中のR2は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(3):[R3SiO3/28[R3SiO2/2(ORc)]2
(式(3)中のR3は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(4):[R4SiO3/210[R4SiO2/2(ORc)]2
(式(4)中のR4は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
 また、本開示は、前記の重合性官能基を含有する基が、下記式(1A)
Figure JPOXMLDOC01-appb-C000005
[式(1a)中、R1Aは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、下記式(1B)
Figure JPOXMLDOC01-appb-C000006
[式(1b)中、R1Bは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、下記式(1C)
Figure JPOXMLDOC01-appb-C000007
[式(1c)中、R1Cは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、又は、下記式(1D)
Figure JPOXMLDOC01-appb-C000008
[式(1d)中、R1Dは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基である前記ポリオルガノシルセスキオキサンを提供する。
 また、本開示は、前記組成式(1)中のR1、組成式(2)中のR2、組成式(3)中のR3、及び組成式(4)中のR4全体に対する重合性官能基を含有する基の割合が30%以上である前記ポリオルガノシルセスキオキサンを提供する。
 また、本開示は、下記式(I)で表される構成単位と、下記式(II)で表される構成単位のモル比[式(I)で表される構成単位/式(II)で表される構成単位]が1以上500以下である前記ポリオルガノシルセスキオキサンを提供する。
[RaSiO3/2]          (I)
[式(I)中、Raは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す]
[RbSiO2/2(ORc)]     (II)
[式(II)中、Rbは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。Rcは、水素原子又は炭素数1~4のアルキル基を示す]
 また、本開示は、数平均分子量が2000~50000である前記ポリオルガノシルセスキオキサンを提供する。
 また、本開示は、分子量分散度(重量平均分子量/数平均分子量)が1.0~4.0である前記ポリオルガノシルセスキオキサンを提供する。
 また、本開示は、前記ポリオルガノシルセスキオキサンを含む硬化性組成物を提供する。
 また、本開示は、さらに、硬化触媒を含む前記硬化性組成物を提供する。
 また、本開示は、前記硬化触媒が、光又は熱重合開始剤である前記硬化性組成物を提供する。
 また、本開示は、さらに、重合安定剤を含有する前記硬化性組成物を提供する。
 また、本開示は、ハードコート層形成用硬化性組成物である前記硬化性組成物を提供する。
 また、本開示は、接着剤用硬化性組成物である前記硬化性組成物を提供する。
 また、本開示は、前記硬化性組成物の硬化物を提供する。
 また、本開示は、基材と、当該基材の少なくとも一方の表面に形成された前記硬化物であるハードコート層が積層されたハードコートフィルムを提供する。
 また、本開示は、基材と、該基材の少なくとも一方の表面に形成された離型層上に、前記の硬化性組成物を含む層であるハードコート層が積層された転写用フィルムを提供する。
 また、本開示は、前記ハードコート層上に、アンカーコート層及び接着剤層が、この順でさらに積層される前記転写用フィルムを提供する。
 また、本開示は、さらに、少なくとも1層の着色層を含む前記転写用フィルムを提供する。
 また、本開示は、前記ハードコート層の厚さが3~150μmである前記転写用フィルムを提供する。
 また、本開示は、基材と、該基材上の少なくとも一方の面に前記硬化性組成物を含む層である接着剤層とを有する接着シートを提供する。
 また、本開示は、基材と、該基材上の少なくとも一方の面に、シランカップリング剤を含有するアンカーコート層及び前記の硬化性組成物を含む層である接着剤層を有し、前記接着剤層が前記アンカーコート層の表面上に設けられている接着シートを提供する。
 本開示のポリオルガノシルセスキオキサンを含む硬化性組成物から得られた硬化物(例えば、ハードコート層)は、高い耐熱性を有し、高い表面硬度および耐屈曲性を有する。このため当該ハードコート層を有するハードコートフィルムや転写用フィルムを用いることにより、高い表面硬度および耐屈曲性を有する成型品(製品)を製造することができる。また、本開示のポリオルガノシルセスキオキサンは、高分子量のポリオルガノシルセスキオキサンでありながら、有機溶剤などの溶剤への高い溶解性を有する。このため本開示のポリオルガノシルセスキオキサンを含むハードコートフィルムや転写用フィルムは、溶剤の使用量を少なくすることができ、さらに未硬化又は半硬化のハードコート層がタックフリーとなってロール状に巻き取って取り扱うことができ当該ハードコート層を含むフィルムをロールトゥロールで取り扱うことが可能であるため、品質面とコスト面の両方において優れる。さらに、本開示のポリオルガノシルセスキオキサンを必須成分として含む硬化性組成物は、高い耐熱性及び可とう性に優れた硬化物(接着材)を形成できるため、接着剤(例えば、積層半導体用硬化性組成物)としても好ましく使用できる。
実施例1で得られた本開示のエポキシ基含有縮合シルセスキオキサンの29Si-NMRスペクトルである。 実施例1で得られた本開示のエポキシ基含有縮合シルセスキオキサンのGPCチャートである。 実施例1で得られた本開示のエポキシ基含有縮合シルセスキオキサンのUPLC-MSチャートである。 実施例1で得られた本開示のエポキシ基含有縮合シルセスキオキサンのUPLC-MSチャートである。 分子式C14423445Si18(Z=2)のMSシミュレーションパターンである。 分子式C12821041Si16(Z=2)のMSシミュレーションパターンである。 実施例2で得られた本開示のエポキシ基含有縮合シルセスキオキサンの29Si-NMRスペクトルである。 実施例2で得られた本開示のエポキシ基含有縮合シルセスキオキサンのGPCチャートである。 本開示のハードコートフィルムの一実施形態を示す模式図(断面図)である。 本開示の転写用フィルムの一実施形態を示す模式図(断面図)である。 本開示の粘着シートの一実施形態を示す模式図(断面図)である。
[ポリオルガノシルセスキオキサン]
 本開示のポリオルガノシルセスキオキサンは、下記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンからなる群から選ばれる少なくとも1種を含むかご型シルセスキオキサンが2以上縮合した縮合物であり、分子量が8000以下(好ましくは1500~7500、より好ましくは1800~7000、さらに好ましくは2000~6500)であるシルセスキオキサン(以下、「本開示の縮合シルセスキオキサン」と称する場合がある)を含む。
・式(1):[R1SiO3/28[R1SiO2/2(ORc)]1
(式(1)中のR1は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、炭素数1~4のアルキル基又は水素原子を示す。)
・式(2):[R2SiO3/26[R2SiO2/2(ORc)]2
(式(2)中のR2は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(3):[R3SiO3/28[R3SiO2/2(ORc)]2
(式(3)中のR3は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(4):[R4SiO3/210[R4SiO2/2(ORc)]2
(式(4)中のR4は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
 組成式(1)中の[R1SiO3/2]で表される構成単位、組成式(2)中の[R2SiO3/2]で表される構成単位、組成式(3)中の[R3SiO3/2]で表される構成単位、及び組成式(4)中の[R4SiO3/2]で表される構成単位は、下記式(I)で表される構成単位(以下、本明細書で「T3体」と称する場合がある)に包含される。
[RaSiO3/2]          (I)
 また、組成式(1)中の[R1SiO2/2(ORc)]で表される構成単位、組成式(2)中の[R2SiO2/2(ORc)]で表される構成単位、組成式(3)中の[R3SiO2/2(ORc)]で表される構成単位、及び組成式(4)中の[R4SiO2/2(ORc)]で表される構成単位は、下記式(II)で表される構成単位(以下、本明細書で「T2体」と称する場合がある)に包含される。
[RbSiO2/2(ORc)]     (II)
 上記式(I)中のRa、及び式(II)中のRbは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。また、上記式(II)中のRcは、炭素数1~4のアルキル基又は水素原子を示す。
 上記式(I)で表される構成単位をより詳細に記載すると、下記式(I’)で表される。また、上記式(II)で表される構成単位をより詳細に記載すると、下記式(II’)で表される。下記式(I’)で表される構造中に示されるケイ素原子に結合した3つの酸素原子はそれぞれ、他のケイ素原子(式(I’)に示されていないケイ素原子)と結合している。一方、下記式(II’)で表される構造中に示されるケイ素原子の上と下に位置する2つの酸素原子はそれぞれ、他のケイ素原子(式(II’)に示されていないケイ素原子)に結合している。即ち、上記T3体及びT2体は、いずれも対応する加水分解性三官能シラン化合物の加水分解及び縮合反応により形成されるシルセスキオキサン構成単位(いわゆるT単位)である。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 上記式(I’)中のRa、式(II’)中のRb及びRcは、前記と同じ基である。式(II)中のRcにおけるアルキル基は、一般的には、本開示のポリオルガノシルセスキオキサンの原料として使用した加水分解性シラン化合物におけるアルコキシ基(例えば、後述の式(A)~(C)におけるX1~X3としてのアルコキシ基等)を形成するアルキル基に由来する。
 上記組成式(1)で表されるかご型シルセスキオキサンは、8つの[R1SiO3/2]で表される構成単位(T3体)と1つの[R1SiO2/2(ORc)]で表される構成単位(T2体)が、シロキサン結合(Si-O-Si)を介して互いに結合してかご型の構造を形成するシルセスキオキサンである。上記組成式(1)で表されるかご型シルセスキオキサンの具体的構造は、上記組成式(1)を満足する限り特に限定されないが、例えば、下記式(1’)で表されるかご型シルセスキオキサンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000011
 式(1’)中のR1a~R1iは、それぞれ独立して、組成式(1)におけるR1と同義である。式(1’)中のRcも、組成式(1)におけるRcと同義である。
 上記組成式(2)で表されるかご型シルセスキオキサンは、6つの[R2SiO3/2]で表される構成単位(T3体)と2つの[R2SiO2/2(ORc)]で表される構成単位(T2体)が、シロキサン結合(Si-O-Si)を介して互いに結合してかご型の構造を形成するシルセスキオキサンである。上記組成式(2)で表されるかご型シルセスキオキサンの具体的構造は、上記組成式(2)を満足する限り特に限定されないが、例えば、下記式(2’)又は(2”)で表されるかご型シルセスキオキサンなどが挙げられる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 式(2’)中のR2a~R2h、式(2”)中のR2i~R2pは、それぞれ独立して、組成式(2)におけるR2と同義である。式(2’)、(2”)中のRcも、それぞれ独立して、組成式(2)におけるRcと同義である。
 上記組成式(3)で表されるかご型シルセスキオキサンは、8つの[R3SiO3/2]で表される構成単位(T3体)と2つの[R3SiO2/2(ORc)]で表される構成単位(T2体)が、シロキサン結合(Si-O-Si)を介して互いに結合してかご型の構造を形成するシルセスキオキサンである。上記組成式(3)で表されるかご型シルセスキオキサンの具体的構造は、上記組成式(3)を満足する限り特に限定されないが、例えば、下記式(3’)、(3”)又は(3''')で表されるかご型シルセスキオキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 式(3’)中のR3a~R3j、式(3”)中のR3k~R3t、式(3''')中のR3u~R3z、R3aa~R3ddは、それぞれ独立して、組成式(3)におけるR3と同義である。式(3’)、(3”)、式(3''')中のRcも、それぞれ独立して、組成式(3)におけるRcと同義である。
 上記組成式(4)で表されるかご型シルセスキオキサンは、10個の[R4SiO3/2]で表される構成単位(T3体)と2つの[R4SiO2/2(ORc)]で表される構成単位(T2体)が、シロキサン結合(Si-O-Si)を介して互いに結合してかご型の構造を形成するシルセスキオキサンである。上記組成式(4)で表されるかご型シルセスキオキサンの具体的構造は、組成式(4)を満足する限り特に限定されないが、例えば、下記式(4’)又は(4”)で表されるかご型シルセスキオキサンが挙げられる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式(4’)中のR4a~R4l、式(4”)中のR4m~R4xは、それぞれ独立して、組成式(4)におけるR4と同義である。式(4’)、(4”)中のRcも、それぞれ独立して、組成式(4)におけるRcと同義である。
 本開示の縮合シルセスキオキサンは、上記組成式(1)、組成式(2)、組成式(3)及び組成式(4)以外の組成式で表されるかご型シルセスキオキサンを、本開示の発明の効果を損なわない範囲で含んでいてもよい。上記組成式(1)、組成式(2)、組成式(3)及び組成式(4)以外の組成式としては、例えば、以下の組成式(5)~(8)が挙げられる。
・式(5):[R5SiO3/26[R5SiO2/2(ORc)]3
(式(5)中のR5は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(6):[R6SiO3/28[R6SiO2/2(ORc)]3
(式(6)中のR6は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(7):[R7SiO3/210[R7SiO2/2(ORc)]1
(式(7)中のR7は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、炭素数1~4のアルキル基又は水素原子を示す。)
・式(8):[R8SiO3/212[R8SiO2/2(ORc)]1
(式(8)中のR8は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、炭素数1~4のアルキル基又は水素原子を示す。)
 本開示の縮合シルセスキオキサンは、上記組成式(1)~(8)で表されるかご型シルセスキオキサンが混在しているものも包含するものとする。すなわち、本開示の縮合シルセスキオキサンは、上記組成式(1)、組成式(2)、組成式(3)、組成式(4)、組成式(5)、組成式(6)、組成式(7)、及び組成式(8)で表されるかご型シルセスキオキサンからなる群から選ばれる少なくとも1種を含むかご型シルセスキオキサンが2以上縮合した縮合物であってもよい。
 なお、上記組成式(5)、組成式(6)のように、-ORcで表される水酸基を3つ有するかご型シルセスキオキサンを含む場合であっても、そのうちの2つで縮合する場合は、本開示の縮合シルセスキオキサンに包含される。また、上記組成式(5)、組成式(6)の3つの-ORcで表される水酸基全てが縮合している場合であっても、本開示の発明の効果を損なわない限り、本開示の縮合シルセスキオキサンに包含されるものとする。
 上記重合性官能基を含有する基における「カチオン重合性官能基」としては、カチオン重合性を有するものである限り特に限定されず、例えば、エポキシ基、オキセタン基、ビニルエーテル基、ビニルフェニル基等が挙げられる。
 上記重合性官能基を含有する基における「ラジカル重合性官能基」としては、ラジカル重合性を有するものである限り特に限定されず、例えば、(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、ビニル基、ビニルチオ基等が挙げられる。
 重合性官能基としては、硬化物の表面硬度(例えば、4H以上)の観点から、エポキシ基、(メタ)アクリロイルオキシ基等が好ましく、エポキシ基がより好ましい。
 上記組成式(1)中のR1、式(1')中のR1a~R1i、組成式(2)中のR2、式(2')中のR2a~R2h、式(2”)中のR2i~R2p、組成式(3)中のR3、式(3')中のR3a~R3j、式(3”)中のR3k~R3t、式(3''')中のR3u~R3z、R3aa~R3dd、組成式(4)中のR4、式(4')中のR4a~R4l、式(4”)中のR4m~R4x、組成式(5)中のR5、組成式(6)中のR6、組成式(7)中のR7、組成式(8)中のR8、式(I)中のRa、及び式(II)中のRbにおける重合性官能基を含有する基としては、特に限定されないが、エポキシ基を含む基が好ましく、硬化性組成物の硬化性、硬化物の表面硬度や耐熱性の観点で、下記式(1A)で表される基、式(1B)で表される基、式(1C)で表される基、式(1D)で表される基が好ましく、より好ましくは下記式(1A)で表される基、式(1C)で表される基、さらに好ましくは下記式(1A)で表される基である。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 上記式(1A)中、R1Aは、直鎖又は分岐鎖状のアルキレン基を示す。直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、デカメチレン基等の炭素数1~10の直鎖又は分岐鎖状のアルキレン基が挙げられる。中でも、R1Aとしては、硬化物の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1B)中、R1Bは、直鎖又は分岐鎖状のアルキレン基を示し、R1Aと同様の基が例示される。中でも、R1Bとしては、硬化物の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1C)中、R1Cは、直鎖又は分岐鎖状のアルキレン基を示し、R1Aと同様の基が例示される。中でも、R1Cとしては、硬化物の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記式(1D)中、R1Dは、直鎖又は分岐鎖状のアルキレン基を示し、R1Aと同様の基が例示される。中でも、R1Dとしては、硬化物の表面硬度や硬化性の観点で、炭素数1~4の直鎖状のアルキレン基、炭素数3又は4の分岐鎖状のアルキレン基が好ましく、より好ましくはエチレン基、トリメチレン基、プロピレン基、さらに好ましくはエチレン基、トリメチレン基である。
 上記組成式(1)中のR1、式(1')中のR1a~R1i、組成式(2)中のR2、式(2')中のR2a~R2h、式(2”)中のR2i~R2p、組成式(3)中のR3、式(3')中のR3a~R3j、式(3”)中のR3k~R3t、式(3''')中のR3u~R3z、R3aa~R3dd、組成式(4)中のR4、式(4')中のR4a~R4l、式(4”)中のR4m~R4x、組成式(5)中のR5、組成式(6)中のR6、組成式(7)中のR7、組成式(8)中のR8、式(I)中のRa、及び式(II)中のRbにおける重合性官能基を含有する基としては、エポキシ基を含む基が好ましく、上記式(1A)で表される基であって、R1Aがエチレン基である基[中でも、2-(3’,4’-エポキシシクロヘキシル)エチル基]がより好ましい。
 上記組成式(1)中のR1、式(1')中のR1a~R1i、組成式(2)中のR2、式(2')中のR2a~R2h、式(2”)中のR2i~R2p、組成式(3)中のR3、式(3')中のR3a~R3j、式(3”)中のR3k~R3t、式(3''')中のR3u~R3z、R3aa~R3dd、組成式(4)中のR4、式(4')中のR4a~R4l、式(4”)中のR4m~R4x、組成式(5)中のR5、組成式(6)中のR6、組成式(7)中のR7、組成式(8)中のR8、式(I)中のRa、及び式(II)中のRbの置換若しくは無置換のアリール基におけるアリール基としては、例えば、フェニル基、トリル基、ナフチル基等が挙げられる。
 上記組成式(1)中のR1、式(1')中のR1a~R1i、組成式(2)中のR2、式(2')中のR2a~R2h、式(2”)中のR2i~R2p、組成式(3)中のR3、式(3')中のR3a~R3j、式(3”)中のR3k~R3t、式(3''')中のR3u~R3z、R3aa~R3dd、組成式(4)中のR4、式(4')中のR4a~R4l、式(4”)中のR4m~R4x、組成式(5)中のR5、組成式(6)中のR6、組成式(7)中のR7、組成式(8)中のR8、式(I)中のRa、及び式(II)中のRbの置換若しくは無置換のアラルキル基における上記アラルキル基としては、例えば、ベンジル基、フェネチル基等が挙げられる。
 上記組成式(1)中のR1、式(1')中のR1a~R1i、組成式(2)中のR2、式(2')中のR2a~R2h、式(2”)中のR2i~R2p、組成式(3)中のR3、式(3')中のR3a~R3j、式(3”)中のR3k~R3t、式(3''')中のR3u~R3z、R3aa~R3dd、組成式(4)中のR4、式(4')中のR4a~R4l、式(4”)中のR4m~R4x、組成式(5)中のR5、組成式(6)中のR6、組成式(7)中のR7、組成式(8)中のR8、式(I)中のRa、及び式(II)中のRbの置換若しくは無置換のシクロアルキル基におけるシクロアルキル基としては、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 上記組成式(1)中のR1、式(1')中のR1a~R1i、組成式(2)中のR2、式(2')中のR2a~R2h、式(2”)中のR2i~R2p、組成式(3)中のR3、式(3')中のR3a~R3j、式(3”)中のR3k~R3t、式(3''')中のR3u~R3z、R3aa~R3dd、組成式(4)中のR4、式(4')中のR4a~R4l、式(4”)中のR4m~R4x、組成式(5)中のR5、組成式(6)中のR6、組成式(7)中のR7、組成式(8)中のR8、式(I)中のRa、及び式(II)中のRbの置換若しくは無置換のアルキル基におけるアルキル基としては、例えば、メチル基、エチル基、プロピル基、n-ブチル基、イソプロピル基、イソブチル基、s-ブチル基、t-ブチル基、イソペンチル基等の直鎖又は分岐鎖状のアルキル基が挙げられる。
 上記組成式(1)中のR1、式(1')中のR1a~R1i、組成式(2)中のR2、式(2')中のR2a~R2h、式(2”)中のR2i~R2p、組成式(3)中のR3、式(3')中のR3a~R3j、式(3”)中のR3k~R3t、式(3''')中のR3u~R3z、R3aa~R3dd、組成式(4)中のR4、式(4')中のR4a~R4l、式(4”)中のR4m~R4x、及び式(I)中のRa、組成式(5)中のR5、組成式(6)中のR6、組成式(7)中のR7、組成式(8)中のR8、式(II)中のRbの置換若しくは無置換のアルケニル基におけるアルケニル基としては、例えば、ビニル基、アリル基、イソプロペニル基等の直鎖又は分岐鎖状のアルケニル基が挙げられる。
 上記組成式(1)中のR1における重合性官能基を含有する基の数は、好ましくは3~9、より好ましくは5~9、さらに好ましくは7~9、さらにより好ましくは9(全てが重合性官能基を含有する基)である。上記組成式(2)中のR2における重合性官能基を含有する基は、好ましくは3~8、より好ましくは5~8、さらに好ましくは7~8、さらにより好ましくは8(全てが重合性官能基を含有する基)である。上記組成式(3)中のR3における重合性官能基を含有する基の数は、好ましくは3~10、より好ましくは5~10、さらに好ましくは7~10、さらにより好ましくは10(全てが重合性官能基を含有する基)である。上記組成式(4)中のR4における重合性官能基を含有する基の数は、好ましくは3~12、より好ましくは5~12、さらに好ましくは7~12、さらにより好ましくは12(全てが重合性官能基を含有する基)である。これらの重合性官能基を含有する基の数は、硬化性組成物としたときの硬化性、硬化物の表面硬度の観点から多い方が良い。
 また、本開示のポリオルガノシルセスキオキサンにおいて、上記組成式(1)中のR1、組成式(2)中のR2、組成式(3)中のR3、及び組成式(4)中のR4の全体に対する重合性官能基を含有する基(例えば、エポキシ基を含む基)の割合(重合性官能基を含有する基の数/R1~R4全体の数)は、例えば30%以上、好ましくは50%以上、より好ましくは80%以上である。上記重合性官能基を含有する基の割合は、硬化性組成物としたときの硬化性、硬化物の表面硬度の観点から高い方が良く、上記値以上であることが好ましい。
 本開示のポリオルガノシルセスキオキサンは、上記式(I)で表される構成単位(T3体)と、上記式(II)で表される構成単位(T2体)のモル比[式(I)で表される構成単位/式(II)で表される構成単位;T3体/T2体]が、例えば1以上500以下である。なお、上記式(I)で表される構成単位及び式(II)で表される構成単位は、上記組成式(1)、組成式(2)、組成式(3)、及び組成式(4)で表されるかご型シルセスキオキサンを構成するT3体とT2体を含み、更にこれら以外の全てシルセスキオキサン(完全かご型シルセスキオキサン、ラダー型シルセスキオキサン、ランダム型シルセスキオキサンなど)のT3体とT2体を含むものである。
 上記割合[T3体/T2体]の下限値は、上記の通り1であり、好ましくは2、より好ましくは3、より好ましくは4、より好ましくは6、より好ましくは7、より好ましくは8、より好ましくは8、より好ましくは10、より好ましくは20、さらに好ましくは40である。上記割合[T3体/T2体]を1以上とすることにより、未硬化又は半硬化のハードコート層としたときの表面がタックフリーになりやすく、耐ブロッキング性が向上して、ロールに巻き取り取りやすくなり、耐屈曲性を有するハードコート層の成分として好ましく使用することができ、また、硬化物やハードコート層の表面硬度や接着性が著しく向上する。一方、上記割合[T3体/T2体]の上限値は、好ましくは500、より好ましくは400、より好ましくは300、より好ましくは100、より好ましくは50、より好ましくは40、より好ましくは30、より好ましくは25、より好ましくは20、より好ましくは18、さらに好ましくは18である。上記割合[T3体/T2体]を500以下とすることにより、硬化性組成物における他の成分との相溶性が向上し、粘度も抑制もされるため、取扱いが容易となり、ハードコート層として塗工しやすくなる。
 本開示のポリオルガノシルセスキオキサンは、上記シルセスキオキサン構成単位[RSiO3/2](T単位)以外にも、さらに、[(R)3SiO1/2]で表される構成単位(いわゆるM単位)、[(R)2SiO2/2]で表される構成単位(いわゆるD単位)、及び[SiO4/2]で表される構成単位(いわゆるQ単位)からなる群より選択される少なくとも1種のシロキサン構成単位を有していてもよい。なお、上記式(I)で表される構成単位以外のシルセスキオキサン構成単位としては他に[HSiO3/2]で表される構成単位が挙げられる。なお、上記式中のRは、水素原子又は一価の有機基を示す。
 本開示のポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]は、例えば、29Si-NMRスペクトル測定により求めることができる。29Si-NMRスペクトルにおいて、上記式(I)で表される構成単位(T3体)におけるケイ素原子と、上記式(II)で表される構成単位(T2体)におけるケイ素原子とは、異なる位置(化学シフト)にシグナル(ピーク)を示すため、これらそれぞれのピークの積分比を算出することにより、上記割合[T3体/T2体]が求められる。上記式(I)で表される構造(T3体)におけるケイ素原子のシグナルは-64~-70ppmに現れ、上記式(II)で表される構造(T2体)におけるケイ素原子のシグナルは-54~-60ppmに現れる。従って、この場合、-64~-70ppmのシグナル(T3体)と-54~-60ppmのシグナル(T2体)の積分比を算出することによって、上記割合[T3体/T2体]を求めることができる。
 本開示のポリオルガノシルセスキオキサンの29Si-NMRスペクトルは、例えば、下記の装置及び条件により測定することができる。
 測定装置:「Brucker AVANCE(600MHz)」(Brucker製) 溶媒:重クロロホルム
 積算回数:8000回
 測定温度:25℃
サンプル:ポリオルガノシルセスキオキサン/アセチルアセトンクロム(III)/重クロロホルム(1%テトラメチルシラン)=2.0:0.10:4.0(重量比)
 本開示のポリオルガノシルセスキオキサンの上記割合[T3体/T2体]が1以上500以下であることは、本開示のポリオルガノシルセスキオキサンにおいてT3体に対してT2体の存在量が同等であるか、相対的に少なく、シラノールの加水分解・縮合反応がより進行していることを意味する。
 本開示のポリオルガノシルセスキオキサンにおける各シルセスキオキサン構成単位の割合は、これらの構成単位を形成するための原料(加水分解性三官能シラン)の組成により適宜調整することが可能である。
 上記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンからなる群から選ばれる少なくとも1種が2以上縮合した縮合物である本開示の縮合シルセスキオキサンとは、上記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンのうち、1種において2以上(例えば2~5、好ましくは2~3、より好ましくは2)、若しくは2種以上における2以上(例えば2~5、好ましくは2~3、より好ましくは2)が縮合したものである。ここで「縮合」とは、上記組成式(1)、組成式(2)、組成式(3)及び組成式(4)中の-ORcで表される水酸基(-ORcがアルコキシ基である場合は加水分解した水酸基)同士が、脱水してシロキサン結合(Si-O-Si)を形成することを言う。
 上記組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンは、分子内に2つの-ORcで表される基を有するため、これらが縮合した本開示のポリオルガノシルセスキオキサンは、これらのかご型構造が直線状につながった構造を有する。
 上記組成式(1)で表されるかご型シルセスキオキサンは、分子内に1つのみの-ORcで表される基を有するため、上記のかご型構造が直線状につながった構造の末端部に縮合する。
 また、本開示の縮合シルセスキオキサンは、上記組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンに由来するかご型構造を有せず、上記組成式(1)で表されるかご型シルセスキオキサンの2つが縮合したものであってもよい。
 本開示の縮合シルセスキオキサンは、上記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンに由来する各かご型構造単位の縮合形態は特に限定されず、ランダム型であってもよいし、ブロック型であってもよい。
 例えば、本開示の縮合シルセスキオキサンは、上記式(2’)で表されるかご型シルセスキオキサンに由来するかご型構造を含む場合、分子内に下記式(2a)で表されるかご型シルセスキオキサン構造の繰り返し構造を有する。
Figure JPOXMLDOC01-appb-C000023
 上記式(2a)中の各記号は、上記式(2’)と同義である。
 また、本開示の縮合シルセスキオキサンは、上記式(2”)で表されるかご型シルセスキオキサンに由来するかご型構造を含む場合、分子内に下記式(2b)で表されるかご型シルセスキオキサン構造の繰り返し構造を有する。
Figure JPOXMLDOC01-appb-C000024
 上記式(2b)中の各記号は、上記式(2”)と同義である。
 例えば、本開示の縮合シルセスキオキサンは、上記式(3’)で表されるかご型シルセスキオキサンに由来するかご型構造を含む場合、分子内に下記式(3a)で表されるかご型シルセスキオキサン構造の繰り返し構造を有する。
Figure JPOXMLDOC01-appb-C000025
 上記式(3a)中の各記号は、上記式(3’)と同義である。
 また、本開示の縮合シルセスキオキサンは、上記式(3”)で表されるかご型シルセスキオキサンに由来するかご型構造を含む場合、分子内に下記式(3b)で表されるかご型シルセスキオキサン構造の繰り返し構造を有する。
Figure JPOXMLDOC01-appb-C000026
 上記式(3b)中の各記号は、上記式(3”)と同義である。
 また、本開示の縮合シルセスキオキサンは、上記式(3''')で表されるかご型シルセスキオキサンに由来するかご型構造を含む場合、分子内に下記式(3c)で表されるかご型シルセスキオキサン構造の繰り返し構造を有する。
Figure JPOXMLDOC01-appb-C000027
 上記式(3c)中の各記号は、上記式(3''')と同義である。
 例えば、本開示の縮合シルセスキオキサンは、上記式(4’)で表されるかご型シルセスキオキサンに由来するかご型構造を含む場合、分子内に下記式(4a)で表されるかご型シルセスキオキサン構造の繰り返し構造を有する。
Figure JPOXMLDOC01-appb-C000028
 上記式(4a)中の各記号は、上記式(4’)と同義である。
 また、本開示の縮合シルセスキオキサンは、上記式(4”)で表されるかご型シルセスキオキサンに由来するかご型構造を含む場合、分子内に下記式(4b)で表されるかご型シルセスキオキサン構造の繰り返し構造を有する。
Figure JPOXMLDOC01-appb-C000029
 上記式(4b)中の各記号は、上記(4”)と同義である。
 例えば、本開示の縮合シルセスキオキサンは、上記式(1’)で表されるかご型シルセスキオキサンに由来するかご型構造を含む場合、その両端又は一方の末端に下記式(1a)で表されるかご型シルセスキオキサン構造及び/又は下記式(1b)で表されるかご型シルセスキオキサン構造を有する。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 上記式(1a)中の各記号は、上記式(1’)と同義である。
 上記式(1b)中のR1j~R1rは、上記(1’)中のR1a~R1iと同義である。
 本開示の縮合シルセスキオキサンには、例えば、2つの組成式(1)で表されるかご型シルセスキオキサンの縮合物など1種において2以上の縮合物、及び前記組成式(1)で表されるかご型シルセスキオキサンと前記組成式(2)で表されるかご型シルセスキオキサンが縮合したものなど異種2以上の縮合物が含まれる。なかでも、本開示の縮合シルセスキオキサンは、1つの前記組成式(1)で表されるかご型シルセスキオキサンともう1つの前記組成式(1)で表されるかご型シルセスキオキサンの縮合物、又は1つの前記組成式(1)で表されるかご型シルセスキオキサンと、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンのうちのいずれか1種の縮合物が好ましい。
 本開示の縮合シルセスキオキサンのうち、1つの前記組成式(1)で表されるかご型シルセスキオキサンと1つの前記組成式(2)で表されるかご型シルセスキオキサンの縮合物であるシルセスキオキサンは、例えば、前記式(1’)中の-ORcで表される基と前記式(2’)中の2つ-ORcで表される基の1つが縮合して形成される下記式(1a-2a)で表される縮合シルセスキオキサンが挙げられる。なお、式(1a-2b)における置換基(R1a~R1i及びR2a~R2h)は、式(1a)及び式(2b)におけるものと同様である。
Figure JPOXMLDOC01-appb-C000032
 本開示の縮合シルセスキオキサンのうち、1つの前記組成式(1)で表されるかご型シルセスキオキサンと他の1つの前記組成式(1)で表されるかご型シルセスキオキサンの縮合物であるシルセスキオキサンは、例えば、2つの前記式(1’)中の-ORcで表される基同士が縮合して形成される下記式(1a-1b)で表される縮合シルセスキオキサンが挙げられる。なお、式(1a-1b)における置換基(R1a~R1r)は、式(1a)及び式(1b)におけるものと同様である。
Figure JPOXMLDOC01-appb-C000033
 本開示の縮合シルセスキオキサンのうち、1つの前記組成式(2)で表されるかご型シルセスキオキサンと他の1つの前記組成式(2)で表されるかご型シルセスキオキサンの縮合物であるシルセスキオキサンは、例えば、2つの前記式(2’)中の-ORcで表される基同士が縮合して形成される下記式(2a-2a)で表される縮合シルセスキオキサンが挙げられる。なお、式(2a-2a)における置換基(R2a~R2h)は、式(2a)におけるものと同様である。
Figure JPOXMLDOC01-appb-C000034
 本開示のポリオルガノシルセスキオキサンは、本開示の縮合シルセスキオキサン以外に、正六面体構造などシリカの立体構造に全く開裂のないかご型(構造)シルセスキオキサン(即ち、完全かご型シルセスキオキサン)、例えば上記組成式(1)、組成式(2)、組成式(3)、組成式(4)などで表されるかご型シルセスキオキサンが縮合していないもの(即ち、不完全かご型シルセスキオキサン)などの単量体のかご型シルセスキオキサンを含んでいてもよい。なお、本明細書では、上記完全かご型シルセスキオキサンと不完全かご型シルセスキオキサンの両方を合わせて単量体かご型シルセスキオキサンと呼ぶものとする。本開示のポリオルガノシルセスキオキサンにおける、単量体かご型シルセスキオキサンの含有量は、本開示のポリオルガノシルセスキオキサン全量に対して、例えば5重量%以上、好ましくは10重量%以上、より好ましくは20重量%以上であり、例えば、50重量%以下、好ましくは40重量%以下、より好ましくは20重量%以下である。上記単量体かご型シルセスキオキサンの含有量が、上記範囲にあると、硬化物としたときの表面硬度をより向上させることができる。
 本開示のポリオルガノシルセスキオキサンは、本開示の縮合シルセスキオキサン以外のかご型シルセスキオキサンを有していてもよい。また、本開示のポリオルガノシルセスキオキサンは、かご型シルセスキオキサン以外にも、ラダー型やランダム型等のシルセスキオキサン構造を有していてもよい。また、これらシルセスキオキサン構造の2以上を組み合わせて有していてもよい。
 本開示のポリオルガノシルセスキオキサンにおける、本開示の縮合シルセスキオキサンの含有量は、本開示のポリオルガノシルセスキオキサン全量に対して、20重量%以上(好ましくは25~90重量%、より好ましくは30~80重量%、さらに好ましくは40~70重量%)である。かご型シルセスキオキサンの含有量は、本開示のポリオルガノシルセスキオキサン全量に対して、例えば40~99.5重量%、好ましくは45~98重量%、より好ましくは50~96重量%含む。
 本開示のポリオルガノシルセスキオキサンのゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)は、例えば2000~50000であり、好ましくは2500~40000、より好ましくは3000~30000である。数平均分子量を2000以上とすることにより、未硬化又は半硬化のハードコート層としたときの表面がタックフリーになりやすく、耐ブロッキング性が向上して、ロールに巻き取り取りやすくなる。よって、数平均分子量を2000以上とすることにより、インモールド射出成型の転写用フィルムのハードコート層の成分として好ましく使用することができ、また、硬化物の耐熱性、耐擦傷性、接着性がより向上する。一方、数平均分子量を50000以下とすることにより、硬化性組成物における他の成分との相溶性が向上し、硬化物の耐熱性がより向上する。
 本開示のポリオルガノシルセスキオキサンのゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は、例えば1.0~4.0であり、好ましくは1.1~3.0、より好ましくは1.2~2.5である。分子量分散度を4.0以下とすることにより、溶媒に対する溶解性が良好となり、硬化物の表面硬度や接着性がより高くなる。一方、分子量分散度を1.1以上とすることにより、液状となりやすく、取り扱い性が向上する傾向がある。
 なお、本開示のポリオルガノシルセスキオキサンの数平均分子量、分子量分散度はGPC測定により求めることができる。また、本開示のポリオルガノシルセスキオキサンにおける上記の単量体かご型シルセスキオキサン及び縮合シルセスキオキサンの含有量は、GPC測定における対応するピークのエリア値の面積比から求めることができる。GPC測定は、下記の装置及び条件により測定することができる。
 測定装置 :商品名「GPCセミミクロシステム」((株)島津製作所製)
 検出器 :RI検出器(昭光サイエンス(株)製)
 カラム :KF-G4A(ガードカラム)、KF-602、及びKF-603(昭光サイエンス(株)製)
 流速 :0.6mL/min
 測定温度 :40℃
 測定時間 :13min
 注入量 :20μL
 溶離液 :THF、試料濃度0.1~0.2重量%
 分子量 :標準ポリスチレン換算
 本開示のポリオルガノシルセスキオキサンの空気雰囲気下における5%重量減少温度(Td5)は、特に限定されないが、330℃以上(例えば、330~450℃)が好ましく、より好ましくは340℃以上、さらに好ましくは350℃以上である。5%重量減少温度が330℃以上であることにより、硬化物の耐熱性がより向上する傾向がある。本開示のポリオルガノシルセスキオキサンが、上記割合[T3体/T2体]が1以上500以下であって、数平均分子量が2000~50000、分子量分散度が1.0~4.0であることにより、その硬化物の5%重量減少温度は330℃以上となる。なお、5%重量減少温度は、一定の昇温速度で加熱した時に加熱前の重量の5%が減少した時点での温度であり、耐熱性の指標となる。上記5%重量減少温度は、TGA(熱重量分析)により、空気雰囲気下、昇温速度5℃/分の条件で測定することができる。
 本開示のポリオルガノシルセスキオキサンは、公知乃至慣用のポリシロキサンの製造方法により製造することができ、特に限定されないが、例えば、1種又は2種以上の加水分解性シラン化合物を加水分解及び縮合させる方法により製造できる。但し、上記加水分解性シラン化合物としては、加水分解性三官能シラン化合物(下記式(a)で表される化合物)を必須の加水分解性シラン化合物として使用する必要がある。
 より具体的には、例えば、本開示のポリオルガノシルセスキオキサンにおけるシルセスキオキサン構成単位(T単位)を形成するための加水分解性シラン化合物である下記式(a)で表される化合物、必要に応じてさらに、下記式(b)で表される化合物、下記式(c)で表される化合物を、加水分解及び縮合させる方法により、上記組成式(1)、組成式(2)、組成式(3)及び/又は組成式(4)で表されるかご型シルセスキオキサンを生成し、更なる加水分解及び縮合反応により、上記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンのうち、1種において2以上、若しくは2種以上における2以上が縮合した本開示の縮合シルセスキオキサンを含む、本開示のポリオルガノシルセスキオキサンが製造できる。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 上記式(A)で表される化合物は、本開示の縮合シルセスキオキサンにおける[RASiO3/2]又は[RASiO2/2(ORc)]で表される構成単位を形成する化合物である。式(A)中のRAは、上記組成式(1)中のR1、組成式(2)中のR2、組成式(3)中のR3、組成式(4)中のR4(即ち、かご型シルセスキオキサンにおける置換基)と同様に、重合性官能基を含有する基を示す。式(A)中のRAとしては、重合性官能基を含有する基として、上記式(1A)で表される基、上記式(1B)で表される基、上記式(1C)で表される基、上記式(1D)で表される基が好ましく、より好ましくは上記式(1A)で表される基、上記式(1C)で表される基、さらに好ましくは上記式(1A)で表される基、さらにより好ましくは上記式(1A)で表される基であって、R1Aがエチレン基である基[中でも、2-(3’,4’-エポキシシクロヘキシル)エチル基]である。
 上記式(A)中のX1は、アルコキシ基又はハロゲン原子を示す。X1におけるアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等の炭素数1~4のアルコキシ基等が挙げられる。また、X1におけるハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。中でもX1としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX1は、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(B)で表される化合物は、本開示の縮合シルセスキオキサンにおける[RBSiO3/2]又は[RBSiO2/2(ORc)]で表される構成単位を形成する化合物である。式(B)中のRBは、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は、置換若しくは無置換のアルケニル基を示す。式(B)中のRBとしては、置換若しくは無置換のアリール基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基が好ましく、より好ましくは置換若しくは無置換のアリール基、さらに好ましくはフェニル基である。
 上記式(B)中のX2は、アルコキシ基又はハロゲン原子を示す。X2の具体例としては、X1として例示したものが挙げられる。中でも、X2としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX2は、それぞれ同一であってもよいし、異なっていてもよい。
 上記式(C)で表される化合物は、本開示の縮合シルセスキオキサンにおける[HSiO3/2]又は[HSiO2/2(ORc)]で表される構成単位を形成する化合物である。上記式(C)中のX3は、アルコキシ基又はハロゲン原子を示す。X3の具体例としては、X1として例示したものが挙げられる。中でも、X3としては、アルコキシ基が好ましく、より好ましくはメトキシ基、エトキシ基である。なお、3つのX3は、それぞれ同一であってもよいし、異なっていてもよい。
 上記加水分解性シラン化合物としては、上記式(A)~(C)で表される化合物以外の加水分解性シラン化合物を併用してもよい。例えば、上記式(A)~(C)で表される化合物以外の加水分解性三官能シラン化合物、M単位を形成する加水分解性単官能シラン化合物、D単位を形成する加水分解性二官能シラン化合物、Q単位を形成する加水分解性四官能シラン化合物等が挙げられる。
 上記加水分解性シラン化合物の使用量や組成は、所望する本開示のポリオルガノシルセスキオキサンの構造に応じて適宜調整できる。例えば、上記式(A)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、30~100モル%が好ましく、55~100モル%がより好ましく、より好ましくは65~100モル%、さらに好ましくは80~99モル%である。
 また、上記式(B)で表される化合物の使用量は、特に限定されないが、使用する加水分解性シラン化合物の全量(100モル%)に対して、0~70モル%が好ましく、より好ましくは0~60モル%、さらに好ましくは0~40モル%、さらにより好ましくは1~15モル%である。
 さらに、使用する加水分解性シラン化合物の全量(100モル%)に対する式(A)で表される化合物と式(B)で表される化合物の割合(総量の割合)は、特に限定されないが、60~100モル%が好ましく、より好ましくは70~100モル%、さらに好ましくは80~100モル%である。
 また、上記加水分解性シラン化合物として2種以上を併用する場合、これらの加水分解性シラン化合物の加水分解及び縮合反応は、同時に行うこともできるし、逐次行うこともできる。上記反応を逐次行う場合、反応を行う順序は特に限定されない。
 上記加水分解性シラン化合物の加水分解及び縮合反応は、1段階で行ってもよいし、2段階以上に分けて行ってもよいが、本開示のポリオルガノシルセスキオキサンを効率よく製造するためには、2段階以上(好ましくは、2段階)で加水分解及び縮合反応を行うことが好ましい。以下に、加水分解性シラン化合物の加水分解及び縮合反応を2段階で行う態様について説明するが、本開示のポリオルガノシルセスキオキサンの製造方法はこれに限定されない。
 本開示の加水分解及び縮合反応を2段階で行う場合、好ましくは、第1段目の加水分解及び縮合反応で、上記割合[T3体/T2体]が1以上20未満であり、数平均分子量が例えば1000~3000であるポリオルガノシルセスキオキサン(以下、「中間体ポリオルガノシルセスキオキサン」と称する)を得、第2段目で、該中間体ポリオルガノシルセスキオキサンを、さらに加水分解及び縮合反応に付すことにより、本開示のポリオルガノシルセスキオキサンを得ることができる。
 第1段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。中でも溶媒の存在下で行うことが好ましい。上記溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール等が挙げられる。上記溶媒としては、中でも、ケトン、エーテルが好ましい。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 第1段目の加水分解及び縮合反応における溶媒の使用量は、特に限定されず、加水分解性シラン化合物の全量100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。
 第1段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、酸触媒であってもアルカリ触媒であってもよいが、エポキシ基等の重合性官能基の分解を抑制するためにはアルカリ触媒が好ましい。上記酸触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸等の鉱酸;リン酸エステル;酢酸、蟻酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸;活性白土等の固体酸;塩化鉄等のルイス酸等が挙げられる。上記アルカリ触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩;炭酸マグネシウム等のアルカリ土類金属の炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム等のアルカリ金属の有機酸塩(例えば、酢酸塩);酢酸マグネシウム等のアルカリ土類金属の有機酸塩(例えば、酢酸塩);リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、カリウムエトキシド、カリウムt-ブトキシド等のアルカリ金属のアルコキシド;ナトリウムフェノキシド等のアルカリ金属のフェノキシド;トリエチルアミン、N-メチルピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等のアミン類(第3級アミン等);ピリジン、2,2’-ビピリジル、1,10-フェナントロリン等の含窒素芳香族複素環化合物等が挙げられる。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。
 第1段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.002~0.200モルの範囲内で、適宜調整することができる。
 第1段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、加水分解性シラン化合物の全量1モルに対して、0.5~20モルの範囲内で、適宜調整することができる。
 第1段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。
 第1段目の加水分解及び縮合反応の反応条件としては、中間体ポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が1以上20未満となるような反応条件を選択することが重要である。第1段目の加水分解及び縮合反応の反応温度は、特に限定されないが、40~100℃が好ましく、より好ましくは45~80℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]をより効率的に1以上20未満に制御できる傾向がある。また、第1段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.1~10時間が好ましく、より好ましくは1.5~8時間である。また、第1段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第1段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。
 上記第1段目の加水分解及び縮合反応により、中間体ポリオルガノシルセスキオキサンが得られる。上記第1段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等の重合性官能基の分解を抑制するために触媒を中和することが好ましい。また、中間体ポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。また、中間体ポリオルガノシルセスキオキサンを含む反応溶液を第1段目の加水分解及び縮合反応に供してもよい。
 第1段目の加水分解及び縮合反応により得られた中間体ポリオルガノシルセスキオキサンを、第2段目の加水分解及び縮合反応に付すことにより、本開示のポリオルガノシルセスキオキサンを製造することができる。
 第2段目の加水分解及び縮合反応は、溶媒の存在下で行うこともできるし、非存在下で行うこともできる。第2段目の加水分解及び縮合反応を溶媒の存在下で行う場合、第1段目の加水分解及び縮合反応で挙げられた溶媒を用いることができる。第2段目の加水分解及び縮合反応の溶媒としては、第1段目の加水分解及び縮合反応の反応溶媒、抽出溶媒等を含む中間体ポリオルガノシルセスキオキサンをそのまま、又は一部又は全部留去したものを用いてもよい。また、中間体ポリオルガノシルセスキオキサンを含む反応溶液に、第1段目の加水分解及び縮合反応に用いた溶媒よりも沸点が高い溶媒を加え、次いで加熱・留去することにより、溶媒を交代して行うこともできる。なお、溶媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 第2段目の加水分解及び縮合反応において溶媒を使用する場合、その使用量は、特に限定されず、中間体ポリオルガノシルセスキオキサン100重量部に対して、0~2000重量部の範囲内で、所望の反応時間等に応じて、適宜調整することができる。
 第2段目の加水分解及び縮合反応は、触媒及び水の存在下で進行させることが好ましい。上記触媒は、第1段目の加水分解及び縮合反応で挙げられた触媒を用いることができ、エポキシ基等の重合性官能基の分解を抑制するためには、好ましくはアルカリ触媒であり、さらに好ましくは水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩である。なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水や溶媒等に溶解又は分散させた状態で使用することもできる。また、第1段目の加水分解及び縮合反応に用いた触媒をそのまま第2段目の加水分解及び縮合反応に用いることもできる。
 第2段目の加水分解及び縮合反応における上記触媒の使用量は、特に限定されず、中間体ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは0.01~10000ppm、より好ましくは0.1~1000ppmの範囲内で、適宜調整することができる。
 第2段目の加水分解及び縮合反応に際しての水の使用量は、特に限定されず、中間体ポリオルガノシルセスキオキサン(1000000ppm)に対して、好ましくは10~100000ppm、より好ましくは100~20000ppmの範囲内で、適宜調整することができる。水の使用量が100000ppmよりも大きいと、ポリオルガノシルセスキオキサンの割合[T3体/T2体]や数平均分子量が、所定の範囲に制御しにくくなる傾向がある。
 第2段目の加水分解及び縮合反応における上記水の添加方法は、特に限定されず、使用する水の全量(全使用量)を一括で添加してもよいし、逐次的に添加してもよい。逐次的に添加する際には、連続的に添加してもよいし、間欠的に添加してもよい。また、第1段目の加水分解及び縮合反応に用いた水をそのまま用いるか、一部を留去した残りの水を用いることもできる。
 第2段目の加水分解及び縮合反応の反応条件としては、本開示のポリオルガノシルセスキオキサンにおける上記割合[T3体/T2体]が、20以上500以下、数平均分子量が2000~50000となるような反応条件を選択することが重要である。第2段目の加水分解及び縮合反応の反応温度は、使用する触媒により変動し、特に限定されないが、5~200℃が好ましく、より好ましくは30~150℃、さらに好ましくは80~120℃である。反応温度を上記範囲に制御することにより、上記割合[T3体/T2体]、数平均分子量をより効率的に所望の範囲に制御できる傾向がある。また、第2段目の加水分解及び縮合反応の反応時間は、特に限定されないが、0.5~1000時間が好ましく、より好ましくは1~500時間、さらに好ましくは5~200時間である。
 また、上記反応温度の範囲内にて加水分解及び縮合反応を行いながら適時サンプリングを行って、上記割合[T3体/T2体]、数平均分子量をモニターしながら反応を行うことによって、所望の割合[T3体/T2体]、数平均分子量を有する本開示のポリオルガノシルセスキオキサンを得ることもできる。
 第2段目の加水分解及び縮合反応は、常圧下で行うこともできるし、加圧下又は減圧下で行うこともできる。なお、第2段目の加水分解及び縮合反応を行う際の雰囲気は、特に限定されず、例えば、窒素雰囲気、アルゴン雰囲気等の不活性ガス雰囲気下、空気下等の酸素存在下等のいずれであってもよいが、不活性ガス雰囲気下が好ましい。
 上記第2段目の加水分解及び縮合反応により、本開示のポリオルガノシルセスキオキサンが得られる。上記第2段目の加水分解及び縮合反応の終了後には、エポキシ基の開環等の重合性官能基の分解を抑制するために触媒を中和することが好ましい。また、本開示のポリオルガノシルセスキオキサンを、例えば、水洗、酸洗浄、アルカリ洗浄、濾過、濃縮、蒸留、抽出、晶析、再結晶、カラムクロマトグラフィー等の分離手段や、これらを組み合わせた分離手段等により分離精製してもよい。
 本開示のポリオルガノシルセスキオキサンは、2以上のかご型シルセスキオキサンが直鎖状に縮合した構造の縮合シルセスキオキサンを含むため、従来のポリオルガノシルセスキオキサンに比べて、優れた硬化性を有する傾向があると考えられる。よって、本開示のポリオルガノシルセスキオキサンを含む硬化性組成物の硬化物は、高い表面硬度かつ耐熱性に優れる。また、本開示のポリオルガノシルセスキオキサンは、有機溶剤などの溶剤への溶解性に優れる。「2以上のかご型シルセスキオキサンが直鎖状に縮合」とは、上記組成式(1)、組成式(2)、組成式(3)、及び/又は組成式(4)で表されるかご型シルセスキオキサンの2以上が、3次元的ではなく、直列に縮合する結果、直鎖状の縮合物が形成されることを意味する。また、本開示のポリオルガノシルセスキオキサンが、上記組成式(5)、組成式(6)のように、-ORcで表される水酸基を3つ有するかご型シルセスキオキサンを含む場合であっても、そのうちの2つで縮合する場合は、「2以上のかご型シルセスキオキサンが直鎖状に縮合」に該当し得る。なお、上記メカニズムは推定に過ぎず、本願発明がこれらのメカニズムに限定されると解釈されるべきではない。
[硬化性組成物]
 本開示の硬化性組成物は、上述の本開示のポリオルガノシルセスキオキサンを必須成分として含む硬化性組成物(硬化性樹脂組成物)である。後述のように、本開示の硬化性組成物は、さらに、硬化触媒(例えば、光カチオン重合開始剤、ラジカル重合性開始剤)や表面調整剤あるいは表面改質剤、重合安定剤、シランカップリング剤等のその他の成分を含んでいてもよい。本開示の硬化性組成物は、その用途に応じて、ハードコート層形成用硬化性組成物や接着剤用硬化性組成物(例えば、積層半導体用硬化性組成物)として用いることができる。本開示の硬化性組成物において本開示のポリオルガノシルセスキオキサンは、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 本開示の硬化性組成物における本開示のポリオルガノシルセスキオキサンの含有量(配合量)は、特に限定されないが、溶剤を除く硬化性組成物の全量(100重量%)に対して、70重量%以上、100重量%未満が好ましく、より好ましくは80~99.8重量%、さらに好ましくは90~99.5重量%である。本開示のポリオルガノシルセスキオキサンの含有量を70重量%以上とすることにより、硬化物の表面硬度や接着性がより向上する傾向がある。一方、本開示のポリオルガノシルセスキオキサンの含有量を100重量%未満とすることにより、硬化触媒を含有させることができ、これにより硬化性組成物の硬化をより効率的に進行させることができる傾向がある。
 本開示の硬化性組成物に含まれるカチオン硬化性化合物又はラジカル硬化性化合物の全量(100重量%)に対する本開示のポリオルガノシルセスキオキサンの割合は、特に限定されないが、70~100重量%が好ましく、より好ましくは75~98重量%、さらに好ましくは80~95重量%である。本開示のポリオルガノシルセスキオキサンの含有量を70重量%以上とすることにより、硬化物の表面硬度や接着性がより向上する傾向がある。
 本開示の硬化性組成物は、さらに、硬化触媒を含むことが好ましい。中でも、よりタックフリーとなるまでの硬化時間が短縮できる点で、硬化触媒として光又は熱重合開始剤を含むことが好ましく、カチオン重合開始剤又はラジカル重合開始剤を含むことがより好ましい。なお、本開示の硬化性組成物において硬化触媒は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記カチオン重合開始剤は、本開示のポリオルガノシルセスキオキサン等のカチオン硬化性化合物のカチオン重合反応を開始乃至促進することができる化合物である。上記カチオン重合開始剤としては、特に限定されないが、例えば、光カチオン重合開始剤(光酸発生剤)、熱カチオン重合開始剤(熱酸発生剤)等が挙げられる。
 上記光カチオン重合開始剤としては、公知乃至慣用の光カチオン重合開始剤を使用することができ、例えば、スルホニウム塩(スルホニウムイオンとアニオンとの塩)、ヨードニウム塩(ヨードニウムイオンとアニオンとの塩)、セレニウム塩(セレニウムイオンとアニオンとの塩)、アンモニウム塩(アンモニウムイオンとアニオンとの塩)、ホスホニウム塩(ホスホニウムイオンとアニオンとの塩)、遷移金属錯体イオンとアニオンとの塩等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて使用することができる。
 上記スルホニウム塩としては、例えば、[4-(4-ビフェニリルチオ)フェニル]-4-ビフェニリルフェニルスルホニウムトリス(ペンタフルオロエチル)トリフルオロホスフェート、トリフェニルスルホニウム塩、トリ-p-トリルスルホニウム塩、トリ-o-トリルスルホニウム塩、トリス(4-メトキシフェニル)スルホニウム塩、1-ナフチルジフェニルスルホニウム塩、2-ナフチルジフェニルスルホニウム塩、トリス(4-フルオロフェニル)スルホニウム塩、トリ-1-ナフチルスルホニウム塩、トリ-2-ナフチルスルホニウム塩、トリス(4-ヒドロキシフェニル)スルホニウム塩、ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩、4-(p-トリルチオ)フェニルジ-(p-フェニル)スルホニウム塩等のトリアリールスルホニウム塩;ジフェニルフェナシルスルホニウム塩、ジフェニル4-ニトロフェナシルスルホニウム塩、ジフェニルベンジルスルホニウム塩、ジフェニルメチルスルホニウム塩等のジアリールスルホニウム塩;フェニルメチルベンジルスルホニウム塩、4-ヒドロキシフェニルメチルベンジルスルホニウム塩、4-メトキシフェニルメチルベンジルスルホニウム塩等のモノアリールスルホニウム塩;ジメチルフェナシルスルホニウム塩、フェナシルテトラヒドロチオフェニウム塩、ジメチルベンジルスルホニウム塩等のトリアルキルスルホニウム塩等が挙げられる。
 上記ジフェニル[4-(フェニルチオ)フェニル]スルホニウム塩としては、例えば、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロアンチモネート、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロホスファート等を使用できる。
 上記ヨードニウム塩としては、例えば、商品名「UV9380C」(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、ビス(4-ドデシルフェニル)ヨードニウム=ヘキサフルオロアンチモネート45%アルキルグリシジルエーテル溶液)、商品名「RHODORSIL PHOTOINITIATOR 2074」(ローディア・ジャパン(株)製、テトラキス(ペンタフルオロフェニル)ボレート=[(1-メチルエチル)フェニル](メチルフェニル)ヨードニウム)、商品名「WPI-124」(和光純薬工業(株)製)、ジフェニルヨードニウム塩、ジ-p-トリルヨードニウム塩、ビス(4-ドデシルフェニル)ヨードニウム塩、ビス(4-メトキシフェニル)ヨードニウム塩等が挙げられる。
 上記セレニウム塩としては、例えば、トリフェニルセレニウム塩、トリ-p-トリルセレニウム塩、トリ-o-トリルセレニウム塩、トリス(4-メトキシフェニル)セレニウム塩、1-ナフチルジフェニルセレニウム塩等のトリアリールセレニウム塩;ジフェニルフェナシルセレニウム塩、ジフェニルベンジルセレニウム塩、ジフェニルメチルセレニウム塩等のジアリールセレニウム塩;フェニルメチルベンジルセレニウム塩等のモノアリールセレニウム塩;ジメチルフェナシルセレニウム塩等のトリアルキルセレニウム塩等が挙げられる。
 上記アンモニウム塩としては、例えば、テトラメチルアンモニウム塩、エチルトリメチルアンモニウム塩、ジエチルジメチルアンモニウム塩、トリエチルメチルアンモニウム塩、テトラエチルアンモニウム塩、トリメチル-n-プロピルアンモニウム塩、トリメチル-n-ブチルアンモニウム塩等のテトラアルキルアンモニウム塩;N,N-ジメチルピロリジウム塩、N-エチル-N-メチルピロリジウム塩等のピロリジウム塩;N,N’-ジメチルイミダゾリニウム塩、N,N’-ジエチルイミダゾリニウム塩等のイミダゾリニウム塩;N,N’-ジメチルテトラヒドロピリミジウム塩、N,N’-ジエチルテトラヒドロピリミジウム塩等のテトラヒドロピリミジウム塩;N,N-ジメチルモルホリニウム塩、N,N-ジエチルモルホリニウム塩等のモルホリニウム塩;N,N-ジメチルピペリジニウム塩、N,N-ジエチルピペリジニウム塩等のピペリジニウム塩;N-メチルピリジニウム塩、N-エチルピリジニウム塩等のピリジニウム塩;N,N’-ジメチルイミダゾリウム塩等のイミダゾリウム塩;N-メチルキノリウム塩等のキノリウム塩;N-メチルイソキノリウム塩等のイソキノリウム塩;ベンジルベンゾチアゾニウム塩等のチアゾニウム塩;ベンジルアクリジウム塩等のアクリジウム塩等が挙げられる。
 上記ホスホニウム塩としては、例えば、テトラフェニルホスホニウム塩、テトラ-p-トリルホスホニウム塩、テトラキス(2-メトキシフェニル)ホスホニウム塩等のテトラアリールホスホニウム塩;トリフェニルベンジルホスホニウム塩等のトリアリールホスホニウム塩;トリエチルベンジルホスホニウム塩、トリブチルベンジルホスホニウム塩、テトラエチルホスホニウム塩、テトラブチルホスホニウム塩、トリエチルフェナシルホスホニウム塩等のテトラアルキルホスホニウム塩等が挙げられる。
 上記遷移金属錯体イオンの塩としては、例えば、(η5-シクロペンタジエニル)(η6-トルエン)Cr+、(η5-シクロペンタジエニル)(η6-キシレン)Cr+等のクロム錯体カチオンの塩;(η5-シクロペンタジエニル)(η6-トルエン)Fe+、(η5-シクロペンタジエニル)(η6-キシレン)Fe+等の鉄錯体カチオンの塩等が挙げられる。
 上述の塩を構成するアニオンとしては、例えば、SbF6 -、PF6 -、BF4 -、(CF3CF23PF3 -、(CF3CF2CF23PF3 -、(C654-、(C654Ga-、スルホン酸アニオン(トリフルオロメタンスルホン酸アニオン、ペンタフルオロエタンスルホン酸アニオン、ノナフルオロブタンスルホン酸アニオン、メタンスルホン酸アニオン、ベンゼンスルホン酸アニオン、p-トルエンスルホン酸アニオン等)、(CF3SO23-、(CF3SO22-、過ハロゲン酸イオン、ハロゲン化スルホン酸イオン、硫酸イオン、炭酸イオン、アルミン酸イオン、ヘキサフルオロビスマス酸イオン、カルボン酸イオン、アリールホウ酸イオン、チオシアン酸イオン、硝酸イオン等が挙げられる。
 上記熱カチオン重合開始剤としては、例えば、アリールスルホニウム塩、アリールヨードニウム塩、アレン-イオン錯体、第4級アンモニウム塩、アルミニウムキレート、三フッ化ホウ素アミン錯体等が挙げられる。
 上記アリールスルホニウム塩としては、例えば、ヘキサフルオロアンチモネート塩等が挙げられる。本開示の硬化性組成物においては、例えば、商品名「SP-66」、「SP-77」(以上、(株)ADEKA製);商品名「サンエイドSI-60L」、「サンエイドSI-80L」、「サンエイドSI-100L」、「サンエイドSI-150L」(以上、三新化学工業(株)製)等の市販品を使用することができる。上記アルミニウムキレートとしては、例えば、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)等が挙げられる。また、上記三フッ化ホウ素アミン錯体としては、例えば、三フッ化ホウ素モノエチルアミン錯体、三フッ化ホウ素イミダゾール錯体、三フッ化ホウ素ピペリジン錯体等が挙げられる。
 上記ラジカル重合開始剤は、本開示のポリオルガノシルセスキオキサン等のラジカル硬化性化合物のラジカル重合反応を開始乃至促進することができる化合物である。上記ラジカル重合開始剤としては、例えば、光ラジカル重合開始剤、熱ラジカル重合開始剤等が挙げられる。
 上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン、アセトフェノンベンジル、ベンジルジメチルケトン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ジメトキシアセトフェノン、ジメトキシフェニルアセトフェノン、ジエトキシアセトフェノン、ジフェニルジサルファイト、オルトベンゾイル安息香酸メチル、4-ジメチルアミノ安息香酸エチル(日本化薬(株)製、商品名「カヤキュアEPA」等)、2,4-ジエチルチオキサンソン(日本化薬(株)製、商品名「カヤキュアDETX」等)、2-メチル-1-[4-(メチル)フェニル]-2-モルホリノプロパノン-1(チバガイギ-(株)製、商品名「イルガキュア907」等)、1-ヒドロキシシクロヘキシルフェニルケトン(チバガイギ-(株)製、商品名「イルガキュア184」等)、2-ジメチルアミノ-2-(4-モルホリノ)ベンゾイル-1-フェニルプロパン等の2-アミノ-2-ベンゾイル-1-フェニルアルカン化合物、テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、ベンジル、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、4,4-ビスジエチルアミノベンゾフェノン等のアミノベンゼン誘導体、2,2’-ビス(2-クロロフェニル)-4,5,4’,5’-テトラフェニル-1,2’-ビイミダゾ-ル(保土谷化学(株)製、商品名「B-CIM」等)等のイミダゾール化合物、2,6-ビス(トリクロロメチル)-4-(4-メトキシナフタレン-1-イル)-1,3,5-トリアジン等のハロメチル化トリアジン化合物、2-トリクロロメチル-5-(2-ベンゾフラン2-イル-エテニル)-1,3,4-オキサジアゾール等のハロメチルオキサジアゾール化合物等を挙げることができる。また、必要に応じて、光増感剤を加えることができる。
 熱ラジカル重合開始剤としては、例えば、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシケタール、ケトンパーオキサイド等(具体的には、ベンゾイルパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイル)パーオキシヘキサン、t-ブチルパーオキシベンゾエート、t-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ジブチルパーオキシヘキサン、2,4-ジクロロベンゾイルパーオキサイド、1,4-ジ(2-t-ブチルパーオキシイソプロピル)ベンゼン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、メチルエチルケトンパーオキサイド、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート等)等の有機過酸化物類を挙げることができる。
 本開示の硬化性組成物における上記硬化触媒の含有量(配合量)は、本開示のポリオルガノシルセスキオキサン及び後述のその他のカチオン硬化性化合物の総量100重量部に対して、0.01~3.0重量部が好ましく、より好ましくは0.05~3.0重量部、さらに好ましくは0.1~1.0重量部(例えば、0.3~1.0重量部)である。硬化触媒の含有量を0.01重量部以上とすることにより、硬化反応を効率的に十分に進行させることができ、硬化物の表面硬度や接着性がより向上する傾向がある。一方、硬化触媒の含有量を3.0重量部以下とすることにより、硬化性組成物の保存性がいっそう向上したり、硬化物の着色が抑制される傾向がある。
 本開示の硬化性組成物は、さらに、本開示のポリオルガノシルセスキオキサン以外のカチオン硬化性化合物(「その他のカチオン硬化性化合物」と称する場合がある)及び/又は本開示のポリオルガノシルセスキオキサン以外のラジカル硬化性化合物(「その他のラジカル硬化性化合物」と称する場合がある)を含んでいてもよい。その他のカチオン硬化性化合物としては、公知乃至慣用のカチオン硬化性化合物を使用することができ、本開示のポリオルガノシルセスキオキサン以外のエポキシ化合物、オキセタン化合物、ビニルエーテル化合物等が挙げられる。なお、本開示の硬化性組成物においてその他のカチオン硬化性化合物は、1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記エポキシ化合物としては、分子内に1以上のエポキシ基(オキシラン環)を有する公知乃至慣用の化合物を使用することができ、特に限定されないが、例えば、脂環式エポキシ化合物(脂環式エポキシ樹脂)、芳香族エポキシ化合物(芳香族エポキシ樹脂)、脂肪族エポキシ化合物(脂肪族エポキシ樹脂)等が挙げられる。
 上記脂環式エポキシ化合物としては、分子内に1個以上の脂環と1個以上のエポキシ基とを有する公知乃至慣用の化合物が挙げられ、特に限定されないが、例えば、(1)分子内に脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(「脂環エポキシ基」と称する)を有する化合物;(2)脂環にエポキシ基が直接単結合で結合している化合物;(3)分子内に脂環及びグリシジルエーテル基を有する化合物(グリシジルエーテル型エポキシ化合物)等が挙げられる。
 上記(1)分子内に脂環エポキシ基を有する化合物としては、下記式(i)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000038
 上記式(i)中、Yは単結合又は連結基(1以上の原子を有する二価の基)を示す。上記連結基としては、例えば、二価の炭化水素基、炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、これらが複数個連結した基等が挙げられる。
 上記二価の炭化水素基としては、炭素数が1~18の直鎖又は分岐鎖状のアルキレン基、二価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖又は分岐鎖状のアルキレン基としては、例えば、メチレン基、メチルメチレン基、ジメチルメチレン基、エチレン基、プロピレン基、トリメチレン基等が挙げられる。上記二価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン基、1,3-シクロペンチレン基、シクロペンチリデン基、1,2-シクロヘキシレン基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、シクロヘキシリデン基等の二価のシクロアルキレン基(シクロアルキリデン基を含む)等が挙げられる。
 上記炭素-炭素二重結合の一部又は全部がエポキシ化されたアルケニレン基(「エポキシ化アルケニレン基」と称する場合がある)におけるアルケニレン基としては、例えば、ビニレン基、プロペニレン基、1-ブテニレン基、2-ブテニレン基、ブタジエニレン基、ペンテニレン基、ヘキセニレン基、ヘプテニレン基、オクテニレン基等の炭素数2~8の直鎖又は分岐鎖状のアルケニレン基等が挙げられる。上記エポキシ化アルケニレン基としては、炭素-炭素二重結合の全部がエポキシ化されたアルケニレン基が好ましく、より好ましくは炭素-炭素二重結合の全部がエポキシ化された炭素数2~4のアルケニレン基である。
 上記式(i)で表される脂環式エポキシ化合物の代表的な例としては、(3,4,3’,4’-ジエポキシ)ビシクロヘキシル、下記式(i-1)~(i-10)で表される化合物等が挙げられる。なお、下記式(i-5)、(i-7)中のl、mは、それぞれ1~30の整数を表す。下記式(i-5)中のR’は炭素数1~8のアルキレン基であり、中でも、メチレン基、エチレン基、プロピレン基、イソプロピレン基等の炭素数1~3の直鎖又は分岐鎖状のアルキレン基が好ましい。下記式(i-9)、(i-10)中のn1~n6は、それぞれ1~30の整数を示す。また、上記式(i)で表される脂環式エポキシ化合物としては、その他、例えば、2,2-ビス(3,4-エポキシシクロヘキシル)プロパン、1,2-ビス(3,4-エポキシシクロヘキシル)エタン、2,3-ビス(3,4-エポキシシクロヘキシル)オキシラン、ビス(3,4-エポキシシクロヘキシルメチル)エーテル等が挙げられる。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 上述の(2)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば、下記式(ii)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000041
 式(ii)中、R"は、p価のアルコールの構造式からp個の水酸基(-OH)を除いた基(p価の有機基)であり、p、nはそれぞれ自然数を表す。p価のアルコール[R"(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコール(炭素数1~15のアルコール等)等が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(外側の括弧内)の基におけるnは同一でもよく異なっていてもよい。上記式(ii)で表される化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物[例えば、商品名「EHPE3150」((株)ダイセル製)等]等が挙げられる。
 上述の(3)分子内に脂環及びグリシジルエーテル基を有する化合物としては、例えば、脂環式アルコール(例えば、脂環式多価アルコール)のグリシジルエーテルが挙げられる。より詳しくは、例えば、2,2-ビス[4-(2,3-エポキシプロポキシ)シクロへキシル]プロパン、2,2-ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]プロパンなどのビスフェノールA型エポキシ化合物を水素化した化合物(水素化ビスフェノールA型エポキシ化合物);ビス[o,o-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[o,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[p,p-(2,3-エポキシプロポキシ)シクロへキシル]メタン、ビス[3,5-ジメチル-4-(2,3-エポキシプロポキシ)シクロへキシル]メタンなどのビスフェノールF型エポキシ化合物を水素化した化合物(水素化ビスフェノールF型エポキシ化合物);水素化ビフェノール型エポキシ化合物;水素化フェノールノボラック型エポキシ化合物;水素化クレゾールノボラック型エポキシ化合物;ビスフェノールAの水素化クレゾールノボラック型エポキシ化合物;水素化ナフタレン型エポキシ化合物;トリスフェノールメタンから得られるエポキシ化合物の水素化エポキシ化合物;下記芳香族エポキシ化合物の水素化エポキシ化合物等が挙げられる。
 上記芳香族エポキシ化合物としては、例えば、ビスフェノール類と、エピハロヒドリンとの縮合反応により得られるエピビスタイプグリシジルエーテル型エポキシ樹脂;これらのエピビスタイプグリシジルエーテル型エポキシ樹脂を上記ビスフェノール類とさらに付加反応させることにより得られる高分子量エピビスタイプグリシジルエーテル型エポキシ樹脂;フェノール類とアルデヒドとを縮合反応させて得られる多価アルコール類を、さらにエピハロヒドリンと縮合反応させることにより得られるノボラック・アルキルタイプグリシジルエーテル型エポキシ樹脂;フルオレン環の9位に2つのフェノール骨格が結合し、かつこれらフェノール骨格のヒドロキシ基から水素原子を除いた酸素原子に、それぞれ、直接又はアルキレンオキシ基を介してグリシジル基が結合しているエポキシ化合物等が挙げられる。
 上記脂肪族エポキシ化合物としては、例えば、q価の環状構造を有しないアルコール(qは自然数である)のグリシジルエーテル;一価又は多価カルボン酸のグリシジルエステル;エポキシ化亜麻仁油、エポキシ化大豆油、エポキシ化ひまし油等の二重結合を有する油脂のエポキシ化物;エポキシ化ポリブタジエン等のポリオレフィン(ポリアルカジエンを含む)のエポキシ化物等が挙げられる。
 上記オキセタン化合物としては、分子内に1以上のオキセタン環を有する公知乃至慣用の化合物が挙げられる。上記ビニルエーテル化合物としては、分子内に1以上のビニルエーテル基を有する公知乃至慣用の化合物が挙げられる。
 その他のラジカル硬化性化合物としては、公知乃至慣用のラジカル硬化性化合物を使用することができ、特に限定されないが、例えば、本開示のポリオルガノシルセスキオキサン以外の(メタ)アクリル化合物が挙げられる。上記(メタ)アクリル化合物としては、分子内に1以上の(メタ)アクリル基を有する公知乃至慣用の化合物が挙げられる。
 本開示の硬化性組成物におけるその他のカチオン硬化性化合物及び/又はその他のラジカル硬化性化合物の含有量(配合量)は、特に限定されないが、本開示のポリオルガノシルセスキオキサン、その他のカチオン硬化性化合物とその他のラジカル硬化性化合物の総量(100重量%;カチオン硬化性化合物とラジカル硬化性化合物の全量)に対して、50重量%以下(例えば、0~50重量%)が好ましく、より好ましくは30重量%以下(例えば、0~30重量%)、さらに好ましくは10重量%以下である。
 本開示の硬化性組成物は、さらに、重合安定剤を含有していてもよい。重合安定剤は、カチオンをトラップすることによりカチオン重合の進行を抑制し、重合安定剤によるカチオンのトラップ能が飽和し、失活した段階で重合を進行させる作用を有する化合物である。本開示の硬化性組成物が重合安定剤を含有することにより、塗布・乾燥して接着剤層を形成した後、長期に亘って重合の進行を抑制することができ、接着性が求められるタイミングで加熱することで優れた接着性を発現する、保存安定性に優れた接着剤層を形成することができる。本開示の硬化性組成物が、接着剤用硬化性組成物である場合、重合安定剤を含有することが好ましい。
 上記重合安定剤としては、例えば、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ポリ([6-(1,1,3,3-テトラメチルブチル)イミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ])、テトラキス(2,2,6,6-テトラメチル-4-ピペリジル)ブタン-1,2,3,4-テトラカルボキシレート、2,2,6,6-テトラメチル-4-ピペリジニルベンゾエート、(ミックスト2,2,6,6-テトラメチル-4-ピペリジル/トリデシル)-1,2,3,4-ブタンテトラカルボキシレート、3,9-ビス(2,3-ジ-t-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン、ミックスト(2,2,6,6-テトラメチル-4-ピペリジル/β,β,β’,β’-テトラメチル-3-9-[2,4,8,10-テトラオキサスピロ[5.5]ウンデカン]ジエチル)-1,2,3,4-ブタンテトラカルボキシレート、ポリ([6-N-モルホリル-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチル-4-ピペリジル)イミノ])、[N-(2,2,6,6-テトラメチル-4-ピペリジル)-2-メチル-2-(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]プロピオンアミド、商品名「LA-77」、「LA-67」、「LA-57」(以上、(株)ADEKA製)、商品名「TINUVIN123」、「TINUVIN152」(以上、チバ・ジャパン(株)製)等のヒンダードアミン系化合物や、(4-ヒドロキシフェニル)ジメチルスルホニウムメチルサルファイト(例えば、商品名「サンエイドSI助剤」、三新化学工業(株)製)等のスルホニウム硫酸塩系化合物、商品名「アデカスタブ PEP-36」((株)ADEKA製)等のホスファイト系化合物等が挙げられる。中でも、接着剤の乾燥中の一部硬化をより起こりにくくし、硬化物の被接着体に対する接着性により優れる観点から、スルホニウム硫酸塩系化合物、ホスファイト系化合物が好ましい。
 上記重合安定剤は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。本開示の接着剤用硬化性組成物においては、中でも、2種以上の重合安定剤を含有することが好ましい。これにより、接着剤用硬化性組成物の保存安定性に顕著に優れ、接着剤の乾燥中の一部硬化をより一層起こりにくくし、硬化物の被接着体に対する接着性により一層優れる傾向がある。上記2種以上の重合安定剤として、スルホニウム硫酸塩系化合物、ホスファイト系化合物を少なくとも含有することが好ましい。
 本開示の硬化性組成物が上記重合安定剤を含有する場合、その含有量(配合量)は、特に限定されないが、本開示のポリオルガノシルセスキオキサン(その他のカチオン硬化性化合物を含む場合は、ポリオルガノシルセスキオキサンとその他のカチオン硬化性化合物の総量)100重量部に対して、0.005重量部以上が好ましく、好ましくは0.01~10重量部、さらに好ましくは0.02~1重量部である。上記含有量が0.005重量部以上であると、接着剤の乾燥中の一部硬化をより起こりにくくし、硬化物の被接着体に対する接着性により優れる傾向がある。重合安定剤を2種以上用いる場合、重合安定剤の総量は、本開示のポリオルガノシルセスキオキサン(その他のカチオン硬化性化合物を含む場合は、ポリオルガノシルセスキオキサンとその他のカチオン硬化性化合物の総量)100重量部に対して、0.1~10重量部が好ましく、より好ましくは0.2~1重量部である。
 本開示の硬化性組成物が上記重合安定剤及び硬化触媒を含有する場合、重合安定剤の含有量(配合量)は、特に限定されないが、硬化触媒100重量部に対して、1重量部以上が好ましく、より好ましくは3~200重量部、さらに好ましくは5~150重量部である。上記含有量が1重量部以上であると、接着剤の乾燥中の一部硬化をより起こりにくくし、硬化物の被接着体に対する接着性により優れる傾向がある。重合安定剤を2種以上用いる場合、重合安定剤の総量は、硬化触媒100重量部に対して、100~200重量部が好ましく、より好ましくは110~150重量部である。
 本開示の硬化性組成物には、好ましくは溶剤がさらに含有されていてもよい。溶剤としては、例えば、水、有機溶剤等が挙げられ、本開示のポリオルガノシルセスキオキサン及び必要に応じて使用される添加物を溶解することができ、且つ重合を阻害しないものであれば特に制限されることはない。
 溶剤は、沸点(1気圧における)が170℃以下の溶剤(例えば、トルエン、酢酸ブチル、メチルイソブチルケトン、キシレン、メシチレン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン等)を1種又は2種以上使用することが好ましい。
 溶剤は、硬化性組成物の用途に応じて適量使用すればよい。溶剤の使用量は、本開示の硬化性組成物に含まれる不揮発分の濃度として、例えば30~80重量%程度、好ましくは40~70重量%、より好ましくは50~60重量%である。溶剤の使用量が過剰であると、硬化性組成物の粘度が低くなり適度な膜厚の層を形成することが困難となる傾向がある。一方、溶剤の使用量が少なすぎると、硬化性組成物の粘度が高くなりすぎ、均一に塗布することが困難となる傾向がある。
 本開示の硬化性組成物は、さらに、その他任意の成分として、沈降シリカ、湿式シリカ、ヒュームドシリカ、焼成シリカ、酸化チタン、アルミナ、ガラス、石英、アルミノケイ酸、酸化鉄、酸化亜鉛、炭酸カルシウム、カーボンブラック、炭化ケイ素、窒化ケイ素、窒化ホウ素等の無機質充填剤、これらの充填剤をオルガノハロシラン、オルガノアルコキシシラン、オルガノシラザン等の有機ケイ素化合物により処理した無機質充填剤;シリコーン樹脂、エポキシ樹脂、フッ素樹脂等の有機樹脂微粉末;銀、銅等の導電性金属粉末等の充填剤、硬化助剤、安定化剤、難燃剤、難燃助剤、補強材、核剤、滑剤、ワックス、可塑剤、離型剤、耐衝撃改良剤、色相改良剤、透明化剤、レオロジー調整剤、加工性改良剤、着色剤、帯電防止剤、分散剤、表面調整剤、表面改質剤、艶消し剤、消泡剤、抑泡剤、脱泡剤、抗菌剤、防腐剤、粘度調整剤、増粘剤、光増感剤、発泡剤などの慣用の添加剤を含んでいてもよい。これらの添加剤は1種を単独で、又は2種以上を組み合わせて使用できる。
 本開示の硬化性組成物は、特に限定されないが、上記の各成分を室温で又は必要に応じて加熱しながら攪拌・混合することにより調製することができる。なお、本開示の硬化性組成物は、各成分があらかじめ混合されたものをそのまま使用する1液系の組成物として使用することもできるし、例えば、別々に保管しておいた2以上の成分を使用前に所定の割合で混合して使用する多液系(例えば、2液系)の組成物として使用することもできる。
 本開示の硬化性組成物は、特に限定されないが、常温(約25℃)で液体であることが好ましい。より具体的には、本開示の硬化性組成物は、溶媒20%に希釈した液[例えば、メチルイソブチルケトンの割合が20重量%である硬化性組成物(溶液)]の25℃における粘度として、300~20000mPa・sが好ましく、より好ましくは500~10000mPa・s、さらに好ましくは1000~8000mPa・sである。上記粘度を300mPa・s以上とすることにより、硬化物の耐熱性がより向上する傾向がある。一方、上記粘度を20000mPa・s以下とすることにより、硬化性組成物の調製や取り扱いが容易となり、また、硬化物中に気泡が残存しにくくなる傾向がある。なお、本開示の硬化性組成物の粘度は、粘度計(商品名「MCR301」、アントンパール社製)を用いて、振り角5%、周波数0.1~100(1/s)、温度:25℃の条件で測定される。
[硬化物]
 本開示の硬化性組成物におけるカチオン硬化性化合物又はラジカル硬化性化合物の重合反応を進行させることにより、該硬化性組成物を硬化させることができ、硬化物(「本開示の硬化物」と称する場合がある)を得ることができる。硬化の方法は、周知の方法より適宜選択でき、特に限定されないが、例えば、活性エネルギー線の照射、及び/又は、加熱する方法が挙げられる。上記活性エネルギー線としては、例えば、赤外線、可視光線、紫外線、X線、電子線、α線、β線、γ線等のいずれを使用することもできる。中でも、取り扱い性に優れる点で、紫外線が好ましい。
 本開示の硬化性組成物を活性エネルギー線の照射により硬化させる際の条件(活性エネルギー線の照射条件等)は、照射する活性エネルギー線の種類やエネルギー、硬化物の形状やサイズ等に応じて適宜調整することができ、特に限定されないが、紫外線を照射する場合には、例えば1~1000mJ/cm2程度とすることが好ましい。なお、活性エネルギー線の照射には、例えば、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、カーボンアーク、メタルハライドランプ、太陽光、LEDランプ、レーザー等を使用することができる。活性エネルギー線の照射後には、さらに加熱処理(アニール、エージング)を施してさらに硬化反応を進行させることができる。
 一方、本開示の硬化性組成物を加熱により硬化させる際の条件は、特に限定されないが、例えば、30~200℃が好ましく、より好ましくは50~190℃である。硬化時間は適宜設定可能である。
 本開示の硬化性組成物は上述のように、硬化させることによって、高い表面硬度かつ耐熱性を有し、耐屈曲性及び加工性に優れた硬化物を形成できる。従って、本開示の硬化性組成物は、ハードコートフィルムにおけるハードコート層を形成するための「ハードコート層形成用硬化性組成物」(「ハードコート液」や「ハードコート剤」等と称される場合がある)や積層半導体用接着剤として好ましく使用できる。本開示の硬化性組成物をハードコート層形成用硬化性組成物として用い、該組成物より形成されたハードコート層を有するハードコートフィルムは、高硬度及び高耐熱性を維持しながら、可とう性を有し、ロールトゥロールでの製造や加工に好適である。また、本開示の硬化性組成物を接着性用硬化性組成物として用いた場合、低温で硬化して、耐クラック性、耐熱性、被接着体に対する接着性及び密着性に優れた硬化物を形成することができるため、冷熱衝撃を付与しても接着層にクラックや剥離が生じることがなく、信頼性を有する装置を形成することができる。
 また、本開示の硬化性組成物は、基材上に設けた離型層上に塗工・乾燥させた未硬化又は半硬化のハードコート層の表面がタックフリーとなって、耐ブロッキング性が向上することから、ロール状に巻き取って取り扱うことが可能であり、さらに、該ハードコート層を成型品表面に転写・硬化させることにより、高い表面硬度を有するハードコート層を形成することができる。従って、本開示の硬化性組成物は、耐屈曲性に優れたハードコート層を形成するためのハードコート層形成用硬化性組成物としても好ましく使用することができる。
[ハードコートフィルム]
 本開示のハードコートフィルムは、基材と、当該基材の少なくとも一方の表面に形成されたハードコート層が積層されたハードコートフィルムであって、上記ハードコート層が、本開示の硬化性組成物(ハードコート層形成用硬化性組成物)により形成されたハードコート層(本開示の硬化性組成物の硬化物層)である。図9は、本開示のハードコートフィルムの一実施形態を示す模式図(断面図)である。1はハードコートフィルム、11はハードコート層、12は基材を示す。
 なお、本開示のハードコートフィルムにおけるハードコート層は、上記基材の一方の表面(片面)のみに形成されていてもよいし、両方の表面(両面)に形成されていてもよい。
 また、本開示のハードコートフィルムにおけるハードコート層は、上記基材のそれぞれの表面において、一部のみに形成されていてもよいし、全面に形成されていてもよい。
 本開示のハードコートフィルムにおける基材は、ハードコートフィルムの基材であって、ハードコート層以外を構成する部分をいう。上記基材としては、プラスチック基材、金属基材、セラミックス基材、半導体基材、ガラス基材、紙基材、木基材(木製基材)、表面が塗装表面である基材等の公知乃至慣用の基材を用いることができ、特に限定されない。中でも、プラスチック基材(プラスチック材料により構成された基材)が好ましい。
 上記プラスチック基材を構成するプラスチック材料は、特に限定されないが、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ポリイミド;ポリカーボネート;ポリアミド;ポリアセタール;ポリフェニレンオキサイド;ポリフェニレンサルファイド;ポリエーテルスルホン;ポリエーテルエーテルケトン;ノルボルネン系モノマーの単独重合体(付加重合体や開環重合体等)、ノルボルネンとエチレンの共重合体等のノルボルネン系モノマーとオレフィン系モノマーの共重合体(付加重合体や開環重合体等の環状オレフィンコポリマー等)、これらの誘導体等の環状ポリオレフィン;ビニル系重合体(例えば、ポリメチルメタクリレート(PMMA)等のアクリル樹脂、ポリスチレン、ポリ塩化ビニル、アクリロニトリル-スチレン-ブタジエン樹脂(ABS樹脂)等);ビニリデン系重合体(例えば、ポリ塩化ビニリデン等);トリアセチルセルロース(TAC)等のセルロース系樹脂;エポキシ樹脂;フェノール樹脂;メラミン樹脂;ユリア樹脂;マレイミド樹脂;シリコーン等の各種プラスチック材料が挙げられる。なお、上記プラスチック基材は、1種のみのプラスチック材料により構成されたものであってもよいし、2種以上のプラスチック材料により構成されたものであってもよい。
 中でも、上記プラスチック基材としては、本開示のハードコートフィルムとして透明性に優れたハードコートフィルムを得ることを目的とする場合には、透明性に優れた基材(透明基材)を用いることが好ましく、より好ましくはポリエステルフィルム(例えば、PET、PEN)、環状ポリオレフィンフィルム、ポリカーボネートフィルム、TACフィルム、PMMAフィルムである。
 上記プラスチック基材は、必要に応じて、酸化防止剤、紫外線吸収剤、耐光安定剤、熱安定剤、結晶核剤、難燃剤、難燃助剤、充填剤、可塑剤、耐衝撃性改良剤、補強剤、分散剤、帯電防止剤、発泡剤、抗菌剤等のその他の添加剤を含んでいてもよい。なお、添加剤は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。
 上記プラスチック基材は、単層の構成を有していてもよいし、多層(積層)の構成を有していてもよく、その構成(構造)は特に限定されない。例えば、上記プラスチック基材は、プラスチックフィルムの少なくとも一方の表面に本開示のハードコート層以外の層(「その他の層」と称する場合がある)が形成された、「プラスチックフィルム/その他の層」又は「その他の層/プラスチックフィルム/その他の層」等の積層構成を有するプラスチック基材であってもよい。上記その他の層としては、例えば、本開示のハードコート層以外のハードコート層等が挙げられる。なお、上記その他の層を構成する材料としては、例えば、上述のプラスチック材料等が挙げられる。
 上記プラスチック基材の表面の一部又は全部には、粗化処理、易接着処理、静電気防止処理、サンドブラスト処理(サンドマット処理)、コロナ放電処理、プラズマ処理、ケミカルエッチング処理、ウォーターマット処理、火炎処理、酸処理、アルカリ処理、酸化処理、紫外線照射処理、シランカップリング剤処理等の公知乃至慣用の表面処理が施されていてもよい。なお、上記プラスチック基材は、未延伸フィルムであってもよいし、延伸フィルムであってもよい。
 上記プラスチック基材は、例えば、上述のプラスチック材料をフィルム状に成形してプラスチック基材(プラスチックフィルム)とする方法、必要に応じてさらに上記プラスチックフィルムに対して適宜な層(例えば、上記その他の層等)を形成したり、適宜な表面処理を施す方法等の、公知乃至慣用の方法により製造することができる。なお、上記プラスチック基材としては、市販品を使用することもできる。
 上記基材の厚みは、特に限定されないが、例えば、0.01~10000μmの範囲から適宜選択することができる。
 本開示のハードコートフィルムにおけるハードコート層は、本開示のハードコートフィルムにおける少なくとも一方の表面層を構成する層であり、本開示の硬化性組成物(ハードコート層形成用硬化性組成物)を硬化させることにより得られる硬化物(樹脂硬化物)により形成された層(硬化物層)である。
 本開示のハードコート層の厚み(基材の両面にハードコート層を有する場合は、それぞれのハードコート層の厚み)は、特に限定されないが、1~200μmが好ましく、より好ましくは3~150μmである。本開示のハードコート層は、薄い場合(例えば、厚み5μm以下の場合)であっても、表面の高硬度を維持すること(例えば、鉛筆硬度を3H以上とすること)が可能である。また、厚い場合(例えば、厚み50μm以上の場合)であっても、硬化収縮等に起因するクラック発生等の不具合が生じにくいため、厚膜化によって鉛筆硬度を著しく高めること(例えば、鉛筆硬度を9H以上とすること)が可能である。
 ハードコート層のヘイズは、特に限定されないが、50μmの厚みの場合で、1.5%以下が好ましく、より好ましくは1.0%以下である。なお、ヘイズの下限は、特に限定されないが、例えば、0.1%である。ヘイズを1.0%以下とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本開示のハードコート層のヘイズは、JIS K7136に準拠して測定することができる。
 ハードコート層の全光線透過率は、特に限定されないが、50μmの厚みの場合で、85%以上が好ましく、より好ましくは90%以上である。なお、全光線透過率の上限は、特に限定されないが、例えば、99%である。全光線透過率を85%以上とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本開示のハードコート層の全光線透過率は、JIS K7361-1に準拠して測定することができる。
 本開示のハードコートフィルムは、さらに、本開示のハードコート層表面に表面保護フィルムを有していてもよい。本開示のハードコートフィルムが表面保護フィルムを有することにより、ハードコートフィルムの打ち抜き加工性がいっそう向上する傾向がある。このように表面保護フィルムを有する場合には、例えば、ハードコート層の硬度が非常に高く、打ち抜き加工時に基材からの剥離やクラックが発生しやすいものであっても、このような問題を生じさせることなくトムソン刃を使用した打ち抜き加工を行うことができる。上記表面保護フィルムとしては、公知乃至慣用の表面保護フィルムを使用することができる。
 本開示のハードコートフィルムは、公知乃至慣用のハードコートフィルムの製造方法に準じて製造することができ、その製造方法は特に限定されないが、例えば、上記基材の少なくとも一方の表面に本開示の硬化性組成物(ハードコート層形成用硬化性組成物)を塗布し、必要に応じて溶剤を乾燥によって除去した後、該硬化性組成物(硬化性組成物層)を硬化させることにより製造できる。硬化性組成物を硬化させる際の条件は、特に限定されず、例えば、上述の硬化物を形成する際の条件から適宜選択可能である。
 本開示のハードコートフィルムにおける本開示のハードコート層は、耐屈曲性及び加工性に優れた硬化物を形成できる本開示の硬化性組成物(ハードコート層形成用硬化性組成物)より形成されたハードコート層であるため、本開示のハードコートフィルムは、ロールトゥロール方式での製造が可能である。本開示のハードコートフィルムをロールトゥロール方式で製造することにより、その生産性を著しく高めることが可能である。本開示のハードコートフィルムをロールトゥロール方式で製造する方法としては、公知乃至慣用のロールトゥロール方式の製造方法を採用することができ、特に限定されないが、例えば、ロール状に巻いた基材を繰り出す工程(工程A)と、繰り出した基材の少なくとも一方の表面に本開示の硬化性組成物(ハードコート層形成用硬化性組成物)を塗布し、次いで、必要に応じて溶剤を乾燥によって除去した後、該硬化性組成物(硬化性組成物層)を硬化させることにより本開示のハードコート層を形成する工程(工程B)と、その後、得られたハードコートフィルムを再びロールに巻き取る工程(工程C)とを必須の工程として含み、これら工程(工程A~C)を連続的に実施する方法等が挙げられる。なお、当該方法は、工程A~C以外の工程を含んでいてもよい。
 本開示のハードコートフィルムの厚みは、特に限定されず、1~10000μmの範囲から適宜選択することができる。
 本開示のハードコートフィルムのハードコート層表面の鉛筆硬度は、4H以上が好ましく、より好ましくは5H以上、さらに好ましくは6H以上である。なお、鉛筆硬度は、JIS K5600-5-4に記載の方法に準じて評価することができる。
 本開示のハードコートフィルムのヘイズは、特に限定されないが、1.5%以下が好ましく、より好ましくは1.0%以下である。なお、ヘイズの下限は、特に限定されないが、例えば、0.1%である。ヘイズを1.0%以下とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本開示のハードコートフィルムのヘイズは、例えば、基材として上述の透明基材を使用することによって容易に上記範囲に制御することができる。なお、ヘイズは、JIS K7136に準拠して測定することができる。
 本開示のハードコートフィルムの全光線透過率は、特に限定されないが、85%以上が好ましく、より好ましくは90%以上である。なお、全光線透過率の上限は、特に限定されないが、例えば、99%である。全光線透過率を90%以上とすることにより、例えば、非常に高い透明性が要求される用途(例えば、タッチパネル等のディスプレイの表面保護シート等)への使用に適する傾向がある。本開示のハードコートフィルムの全光線透過率は、例えば、基材として上述の透明基材を使用することによって容易に上記範囲に制御することができる。なお、全光線透過率は、JIS K7361-1に準拠して測定することができる。
 本開示のハードコートフィルムは、高硬度及び高耐熱性を維持しながら、可とう性を有し、ロールトゥロール方式での製造や加工が可能であるため、高い品質を有し、生産性にも優れる。本開示のハードコート層表面に表面保護フィルムを有する場合には、打ち抜き加工性にも優れる。このため、このような特性が要求されるあらゆる用途に好ましく使用することができる。本開示のハードコートフィルムは、例えば、各種製品における表面保護フィルム、各種製品の部材又は部品における表面保護フィルム等として使用することもできるし、また、各種製品やその部材又は部品の構成材として使用することもできる。上記製品としては、例えば、液晶ディスプレイ、有機ELディスプレイなどの表示装置;タッチパネルなどの入力装置:太陽電池;各種家電製品;各種電気・電子製品;携帯電子端末(例えば、ゲーム機器、パソコン、タブレット、スマートフォン、携帯電話等)の各種電気・電子製品;各種光学機器等が挙げられる。また、本開示のハードコートフィルムが各種製品やその部材又は部品の構成材として使用される態様としては、例えば、タッチパネルにおけるハードコートフィルムと透明導電フィルムの積層体等に使用される態様等が挙げられる。
[転写用フィルム]
 本開示の転写用フィルム(転写用ハードコートフィルム)は、基材と、該基材の少なくとも一方の表面に形成された離型層上に、未硬化又は半硬化のハードコート層とを有するフィルムであって、上記未硬化又は半硬化のハードコート層が、本開示の硬化性組成物(ハードコート層形成用硬化性組成物(以下、「本開示のハードコート剤」と称する場合がある。)を含む層である。ここで、未硬化とは、本開示のハードコート層形成用硬化性組成物(ハードコート剤)に含まれる本開示のポリオルガノシルセスキオキサンの重合性官能基が重合反応していない状態を意味する。また、半硬化とは、該重合性官能基の一部が重合反応し、未反応の重合性官能基が残存している状態を意味する。なお、本明細書においては、本開示の硬化性組成物(ハードコート剤)により形成された未硬化又は半硬化のハードコート層を、単に「ハードコート層」、成型品に転写・硬化されたハードコート層を、「硬化ハードコート層」と称する場合がある。図10は、本開示の転写用フィルムの一実施形態を示す模式図(断面図)である。2は転写用フィルム、21は基材、22は離型層、23はハードコート層(未硬化又は半硬化のハードコート層)、24はアンカーコート層、25は着色層、26は接着剤層を示す。
 本開示の転写用フィルムにおける基材は、転写用フィルムの基材であって、本開示のハードコート層を含む転写層以外を構成する部分をいう。ここで、転写層とは、本開示の転写用フィルムにおいて、離型層が形成された基材を除いた層であり、成型品の表面に転写される部分をいう。
 上記基材としては、上記ハードコートフィルムで挙げた基材を用いることができるが、中でも基材としてはプラスチック基材(プラスチックフィルム)が好ましい。上記基材の厚みは、例えば、0.01~10000μmの範囲から適宜選択することができるが、成型性や形状追従性、取り扱い性等の観点から、2~250μmが好ましく、5~100μmがより好ましく、20~100μmがさらに好ましい。
 本開示の転写用フィルムにおける離型層は、本開示の転写用フィルムにおける基材の少なくとも一方の表面層を構成する層であり、転写層の基材からの剥離を容易に行うために設けられる層である。離型層を設けることで、転写用フィルムから転写層を確実かつ容易に被転写体(成型品)へ転写させ、基材を確実に剥離することができる。
 本開示の転写用フィルムにおいて、離型層とハードコート層の剥離強度は、特に限定されるものではないが、30~500mN/24mmが好ましく、より好ましくは40~300mN/24mm、さらに好ましくは50~200mN/24mmである。剥離強度がこの範囲にあることにより、通常の取扱い時にはハードコート層が剥離することなく、成型品への転写と同時にハードコートを容易に剥離できる傾向がある。本開示のハードコート層と離型層の剥離強度は、JIS Z0237に準拠して測定することができる。
 なお、本開示の転写フィルムにおける離型層は、上記基材の一方の表面(片面)のみに形成されていてもよいし、両方の表面(両面)に形成されていてもよい。また、本開示の転写用フィルムにおける離型層は、上記基材のそれぞれの表面において、一部のみに形成されていてもよいし、全面に形成されていてもよい。
 離型層を形成する成分としては、公知公用の離型剤を特に制限なく使用することができ、例えば、不飽和エステル系樹脂、エポキシ系樹脂、エポキシ-メラミン系樹脂、アミノアルキド系樹脂、アクリル系樹脂、メラミン系樹脂、シリコン系樹脂、フッ素系樹脂、セルロース系樹脂、尿素樹脂系樹脂、ポリオレフィン系樹脂、パラフィン系樹脂、シクロオレフィン系樹脂から選ばれる少なくとも一種を使用することができる。転写層において上記離型層と接する本開示のハードコート層との剥離性の観点から、前記離型層としては、メラミン系樹脂、シクロオレフィン系樹脂が好ましく、2-ノルボルネン・エチレン共重合体等のシクロオレフィン共重合体樹脂(COC樹脂)がより好ましい。
 離型層を基材表面に形成する方法も、公知公用の離型処理法を特に制限なく使用することができる。例えば、上記樹脂を溶媒(例、メタノール、ブタノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素、テトラヒドロフラン等)に分散又は溶解して、バーコート、メイヤーバーコート、グラビアコート、ロールコート等の公知のコーティング方法で塗工、乾燥し、80~200℃で加熱することにより、離型層を形成することができる。離型層の厚さも特に限定されず、通常、0.01~5μm、好ましくは0.1~3.0μmの範囲から選択できる。
 本開示の転写用フィルムにおけるハードコート層は、上記離型層における少なくとも一方の表面層を構成する層であり、本開示の硬化性組成物(ハードコート剤)を乾燥させた未硬化の層、又は一部硬化させた半硬化の層である。半硬化のハードコート層は、未硬化のハードコート層を上述の活性エネルギー線照射又は加熱により硬化を一部進行させることにより形成することができる。本開示の未硬化又は半硬化のハードコート層は、指を表面に接触させた際に樹脂が付着しない低タック性と優れた耐ブロッキング性を有し、ロール状に巻回して取り扱うことが可能である。
 なお、本開示の転写用フィルムにおけるハードコート層は、上記基材の一方の離型層(片面)のみに形成されていてもよいし、両方の離型層(両面)に形成されていてもよい。また、本開示の転写用フィルムにおける本開示のハードコート層は、上記離型層のそれぞれの表面において、一部のみに形成されていてもよいし、全面に形成されていてもよい。
 本開示の転写用フィルムの離型層上にハードコート層を積層させる方法としては、特に限定されないが、公知の方法で離型層上に本開示の硬化性組成物(ハードコート剤)を塗工・乾燥させて未硬化のハードコート層を形成させるか、さらに未硬化のハードコート層に活性化エネルギー線照射又は加熱を行い半硬化のハードコート層を形成させる方法が挙げられる。本開示の硬化性組成物(ハードコート剤)の塗工方法としては、公知のコーティング方法を制限なく使用することができ、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷等が挙げられる。ハードコート層を形成する際の加熱温度は、特に限定されないが、好ましくは50~200℃から適宜選択することができる。加熱時間も特に限定されないが、好ましくは1~60分から適宜選択することができる。ハードコート層に活性化エネルギー線を照射する条件は、特に限定されず、例えば、上述の硬化物を形成する際の条件から適宜選択可能である。
 本開示の転写用フィルムにおけるハードコート層の厚み(基材の両面にハードコート層を有する場合は、それぞれのハードコート層の厚み)は、特に限定されないが、1~200μmが好ましく、より好ましくは3~150μmである。ハードコート層が薄い場合(例えば、厚み5μm以下の場合)であっても、表面の高硬度を維持すること(例えば、鉛筆硬度を5H以上とすること)が可能である。また、厚い場合(例えば、厚み50μm以上の場合)であっても、硬化収縮等に起因するクラック発生等の不具合が生じにくいため、厚膜化によって鉛筆硬度を著しく高めること(例えば、鉛筆硬度を9H以上とすること)が可能である。
 本開示の転写用フィルムにおけるハードコート層のヘイズは、特に限定されないが、50μmの厚みの場合で、1.5%以下が好ましく、より好ましくは1.0%以下である。なお、ヘイズの下限は、特に限定されないが、例えば、0.1%である。ヘイズを1.0%以下とすることにより、例えば、本開示の転写用フィルムを加飾フィルムとして使用する場合に、模様、絵柄等を鮮明に転写できるため好ましい。本開示のハードコート層のヘイズは、JIS K7136に準拠して測定することができる。
 本開示の転写用フィルムにおけるハードコート層の全光線透過率は、特に限定されないが、50μmの厚みの場合で、85%以上が好ましく、より好ましくは90%以上である。なお、全光線透過率の上限は、特に限定されないが、例えば、99%である。全光線透過率を85%以上とすることにより、例えば、本開示の転写用フィルムを加飾フィルムとして使用する場合に、模様、絵柄等を鮮明に転写できるため好ましい。本開示のハードコート層の全光線透過率は、JIS K7361-1に準拠して測定することができる。
 本開示の転写用フィルムは、好ましくは、ハードコート層上に、アンカーコート層及び接着剤層が、この順でさらに積層される。さらに、本開示の転写用フィルムを加飾フィルムとして使用する場合には、少なくとも1層の着色層が積層される。着色層の積層位置は特に限定されないが、好ましくは、アンカーコート層と接着剤層との間に1層又は2層以上積層される態様が好ましい。
 本開示の転写用フィルムにおけるアンカーコート層は、ハードコート層と、接着剤層又は着色層等との密着性を向上させるために設けられるものである。アンカーコート層は、着色層の模様、絵柄等を鮮明に転写するためには、透明又は半透明な層であることが好ましく、フェノール樹脂、アルキド樹脂、メラミン系樹脂(例えば、メチル化メラミン樹脂、ブチル化メラミン樹脂、メチルエーテル化メラミン樹脂、ブチルエーテル化メラミン樹脂、メチルブチル混合エーテル化メラミン樹脂等)、エポキシ系樹脂(例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、多官能エポキシ樹脂、可撓性エポキシ樹脂、臭素化エポキシ樹脂、グリシジルエステル型エポキシ樹脂、高分子型エポキシ樹脂、ビフェニル型エポキシ樹脂等)、尿素樹脂、不飽和ポリエステル樹脂、ウレタン系樹脂[例えば、イソシアネート基を2個以上持ったポリイソシアネート化合物(O=C=N-R-N=C=O)と、水酸基を2個以上持ったポリオール化合物(HO-R’-OH)、ポリアミン(H2N-R”-NH2)、又は水などの活性水素(-NH2,-NH,-CONH-など)を持った化合物などとの反応により得ることができるウレタン樹脂]、熱硬化性ポリイミド、シリコーン樹脂等の熱硬化性樹脂や、塩化ビニル-酢酸ビニル共重合体樹脂、アクリル樹脂(例えば、アクリルポリオール系樹脂等)、塩化ゴム、ポリアミド樹脂、硝化綿樹脂、環状ポリオレフィン系樹脂等の熱可塑性樹脂等の1種単独又は2種以上の混合物が用いられるが、エポキシ系樹脂が好ましい。
 上記アンカーコート用樹脂は、さらに、その他任意の成分として、ワックス、シリカ、可塑剤、レベリング剤、界面活性剤、分散剤、消泡剤、紫外線吸収剤、紫外線安定剤、酸化防止剤などの慣用の添加剤を、本開示の効果を損なわない範囲で含んでいてもよい。これらの添加剤は1種を単独で、又は2種以上を組み合わせて使用できる。
 アンカーコート層は、上記樹脂を溶媒に溶解した塗工液を、本開示のハードコート層上に、バーコート、メイヤーバーコート、グラビアコート、ロールコート等の公知のコーティング方法で塗布、乾燥して、必要により加熱して形成することができる。アンカーコート層を形成する際に加熱する場合の温度は、特に限定されないが、好ましくは50~200℃から適宜選択することができる。加熱時間も特に限定されないが、好ましくは10秒~60分から適宜選択することができる。
 アンカーコート層の厚みは、通常、0.1~20μm程度であり、好ましくは、0.5~5μmの範囲である。
 本開示のアンカーコート層は、市販のアンカーコート剤を用いて形成してもよい。市販のアンカーコート剤としては、例えば、K468HPアンカー(東洋インキ株式会社製エポキシ樹脂系アンカーコート剤)、TM-VMAC(大日精化工業株式会社製アクリルポリオール樹脂系アンカーコート剤)などが挙げられる。
 本開示の転写用フィルムにおける接着剤層は、転写層(ハードコート層、所望により積層されるアンカーコート層、及び着色層を含む)を、接着性良く成型品に転写するために設けられるものである。接着剤層としては、感熱接着剤や加圧接着剤などで構成されるものが挙げられるが、本開示においては、必要に応じて加熱及び加圧によって、成型品に対する密着性を発現するヒートシール層であることが好ましい。接着剤層に用いられる樹脂としては、例えば、アクリル系樹脂、塩化ビニル系樹脂、酢酸ビニル系樹脂、塩化ビニル-酢酸ビニル系共重合樹脂、スチレン-アクリル系共重合樹脂、ポリエステル系樹脂、ポリアミド系樹脂などの樹脂の1種単独又は2種以上の混合物が用いられるが、アクリル系樹脂、塩化ビニル-酢酸ビニル系共重合樹脂が好ましい。
 本開示の接着剤層に用いられるアクリル系樹脂としては、例えば、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、メチル(メタ)アクリレート-ブチル(メタ)アクリレート共重合体、メチル(メタ)アクリレート-スチレン共重合体などのアクリル系樹脂、フッ素などによる変性アクリル樹脂が挙げられ、これらを1種又は2種以上の混合物として用いることができる。この他、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレートなどの(メタ)アクリル酸アルキルエステルと、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなどの分子中に水酸基を有する(メタ)アクリル酸エステルと、を共重合させて得られるアクリルポリオールを用いることもできる。また、塩化ビニル-酢酸ビニル系共重合体樹脂としては、通常、酢酸ビニル含有量が5~20質量%程度、平均重合度350~900程度のものが用いられる。必要に応じ、塩化ビニル-酢酸ビニル系共重合体樹脂にさらにマレイン酸、フマル酸などのカルボン酸を共重合させても良い。この他、副成分の樹脂として、必要に応じて、適宜その他の樹脂、例えば、熱可塑性ポリエステル系樹脂、熱可塑性ウレタン系樹脂、塩素化ポリエチレン、塩素化ポリプロピレンなどの塩素化ポリオレフィン系樹脂などの樹脂を混合しても良い。
 接着剤層は、上記樹脂の1種又は2種以上の溶液又はエマルジョンなど塗布可能な形態にしたものを、バーコート、メイヤーバーコート、グラビアコート、ロールコート等の公知のコーティング方法で塗布、乾燥して、必要により加熱して形成することができる。接着剤層を形成する際に加熱する場合の温度は、好ましくは50~200℃から適宜選択することができる。加熱時間は、好ましくは10秒~60分から適宜選択することができる。
 接着剤層の厚みとしては、転写用フィルムを接着性良く、かつ効率的に成型品に転写し得るという点から、0.1~10μm程度が好ましく、0.5~5μmがより好ましい。
 接着剤層には、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シュウ酸アニリド系化合物、シアノアクリレート系化合物、サリシレート系化合物などの有機系の紫外線吸収剤や、また亜鉛、チタン、セリウム、スズ、鉄などの酸化物のような無機系の紫外線吸収能を有する微粒子の添加剤を配合してもよい。また、添加剤として、着色顔料、白色顔料、体質顔料、充填剤、帯電防止剤、酸化防止剤、蛍光増白剤なども適宜、必要に応じて使用することができる。
 上記接着剤としては、市販品を用いてもよい。市販の接着剤としては、例えば、K588HP接着グロスAワニス(東洋インキ株式会社製塩化ビニル-酢酸ビニル共重合樹脂系接着剤)、PSHP780(東洋インキ株式会社製アクリル樹脂系接着剤)などが挙げられる。
 本開示の転写フィルムにおける着色層は、絵柄層及び/又は隠蔽層を成型品に転写するための加飾フィルムとする場合に設けられるものである。ここで、絵柄層は、模様や文字などとパターン状の絵柄を表現するために設けられる層であり、隠蔽層は、通常全面ベタ層であり射出樹脂などの着色等を隠蔽するために設けられる層である。隠蔽層には、絵柄層の絵柄を引き立てるために絵柄層の内側に設けられる場合の外、それ単独で装飾層を形成する場合がある。
 本開示に係る絵柄層は、模様や文字などとパターン状の絵柄を表現するために設けられる層である。絵柄層の絵柄は任意であるが、例えば、木目、石目、布目、砂目、幾何学模様、文字などからなる絵柄を挙げることができる。
 着色層は、通常は、上記のハードコート層又はアンカーコート層に印刷インキでグラビア印刷、オフセット印刷、シルクスクリーン印刷、転写シートからの転写印刷、昇華転写印刷、インキジェット印刷などの公知の印刷法により形成することで、ハードコート層と接着剤層との間、又はアンカーコート層と接着剤層との間に形成することができる。着色層の厚みは、意匠性の観点から3~40μmが好ましく、10~30μmがより好ましい。
 着色層の形成に用いられる印刷インキのバインダー樹脂としては、ポリエステル系樹脂、ポリウレタン系樹脂、アクリル系樹脂、酢酸ビニル系樹脂、塩化ビニル-酢酸ビニル系共重合体樹脂、セルロース系樹脂などを好ましく挙げることができるが、アクリル系樹脂単独又はアクリル系樹脂と塩化ビニル-酢酸ビニル系共重合体樹脂との混合物を主成分とするのが好ましい。これらの中では、アクリル系樹脂、塩化ビニル-酢酸ビニル系共重合体樹脂又は別のアクリル系樹脂を混合すると印刷適性、成形適性がより良好となり好ましい。ここで、アクリル系樹脂としては、ポリメチル(メタ)アクリレート、ポリエチル(メタ)アクリレート、ポリブチル(メタ)アクリレート、メチル(メタ)アクリレート-ブチル(メタ)アクリレート共重合体、メチル(メタ)アクリレート-スチレン共重合体などのアクリル系樹脂、フッ素などによる変性アクリル樹脂が挙げられ、これらを1種又は2種以上の混合物として用いることができる。この他、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレートなどの(メタ)アクリル酸アルキルエステルと、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレートなどの分子中に水酸基を有する(メタ)アクリル酸エステルと、を共重合させて得られるアクリルポリオールを用いることもできる。また、塩化ビニル-酢酸ビニル系共重合体樹脂としては、通常、酢酸ビニル含有量が5~20質量%程度、平均重合度350~900程度のものが用いられる。必要に応じ、塩化ビニル-酢酸ビニル系共重合体樹脂にさらにマレイン酸、フマル酸などのカルボン酸を共重合させても良い。アクリル系樹脂と塩化ビニル-酢酸ビニル系共重合体樹脂との混合比は、アクリル系樹脂/塩化ビニル-酢酸ビニル系共重合体樹脂=1/9~9/1(質量比)程度である。この他、副成分の樹脂として、必要に応じて、適宜その他の樹脂、例えば、熱可塑性ポリエステル系樹脂、熱可塑性ウレタン系樹脂、塩素化ポリエチレン、塩素化ポリプロピレンなどの塩素化ポリオレフィン系樹脂などの樹脂を混合しても良い。
 上記着色層に用いられる着色剤としては、アルミニウム、クロム、ニッケル、錫、チタン、リン化鉄、銅、金、銀、真鍮などの金属、合金、又は金属化合物の鱗片状箔粉からなるメタリック顔料、マイカ状酸化鉄、二酸化チタン被覆雲母、二酸化チタン被覆オキシ塩化ビスマス、オキシ塩化ビスマス、二酸化チタン被覆タルク、魚鱗箔、着色二酸化チタン被覆雲母、塩基性炭酸鉛などの箔粉からなる真珠光沢(パール)顔料、アルミン酸ストロンチウム、アルミン酸カルシウム、アルミン酸バリウム、硫化亜鉛、硫化カルシウムなどの蛍光顔料、二酸化チタン、亜鉛華、三酸化アンチモンなどの白色無機顔料、亜鉛華、弁柄、朱、群青、コバルトブルー、チタン黄、黄鉛、カーボンブラックなどの無機顔料、イソインドリノンイエロー、ハンザイエローA、キナクリドンレッド、パーマネントレッド4R、フタロシアニンブルー、インダスレンブルーRS、アニリンブラックなどの有機顔料(染料も含む)を1種又は2種以上混合して用いることができる。
 このような着色層は、本開示の転写用フィルムに意匠性を付与するために設けられる層であるが、意匠性を向上させる目的で、さらに金属薄膜層などを形成しても良い。金属薄膜層の形成は、アルミニウム、クロム、金、銀、銅などの金属を用いて、真空蒸着、スパッタリングなどの方法で製膜することができる。この金属薄膜層は全面に設けても、部分的にパターン状に設けても良い。
 着色層の形成に用いられる印刷インキは、上記成分の他に、沈降防止剤、硬化触媒、紫外線吸収剤、酸化防止剤、レベリング剤、増粘剤、消泡剤、滑剤などを適宜添加することができる。印刷インキは、上記成分を、通常溶剤に溶解又は分散した態様で提供される。溶剤としては、バインダー樹脂を溶解又は分散させるものであれば良く、有機溶剤及び/又は水を使用することができる。有機溶剤としては、トルエン、キシレンなどの炭化水素類、アセトン、メチルエチルケトンなどのケトン類、酢酸エチル、セロソルブアセテート、ブチルセロソルブアセテートなどのエステル類、アルコール類が挙げられる。
 本開示の転写用フィルムは、上記の基材、離型層、ハードコート層、アンカーコート層、接着剤層、着色層の他に、所望に応じて、低反射層、帯電防止層、紫外線吸収層、近赤外線遮断層、電磁波吸収層などを任意の順番で積層させてもよい。
 本開示の転写用フィルムの厚みは、特に限定されず、1~10000μmの範囲から適宜選択することができが、成型性や形状追従性、取り扱い性等の観点から、2~250μmが好ましく、5~150μmがより好ましく、25~150μmがさらに好ましい。
 本開示の転写用フィルムのハードコート層は、タックフリーで耐ブロッキング性に優れ、ロール状に巻き取って取り扱うことが可能であるため、インモールド射出成型の転写用フィルムとして、好適に用いることができる。例えば、固定金型と可動金型よりなる金型内に搬送ロールなどで本開示の転写用フィルムが連続的に搬送され、基材フィルム側が固定金型面と接し、適切な位置調整がなされた後に、可動金型が移動して型締めする。そして、あらかじめ熱により溶融させた熱可塑性樹脂を、高温高圧で金型内に転写用フィルムの転写層側より射出充填し、急冷した後で金型を開き、本開示のハードコート層が最表面に転写された成型品(インモールド成型品)を取り出すことができる。
 上記成形品の本開示のハードコート層が未硬化又は半硬化である場合は、該ハードコート層を活性エネルギー線の照射、及び/又は、加熱してハードコート層を硬化させてもよい。ハードコート層を活性エネルギー線の照射、及び/又は、加熱する際の条件は、特に限定されず、例えば、上述の硬化物を形成する際の条件から適宜選択可能である。
 本開示の転写用フィルムの転写層が成形品に転写された後に、成型品の最表面に本開示の硬化ハードコート層が形成されるため、成型品表面の鉛筆硬度を非常に高くすることができ、好ましくは5H以上、より好ましくは6H以上である。なお、鉛筆硬度は、JIS K5600-5-4に記載の方法に準じて評価することができる。
 本開示の転写用フィルムを使用してインモールド射出成型法により製造された成形品(インモールド成型品)は、表面硬度が非常に高く、絵柄、模様が鮮明に転写されるため、このような特性が要求されるあらゆる成型品に好ましく使用することができる。本開示の転写用フィルムは、例えば、自動車のダッシュボード等の車内外装品、家電製品の筐体等の高い表面硬度と耐擦傷性、意匠性、耐久性が要求される各種の外装成型品に好適に使用することができる。
[接着シート]
 本開示の硬化性組成物(接着性用硬化性組成物、積層半導体用硬化性組成物)を用いることにより、基材の少なくとも一方の面に、本開示の硬化性組成物から形成された接着剤層を有する接着シートを得ることができる。図11は、本開示の接着シートの一実施形態を示す模式図(断面図)である。3は接着シート、31は接着剤層、32は基材、33はアンカーコート層を示す。
 上記接着シートは、例えば、基材に本開示の硬化性組成物(接着性用硬化性組成物、積層半導体用硬化性組成物)を塗布し、さらに、必要に応じて乾燥させることによって得ることができる。塗布の方法は特に限定されず、周知慣用の手段を利用することができる。また、乾燥の手段や条件も特に限定されず、溶媒等の揮発分をできるだけ除去できる条件を設定することができ、周知慣用の手段を用いることができる。本開示の硬化性組成物が、セロキサイド2021P((株)ダイセル製)100重量部に対して1重量部添加して得られる組成物の130℃における熱硬化時間が3.5分以上である重合開始剤を含有する場合は、加熱乾燥することにより、硬化反応の進行を抑制しつつ、速やかに溶媒等の揮発分を除去して接着剤層を形成することができる。そのようにして得られた接着剤層は50℃未満では接着性を有さず、半導体チップ等の電子部品へのダメージを抑制可能な温度で加熱することにより接着性を発現し、その後、速やかに硬化する特性を有する。上記接着シートには、シート状のみならず、フィルム状、テープ状、板状等のシート状に類する形態が包含される。
 上記接着シートは、基材の片面側のみに接着剤層を有する片面接着シートであってもよいし、基材の両面側に接着剤層を有する両面接着シートであってもよい。上記接着シートが両面接着シートである場合、少なくとも一方の接着剤層が本開示の硬化性組成物より形成された接着剤層であればよく、他方は、当該接着剤層であってもよいし、当該接着剤層以外の接着剤層(その他の接着剤層)であってもよい。
 本開示の接着シートにおける基材としては、周知慣用の基材(接着シートに使用される基材)を使用することができ、特に限定されないが、例えば、プラスチック基材、金属基材、セラミックス基材、半導体基材、ガラス基材、紙基材、木基材、表面が塗装表面である基材等が挙げられる。また、本開示の接着シートにおける基材は、いわゆる剥離ライナーであってもよい。尚、本開示の接着シートは、基材を1層のみ有するものであってもよいし、2層以上有するものであってもよい。また、上記基材の厚みは特に限定されず、例えば、1~10000μmの範囲で適宜選択できる。
 上記接着シートは、本開示の硬化性組成物から形成された接着剤層を1層のみ有するものであってもよいし、当該接着剤層を2種以上有するものであってもよい。また、上記接着シートにおける接着剤層の厚みは、特に限定されず、例えば、0.1~10000μmの範囲で適宜選択できる。
 また、上記接着シートの別の態様として、シランカップリング剤及び本開示のポリオルガノシルセスキオキサンを用いることにより、耐クラック性、耐熱性、被接着体に対する接着性及び密着性に優れる接着シートを得ることができる。具体的には、基材の少なくとも一方の面に、シランカップリング剤を含有するアンカーコート層、及び、本開示のポリオルガノシルセスキオキサンを含有する硬化性組成物により形成された接着剤層を有し、当該接着剤層が前記アンカーコート層の表面上に設けられている接着シートは、耐クラック性、耐熱性、被接着体に対する接着性及び密着性に優れる。
 また、上記接着シートの別の態様において、上記アンカーコート層を1層のみ有するものであってもよいし、アンカーコート層を2種以上有するものであってもよい。また、アンカーコート層の厚みは、例えば、0.001~10000μmの範囲で適宜選択できる。
 上記接着シートは、基材、接着剤層、及びアンカーコート層以外にも、その他の層(例えば、中間層、下塗り層等)を有するものであってもよい。
 上記接着シートを用いることにより、接着シートの接着剤層に被接着層(被接着体)が貼付された積層物を得ることができる。そして、上記接着シートを使用して得られた当該積層物は、半導体チップの三次元積層体である場合、従来の半導体よりも高集積、省電力であるため、当該積層物を使用すれば、実装密度を向上させつつより小型で高性能な電子機器を提供することができる。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
 各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、特許請求の範囲によってのみ限定される。
 以下に、実施例に基づいて本開示をより詳細に説明するが、本開示はこれらの実施例により限定されるものではない。
 生成物の数平均分子量、分子量分散度の測定は、以下のGPC条件で測定した。また、生成物中の単量体かご型シルセスキオキサン、縮合シルセスキオキサンの含有量は、GPC測定における対応するピークのエリア値の面積比から求めた。また、生成物におけるT2体とT3体の割合[T3体/T2体]の測定は、Brucker製NMR(600MHz)による29Si-NMRスペクトル測定により行った。
[GPC条件]
測定装置 :商品名「GPCセミミクロシステム」((株)島津製作所製)
検出器 :RI検出器(昭光サイエンス(株)製)
カラム :KF-G4A(ガードカラム)、KF-602、及びKF-603(昭光サイエンス(株)製)
流速 :0.6 mL/min
測定温度 :40 ℃
測定時間 :13 min
注入量 :20 μL
溶離液 :THF、試料濃度0.1~0.2重量%
分子量 :標準ポリスチレン換算
 また、UPLC-MSは、以下の装置及び条件により行った。
[UPLC条件]
 測定装置:ACQUITY UPLC H-Class(Waters製)
 検出器、検出条件: 下記のMS条件
 カラム:ACQUITY UPLC HSS PFP 2.1×100mm×1.8μm
 移動相A:5mMギ酸アンモニウム水溶液
 移動相B:アセトニトリル/THF=6/4
 洗浄溶媒:アセトニトリル/THF=6/4
 流速:0.35mL/min
 サンプル温度:10℃
 カラム温度:40℃
 注入量:2.0μL
[MS条件]
 測定装置:Xevo-G2XS QTOFMS(Waters製)
 イオン化モード:ESI positive(Sensitivity Mode)
 測定法:MSE
 キャピラリー電圧:3.2kV
 コーン電圧:30V
 ソースオフセット電圧:80V
 脱溶媒ガス:1000L/hr(200℃)
 コーンガス:50L/hr
 イオン源ヒーター:80℃
 スキャン範囲:m/z=100-3000
 スキャン時間:0.4sec
 コリジョンエネルギー:30-50eV(MSE HighEnergy)
 ロックマス:Leucine Enkephalin
実施例1:本開示のエポキシ基含有ポリオルガノシルセスキオキサンの製造(1)
 温度計、攪拌装置、還流冷却器、及び窒素導入管、ディーンスターク管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下で2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン277.2ミリモル(68.30g)、フェニルトリメトキシシラン3.0ミリモル(0.56g)、及びアセトン275.4gを仕込み、50℃に昇温した。このようにして得られた混合物に、5%炭酸カリウム水溶液7.74g(炭酸カリウムとして2.8ミリモル)を5分で添加した後、水2800.0ミリモル(50.40g)を20分かけて添加した。なお、添加の間、著しい温度上昇は起こらなかった。その後、50℃のまま、重縮合反応を窒素気流下で5時間行った。
 その後、メチルイソブチルケトンを230.5g仕込み、減圧下で温度を50℃から90℃に昇温して系内のアセトン(0.0%)、メチルイソブチルケトン(30.32%)、水(0.23%)となるまで留去した。その後、90℃のまま11時間攪拌して、メチルイソブチルケトン273.2g入れて、水273.2gで5回水洗を行い電気伝導度1.5uS/cm以下にして濃縮を行い無色透明の液体61.1gを得た。生成物を分析したところ、数平均分子量は4736、分子量分散度は2.54、単量体かご型シルセスキオキサン(保持時間7.6~8.3分)の含有量は6.7%、縮合シルセスキオキサン(保持時間4.9~7.6分)の含有量は93.3%、[T3体/T2体]は46.5であった。
 29Si-NMRスペクトルを図1、GPCチャートを図2に示す。
 実施例1で得られたエポキシ基含有ポリオルガノシルセスキオキサンを上記UPLC-MS条件で測定した。保持時間3.86分及び1.81分に検出されるMSスペクトルをそれぞれ図3、図4示す。図5に示す分子式C14423445Si18(Z=2)のMSシミュレーションパターン、図6に示す分子式C12821041Si16(Z=2)のMSシミュレーションパターンとの比較から、保持時間3.86分のピークのシルセスキオキサンは、組成式(1)(すべてのR1は、2-(3’,4’-エポキシシクロヘキシル)エチル基)で表されるかご型シルセスキオキサンの2つが縮合した縮合シルセスキオキサン、保持時間1.81分のピークのシルセスキオキサンは、組成式(1)(すべてのR1は、2-(3’,4’-エポキシシクロヘキシル)エチル基)で表されるかご型シルセスキオキサンと組成式(2)(すべてのR2は、2-(3’,4’-エポキシシクロヘキシル)エチル基)で表されるかご型シルセスキオキサンが縮合した縮合シルセスキオキサンであるとそれぞれ同定できる。保持時間3.86分及び1.81分のピークの縮合シルセスキオキサンの推定構造を下記に示す。
・保持時間3.86分のピークのシルセスキオキサン
Figure JPOXMLDOC01-appb-C000042
 上記式中のすべてのR1は、2-(3’,4’-エポキシシクロヘキシル)エチル基である。
・保持時間1.81分のピークのシルセスキオキサン
Figure JPOXMLDOC01-appb-C000043
 上記式中のすべてのR1及びR2は、2-(3’,4’-エポキシシクロヘキシル)エチル基である。
実施例2:本開示のエポキシ基含有ポリオルガノシルセスキオキサンの製造(2)
 温度計、攪拌装置、還流冷却器、及び窒素導入管、ディーンスターク管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下で2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン277.2ミリモル(68.30g)、フェニルトリメトキシシラン3.0ミリモル(0.56g)、及びアセトン275.4gを仕込み、50℃に昇温した。このようにして得られた混合物に、5%炭酸カリウム水溶液7.74g(炭酸カリウムとして2.8ミリモル)を5分で添加した後、水2800.0ミリモル(50.40g)を20分かけて添加した。なお、添加の間、著しい温度上昇は起こらなかった。その後、50℃のまま、重縮合反応を窒素気流下で5時間行った。
 その後、メチルイソブチルケトンを230.5g仕込み、減圧下で温度を50℃から90℃に昇温して系内のアセトン(0.0%)、メチルイソブチルケトン(20.58%)、水(0.35%)となるまで留去した。その後、90℃のまま42時間攪拌して、メチルイソブチルケトン273.2g入れて、水273.2gで6回水洗を行い電気伝導度1.5uS/cm以下にして濃縮を行い無色透明の液体50.0gを得た。生成物を分析したところ、数平均分子量は9843、分子量分散度は2.89、単量体かご型シルセスキオキサン(保持時間7.6~8.3分)の含有量は1.9%、縮合シルセスキオキサン (保持時間4.7~7.6分)の含有量は98.1%、[T3体/T2体]は196.2であった。
 29Si-NMRスペクトルを図7、GPCチャートを図8に示す。
比較例1:エポキシ基含有ポリオルガノシルセスキオキサンの製造
 温度計、攪拌装置、還流冷却器、及び窒素導入管、ディーンスターク管を取り付けた1000ミリリットルのフラスコ(反応容器)に、窒素気流下でフェニルトリメトキシシラン3.0ミリモル(0.56g)、及びアセトン275.4gを仕込み、50℃に昇温した。このようにして得られた混合物に、5%炭酸カリウム水溶液7.74g(炭酸カリウムとして2.8ミリモル)を5分で添加した後、水2800.0ミリモル(50.40g)を20分かけて添加した。また炭酸カリウム滴下開始と同時に2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン277.2ミリモル(68.30g)を滴下し始めて、2時間で滴下終了とした。なお、添加の間、著しい温度上昇は起こらなかった。その後、50℃のまま、重縮合反応を窒素気流下で5時間行った。
 その後、メチルイソブチルケトンを230.5g仕込み水(273.2g)で6回水洗を行った。電気伝導度1.5uS/cm以下にして濃縮を行い白く濁った液体50.0gを得た。
[溶媒溶解性の評価]
 上記実施例、比較例で得られた生成物50~60gにアセトン又はクロロホルム2Lを加えて、溶媒溶解性を評価した。完全に溶解して清明な溶液になった場合を「完溶」、一部溶解せずに白く濁った場合を「白濁」と評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000044
参考例1:ハードコートフィルムの製造
 実施例1で得られたエポキシ基含有ポリオルガノシルセスキオキサン100重量部、メチルイソブチルケトン(関東化学(株)製)20重量部、及び硬化触媒1([ジフェニル[4-(フェニルチオ)フェニル]スルホニウム トリス(ペンタフルオロエチル)トリフルオロホスフェート])1重量部の混合溶液を作製し、これをハードコート液(硬化性組成物)として使用する。
 上記で得られるハードコート液を、PETフィルム(商品名「KEB03 W」、帝人デュポンフィルム(株)製)上に、硬化後のハードコート層の厚さが5μmとなるようにワイヤーバーを使用して流延塗布した後、70℃のオーブン内で10分間放置(プレベイク)し、次いで紫外線を照射する(照射条件(照射量):312mJ/cm2、照射強度:80W/cm2)。最後に80℃で2時間熱処理(エージング)することによって、上記ハードコート液の塗工膜を硬化させ、ハードコート層を有するハードコートフィルムを作製する。
 上記で得るハードコートフィルムについて、以下の方法により各種評価を行う。
(1)ヘイズ及び全光線透過率
 上記で得るハードコートフィルムのヘイズ及び全光線透過率を、ヘイズメータ(日本電色工業(株)製、NDH-300A)を使用して測定する。
(2)表面硬度(鉛筆硬度)
 上記で得るハードコートフィルムにおけるハードコート層表面の鉛筆硬度を、JIS K5600-5-4に準じて評価する。
(3)耐熱性(5%重量減少温度(Td5))
 PETフィルムの代わりにガラス板を用いること以外は、上記と同様の方法で得るハードコートフィルムにおけるハードコート層を、カッターを使用して約5mg削り出してこれをサンプルとする。示差熱重量分析装置(セイコーインスツル(株)製、TG/DTA 6300)を用いて、下記の条件で上記サンプルの5%重量減少温度を測定する。
 測定温度範囲:25~550℃
 昇温速度:10℃/分
 ガス雰囲気:窒素
(4)耐擦傷性
 上記で得るハードコートフィルムにおけるハードコート層表面に対し、#0000スチールウールを荷重1000g/cm2にて100往復させ、ハードコート層表面に付いた傷の有無及びその本数を確認し、以下の基準で耐擦傷性を評価する。
 ◎(耐擦傷性が極めて良好):傷の本数が0本
 ○(耐擦傷性が良好):傷の本数が1~10本
 ・(耐擦傷性が不良):傷の本数が10本を超える
(5)耐屈曲性(円筒形マンドレル法);マンドレル試験による
 上記で得るハードコートフィルムの耐屈曲性を、円筒形マンドレルを使用してJIS K5600-5-1に準じて評価する。
 以下、本開示に係る発明のバリエーションを記載する。
[付記1]下記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンからなる群から選ばれる少なくとも1種を含むかご型シルセスキオキサンが2以上縮合した縮合物であり、分子量が8000以下であるシルセスキオキサンを含むポリオルガノシルセスキオキサン。
・式(1):[R1SiO3/28[R1SiO2/2(ORc)]1
(式(1)中のR1は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、炭素数1~4のアルキル基又は水素原子を示す。)
・式(2):[R2SiO3/26[R2SiO2/2(ORc)]2
(式(2)中のR2は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(3):[R3SiO3/28[R3SiO2/2(ORc)]2
(式(3)中のR3は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(4):[R4SiO3/210[R4SiO2/2(ORc)]2
(式(4)中のR4は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
[付記2] 上記シルセスキオキサンが、下記組成式(5)~(8)で表されるかご型シルセスキオキサンからなる群より選ばれる少なくとも1種がさらに縮合した縮合物である付記1に記載のポリオルガノシルセスキオキサン。
・式(5):[R5SiO3/26[R5SiO2/2(ORc)]3
(式(5)中のR5は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(6):[R6SiO3/28[R6SiO2/2(ORc)]3
(式(6)中のR6は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
・式(7):[R7SiO3/210[R7SiO2/2(ORc)]1
(式(7)中のR7は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、炭素数1~4のアルキル基又は水素原子を示す。)
・式(8):[R8SiO3/212[R8SiO2/2(ORc)]1
(式(8)中のR8は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、炭素数1~4のアルキル基又は水素原子を示す。)
[付記3] 上記重合性官能基を含有する基がカチオン重合性官能基(好ましくはエポキシ基、オキセタン基、ビニルエーテル基、又はビニルフェニル基)である付記1又は2に記載のポリオルガノシルセスキオキサン。
[付記4] 上記重合性官能基を含有する基がラジカル重合性官能基(好ましくは(メタ)アクリロイルオキシ基、(メタ)アクリルアミド基、ビニル基、又はビニルチオ基)である付記1~3のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記5] 上記重合性官能基がエポキシ基、又は(メタ)アクリロイルオキシ基である付記1~4いずれか1つに記載のポリオルガノシルセスキオキサン。
[付記6] 上記の重合性官能基を含有する基が、下記式(1A)
Figure JPOXMLDOC01-appb-C000045
[式(1A)中、R1Aは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、下記式(1B)
Figure JPOXMLDOC01-appb-C000046
[式(1B)中、R1Bは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、下記式(1C)
Figure JPOXMLDOC01-appb-C000047
[式(1C)中、R1Cは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基、又は、下記式(1D)
Figure JPOXMLDOC01-appb-C000048
[式(1D)中、R1Dは、直鎖又は分岐鎖状のアルキレン基を示す。]
で表される基である付記1~5いずれか1つに記載のポリオルガノシルセスキオキサン。
[付記7] 上記式(1A)、(1B)、(1C)、及び(1D)中の、R1A、R1B、R1C、及びR1Dはそれぞれ炭素数1~4の直鎖状のアルキレン基、又は炭素数3又は4の分岐鎖状のアルキレン基(好ましくはエチレン基、トリメチレン基、又はプロピレン基、より好ましくはエチレン基、又はトリメチレン基)である付記6に記載のポリオルガノシルセスキオキサン。
[付記8] 上記組成式(1)中のR1における重合性官能基を含有する基の数は3~9(好ましくは5~9、より好ましくは7~9、さらに好ましくは9)である付記1~7のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記9] 上記組成式(2)中のR2における重合性官能基を含有する基は3~8(好ましくは5~8、より好ましくは7~8、さらに好ましくは8)である付記1~8のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記10] 上記組成式(3)中のR3における重合性官能基を含有する基の数は3~10(好ましくは5~10、より好ましくは7~10、さらに好ましくは10)である付記1~9のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記11] 記組成式(4)中のR4における重合性官能基を含有する基の数は、好ましくは3~12(好ましくは5~12、より好ましくは7~12、さらに好ましくは12)である付記1~10のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記12] 上記組成式(1)中のR1、組成式(2)中のR2、組成式(3)中のR3、及び組成式(4)中のR4の全体に対する重合性官能基を含有する基の割合が30%以上(好ましくは50%以上、より好ましくは80%以上)である付記1~11のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記13] 下記式(I)で表される構成単位(T3体)と、下記式(II)で表される構成単位(T2体)のモル比[式(I)で表される構成単位/式(II)で表される構成単位;T3体/T2体]が、1以上(好ましくは2以上、より好ましくは3以上、より好ましくは4以上、より好ましくは6以上、より好ましくは7以上、より好ましくは8以上、より好ましくは10以上、より好ましくは15以上、さらに好ましくは20以上)である付記1~12のいずれか1つに記載のポリオルガノシルセスキオキサン。
[RaSiO3/2]          (I)
[式(I)中、Raは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す]
[RbSiO2/2(ORc)]     (II)
[式(II)中、Rbは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、又は置換若しくは無置換のアルケニル基を示す。Rcは、水素原子又は炭素数1~4のアルキル基を示す]
[付記14] 上記(T3体)と(T2体)のモル比[T3体/T2体]は500以下(好ましくは400以下、より好ましくは300以下、より好ましくは100以下、より好ましくは50以下、より好ましくは40以下、より好ましくは30以下、さらに好ましくは25以下)である付記13に記載のポリオルガノシルセスキオキサン。
[付記15] 上記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンのうち、1種において2~5(好ましくは2~3、より好ましくは2)、若しくは2種以上における2~5(好ましくは2~3、より好ましくは2)が縮合したものである、付記1~14のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記16] 単量体かご型シルセスキオキサンを含む付記1~15のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記17]単量体かご型シルセスキオキサンの含有量は、上記ポリオルガノシルセスキオキサン全量に対して5重量%以上(好ましくは10重量%以上、より好ましくは20重量%以上)である付記1~16のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記18]上記単量体かご型シルセスキオキサンの含有量は、上記ポリオルガノシルセスキオキサン全量に対して50重量%以下(好ましくは40重量%以下、より好ましくは20重量%以下)である付記17に記載のポリオルガノシルセスキオキサン。
[付記19] 上記ポリオルガノシルセスキオキサンにおける、縮合シルセスキオキサンの含有量は、上記ポリオルガノシルセスキオキサン全量に対して、20重量%以上(好ましくは25~90重量%、より好ましくは30~80重量%、さらに好ましくは40~70重量%)である付記1~18のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記20] 上記縮合シルセスキオキサンのゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)は2000~50000(好ましくは2500~40000、より好ましくは3000~30000)である、付記19に記載のポリオルガノシルセスキオキサン。
[付記21] ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の数平均分子量(Mn)は2000~50000(好ましくは2500~40000、より好ましくは3000~30000)である、付記1~20のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記22] ゲルパーミエーションクロマトグラフィーによる標準ポリスチレン換算の分子量分散度(Mw/Mn)は1.0~4.0(好ましくは1.1~3.0、より好ましくは1.2~2.5)である、付記1~21のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記23] 空気雰囲気下における5%重量減少温度(Td5)は330℃以上(例えば、330~450℃、好ましくは340℃以上、さらに好ましくは350℃以上)である、付記1~22のいずれか1つに記載のポリオルガノシルセスキオキサン。
[付記24] 付記1~23のいずれか1つに記載のポリオルガノシルセスキオキサンを含有する硬化性組成物。
[付記25] ポリオルガノシルセスキオキサンの含有量が、溶剤を除く硬化性組成物の全量(100重量%)に対して、70重量~100重量%(好ましくは80~99.8重量%、さらに好ましくは90~99.5重量%)である、付記24に記載の硬化性組成物。
[付記26] カチオン硬化性化合物又はラジカル硬化性化合物の全量(100重量%)に対する上記ポリオルガノシルセスキオキサンの割合は、70~100重量%(好ましくは75~98重量%、より好ましくは80~95重量%)である、付記22又は23に記載の硬化性組成物。
[付記27] 硬化触媒を含む、付記24~26のいずれか1つに記載の硬化性組成物。
[付記28] 上記硬化触媒として光重合開始剤又は熱重合開始剤を含む付記27に記載の硬化性組成物。
[付記29] 上記硬化触媒としてカチオン重合開始剤又はラジカル重合開始剤を含む、付記27又は28に記載の硬化性組成物。
[付記30] 上記カチオン重合開始剤は、光カチオン重合開始剤、又は熱カチオン重合開始剤である、付記29に記載の硬化性組成物。
[付記31] 上記光カチオン重合開始剤は、スルホニウム塩、ヨードニウム塩、セレニウム塩、アンモニウム塩、ホスホニウム塩、及び遷移金属錯体イオンとアニオンとの塩からなる群より選ばれる1以上の光カチオン重合開始剤である付記30に記載の硬化性組成物。
[付記32] 上記熱カチオン重合開始剤は、アリールスルホニウム塩、アリールヨードニウム塩、アレン-イオン錯体、第4級アンモニウム塩、アルミニウムキレート、及び三フッ化ホウ素アミン錯体からなる群より選ばれる1以上の化合物である付記30に記載の硬化性組成物。
[付記33] 上記ラジカル重合開始剤は、光ラジカル重合開始剤、熱ラジカル重合開始剤である付記29に記載の硬化性組成物。
[付記34] 上記光ラジカル重合開始剤は、2-アミノ-2-ベンゾイル-1-フェニルアルカン化合物、イミダゾール化合物、ハロメチル化トリアジン化合物、及びハロメチルオキサジアゾール化合物からなる群より選ばれる1以上の光ラジカル重合開始剤である付記33に記載の硬化性組成物。
[付記35] 上記熱ラジカル重合開始剤は、有機過酸化物類である付記33に記載の硬化性組成物。
[付記36] 上記ポリオルガノシルセスキオキサン以外のその他のカチオン硬化性化合物及び/又は上記ポリオルガノシルセスキオキサン以外のその他のラジカル硬化性化合物を含む付記27~35のいずれか1つに記載の硬化性組成物。
[付記37] 上記硬化触媒の含有量は、上記ポリオルガノシルセスキオキサン及び上記のその他のカチオン硬化性化合物の総量100重量部に対して、0.01~3.0重量部(好ましくは0.05~3.0重量部、より好ましくは0.1~1.0重量部、さらに好ましくは0.3~1.0重量部)である付記36に記載の硬化性組成物。
[付記38] 上記その他のカチオン硬化性化合物が、上記ポリオルガノシルセスキオキサン以外のエポキシ化合物、オキセタン化合物、又はビニルエーテル化合物を含む付記36又は37に記載の硬化性組成物。
[付記39] 上記エポキシ化合物が脂環式エポキシ化合物、芳香族エポキシ化合物、又は脂肪族エポキシ化合物である付記38に記載の硬化性組成物。
[付記40] 上記その他のラジカル硬化性化合物として、上記ポリオルガノシルセスキオキサン以外の(メタ)アクリル化合物を含む付記36~39のいずれか1つに記載の硬化性組成物。
[付記41] 上記その他のカチオン硬化性化合物及び/又は上記その他のラジカル硬化性化合物の含有量(配合量)は、上記ポリオルガノシルセスキオキサン、上記その他のカチオン硬化性化合物、及び上記その他のラジカル硬化性化合物の総量に対して、50重量%以下(好ましくは30重量%以下、より好ましくは10重量%以下)である付記36~40のいずれか1つに記載の硬化性組成物。
[付記42] 重合安定剤を含有する付記24~41のいずれか1つに記載の硬化性組成物。
[付記43] 上記重合安定剤として、ヒンダードアミン系化合物、スルホニウム硫酸塩系化合物、及びホスファイト系化合物からなる群より選ばれる1以上の重合安定剤である、付記42に記載の硬化性組成物。
[付記44] 上記重合安定剤の含有量は、上記ポリオルガノシルセスキオキサン100重量部に対して、0.005重量部以上(好ましくは0.01~10重量部、さらに好ましくは0.02~1重量部)である付記42又は43に記載の硬化性組成物。
[付記45] 上記重合安定剤及び硬化触媒を含有し、重合安定剤の含有量は、硬化触媒100重量部に対して、1重量部以上(好ましくは3~200重量部、より好ましくは5~150重量部)である付記42~44のいずれか1つに記載の硬化性組成物。
[付記44] 溶剤を含有する付記24~45のいずれか1つに記載の硬化性組成物。
[付記45] 上記溶剤は沸点が170℃以下である付記44に記載の硬化性組成物。
[付記46] 上記溶剤の使用量は、上記硬化性組成物に含まれる不揮発分の濃度として、30~80重量%(好ましくは40~70重量%、より好ましくは50~60重量%)である付記44又は45に記載の硬化性組成物。
[付記47] 常温(約25℃)で液体である付記24~46のいずれか1つに記載の硬化性組成物。
[付記48] 25℃における粘度として、300~20000mPa・s(好ましくは500~10000mPa・s、より好ましくは1000~8000mPa・s)である付記24~47のいずれか1つに記載の硬化性組成物。
[付記49] ハードコート層形成用硬化性組成物である付記24~48のいずれか1つに記載の硬化性組成物。
[付記50] 接着剤用硬化性組成物である付記24~48のいずれか1つに記載の硬化性組成物。
[付記51] 付記24~50のいずれか1つに記載の硬化性組成物の硬化物。
[付記52] 基材と、付記51に記載の硬化物であるハードコート層とが積層されたハードコートフィルム。
[付記53] 上記基材が、プラスチック基材、金属基材、セラミックス基材、半導体基材、ガラス基材、紙基材、木基材、又は表面が塗装表面である基材である付記52に記載のハードコートフィルム。
[付記54] 上記基材の厚みが、0.01~10000μmである付記52又は53に記載のハードコートフィルム。
[付記55] 上記ハードコート層の厚みが1~200μm(好ましくは3~150μm)である付記52~54のいずれか1つに記載のハードコートフィルム。
[付記56] 上記ハードコート層の厚さが50μmのときのヘイズが1.5%以下(好ましくは1.0%以下)である付記52~55のいずれか1つに記載のハードコートフィルム。
[付記57] 上記ハードコート層の厚さが50μmのときのヘイズが0.1%以上である付記52~56のいずれか1つに記載のハードコートフィルム。
[付記58] 上記ハードコート層の厚さが50μm場のときの全光線透過率が85%以上(好ましくは90%以上)である付記52~57のいずれか1つに記載のハードコートフィルム。
[付記59] 上記ハードコート層表面に表面保護フィルムを有する付記52~58のいずれか1つに記載のハードコートフィルム。
[付記60] 厚みが、1~10000μmである付記52~59のいずれか1つに記載のハードコートフィルム。
[付記61] 基材と、該基材の少なくとも一方の表面に形成された離型層上に、付記49に記載の硬化性組成物を含む層であるハードコート層が積層された転写用フィルム。
[付記62] 上記離型層と上記ハードコート層の剥離強度が30~500mN/24mm(好ましくは40~300mN/24mm、より好ましくは50~200mN/24mm)である付記61に記載の転写用フィルム。
[付記63] 上記ハードコート層上に、アンカーコート層及び接着剤層が、この順でさらに積層される付記61又は62に記載の転写用フィルム。
[付記64] 上記アンカーコート層の厚みは0.1~20μm(好ましくは、0.5~5μm)の範囲である付記63に記載の転写用フィルム。
[付記65] 接着剤層の厚みは、0.1~10μm(好ましくは0.5~5μm)である付記61~64のいずれか1つに記載の転写用フィルム。
[付記66] さらに、少なくとも1層の着色層を含む付記61~65のいずれか1つに記載の転写用フィルム。
[付記67] 上記着色層は絵柄層及び/又は隠蔽層を成型品に転写するための加飾フィルムとする場合に設けられるものである付記66に記載の転写用フィルム。
[付記68] 基材と、該基材の少なくとも一方の面に、付記50に記載の硬化性組成物を含む層である接着剤層とを有する接着シート。
[付記69] 基材と、該基材の少なくとも一方の面に接着剤層とを有する接着シートにおける、付記50に記載の硬化性組成物の接着剤層への使用。
[付記70] 基材と、該基材の少なくとも一方の面に、シランカップリング剤を含有するアンカーコート層及び付記50に記載の硬化性組成物を含む層である接着剤層とを有し、上記接着剤層が上記アンカーコート層の表面に設けられている接着シート。
[付記71] ハードコート層形成用硬化性組成物としての付記22~48のいずれか1つに記載の硬化性組成物の使用。
[付記72] 接着剤用硬化性組成物としての付記22~48のいずれか1つに記載の硬化性組成物の使用。
[付記73] 基材とハードコート層を有するハードコートフィルムにおけるハードコート層への付記51に記載の硬化物の使用。
[付記74] 基材と、該基材の少なくとも一方の表面に形成された離型層上にハードコート層が形成された転写用フィルムにおける、ハードコート層への付記49に記載の硬化性組成物の使用。
[付記75] 基材と、該基材の少なくとも一方の面に、シランカップリング剤を含有するアンカーコート層及び接着剤層とを有し、上記接着剤層が上記アンカーコート層の表面に設けられている接着シートにおける、付記50に記載の硬化性組成物の接着剤層への使用。
 本開示のポリオルガノシルセスキオキサンはハードコートフィルム、若しくは接着シート原料として利用可能である。
1      ハードコートフィルム
11     ハードコート層
12     基材
2      転写用フィルム
21     基材
22     離型層
23     ハードコート層(未硬化又は半硬化のハードコート層)
24     アンカーコート層
25     着色層
26     接着剤層
3      粘着シート
31     粘着剤層
32     基材
33     アンカーコート層

Claims (20)

  1.  下記組成式(1)、組成式(2)、組成式(3)及び組成式(4)で表されるかご型シルセスキオキサンからなる群から選ばれる少なくとも1種を含むかご型シルセスキオキサンが2以上縮合した縮合物であり、分子量が8000以下であるシルセスキオキサンを含むポリオルガノシルセスキオキサン。
    ・式(1):[R1SiO3/28[R1SiO2/2(ORc)]1
    (式(1)中のR1は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、炭素数1~4のアルキル基又は水素原子を示す。)
    ・式(2):[R2SiO3/26[R2SiO2/2(ORc)]2
    (式(2)中のR2は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
    ・式(3):[R3SiO3/28[R3SiO2/2(ORc)]2
    (式(3)中のR3は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
    ・式(4):[R4SiO3/210[R4SiO2/2(ORc)]2
    (式(4)中のR4は、それぞれ独立して、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子であり、少なくとも1つが重合性官能基を含有する基である。Rcは、それぞれ独立して、炭素数1~4のアルキル基又は水素原子を示す。)
  2.  前記の重合性官能基を含有する基が、下記式(1A)
    Figure JPOXMLDOC01-appb-C000001
    [式(1A)中、R1Aは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基、下記式(1B)
    Figure JPOXMLDOC01-appb-C000002
    [式(1B)中、R1Bは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基、下記式(1C)
    Figure JPOXMLDOC01-appb-C000003
    [式(1C)中、R1Cは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基、又は、下記式(1D)
    Figure JPOXMLDOC01-appb-C000004
    [式(1D)中、R1Dは、直鎖又は分岐鎖状のアルキレン基を示す。]
    で表される基である請求項1に記載のポリオルガノシルセスキオキサン。
  3.  前記組成式(1)中のR1、組成式(2)中のR2、組成式(3)中のR3、及び組成式(4)中のR4の全体に対する重合性官能基を含有する基の割合が30%以上である請求項1又は2に記載のポリオルガノシルセスキオキサン。
  4.  下記式(I)
    [RaSiO3/2]   (I)
    [式(I)中、Raは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す]
    で表される構成単位と、下記式(II)
    [RbSiO2/2(ORc)]   (II)
    [式(II)中、Rbは、重合性官能基を含有する基、置換若しくは無置換のアリール基、置換若しくは無置換のアラルキル基、置換若しくは無置換のシクロアルキル基、置換若しくは無置換のアルキル基、置換若しくは無置換のアルケニル基、又は水素原子を示す。Rcは、水素原子又は炭素数1~4のアルキル基を示す]
    で表される構成単位のモル比[式(I)で表される構成単位/式(II)で表される構成単位]が1以上500以下である請求項1~3のいずれか1項に記載のポリオルガノシルセスキオキサン。
  5.  数平均分子量が2000~50000である請求項1~4のいずれか1項に記載のポリオルガノシルセスキオキサン。
  6.  分子量分散度(重量平均分子量/数平均分子量)が1.0~4.0である請求項1~5のいずれか1項に記載のポリオルガノシルセスキオキサン。
  7.  請求項1~6のいずれか1項に記載のポリオルガノシルセスキオキサンを含む硬化性組成物。
  8.  さらに、硬化触媒を含む請求項7に記載の硬化性組成物。
  9.  前記硬化触媒が、光又は熱重合開始剤である請求項8に記載の硬化性組成物。
  10.  さらに、重合安定剤を含有する請求項7~9のいずれか1項に記載の硬化性組成物。
  11.  ハードコート層形成用硬化性組成物である請求項7~10のいずれか1項に記載の硬化性組成物。
  12.  接着剤用硬化性組成物である請求項7~10のいずれか1項に記載の硬化性組成物。
  13.  請求項7~12のいずれか1項に記載の硬化性組成物の硬化物。
  14.  基材と、請求項13に記載の硬化物であるハードコート層とが積層されたハードコートフィルム。
  15.  基材と、該基材の少なくとも一方の表面に形成された離型層上に、請求項11に記載の硬化性組成物を含む層であるハードコート層が積層された転写用フィルム。
  16.  前記ハードコート層上に、アンカーコート層及び接着剤層が、この順でさらに積層される請求項15に記載の転写用フィルム。
  17.  さらに、少なくとも1層の着色層を含む請求項15又は16に記載の転写用フィルム。
  18.  前記ハードコート層の厚さが3~150μmである請求項15~17のいずれか1項に記載の転写用フィルム。
  19.  基材と、該基材上の少なくとも一方の面に請求項12に記載の硬化性組成物を含む層である接着剤層とを有する接着シート。
  20.  基材と、該基材上の少なくとも一方の面に、シランカップリング剤を含有するアンカーコート層及び請求項12に記載の硬化性組成物を含む層である接着剤層を有し、前記接着剤層が前記アンカーコート層の表面上に設けられている接着シート。
PCT/JP2021/030428 2020-08-28 2021-08-19 ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート WO2022044969A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-145085 2020-08-28
JP2020145085A JP2022039838A (ja) 2020-08-28 2020-08-28 ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート

Publications (1)

Publication Number Publication Date
WO2022044969A1 true WO2022044969A1 (ja) 2022-03-03

Family

ID=80355147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030428 WO2022044969A1 (ja) 2020-08-28 2021-08-19 ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート

Country Status (3)

Country Link
JP (1) JP2022039838A (ja)
TW (1) TW202219182A (ja)
WO (1) WO2022044969A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212233A1 (ja) * 2017-05-17 2018-11-22 株式会社ダイセル 接着剤用硬化性組成物、接着シート、硬化物、積層物、及び装置
WO2018212228A1 (ja) * 2017-05-17 2018-11-22 株式会社ダイセル ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018212233A1 (ja) * 2017-05-17 2018-11-22 株式会社ダイセル 接着剤用硬化性組成物、接着シート、硬化物、積層物、及び装置
WO2018212228A1 (ja) * 2017-05-17 2018-11-22 株式会社ダイセル ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム

Also Published As

Publication number Publication date
JP2022039838A (ja) 2022-03-10
TW202219182A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
CN107709401B (zh) 固化性组合物及成型体
CN110494466B (zh) 固化性组合物、固化物及硬涂膜
CN109575289B (zh) 聚有机倍半硅氧烷、硬涂膜、粘接片及叠层物
WO2018212228A1 (ja) ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム
CN110546001B (zh) 层叠体
US10625495B2 (en) Scratch repair film
US10676644B2 (en) Moulded body
JP6956517B2 (ja) 転写用フィルム、及びインモールド成型品
KR20190082944A (ko) 하드 코팅 필름
JP2018177952A (ja) 硬化性組成物、硬化物及びハードコートフィルム
CN110637074B (zh) 粘接剂用固化性组合物、粘接片、固化物、叠层物以及装置
CN112135731B (zh) 层叠膜及可折叠设备
JP7312543B2 (ja) ガラス代替基材用耐候性ハードコート組成物、硬化物、及び積層体
WO2022044969A1 (ja) ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート
WO2022044968A1 (ja) ポリオルガノシルセスキオキサン、硬化性組成物、硬化物、ハードコートフィルム、転写用フィルム、及び接着シート
WO2021215106A1 (ja) ポリオルガノシルセスキオキサン、積層体、及び表面被覆成形体
CN116438066A (zh) 层叠膜和柔性设备
TW202219181A (zh) 聚有機矽倍半氧烷、硬化性組成物、硬化物、硬塗膜、接著片、及積層物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861397

Country of ref document: EP

Kind code of ref document: A1