WO2021060055A1 - ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法、及びハードコートフィルムを含む物品 - Google Patents
ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法、及びハードコートフィルムを含む物品 Download PDFInfo
- Publication number
- WO2021060055A1 WO2021060055A1 PCT/JP2020/034763 JP2020034763W WO2021060055A1 WO 2021060055 A1 WO2021060055 A1 WO 2021060055A1 JP 2020034763 W JP2020034763 W JP 2020034763W WO 2021060055 A1 WO2021060055 A1 WO 2021060055A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- hard coat
- coat layer
- composition
- film
- Prior art date
Links
- ZWAJLVLEBYIOTI-UHFFFAOYSA-N C1CC2OC2CC1 Chemical compound C1CC2OC2CC1 ZWAJLVLEBYIOTI-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
- C08F299/02—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
- C08F299/08—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/26—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen nitrogen-containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/22—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
- C08G77/28—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/04—Polysiloxanes
- C09D183/08—Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/14—Protective coatings, e.g. hard coatings
Definitions
- the present invention relates to a composition for forming a hard coat layer, a hard coat film, a method for producing a hard coat film, and an article containing the hard coat film.
- CTR cathode ray tubes
- PDP plasma displays
- ELD electroluminescence displays
- VFD fluorescent display
- FED field emission displays
- LCD liquid crystal displays
- Patent Document 1 describes a hard film obtained by curing a silica sol obtained by hydrolyzing a silicon compound having a specific substituent such as an amino group.
- An object of the present invention is a composition for forming a hard coat layer capable of forming a hard coat film having excellent hardness, scratch resistance, and repeated bending resistance, the hard coat film, and a method for producing the hard coat film. And to provide an article with the hard coat film.
- ⁇ 1> It was formed by reacting the polymerizable group (Q1), which has a polymerizable group (Q1), with a substituent (Q2) containing an active hydrogen atom, which is different from the polymerizable group (Q1).
- the polyorganosylsesquioxane (a1) co-hydrates a hydrolyzable silane compound having a polymerizable group (Q1) and a hydrolyzable silane compound having a substituent (Q2) containing an active hydrogen atom.
- the content of the hydrolyzable silane compound having a substituent (Q2) containing an active hydrogen atom is 0.1 to 10 mol% of all the hydrolyzable silane compounds co-hydrolyzed and condensed, ⁇ 1>.
- the composition for forming a hard coat layer according to. ⁇ 3> The polymerizable group (Q1) is at least one selected from a vinyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, and an epoxy group, and the substituent (Q2) containing an active hydrogen atom is an amino.
- composition for forming a hard coat layer according to ⁇ 1> or ⁇ 2> which is at least one selected from a group, a mercapto group, a hydroxyl group, and a carboxy group.
- the polymerizable group (Q1) is at least one selected from a (meth) acryloyloxy group and a (meth) acryloylamino group, and the substituent (Q2) containing an active hydrogen atom is an amino group, ⁇ 1>.
- ⁇ 5> The composition for forming a hard coat layer according to any one of ⁇ 1> to ⁇ 4>, wherein the weight average molecular weight of the polyorganosylsesquioxane (a1) is 5000 or more and 200,000 or less.
- ⁇ 6> A hard coat film containing a base material and a hard coat layer formed from the composition for forming a hard coat layer according to any one of ⁇ 1> to ⁇ 5>.
- ⁇ 7> A method for producing a hard coat film including a base material and a hard coat layer.
- a step of applying the composition for forming a hard coat layer according to any one of ⁇ 1> to ⁇ 5> onto the base material to form a hard coat layer coating film and (II) A step of forming the hard coat layer by curing the hard coat layer coating film.
- a method for producing a hard coat film including. ⁇ 8> An article provided with the hard coat film according to ⁇ 6>. ⁇ 9> The article according to ⁇ 8>, wherein the hard coat film is provided as a surface protective film.
- composition for forming a hard coat layer of the present invention has a polymerizable group (Q1) and is different from the polymerizable group (Q1) and the polymerizable group (Q1). It contains polyorganosylsesquioxane (a1) having a crosslinked structure formed by reacting with (Q2).
- Polymerizable group (Q1) has a polymerizable group (Q1).
- the polymerizable group (Q1) is not particularly limited, but for example, a polymerizable unsaturated group (carbon-carbon unsaturated) such as a radically polymerizable group (meth) acryloyl group, vinyl group, styryl group or allyl group. Examples thereof include a group containing a double-bonding group) and a group containing a ring-opening polymerizable group such as an epoxy group and an oxetanyl group, which are cationically polymerizable groups.
- the polymerizable group (Q1) is preferably at least one selected from a vinyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, and an epoxy group, and is preferably a (meth) acryloyloxy group and a (meth) group. ) More preferably, it is at least one selected from acryloylamino groups.
- the alicyclic epoxy group (a group having a fused ring structure of an epoxy group and an alicyclic group. For example, a group represented by the following formula (e-1). * Indicates a bonding site) is also an epoxy. It shall be included in the group.
- the polyorganosylsesquioxane (a1) has a crosslinked structure formed by reacting a polymerizable group (Q1) with a substituent containing an active hydrogen atom (Q2).
- the substituent (Q2) containing an active hydrogen atom is a group different from the polymerizable group (Q1).
- An active hydrogen atom is a hydrogen atom covalently bonded to an atom having a high electronegativity (for example, a nitrogen atom, an oxygen atom, a sulfur atom, etc.).
- the substituent (Q2) containing an active hydrogen atom is not particularly limited, but is preferably at least one selected from an amino group, a mercapto group, a hydroxyl group, and a carboxy group, and more preferably an amino group.
- the amino group may have a substituent (for example, an alkyl group).
- the polymerizable group (Q1) is at least one selected from a vinyl group, a (meth) acryloyloxy group, a (meth) acryloylamino group, and an epoxy group. It is preferable that the substituent (Q2) containing an active hydrogen atom is at least one selected from an amino group, a mercapto group, a hydroxyl group and a carboxy group, and the polymerizable group (Q1) is a (meth) acryloyloxy group.
- the substituent (Q2) containing an active hydrogen atom is an amino group
- the polymerizable group (Q1) is an acryloyloxy group and an acryloylamino group. It is more preferably at least one selected from the above, and the substituent (Q2) containing an active hydrogen atom is an amino group.
- the crosslinked structure of polyorganosylsesquioxane (a1) is formed by the reaction of a polymerizable group (Q1) with a substituent containing an active hydrogen atom (Q2).
- the crosslinked structure is preferably a stable irreversible crosslink by covalent bond. For example, by coexisting a (meth) acryloyloxy group or a (meth) acryloylamino group which is a polymerizable group (Q1) with an amino group or a mercapto group which is a substituent (Q2) containing an active hydrogen atom, gradually (For example, Journal of the Chemical Society of Japan No. 10 (1998), pp.
- the polyorganosylsesquioxane (a1) since the polymerizable group (Q1) reacts with the substituent (Q2) containing an active hydrogen atom to form a crosslinked structure, the polyorganosylsesquioxane (a1) has an active hydrogen atom. It does not have to have a substituent (Q2) containing it (that is, all the substituents (Q2) containing an active hydrogen atom contained in the raw material for synthesizing the polyorganosylsesquioxane (a1) disappear. You may do). However, polyorganosylsesquioxane (a1) has at least one polymerizable group (Q1). Further, the polyorganosylsesquioxane (a1) may have a substituent (Q2) containing an active hydrogen atom (even if a substituent (Q2) containing an unreacted active hydrogen atom remains). good).
- the polyorganosilsesquioxane (a1) has a structure in which units composed of silsesquioxane units (this unit itself may also be polyorganosilsesquioxane) are linked by a crosslinked structure. Is preferable. By connecting the units composed of silsesquioxane units in this way, the weight average molecular weight of polyorganosylsesquioxane (a1) can be increased. As a result, the polyorganosylsesquioxane (a1) can be cured to obtain a very high molecular weight polymer, and the hard coat layer has excellent mechanical properties and stretch properties, and has hardness, scratch resistance, and so on. It is considered possible to form a hard coat film having excellent resistance to repeated bending.
- Crosslinked structure represented by the general formula (k-1) A crosslinked structure formed by the reaction of a (meth) acryloyloxy group and an amino group.
- R 1 represents a hydrogen atom or a substituent (for example, an alkyl group).
- R 2 represents a hydrogen atom or a methyl group. * Represents the binding site.
- Crosslinked structure represented by the general formula (k-2) A crosslinked structure formed by the reaction of a (meth) acryloyloxy group and a mercapto group.
- R 3 represents a hydrogen atom or a methyl group. * Represents the binding site.
- Cross-linked structure represented by the general formula (k-3) A cross-linked structure formed by reacting a (meth) acryloyl amino group with an amino group.
- R 4 represents a hydrogen atom or a substituent (for example, an alkyl group).
- R 5 represents a hydrogen atom or a methyl group.
- R 6 represents a hydrogen atom or a substituent (for example, an alkyl group). * Represents the binding site.
- Polyorganosylsesquioxane (a1) is a co-hydrolyzed condensation of a hydrolyzable silane compound having a polymerizable group (Q1) and a hydrolyzable silane compound having a substituent (Q2) containing an active hydrogen atom. It is preferable that the compound is made of.
- the content of the hydrolyzable silane compound having a substituent (Q2) containing an active hydrogen atom is 0.1 to 10 mol% in all the hydrolyzable silane compounds to be co-hydrolyzed and condensed. It is preferably 0.5 to 10 mol%, more preferably 1 to 8 mol%.
- the content of the hydrolyzable silane compound having a substituent (Q2) containing an active hydrogen atom is 0.1 mol% or more, the effect of the crosslinked structure introduced into the polyorganosylsesquioxane (a1) ( (Mechanical properties and stretch properties) are easily exhibited, and when it is 10 mol% or less, it is difficult to gel, and the composition for forming a hard coat layer is excellent in storage stability and film uniformity during formation of a hard coat layer.
- Polyorganosylsesquioxane (a1) is a hydrolyzable silane having a structural unit (S1) derived from a hydrolyzable silane compound having a polymerizable group (Q1) and a substituent (Q2) containing an active hydrogen atom. It is preferable to have a structural unit (S2) derived from the compound.
- a part of the polymerizable group (Q1) reacts with the substituent (Q2) containing an active hydrogen atom to form a crosslinked structure, but for convenience.
- the structural unit (S1) has a polymerizable group (Q1).
- the polymerizable group (Q1) contained in the structural unit (S1) is as described above.
- the polyorganosylsesquioxane (a1) may have only one type of constituent unit (S1), or may have two or more types.
- the structural unit (S1) is preferably a structural unit represented by the following general formula (S1-1).
- L 11 represents a single bond or a divalent linking group.
- R represents a hydrogen atom or a substituted or unsubstituted alkyl group.
- L 12 represents a substituted or unsubstituted alkylene group.
- p1 represents 0 or 1 and represents Q 11 represents a polymerizable group (Q1).
- SiO 1.5 in the general formula (S1-1) represents a structural portion composed of a siloxane bond (Si—O—Si) in polyorganosylsesquioxane.
- Polyorganosilsesquioxane is a network-type polymer or polyhedral cluster having a siloxane structural unit (silsesquioxane unit) derived from a hydrolyzable trifunctional silane compound, and has a random structure, a ladder structure, or a ladder structure due to siloxane bonds. It can form a cage structure or the like.
- the structural portion represented by "SiO 1.5 " may have any of the above structures, but preferably contains a large amount of rudder structure.
- the deformation recovery of the hard coat film can be kept good.
- the formation of the rudder structure is qualitatively determined by the presence or absence of absorption due to the Si-O-Si expansion and contraction characteristic of the rudder structure appearing near 1020-1050 cm -1 when FT-IR (Fourier Transform Infrared Spectroscopy) is measured. You can check.
- the divalent linking group when L 11 represents a divalent linking group, the divalent linking group includes an alkylene group, a cycloalkylene group, an arylene group, -O-, -CO-, and -S-. , -SO-, -SO 2- , and -NR-, preferably a divalent linking group consisting of at least one (R represents a hydrogen atom or a substituted or unsubstituted alkyl group). , An alkylene group, a cycloalkylene group, an arylene group, and a divalent linking group consisting of at least one selected from —O—.
- an alkylene group having 1 to 10 carbon atoms is preferable, and for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, an n-propylene group, an n-butylene group, an n- Examples thereof include a pentylene group, an n-hexylene group and an n-decylene group.
- the arylene group is preferably an arylene group having 6 to 10 carbon atoms, and examples thereof include a phenylene group.
- L 11 When L 11 represents a divalent linking group, it may have a substituent, and examples of the substituent include a hydroxy group, a carboxy group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom and a nitro group. , Cyano group, silyl group and the like.
- L 11 is preferably an unsubstituted linear alkylene group having 2 to 4 carbon atoms, more preferably an ethylene group or an n-propylene group, and even more preferably an n-propylene group.
- L 12 represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
- alkylene group preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
- examples thereof include a propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group and an n-decylene group.
- the substituent is not particularly limited, but for example, a hydroxy group, a carboxy group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group and a cyano group. , Cyril group and the like.
- L 12 is preferably a linear alkylene group having 1 to 3 carbon atoms, more preferably a methylene group, an ethylene group, an n-propylene group, or a 2-hydroxy-n-propylene group, and further preferably a methylene group or an ethylene group. preferable.
- Q 11 represents a polymerizable group (Q1).
- the polymerizable group (Q1) is as described above.
- the polyorganosylsesquioxane (a1) may have only one type of constituent unit (S2), or may have two or more types.
- the structural unit (S2) is preferably a structural unit represented by the following general formula (S2-1).
- L 21 represents a single bond or a divalent linking group.
- R represents a hydrogen atom or an alkyl group
- L 22 represents a substituted or unsubstituted alkylene group.
- p2 represents 0 or 1 and represents Q 21 represents a substituent (Q2) containing an active hydrogen atom.
- SiO 1.5 in the general formula (S2-1) represents a structural portion composed of a siloxane bond (Si—O—Si).
- the divalent linking group when L 21 represents a divalent linking group, the divalent linking group includes an alkylene group, a cycloalkylene group, an arylene group, -O-, -CO-, and -S-. , -SO-, -SO 2- , and -NR-, preferably a divalent linking group consisting of at least one (R represents a hydrogen atom or a substituted or unsubstituted alkyl group). , An alkylene group, a cycloalkylene group, an arylene group, and a divalent linking group consisting of at least one selected from —O—.
- L 21 When L 21 represents a divalent linking group, it may have a substituent, and examples of the substituent include a hydroxy group, a carboxy group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom and a nitro group. , Cyano group, silyl group and the like.
- L 21 preferably represents an alkylene group, more preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, an n-propylene group, n.
- alkylene group more preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, an n-propylene group, n.
- Examples thereof include a butylene group, an n-pentylene group, an n-hexylene group and an n-decylene group.
- Examples of the substituent when the alkylene group represented by L 21 has a substituent include a hydroxy group, a carboxy group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, a cyano group, a silyl group and the like.
- L 21 is preferably an unsubstituted linear alkylene group having 2 to 4 carbon atoms, more preferably an ethylene group or an n-propylene group, and even more preferably an n-propylene group.
- R represents a hydrogen atom or an alkyl group.
- L 22 represents an alkylene group, preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
- alkylene group preferably an alkylene group having 1 to 10 carbon atoms, for example, a methylene group, a methylmethylene group, a dimethylmethylene group, an ethylene group, an i-propylene group, n.
- examples thereof include a propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group and an n-decylene group.
- Examples of the substituent when the alkylene group represented by L 22 has a substituent include a hydroxy group, a carboxy group, an alkoxy group, an aryl group, a heteroaryl group, a halogen atom, a nitro group, a cyano group, a silyl group and the like.
- L 22 is preferably a linear alkylene group having 1 to 3 carbon atoms, more preferably a methylene group, an ethylene group, an n-propylene group, or a 2-hydroxy-n-propylene group, and further preferably a methylene group or an ethylene group. preferable.
- Q 21 represents a substituent (Q2) containing an active hydrogen atom.
- Substituents (Q2) containing active hydrogen atoms are as described above.
- the molar ratio of the constituent units (S1) is 90 to 99.9 mol% with respect to all the constituent units. It is preferably 90 to 99.5 mol%, more preferably 92 to 99 mol%.
- the molar ratio of the constituent units (S2) is 0.1 to 10 mol% with respect to all the constituent units. It is preferably 0.5 to 10 mol%, more preferably 1 to 8 mol%.
- the polyorganosylsesquioxane (a1) may have a constituent unit (S3) other than the constituent units (S1) and (S2) as long as it does not affect the effect of the present invention.
- the molar ratio of the constituent unit (S3) is preferably 10 mol% or less, more preferably 5 mol% or less, based on all the constituent units. It is more preferable that the structural unit (S3) is not included.
- SiO 1.5 represents a silsesquioxane unit.
- the above structural formula shows the state before the polymerizable group (Q1) and the substituent (Q2) containing an active hydrogen atom react with each other, but as described above, the polymerizable group is actually a polymerizable group.
- (Q1) reacts with a substituent (Q2) containing an active hydrogen atom to form a crosslinked structure.
- Q1 reacts with a substituent (Q2) containing an active hydrogen atom to form a crosslinked structure.
- an acryloyloxy group and an amino group react to form a bridge structure in which R 1 represents a hydrogen atom and R 2 represents a hydrogen atom in the above general formula (k-1). It has a structure represented by the following SQ-1s.
- the weight average molecular weight (Mw) of the polyorganosylsesquioxane (a1) is preferably 5,000 or more and 200,000 or less, more preferably 10,000 or more and 150,000 or less, still more preferably 20,000 or more and 125,000 or less, and particularly preferably. It is 30,000 or more and 100,000 or less.
- Mw of the polyorganosylsesquioxane (a1) is 5000 or more, the mechanical properties and expansion / contraction properties of the hard coat layer formed from the composition for forming the hard coat layer of the present invention become excellent, and the hardness and resistance are excellent. It is possible to form a hard coat film having better scratch resistance and resistance to repeated bending.
- the Mw of the polyorganosylsesquioxane (a1) is 200,000 or less, gelation is unlikely to occur, and the composition for forming a hard coat layer is excellent in storage stability and film uniformity during film formation.
- the molecular weight dispersion (Mw / Mn) of the polyorganosylsesquioxane (a1) is, for example, 1.0 to 4.0, preferably 1.1 to 3.7, and more preferably 1.2 to. It is 3.0, more preferably 1.3 to 2.5.
- Mw represents the weight average molecular weight and Mn represents the number average molecular weight.
- the weight average molecular weight and molecular weight dispersion of the polyorganosylsesquioxane (a1) are converted to standard polystyrene by gel permeation chromatography (GPC). Specifically, the weight average molecular weight and the molecular weight dispersion of polyorganosylsesquioxane (a1) are measured by the following devices and conditions.
- Measuring device Product name "LC-20AD” (manufactured by Shimadzu Corporation) Columns: Shodex KF-801 x 2, KF-802, and KF-803 (manufactured by Showa Denko KK) Measurement temperature: 40 ° C Eluent: N-methylpyrrolidone (NMP), sample concentration 0.1-0.2% by mass Flow rate: 1 mL / min Detector: UV-VIS detector (trade name "SPD-20A", manufactured by Shimadzu Corporation) Molecular weight: Standard polystyrene conversion
- the method for producing polyorganosylsesquioxane (a1) is not particularly limited, and it can be produced using a known production method. For example, it can be produced by a method of hydrolyzing and condensing a hydrolyzable silane compound. ..
- the hydrolyzable silane compound include a hydrolyzable trifunctional silane compound having a polymerizable group (Q1) (preferably a compound represented by the following general formula (Sd1-1)) and a substituent containing an active hydrogen atom.
- a hydrolyzable trifunctional silane compound having (Q2) (preferably a compound represented by the following general formula (Sd2-1)).
- the compound represented by the following general formula (Sd1-1) corresponds to the structural unit represented by the above general formula (S1-1), and the compound represented by the following general formula (Sd2-1) corresponds to the above general formula (Sd2-1). It corresponds to the structural unit represented by the formula (S2-1).
- X 1 to X 3 independently represent an alkoxy group or a halogen atom, respectively.
- L 11 represents a single bond or a divalent linking group.
- R represents a hydrogen atom or a substituted or unsubstituted alkyl group.
- L 12 represents a substituted or unsubstituted alkylene group.
- p1 represents 0 or 1 and represents Q 11 represents a polymerizable group (Q1).
- X 4 ⁇ X 6 each independently represent an alkoxy group or a halogen atom
- L 21 represents a single bond or a divalent linking group.
- R represents a hydrogen atom or an alkyl group
- L 22 represents a substituted or unsubstituted alkylene group.
- p2 represents 0 or 1 and represents Q 21 represents a substituent (Q2) containing an active hydrogen atom.
- L 11 in the general formula (Sd1-1), R 11, L 12, p1 and Q 11 is, L 11 in the general formula (S1-1), and R 11, L 12, p1 and Q 11 each synonymous Yes, and the preferred range is the same.
- L 21 in the general formula (Sd2-1), R 21, L 22, p2 and Q 21 is, L 21 in the general formula (S2-1), and R 21, L 22, p2 and Q 21 each synonymous Yes, and the preferred range is the same.
- X 1 ⁇ X 6 each independently represents an alkoxy group or a halogen atom.
- the alkoxy group include an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a butoxy group, and an isobutyloxy group.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
- X 1 to X 6 an alkoxy group is preferable, and a methoxy group and an ethoxy group are more preferable. Note that X 1 to X 6 may be the same or different.
- the amount and composition of the hydrolyzable silane compound used can be appropriately adjusted according to the desired structure of the polyorganosylsesquioxane (a1).
- hydrolysis and condensation reactions of the hydrolyzable silane compound can be carried out simultaneously or sequentially.
- the order in which the reactions are carried out is not particularly limited.
- the hydrolysis and condensation reaction of the hydrolyzable silane compound can be carried out in the presence or absence of a solvent, and is preferably carried out in the presence of a solvent.
- a solvent include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; ethers such as diethyl ether, dimethoxyethane, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; methyl acetate and ethyl acetate.
- Esters such as isopropyl acetate and butyl acetate; amides such as N, N-dimethylformamide and N, N-dimethylacetamide; nitriles such as acetonitrile, propionitrile and benzonitrile; alcohols such as methanol, ethanol, isopropyl alcohol and butanol. And so on.
- the solvent ketones or ethers are preferable.
- the solvent may be used alone or in combination of two or more.
- the amount of the solvent used is not particularly limited, and is usually adjusted appropriately in the range of 0 to 2000 parts by mass with respect to 100 parts by mass of the total amount of the hydrolyzable silane compound, depending on the desired reaction time and the like. Can be done.
- the hydrolysis and condensation reaction of the hydrolyzable silane compound is preferably carried out in the presence of a catalyst and water.
- the catalyst may be an acid catalyst or an alkali catalyst.
- the acid catalyst is not particularly limited, and for example, mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid and boric acid; phosphoric acid esters; carboxylic acids such as acetic acid, formic acid and trifluoroacetic acid; methanesulfonic acid and trifluo. Examples thereof include sulfonic acids such as lomethane sulfonic acid and p-toluene sulfonic acid; solid acids such as active white clay; and Lewis acids such as iron chloride.
- the alkali catalyst is not particularly limited, and for example, hydroxides of alkali metals such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and cesium hydroxide; magnesium hydroxide, calcium hydroxide, barium hydroxide, and the like.
- Alkali earth metal hydroxides Alkali metal carbonates such as lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate; Alkali earth metal carbonates such as magnesium carbonate; Lithium hydrogen carbonate, sodium hydrogen carbonate, hydrogen carbonate Alkali metal hydrogen carbonates such as potassium and cesium hydrogen carbonate; alkali metal organic acid salts such as lithium acetate, sodium acetate, potassium acetate and cesium acetate (eg acetate); alkaline earth metal organic salts such as magnesium acetate Alkali acid salts (eg, acetates); alkali metal alkoxides such as lithium methoxydo, sodium methoxydo, sodium ethoxydo, sodium isopropoxide, potassium ethoxide, potassium t-butoxide; alkali metal phenoxides such as sodium phenoxide; Amines such as triethylamine, N-methylpiperidin, 1,8-diazabicyclo [5.4.0] undec-7-ene,
- the amount of the catalyst used is not particularly limited, and can be appropriately adjusted within the range of 0.002 to 0.200 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound.
- the amount of water used in the hydrolysis and condensation reactions is not particularly limited, and is usually adjusted appropriately within the range of 0.5 to 40 mol with respect to 1 mol of the total amount of the hydrolyzable silane compound. it can.
- the method of adding the above water is not particularly limited, and the total amount of water used (total amount used) may be added all at once or sequentially. When added sequentially, it may be added continuously or intermittently.
- the reaction temperature of the hydrolysis and condensation reactions is not particularly limited, and is, for example, 40 to 100 ° C, preferably 45 to 80 ° C.
- the reaction time of the hydrolysis and condensation reactions is not particularly limited, and is, for example, 0.1 to 15 hours, preferably 1.5 to 10 hours.
- the hydrolysis and condensation reactions can be carried out under normal pressure, under pressure or under reduced pressure.
- the atmosphere for performing the hydrolysis and condensation reactions may be, for example, an inert gas atmosphere such as a nitrogen atmosphere or an argon atmosphere, or an oxygen presence such as under air, but the inert gas may be used. The atmosphere is preferable.
- the polyorganosylsesquioxane (a1) in the present invention has a crosslinked structure formed by reacting a polymerizable group (Q1) with a substituent containing an active hydrogen atom (Q2), but is polymerizable.
- the reaction between the group (Q1) and the substituent (Q2) containing an active hydrogen atom usually proceeds even at room temperature without a catalyst, and the reaction temperature of the hydrolysis and condensation reactions is, for example, 40 to 100 ° C. When this is done, the reaction between the polymerizable group (Q1) and the substituent (Q2) containing an active hydrogen atom is more likely to proceed.
- Polyorganosylsesquioxane (a1) can be obtained by the hydrolysis and condensation reaction of the hydrolyzable silane compound.
- the catalyst may be neutralized after the completion of the hydrolysis and condensation reactions.
- the polyorganosylsesquioxane (a1) is separated by, for example, water washing, acid washing, alkaline washing, filtration, concentration, distillation, extraction, crystallization, recrystallization, column chromatography and the like, and a combination thereof. It may be separated and purified by a separation means or the like.
- polyorganosylsesquioxane (a1) Only one type of polyorganosylsesquioxane (a1) may be used, or two or more types having different structures may be used in combination.
- the content of polyorganosylsesquioxane (a1) in the composition for forming a hard coat layer of the present invention is not particularly limited, but is 50% by mass or more with respect to the total solid content of the composition for forming a hard coat layer. It is preferably 70% by mass or more, and more preferably 80% by mass or more.
- the upper limit of the content of polyorganosylsesquioxane (a1) in the composition for forming a hard coat layer is not particularly limited, but is 99.9% by mass or less based on the total solid content of the composition for forming a hard coat layer. Is more preferable, 98% by mass or less is more preferable, and 97% by mass or less is further preferable.
- the total solid content is all components other than the solvent.
- the composition for forming a hard coat layer of the present invention preferably contains a polymerization initiator. If the polymerizable group (Q1) contained in the polyorganosylsesquioxane (a1) is a radically polymerizable group, it is preferable to contain a radical polymerization initiator, and if the polymerizable group (Q1) is a cationically polymerizable group. , It is preferable to contain a cationic polymerization initiator.
- the polymerization initiator is preferably a radical polymerization initiator.
- the radical polymerization initiator may be either a radical photopolymerization initiator or a radical thermal polymerization initiator, but a radical photopolymerization initiator is more preferable. Only one type of polymerization initiator may be used, or two or more types having different structures may be used in combination.
- the radical photopolymerization initiator may be any as long as it can generate radicals as an active species by light irradiation, and known radical photopolymerization initiators can be used without any limitation. Specific examples include, for example, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl).
- Ketone 1-hydroxycyclohexylphenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2 -Hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propanone oligomer, 2-hirodoxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] Acetphenones such as phenyl ⁇ -2-methyl-propane-1-one; 1,2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], etanone, 1- [9 -Oxime esters such as -ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime); benzo
- Luphosphon oxides Luphosphon oxides; etc.
- the above radical photopolymerization initiators and auxiliaries can be synthesized by known methods and are also available as commercial products.
- the content of the polymerization initiator in the composition for forming a hard coat layer is not particularly limited, but is, for example, 0.1 to 200 parts by mass with respect to 100 parts by mass of polyorganosylsesquioxane (a1). Is preferable, and 1 to 50 parts by mass is more preferable.
- the composition for forming a hard coat layer of the present invention may contain a solvent.
- a solvent an organic solvent is preferable, and one kind or two or more kinds of organic solvents can be mixed and used at an arbitrary ratio.
- the organic solvent include alcohols such as methanol, ethanol, propanol, n-butanol and i-butanol; ketones such as acetone, methylisobutylketone, methylethylketone and cyclohexanone; cellosolves such as ethylcellosolve; toluene.
- Aromatic substances such as xylene; glycol ethers such as propylene glycol monomethyl ether; acetate esters such as methyl acetate, ethyl acetate and butyl acetate; diacetone alcohol and the like.
- the content of the solvent in the composition for forming a hard coat layer can be appropriately adjusted within a range in which the coating suitability of the composition for forming a hard coat layer can be ensured. For example, it can be 50 to 500 parts by mass, preferably 80 to 200 parts by mass with respect to 100 parts by mass of the total solid content of the composition for forming a hard coat layer.
- the composition for forming a hard coat layer usually takes the form of a liquid.
- the solid content concentration of the composition for forming a hard coat layer is usually 10 to 90% by mass, preferably 20 to 80% by mass, and particularly preferably 40 to 70% by mass.
- composition for forming a hard coat layer of the present invention may contain components other than the above, for example, inorganic fine particles, a dispersant, a leveling agent, an antifouling agent, an antistatic agent, an ultraviolet absorber, and an antioxidant. Etc. may be contained.
- composition for forming a hard coat layer of the present invention can be prepared by simultaneously or sequentially mixing the various components described above in any order.
- the preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.
- the present invention also relates to a hard coat film having a base material and a hard coat layer formed from the above composition for forming a hard coat layer.
- the hard coat film of the present invention has the above hard coat layer on a base material.
- the base material used for the hard coat film of the present invention preferably has a transmittance in the visible light region of 70% or more, more preferably 80% or more, and further preferably 90% or more.
- the base material is preferably a plastic base material containing a polymer.
- a polymer having excellent optical transparency, mechanical strength, thermal stability and the like is preferable.
- polystyrene-based polymers such as polystyrene and acrylonitrile-styrene copolymer (AS resin).
- polyolefins such as polyethylene and polypropylene, norbornene resins, polyolefin polymers such as ethylene / propylene copolymers, (meth) acrylic polymers such as polymethylmethacrylate, vinyl chloride polymers, nylon, and amides such as aromatic polyamides.
- amide-based polymers such as aromatic polyamides and imide-based polymers have a large number of breaks and bends measured by a MIT tester in accordance with JIS (Japanese Industrial Standards) P8115 (2001) and have a relatively high hardness. It can be preferably used.
- the aromatic polyamide as described in Example 1 of Japanese Patent No. 56994454, the polyimides described in JP-A-2015-508345, JP-A-2016-521216, and WO2017 / 014287 as a base material.
- aromatic polyamide aromatic polyamide (aramid-based polymer) is preferable.
- the base material preferably contains at least one polymer selected from imide-based polymers and aramid-based polymers.
- the base material can be formed as a cured layer of an ultraviolet curable type or thermosetting type resin such as acrylic type, urethane type, acrylic urethane type, epoxy type and silicone type.
- the base material may contain a material that further softens the above polymer.
- the softening material refers to a compound that improves the number of fractures and bends, and as the softening material, a rubber elastic body, a brittleness improver, a plasticizer, a slide ring polymer, or the like can be used.
- the softening material the softening material described in paragraph numbers [0051] to [0114] in JP-A-2016-167043 can be preferably used.
- the softening material may be mixed alone with the polymer, may be mixed in combination of a plurality as appropriate, or may be used alone or in combination of a plurality of softening materials without being mixed with the polymer. It may be used as a base material.
- the amount of these softening materials to be mixed is not particularly limited, and a polymer having a sufficient number of fractures and bends by itself may be used alone as a base material for a film, or a softening material may be mixed, or all of them. May be used as a softening material (100%) to have a sufficient number of breaks and bends.
- additives for example, ultraviolet absorbers, matting agents, antioxidants, peeling accelerators, retardation (optical anisotropy) adjusting agents, etc.
- They may be solid or oily. That is, the melting point or boiling point is not particularly limited.
- the additive may be added at any time in the step of producing the base material, or the step of adding the additive and preparing may be added to the material preparation step.
- the amount of each material added is not particularly limited as long as the function is exhibited.
- the additives described in paragraph numbers [0117] to [0122] in JP-A-2016-167043 can be preferably used.
- the above additives may be used alone or in combination of two or more.
- UV absorber examples of the ultraviolet absorber include a benzotriazole compound, a triazine compound, and a benzoxazine compound.
- the benzotriazole compound is a compound having a benzotriazole ring, and specific examples thereof include various benzotriazole-based ultraviolet absorbers described in paragraph 0033 of JP2013-1111835.
- the triazine compound is a compound having a triazine ring, and specific examples thereof include various triazine-based ultraviolet absorbers described in paragraph 0033 of JP2013-1111835.
- As the benzoxazine compound for example, those described in paragraph 0031 of JP-A-2014-209162 can be used.
- the content of the ultraviolet absorber in the base material is, for example, about 0.1 to 10 parts by mass with respect to 100 parts by mass of the polymer contained in the base material, but is not particularly limited. Further, regarding the ultraviolet absorber, reference is also made to paragraph 0032 of JP2013-1111835A.
- an ultraviolet absorber having high heat resistance and low volatilization is preferable. Examples of such an ultraviolet absorber include UVSORB101 (manufactured by Fujifilm Fine Chemicals Co., Ltd.), TINUVIN 360, TINUVIN 460, TINUVIN 1577 (manufactured by BASF), LA-F70, LA-31, LA-46 (manufactured by ADEKA) and the like. Can be mentioned.
- the base material has a small difference in refractive index between the flexible material and various additives used for the base material and the polymer.
- a base material containing an imide-based polymer As the base material, a base material containing an imide-based polymer can be preferably used.
- the imide-based polymer means a polymer containing at least one of the repeating structural units represented by the formula (PI), the formula (a), the formula (a') and the formula (b). Among them, it is preferable that the repeating structural unit represented by the formula (PI) is the main structural unit of the imide-based polymer from the viewpoint of film strength and transparency.
- the repeating structural unit represented by the formula (PI) is preferably 40 mol% or more, more preferably 50 mol% or more, still more preferably 70 mol% or more, based on all the repeating structural units of the imide-based polymer. It is particularly preferably 90 mol% or more, and most preferably 98 mol% or more.
- G in the formula (PI) represents a tetravalent organic group, and A represents a divalent organic group.
- G 2 in the formula (a) represents a trivalent organic group, and A 2 represents a divalent organic group.
- G 3 in the formula (a') represents a tetravalent organic group, and A 3 represents a divalent organic group.
- G 4 and A 4 in the formula (b) represents each a divalent organic group.
- the organic group of the tetravalent organic group represented by G includes an acyclic aliphatic group, a cyclic aliphatic group and an aromatic group. Examples are groups selected from the group consisting of.
- the organic group of G is preferably a tetravalent cyclic aliphatic group or a tetravalent aromatic group from the viewpoint of transparency and flexibility of the base material containing the imide polymer.
- the aromatic group includes a monocyclic aromatic group, a condensed polycyclic aromatic group, and a non-condensed polycyclic aromatic group having two or more aromatic rings in which they are directly or linked to each other by a bonding group. And so on.
- the organic group of G is a cyclic aliphatic group, a cyclic aliphatic group having a fluorine-based substituent, a monocyclic aromatic group having a fluorine-based substituent, and the like. It is preferably a condensed polycyclic aromatic group having a fluorine-based substituent or a non-condensed polycyclic aromatic group having a fluorine-based substituent.
- the fluorine-based substituent means a group containing a fluorine atom.
- the fluorine-based substituent is preferably a fluoro group (fluorine atom, ⁇ F) and a perfluoroalkyl group, and more preferably a fluoro group and a trifluoromethyl group.
- the organic group of G is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl. It is selected from a group and a group having any two of these (which may be the same) and these being linked to each other directly or by a binding group.
- Examples of the bonding group include -O-, an alkylene group having 1 to 10 carbon atoms, -SO 2- , -CO- or -CO-NR- (R is a methyl group, an ethyl group, a propyl group and the like having 1 to 1 carbon atoms. (Representing an alkyl group of 3 or a hydrogen atom).
- the tetravalent organic group represented by G usually has 2 to 32 carbon atoms, preferably 4 to 15 carbon atoms, more preferably 5 to 10 carbon atoms, and even more preferably 6 to 8 carbon atoms.
- the organic group of G is a cyclic aliphatic group or an aromatic group, at least one of the carbon atoms constituting these groups may be replaced with a heteroatom.
- Heteroatoms include O, N or S.
- G examples include groups represented by the following formulas (20), formulas (21), formulas (22), formulas (23), formulas (24), formulas (25) or formulas (26). Be done. * In the formula indicates a bond.
- Z in formula (26) is single bond, -O-, -CH 2- , -C (CH 3 ) 2- , -Ar-O-Ar-, -Ar -CH 2-Ar-, -Ar- Represents C (CH 3 ) 2- Ar- or -Ar-SO 2- Ar-.
- Ar represents an arylene group having 6 to 20 carbon atoms, and may be, for example, a phenylene group. At least one of the hydrogen atoms of these groups may be substituted with a fluorine-based substituent.
- the organic group of the divalent organic group represented by A includes an acyclic aliphatic group, a cyclic aliphatic group and an aromatic group. Examples include groups selected from the group consisting of.
- the divalent organic group represented by A is preferably selected from a divalent cyclic aliphatic group and a divalent aromatic group.
- Aromatic groups include monocyclic aromatic groups, fused polycyclic aromatic groups, and non-condensed polycyclic aromatics having two or more aromatic rings and linked to each other directly or by a bonding group. The group is mentioned. From the viewpoint of transparency of the base material and suppression of coloring, it is preferable that a fluorine-based substituent is introduced into the organic group of A.
- the organic group of A is, for example, a saturated or unsaturated cycloalkyl group, a saturated or unsaturated heterocycloalkyl group, an aryl group, a heteroaryl group, an arylalkyl group, an alkylaryl group, a heteroalkylaryl. It is selected from groups that have a group and any two of these (which may be the same) and to which they are linked to each other either directly or by a linking group.
- the heteroatom include O, N or S
- examples of the bonding group are -O-, an alkylene group having 1 to 10 carbon atoms, -SO 2- , -CO- or -CO-NR- (R is methyl).
- Including an alkyl group having 1 to 3 carbon atoms such as a group, an ethyl group, a propyl group, or a hydrogen atom).
- the number of carbon atoms of the divalent organic group represented by A is usually 2 to 40, preferably 5 to 32, more preferably 12 to 28, and further preferably 24 to 27.
- A examples include groups represented by the following formulas (30), formulas (31), formulas (32), formulas (33) or formulas (34).
- * In the formula indicates a bond.
- Z 1 to Z 3 are independently single-bonded, -O-, -CH 2- , -C (CH 3 ) 2- , -SO 2- , -CO- or -CO-NR- (R is Represents an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, and a propyl group, or a hydrogen atom).
- Z 1 and Z 2 and Z 2 and Z 3 are preferably in the meta or para position with respect to each ring, respectively.
- the single bond between Z 1 and the terminal, the single bond between Z 2 and the terminal, and the single bond between Z 3 and the terminal are in the meta position or the para position, respectively.
- Z 1 and Z 3 are -O- and Z 2 is -CH 2- , -C (CH 3 ) 2- or -SO 2- .
- One or more of the hydrogen atoms of these groups may be substituted with fluorine-based substituents.
- At least one hydrogen atom among the hydrogen atoms constituting at least one of A and G is selected from the group consisting of a fluorine-based substituent, a hydroxyl group, a sulfone group, an alkyl group having 1 to 10 carbon atoms, and the like. It may be substituted with a functional group. Further, when the organic group of A and the organic group of G are cyclic aliphatic groups or aromatic groups, respectively, it is preferable that at least one of A and G has a fluorine-based substituent, and both A and G have a fluorine-based substituent. It is more preferable to have a fluorine-based substituent.
- G 2 in the formula (a) is a trivalent organic group.
- This organic group can be selected from the same groups as the organic group of G in the formula (PI) except that it is a trivalent group.
- G 2 a group in which any one of the four bonds of the groups represented by the formulas (20) to (26) given as a specific example of G is replaced with a hydrogen atom is mentioned. Can be done.
- a 2 in formula (a) can be selected from the same groups as A in formula (PI).
- G 3 in formula (a') can be selected from the same groups as G in formula (PI).
- a 3 in formula (a') can be selected from the same groups as A in formula (PI).
- G 4 in formula (b) is a divalent organic group.
- This organic group can be selected from the same groups as the organic group of G in the formula (PI) except that it is a divalent group.
- An example of G 4 is a group in which any two of the four bonds of the groups represented by the formulas (20) to (26) given as specific examples of G are replaced with hydrogen atoms. Can be done.
- a 4 in the formula (b) may be selected from the same groups as A in the formula (PI).
- the imide-based polymer contained in the substrate containing the imide-based polymer includes diamines and tetracarboxylic acid compounds (including tetracarboxylic acid compound analogs such as acid chloride compound and tetracarboxylic acid dianhydride) or tricarboxylic acid compounds (including acid chloride compounds and tetracarboxylic acid compound analogs). It may be a condensed polymer obtained by polycondensing with at least one kind of an acid chloride compound and a tricarboxylic acid compound analog such as tricarboxylic acid anhydride). Further, a dicarboxylic acid compound (including an analog such as an acid chloride compound) may be polycondensed.
- the repeating structural unit represented by the formula (PI) or the formula (a') is usually derived from diamines and tetracarboxylic acid compounds.
- the repeating structural unit represented by the formula (a) is usually derived from diamines and tricarboxylic acid compounds.
- the repeating structural unit represented by the formula (b) is usually derived from diamines and dicarboxylic acid compounds.
- the tetracarboxylic acid compound examples include an aromatic tetracarboxylic acid compound, an alicyclic tetracarboxylic acid compound, and an acyclic aliphatic tetracarboxylic acid compound. These may be used in combination of two or more.
- the tetracarboxylic acid compound is preferably a tetracarboxylic dianhydride.
- the tetracarboxylic dianhydride include aromatic tetracarboxylic dianhydride, alicyclic tetracarboxylic dianhydride, and acyclic aliphatic tetracarboxylic dianhydride.
- the tetracarboxylic dian compound may be an alicyclic tetracarboxylic dian compound, an aromatic tetracarboxylic dian compound, or the like from the viewpoint of solubility of the imide-based polymer in a solvent and transparency and flexibility when a base material is formed. preferable.
- the tetracarboxylic acid compound is an alicyclic tetracarboxylic acid compound having a fluorine-based substituent and an aromatic tetracarboxylic acid compound having a fluorine-based substituent. It is preferably selected from, and more preferably an alicyclic tetracarboxylic acid compound having a fluorine-based substituent.
- the tricarboxylic acid compound examples include aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids, acid chloride compounds related thereto, acid anhydrides and the like.
- the tricarboxylic acid compound is preferably selected from aromatic tricarboxylic acids, alicyclic tricarboxylic acids, acyclic aliphatic tricarboxylic acids and related acid chloride compounds thereof. Two or more kinds of tricarboxylic acid compounds may be used in combination.
- the tricarboxylic acid compound is an alicyclic tricarboxylic acid compound or an aromatic tricarboxylic acid compound from the viewpoint of the solubility of the imide-based polymer in a solvent and the transparency and flexibility when a substrate containing the imide-based polymer is formed. Is preferable. From the viewpoint of transparency of the base material containing the imide-based polymer and suppression of coloring, the tricarboxylic acid compound shall be an alicyclic tricarboxylic acid compound having a fluorine-based substituent or an aromatic tricarboxylic acid compound having a fluorine-based substituent. Is more preferable.
- dicarboxylic acid compound examples include aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids, acid chloride compounds related thereto, acid anhydrides and the like.
- the dicarboxylic acid compound is preferably selected from aromatic dicarboxylic acids, alicyclic dicarboxylic acids, acyclic aliphatic dicarboxylic acids and related acid chloride compounds thereof. Two or more kinds of dicarboxylic acid compounds may be used in combination.
- the dicarboxylic acid compound is an alicyclic dicarboxylic acid compound or an aromatic dicarboxylic acid compound from the viewpoint of the solubility of the imide-based polymer in a solvent and the transparency and flexibility when a substrate containing the imide-based polymer is formed. Is preferable. From the viewpoint of transparency and suppression of coloring of the base material containing the imide-based polymer, the dicarboxylic acid compound shall be an alicyclic dicarboxylic acid compound having a fluorine-based substituent or an aromatic dicarboxylic acid compound having a fluorine-based substituent. Is even more preferable.
- diamines examples include aromatic diamines, alicyclic diamines and aliphatic diamines, and two or more of these may be used in combination. From the viewpoint of the solubility of the imide polymer in the solvent and the transparency and flexibility when the substrate containing the imide polymer is formed, the diamines are selected from alicyclic diamines and aromatic diamines having a fluorine-based substituent. It is preferable to be selected.
- an imide polymer When such an imide polymer is used, it has particularly excellent flexibility, high light transmittance (for example, 85% or more, preferably 88% or more with respect to light at 550 nm), and low yellowness (YI value). It is easy to obtain a substrate having 5, 5 or less, preferably 3 or less), and a low haze (1.5% or less, preferably 1.0% or less).
- the imide-based polymer may be a copolymer containing a plurality of different types of the above-mentioned repeating structural units.
- the weight average molecular weight of the polyimide polymer is usually 10,000 to 500,000.
- the weight average molecular weight of the imide polymer is preferably 50,000 to 500,000, more preferably 70,000 to 400,000.
- the weight average molecular weight is a standard polystyrene-equivalent molecular weight measured by gel permeation chromatography (GPC).
- the weight average molecular weight of the imide-based polymer is large, high flexibility tends to be easily obtained, but if the weight average molecular weight of the imide-based polymer is too large, the viscosity of the varnish tends to be high and the processability tends to be lowered.
- the imide-based polymer may contain a halogen atom such as a fluorine atom that can be introduced by the above-mentioned fluorine-based substituent or the like.
- a halogen atom such as a fluorine atom that can be introduced by the above-mentioned fluorine-based substituent or the like.
- the halogen atom is preferably a fluorine atom.
- the content of the halogen atom in the polyimide-based polymer is preferably 1 to 40% by mass, more preferably 1 to 30% by mass, based on the mass of the polyimide-based polymer.
- the base material containing the imide-based polymer may contain one kind or two or more kinds of ultraviolet absorbers.
- the ultraviolet absorber can be appropriately selected from those usually used as an ultraviolet absorber in the field of resin materials.
- the ultraviolet absorber may contain a compound that absorbs light having a wavelength of 400 nm or less.
- Examples of the ultraviolet absorber that can be appropriately combined with the imide-based polymer include at least one compound selected from the group consisting of benzophenone-based compounds, salicylate-based compounds, benzotriazole-based compounds, and triazine-based compounds.
- the "system compound” refers to a derivative of a compound to which the "system compound” is attached.
- the "benzophenone-based compound” refers to a compound having benzophenone as a maternal skeleton and a substituent attached to benzophenone.
- the content of the ultraviolet absorber is usually 1% by mass or more, preferably 2% by mass or more, more preferably 3% by mass or more, and usually 10% by mass or less, based on the total mass of the base material. Yes, preferably 8% by mass or less, and more preferably 6% by mass or less. By including the ultraviolet absorber in these amounts, the weather resistance of the base material can be enhanced.
- the base material containing the imide-based polymer may further contain an inorganic material such as inorganic particles.
- the inorganic material is preferably a silicon material containing a silicon atom.
- the tensile elastic modulus of the base material containing the imide-based polymer can be easily set to 4.0 GPa or more.
- the method of controlling the tensile elastic modulus of the base material containing the imide-based polymer is not limited to the blending of the inorganic material.
- Examples of the silicon material containing a silicon atom include silica particles, a quaternary alkoxysilane such as tetraethyl orthosilicate (TEOS), and a silicon compound such as a silsesquioxane derivative.
- TEOS tetraethyl orthosilicate
- silicon compound such as a silsesquioxane derivative.
- silica particles are preferable from the viewpoint of transparency and flexibility of the base material containing the imide-based polymer.
- the average primary particle size of silica particles is usually 100 nm or less. When the average primary particle size of the silica particles is 100 nm or less, the transparency tends to be improved.
- the average primary particle size of the silica particles in the substrate containing the imide polymer can be determined by observation with a transmission electron microscope (TEM).
- the primary particle size of the silica particles can be a directional diameter measured by a transmission electron microscope (TEM).
- the average primary particle size can be obtained by measuring 10 points of the primary particle size by TEM observation and as an average value thereof.
- the particle distribution of the silica particles before forming the substrate containing the imide polymer can be determined by a commercially available laser diffraction type particle size distribution meter.
- the blending ratio of the imide-based polymer and the inorganic material is preferably 1: 9 to 10: 0 in terms of mass ratio, with the total of both being 10 and 3: 7 to 10 : 0 is more preferable, 3: 7 to 8: 2 is more preferable, and 3: 7 to 7: 3 is even more preferable.
- the ratio of the inorganic material to the total mass of the imide-based polymer and the inorganic material is usually 20% by mass or more, preferably 30% by mass or more, usually 90% by mass or less, and preferably 70% by mass or less.
- the blending ratio of the imide-based polymer and the inorganic material is within the above range, the transparency and mechanical strength of the base material containing the imide-based polymer tend to be improved. Further, the tensile elastic modulus of the base material containing the imide-based polymer can be easily set to 4.0 GPa or more.
- the base material containing the imide-based polymer may further contain components other than the imide-based polymer and the inorganic material as long as the transparency and flexibility are not significantly impaired.
- the components other than the imide polymer and the inorganic material include colorants such as antioxidants, mold release agents, stabilizers and bluing agents, flame retardants, lubricants, thickeners and leveling agents.
- the ratio of the components other than the imide-based polymer and the inorganic material is preferably more than 0% and 20% by mass or less, more preferably more than 0% and 10% by mass or less with respect to the mass of the base material. ..
- Si / N which is the ratio of the number of atoms of the silicon atom to the nitrogen atom on at least one surface, is 8 or more.
- the atomic number ratio Si / N is determined by evaluating the composition of the base material containing an imide-based polymer by X-ray Photoelectron Spectroscopy (XPS), and the abundance of silicon atoms and nitrogen atoms obtained thereby. It is a value calculated from the abundance of.
- the Si / N on at least one surface of the base material containing the imide polymer is 8 or more, sufficient adhesion to the hard coat layer can be obtained.
- the Si / N is more preferably 9 or more, further preferably 10 or more, preferably 50 or less, and more preferably 40 or less.
- the base material is preferably in the form of a film (the base material is particularly preferably a plastic film).
- the thickness of the base material is more preferably 100 ⁇ m or less, further preferably 80 ⁇ m or less, and most preferably 50 ⁇ m or less.
- the thickness of the base material is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and most preferably 15 ⁇ m or more.
- the substrate may be formed by thermally melting a thermoplastic polymer to form a film, or may be formed from a solution in which the polymer is uniformly dissolved by a solution film forming (solvent casting method).
- a solution film forming solvent casting method
- the above-mentioned softening material and various additives can be added at the time of Fused Deposition Modeling.
- the base material is prepared by the solution film forming method
- the above-mentioned softening material and various additives can be added to the polymer solution (hereinafter, also referred to as dope) in each preparation step.
- the timing of addition may be any in the dope preparation step, but the step of adding and preparing the additive may be added to the final preparation step of the dope preparation step.
- the coating film may be heated for drying and / or baking of the coating film.
- the heating temperature of the coating film is usually 50 to 350 ° C.
- the coating film may be heated in an inert atmosphere or under reduced pressure.
- the solvent can be evaporated and removed by heating the coating film.
- the base material may be formed by a method including a step of drying the coating film at 50 to 150 ° C. and a step of baking the dried coating film at 180 to 350 ° C.
- Surface treatment may be applied to at least one surface of the base material.
- the hard coat film of the present invention has a hard coat layer formed from the above composition for forming a hard coat layer.
- the hard coat layer is preferably formed on at least one surface of the substrate.
- the hard coat film of the present invention has a scratch resistant layer described later, it is preferable to have at least one hard coat layer between the base material and the scratch resistant layer.
- the hard coat layer is preferably formed by applying the above composition for forming a hard coat layer onto a base material and subjecting a coating film obtained by subjecting a coating film to a curing treatment by at least one of light irradiation and heating. .. That is, the hard coat layer preferably contains a cured product of the composition for forming the hard coat layer.
- the hard coat layer of the hard coat film of the present invention contains a cured product of a composition for forming a hard coat layer containing polyorganosilsesquioxane (a1), and preferably polyorganosilsesquioxane (a1). ) And a cured product of the composition for forming a hard coat layer containing a polymerization initiator.
- the cured product of the composition for forming a hard coat layer preferably contains at least a cured product in which the polymerizable group (Q1) of the polyorganosylsesquioxane (a1) is bonded by a polymerization reaction.
- the content of the cured product of the composition for forming the hard coat layer in the hard coat layer of the hard coat film of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, 70. It is more preferably mass% or more.
- the film thickness of the hard coat layer is not particularly limited, but is preferably 0.5 to 30 ⁇ m, more preferably 1 to 25 ⁇ m, and even more preferably 2 to 20 ⁇ m.
- the film thickness of the hard coat layer is calculated by observing the cross section of the hard coat film with an optical microscope.
- the cross-section sample can be prepared by a microtome method using a cross-section cutting device Ultra Microtome, a cross-section processing method using a focused ion beam (FIB) device, or the like.
- the hard coat film of the present invention may have a functional layer other than the above hard coat layer.
- the functional layer is not particularly limited, and examples thereof include a scratch resistant layer.
- the hard coat film of the present invention has a scratch resistant layer, it is preferable to have at least one scratch resistant layer on the surface opposite to the base material of the hard coat layer.
- the scratch-resistant layer of the hard coat film of the present invention preferably contains a cured product of a composition for forming a scratch-resistant layer containing a radically polymerizable compound (c1).
- the radically polymerizable compound (c1) (also referred to as “compound (c1)”) will be described.
- Compound (c1) is a compound having a radically polymerizable group.
- the radically polymerizable group in the compound (c1) is not particularly limited, and a generally known radically polymerizable group can be used.
- Examples of the radically polymerizable group include a polymerizable unsaturated group, and specific examples thereof include a (meth) acryloyl group, a vinyl group, and an allyl group, and a (meth) acryloyl group is preferable.
- each group mentioned above may have a substituent.
- the compound (c1) is preferably a compound having two or more (meth) acryloyl groups in one molecule, and more preferably a compound having three or more (meth) acryloyl groups in one molecule. ..
- the molecular weight of the compound (c1) is not particularly limited, and it may be a monomer, an oligomer, or a polymer. Specific examples of the above compound (c1) are shown below, but the present invention is not limited thereto.
- Examples of the compound having two (meth) acryloyl groups in one molecule include neopentyl glycol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate, and tripropylene.
- Glycoldi (meth) acrylate tetraethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate of hydroxypivalate, polyethylene glycol di (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl ( Preferable examples thereof include meta) acrylate and dicyclopentanyldi (meth) acrylate.
- Examples of the compound having three or more (meth) acryloyl groups in one molecule include an ester of a polyhydric alcohol and (meth) acrylic acid.
- pentaerythritol tri (meth) acrylate pentaerythritol tetra (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolethanetri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, dipenta.
- pentaerythritol triacrylate pentaerythritol tetraacrylate
- dipentaerythritol Pentaacrylates, dipentaerythritol hexaacrylates, or mixtures thereof are preferred.
- the content of the compound (c1) in the scratch-resistant layer forming composition is preferably 80% by mass or more, more preferably 85% by mass or more, based on the total solid content in the scratch-resistant layer forming composition. It is preferable, and 90% by mass or more is more preferable.
- the scratch-resistant layer-forming composition in the present invention preferably contains a radical polymerization initiator. Only one type of radical polymerization initiator may be used, or two or more types having different structures may be used in combination. Further, the radical polymerization initiator may be a photopolymerization initiator or a thermal polymerization initiator.
- the content of the radical polymerization initiator in the scratch-resistant layer forming composition is not particularly limited, but is preferably 0.1 to 200 parts by mass with respect to 100 parts by mass of the compound (c1), for example. ⁇ 50 parts by mass is more preferable.
- the scratch-resistant layer-forming composition in the present invention may contain a solvent.
- the solvent is the same as the solvent that may be contained in the above-mentioned resin composition.
- the content of the solvent in the scratch-resistant layer-forming composition in the present invention can be appropriately adjusted within a range in which the coating suitability of the scratch-resistant layer-forming composition can be ensured. For example, it can be 50 to 500 parts by mass, preferably 80 to 200 parts by mass with respect to 100 parts by mass of the total solid content of the scratch-resistant layer forming composition.
- the scratch-resistant layer-forming composition usually takes the form of a liquid.
- the concentration of the solid content of the scratch-resistant layer forming composition is usually about 10 to 90% by mass, preferably about 20 to 80% by mass, and particularly preferably about 40 to 70% by mass.
- the scratch-resistant layer forming composition may contain components other than the above, and may contain, for example, inorganic particles, a leveling agent, an antifouling agent, an antistatic agent, a slip agent, a solvent and the like. In particular, it is preferable to contain the following fluorine-containing compound as a slip agent.
- the fluorine-containing compound may be a monomer, an oligomer, or a polymer.
- the fluorine-containing compound preferably has a substituent that contributes to bond formation or compatibility with the compound (c1) in the scratch-resistant layer.
- the substituents may be the same or different, and it is preferable that there are a plurality of the substituents.
- the substituent is preferably a polymerizable group, and may be a polymerizable reactive group exhibiting any one of radical polymerizable, cationically polymerizable, anionic polymerizable, contractile polymerizable and addition polymerizable, as an example of a preferable substituent.
- Examples include acryloyl group, methacryloyl group, vinyl group, allyl group, cinnamoyl group, epoxy group, oxetanyl group, hydroxyl group, polyoxyalkylene group, carboxyl group and amino group. Among them, a radically polymerizable group is preferable, and an acryloyl group and a methacryloyl group are particularly preferable.
- the fluorine-containing compound may be a polymer or an oligomer with a compound containing no fluorine atom.
- the fluorine-containing compound is preferably a fluorine-based compound represented by the following general formula (F).
- RA represents a polymerizable unsaturated group.
- the polymerizable unsaturated group is preferably a group having an unsaturated bond (that is, a radically polymerizable group) capable of causing a radical polymerization reaction by irradiating with an active energy ray such as an ultraviolet ray or an electron beam (that is, a radically polymerizable group), and (meth).
- an active energy ray such as an ultraviolet ray or an electron beam
- an active energy ray such as an ultraviolet ray or an electron beam
- meth examples include acryloyl group, (meth) acryloyloxy group, vinyl group, allyl group, etc., (meth) acryloyl group, (meth) acryloyloxy group, and a group in which any hydrogen atom in these groups is substituted with a fluorine atom. Is preferably used.
- R f represents a (per) fluoroalkyl group or a (per) fluoropolyether group.
- the (per) fluoroalkyl group represents at least one of a fluoroalkyl group and a perfluoroalkyl group
- the (per) fluoropolyether group is at least one of a fluoropolyether group and a perfluoropolyether group. Represents a species. From the viewpoint of scratch resistance, it is preferable that the fluorine content in R f is high.
- the (par) fluoroalkyl group is preferably a group having 1 to 20 carbon atoms, and more preferably a group having 1 to 10 carbon atoms.
- the (par) fluoroalkyl group has a linear structure (for example, -CF 2 CF 3 , -CH 2 (CF 2 ) 4 H, -CH 2 (CF 2 ) 8 CF 3 , -CH 2 CH 2 (CF 2 ) 4 Even if it is H), it has a branched structure (for example, -CH (CF 3 ) 2 , -CH 2 CF (CF 3 ) 2 , -CH (CH 3 ) CF 2 CF 3 , -CH (CH 3 ) (CF 2 ).
- alicyclic structure preferably a 5- or 6-membered ring, for example perfluoro hexyl group, and a perfluorocyclopentyl group to cycloalkyl and alkyl groups substituted with these groups
- alicyclic structure preferably a 5- or 6-membered ring, for example perfluoro hexyl group, and a perfluorocyclopentyl group to cycloalkyl and alkyl groups substituted with these groups
- the (per) fluoropolyether group refers to a case where the (per) fluoroalkyl group has an ether bond, and may be a monovalent group or a divalent or higher valent group.
- the fluoropolyether group include -CH 2 OCH 2 CF 2 CF 3 , -CH 2 CH 2 OCH 2 C 4 F 8 H, -CH 2 CH 2 OCH 2 CH 2 C 8 F 17 , and -CH 2 CH 2.
- Examples thereof include OCF 2 CF 2 OCF 2 CF 2 H, a fluorocycloalkyl group having 4 or more fluorine atoms and 4 to 20 carbon atoms.
- perfluoropolyether group examples include- (CF 2 O) pf- (CF 2 CF 2 O) qf -,-[CF (CF 3 ) CF 2 O] pf- [CF (CF 3 )].
- qf ⁇ , ⁇ (CF 2 CF 2 CF 2 O) pf ⁇ , ⁇ (CF 2 CF 2 O) pf ⁇ and the like can be mentioned.
- the pf and qf independently represent an integer of 0 to 20. However, pf + qf is an integer of 1 or more.
- the total of pf and qf is preferably 1 to 83, more preferably 1 to 43, and even more preferably 5 to 23.
- the fluorine-containing compound is particularly preferably having a perfluoropolyether group represented by ⁇ (CF 2 O) pf ⁇ (CF 2 CF 2 O) qf ⁇ .
- the fluorine-containing compound preferably has a perfluoropolyether group and a plurality of polymerizable unsaturated groups in one molecule.
- W represents a linking group.
- W include an alkylene group, an arylene group and a heteroalkylene group, and a linking group in which these groups are combined. These linking groups may further have an oxy group, a carbonyl group, a carbonyloxy group, a carbonylimino group, a sulfonamide group, etc., and a functional group in which these groups are combined.
- W is preferably an ethylene group, more preferably an ethylene group bonded to a carbonylimino group.
- the fluorine atom content of the fluorine-containing compound is not particularly limited, but is preferably 20% by mass or more, more preferably 30 to 70% by mass, and even more preferably 40 to 70% by mass.
- preferable fluorine-containing compounds include R-2020, M-2020, R-3833, M-3833 and Optool DAC (trade name) manufactured by Daikin Chemical Industries, Ltd., and Megafuck F-171 manufactured by DIC. , F-172, F-179A, RS-78, RS-90, Defenser MCF-300 and MCF-323 (hereinafter referred to as trade names), but are not limited thereto.
- the product of nf and mf (nf ⁇ mf) is preferably 2 or more, and more preferably 4 or more.
- the weight average molecular weight (Mw) of a fluorine-containing compound having a polymerizable unsaturated group can be measured by using molecular exclusion chromatography, for example, gel permeation chromatography (GPC).
- Mw of the fluorine-containing compound used in the present invention is preferably 400 or more and less than 50,000, more preferably 400 or more and less than 30,000, and further preferably 400 or more and less than 25,000.
- the content of the fluorine-containing compound is preferably 0.01 to 5% by mass, more preferably 0.1 to 5% by mass, and 0.5 to 5% with respect to the total solid content in the composition for forming a scratch-resistant layer.
- the mass% is more preferable, and 0.5 to 2% by mass is particularly preferable.
- the scratch-resistant layer-forming composition used in the present invention can be prepared by simultaneously or sequentially mixing the various components described above in any order.
- the preparation method is not particularly limited, and a known stirrer or the like can be used for the preparation.
- the scratch-resistant layer of the hard coat film of the present invention preferably contains a cured product of the composition for forming a scratch-resistant layer containing the compound (c1), and more preferably contains the compound (c1) and a radical polymerization initiator. It contains a cured product of a composition for forming a scratch-resistant layer.
- the cured product of the scratch-resistant layer forming composition preferably contains at least a cured product obtained by a polymerization reaction of the radically polymerizable group of the compound (c1).
- the content of the cured product of the scratch-resistant layer-forming composition in the scratch-resistant layer of the hard coat film of the present invention is preferably 60% by mass or more, preferably 70% by mass or more, based on the total mass of the scratch-resistant layer. More preferably, 80% by mass or more is further preferable.
- the film thickness of the scratch-resistant layer is preferably less than 3.0 ⁇ m, more preferably 0.1 to 2.0 ⁇ m, and preferably 0.1 to 1.0 ⁇ m from the viewpoint of repeated bending resistance. More preferred.
- the hard coat film of the present invention has excellent pencil hardness.
- the hard coat film of the present invention preferably has a pencil hardness of 4H or more, and more preferably 5H or more. Pencil hardness can be evaluated according to JIS (JIS is Japanese Industrial Standards) K5400.
- the hard coat film of the present invention has excellent repeated bending resistance. It is preferable that the hard coat film of the present invention does not crack when the hard coat layer is inside and the 180 ° bending test is repeated 100,000 times with a radius of curvature of 2 mm.
- the repeated bending resistance is specifically measured as follows. A sample film having a width of 15 mm and a length of 150 mm is cut out from the hard coat film and allowed to stand at a temperature of 25 ° C. and a relative humidity of 65% for 1 hour or more. Then, using a 180 ° folding resistance tester (IMC-0755 type manufactured by Imoto Seisakusho Co., Ltd.), the bending resistance test is repeatedly performed with the hard coat layer inside.
- the above-mentioned tester bends the sample film along the curved surface of a rod (cylinder) having a diameter of 4 mm at a bending angle of 180 ° at the central portion in the longitudinal direction, and then returns it to its original position (spreads the sample film) once. This test is repeated. It is visually evaluated whether or not cracks occur when the above 180 ° bending test is repeated.
- the hard coat film of the present invention has excellent scratch resistance.
- the hard coat film of the present invention is preferably not scratched even if it is rubbed 10 times (10 reciprocations) when a steel wool rubbing test is performed on the hard coat layer with a load of 200 g, and 50 times (50 reciprocations). ) It is more preferable that it is not scratched even if it is rubbed, and it is further preferable that it is not scratched even if it is rubbed 100 times (100 reciprocations).
- the scratch resistance is specifically measured as follows. The surface of the hard coat film opposite to the base material (the surface on the hard coat layer side) is rubbed with a rubbing tester under the following conditions.
- the method for producing the hard coat film of the present invention is preferably a production method including the following steps (I) and (II).
- the production method further includes the following steps (III) and (IV) in addition to the above steps (I) and (II). .. (III) A step of applying a scratch-resistant layer forming composition containing a radically polymerizable compound (c1) onto the hard coat layer to form a scratch-resistant layer coating film (IV) Curing the scratch-resistant layer coating film.
- step (I) is a step of applying the composition for forming a hard coat layer on a base material to provide a hard coat layer coating film.
- the base material and the composition for forming the hard coat layer are as described above.
- the method for applying the composition for forming a hard coat layer is not particularly limited, and a known method can be used. For example, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method and the like can be mentioned.
- Step (II)- Step (II) is a step of forming a hard coat layer by curing the hard coat layer coating film.
- the term "curing the hard coat layer coating film” means that at least a part of the polymerizable group (Q1) of the polyorganosylsesquioxane (a1) contained in the hard coat layer coating film is polymerized.
- the hardening of the hard coat layer coating film is preferably carried out by at least one of irradiation and heating of ionizing radiation, and more preferably by both irradiation and heating of ionizing radiation.
- the type of ionizing radiation is not particularly limited, and examples thereof include X-rays, electron beams, ultraviolet rays, visible light, and infrared rays, but ultraviolet rays are preferably used.
- the hard coat layer coating film is ultraviolet curable, it is preferable to irradiate an ultraviolet lamp with an irradiation amount of 10 mJ / cm 2 to 2000 mJ / cm 2 to cure the curable compound, and the hard coat film is hard.
- a scratch-resistant layer is provided on the coat layer, it is preferable to semi-cure the curable compound. More preferably 50mJ / cm 2 ⁇ 1800mJ / cm 2, further preferably 100mJ / cm 2 ⁇ 1500mJ / cm 2.
- the ultraviolet lamp type a metal halide lamp, a high-pressure mercury lamp, or the like is preferably used.
- the temperature is not particularly limited, but is preferably 80 ° C. or higher and 200 ° C. or lower, more preferably 100 ° C. or higher and 180 ° C. or lower, and further preferably 120 ° C. or higher and 160 ° C. or lower. preferable.
- the oxygen concentration at the time of curing is preferably 0 to 1.0% by volume, more preferably 0 to 0.1% by volume, and most preferably 0 to 0.05% by volume.
- Step (III)- Step (III) is a step of applying a scratch-resistant layer forming composition containing a radically polymerizable compound (c1) onto the hard coat layer to form a scratch-resistant layer coating film.
- the radically polymerizable compound (c1) and the scratch-resistant layer forming composition are as described above.
- the method for applying the scratch-resistant layer forming composition is not particularly limited, and a known method can be used. For example, a dip coating method, an air knife coating method, a curtain coating method, a roller coating method, a wire bar coating method, a gravure coating method, a die coating method and the like can be mentioned.
- Step (IV) is a step of forming the scratch-resistant layer by curing the scratch-resistant layer coating film.
- the scratch-resistant layer coating film is preferably cured by at least one of irradiation with ionizing radiation and heating. Irradiation and heating of ionizing radiation are the same as those described in step (II). Curing the scratch-resistant layer coating means polymerizing at least a part of the radical-polymerizable groups of the radical-polymerizable compound (c1) contained in the scratch-resistant layer coating.
- the hard coat film when the hard coat film has a scratch resistant layer on the hard coat layer, it is preferable to semi-cure the hard coat layer coating film in the above step (II). That is, in the step (II), the hard coat layer coating film is semi-cured, and then in the step (III), the scratch resistant layer forming composition is applied onto the semi-cured hard coat layer to apply the scratch resistant layer coating film. Then, in step (IV), it is preferable to cure the scratch-resistant layer coating film and completely cure the hard coat layer.
- semi-curing the hard coat layer coating film means that only a part of the polymerizable groups (Q1) of the polyorganosylsesquioxane (a1) contained in the hard coat layer coating film is polymerized.
- Semi-curing of the hard coat layer coating film can be performed by adjusting the irradiation amount of ionizing radiation and the temperature and time of heating.
- Drying treatment as needed between steps (I) and step (II), between steps (II) and step (III), between steps (III) and step (IV), or after step (IV) May be done.
- the drying process is performed by blowing warm air, arranging in a heating furnace, transporting in a heating furnace, heating with a roller from a surface (base material surface) not provided with a hard coat layer and a scratch resistant layer, and the like. be able to.
- the heating temperature may be set to a temperature at which the solvent can be dried and removed, and is not particularly limited.
- the heating temperature means the temperature of warm air or the ambient temperature in the heating furnace.
- the present invention also relates to an article provided with the hard coat film.
- the hard coat film of the present invention is excellent in pencil hardness, scratch resistance, and repeated bending resistance.
- the use of the hard coat film of the present invention is not particularly limited, but it can be used, for example, as a surface protective film for an image display device. Further, as a suitable application in which the above-mentioned characteristics of the hard coat film of the present invention can be utilized, for example, it can be used as a surface protective film of a foldable device (foldable display).
- a foldable device is a device that employs a flexible display whose display screen can be deformed, and the device body (display) can be folded by utilizing the deformability of the display screen. Examples of the foldable device include an organic electroluminescence device and the like.
- ⁇ Preparation of base material> (Manufacturing of polyimide powder) After adding 832 g of N, N-dimethylacetamide (DMAc) to a 1 L reactor equipped with a stirrer, a nitrogen injection device, a dropping funnel, a temperature controller and a cooler under a nitrogen stream, the temperature of the reactor was changed to 25. It was set to °C. To this, 64.046 g (0.2 mol) of bistrifluoromethylbenzidine (TFDB) was added and dissolved.
- DMAc N, N-dimethylacetamide
- TFDB bistrifluoromethylbenzidine
- MIBK methyl isobutyl ketone
- SQ-1-1 polyorganosylsesquioxane
- the weight average molecular weight (Mw) of the obtained polyorganosylsesquioxane compound (SQ-1-1) was 28,200.
- Mw weight average molecular weight
- 1 H NMR Nuclear Magnetic Resonance
- ppm is an abbreviation for parts per million
- brs is an abbreviation for broad singlet. From this result, it was found that SQ-1-1 has a crosslinked structure formed by reacting an acryloyloxy group and an amino group. Moreover, it is clear that SQ-1-1 has an acryloyloxy group from the amount of the monomer used in the synthesis.
- SQ-3-1, SQ-3-2, SQ-4-1, SQ-5-1, SQ-1x to SQ-3x were synthesized to obtain these MIBK solutions.
- each polymer used as polyorganosylsesquioxane (a1) is shown below.
- SiO 1.5 represents a silsesquioxane unit.
- the composition ratio of each constituent unit is a molar ratio.
- the following structural formula shows the state before the polymerizable group (Q1) and the substituent (Q2) containing an active hydrogen atom react with each other, but as described above, the polymerizable group (Q1) is actually used. ) And the substituent (Q2) containing an active hydrogen atom react to form a crosslinked structure.
- SiO 1.5 represents a silsesquioxane unit.
- Example 1 ⁇ Preparation of composition 1 for forming a hard coat layer>
- MIBK solution containing the polyorganosylsesquioxane (SQ-1-1) obtained above IRGACURE 127 (radical photopolymerization initiator, manufactured by BASF), Megafuck F-554 (leveling agent, DIC () (Manufactured by Co., Ltd.) and MIBK were added to adjust the concentration of each contained component to be as shown in Table 1 below to obtain a composition 1 for forming a hard coat layer.
- the composition 1 for forming a hard coat layer was bar-coated on a polyimide substrate S-1 having a thickness of 50 ⁇ m using a wire bar # 18 so that the film thickness after curing was 5 ⁇ m. After coating, the coating film was heated at 120 ° C. for 5 minutes. Next, using one high-pressure mercury lamp, ultraviolet rays were irradiated from a height of 18 cm from the surface of the coating film so that the integrated irradiation amount was 600 mJ / cm 2. Further, it was heated at 140 ° C. for 3 hours to cure the coating film. In this way, a hard coat film 1 having a hard coat layer on the base film was produced.
- Examples 2 to 9, Comparative Examples 1 to 3 Examples 2 to 9 and Comparative Examples 1 to 1 to the same except that the MIBK solution containing polyorganosylsesquioxane (SQ-1-1) was changed to another MIBK solution containing polyorganosylsesquioxane.
- the hard coat layer forming compositions 2 to 9, 1X to 3X and the hard coat films 2 to 9, 1X to 3X of No. 3 were obtained.
- the pencil hardness was evaluated according to JIS (JIS is Japanese Industrial Standards (Japanese Industrial Standards)) K5400. After adjusting the humidity of the hard coat films of each example and comparative example at a temperature of 25 ° C. and a relative humidity of 60% for 2 hours, the test of H to 9H specified in JIS S 6006 was performed at 5 different locations on the surface of the hard coat layer. It was scratched with a pencil under a load of 4.9 N. After that, among the hardnesses of the pencils in which scratches were visually observed at 0 to 2 points, the pencil hardness having the highest hardness was used as the evaluation result, and was described in the following four stages A to D. As for the pencil hardness, the higher the numerical value written before "H", the higher the hardness is preferable. A: 5H or more B: 4H C: 3H D: 2H or less
- a 180 ° folding resistance tester (IMC-0755 type, manufactured by Imoto Seisakusho Co., Ltd.) was used to repeatedly test the bending resistance with the hard coat layer inside.
- the testing machine used was an operation of bending the sample film along the curved surface of a rod (cylinder) with a bending radius of 2.0 mm at a bending angle of 180 ° at the central part in the longitudinal direction, and then returning it to its original position (spreading the sample film). Is one test, and this test is repeated.
- B Cracks occur between 100,000 times and less than 300,000 times
- C Cracks occur less than 100,000 times
- Oil-based black ink was applied to the surface of the hard coat film of each example and comparative example after the test opposite to the hard coat layer, and visually observed with reflected light, the part in contact with the steel wool was scratched.
- the number of times of rubbing was measured and evaluated in the following four stages. The number of rubbing below is the number of round trips.
- C It does not get scratched even if it is rubbed 10 times, but it gets scratched while it is rubbed 50 times.
- D It gets scratched while rubbing 10 times.
- the hard coat films of Examples 1 to 9 were excellent in pencil hardness, scratch resistance, and repeated bending resistance.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Silicon Polymers (AREA)
Abstract
Description
本発明者らが検討したところ、特許文献1に記載の硬質膜を有するフィルムは、硬度、耐擦傷性、及び繰り返し折り曲げ耐性が鼎立できないことが分かった。
本発明の課題は、硬度、耐擦傷性、及び繰り返し折り曲げ耐性の全てに優れるハードコートフィルムを形成することができるハードコート層形成用組成物、上記ハードコートフィルム、上記ハードコートフィルムの製造方法、及び上記ハードコートフィルムを備えた物品を提供することにある。
重合性基(Q1)を有し、かつ、上記重合性基(Q1)と、上記重合性基(Q1)とは異なる、活性水素原子を含む置換基(Q2)とが反応して形成された架橋構造を有する、ポリオルガノシルセスキオキサン(a1)を含有するハードコート層形成用組成物。
<2>
上記ポリオルガノシルセスキオキサン(a1)が、上記重合性基(Q1)を有する加水分解性シラン化合物と、上記活性水素原子を含む置換基(Q2)を有する加水分解性シラン化合物とを共加水分解縮合してなり、
上記活性水素原子を含む置換基(Q2)を有する加水分解性シラン化合物の含有量が、共加水分解縮合する全ての加水分解性シラン化合物中、0.1~10モル%である、<1>に記載のハードコート層形成用組成物。
<3>
上記重合性基(Q1)がビニル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、及びエポキシ基から選ばれる少なくとも1種であり、上記活性水素原子を含む置換基(Q2)がアミノ基、メルカプト基、水酸基、及びカルボキシ基から選ばれる少なくとも1種である、<1>又は<2>に記載のハードコート層形成用組成物。
<4>
上記重合性基(Q1)が(メタ)アクリロイルオキシ基及び(メタ)アクリロイルアミノ基から選ばれる少なくとも1種であり、上記活性水素原子を含む置換基(Q2)がアミノ基である、<1>~<3>のいずれか1項に記載のハードコート層形成用組成物。
<5>
上記ポリオルガノシルセスキオキサン(a1)の重量平均分子量が5000以上200000以下である、<1>~<4>のいずれか1項に記載のハードコート層形成用組成物。
<6>
基材と、<1>~<5>のいずれか1項に記載のハードコート層形成用組成物から形成されたハードコート層と、を含むハードコートフィルム。
<7>
基材とハードコート層とを含むハードコートフィルムの製造方法であって、
(I)上記基材上に、<1>~<5>のいずれか1項に記載のハードコート層形成用組成物を塗布して、ハードコート層塗膜を形成する工程、及び、
(II)上記ハードコート層塗膜を硬化することにより上記ハードコート層を形成する工程、
を含むハードコートフィルムの製造方法。
<8>
<6>に記載のハードコートフィルムを備えた物品。
<9>
上記ハードコートフィルムを表面保護フィルムとして備えた<8>に記載の物品。
本発明のハードコート層形成用組成物は、重合性基(Q1)を有し、かつ上記重合性基(Q1)と、上記重合性基(Q1)とは異なる、活性水素原子を含む置換基(Q2)とが反応して形成された架橋構造を有する、ポリオルガノシルセスキオキサン(a1)を含有する。
本発明のハードコート層形成用組成物に含まれるポリオルガノシルセスキオキサン(a1)について説明する。
ポリオルガノシルセスキオキサン(a1)は、重合性基(Q1)を有する。
重合性基(Q1)としては、特に限定されないが、例えば、ラジカル重合性基である、(メタ)アクリロイル基、ビニル基、スチリル基、アリル基等の重合性不飽和基(炭素-炭素不飽和二重結合性基)を含む基や、カチオン重合性基である、エポキシ基、オキセタニル基等の開環重合性基を含む基等が挙げられる。重合性基(Q1)としては、ビニル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、及びエポキシ基から選ばれる少なくとも1種であることが好ましく、(メタ)アクリロイルオキシ基及び(メタ)アクリロイルアミノ基から選ばれる少なくとも1種であることがより好ましい。なお、本発明では、脂環式エポキシ基(エポキシ基と脂環基の縮環構造を有する基。例えば下記式(e-1)で表される基。*は結合部位を表す。)もエポキシ基に包含されるものとする。
ポリオルガノシルセスキオキサン(a1)は、重合性基(Q1)と活性水素原子を含む置換基(Q2)とが反応して形成された架橋構造を有する。
活性水素原子を含む置換基(Q2)は、重合性基(Q1)とは異なる基である。
活性水素原子とは、電気陰性度が大きな原子(例えば、窒素原子、酸素原子、硫黄原子等)に共有結合で結びついた水素原子である。
活性水素原子を含む置換基(Q2)としては、特に限定されないが、アミノ基、メルカプト基、水酸基、及びカルボキシ基から選ばれる少なくとも1種であることが好ましく、アミノ基であることがより好ましい。上記アミノ基は、置換基(例えばアルキル基など)を有していても良い。
構成単位(S1)は重合性基(Q1)を有する。
構成単位(S1)が有する重合性基(Q1)は前述したとおりである。
ポリオルガノシルセスキオキサン(a1)は、構成単位(S1)を1種のみ有していても良いし、2種以上有していても良い。
L11は単結合又は2価の連結基を表し、
R11は単結合、-NR-、-O-、-C(=O)-、-S-、-SO-、-SO2-、又はこれらを組み合わせて得られる2価の連結基を表し、Rは水素原子又は置換若しくは無置換のアルキル基を表し、
L12は置換又は無置換のアルキレン基を表し、
p1は0又は1を表し、
Q11は重合性基(Q1)を表す。
ポリオルガノシルセスキオキサンとは、加水分解性三官能シラン化合物に由来するシロキサン構成単位(シルセスキオキサン単位)を有するネットワーク型ポリマー又は多面体クラスターであり、シロキサン結合によって、ランダム構造、ラダー構造、ケージ構造などを形成し得る。本発明において、「SiO1.5」が表す構造部分は、上記のいずれの構造であってもよいが、ラダー構造を多く含有していることが好ましい。ラダー構造を形成していることにより、ハードコートフィルムの変形回復性を良好に保つことができる。ラダー構造の形成は、FT-IR(Fourier Transform Infrared Spectroscopy)を測定した際、1020-1050cm-1付近に現れるラダー構造に特徴的なSi-O-Si伸縮に由来する吸収の有無によって定性的に確認することができる。
例えば、-NR-、-O-、-C(=O)-を組み合わせて得られる2価の連結基としては、*-NH-C(=O)-**、*-C(=O)-NH-**、*-NH-C(=O)-O-**、*-O-C(=O)-NH-**、-NH-C(=O)-NH-、*-C(=O)-O-**、*-O-C(=O)-**、等が挙げられる。*は一般式(S1-1)におけるL11との結合手を表し、**は一般式(S1-1)におけるL12との結合手を表す。
L12が表すアルキレン基が置換基を有する場合の置換基としては、特に限定されなが、例えば、ヒドロキシ基、カルボキシ基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲン原子、ニトロ基、シアノ基、シリル基等が挙げられる。
L12は、炭素数1~3の直鎖状のアルキレン基が好ましく、メチレン基、エチレン基、n-プロピレン基、又は2-ヒドロキシ-n-プロピレン基がより好ましく、メチレン基又はエチレン基がさらに好ましい。
構成単位(S2)は活性水素原子を含む置換基(Q2)を有する。
構成単位(S2)が有する活性水素原子を含む置換基(Q2)は前述したとおりである。
ポリオルガノシルセスキオキサン(a1)は、構成単位(S2)を1種のみ有していても良いし、2種以上有していても良い。
L21は単結合又は2価の連結基を表し、
R21は単結合、-NR-、-O-、-C(=O)-、-S-、-SO-、-SO2-、又はこれらを組み合わせて得られる2価の連結基を表し、
Rは水素原子又はアルキル基を表し、
L22は置換又は無置換のアルキレン基を表し、
p2は0又は1を表し、
Q21は活性水素原子を含む置換基(Q2)を表す。
L21が表すアルキレン基が置換基を有する場合の置換基としては、ヒドロキシ基、カルボキシ基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲン原子、ニトロ基、シアノ基、シリル基等が挙げられる。
L21は、無置換の炭素数2~4の直鎖状のアルキレン基が好ましく、エチレン基、又はn-プロピレン基がより好ましく、さらに好ましくはn-プロピレン基である。
例えば、-NR-、-O-、-C(=O)-を組み合わせて得られる2価の連結基としては、*-NH-C(=O)-**、*-C(=O)-NH-**、*-NH-C(=O)-O-**、*-O-C(=O)-NH-**、-NH-C(=O)-NH-、*-C(=O)-O-**、*-O-C(=O)-**、等が挙げられる。*は一般式(S2-1)におけるL21との結合手を表し、**は一般式(S2-1)におけるL22との結合手を表す。
L22が表すアルキレン基が置換基を有する場合の置換基としては、ヒドロキシ基、カルボキシ基、アルコキシ基、アリール基、ヘテロアリール基、ハロゲン原子、ニトロ基、シアノ基、シリル基等が挙げられる。
L22は、炭素数1~3の直鎖状のアルキレン基が好ましく、メチレン基、エチレン基、n-プロピレン基、又は2-ヒドロキシ-n-プロピレン基がより好ましく、メチレン基又はエチレン基がさらに好ましい。
ポリオルガノシルセスキオキサン(a1)のMwが5000以上であると、本発明のハードコート層形成用組成物から形成されたハードコート層の機械特性及び伸縮特性が優れたものとなり、硬度、耐擦傷性、及び繰り返し折り曲げ耐性の全てにおいてより良好なハードコートフィルムを形成することが可能となる。また、ポリオルガノシルセスキオキサン(a1)のMwが200000以下であると、ゲル化が起きにくく、ハードコート層形成用組成物の保存安定性や成膜時の膜の均一性に優れる。
測定装置:商品名「LC-20AD」((株)島津製作所製)
カラム:Shodex KF-801×2本、KF-802、及びKF-803(昭和電工(株)製)
測定温度:40℃
溶離液:N-メチルピロリドン(NMP)、試料濃度0.1~0.2質量%
流量:1mL/分
検出器:UV-VIS検出器(商品名「SPD-20A」、(株)島津製作所製)
分子量:標準ポリスチレン換算
ポリオルガノシルセスキオキサン(a1)の製造方法は、特に限定されず、公知の製造方法を用いて製造することができるが、例えば、加水分解性シラン化合物を加水分解及び縮合させる方法により製造できる。上記加水分解性シラン化合物としては、重合性基(Q1)を有する加水分解性三官能シラン化合物(好ましくは下記一般式(Sd1-1)で表される化合物)、及び活性水素原子を含む置換基(Q2)を有する加水分解性三官能シラン化合物(好ましくは下記一般式(Sd2-1)で表される化合物)を使用することが好ましい。
下記一般式(Sd1-1)で表される化合物は、上記一般式(S1-1)で表される構成単位に対応し、下記一般式(Sd2-1)で表される化合物は、上記一般式(S2-1)で表される構成単位に対応する。
X1~X3は各々独立にアルコキシ基又はハロゲン原子を表し、
L11は単結合又は2価の連結基を表し、
R11は単結合、-NR-、-O-、-C(=O)-、-S-、-SO-、-SO2-、又はこれらを組み合わせて得られる2価の連結基を表し、Rは水素原子又は置換若しくは無置換のアルキル基を表し、
L12は置換又は無置換のアルキレン基を表し、
p1は0又は1を表し、
Q11は重合性基(Q1)を表す。
X4~X6は各々独立にアルコキシ基又はハロゲン原子を表し、
L21は単結合又は2価の連結基を表し、
R21は単結合、-NR-、-O-、-C(=O)-、-S-、-SO-、-SO2-、又はこれらを組み合わせて得られる2価の連結基を表し、
Rは水素原子又はアルキル基を表し、
L22は置換又は無置換のアルキレン基を表し、
p2は0又は1を表し、
Q21は活性水素原子を含む置換基(Q2)を表す。
一般式(Sd2-1)中のL21、R21、L22、p2及びQ21は、一般式(S2-1)中のL21、R21、L22、p2及びQ21とそれぞれ同義であり、好ましい範囲も同様である。
上記アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、ブトキシ基、イソブチルオキシ基等の炭素数1~4のアルコキシ基等が挙げられる。
上記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
X1~X6としては、アルコキシ基が好ましく、メトキシ基、エトキシ基がより好ましい。なお、X1~X6は、それぞれ同一であっても、異なっていてもよい。
上記溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、ジオキサン等のエーテル;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル等のエステル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド;アセトニトリル、プロピオニトリル、ベンゾニトリル等のニトリル;メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール等が挙げられる。
上記溶媒としては、ケトン又はエーテルが好ましい。なお、溶媒は1種を単独で使用することも、2種以上を組み合わせて使用することもできる。
上記酸触媒としては、特に限定されず、例えば、塩酸、硫酸、硝酸、リン酸、ホウ酸等の鉱酸;リン酸エステル;酢酸、蟻酸、トリフルオロ酢酸等のカルボン酸;メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等のスルホン酸;活性白土等の固体酸;塩化鉄等のルイス酸等が挙げられる。
上記アルカリ触媒としては、特に限定されず、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属の水酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化バリウム等のアルカリ土類金属の水酸化物;炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等のアルカリ金属の炭酸塩;炭酸マグネシウム等のアルカリ土類金属の炭酸塩;炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等のアルカリ金属の炭酸水素塩;酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸セシウム等のアルカリ金属の有機酸塩(例えば、酢酸塩);酢酸マグネシウム等のアルカリ土類金属の有機酸塩(例えば、酢酸塩);リチウムメトキシド、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムイソプロポキシド、カリウムエトキシド、カリウムt-ブトキシド等のアルカリ金属のアルコキシド;ナトリウムフェノキシド等のアルカリ金属のフェノキシド;トリエチルアミン、N-メチルピペリジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノナ-5-エン等のアミン類(第3級アミン等);ピリジン、2,2'-ビピリジル、1,10-フェナントロリン等の含窒素芳香族複素環化合物等が挙げられる。
なお、触媒は1種を単独で使用することもできるし、2種以上を組み合わせて使用することもできる。また、触媒は、水又は溶媒等に溶解又は分散させた状態で使用することもできる。
なお、全固形分とは溶剤以外の全成分のことである。
本発明のハードコート層形成用組成物は、重合開始剤を含むことが好ましい。
ポリオルガノシルセスキオキサン(a1)が有する重合性基(Q1)がラジカル重合性基であれば、ラジカル重合開始剤を含むことが好ましく、重合性基(Q1)がカチオン重合性基であれば、カチオン重合開始剤を含むことが好ましい。
重合開始剤は、ラジカル重合開始剤であることが好ましい。ラジカル重合開始剤は、ラジカル光重合開始剤でも、ラジカル熱重合開始剤でも良いが、ラジカル光重合開始剤であることがより好ましい。
重合開始剤は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。
以上のラジカル光重合開始剤および助剤は、公知の方法で合成可能であり、市販品として入手も可能である。
本発明のハードコート層形成用組成物は、溶媒を含んでいてもよい。
溶媒としては、有機溶媒が好ましく、有機溶媒の一種または二種以上を任意の割合で混合して用いることができる。有機溶媒の具体例としては、例えば、メタノール、エタノール、プロパノール、n-ブタノール、i-ブタノール等のアルコール類;アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類;エチルセロソルブ等のセロソルブ類;トルエン、キシレン等の芳香族類;プロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸メチル、酢酸エチル、酢酸ブチル等の酢酸エステル類;ジアセトンアルコール等が挙げられる。
ハードコート層形成用組成物中の溶媒の含有率は、ハードコート層形成用組成物の塗布適性を確保できる範囲で適宜調整することができる。例えば、ハードコート層形成用組成物の全固形分100質量部に対して、50~500質量部とすることができ、好ましくは80~200質量部とすることができる。
ハードコート層形成用組成物は、通常、液の形態をとる。
ハードコート層形成用組成物の固形分の濃度は、通常、10~90質量%であり、好ましくは20~80質量%、特に好ましくは40~70質量%である。
本発明のハードコート層形成用組成物は、上記以外の成分を含有していてもよく、たとえば、無機微粒子、分散剤、レベリング剤、防汚剤、帯電防止剤、紫外線吸収剤、酸化防止剤等を含有していてもよい。
本発明は、基材と、上記ハードコート層形成用組成物から形成されたハードコート層とを有するハードコートフィルムにも関する。
本発明のハードコートフィルムは、基材上に上記ハードコート層を有する。
本発明のハードコートフィルムに用いる基材は、可視光領域の透過率が70%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることが更に好ましい。
基材はポリマーを含むプラスチック基材であることが好ましい。
ポリマーとしては、光学的な透明性、機械的強度、熱安定性などに優れるポリマーが好ましい。
アミド系ポリマーとしては、芳香族ポリアミド(アラミド系ポリマー)が好ましい。
基材は、イミド系ポリマー及びアラミド系ポリマーから選ばれる少なくとも1種のポリマーを含有することが好ましい。
基材は、上記のポリマーを更に柔軟化する素材を含有しても良い。柔軟化素材とは、破断折り曲げ回数を向上させる化合物を指し、柔軟化素材としては、ゴム質弾性体、脆性改良剤、可塑剤、スライドリングポリマー等を用いることが出来る。
柔軟化素材として具体的には、特開2016-167043号公報における段落番号[0051]~[0114]に記載の柔軟化素材を好適に用いることができる。
基材には、用途に応じた種々の添加剤(例えば、紫外線吸収剤、マット剤、酸化防止剤、剥離促進剤、レターデーション(光学異方性)調節剤、など)を添加できる。それらは固体でもよく油状物でもよい。すなわち、その融点又は沸点において特に限定されるものではない。また添加剤を添加する時期は基材を作製する工程において何れの時点で添加しても良く、素材調製工程に添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が発現する限りにおいて特に限定されない。
その他の添加剤としては、特開2016-167043号公報における段落番号[0117]~[0122]に記載の添加剤を好適に用いることができる。
紫外線吸収剤としては、例えば、ベンゾトリアゾール化合物、トリアジン化合物、ベンゾオキサジン化合物を挙げることができる。ここでベンゾトリアゾール化合物とは、ベンゾトリアゾール環を有する化合物であり、具体例としては、例えば特開2013-111835号公報段落0033に記載されている各種ベンゾトリアゾール系紫外線吸収剤を挙げることができる。トリアジン化合物とは、トリアジン環を有する化合物であり、具体例としては、例えば特開2013-111835号公報段落0033に記載されている各種トリアジン系紫外線吸収剤を挙げることができる。ベンゾオキサジン化合物としては、例えば特開2014-209162号公報段落0031に記載されているものを用いることができる。基材中の紫外線吸収剤の含有量は、例えば基材に含まれるポリマー100質量部に対して0.1~10質量部程度であるが、特に限定されるものではない。また、紫外線吸収剤については、特開2013-111835号公報段落0032も参照できる。なお、本発明においては、耐熱性が高く揮散性の低い紫外線吸収剤が好ましい。かかる紫外線吸収剤としては、例えば、UVSORB101(富士フイルムファインケミカルズ株式会社製)、TINUVIN 360、TINUVIN 460、TINUVIN 1577(BASF社製)、LA-F70、LA-31、LA-46(ADEKA社製)などが挙げられる。
基材として、イミド系ポリマーを含む基材を好ましく用いることができる。本明細書において、イミド系ポリマーとは、式(PI)、式(a)、式(a’)及び式(b)で表される繰り返し構造単位を少なくとも1種以上含む重合体を意味する。なかでも、式(PI)で表される繰り返し構造単位が、イミド系ポリマーの主な構造単位であると、フィルムの強度及び透明性の観点で好ましい。式(PI)で表される繰り返し構造単位は、イミド系ポリマーの全繰り返し構造単位に対し、好ましくは40モル%以上であり、より好ましくは50モル%以上であり、さらに好ましくは70モル%以上であり、特に好ましくは90モル%以上であり、最も好ましくは98モル%以上である。
本明細書において、「系化合物」とは、「系化合物」が付される化合物の誘導体を指す。例えば、「ベンゾフェノン系化合物」とは、母体骨格としてのベンゾフェノンと、ベンゾフェノンに結合している置換基とを有する化合物を指す。
基材はフィルム状であることが好ましい(基材はプラスチックフィルムであることが特に好ましい)。
基材の厚みは、100μm以下であることがより好ましく、80μm以下であることが更に好ましく、50μm以下が最も好ましい。基材の厚みが薄くなれば、折り曲げ時の表面と裏面の曲率差が小さくなり、クラック等が発生し難くなり、複数回の折れ曲げでも、基材の破断が生じなくなる。一方、基材の取り扱いの容易さの観点から基材の厚みは3μm以上であることが好ましく、5μm以上であることがより好ましく、15μm以上が最も好ましい。
基材は、熱可塑性のポリマーを熱溶融して製膜しても良いし、ポリマーを均一に溶解した溶液から溶液製膜(ソルベントキャスト法)によって製膜しても良い。熱溶融製膜の場合は、上述の柔軟化素材及び種々の添加剤を、熱溶融時に加えることができる。一方、基材を溶液製膜法で作製する場合は、ポリマー溶液(以下、ドープともいう)には、各調製工程において上述の柔軟化素材及び種々の添加剤を加えることができる。またその添加する時期はドープ作製工程において何れでも添加しても良いが、ドープ調製工程の最後の調製工程に添加剤を添加し調製する工程を加えて行ってもよい。
本発明のハードコートフィルムは上記ハードコート層形成用組成物から形成されたハードコート層を有する。
ハードコート層は、基材の少なくとも一方の面上に形成されていることが好ましい。
本発明のハードコートフィルムが後述の耐擦傷層を有する場合は、少なくとも1層のハードコート層を、基材と耐擦傷層との間に有することが好ましい。
ハードコート層は、上記ハードコート層形成用組成物を基材上に塗布して得られた塗膜に光照射及び加熱の少なくとも一方による硬化処理を施されて形成されたものであることが好ましい。すなわち、ハードコート層は、上記ハードコート層形成用組成物の硬化物を含むことが好ましい。
本発明のハードコートフィルムのハードコート層は、ポリオルガノシルセスキオキサン(a1)を含むハードコート層形成用組成物の硬化物を含むものであり、好ましくは、ポリオルガノシルセスキオキサン(a1)及び重合開始剤を含むハードコート層形成用組成物の硬化物を含むものである。
ハードコート層形成用組成物の硬化物は、少なくとも、ポリオルガノシルセスキオキサン(a1)の重合性基(Q1)が重合反応により結合してなる硬化物を含むことが好ましい。
本発明のハードコートフィルムのハードコート層における、上記ハードコート層形成用組成物の硬化物の含有率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが更に好ましい。
ハードコート層の膜厚は特に限定されないが、0.5~30μmであることが好ましく、1~25μmであることがより好ましく、2~20μmであることが更に好ましい。
ハードコート層の膜厚は、ハードコートフィルムの断面を光学顕微鏡で観察して算出する。断面試料は、断面切削装置ウルトラミクロトームを用いたミクロトーム法や、集束イオンビーム(FIB)装置を用いた断面加工法などにより作成できる。
本発明のハードコートフィルムは、上記ハードコート層以外の機能層を有していても良い。機能層としては、特に限定されないが、例えば、耐擦傷層が挙げられる。
本発明のハードコートフィルムが耐擦傷層を有する場合、少なくとも1層の耐擦傷層を、ハードコート層の基材と反対側の表面上に有することが好ましい。
本発明のハードコートフィルムの耐擦傷層は、ラジカル重合性化合物(c1)を含む耐擦傷層形成用組成物の硬化物を含むことが好ましい。
ラジカル重合性化合物(c1)(「化合物(c1)」ともいう。)について説明する。
化合物(c1)は、ラジカル重合性基を有する化合物である。
化合物(c1)におけるラジカル重合性基としては、特に限定されず、一般に知られているラジカル重合性基を用いることができる。ラジカル重合性基としては、重合性不飽和基が挙げられ、具体的には、(メタ)アクリロイル基、ビニル基、アリル基などが挙げられ、(メタ)アクリロイル基が好ましい。なお、上記した各基は置換基を有していてもよい。
化合物(c1)は、1分子中に2個以上の(メタ)アクリロイル基を有する化合物であることが好ましく、1分子中に3個以上の(メタ)アクリロイル基を有する化合物であることがより好ましい。
化合物(c1)の分子量は特に限定されず、モノマーでもよいし、オリゴマーでもよいし、ポリマーでもよい。
上記化合物(c1)の具体例を以下に示すが、本発明はこれらに限定されない。
1分子中に2個の(メタ)アクリロイル基を有する化合物としては、ネオペンチルグリコールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート等が好適に例示される。
1分子中に3個以上の(メタ)アクリロイル基を有する化合物としては、多価アルコールと(メタ)アクリル酸とのエステルが挙げられる。具体的には、ペンタエリスリトールトリ(メタ)アクリレート,ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート,ペンタエリスリトールヘキサ(メタ)アクリレートなどが挙げられるが、高架橋という点ではペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、もしくはジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、又はこれらの混合物が好ましい。
本発明における耐擦傷層形成用組成物は、ラジカル重合開始剤を含むことが好ましい。
ラジカル重合開始剤は一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。また、ラジカル重合開始剤は光重合開始剤でも良く、熱重合開始剤でも良い。
耐擦傷層形成用組成物中のラジカル重合開始剤の含有率は、特に限定されるものではないが、例えば化合物(c1)100質量部に対して、0.1~200質量部が好ましく、1~50質量部がより好ましい。
本発明における耐擦傷層形成用組成物は、溶媒を含んでいてもよい。
溶媒としては、前述の樹脂組成物が含んでいてもよい溶媒と同様である。
本発明における耐擦傷層形成用組成物における溶媒の含有率は、耐擦傷層形成用組成物の塗布適性を確保できる範囲で適宜調整することができる。例えば、耐擦傷層形成用組成物の全固形分100質量部に対して、50~500質量部とすることができ、好ましくは80~200質量部とすることができる。
耐擦傷層形成用組成物は、通常、液の形態をとる。
耐擦傷層形成用組成物の固形分の濃度は、通常、10~90質量%程度であり、好ましくは20~80質量%、特に好ましくは40~70質量%程度である。
耐擦傷層形成用組成物は、上記以外の成分を含有していてもよく、たとえば、無機粒子、レベリング剤、防汚剤、帯電防止剤、滑り剤、溶媒等を含有していてもよい。
特に、滑り剤として下記の含フッ素化合物を含有することが好ましい。
含フッ素化合物は、モノマー、オリゴマー、ポリマーいずれでもよい。含フッ素化合物は、耐擦傷層中で化合物(c1)との結合形成あるいは相溶性に寄与する置換基を有していることが好ましい。この置換基は同一であっても異なっていてもよく、複数個あることが好ましい。
この置換基は重合性基が好ましく、ラジカル重合性、カチオン重合性、アニオン重合性、縮重合性及び付加重合性のうちいずれかを示す重合性反応基であればよく、好ましい置換基の例としては、アクリロイル基、メタクリロイル基、ビニル基、アリル基、シンナモイル基、エポキシ基、オキセタニル基、水酸基、ポリオキシアルキレン基、カルボキシル基、アミノ基が挙げられる。その中でもラジカル重合性基が好ましく、中でもアクリロイル基、メタクリロイル基が特に好ましい。
含フッ素化合物はフッ素原子を含まない化合物とのポリマーであってもオリゴマーであってもよい。
一般式(F): (Rf)-[(W)-(RA)nf]mf
(式中、Rfは(パー)フルオロアルキル基又は(パー)フルオロポリエーテル基、Wは単結合又は連結基、RAは重合性不飽和基を表す。nfは1~3の整数を表す。mfは1~3の整数を表す。)
ここで、(パー)フルオロアルキル基は、フルオロアルキル基及びパーフルオロアルキル基のうち少なくとも1種を表し、(パー)フルオロポリエーテル基は、フルオロポリエーテル基及びパーフルオロポリエーテル基のうち少なくとも1種を表す。耐擦傷性の観点では、Rf中のフッ素含有率は高いほうが好ましい。
(パー)フルオロアルキル基は、直鎖構造(例えば-CF2CF3、-CH2(CF2)4H、-CH2(CF2)8CF3、-CH2CH2(CF2)4H)であっても、分岐構造(例えば-CH(CF3)2、-CH2CF(CF3)2、-CH(CH3)CF2CF3、-CH(CH3)(CF2)5CF2H)であっても、脂環式構造(好ましくは5員環又は6員環で、例えばパーフルオロシクロへキシル基及びパーフルオロシクロペンチル基並びにこれらの基で置換されたアルキル基)であってもよい。
上記pf及びqfはそれぞれ独立に0~20の整数を表す。ただしpf+qfは1以上の整数である。
pf及びqfの総計は1~83が好ましく、1~43がより好ましく、5~23がさらに好ましい。
上記含フッ素化合物は、耐擦傷性に優れるという観点から-(CF2O)pf-(CF2CF2O)qf-で表されるパーフルオロポリエーテル基を有することが特に好ましい。
Wとして、好ましくは、エチレン基、より好ましくは、カルボニルイミノ基と結合したエチレン基である。
本発明で用いられる含フッ素化合物のMwは400以上50000未満が好ましく、400以上30000未満がより好ましく、400以上25000未満が更に好ましい。
本発明のハードコートフィルムの耐擦傷層は、化合物(c1)を含む耐擦傷層形成用組成物の硬化物を含むものであることが好ましく、より好ましくは、化合物(c1)及びラジカル重合開始剤を含む耐擦傷層形成用組成物の硬化物を含むものである。
耐擦傷層形成用組成物の硬化物は、少なくとも、化合物(c1)のラジカル重合性基が重合反応してなる硬化物を含むことが好ましい。
本発明のハードコートフィルムの耐擦傷層における耐擦傷層形成用組成物の硬化物の含有率は、耐擦傷層の全質量に対して60質量%以上であることが好ましく、70質量%以上がより好ましく、80質量%以上が更に好ましい。
耐擦傷層の膜厚は、繰り返し折り曲げ耐性の観点から、3.0μm未満であることが好ましく、0.1~2.0μmであることがより好ましく、0.1~1.0μmであることが更に好ましい。
本発明のハードコートフィルムは、優れた鉛筆硬度を有する。
本発明のハードコートフィルムは、鉛筆硬度が4H以上であることが好ましく、5H以上であることがより好ましい。
鉛筆硬度は、 JIS(JISは、Japanese Industrial Standards(日本工業規格)である) K5400に従い評価することができる。
本発明のハードコートフィルムは、優れた繰り返し折り曲げ耐性を有する。
本発明のハードコートフィルムは、ハードコート層を内側にして、曲率半径2mmで180°折り曲げ試験を10万回繰り返し行った場合にクラックが発生しないことが好ましい。
繰り返し折り曲げ耐性は具体的には以下のように測定する。
ハードコートフィルムから幅15mm、長さ150mmの試料フィルムを切り出し、温度25℃、相対湿度65%の状態に1時間以上静置させる。その後、180°耐折度試験機((株)井元製作所製、IMC-0755型)を用いて、ハードコート層を内側にして繰り返し折り曲げ耐性の試験を行う。上記試験機は、試料フィルムを直径4mmの棒(円柱)の曲面に沿わせて曲げ角度180°で長手方向の中央部分で折り曲げた後、元に戻す(試料フィルムを広げる)という動作を1回の試験とし、この試験を繰り返し行うものである。上記180°折り曲げ試験を繰り返し行った場合にクラックが発生するか否かを目視で評価する。
本発明のハードコートフィルムは、優れた耐擦傷性を有する。
本発明のハードコートフィルムは、ハードコート層上に、200gの荷重でスチールウール擦り試験を行った際に、10回(10往復)擦っても傷が付かないことが好ましく、50回(50往復)擦っても傷が付かないことがより好ましく、100回(100往復)擦っても傷が付かないことが更に好ましい。
耐擦傷性は具体的には以下のように測定する。
ハードコートフィルムの基材とは反対側の表面(ハードコート層側表面)を、ラビングテスターを用いて、以下の条件で擦りテストを行う。
評価環境条件:25℃、相対湿度60%
擦り材:スチールウール(日本スチールウール(株)製、グレードNo.0)
試料と接触するテスターの擦り先端部(1cm×1cm)に巻いて、バンド固定
移動距離(片道):13cm、
こすり速度:13cm/秒、
荷重:200g、先端部
先端部接触面積:1cm×1cm、
試験後のハードコートフィルムの擦った面とは逆側の面に油性黒インキを塗り、反射光で目視観察して、スチールウールと接触していた部分に傷が入ったときの擦り回数を計測した。
本発明のハードコートフィルムの製造方法について説明する。
本発明のハードコートフィルムの製造方法は、下記工程(I)及び(II)を含む製造方法であることが好ましい。
(I)基材上に、上記ハードコート層形成用組成物を塗布してハードコート層塗膜を形成する工程
(II)上記ハードコート層塗膜を硬化することによりハードコート層を形成する工程
(III)上記ハードコート層上に、ラジカル重合性化合物(c1)を含む耐擦傷層形成用組成物を塗布して耐擦傷層塗膜を形成する工程
(IV)上記耐擦傷層塗膜を硬化することにより耐擦傷層を形成する工程
工程(I)は、基材上に上記ハードコート層形成用組成物を塗布してハードコート層塗膜を設ける工程である。
基材及びハードコート層形成用組成物については前述したとおりである。
工程(II)は、上記ハードコート層塗膜を硬化することによりハードコート層を形成する工程である。なお、ハードコート層塗膜を硬化するとは、ハードコート層塗膜に含まれるポリオルガノシルセスキオキサン(a1)の重合性基(Q1)の少なくとも一部を重合反応させることをいう。
工程(III)は、上記ハードコート層上に、ラジカル重合性化合物(c1)を含む耐擦傷層形成用組成物を塗布して耐擦傷層塗膜を形成する工程である。
ラジカル重合性化合物(c1)、及び耐擦傷層形成用組成物については前述したとおりである。
工程(IV)は、上記耐擦傷層塗膜を硬化することにより耐擦傷層を形成する工程である。
本発明のハードコートフィルムは、鉛筆硬度、耐擦傷性、及び繰り返し折り曲げ耐性に優れるものである。また、本発明のハードコートフィルムの用途は特に限定されないが、例えば、画像表示装置の表面保護フィルムとして用いることができる。また、本発明のハードコートフィルムの上記特性を活用できる好適な用途として、例えば、フォルダブルデバイス(フォルダブルディスプレイ)の表面保護フィルムとして用いることができる。フォルダブルデバイスとは、表示画面が変形可能であるフレキシブルディスプレイを採用したデバイスのことであり、表示画面の変形性を利用してデバイス本体(ディスプレイ)を折りたたむことが可能である。
フォルダブルデバイスとしては、例えば、有機エレクトロルミネッセンスデバイスなどが挙げられる。
(ポリイミド粉末の製造)
攪拌器、窒素注入装置、滴下漏斗、温度調節器及び冷却器を取り付けた1Lの反応器に、窒素気流下、N,N-ジメチルアセトアミド(DMAc)832gを加えた後、反応器の温度を25℃にした。ここに、ビストリフルオロメチルベンジジン(TFDB)64.046g(0.2mol)を加えて溶解した。得られた溶液を25℃に維持しながら、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)31.09g(0.07mol)とビフェニルテトラカルボン酸二無水物(BPDA)8.83g(0.03mol)を投入し、一定時間撹拌して反応させた。その後、塩化テレフタロイル(TPC)20.302g(0.1mol)を添加して、固形分濃度13質量%のポリアミック酸溶液を得た。次いで、このポリアミック酸溶液にピリジン25.6g、無水酢酸33.1gを投入して30分撹拌し、さらに70℃で1時間撹拌した後、常温に冷却した。ここにメタノール20Lを加え、沈澱した固形分を濾過して粉砕した。その後、100℃下、真空で6時間乾燥させて、111gのポリイミド粉末を得た。
100gの上記ポリイミド粉末を670gのN,N-ジメチルアセトアミド(DMAc)に溶かして13質量%の溶液を得た。得られた溶液をステンレス板に流延し、130℃の熱風で30分乾燥させた。その後フィルムをステンレス板から剥離して、フレームにピンで固定し、フィルムが固定されたフレームを真空オーブンに入れ、100℃から300℃まで加熱温度を徐々に上げながら2時間加熱し、その後、徐々に冷却した。冷却後のフィルムをフレームから分離した後、最終熱処理工程として、さらに300℃で30分間熱処理して、ポリイミドフィルムからなる、厚み50μmの基材S-1を得た。
3-(アクリルオキシ)プロピルトリメトキシシラン63.3g(270mmol)、3-アミノプロピルトリメトキシシラン5.38g(30mmol)、およびアセトン300gを50℃で撹拌しながら、5質量%炭酸カリウム水溶液8.28gを5分間かけて滴下した。さらに純水54.2gを20分かけて滴下し、そのまま50℃で5時間撹拌した。
反応液を室温(20℃)に戻した後、メチルイソブチルケトン(MIBK)300g、5質量%食塩水300gを添加し、分液ロートに移して有機層を抽出し、5質量%食塩水300g、純水300g×2回で順次洗浄した。有機層を減圧濃縮することにより、ポリオルガノシルセスキオキサン(SQ-1-1)を45.9質量%含有するMIBK溶液、78.8gを得た(収率75%)。得られたポリオルガノシルセスキオキサン化合物(SQ-1-1)の重量平均分子量(Mw)は28200であった。
1H NMR(Nuclear Magnetic Resonance)(300MHz、CDCl3)において、アクリロイルオキシ基とアミノ基とのマイケル付加体生成を示す2.79ppm(brs)および2.39ppm(brs)のピークが観測された。ppmはparts per millionの略であり、brsはbroad singletの略である。この結果より、SQ-1-1は、アクリロイルオキシ基とアミノ基とが反応して形成された架橋構造を有していることが分かった。また、合成に使用したモノマーの使用量より、SQ-1-1がアクリロイルオキシ基を有するのは明らかである。
<ハードコート層形成用組成物1の調製>
上記で得られたポリオルガノシルセスキオキサン(SQ-1-1)を含有するMIBK溶液に、IRGACURE 127(ラジカル光重合開始剤、BASF社製)、メガファックF-554(レベリング剤、DIC(株)社製)、及びMIBKを添加し、各含有成分の濃度が下記表1に記載したものとなるように調整し、ハードコート層形成用組成物1を得た。
厚さ50μmのポリイミド基材S-1上に上記ハードコート層形成用組成物1をワイヤーバー#18を用いて、硬化後の膜厚が5μmとなるようにバー塗布した。塗布後、塗膜を120℃で5分間加熱した。次いで、高圧水銀灯ランプを1灯用いて、塗膜表面から18cmの高さから、積算照射量が600mJ/cm2となるよう紫外線を照射した。さらに140℃で3時間加熱し、塗膜を硬化させた。こうして、基材フィルム上にハードコート層を有するハードコートフィルム1を作製した。
ポリオルガノシルセスキオキサン(SQ-1-1)を含むMIBK溶液を他のポリオルガノシルセスキオキサンを含むMIBK溶液にそれぞれ変更した以外は同様にして、実施例2~9、比較例1~3のハードコート層形成用組成物2~9、1X~3X及びハードコートフィルム2~9、1X~3Xを得た。
得られたハードコートフィルムについて、下記の評価を実施した。
JIS(JISは、Japanese Industrial Standards(日本工業規格)である) K5400に従い鉛筆硬度評価を行った。各実施例及び比較例のハードコートフィルムを、温度25℃、相対湿度60%で2時間調湿した後、ハードコート層表面の異なる5箇所について、JIS S 6006に規定するH~9Hの試験用鉛筆を用いて4.9Nの荷重にて引っ掻いた。その後、目視で傷が認められる箇所が0~2箇所であった鉛筆の硬度のうち、最も硬度の高い鉛筆硬度を評価結果とし、下記A~Dの4段階で記載した。鉛筆硬度は、「H」の前に記載される数値が高いほど、硬度が高く好ましい。
A:5H以上
B:4H
C:3H
D:2H以下
各実施例及び比較例により製造されたハードコートフィルムの繰り返し折り曲げ耐性を評価するために、屈曲半径2.0mmの屈曲試験(bending test)をハードコート層を内側にして繰り返し、これによるクラック(crack)発生有無を確認し、その結果を下記A~Cの3段階で評価した。
より具体的には、製造した各実施例及び比較例のハードコートフィルムから幅15mm、長さ150mmの試料フィルムを切り出し、温度25℃、相対湿度65%の状態に1時間以上静置させた。その後、180°耐折度試験機((株)井元製作所製、IMC-0755型)を用いて、ハードコート層を内側にして繰り返し折り曲げ耐性の試験を行った。使用した試験機は、試料フィルムを屈曲半径2.0mm棒(円柱)の曲面に沿わせて曲げ角度180°で長手方向の中央部分で折り曲げた後、元に戻す(試料フィルムを広げる)という動作を1回の試験とし、この試験を繰り返し行うものである。
A:300000回以上でもクラックの発生なし
B:100000回以上、300000回未満の間でクラック発生
C:100000回未満でクラック発生
ラビングテスターを用いて、温度25℃、相対湿度60%の環境下で、評価対象(ハードコートフィルム)と接触するテスターの擦り先端部(1cm×1cm)にスチールウール(日本スチールウール製、No.0)を巻いて動かないようバンド固定し、各実施例及び比較例のハードコートフィルムのハードコート層表面を以下の条件で擦った。
移動距離(片道):13cm、
こすり速度:13cm/秒、
荷重:200g、先端部
接触面積:1cm×1cm。
試験後の各実施例および比較例のハードコートフィルムのハードコート層とは逆側の面に油性黒インキを塗り、反射光で目視観察して、スチールウールと接触していた部分に傷が入ったときの擦り回数を計測し、以下の4段階で評価した。なお下記擦り回数は往復の回数である。
A:100回擦っても傷が付かない。
B:50回擦っても傷が付かないが、100回擦る間に傷が付く。
C:10回擦っても傷が付かないが、50回擦る間に傷が付く。
D:10回擦る間に傷が付く。
本発明によれば、硬度、耐擦傷性、及び繰り返し折り曲げ耐性の全てに優れるハードコートフィルムを形成することができるハードコート層形成用組成物、上記ハードコートフィルム、上記ハードコートフィルムの製造方法、及び上記ハードコートフィルムを備えた物品を提供することができる。
本出願は、2019年9月27日出願の日本特許出願(特願2019-177948)に基づくものであり、その内容はここに参照として取り込まれる。
Claims (9)
- 重合性基(Q1)を有し、かつ、前記重合性基(Q1)と、前記重合性基(Q1)とは異なる、活性水素原子を含む置換基(Q2)とが反応して形成された架橋構造を有する、ポリオルガノシルセスキオキサン(a1)を含有するハードコート層形成用組成物。
- 前記ポリオルガノシルセスキオキサン(a1)が、前記重合性基(Q1)を有する加水分解性シラン化合物と、前記活性水素原子を含む置換基(Q2)を有する加水分解性シラン化合物とを共加水分解縮合してなり、
前記活性水素原子を含む置換基(Q2)を有する加水分解性シラン化合物の含有量が、共加水分解縮合する全ての加水分解性シラン化合物中、0.1~10モル%である、請求項1に記載のハードコート層形成用組成物。 - 前記重合性基(Q1)がビニル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルアミノ基、及びエポキシ基から選ばれる少なくとも1種であり、前記活性水素原子を含む置換基(Q2)がアミノ基、メルカプト基、水酸基、及びカルボキシ基から選ばれる少なくとも1種である、請求項1又は2に記載のハードコート層形成用組成物。
- 前記重合性基(Q1)が(メタ)アクリロイルオキシ基及び(メタ)アクリロイルアミノ基から選ばれる少なくとも1種であり、前記活性水素原子を含む置換基(Q2)がアミノ基である、請求項1~3のいずれか1項に記載のハードコート層形成用組成物。
- 前記ポリオルガノシルセスキオキサン(a1)の重量平均分子量が5000以上200000以下である、請求項1~4のいずれか1項に記載のハードコート層形成用組成物。
- 基材と、請求項1~5のいずれか1項に記載のハードコート層形成用組成物から形成されたハードコート層と、を含むハードコートフィルム。
- 基材とハードコート層とを含むハードコートフィルムの製造方法であって、
(I)前記基材上に、請求項1~5のいずれか1項に記載のハードコート層形成用組成物を塗布して、ハードコート層塗膜を形成する工程、及び、
(II)前記ハードコート層塗膜を硬化することにより前記ハードコート層を形成する工程、を含むハードコートフィルムの製造方法。 - 請求項6に記載のハードコートフィルムを備えた物品。
- 前記ハードコートフィルムを表面保護フィルムとして備えた請求項8に記載の物品。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021548821A JP7280963B2 (ja) | 2019-09-27 | 2020-09-14 | ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法、及びハードコートフィルムを含む物品 |
KR1020227004234A KR20220031925A (ko) | 2019-09-27 | 2020-09-14 | 하드 코트층 형성용 조성물, 하드 코트 필름, 하드 코트 필름의 제조 방법, 및 하드 코트 필름을 포함하는 물품 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019177948 | 2019-09-27 | ||
JP2019-177948 | 2019-09-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021060055A1 true WO2021060055A1 (ja) | 2021-04-01 |
Family
ID=75166652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/034763 WO2021060055A1 (ja) | 2019-09-27 | 2020-09-14 | ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法、及びハードコートフィルムを含む物品 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7280963B2 (ja) |
KR (1) | KR20220031925A (ja) |
WO (1) | WO2021060055A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023218889A1 (ja) * | 2022-05-13 | 2023-11-16 | Agc株式会社 | 組成物、化合物、表面処理剤、物品、及び物品の製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015087686A1 (ja) * | 2013-12-13 | 2015-06-18 | 株式会社ダイセル | ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物 |
WO2016203958A1 (ja) * | 2015-06-17 | 2016-12-22 | 株式会社ダイセル | 成形体 |
JP2017008134A (ja) * | 2015-06-17 | 2017-01-12 | 東京応化工業株式会社 | 硬化性組成物、硬化物の製造方法、及びハードコート材 |
JP2017155152A (ja) * | 2016-03-02 | 2017-09-07 | リンテック株式会社 | ハードコート剤及び積層フィルム |
WO2018096729A1 (ja) * | 2016-11-25 | 2018-05-31 | 株式会社ダイセル | ハードコートフィルム |
WO2018212228A1 (ja) * | 2017-05-17 | 2018-11-22 | 株式会社ダイセル | ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム |
JP2019504149A (ja) * | 2015-12-18 | 2019-02-14 | スリーエム イノベイティブ プロパティズ カンパニー | 硬化性接着剤組成物及び接着テープ並びにそれらから製造される製品 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005179543A (ja) | 2003-12-22 | 2005-07-07 | Hikifune:Kk | シリカゾルの製造方法および硬質膜の形成方法 |
-
2020
- 2020-09-14 KR KR1020227004234A patent/KR20220031925A/ko not_active Application Discontinuation
- 2020-09-14 WO PCT/JP2020/034763 patent/WO2021060055A1/ja active Application Filing
- 2020-09-14 JP JP2021548821A patent/JP7280963B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015087686A1 (ja) * | 2013-12-13 | 2015-06-18 | 株式会社ダイセル | ポリオルガノシルセスキオキサン、ハードコートフィルム、接着シート、及び積層物 |
WO2016203958A1 (ja) * | 2015-06-17 | 2016-12-22 | 株式会社ダイセル | 成形体 |
JP2017008134A (ja) * | 2015-06-17 | 2017-01-12 | 東京応化工業株式会社 | 硬化性組成物、硬化物の製造方法、及びハードコート材 |
JP2019504149A (ja) * | 2015-12-18 | 2019-02-14 | スリーエム イノベイティブ プロパティズ カンパニー | 硬化性接着剤組成物及び接着テープ並びにそれらから製造される製品 |
JP2017155152A (ja) * | 2016-03-02 | 2017-09-07 | リンテック株式会社 | ハードコート剤及び積層フィルム |
WO2018096729A1 (ja) * | 2016-11-25 | 2018-05-31 | 株式会社ダイセル | ハードコートフィルム |
WO2018212228A1 (ja) * | 2017-05-17 | 2018-11-22 | 株式会社ダイセル | ポリオルガノシルセスキオキサン、転写用フィルム、インモールド成型品、及びハードコートフィルム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023218889A1 (ja) * | 2022-05-13 | 2023-11-16 | Agc株式会社 | 組成物、化合物、表面処理剤、物品、及び物品の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021060055A1 (ja) | 2021-04-01 |
JP7280963B2 (ja) | 2023-05-24 |
KR20220031925A (ko) | 2022-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7064650B2 (ja) | 積層体、積層体を備えた物品、及び画像表示装置 | |
JP6979517B2 (ja) | ハードコートフィルム、ハードコートフィルムを備えた物品、及び画像表示装置 | |
JP7263356B2 (ja) | ハードコートフィルム、ハードコートフィルムを備えた物品、及び画像表示装置 | |
JP6967662B2 (ja) | ハードコートフィルム、ハードコートフィルムを有する物品、画像表示装置、及びハードコートフィルムの製造方法 | |
JP6999808B2 (ja) | 組成物、ハードコートフィルム、ハードコートフィルムを備えた物品、及び画像表示装置 | |
CN113167929B (zh) | 硬涂膜、具备硬涂膜的物品及图像显示装置 | |
CN112004838B (zh) | 改性剂、组合物、硬涂膜、具备硬涂膜的物品及图像显示装置 | |
CN113544193B (zh) | 聚有机硅倍半氧烷及硬涂层形成用组合物 | |
WO2021060055A1 (ja) | ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法、及びハードコートフィルムを含む物品 | |
CN113840854B (zh) | 树脂组合物、硬涂薄膜以及聚有机硅倍半氧烷 | |
JP7377261B2 (ja) | ハードコートフィルム、ハードコートフィルムを備えた物品、及び画像表示装置 | |
JP7358624B2 (ja) | ハードコート層形成用組成物、ハードコートフィルム、ハードコートフィルムの製造方法及びハードコートフィルムを備えた物品 | |
WO2022209922A1 (ja) | 硬化性組成物、ハードコートフィルム、ハードコートフィルムを備えた物品、画像表示装置、及びフレキシブルディスプレイ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20870403 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021548821 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20227004234 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20870403 Country of ref document: EP Kind code of ref document: A1 |