WO2018212206A1 - イソシアネートの製造方法 - Google Patents
イソシアネートの製造方法 Download PDFInfo
- Publication number
- WO2018212206A1 WO2018212206A1 PCT/JP2018/018822 JP2018018822W WO2018212206A1 WO 2018212206 A1 WO2018212206 A1 WO 2018212206A1 JP 2018018822 W JP2018018822 W JP 2018018822W WO 2018212206 A1 WO2018212206 A1 WO 2018212206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ester
- group
- amino acid
- carbamate
- carbonate
- Prior art date
Links
- 0 CC*C(*)[N+](O*=C)[S-] Chemical compound CC*C(*)[N+](O*=C)[S-] 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C263/00—Preparation of derivatives of isocyanic acid
- C07C263/04—Preparation of derivatives of isocyanic acid from or via carbamates or carbamoyl halides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C265/00—Derivatives of isocyanic acid
- C07C265/02—Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms
- C07C265/04—Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms of a saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C269/00—Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C269/04—Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C271/00—Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
- C07C271/06—Esters of carbamic acids
- C07C271/40—Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings
- C07C271/42—Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C271/54—Esters of carbamic acids having oxygen atoms of carbamate groups bound to carbon atoms of six-membered aromatic rings with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C319/00—Preparation of thiols, sulfides, hydropolysulfides or polysulfides
- C07C319/02—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols
- C07C319/12—Preparation of thiols, sulfides, hydropolysulfides or polysulfides of thiols by reactions not involving the formation of mercapto groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/04—Indoles; Hydrogenated indoles
- C07D209/10—Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
- C07D209/14—Radicals substituted by nitrogen atoms, not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/64—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/54—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D317/00—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D317/08—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
- C07D317/44—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D317/46—Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
- C07D317/48—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring
- C07D317/50—Methylenedioxybenzenes or hydrogenated methylenedioxybenzenes, unsubstituted on the hetero ring with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to atoms of the carbocyclic ring
- C07D317/60—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
Definitions
- the present invention relates to a method for producing isocyanate.
- This application claims priority based on Japanese Patent Application No. 2017-096777 for which it applied to Japan on May 15, 2017, and uses the content here.
- Isocyanate is widely used as a raw material for producing polyurethane foam, paints, adhesives and the like.
- the main industrial production method of isocyanate is a reaction between an amine compound and phosgene (phosgene method), and almost all of the world production is produced by the phosgene method.
- phosgene method has many problems.
- the first is to use a large amount of phosgene as a raw material.
- Phosgene is extremely toxic and requires special care in handling to prevent exposure to workers and special equipment to remove waste.
- phosgene method a large amount of highly corrosive hydrogen chloride is by-produced, so a process for removing hydrogen chloride is required.
- the produced isocyanate often contains hydrolyzable chlorine. For this reason, when an isocyanate produced by the phosgene method is used, the weather resistance and heat resistance of the polyurethane product may be adversely affected.
- R represents an a-valent organic residue
- R ′ represents a monovalent organic residue
- a represents an integer of 1 or more.
- the carbamic acid ester whose ester group is an aromatic group has an advantage that the temperature of the thermal decomposition reaction can be set lower than that of the alkyl carbamate whose ester group is an alkyl group (see Patent Document 1). ).
- a method for producing a carbamic acid ester various methods have been disclosed so far.
- Patent Document 2 a corresponding alkyl monocarbamic acid ester is obtained in a yield of 90% to 95% by reacting an alkyl monoamine with a diaryl carbonate in the presence of a solvent such as benzene, dioxane, carbon tetrachloride and the like. It is described.
- Patent Document 3 describes a method for continuously producing methylcarbamic acid phenyl ester from methylamine and diphenyl carbonate.
- any of these methods is a method for producing an alkylcarbamate using a lower alkyl monoamine as an amine, and not for producing an alkylpolycarbamate.
- an alkyl polyamine such as alkyl diamine or alkyl triamine
- a urea compound is only by-produced by a side reaction represented by the formula (3) and / or the formula (4).
- alkyl polyamines such as alkyl triamines
- a very large number of urea compounds such as compounds represented by formula (5) and / or formula (6) and / or formula (7) are by-produced. Resulting in.
- R ′ represents a monovalent alkyl group or an aromatic group
- Ar represents a monovalent aromatic group
- p, q, and r each represents an integer of 1 or more.
- Patent Document 4 it is important to use, as a reaction solvent, a solvent that does not dissolve the product 1,6-hexamethylenedicarbamic acid phenyl ester as much as possible in order to proceed the reaction advantageously.
- a solvent it is described that hydrocarbons such as benzene and chlorobenzene are preferable.
- Non-Patent Document 2 the reaction of 0.01 mol of diphenyl carbonate and 0.005 mol of 1,6-hexamethylenediamine is 20 hours using 40 mL of toluene as a reaction solvent.
- the desired 1,6-hexamethylene dicarbamic acid phenyl ester is obtained by carrying out for a long time.
- the yield was 93%, and there was a problem that urea compounds and polyurea compounds that had to be separated were produced as by-products.
- Patent Document 5 discloses a method for producing a diurethane compound in which a diaryl carbonate and an amine compound are reacted in the presence of a protonic acid.
- a method for producing a diurethane compound in which a diaryl carbonate and an amine compound are reacted in the presence of a protonic acid.
- Patent Document 6 describes a method in which a diaryl carbonate and an aromatic polyamine are reacted in the presence of a heterocyclic tertiary amine such as 2-hydroxypyridine. This method has the problem that an expensive catalyst is required in an equimolar amount or more with respect to the reaction substrate and the reaction rate is low.
- Patent Document 7 a method for synthesizing an aromatic urethane in which an aromatic amine, a diaryl carbonate, and a Lewis acid catalyst are reacted at a temperature of 140 ° C. to 230 ° C. is described.
- a Lewis acid has problems of corrosion of the apparatus and difficulty in separation and recovery from the product.
- Patent Document 8 discloses that when an alkylpolyamine and diaryl carbonate are reacted to produce an alkylpolycarbamic acid ester, 1 to 3 equivalents of diaryl carbonate per 1 amino group of the alkylpolyamine are used, and an aromatic hydroxy compound is used as a reaction solvent. Is used to carry out the reaction in a substantially uniform dissolved state, and a method for producing an alkylpolycarbamic acid ester is disclosed. According to the patent document, an alkyl polycarbamic acid ester is usually obtained in a high yield and high selectivity of 96% or more, and in a preferred embodiment, 98% or more. However, since the production of the urea compound has been confirmed although it is a very small amount, there is a problem that the production of the urea compound cannot be completely avoided.
- Patent Document 9 discloses a method for producing a carbamate in which a carbonic acid diester and an amine are reacted in the liquid phase in the presence of at least 1 mol% of water.
- Patent Document 10 proposes a method for producing a carbamic acid ester using dicarbonate and an amino group of an amino acid-derived compound such as an amino acid or an amino acid ester.
- Patent Document 11 proposes a method for producing a carbamate by reacting an alkylaryl carbonate with an amino acid.
- the object of the present invention is to provide a process for producing isocyanates derived from plant-derived components, in particular, amino acid-derived isocyanates using carbonate esters as raw materials, and a process for producing intermediates thereof, especially carbonate esters and amino acid derivative inorganics.
- the object is to provide a method for producing a carbamate using an acid salt and a method for producing an isocyanate using the carbamate.
- the present invention includes the following forms.
- [1] A method for producing a carbamate ester derived from a carbonate ester, comprising supplying a carbonate ester, an inorganic acid salt of an amino acid derivative, and a basic compound to a carbamate reactor and reacting them.
- [2] The method for producing a carbamic acid ester according to [1], wherein the amino acid derivative is an amino acid derivative represented by the following formula (A-1) or (A-2).
- R x represents an aliphatic group or an aromatic group
- R w , R y and R V each independently represent an aliphatic group, an aromatic group or a hydrogen atom
- X represents an oxygen atom
- c represents 2 or 3
- d represents an integer of 1 to 4.
- the amino acid derivative is an amino acid ester, further comprising a step of reacting an amino acid with a compound having an alcoholic hydroxy group in the presence of an inorganic acid to produce the amino acid ester inorganic acid salt.
- the method for producing a carbamic acid ester according to [1] or [2].
- [4] The method for producing a carbamic acid ester according to any one of [1] to [3], wherein the basic compound is an organic amine.
- [5] The carbamic acid according to any one of [1] to [4], wherein the carbonate ester contains 0.001 mass ppm to 10 mass% of metal atoms with respect to the total mass of the carbonate ester. Ester production method.
- [6] The method for producing a carbamic acid ester according to any one of [1] to [5], wherein the inorganic acid salt of the amino acid derivative is supplied to the carbamation reactor in a liquid state.
- the pyrolysis step is performed in a pyrolysis reactor, The method for producing isocyanate according to [7], further comprising a washing step of washing the pyrolysis reactor with an acid after the pyrolysis step.
- the continuous manufacturing apparatus used by the process (I-2) of the reference example 1 is shown.
- 1 shows a first apparatus used in step (I-3) of Reference Example 1.
- the 2nd apparatus used at the process (I-3) of the reference example 1 is shown.
- the 3rd apparatus used at the process (I-3) of the reference example 1 is shown.
- the 4th apparatus used at the process (I-3) of the reference example 1 is shown.
- the 5th apparatus used at the process (I-3) of the reference example 1 is shown.
- the thin film distillation apparatus used in an Example is shown.
- the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
- the following embodiment is an exemplification for explaining the present invention, and the present invention is not limited to the following embodiment.
- the present invention can be appropriately modified within the scope of the gist.
- the method for producing a carbamic acid ester is produced by supplying a carbonate ester, an inorganic acid salt of an amino acid derivative, and a basic compound to a carbamate reactor and reacting them to produce a carbamic acid ester derived from the carbonate ester.
- a carbamate step is produced by supplying a carbonate ester, an inorganic acid salt of an amino acid derivative, and a basic compound to a carbamate reactor and reacting them to produce a carbamic acid ester derived from the carbonate ester.
- a carbonate ester, an amino acid derivative inorganic acid salt, and a basic compound are supplied to the carbamate reactor and reacted to produce a carbamate ester derived from the carbonate ester. It is a process.
- reaction conditions of carbonate ester, amino acid derivative inorganic acid salt and basic compound vary depending on the compound to be reacted, but carbonate ester should be used in a stoichiometric ratio of 1 or more with respect to the amino group of amino acid derivative inorganic acid salt.
- the range of 1 to 1000 times is more preferable.
- the carbonic acid ester is preferably in an excess amount relative to the amino group of the amino acid derivative inorganic acid salt, and considering the size of the carbamation reactor, 1.1 to A range of 50 times is preferable, and a range of 1.5 to 10 times is more preferable.
- the amount of the basic compound used is appropriately selected depending on the compound to be used, but the basic compound is preferably used in a stoichiometric ratio of 0.001 times or more with respect to the amino group of the amino acid derivative inorganic acid salt. A range of 0.01 to 100 times is preferable. It is not always clear how the basic compound acts in the reaction of the carbamate step, but the amino group reactivity of the amino acid derivative is reduced by neutralizing the inorganic acid forming the amino acid derivative inorganic acid salt. It is presumed that there is an effect to enhance, and it is preferable to use an amount of the basic compound capable of neutralizing the inorganic acid forming the amino acid ester inorganic acid salt.
- the basic compound is preferably used in the range of 1 to 50 times the stoichiometric amount required for the sum.
- the ratio is more preferably 1.05 times to 10 times, and still more preferably 1.2 times to 5 times.
- the reaction between the carbonate ester, the amino acid derivative inorganic acid salt, and the basic compound is preferably performed in a liquid phase using an appropriate solvent.
- the solvent can be appropriately selected depending on the compound to be used.
- Atomic compounds, halogenated aliphatic hydrocarbons, halogenated aromatic hydrocarbons, and water can be used as a reaction solvent, and these compounds can also be used in appropriate combinations.
- the amino acid derivative inorganic acid salt is preferably supplied to the carbamation reactor in a liquid state.
- the amino acid derivative inorganic acid salt is preferably supplied in a state dissolved in a solvent, and in this case, the above-mentioned solvent is preferably used. It is also preferred that the amino acid derivative inorganic acid salt is supplied as a mixture with alcohol, water, or carbonate.
- the reaction of the carbamate step is carried out by supplying a carbonate ester, an amino acid derivative inorganic acid salt and a basic compound to the carbamate reactor.
- the reaction temperature is usually preferably in the range of 0 ° C to 150 ° C. In order to increase the reaction rate, a high temperature is preferable, but a range of 10 ° C. to 100 ° C. is more preferable from the viewpoint of suppressing undesirable reactions.
- a known cooling device or heating device may be installed in the carbamate reactor.
- the reaction pressure varies depending on the type of compound used and the reaction temperature, but may be any of reduced pressure, normal pressure, and increased pressure, and is usually in the range of 20 to 1 ⁇ 10 6 Pa.
- the reaction time (retention time in the case of a continuous process) is not particularly limited, and is usually preferably 0.001 to 50 hours, more preferably 0.01 to 20 hours, and particularly preferably 0.1 to 10 hours.
- the reaction solution can be collected and the reaction can be terminated after confirming that a desired amount of carbamic acid ester has been produced by, for example, liquid chromatography.
- a catalyst may or may not be used in addition to these compounds in the reaction of a carbonate ester, an amino acid derivative inorganic acid salt and a basic compound.
- the catalyst is not used, thermal modification of the carbamate ester due to the influence of the metal component derived from the catalyst can be prevented.
- the reaction can be completed in a short time and the reaction temperature can be lowered.
- an organometallic compound such as tin, lead, copper, titanium, an inorganic metal compound, an alkali metal, an alkaline earth metal alcoholate, lithium, sodium, potassium, calcium, barium
- Basic catalysts such as methylate, ethylate and butyrate (each isomer) can be used.
- the carbamation reactor used in the reaction of carbonate ester, amino acid derivative inorganic acid salt, and basic compound can be a known tank reactor, tower reactor, or distillation column. Any known material may be used as long as it does not adversely affect the starting materials and reactants, but SUS304, SUS316, SUS316L, etc. are inexpensive and can be preferably used.
- a reaction mixture containing a carbamic acid ester derived from a carbonate ester (preferably diaryl carbonate), an excess carbonate ester, and a hydroxy compound derived from the carbonate ester (preferably an aromatic hydroxy compound) is obtained.
- the carbamic acid ester obtained in this step is preferably a carbamic acid ester represented by the following formula (C).
- R 2 represents a group derived from an amino acid derivative inorganic acid salt
- R 1 represents a group derived from a carbonate ester
- n is an integer of 1 or more
- n is preferably 1 to 4, more preferably 2 to 3, and still more preferably 3.
- the isocyanate production method of the present embodiment is an isocyanate production method in which an isocyanate is obtained by subjecting a carbamic acid ester derived from a carbonate produced by the carbamic acid ester production method to a thermal decomposition reaction.
- the isocyanate production method of the present embodiment can take several forms.
- the method for producing an isocyanate of the present embodiment includes a thermal decomposition step of obtaining an isocyanate by subjecting the obtained carbamic acid ester to a thermal decomposition reaction after the carbamation step.
- This step is a step of obtaining isocyanate by subjecting the carbamic acid ester to a thermal decomposition reaction.
- the thermal decomposition reaction in the present embodiment is a reaction for generating an isocyanate and a hydroxy compound (preferably an aromatic hydroxy compound) from a carbamic acid ester. This step is preferably performed in a liquid phase.
- the reaction temperature is usually in the range of 100 ° C. to 300 ° C., and a high temperature is preferable for increasing the reaction rate. However, from the viewpoint of suppressing side reactions, a range of 150 ° C. to 250 ° C. is preferable.
- a known cooling device or heating device may be installed in the pyrolysis reactor.
- the reaction pressure varies depending on the type of compound used and the reaction temperature, but may be any of reduced pressure, normal pressure, and increased pressure, and is usually in the range of 20 to 1 ⁇ 10 6 Pa.
- the reaction time (retention time in the case of a continuous process) is not particularly limited, and is usually preferably 0.001 to 100 hours, more preferably 0.005 to 50 hours, and particularly preferably 0.01 to 10 hours.
- a known distillation apparatus in order to efficiently recover the gas phase components.
- a distillation column, a multistage distillation column, a multitubular reactor, a reactor having a support inside, a forced circulation reactor, a falling film evaporator, or a drop evaporator is included.
- Various known methods such as a method using a reactor and a method combining these are used.
- a tubular reactor is preferred, and tubular thin film evaporation is performed.
- a method using a reactor such as a tubular falling film evaporator is preferred, and a structure having a large gas-liquid contact area capable of promptly transferring the low-boiling components to be produced to the gas phase is preferred.
- the type of the carbamate reactor and the type of the pyrolysis reactor may be the same or different, and the carbamate reactor and the pyrolysis reactor are a tower reactor and a tank reaction.
- the reactor is at least one reactor selected from the group consisting of reactors.
- the pyrolysis reactor may coexist with a pyrolysis solvent for the purpose of ensuring wettability of the reactor surface and preventing adhesion of by-products.
- the pyrolysis solvent is preferably a hydroxy compound produced by pyrolysis of the carbamate and a compound having a higher normal boiling point than isocyanate, such as a hydrocarbon compound, a polyether such as polyethylene glycol alkyl ether, phthalic acid, etc.
- ester compounds such as adipic acid derivatives, trimellitic acid derivatives, polyisocyanates obtained by polymerizing diisocyanates such as hexamethylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate, diisocyanates such as hexamethylene diisocyanate, tolylene diisocyanate, diphenylmethane diisocyanate Sulfur-containing compounds such as carbodiimide, sulfone and sulfide obtained by polymerizing ionic liquid, alcohol, alkylsilk Compounds, silicon-containing compounds such as cyclic or linear polysiloxanes, tertiary amines, ketones, heterocyclic and / or condensed ring-containing compounds, polyimides, phosphate esters, aromatic hydroxy compounds, etc. Can do. Among these, phenol is preferably used.
- the material of the thermal decomposition reactor may be any known material as long as it does not adversely affect the carbamic acid ester and the product hydroxy compound, isocyanate, etc., but SUS304, SUS316, SUS316L, etc. are inexpensive. It can be preferably used.
- Transfer process It is preferable to provide a transfer step between the carbamate step and the thermal decomposition step.
- This step is a step of transferring the reaction mixture containing the carbamate produced by the carbamate step to a pyrolysis reactor connected to the carbamate reactor by piping (line).
- a pyrolysis reactor connected to the carbamate reactor by piping (line).
- a carbamic acid ester often has a high melting point because a hydrogen bond is easily formed between molecules by a urethane bond constituting the carbamic acid ester.
- a solid carbamic acid ester which has been subjected to a shaping process such as pulverization or processing into a pellet can be transferred.
- a certain amount of carbamate ester is stably transferred if the transfer line is blocked or the shape of the carbamate ester varies widely. Therefore, in many cases, a complicated apparatus is required, or a step of aligning the shape of the carbamic acid ester within a certain range is required. Therefore, it is preferable that the carbamic acid ester is supplied in a liquid state after being transferred to the thermal decomposition reactor.
- the reaction mixture obtained by the carbamate step can be transferred and supplied as it is.
- the carbamic acid ester is purified from the reaction mixture obtained by the carbamate step, it can be transported and supplied as a mixed solution with the pyrolysis solvent.
- the reaction mixture obtained by the carbamate step is liquid at ordinary temperature (20 ° C.), or even solid at ordinary temperature, and becomes a uniform liquid at a temperature lower than the melting point of the carbamate. Heating for preventing solidification is not required, and heat denaturation reaction of carbamic acid ester and the like can be suppressed.
- the transfer of the reaction mixture is preferably in the temperature range of 10 ° C. to 180 ° C., more preferably 30 ° C. to 170 ° C., and particularly preferably in the temperature range of 50 ° C. to 150 ° C.
- the reaction mixture is continuously supplied without performing a distillation separation operation or the like. Therefore, there is an advantage that the process can be simplified. Further, in the method of supplying a part or all of the hydroxy compound (for example, aromatic hydroxy compound) as a separated mixture from the reaction mixture, it is not necessary to perform an operation of isolating only the carbamic acid ester from the reaction mixture. The process is simplified.
- the material of the line may be any known material as long as it does not adversely affect the carbamate ester and the product hydroxy compound, isocyanate, etc., but SUS304, SUS316, SUS316L, etc. are inexpensive, It can be preferably used.
- R represents a group derived from a carbamate.
- the polymer by-product attached to these pyrolysis reactors has a bond represented by the first term on the right side of the formula (8), the first term on the right side of the formula (9), and the right side of the formula (10).
- the wall of the pyrolysis reactor is washed with acid, and these polymeric by-products are dissolved and removed from the pyrolysis reactor. By doing so, the inside of the pyrolysis reactor (particularly the wall surface) can be kept clean.
- this method it is possible to clean the wall of the pyrolysis reactor without disassembling and sweeping the pyrolysis reactor, greatly reducing the shutdown period of the pyrolysis reactor, Production efficiency is further improved.
- a method of cleaning the pyrolysis reactor using the acid (cleaning solvent) a method of cleaning the pyrolysis reactor by introducing a cleaning solvent from the top of the pyrolysis reactor, the pyrolysis reactor
- Various methods can be used such as a method in which a cleaning solvent is introduced into the bottom of the liquid and the cleaning solvent is cooked in the thermal decomposition reactor to clean the inside.
- the washing operation does not need to be performed every time the thermal decomposition reaction is performed, and can be arbitrarily determined according to the compound to be used, the operation rate, and the like, and is preferably performed once every 1 to 20000 hours.
- the pyrolysis reactor may be provided with a line for introducing a cleaning solvent in the pyrolysis reactor.
- the above-mentioned cleaning solvent can be allowed to coexist in the conditions of the thermal decomposition reaction.
- the washing solvent can react with an isocyanate formed by thermal decomposition of a carbamate.
- the washing solvent may be mixed when the reaction mixture obtained by the carbamate step is transferred to the pyrolysis reactor and supplied to the pyrolysis reactor, or separately from the line supplying the reaction mixture, A line for supplying the cleaning solvent may be provided.
- Recovery step 1 It is preferable to carry out the recovery step 1 after the pyrolysis step and / or simultaneously with the pyrolysis step.
- This step is a step of recovering the low boiling point component generated in the pyrolysis step as a gas phase component from the pyrolysis reactor and recovering the liquid phase component from the bottom of the pyrolysis reactor.
- the carbamate and the isocyanate produced by the thermal decomposition reaction are preferably kept at a high temperature for as short a time as possible, and the thermal decomposition reaction is preferably continuous. It is preferable to be carried out by the method.
- a mixture containing the carbamic acid ester is continuously supplied to a thermal decomposition reactor, subjected to a thermal decomposition reaction, and an isocyanate and a hydroxy compound (preferably an aromatic hydroxy compound) to be generated are obtained.
- This is a method of continuously extracting from the pyrolysis reactor.
- the low-boiling components (isocyanates and hydroxy compounds to be generated) generated by the thermal decomposition reaction of the carbamate are preferably recovered as gas phase components from the top of the thermal decomposition reactor, and the rest are liquid. It is preferred that the phase component is recovered from the bottom of the pyrolysis reactor.
- the recovery of the gas phase component and the recovery of the liquid phase component are preferably performed continuously.
- All compounds present in the pyrolysis reactor can be recovered as gas phase components, but are caused by carbamate esters and / or isocyanates by the presence of liquid phase components in the pyrolysis reactor. There is an effect of dissolving the polymer by-product produced by the side reaction and preventing the polymer by-product from adhering to and accumulating in the thermal decomposition reactor.
- An isocyanate and an (aromatic) hydroxy compound are produced by the thermal decomposition reaction of the carbamic acid ester, and at least one of these compounds is recovered as a gas phase component. Which compound is recovered as a gas phase component depends on the thermal decomposition reaction conditions. As described above, it is also preferable to use a pyrolysis solvent as a liquid phase component in the presence of a pyrolysis solvent.
- the term “low-boiling component generated by the thermal decomposition reaction of a carbamate” used in the present embodiment means that the (aromatic) hydroxy compound and / or isocyanate generated by the thermal decomposition of the carbamate is Correspondingly, but particularly refers to a compound that can exist as a gas under the conditions under which the thermal decomposition reaction is carried out.
- Recovery step 2 It is preferable to carry out the recovery step 2 after the thermal decomposition step and / or simultaneously with the thermal decomposition step.
- an isocyanate and an aromatic hydroxy compound (preferably an aromatic hydroxy compound) generated by a thermal decomposition reaction are used.
- the compound) and the carbonate ester are recovered as gas phase components, and the liquid phase component containing the carbamic acid ester is recovered from the bottom of the thermal decomposition reactor.
- the recovered gas component containing isocyanate is preferably supplied in a gas phase to a distillation apparatus for producing and separating the isocyanate.
- an isocyanate and a hydroxy compound (preferably an aromatic hydroxy compound) may be separately recovered in a thermal decomposition reactor.
- the gas phase component containing the recovered isocyanate is preferably supplied in a gas phase to a distillation apparatus for purifying and separating the isocyanate.
- the liquid phase component containing carbonate ester and / or carbamic acid ester is recovered from the bottom of the thermal decomposition reactor, and when the liquid phase component contains carbonate ester, the carbonate ester is separated and recovered from the liquid phase component. Thus, it is preferable to reuse the carbonate ester.
- the liquid phase component contains a carbamic acid ester a part or all of the liquid phase component is supplied to the upper part of the thermal decomposition reactor, and the carbamic acid ester is again subjected to a thermal decomposition reaction. It is preferable to attach to.
- the upper part of the pyrolysis reactor means, for example, when the pyrolysis reactor is a distillation column, it indicates the number of theoretical plates at the second or higher stage from the tower bottom, and the pyrolysis reactor is a thin-film distillation. In the case of a vessel, it refers to the portion above the heated surface.
- the liquid phase component is preferably 50 ° C. to 180 ° C., more preferably 70 ° C. to 170 ° C. It is particularly preferable to transport while maintaining at 100 ° C. to 150 ° C.
- the hydroxy compound (aromatic hydroxy compound) is recovered as a gas phase component, and the mixture containing the isocyanate is used as the liquid phase component.
- a method of recovering from the bottom of the pyrolysis reactor can be employed.
- the liquid phase component is supplied to a distillation apparatus to recover the isocyanate.
- a carbonate ester is contained in the liquid phase component, it is preferable to separate and recover the carbonate ester for reuse.
- the liquid phase component contains a carbamic acid ester
- the mixture containing the carbamic acid ester supplies a part or all of the mixture to the upper part of the thermal decomposition reactor
- the carbamic acid ester is preferably subjected to a thermal decomposition reaction again.
- the liquid phase component is preferably 50 ° C. to 180 ° C., more preferably 70 ° C. to 170 ° C. It is particularly preferable to transport while maintaining at 100 ° C. to 150 ° C.
- the liquid phase component As described above, in the pyrolysis reaction, it is preferable to recover the liquid phase component from the bottom of the pyrolysis reactor. It is possible to dissolve a polymeric by-product produced by a side reaction caused by a carbamate and / or isocyanate by causing a liquid phase component to be present in the pyrolysis reactor and to perform a pyrolysis reaction as a liquid phase component. This is because the polymer compound can be discharged from the vessel, thereby reducing the adhesion / accumulation of the polymeric compound to the thermal decomposition reactor.
- liquid phase component When a carbamic acid ester is contained in the liquid phase component, a part or all of the liquid phase component is supplied to the upper part of the thermal decomposition reactor, and the carbamic acid ester is again subjected to the thermal decomposition reaction. However, when this process is repeated, polymer by-products may accumulate in the liquid phase component. In that case, part or all of the liquid phase component can be removed from the reaction system to reduce the accumulation of polymeric by-products or to maintain a constant concentration.
- the hydroxy compound (aromatic hydroxy compound) and / or carbonate ester contained in the gas phase component and / or liquid phase component obtained in the above thermal decomposition reaction can be separated and recovered and reused.
- the aromatic hydroxy compound can be reused as the reaction solvent in the carbamation step and / or the aromatic hydroxy compound involved in the production of the carbonate ester, and the carbonate ester as a raw material in the production of the carbamate ester. Can be reused.
- the carbonate ester used in the production method of the present embodiment is preferably a compound represented by the following formula (1).
- each R 1 independently represents an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic group having 6 to 20 carbon atoms.
- R 1 is an aliphatic hydrocarbon group having 1 to 20 carbon atoms
- the hydrocarbon group may be linear or branched.
- the aliphatic hydrocarbon group for R 1 include an alkyl group.
- the alkyl group preferably has 1 to 5 carbon atoms, more preferably 1 to 4 carbon atoms, and still more preferably 1 or 2. Specific examples include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and an n-pentyl group.
- the branched alkyl group preferably has 3 to 10 carbon atoms, and more preferably 3 to 5 carbon atoms.
- the alicyclic hydrocarbon group may be polycyclic or monocyclic. Specific examples of the monocyclic alicyclic hydrocarbon group include cyclopentane and cyclohexane. Specific examples of the polycyclic alicyclic hydrocarbon group include adamantane, norbornane, isobornane, tricyclodecane, and tetracyclododecane.
- R 1 in the above formula (1) is preferably an aromatic hydrocarbon group having 6 to 20 carbon atoms, and more preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms.
- R 1 may be an aromatic hydrocarbon group having 21 or more carbon atoms, but from the viewpoint of facilitating separation from an isocyanate generated by a thermal decomposition reaction of a carbamate, the number of carbon atoms constituting R 1 Is preferably 20 or less.
- R 1 examples include phenyl group, methylphenyl group (each isomer), ethylphenyl group (each isomer), propylphenyl group (each isomer), butylphenyl group (each isomer), pentyl.
- Phenyl group (each isomer), hexylphenyl group (each isomer), dimethylphenyl group (each isomer), methylethylphenyl group (each isomer), methylpropylphenyl group (each isomer), methylbutylphenyl group (Each isomer), methylpentylphenyl group (each isomer), diethylphenyl group (each isomer), ethylpropylphenyl group (each isomer), ethylbutylphenyl group (each isomer), dipropylphenyl group ( Each isomer), trimethylphenyl group (each isomer), triethylphenyl group (each isomer), naphthyl group (each isomer) and the like.
- diaryl carbonates in which R 1 is an aromatic hydrocarbon group having 6 to 8 carbon atoms are preferable.
- diaryl carbonates include diphenyl carbonate, di (methylphenyl) carbonate (isomers). ), Di (diethylphenyl) carbonate (each isomer), di (methylethylphenyl) carbonate (each isomer), and the like.
- the compound represented by the above formula (1) is preferably a diaryl carbonate represented by the following general formula (1) -1.
- each R 10 independently represents an aromatic hydrocarbon group having 6 to 20 carbon atoms.
- R 10 in the above formula (1) -1 is an aromatic hydrocarbon group having 6 to 20 carbon atoms, more preferably an aromatic hydrocarbon group having 6 to 12 carbon atoms, and an aromatic hydrocarbon group having 6 to 8 carbon atoms.
- a hydrocarbon group is more preferred, and a phenyl group is still more preferred.
- the carbonate ester or diaryl carbonate preferably contains a metal atom in a range of 0.001 mass ppm to 10 mass% with respect to the total mass of the carbonate ester or diaryl carbonate, and 0.001 mass ppm to The range of 5% by mass is more preferable, and the content in the range of 0.002% by mass to 3% by mass is particularly preferable.
- the metal atom may exist as a metal ion or may exist as a single metal atom.
- a metal atom capable of taking a divalent to tetravalent valence is preferable, and one or more kinds of metals selected from iron, cobalt, nickel, zinc, tin, copper, and titanium are more preferable.
- a method for producing the above carbonate ester or diaryl carbonate a known method can be used.
- a carbonic acid ester is produced by reacting an organic tin compound having a tin-oxygen-carbon bond and carbon dioxide, as described in International Publication No. 2009/139061, and the carbonic acid ester and an aromatic hydroxy compound are produced.
- It is preferred to use a process for producing diaryl carbonate from The carbonate ester or diaryl carbonate is preferably purified by a known method such as distillation and used as the carbonate ester or diaryl carbonate in this embodiment.
- the metal atom exemplified above may be contained in the preferred range in the carbonate ester or diaryl carbonate, in that case The carbonate ester or diaryl carbonate can be used as it is. Further, when the amount of the metal atom contained in the carbonate ester or diaryl carbonate is less than the above range, a separate metal atom, for example, an organic acid salt such as acetate or naphthenate, chloride, It can be added as an acetylacetone complex.
- an organic acid salt such as acetate or naphthenate, chloride
- the amount of the metal atom is reduced to the above range by, for example, solvent washing, purification by distillation, crystallization, removal by ion exchange resin, removal by chelate resin, etc. Can be used.
- the amount of the metal component contained in the carbonate ester or diaryl carbonate can be quantified by a known method, for example, atomic absorption spectrometry, inductively coupled plasma emission spectrometry, inductively coupled plasma mass spectrometry, fluorescence It can be selected from various methods such as X-ray analysis, X-ray photoelectron spectroscopy, electron beam microanalyzer, and secondary ion mass spectrometry in consideration of the form of the sample and the amount of metal component contained. .
- the metal atom may exist as a metal ion or may exist as a single metal atom.
- a metal atom capable of taking a valence of 2 to 4 is preferable, and among these, one or more metals selected from iron, cobalt, nickel, zinc, tin, copper, and titanium are more preferable. More preferably, it is iron.
- the present inventors surprisingly suppressed the modification reaction of the resulting carbamic acid ester in the reaction between the diaryl carbonate and the amino acid derivative inorganic acid salt when using a diaryl carbonate containing a metal atom at a concentration in the above range. The effect to do.
- the metal atom added to the mixture of the amino acid derivative and the inorganic acid salt has a larger interaction between the metal atom and the amino acid derivative inorganic acid salt than the metal atom and the diaryl carbonate. It is speculated that this is because it is strongly coordinated to the amino acid derivative inorganic acid salt and difficult to coordinate to the urethane bond of the resulting carbamate.
- the metal atoms contained in the carbonate ester in the above-mentioned range are not often found to have a catalytic action in the reaction between the carbonate ester and the amino acid ester inorganic acid salt. It is clearly distinguished from the production catalyst.
- amino acid derivative inorganic acid salt a compound synthesized from an amino acid as a raw material.
- the amino acid may be a natural amino acid or a synthetic amino acid.
- the amino acid derivative inorganic acid salt that can be used in the present embodiment is preferably an inorganic acid salt of an amino acid derivative represented by the following formula (A-1) or (A-2).
- R x represents an aliphatic group or an aromatic group.
- X represents an oxygen atom or a secondary amino group (—NH—), preferably an oxygen atom.
- R W represents an aliphatic group having 1 to 15 carbon atoms, an aromatic group having 6 to 15 carbon atoms, or a hydrogen atom, and preferably c represents 2 or 3.
- R x preferably contains a primary amino group, a sulfur atom, an oxygen atom or a halogen atom, an aliphatic group having 1 or more carbon atoms or an aromatic having 6 or more carbon atoms.
- an —NHCOOH group is removed from an amino acid, and still more preferably an aliphatic group having 1 to 15 carbon atoms or an aromatic group having 6 to 15 carbon atoms.
- ⁇ -amino acids there are two steric combinations of amino groups and carboxyl groups to the ⁇ carbon, which are distinguished as D-type and L-type optical isomers, respectively.
- the amino acid (and the compound having an amino acid skeleton) used in this embodiment may be D-type or L-type, or a mixture or racemic form thereof.
- Many amino acids that can be obtained industrially at low cost are amino acids that are produced by fermentation and are mostly L-type, but they can be preferably used. In this specification, the configuration is not shown, but either the D type or the L type is shown.
- Specific examples of the compound represented by the formula (A-1) include compounds represented by the following formula.
- the R W are as defined above, preferably an alkyl group having 1 to 6 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms.
- R y represents an aliphatic group, an aromatic group or a hydrogen atom.
- X represents an oxygen atom or a secondary amino group (—NH—), preferably an oxygen atom.
- R v represents an aliphatic group having 1 to 15 carbon atoms, an aromatic group having 6 to 15 carbon atoms, or a hydrogen atom, and d represents an integer of 1 to 4.
- R y preferably contains a primary amino group, a sulfur atom, an oxygen atom or a halogen atom, an aliphatic group having 1 or more carbon atoms or an aromatic having 6 or more carbon atoms.
- An aliphatic group having 1 to 15 carbon atoms which may include a group selected from the group consisting of groups represented by the following formulas (i) to (iv): The above formula (i) wherein an aromatic group having 6 to 15 carbon atoms, an aliphatic group and an aromatic group, which may contain a group selected from the group consisting of groups represented by (i) to (iv), are bonded Any one of a group having 7 to 15 carbon atoms, a group represented by the following formula (I) or (II), or a hydrogen atom, which may include a group selected from the group consisting of groups represented by (iv) to (iv) is there.
- the atom to which the nitrogen atom and the sulfur atom are bonded is a carbon atom.
- R c represents a group represented by the following formula (III), (IV), or (V) or a hydrocarbon group having 1 to 10 carbon atoms, and e is any one of 0 to 5
- R d represents an aliphatic hydrocarbon group having 1 to 15 carbon atoms, an aromatic hydrocarbon group having 6 to 15 carbon atoms, and e is an integer of 0 to 5 Represents.
- R g represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms (preferably a linear or branched alkylene group having 1 to 6 carbon atoms), and h represents an integer of 1 to 9 J represents an integer of 0 to 9.
- the amino acid derivative is preferably an amino acid ester.
- preferred compounds of the above formula (A-2) include compounds represented by the following formulas (A-3) to (A-6).
- an amino acid ester represented by the following formula (11) is also preferably used as the amino acid ester inorganic acid salt.
- R a may contain an aliphatic group having 1 to 15 carbon atoms which may contain groups represented by the following formulas (i) to (ii), or a group represented by the following formulas (i) to (ii).
- an atom to which an oxygen atom and a sulfur atom are bonded is a carbon atom.
- R g represents an aliphatic hydrocarbon group having 1 to 10 carbon atoms (preferably a linear or branched alkylene group having 1 to 6 carbon atoms), and h represents an integer of 1 to 9 J represents an integer of 0 to 9.
- R b represents an aliphatic group having 1 to 15 carbon atoms which may contain a group selected from the group consisting of the groups represented by the formulas (i) to (iv), ) To (iv) may contain a group selected from the group consisting of groups represented by formulas (i) to (i), wherein an aromatic group having 6 to 15 carbon atoms, an aliphatic group and an aromatic group are bonded. a group having 7 to 15 carbon atoms which may contain a group selected from the group consisting of groups represented by iv), a group represented by the formula (I) or (II), and a hydrogen atom.
- a salt formed from an amino acid ester represented by the following formula and an inorganic acid is used.
- R 3 and R 4 each independently represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms or a hydrogen atom, and R represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms.
- N represents an integer of 0 to 2
- m and p each independently represents an integer of 1 to 10 (preferably 1 to 6, more preferably 1 to 3).
- R 3 , R 4 , R, n and m are as described above.
- R 3 is an alkyl group having 1 to 4 carbon atoms
- R 4 is an alkyl group having 1 to 6 carbon atoms
- R is a halogen atom
- an alkyl group having 1 to 4 carbon atoms, or 1 to 4 represents an alkoxy group
- n represents 1 or 2
- m represents an integer of 1 to 6.
- amino acid esters derived from lysine bone nucleus such as lysine methyl ester, lysine ethyl ester, lysine ⁇ -aminoethyl ester
- amino acid esters derived from glutamic acid bone nucleus such as glutamic acid methyl ester, glutamic acid di ( ⁇ -aminoethyl) ester
- the amino acid ester preferably used in the present embodiment is, for example, a reaction between an amino acid and a compound having an alcoholic hydroxy group in the presence of an inorganic acid, or an amino acid inorganic acid salt and an amino alcohol inorganic acid salt are reacted with an inorganic acid. It can manufacture by making it react in presence of.
- the inorganic acid may be any inorganic acid such as hydrochloric acid, nitric acid, phosphoric acid, sulfuric acid, boric acid and hydrofluoric acid, preferably sulfuric acid, phosphoric acid and hydrochloric acid, more preferably hydrochloric acid. is there.
- the amino acid ester inorganic acid salt that can be used in the present embodiment is formed of the above inorganic acid, and is preferably an amino acid ester sulfate, an amino acid ester phosphate, or an amino acid ester hydrochloride, and is an amino acid ester hydrochloride. Is more preferable.
- the amino acid is preferably an aliphatic or aromatic amino acid having 2 to 18 carbon atoms having at least one amino group and at least one carboxyl group, or a lactam having 3 to 12 members.
- the amino acid may be a natural amino acid or a synthetic amino acid. Examples of natural amino acids include alanine, arginine, asparagine, glutamine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, aspartic acid, methionine, phenylalanine, tryptophan, valine, ornithine and the like.
- a synthetic amino acid can be produced by a known method, and can be produced, for example, by Strecker synthesis using an aldehyde compound. As the aldehyde, a compound represented by the following formula (B) can be used.
- R z represents an aliphatic group having 1 or more carbon atoms or an aromatic group having 6 or more carbon atoms, which may contain an oxygen atom or a halogen atom, and z represents an integer of 1 to 3.
- R z preferably has 1 to 12 carbon atoms, and specific compounds preferable as the compound (B) include acetaldehyde, propionaldehyde, hexylaldehyde, octylaldehyde, caprinsanaldehyde, phenylacetaldehyde, benzaldehyde, dimethoxy.
- Examples include benzaldehyde, chlorobenzaldehyde, fluorobenzaldehyde, heliotropin, cyclamenbenzaldehyde, furfural, naphthaldehyde, phthalaldehyde, and the like. In addition, when these compounds have an isomer structure, isomers are also included.
- amino acid inorganic acid salt is an inorganic acid salt of the amino acid.
- Particularly preferably used amino acids are aliphatic monoamino monocarboxylic acid, diamino monocarboxylic acid, monoamino dicarboxylic acid, diamino dicarboxylic acid and the like.
- a lactam formed by cyclization of these amino acids is also preferably used.
- the above compounds include glycine, 3-aminopropionic acid, ⁇ -aminocaproic acid, ⁇ -aminolauric acid, alanine, isoleucine, 3-aminobutyric acid, 4-aminocyclohexanecarboxylic acid, phenylalanine, methionine, aminobenzoic acid. , Aspartic acid, glutamic acid, lysine, lanthionine, 1-amino-2.3,4-butanetricarboxylic acid, lactam, pyrrolidone, caprolactam, laurolactam of the above amino acids.
- the compound containing an alcoholic hydroxy group is preferably an amino alcohol inorganic acid salt.
- the amino alcohol inorganic acid salt can be produced by reacting the amino acid inorganic acid salt with an alcohol.
- An amino alcohol inorganic acid salt is an inorganic acid salt of an amino alcohol having 2 to 12 carbon atoms having one primary or secondary hydroxyl group and one primary amino group.
- the above amino alcohol contains a hetero atom such as oxygen or sulfur in its alkylene chain, or contains a group inert to the esterification reaction, for example, a substituent such as nitro, halogen, alkyl or phenyl group. It may be.
- amino alcohols include ethanolamine, 1-amino-2-propanol, 2-amino-1-propanol, 2-aminoisobutanol, 2-amino-1-butanol, 2- (2-aminoethoxy)- Examples include ethanol and 2-aminocyclohexanol.
- Alcohol may be a known alcohol, but is preferably a monoalcohol having 1 to 10 carbon atoms. Specific examples include methanol, ethanol, propanol, butanol, pentanol, hexanol, octanol, decanol, cyclopentanol, cyclohexanol and the like. In addition, when these compounds contain an isomer, this isomer can also be used.
- the carbamic acid ester obtained by carrying out the method of this embodiment using the inorganic acid salt of the amino acid ester is a carbamic acid ester represented by the formula (C). Specifically, it is a carbamate formed by converting the amino group (—NH 2 ) forming the amino acid ester represented by the above formula into a carbamate group (—NHCOO—R 1 ). R 1 is a group defined by the formula (C).
- the basic compound that can be used in this embodiment is presumed to have the effect of increasing the reactivity of the amino group of the amino acid derivative by neutralizing the inorganic acid that forms the inorganic acid salt of the amino acid derivative. is doing.
- an inorganic base such as an inorganic base such as an alkali metal hydroxide or an alkaline earth metal hydroxide, or an organic base such as ammonia, amine, or phosphazene is used.
- organic amines are preferable, and in the case of aliphatic amines, secondary aliphatic amines and tertiary aliphatic amines are more preferable.
- the aliphatic amine is an amine having one or more aliphatic groups, and the aliphatic groups preferably have 1 to 12 carbon atoms.
- the aliphatic amine include an amine (alkyl amine or alkyl alcohol amine) or a cyclic amine in which at least one hydrogen atom of ammonia NH 3 is substituted with an alkyl group or hydroxyalkyl group having 12 or less carbon atoms.
- alkylamine and alkyl alcohol amine include monoalkylamines such as n-hexylamine, n-heptylamine, n-octylamine, n-nonylamine, n-decylamine; diethylamine, di-n-propylamine, Dialkylamines such as di-n-heptylamine, di-n-octylamine, dicyclohexylamine; trimethylamine, triethylamine, tri-n-propylamine, tri-n-butylamine, tri-n-pentylamine (triamylamine), Trialkylamines such as tri-n-hexylamine, tri-n-heptylamine, tri-n-octylamine, tri-n-nonylamine, tri-n-decylamine, tri-n-dodecylamine; diethanolamine, triethanolamine , Propanolamine, triiso
- Examples of the cyclic amine include heterocyclic compounds containing a nitrogen atom as a hetero atom.
- the heterocyclic compound may be monocyclic (aliphatic monocyclic amine) or polycyclic (aliphatic polycyclic amine).
- Specific examples of the aliphatic monocyclic amine include piperidine and piperazine.
- As the aliphatic polycyclic amine those having 6 to 10 carbon atoms are preferable. Specifically, 1,5-diazabicyclo [4.3.0] -5-nonene, 1,8-diazabicyclo [5. 4.0] -7-undecene, hexamethylenetetramine, 1,4-diazabicyclo [2.2.2] octane, and the like.
- aromatic amine may be used as the amine.
- aromatic amines include 4-dimethylaminopyridine, pyrrole, indole, pyrazole, imidazole or derivatives thereof, tribenzylamine, 2,6-diisopropylaniline, N-tert-butoxycarbonylpyrrolidine, and the like.
- the acid used in the washing step is not particularly limited as long as it dissolves the polymeric by-product.
- Either an organic acid or an inorganic acid may be used, but an organic acid is preferably used.
- the organic acid include carboxylic acid, sulfonic acid, sulfinic acid, phenols, enols, thiophenols, imides, oximes, aromatic sulfonamides, etc., preferably benzoic acid, Carboxylic acids such as salicylic acid, phenols (for example, a cycloalkyl group having 1 to 20 carbon atoms (preferably 1 to 12 carbon atoms) as a substituent, a benzyl group optionally substituted with an alkyl group having 1 to 6 carbon atoms, An alkoxy group having 1 to 20 carbon atoms (preferably an alkoxy group having 1 to 6 carbon atoms and a phenol optionally having a phenyl group) is used.
- an aromatic hydroxy compound more preferably a diaryl carbonate and an amino acid derivative inorganic acid salt are more preferred. It is the same kind of compound as the aromatic hydroxy compound used in the reaction.
- the standard boiling point of the aromatic hydroxy compound is, from the viewpoint of the cleaning effect, the compound corresponding to the isocyanate generated by the thermal decomposition reaction of the aforementioned carbamic acid ester, It preferably has a boiling point difference of 10 ° C. or more from the normal boiling point of the aromatic hydroxy compound produced by the thermal decomposition reaction of the carbamic acid ester.
- NMR analysis method Apparatus JNM-A400 FT-NMR System (1) manufactured by JEOL Ltd., Japan
- Preparation of 1H and 13C-NMR analysis samples About 0.3 g of sample solution was weighed and deuterated chloroform (USA) A solution obtained by adding 0.05 g of tetramethylsilane (manufactured by Wako Pure Chemical Industries, Ltd., Wako First Grade) as an internal standard substance and adding uniformly to about 0.7 g of Aldrich, 99.8%) as an internal standard substance.
- An analysis sample was used.
- Quantitative analysis method Each standard substance was analyzed, and based on the prepared calibration curve, quantitative analysis of the analysis sample solution was performed.
- Detector FID (1) Sample for gas chromatography analysis About 0.05 g of sample is weighed, about 1 g of acetone (made by Wako Pure Chemical Industries, Japan, dehydration) and toluene (made by Wako Pure Chemical Industries, Japan) as an internal standard substance. A solution obtained by adding about 0.02 g of dehydration) and mixing them uniformly was used as a sample for gas chromatography analysis. (2) Quantitative analysis method Each standard substance was analyzed, and based on the prepared calibration curve, quantitative analysis of the analysis sample solution was performed.
- Inductively coupled plasma mass spectrometry apparatus SPQ-8000, manufactured by Seiko Denshi, Japan
- Inductively coupled plasma mass spectrometry sample About 0.15 g of a sample was incinerated with dilute sulfuric acid and then dissolved in dilute nitric acid.
- Quantitative analysis method Analyzes were carried out for each standard substance, and based on the prepared calibration curve, a quantitative analysis of the analysis sample solution was conducted.
- step (I-1) Production of diphenyl carbonate, step (I-1): Production of dialkyltin catalyst In a eggplant-shaped flask having a capacity of 3000 mL, 692 g (2.78 mol) of di-n-butyltin oxide and 1-butanol (Japan, 2000 g (27 mol) manufactured by Wako Pure Chemical Industries, Ltd. was added. The flask containing the mixture in the form of a white slurry was attached to an evaporator connected to an oil bath with a temperature controller, a vacuum pump, and a vacuum controller. The evaporator purge valve outlet was connected to a line of nitrogen gas flowing at normal pressure.
- the purge valve was gradually opened, and nitrogen was passed through the system to return to normal pressure.
- the oil bath temperature was set to 126 ° C., the flask was immersed in the oil bath, and the rotation of the evaporator was started.
- the evaporator purge valve was opened, the mixture was boiled and heated at atmospheric pressure for about 30 minutes, and then the liquid mixture boiled and distillation of low boiling components started.
- the purge valve was closed, the inside of the system was gradually depressurized, and the remaining low-boiling components were distilled while the pressure inside the system was 76 to 54 kPa.
- Step (I-2) Production of dibutyl carbonate Carbonate was produced in a continuous production apparatus as shown in FIG.
- a column reactor 102 having an inner diameter of 151 mm and an effective length of 5040 mm, packed with a packing Melapak 750Y (manufactured by Sulzer Chemtech Ltd., Switzerland), was produced from line 4 in step (I-1) 1,1 , 3,3-tetra-n-butyl-1,3-di (n-butyloxy) -distaneoxane was fed at 4201 g / hr. From line 2, 1-butanol purified in the distillation column 101 was supplied to the column reactor 102 at 24717 g / hr.
- the inside of the column reactor 102 was adjusted by a heater and a reboiler 112 so that the liquid temperature was 160 ° C., and was adjusted by a pressure control valve so that the pressure was about 150 kPa-G.
- the residence time in the column reactor 102 was about 10 minutes. From the upper part of the column reactor 102, 1-butanol containing water was transported to the distillation column 101 at 24715 g / hr via the line 6. From line 1, 1-butanol was transported to distillation column 101 at 824 g / hr.
- the distillation column 101 was packed with a packing material Metal Gause CY (manufactured by Sulzer Chemtech Ltd., Switzerland), and provided with a reboiler 111 and a condenser 121, and distillation purification was performed. In the upper part of the distillation column 101, a fraction containing high-concentration water was condensed by the condenser 121 and recovered from the line 3. Purified 1-butanol was transported to the column reactor 102 via line 2 at the bottom of the distillation column 101.
- Metal Gause CY manufactured by Sulzer Chemtech Ltd., Switzerland
- alkyl containing di-n-butyltin-di-n-butoxide and 1,1,3,3-tetra-n-butyl-1,3-di (n-butyloxy) -distanoxane A tin alkoxide catalyst composition was obtained and supplied to the thin film evaporator 103 (manufactured by Shinko Environmental Solution Co., Ltd.) via line 5. After the 1-butanol was distilled off in the thin film evaporator 103, the evaporation residue was returned to the column reactor 102 via the condenser 123, line 8 and line 4.
- the alkyltin alkoxide catalyst composition is transported from the lower part of the thin film evaporator 103 via the line 7, and dibutyltin dibutoxide and 1,1,3,3-tetra-n-butyl-1,3-di (n-butyloxy)
- the flow rate of the active component of) -distanoxane was adjusted to about 4812 g / hr and supplied to the autoclave 104.
- Carbon dioxide was supplied to the autoclave via line 9 at 973 g / hr, and the internal pressure of the autoclave was maintained at 4 MPa-G.
- the temperature in the autoclave was set to 120 ° C., the residence time was adjusted to about 4 hours, and the carbon dioxide and the alkyltin alkoxide catalyst composition were reacted to obtain a reaction liquid containing dibutyl carbonate.
- the reaction solution was transferred to the decarburization tank 105 via the line 10 and the control valve, the residual carbon dioxide was removed, and the carbon dioxide was recovered from the line 11. Thereafter, the reaction solution is transported through a line 12 to a thin film evaporator 106 (manufactured by Shinko Environmental Solution Co., Ltd.) at 140 ° C.
- 1,1,3,3-tetra-n A fraction containing dibutyl carbonate was obtained by adjusting and supplying the flow rate of -butyl-1,3-di (n-butyloxy) -distanoxane to about 4201 g / hr.
- the evaporation residue has a flow rate of 1,1,3,3-tetra-n-butyl-1,3-di (n-butyloxy) -distanoxane via line 13 and line 4 of about 4201 g / hr. And was circulated to the column reactor 102.
- the fraction containing dibutyl carbonate is charged via a condenser 126 and line 14 into a distillation column 107 which is charged with a charge Metal Gause CY (Sulzer Chemtech Ltd., Switzerland) and equipped with a reboiler 117 and a condenser 127.
- a charge Metal Gause CY Sulzer Chemtech Ltd., Switzerland
- a reboiler 117 and a condenser 127 After distillation purification by supplying at 830 g / hr, 814 g / hr of 99% by mass of dibutyl carbonate was obtained from the line 15.
- the evaporation residue sent from the thin film distillation apparatus 106 to the line 13 was analyzed by 119Sn, 1H, 13C-NMR.
- 1,1,3,3-tetra-n-butyl-1,3-di (n- Butyloxy) -distanoxane was included and di-n-butyltin-di-n-butoxide was not included.
- the evaporation residue was discharged from the line 16 at 16 g / hr.
- 1,1,3,3-tetra-n-butyl-1,3-di (n-butyloxy) -distaneoxane produced in the step (I-1) was supplied from the line 17 at a rate of 16 g / hr.
- Step (I-3) Production of aromatic carbonate [catalyst preparation] 79 g of phenol and 32 g of lead monoxide were heated at 180 ° C. for 10 hours, and water produced was distilled off together with phenol. About 2.5 g of water was extracted in 10 hours. Thereafter, phenol was distilled off from the upper part of the reactor to prepare a catalyst.
- the gas distilled from the top of the continuous multistage distillation column 202 was extracted from the line 22 and was continuously extracted from the line 24 to the storage tank 205 at a rate of about 67 g / hr via the condenser 203. From the bottom of the tower, it was continuously extracted into the storage tank 206 via the line 23 at a rate of about 204 g / hr.
- the composition of the liquid extracted from the line 24 was about 33% by mass of 1-butanol, about 65% by mass of phenol, and about 2% by mass of dibutyl carbonate.
- the composition of the liquid extracted into the storage tank 206 was about 11 mass% phenol, about 60 mass% dibutyl carbonate, about 26 mass% butyl phenyl carbonate, about 1.6 mass% diphenyl carbonate, and about 1 mass% lead concentration. It was.
- the liquid extracted into the storage tank 206 in the middle stage of the continuous multistage distillation column 302 having an inner diameter of 5 cm and a column length of 2 m packed with Dickson packing (6 mm ⁇ ) is passed through the preheater 301 and is supplied from the line 31 at about 203 g / hr.
- the liquid was continuously supplied.
- the amount of heat required for the reaction and distillation was supplied by circulating the lower liquid of the continuous multistage distillation column 302 via the line 33 and the reboiler 304.
- the reflux temperature from the line 34 to the continuous multistage distillation column 302 was adjusted so that the liquid temperature at the bottom of the continuous multistage distillation column 302 was 240 ° C., the top pressure was about 27 kPa, and the reflux ratio was about 2.
- the gas distilled from the top of the continuous multistage distillation column 302 was condensed in the condenser 303 via the line 32 and continuously extracted from the line 34 to the storage tank 305 at about 165 g / hr. From the bottom of the tower, it was continuously extracted at a rate of about 39 g / hr to the storage tank 306 via the line 33.
- the composition of the liquid extracted from the line 34 was about 500 ppm by mass of 1-butanol, about 13% by mass of phenol, about 85% by mass of dibutyl carbonate, and about 2% by mass of butyl phenyl carbonate.
- the composition of the liquid extracted into the storage tank 306 was about 0.3% by mass of dibutyl carbonate, about 32% by mass of butyl phenyl carbonate, about 61% by mass of diphenyl carbonate, and about 7% by mass of lead.
- the liquid temperature at the bottom of continuous multistage distillation column 402 was 145 ° C., the top pressure was about 13 kPa, and the reflux ratio was about 0.3.
- the gas distilled from the continuous multistage distillation column 402 was condensed in the condenser 403 via the line 42 and extracted from the line 44 to the storage tank 405 at about 68 g / hr. From the bottom of the tower, it was continuously extracted at about 133 g / hr to the storage tank 406 via the line 43.
- the composition of the liquid extracted from the line 44 was about 99% by mass of 1-butanol and about 100 ppm by mass of phenol.
- the composition of the liquid extracted into the storage tank 406 was about 2% by mass of dibutyl carbonate and about 98% by mass of phenol.
- FIGS. 5 and 6 The apparatus shown in FIGS. 5 and 6 was used to purify diaryl carbonate.
- the liquid extracted into the storage tank 306 is continuously fed at about 195 g / hr from the line 51 through the preheater 501 to the middle stage of the continuous multistage distillation column 502 having an inner diameter of about 5 cm and a column length of 2 m packed with Dickson packing (6 mm ⁇ ). Supplied to.
- the amount of heat required for the distillation separation was supplied by circulating the lower liquid of the continuous multistage distillation column 502 through the line 53 and the reboiler 504.
- the liquid temperature at the bottom of continuous multistage distillation column 502 was 210 ° C., the pressure at the top of the column was about 1.5 kPa, and the reflux ratio was about 1.
- the gas distilled from the top of the continuous multistage distillation column 502 was condensed in the condenser 503 via the line 52 and continuously extracted from the line 54. From the bottom of the tower, it was extracted at about 14 g / hr into the storage tank 506 via the line 53.
- the composition of the liquid extracted from the line 54 was about 0.3 mass% dibutyl carbonate, about 34 mass% butylphenyl carbonate, and about 66 mass% diphenyl carbonate.
- the liquid extracted from the line 54 is continuously supplied at about 181 g / hr from the line 61 through the preheater 601 to the middle stage of the continuous multistage distillation column 602 having an inner diameter of about 5 cm and a column length of 2 m packed with Dickson packing (6 mm ⁇ ). Supplied to.
- the amount of heat required for distillation separation was supplied by circulating the lower liquid of the continuous multistage distillation column 602 through the line 63 and the reboiler 604.
- the liquid temperature at the bottom of the continuous multistage distillation column 602 was 232 ° C.
- the pressure at the top of the column was about 15 kPa
- the reflux ratio was about 2.
- the gas distilled from the top of the continuous multistage distillation column 602 was condensed by the condenser 603 via the line 62 and continuously extracted from the line 64 to the storage tank 605. From the bottom of the tower, it was extracted at about 119 g / hr through the line 63 into the storage tank 606.
- the composition of the liquid extracted from the line 64 was about 0.6 mass% dibutyl carbonate, about 99 mass% butylphenyl carbonate, and about 0.4 mass% diphenyl carbonate.
- the composition of the liquid extracted into the storage tank 606 was 0.1% by mass of butyl phenyl carbonate and about 99.9% by mass of diphenyl carbonate.
- the diphenyl carbonate contained 22 mass ppm of iron as a metal component.
- Example 1 Precursor production process: Synthesis of lysine ⁇ -aminoethyl ester trihydrochloride A 1 L 4-necked flask equipped with a stirrer was charged with 313 g (3.0 mol) of 35% by mass hydrochloric acid, cooled in an ice bath, and ethanolamine. 122 g (2.0 mol) was slowly added dropwise. Then 183 g (1.0 mol) of lysine monohydrochloride was added. The pressure in the reactor was 4 kPa, the reaction solution temperature was heated to 110 ° C., and 200 g of water in the reaction solution was distilled off.
- Step A described above was further repeated twice to obtain a reaction solution having an esterification rate of 80%.
- the esterification rate was calculated by the following formula.
- Esterification rate (%) X / Y ⁇ 100
- X represents the number of moles of lysine ⁇ -aminoethyl ester trihydrochloride produced (value determined by analysis by high performance liquid chromatography)
- Y is the mole of lysine monohydrochloride used as a raw material. Represents a number.
- Step B The reaction liquid obtained in Step A was dissolved by adding a mixed liquid of 720 g of methanol and 480 g of orthodichlorobenzene, and then crystallized by adding a small amount of seed crystals. The solid was separated by filtration, washed with a methanol / orthodichlorobenzene mixed solution having the same composition as that at the time of crystallization, and separated by filtration. The solid was dried using a vacuum drier and analyzed by liquid chromatography to be lysine ⁇ -aminoethyl ester trihydrochloride.
- Carbamate step Production of carbamate (carbamate) In a nitrogen atmosphere using a 1 L 4-neck flask equipped with a stirrer, 510 g (2.4 mol) of diphenyl carbonate and 136 g (1.35 mol) of triethylamine 150 g (0.34 mol) of lysine ⁇ -aminoethyl ester trihydrochloride obtained in the precursor production step was reacted in toluene at a temperature of 50 ° C. and a normal pressure for 8 hours. The reaction solution was sampled and analyzed by liquid chromatography. As a result, the target carbamic acid ester was produced.
- Raw material preparation step 500 g (0.91 mol) of 2-((phenoxycarbonyl) amino) ethyl-2,6-bis ((phenoxycarbonyl) amino) hexanoate obtained in the carbamate step and 500 g of phenol Were mixed at 60 ° C. in a storage tank 700 to obtain a uniform mixed solution.
- -Thermal decomposition step and separation step Production of lysine ester triisocyanate by thermal decomposition of 2-((phenoxycarbonyl) amino) ethyl-2,6-bis ((phenoxycarbonyl) amino) hexanoate Heat transfer area shown in FIG. A 0.1 m 2 thin-film distillation apparatus 701 was heated to 270 ° C., and the internal pressure was set to 10 kPa.
- the raw material is supplied from the storage tank 700 to the thin film distillation apparatus 701 using the line 71 at a rate of 500 g / hr, liquid (high boiling point component) is recovered from the bottom of the thin film distillation apparatus 701 via the line 72, and the cooler 703 After cooling to 100 ° C., it was collected in a storage tank 720 using a line 73. Further, the vapor of the low boiling point component recovered from the upper part of the thin film distillation apparatus 701 was condensed in the condenser 702 and recovered in the storage tank 710 using the line 74. Next, the liquid collected in the storage tank 720 was heated to 180 ° C.
- a thin film distillation apparatus 704 having a heat transfer area of 0.1 m 2 with an internal pressure of about 0.05 kPa using a line 75 at 250 g / hr. .
- the temperature at which the liquid was phase-shifted from the storage tank 720 to the thin-film distillation apparatus 704 through the line 75 was 130 ° C.
- the gas phase component generated from the thin film distillation apparatus 704 (the low boiling point component contained in the high boiling point component) was condensed by the condenser 705 and recovered in the storage tank 730 using the line 76.
- the high boiling point component from which the low boiling point component contained in the high boiling point component was removed was cooled to 80 ° C.
- Examples 2 to 57 The operation was carried out under the conditions described in Example 1 except that the lysine of Example 1 was changed to various amino acids equimolar to lysine, and the gas phase components were condensed and recovered.
- the alcohol to be used was added in the number of moles corresponding to the number of carboxyl groups in the structure of each amino acid (including derivatives).
- the carbonic acid ester of the mole number corresponding to the number of amino groups was added and reacted in the structure of each amino acid (including derivatives).
- the recovered liquid was an amino acid ester isocyanate corresponding to various amino acids (including derivatives). Yield (%) and deposit behavior are listed in the table below.
- DPC represents diphenyl carbonate
- DMC represents dimethyl carbonate
- DEC represents diethyl carbonate
- DBC represents di (n-butyl) carbonate.
- glutamine and asparagine were used, they were hydrolyzed into glutamic acid and aspartic acid, respectively, by a known method.
- Examples 58 to 65 The same operation as in Example 1 was performed except that a carbamate corresponding to an ester composed of various amino acids and alcohol was reacted with various carbonates shown in the following table.
- the number of moles of the carbonate ester added corresponds to the number of moles of the carbonate ester corresponding to the number of amino groups of the ester produced in each example.
- arginine it was decomposed into ornithine by a known method. When glutamine and asparagine were used, they were hydrolyzed into glutamic acid and aspartic acid, respectively, by a known method.
- Examples 66 to 77 The same operation as in Example 1 was carried out except that the basic compound used in obtaining the carbamate corresponding to the ester consisting of various amino acids and alcohols was shown in the following table.
- the number of moles of the basic compound added was the same as the number of moles described in Example 1.
- arginine it was decomposed into ornithine by a known method.
- glutamine and asparagine were used, they were hydrolyzed into glutamic acid and aspartic acid, respectively, by a known method.
- Example 78 to 89 The diphenyl carbonate of Reference Example 1 was added with iron (II) acetylacetonate to prepare diphenyl carbonate containing 2.3% by mass or 11% by mass of iron as a metal atom, or the diphenyl carbonate of Reference Example 1 was prepared. The same operation as in Example 1 was performed, except that it was isolated by distillation by a known technique and iron was changed to 0.0009 mass ppm as a metal atom to be contained. For various amino acids, various amino acids equimolar to the lysine used in Example 1 were used. The operation was carried out under the conditions described in Example 1, and the gas phase components were condensed and recovered.
- the recovered liquid was lysine ester triisocyanate.
- the yield based on lysine ⁇ -aminoethyl ester dihydrochloride was 68%. After 10 days of continuous operation, no deposits were found on the wall surface of the thin film evaporator.
- arginine it was decomposed into ornithine by a known method.
- glutamine and asparagine were used, they were hydrolyzed into glutamic acid and aspartic acid, respectively, by a known method.
- Example 90 When the operation of the thermal decomposition step of Example 5 was continuously performed for 200 days, a slight amount of deposits was confirmed on the wall surface of the thin film distillation apparatus 701. In addition, glutamine was used after being hydrolyzed to glutamic acid by a known method.
- Example 91 the thin film distillation apparatus 701 in which deposits were accumulated was washed.
- the thermal decomposition operation was once stopped, the thin film distillation apparatus 701 was heated to 180 ° C., and the inside of the thin film distillation apparatus 701 was set to an atmospheric pressure nitrogen atmosphere.
- 2,6-diphenol was supplied from the line 78 at a rate of about 1200 g / hr, extracted from the line 72, and the cleaning liquid was recovered in the storage tank 750 via the cooler 703 and the line 79.
- this operation was performed for 1 hour, no deposit was observed inside the thin film distillation apparatus 701.
- glutamine was used after being hydrolyzed to glutamic acid by a known method.
- Example 92 to 101 A cleaning operation was performed in the same manner as in Example 91 except that the cleaning solvents listed in Table 12 below were used, and an operation was performed to remove the deposits attached to the wall surface of the thin film evaporator 701 used in the thermal decomposition process. It was. The results are shown in Table 12 below. Note that, in the section of “Adhesion after cleaning operation” in the table, “No” indicates a result of the adhesion being eliminated by the cleaning operation, and “Yes” indicates a result of the adhesion being not eliminated even after the cleaning operation. In addition, glutamine was used after being hydrolyzed to glutamic acid by a known method.
- Example 1 The same operation as in Example 5 was performed except that the triethylamine used in the carbamation step of Example 5 was not used, but only a trace amount of the corresponding carbamic acid ester was obtained, and the operation was interrupted. .
- glutamine was used after being hydrolyzed to glutamic acid by a known method.
- a method for producing a carbamate ester having improved carbamate reaction efficiency and separation / recovery efficiency and a method for producing an isocyanate using the carbamate ester.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
イソシアネートの製造方法は、炭酸エステルと、アミノ酸誘導体の無機酸塩と、塩基性化合物とを反応させ、炭酸エステルに由来するカルバミン酸エステルと、炭酸エステルに由来するヒドロキシ化合物と、炭酸エステルと、を含有する反応混合物を得るカルバメート化工程と、前記カルバミン酸エステルを熱分解反応に付すことによってイソシアネートを得る熱分解工程と、を有することを特徴とする。
Description
本発明は、イソシアネートの製造方法に関する。
本願は、2017年5月15日に日本に出願された特願2017-096777号に基づき優先権を主張し、その内容をここに援用する。
本願は、2017年5月15日に日本に出願された特願2017-096777号に基づき優先権を主張し、その内容をここに援用する。
イソシアネートは、ポリウレタンフォーム、塗料、接着剤等の製造原料として広く用いられている。イソシアネートの主な工業的製造方法は、アミン化合物とホスゲンとの反応(ホスゲン法)であり、全世界の生産量のほぼ全量がホスゲン法により生産されている。しかしながら、ホスゲン法には多くの問題がある。
第1に、原料としてホスゲンを大量に使用することである。ホスゲンは極めて毒性が高く、従業者への暴露を防ぐためにその取扱いには特別の注意を要し、廃棄物を除去するための特別の装置が必要である。
第2に、ホスゲン法においては、腐食性の高い塩化水素が大量に副生するため、塩化水素を除去するためのプロセスが必要となる。さらに、製造されたイソシアネートには多くの場合、加水分解性塩素が含有されることになる。このため、ホスゲン法で製造されたイソシアネートを使用すると、ポリウレタン製品の耐候性、耐熱性に悪影響を及ぼす場合がある。
第2に、ホスゲン法においては、腐食性の高い塩化水素が大量に副生するため、塩化水素を除去するためのプロセスが必要となる。さらに、製造されたイソシアネートには多くの場合、加水分解性塩素が含有されることになる。このため、ホスゲン法で製造されたイソシアネートを使用すると、ポリウレタン製品の耐候性、耐熱性に悪影響を及ぼす場合がある。
このような背景から、ホスゲンを使用しないイソシアネート化合物の製造方法が望まれている。ホスゲンを使用しないイソシアネート化合物の製造方法の一つとして、カルバミン酸エステルの熱分解による方法が提案されている。カルバミン酸エステルの熱分解によってイソシアネートとヒドロキシ化合物が得られることは公知である(例えば、非特許文献1参照)。その基本反応は下記式によって例示される。
式中、Rは、a価の有機残基を表し、R’は、1価の有機残基を表し、aは、1以上の整数を表す。
カルバミン酸エステルの中でも、エステル基が芳香族基であるカルバミン酸エステルは、エステル基がアルキル基であるカルバミン酸アルキルに比べて熱分解反応の温度を低く設定できるという利点がある(特許文献1参照)。
カルバミン酸エステルを製造する方法としては、これまで様々な方法が開示されている。
特許文献2には、ベンゼン、ジオキサン、四塩化炭素等の溶媒の存在下でアルキルモノアミンと炭酸ジアリールを反応させることによって、相当するアルキルモノカルバミン酸エステルが90%~95%の収率で得られることが記載されている。
また、特許文献3には、メチルアミンと炭酸ジフェニルからメチルカルバミン酸フェニルエステルを連続的に製造する方法が記載されている。
カルバミン酸エステルを製造する方法としては、これまで様々な方法が開示されている。
特許文献2には、ベンゼン、ジオキサン、四塩化炭素等の溶媒の存在下でアルキルモノアミンと炭酸ジアリールを反応させることによって、相当するアルキルモノカルバミン酸エステルが90%~95%の収率で得られることが記載されている。
また、特許文献3には、メチルアミンと炭酸ジフェニルからメチルカルバミン酸フェニルエステルを連続的に製造する方法が記載されている。
しかしながら、これらの方法は、いずれもアミンとして低級アルキルモノアミンを用いて、アルキルカルバミン酸エステルを製造する方法であって、アルキルポリカルバミン酸エステルを製造する方法ではない。
アルキルジアミンやアルキルトリアミン等のアルキルポリアミンから対応するアルキルポリカルバミン酸エステルを製造する場合には、アルキルモノアミンを用いる場合とは全く異なる困難な問題が存在する。
アルキルモノアミンの場合は、式(2)で表される反応以外に、式(3)および/または式(4)で表される副反応によって尿素化合物が副生するにすぎないが、アルキルジアミン、アルキルトリアミンなどのアルキルポリアミンの場合には、例えば、式(5)および/または式(6)および/または式(7)で表される化合物等の、非常に多くの種類の尿素化合物が副生してしまう。
アルキルジアミンやアルキルトリアミン等のアルキルポリアミンから対応するアルキルポリカルバミン酸エステルを製造する場合には、アルキルモノアミンを用いる場合とは全く異なる困難な問題が存在する。
アルキルモノアミンの場合は、式(2)で表される反応以外に、式(3)および/または式(4)で表される副反応によって尿素化合物が副生するにすぎないが、アルキルジアミン、アルキルトリアミンなどのアルキルポリアミンの場合には、例えば、式(5)および/または式(6)および/または式(7)で表される化合物等の、非常に多くの種類の尿素化合物が副生してしまう。
式中、R’は、1価のアルキル基もしくは芳香族基を表し、Arは、1価の芳香族基を表し、p、q、rは、各々、1以上の整数を表す。
すなわち、これらの種々の尿素化合物の副生成反応等によって、目的化合物であるアルキルポリカルバミン酸エステルの収率を低下させるという問題と、これらの尿素化合物やポリ尿素化合物との混合物から目的生成物を分離、精製することが非常に困難であるという問題がある。
このようなことから、アルキルポリアミンと炭酸ジアリールからアルキルポリカルバミン酸エステルを製造する試みは非常に少ない。わずかな報告例として例えば、特許文献4によれば、1モルの炭酸ジフェニルを5倍量のベンゼンに溶解させた溶液に、1モルの1,6-ヘキサメチレンジアミンを5倍量のベンゼンに溶解させた溶液を滴下しながら、80℃で撹拌する反応方式で、1,6-ヘキサメチレンジカルバミン酸フェニルエステルを得る方法が提案されている。特許文献4によれば、反応を有利に進行させるためには、生成物である1,6-ヘキサメチレンジカルバミン酸フェニルエステルをできるだけ溶解させない溶媒を反応溶媒として使用することが重要であり、このような溶媒としては、ベンゼンやクロルベンゼンのような炭化水素類が好ましいことが記載されている。
このような観点から、非特許文献2では、0.01モルの炭酸ジフェニルと0.005モルの1,6-ヘキサメチレンジアミンとの反応を、反応溶媒として40mLのトルエンを用いて、20時間という長時間行わせることによって、目的とする1,6-ヘキサメチレンジカルバミン酸フェニルエステルを得ている。しかし、このような大量のトルエンを使用しても収率が93%であり、分離しなければならない尿素化合物やポリ尿素化合物が副生するという問題があった。
また、特許文献5には、炭酸ジアリールとアミン化合物をプロトン酸存在下で反応させるジウレタン化合物の製造法が開示されている。しかし、特許文献5に開示された製造法を工業的に実施するには、ジウレタン化合物の収率が充分とは言えず、かつ副反応を抑制するために低温で反応を行う必要があり、反応時間が長くなるという欠点がある。
特許文献6には、炭酸ジアリールと芳香族ポリアミンを2-ヒドロキシピリジン等の複素環第3級アミンの存在下で反応させる方法が記載されている。この方法は、高価な触媒が反応基質に対して等モル以上必要である上、反応速度が低いという問題がある。
特許文献7によると、芳香族アミンと炭酸ジアリールとルイス酸触媒の存在下において、温度140℃~230℃で反応させる芳香族ウレタンの合成方法が記載されている。しかし、当該方法においても、ルイス酸の使用は、装置の腐食の問題や、生成物との分離、回収が困難であるという問題がある。
特許文献8には、アルキルポリアミンと炭酸ジアリールを反応させてアルキルポリカルバミン酸エステルを製造するに際し、アルキルポリアミンのアミノ基1当量あたり1~3当量の炭酸ジアリールを用い、反応溶媒として芳香族ヒドロキシ化合物を用いて、反応を実質的に均一な溶解状態で行うことを特徴とするアルキルポリカルバミン酸エステルの製造方法が開示されている。
当該特許文献によると、通常96%以上、好ましい実施態様においては98%以上の高収率、高選択率でアルキルポリカルバミン酸エステルが得られる。
しかしながら、ごく少量ではあるが、尿素化合物の生成が確認されていることから、尿素化合物の生成を完全に回避することはできないという問題があった。
当該特許文献によると、通常96%以上、好ましい実施態様においては98%以上の高収率、高選択率でアルキルポリカルバミン酸エステルが得られる。
しかしながら、ごく少量ではあるが、尿素化合物の生成が確認されていることから、尿素化合物の生成を完全に回避することはできないという問題があった。
また、炭酸エステルの代わりにジカーボネートを用いてカルバミン酸エステルを製造する方法が開示されている。例えば、特許文献9には炭酸ジエステルとアミン類とを少なくとも1モル%の水の存在下、液相で反応させるカルバメートの製造方法が開示されている。
ポリアミンについても検討がなされていて、例えば、特許文献10にはジカーボネートと、アミノ酸、アミノ酸エステル等のアミノ酸由来化合物のアミノ基を用いてカルバミン酸エステルを製造する方法も提案されている。
また、例えば特許文献11には、アルキルアリールカーボネートとアミノ酸とを反応させてカルバミン酸エステルを製造する方法が提案されている。
また、例えば特許文献11には、アルキルアリールカーボネートとアミノ酸とを反応させてカルバミン酸エステルを製造する方法が提案されている。
Berchte der Deutechen ChemischenGesellschaft,第3巻,653頁,1870年
Journal of Polymer Science Polymer Chemistry Edition,第17巻,835頁,1979年
このように、ポリアミンからカルバミン酸エステルを製造し、熱分解によってイソシアネートを製造する方法はいくつかの開示があるが、依然として課題を有している。また、近年、環境問題、地球温暖化の観点から植物由来のポリウレタン(バイオポリウレタン)の概念が提唱されているが、バイオポリウレタンを実現するための植物由来成分によるイソシアネート、殊に、アミノ酸由来のイソシアネートの製造方法、しかもホスゲンを使用しない製造方法は開示されていない。
本発明の目的は、植物由来成分によるイソシアネート、中でも、アミノ酸由来のイソシアネートを、炭酸エステルを原料として製造するための方法とその中間体を製造するための方法、殊に、炭酸エステルおよびアミノ酸誘導体無機酸塩を用いたカルバミン酸エステルの製造方法と、該カルバミン酸エステルを用いるイソシアネートの製造方法を提供することにある。
本発明の目的は、植物由来成分によるイソシアネート、中でも、アミノ酸由来のイソシアネートを、炭酸エステルを原料として製造するための方法とその中間体を製造するための方法、殊に、炭酸エステルおよびアミノ酸誘導体無機酸塩を用いたカルバミン酸エステルの製造方法と、該カルバミン酸エステルを用いるイソシアネートの製造方法を提供することにある。
本発明は以下の形態を包含する。
[1]カルバメート化反応器に、炭酸エステル、アミノ酸誘導体の無機酸塩、及び塩基性化合物を供給し、反応させることを含む、炭酸エステルに由来するカルバミン酸エステルの製造方法。
[2]前記アミノ酸誘導体が、下記式(A-1)又は(A-2)で表されるアミノ酸誘導体である、[1]に記載のカルバミン酸エステルの製造方法。
[1]カルバメート化反応器に、炭酸エステル、アミノ酸誘導体の無機酸塩、及び塩基性化合物を供給し、反応させることを含む、炭酸エステルに由来するカルバミン酸エステルの製造方法。
[2]前記アミノ酸誘導体が、下記式(A-1)又は(A-2)で表されるアミノ酸誘導体である、[1]に記載のカルバミン酸エステルの製造方法。
前記式中、Rxは脂肪族基又は芳香族基を表し、Rw、Ry及びRVは、各々独立して、脂肪族基、芳香族基又は水素原子を表し、Xは酸素原子、または2級アミノ基(-NH-)を表し、cは2又は3を表し、dは1~4のいずれかの整数を表す。
[3]前記アミノ酸誘導体がアミノ酸エステルであって、アミノ酸と、アルコール性ヒドロキシ基を有する化合物とを、無機酸の存在下で反応させて、前記アミノ酸エステル無機酸塩を製造する工程を更に有する、[1]または[2]に記載のカルバミン酸エステルの製造方法。
[4]前記塩基性化合物が有機アミンである、[1]~[3]のいずれか一項に記載のカルバミン酸エステルの製造方法。
[5]前記炭酸エステルが、前記炭酸エステルの総質量に対して、金属原子を0.001質量ppm~10質量%含有する、[1]~[4]のいずれか一項に記載のカルバミン酸エステルの製造方法。
[6]前記アミノ酸誘導体の無機酸塩は、前記カルバメート化反応器へ、液体の状態で供給される、[1]~[5]のいずれか一項に記載のカルバミン酸エステルの製造方法。
[7]前記[1]~[6]のいずれか一項に記載のカルバミン酸エステルの製造方法により製造されたカルバミン酸エステルを、熱分解反応に付すことによってイソシアネートを得る熱分解工程を有するイソシアネートの製造方法。
[8]前記熱分解工程は熱分解反応器において実施され、
前記熱分解工程の後、前記熱分解反応器を酸によって洗浄する洗浄工程を更に有する、[7]に記載のイソシアネートの製造方法。
[9]前記熱分解反応が液相で行われる、[7]または[8]に記載のイソシアネートの製造方法。
[3]前記アミノ酸誘導体がアミノ酸エステルであって、アミノ酸と、アルコール性ヒドロキシ基を有する化合物とを、無機酸の存在下で反応させて、前記アミノ酸エステル無機酸塩を製造する工程を更に有する、[1]または[2]に記載のカルバミン酸エステルの製造方法。
[4]前記塩基性化合物が有機アミンである、[1]~[3]のいずれか一項に記載のカルバミン酸エステルの製造方法。
[5]前記炭酸エステルが、前記炭酸エステルの総質量に対して、金属原子を0.001質量ppm~10質量%含有する、[1]~[4]のいずれか一項に記載のカルバミン酸エステルの製造方法。
[6]前記アミノ酸誘導体の無機酸塩は、前記カルバメート化反応器へ、液体の状態で供給される、[1]~[5]のいずれか一項に記載のカルバミン酸エステルの製造方法。
[7]前記[1]~[6]のいずれか一項に記載のカルバミン酸エステルの製造方法により製造されたカルバミン酸エステルを、熱分解反応に付すことによってイソシアネートを得る熱分解工程を有するイソシアネートの製造方法。
[8]前記熱分解工程は熱分解反応器において実施され、
前記熱分解工程の後、前記熱分解反応器を酸によって洗浄する洗浄工程を更に有する、[7]に記載のイソシアネートの製造方法。
[9]前記熱分解反応が液相で行われる、[7]または[8]に記載のイソシアネートの製造方法。
本発明によれば、カルバメート化反応効率や分離回収効率が高められた、カルバミン酸エステルの製造方法と、該カルバミン酸エステルを用いるイソシアネートの製造方法を提供することができる。
以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の本実施形態に限定するものではない。本発明は、その要旨の範囲内で適宜変形して実施できる。
<カルバミン酸エステルの製造方法>
本実施形態におけるカルバミン酸エステルの製造方法は、カルバメート化反応器に、炭酸エステル、アミノ酸誘導体の無機酸塩、及び塩基性化合物を供給し、反応させて、炭酸エステルに由来するカルバミン酸エステルを製造するカルバメート化工程を含む。
本実施形態におけるカルバミン酸エステルの製造方法は、カルバメート化反応器に、炭酸エステル、アミノ酸誘導体の無機酸塩、及び塩基性化合物を供給し、反応させて、炭酸エステルに由来するカルバミン酸エステルを製造するカルバメート化工程を含む。
≪カルバメート化工程≫
本実施形態のカルバメート化工程は、炭酸エステルと、アミノ酸誘導体無機酸塩と、塩基性化合物とを、カルバメート化反応器に供給して、反応させて、炭酸エステルに由来するカルバミン酸エステルを製造する工程である。
本実施形態のカルバメート化工程は、炭酸エステルと、アミノ酸誘導体無機酸塩と、塩基性化合物とを、カルバメート化反応器に供給して、反応させて、炭酸エステルに由来するカルバミン酸エステルを製造する工程である。
炭酸エステルとアミノ酸誘導体無機酸塩と塩基性化合物との反応条件は,反応させる化合物によって異なるが、アミノ酸誘導体無機酸塩のアミノ基に対して炭酸エステルを化学量論比で、1倍以上用いることが好ましく、1~1000倍の範囲がより好ましい。反応速度を高め、反応を早期に完結させるためには、炭酸エステルはアミノ酸誘導体無機酸塩のアミノ基に対して過剰量が好ましく、カルバメート化反応器の大きさを考慮すれば、1.1~50倍の範囲が好ましく、1.5~10倍の範囲がより好ましい。
塩基性化合物の使用量は、使用する化合物によって適宜選択されるが、アミノ酸誘導体無機酸塩のアミノ基に対して塩基性化合物を化学量論比で、0.001倍以上用いることが好ましく、0.01~100倍の範囲が好ましい。該塩基性化合物が、カルバメート化工程の反応においてどのように作用するかは必ずしも明確ではないが、アミノ酸誘導体無機酸塩を形成する無機酸を中和することでアミノ酸誘導体のアミノ基の反応性を高める効果を奏すると推定され、アミノ酸エステル無機酸塩を形成する無機酸を中和できる量の塩基性化合物を用いることが好ましい。早期に中和反応を進行させるためには、大量の塩基性化合物を用いることが好ましいが、例えばアミノ酸エステルのエステル基の活性化を抑制し、副反応を抑制する観点から、該無機酸の中和に必要な化学量論量に対して、1倍~50倍の範囲で塩基性化合物を用いることが好ましい。より好ましくは1.05倍~10倍、さらに好ましくは1.2倍~5倍である。
炭酸エステルとアミノ酸誘導体無機酸塩と塩基性化合物との反応は、適宜溶媒を用いて液相で反応させることが好ましい。溶媒は使用する化合物によって適宜選択することができるが、例えば、脂肪族炭化水素類、芳香族炭化水素類、芳香族ヒドロキシ化合物、アルコール、エーテル等の酸素原子含有化合物類、チオール、スルフィド等の硫黄原子化合物類、ハロゲン化脂肪族炭化水素類、ハロゲン化芳香族炭化水素類、水を反応溶媒として用いることができ、これらの化合物を適宜組み合わせて使用することもできる。
アミノ酸誘導体無機酸塩は、前記カルバメート化反応器に、液体の状態で供給されることが好ましい。その際は、アミノ酸誘導体無機酸塩が溶媒に溶解した状態で供給されることが好ましく、その際には上記した溶媒が好ましく使用される。アミノ酸誘導体無機酸塩の供給が、アルコール、水、または炭酸エステルとの混合物として行われることも好ましい。
該カルバメート化反応器に、炭酸エステルとアミノ酸誘導体無機酸塩と塩基性化合物を供給することによって該カルバメート化工程の反応を実施する。
反応温度は、通常、0℃~150℃の範囲が好ましい。反応速度を高めるためには高温が好ましいが、好ましくない反応を抑制する観点から、10℃~100℃の範囲がより好ましい。反応温度を一定にするために、上記カルバメート化反応器に公知の冷却装置又は加熱装置を設置してもよい。
また、反応圧力は、用いる化合物の種類や反応温度によって異なるが、減圧、常圧、加圧のいずれであってもよく、通常20~1×106Paの範囲で行われる。
反応時間(連続法の場合は滞留時間)に、特に制限はなく、通常0.001~50時間が好ましく、0.01~20時間がより好ましく、0.1~10時間が特に好ましい。また、反応液を採取し、例えば、液体クロマトグラフィーによって所望する量のカルバミン酸エステルが生成していることを確認して反応を終了することもできる。
反応時間(連続法の場合は滞留時間)に、特に制限はなく、通常0.001~50時間が好ましく、0.01~20時間がより好ましく、0.1~10時間が特に好ましい。また、反応液を採取し、例えば、液体クロマトグラフィーによって所望する量のカルバミン酸エステルが生成していることを確認して反応を終了することもできる。
本実施の形態においては、炭酸エステルとアミノ酸誘導体無機酸塩と塩基性化合物との反応において、これらの化合物の他に触媒を使用してもよく、使用しなくてもよい。触媒を使用しない場合には、触媒に由来する金属成分の影響によるカルバミン酸エステルの熱変性を防止できる。
触媒を使用する場合には、反応を短時間で完結でき、反応温度を低くすることができる。
触媒を使用する場合には、例えば、スズ、鉛、銅、チタン等の有機金属化合物や無機金属化合物、アルカリ金属、アルカリ土類金属のアルコラートであって、リチウム、ナトリウム、カリウム、カルシウム、バリウムのメチラート、エチラート、ブチラート(各異性体)等の塩基性触媒等を使用することができる。
触媒を使用する場合には、反応を短時間で完結でき、反応温度を低くすることができる。
触媒を使用する場合には、例えば、スズ、鉛、銅、チタン等の有機金属化合物や無機金属化合物、アルカリ金属、アルカリ土類金属のアルコラートであって、リチウム、ナトリウム、カリウム、カルシウム、バリウムのメチラート、エチラート、ブチラート(各異性体)等の塩基性触媒等を使用することができる。
炭酸エステルとアミノ酸誘導体無機酸塩と塩基性化合物との反応において使用されるカルバメート化反応器は、公知の槽型反応器、塔型反応器、蒸留塔が使用でき、反応器およびラインの材質は、出発物質や反応物質に悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316,SUS316L等が安価であり、好ましく使用できる。
(カルバミン酸エステル)
本工程によって、炭酸エステル(好ましくは炭酸ジアリール)に由来するカルバミン酸エステルと、余剰の炭酸エステルと、炭酸エステルに由来するヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)を含有する反応混合物が得られる。
本工程により得られるカルバミン酸エステルは、下記式(C)で表されるカルバミン酸エステルであることが好ましい。
本工程によって、炭酸エステル(好ましくは炭酸ジアリール)に由来するカルバミン酸エステルと、余剰の炭酸エステルと、炭酸エステルに由来するヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)を含有する反応混合物が得られる。
本工程により得られるカルバミン酸エステルは、下記式(C)で表されるカルバミン酸エステルであることが好ましい。
式中、R2はアミノ酸誘導体無機酸塩に由来する基を表し、R1は、炭酸エステルに由来する基を表し、nは、1以上の整数であって、アミノ酸誘導体無機酸塩のアミノ基の数と同じ数である。
上記式(C)中、nは1~4であることが好ましく、2~3であることがより好ましく、3であることがさらに好ましい。
<イソシアネートの製造方法>
本実施形態のイソシアネートの製造方法は、前記カルバミン酸エステルの製造方法により製造された炭酸エステルに由来するカルバミン酸エステルを、熱分解反応に付すことによってイソシアネートを得るイソシアネートの製造方法である。本実施形態のイソシアネートの製造方法はいくつかの形態を取りうる。
本実施形態のイソシアネートの製造方法は、前記カルバミン酸エステルの製造方法により製造された炭酸エステルに由来するカルバミン酸エステルを、熱分解反応に付すことによってイソシアネートを得るイソシアネートの製造方法である。本実施形態のイソシアネートの製造方法はいくつかの形態を取りうる。
本実施形態のイソシアネートの製造方法は、前記カルバメート化工程後、得られたカルバミン酸エステルを熱分解反応に付すことによってイソシアネートを得る熱分解工程を有する。
[熱分解工程]
本工程は、前記カルバミン酸エステルを熱分解反応に付すことによってイソシアネートを得る工程である。
本実施形態における熱分解反応は、カルバミン酸エステルから、イソシアネートとヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)を生成させる反応である。本工程は液相で行うことが好ましい。
本工程は、前記カルバミン酸エステルを熱分解反応に付すことによってイソシアネートを得る工程である。
本実施形態における熱分解反応は、カルバミン酸エステルから、イソシアネートとヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)を生成させる反応である。本工程は液相で行うことが好ましい。
反応温度は、通常100℃~300℃の範囲であり、反応速度を高めるためには高温が好ましいが、副反応を抑制する観点から、150℃~250℃の範囲が好ましい。反応温度を一定にするために、熱分解反応器に公知の冷却装置、加熱装置を設置してもよい。
反応圧力は、用いる化合物の種類や反応温度によって異なるが、減圧、常圧、加圧のいずれであってもよく、通常20~1×106Paの範囲で行われる。
反応時間(連続法の場合は滞留時間)に、特に制限はなく、通常0.001~100時間が好ましく、0.005~50時間がより好ましく、0.01~10時間が特に好ましい。
反応圧力は、用いる化合物の種類や反応温度によって異なるが、減圧、常圧、加圧のいずれであってもよく、通常20~1×106Paの範囲で行われる。
反応時間(連続法の場合は滞留時間)に、特に制限はなく、通常0.001~100時間が好ましく、0.005~50時間がより好ましく、0.01~10時間が特に好ましい。
熱分解反応器の形式に、特に制限はないが、気相成分を効率よく回収するために、公知の蒸留装置を使用することが好ましく、蒸発缶、連続多段蒸留塔、充填塔、薄膜蒸発器および流下膜蒸発器からなる群から選ばれる少なくとも1つの反応器から構成されることがより好ましい。
これらの他にも、例えば、蒸留塔、多段蒸留塔、多管式反応器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸発器、落滴蒸発器のいずれかを含む反応器を用いる方式、およびこれらを組み合わせた方式等、公知の種々の方法が用いられる。
低沸点成分(前記カルバミン酸エステルの熱分解反応によって生成するヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)および/またはイソシアネート)を素早く反応系から除去する観点からは、管状反応器が好ましく、管状薄膜蒸発器、管状流下膜蒸発器等の反応器を用いる方法がより好ましく、生成する低沸点成分を気相にすみやかに移動させられる気-液接触面積の大きな構造が好ましい。
これらの他にも、例えば、蒸留塔、多段蒸留塔、多管式反応器、内部に支持体を備えた反応器、強制循環反応器、落膜蒸発器、落滴蒸発器のいずれかを含む反応器を用いる方式、およびこれらを組み合わせた方式等、公知の種々の方法が用いられる。
低沸点成分(前記カルバミン酸エステルの熱分解反応によって生成するヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)および/またはイソシアネート)を素早く反応系から除去する観点からは、管状反応器が好ましく、管状薄膜蒸発器、管状流下膜蒸発器等の反応器を用いる方法がより好ましく、生成する低沸点成分を気相にすみやかに移動させられる気-液接触面積の大きな構造が好ましい。
上記カルバメート化反応器の種類と、前記熱分解反応器の種類は、同一であっても異なっていてもよく、上記カルバメート化反応器と該熱分解反応器が、塔型反応器および槽型反応器からなる群から選ばれる少なくとも1つの反応器であることが好ましい。
熱分解反応器は、反応器表面の濡れ性を確保し、副反応物の付着等を防止することを目的に熱分解溶媒を共存させてもよい。
熱分解溶媒としては、好ましくは、該カルバミン酸エステルの熱分解で生成するヒドロキシ化合物およびイソシアネートよりも標準沸点が高い化合物であり、例えば、炭化水素化合物、ポリエチレングリコールアルキルエーテル等のポリエーテル、フタル酸誘導体、アジピン酸誘導体、トリメリット酸誘導体等のエステル化合物、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート等のジイソシアネートを重合して得られるポリイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート等のジイソシアネートを重合して得られるカルボジイミド、スルホン、スルフィド等の硫黄含有化合物、イオン性液体、アルコール、アルキルケイ素化合物、環状または直鎖状のポリシロキサン等のケイ素含有化合物、3級アミン、ケトン、複素環および/または縮合環含有化合物、ポリイミド、リン酸エステル、芳香族ヒドロキシ化合物、等の化合物を使用することができる。これらの中でも、フェノールが好ましく使用される。
熱分解溶媒としては、好ましくは、該カルバミン酸エステルの熱分解で生成するヒドロキシ化合物およびイソシアネートよりも標準沸点が高い化合物であり、例えば、炭化水素化合物、ポリエチレングリコールアルキルエーテル等のポリエーテル、フタル酸誘導体、アジピン酸誘導体、トリメリット酸誘導体等のエステル化合物、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート等のジイソシアネートを重合して得られるポリイソシアネート、ヘキサメチレンジイソシアネート、トリレンジイソシアネート、ジフェニルメタンジイソシアネート等のジイソシアネートを重合して得られるカルボジイミド、スルホン、スルフィド等の硫黄含有化合物、イオン性液体、アルコール、アルキルケイ素化合物、環状または直鎖状のポリシロキサン等のケイ素含有化合物、3級アミン、ケトン、複素環および/または縮合環含有化合物、ポリイミド、リン酸エステル、芳香族ヒドロキシ化合物、等の化合物を使用することができる。これらの中でも、フェノールが好ましく使用される。
熱分解反応器の材質は、該カルバミン酸エステルや生成物であるヒドロキシ化合物、イソシアネート等に悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316、SUS316L等が安価であり、好ましく使用できる。
[移送工程]
前記カルバメート化工程と前記熱分解工程の間に、移送工程を設けることが好ましい。
本工程は、上記カルバメート化工程によって製造された、カルバミン酸エステルを含有する反応混合物を、前記カルバメート化反応器と配管(ライン)によって接続された熱分解反応器に移送する工程である。
本実施形態において、カルバメート化反応器と、熱分解反応器を別にすることによって、それぞれの反応に適する反応器を選択することができ、反応条件の設定を柔軟に行うことができるため、それぞれの反応における収率を高めることが可能となる。
前記カルバメート化工程と前記熱分解工程の間に、移送工程を設けることが好ましい。
本工程は、上記カルバメート化工程によって製造された、カルバミン酸エステルを含有する反応混合物を、前記カルバメート化反応器と配管(ライン)によって接続された熱分解反応器に移送する工程である。
本実施形態において、カルバメート化反応器と、熱分解反応器を別にすることによって、それぞれの反応に適する反応器を選択することができ、反応条件の設定を柔軟に行うことができるため、それぞれの反応における収率を高めることが可能となる。
カルバミン酸エステルは、カルバミン酸エステルを構成するウレタン結合によって分子間で水素結合を形成しやすいことから、高い融点を有する場合が多い。このようなカルバミン酸エステルを移送するにあたっては、例えば、固体のカルバミン酸エステルを粉砕したり、ペレット状に加工する等の賦形化処理を行ったものを移送することができる。
しかしながら、賦形化処理を行った固体のカルバミン酸エステルを移送する場合、移送ラインの閉塞を招いたり、カルバミン酸エステルの形状にばらつきが多い場合に一定量のカルバミン酸エステルを安定的に移送するために煩雑な装置を必要としたり、該カルバミン酸エステルの形状をある範囲に揃える工程を必要とする場合が多い。したがって、該カルバミン酸エステルは、液体状で熱分解反応器に移送して供給することが好ましい。
しかしながら、賦形化処理を行った固体のカルバミン酸エステルを移送する場合、移送ラインの閉塞を招いたり、カルバミン酸エステルの形状にばらつきが多い場合に一定量のカルバミン酸エステルを安定的に移送するために煩雑な装置を必要としたり、該カルバミン酸エステルの形状をある範囲に揃える工程を必要とする場合が多い。したがって、該カルバミン酸エステルは、液体状で熱分解反応器に移送して供給することが好ましい。
カルバミン酸エステルを液体状で熱分解反応器に移送して供給する方法としては、反応混合物は液体として熱分解反応器に供給することが好ましい。前記カルバメート化工程によって得られる反応混合物をそのまま移送して供給することができる。あるいは、カルバメート化工程によって得られる反応混合物からカルバミン酸エステルを精製する場合には、前記熱分解溶媒との混合液として移送して供給することもできる。
前記カルバメート化工程によって得られる反応混合物は、常温(20℃)で液体、もしくは、常温で固体であっても、該カルバミン酸エステルの融点よりも低い温度で均一な液体となる場合が多いため、固化防止のための加熱が不要であり、カルバミン酸エステルの熱変性反応等を抑制することができる。
該反応混合物の移送は、10℃~180℃の温度範囲が好ましく、30℃~170℃がより好ましく、50℃~150℃の温度範囲で行うことが特に好ましい。
カルバミン酸エステルを、炭酸エステルとアミノ酸誘導体無機酸塩との反応によって得られる反応混合物として熱分解反応に供給する方法では、反応混合物を、蒸留分離操作等を行うことなく連続的に供給することになるため、工程を簡略化できる利点を有する。
また、反応混合物から一部または全部のヒドロキシ化合物(例えば芳香族ヒドロキシ化合物)を分離した混合物として供給する方法においても、該反応混合物から、カルバミン酸エステルのみを単離する操作を行う必要がないため、工程は簡略化される。
また、反応混合物から一部または全部のヒドロキシ化合物(例えば芳香族ヒドロキシ化合物)を分離した混合物として供給する方法においても、該反応混合物から、カルバミン酸エステルのみを単離する操作を行う必要がないため、工程は簡略化される。
ラインの材質は、該カルバミン酸エステルや生成物であるヒドロキシ化合物、イソシアネート等に悪影響を及ぼさなければ、公知のどのようなものであってもよいが、SUS304やSUS316、SUS316L等が安価であり、好ましく使用できる。
[洗浄工程]
前記熱分解工程後、洗浄工程を実施することが好ましい。
カルバミン酸エステルの熱分解反応に伴って、例えば、下記式(8)、式(9)、式(10)等で表される副反応に由来するポリマー状副生成物等が生成することがあり、この熱分解反応による副生物も該熱分解反応器に付着する場合がある。
前記熱分解工程後、洗浄工程を実施することが好ましい。
カルバミン酸エステルの熱分解反応に伴って、例えば、下記式(8)、式(9)、式(10)等で表される副反応に由来するポリマー状副生成物等が生成することがあり、この熱分解反応による副生物も該熱分解反応器に付着する場合がある。
前記式(8)~(10)において、Rはカルバミン酸エステルに由来する基を表す。
これら熱分解反応器に付着したポリマー状の副生物は、前記式(8)の右辺第一項、前記式(9)の右辺第一項、前記式(10)の右辺で表される結合が単独に、あるいは、複数種組み合わさって形成される化合物であるが、該熱分解反応器の壁面を酸で洗浄し、これらのポリマー状の副生物を溶解して、該熱分解反応器より除去することで、該熱分解反応器内(特に壁面)を清浄に保つことが可能となる。該方法により、該熱分解反応器を解体し、分掃することなく、該熱分解反応器の壁面を洗浄でき、該熱分解反応器の運転停止期間を大幅に短縮することができ、イソシアネートの生産効率がより向上する。
上記酸(洗浄溶剤)を使用して該熱分解反応器を洗浄する方法としては、該熱分解反応器上部より洗浄溶剤を導入して該熱分解反応器を洗浄する方法、該熱分解反応器の底部に洗浄溶剤を導入し、該洗浄溶剤を該熱分解反応器内で炊き上げて内部を洗浄する方法等、様々な方法を使用できる。
該洗浄操作は、該熱分解反応を実施する度に毎回行う必要はなく、使用する化合物、運転レート等により任意に決定することができ、運転時間1時間~20000時間に1回が好ましく、運転時間1日~1年に1回がより好ましく、運転時間1ヶ月~1年に1回の頻度で洗浄操作を行うことが特に好ましい。該熱分解反応器は、洗浄溶剤を導入するラインを、該熱分解反応器に具備していてもよい。
該洗浄操作は、該熱分解反応を実施する度に毎回行う必要はなく、使用する化合物、運転レート等により任意に決定することができ、運転時間1時間~20000時間に1回が好ましく、運転時間1日~1年に1回がより好ましく、運転時間1ヶ月~1年に1回の頻度で洗浄操作を行うことが特に好ましい。該熱分解反応器は、洗浄溶剤を導入するラインを、該熱分解反応器に具備していてもよい。
また、該熱分解反応器の洗浄を目的として、カルバミン酸エステルの熱分解反応を行う際に、該熱分解反応の条件において上記した洗浄溶剤を共存させることもできる。該洗浄溶剤は、従来技術(例えば、米国特許第4081472号公報参照)でいう不活性溶媒とは異なり、カルバミン酸エステルの熱分解によって生成するイソシアネートと反応し得る。該洗浄溶剤は、前記カルバメート化工程によって得られる反応混合物を熱分解反応器に移送する際に混合して熱分解反応器に供給してもよいし、該反応混合物を供給するラインとは別に、該洗浄溶剤を供給するラインを設けて供給してもよい。
[回収工程1]
前記熱分解工程後および/または熱分解工程と同時に、回収工程1を実施することが好ましい。
本工程は、前記熱分解工程において生成する低沸点成分を、熱分解反応器から気相成分として回収し、液相成分を前記熱分解反応器底部より回収する工程である。
前記熱分解工程後および/または熱分解工程と同時に、回収工程1を実施することが好ましい。
本工程は、前記熱分解工程において生成する低沸点成分を、熱分解反応器から気相成分として回収し、液相成分を前記熱分解反応器底部より回収する工程である。
カルバミン酸エステル、及び、熱分解反応によって生成したイソシアネートは、副反応を防ぐために、高温下に保持される時間を、可能な限り短時間とすることが好ましく、該熱分解反応は、好ましくは連続法で行われることが好ましい。
連続法とは、該カルバミン酸エステルを含有する混合物を、熱分解反応器に連続的に供給して、熱分解反応に付し、生成するイソシアネートおよびヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)を、該熱分解反応器から連続的に抜き出す方法である。前記連続法において、カルバミン酸エステルの熱分解反応によって生成する低沸点成分(生成するイソシアネートおよびヒドロキシ化合物)は、気相成分として該熱分解反応器の上部より回収されることが好ましく、残りは液相成分として該熱分解反応器の底部より回収されることが好ましい。この気相成分の回収と液相成分の回収とは連続的に行うことが好ましい。
熱分解反応器中に存在する全ての化合物を気相成分として回収することもできるが、液相成分を該熱分解反応器中に存在させることによって、カルバミン酸エステルおよび/またはイソシアネートによって生起される副反応によって生成するポリマー状の副生物を溶解して、該ポリマー状の副生物の該熱分解反応器への付着・蓄積を防止する効果がある。カルバミン酸エステルの熱分解反応により、イソシアネートと(芳香族)ヒドロキシ化合物が生成するが、これらの化合物のうち、少なくとも一方の化合物を気相成分として回収する。どの化合物を気相成分として回収するかは、熱分解反応条件に依存する。前記したように、熱分解溶媒を共存させて、該熱分解溶媒を液相成分とすることも好ましい。
ここで、本実施の形態で用いる用語「カルバミン酸エステルの熱分解反応によって生成する低沸点成分」とは、該カルバミン酸エステルの熱分解反応によって生成する(芳香族)ヒドロキシ化合物および/またはイソシアネートが相当するが、特に、当該熱分解反応が実施される条件下において、気体として存在しうる化合物を指す。
[回収工程2]
前記熱分解工程後および/または熱分解工程と同時に、回収工程2を実施することが好ましい。
例えば、前記カルバメート化工程をおこなった反応液をそのまま使用し、該反応液に余剰の炭酸エステルが共存している場合に、熱分解反応によって生成するイソシアネートと芳香族ヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)と炭酸エステルとを気相成分として回収し、カルバミン酸エステルを含有する液相成分を熱分解反応器の底部から回収する方法を採用することができる。当該方法においても、回収されたイソシアネートを含有する気体成分は、気相で、該イソシアネートを生成分離するための蒸留装置に供給されることが好ましい。
前記熱分解工程後および/または熱分解工程と同時に、回収工程2を実施することが好ましい。
例えば、前記カルバメート化工程をおこなった反応液をそのまま使用し、該反応液に余剰の炭酸エステルが共存している場合に、熱分解反応によって生成するイソシアネートと芳香族ヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)と炭酸エステルとを気相成分として回収し、カルバミン酸エステルを含有する液相成分を熱分解反応器の底部から回収する方法を採用することができる。当該方法においても、回収されたイソシアネートを含有する気体成分は、気相で、該イソシアネートを生成分離するための蒸留装置に供給されることが好ましい。
また、例えば、熱分解反応によって生成するイソシアネートとヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)とを気相成分として回収し、炭酸エステルおよび/またはカルバミン酸エステルを含有する液相成分を回収する方法を採用することもできる。当該方法において、熱分解反応器でイソシアネートとヒドロキシ化合物(好ましくは芳香族ヒドロキシ化合物)を別々に回収してもよい。回収されたイソシアネートを含有する気相成分は、気相で、該イソシアネートを精製分離するための蒸留装置に供給されることが好ましい。
一方、炭酸エステルおよび/またはカルバミン酸エステルを含有する液相成分は、熱分解反応器底部から回収され、該液相成分が炭酸エステルを含有する場合は、該液相成分から炭酸エステルを分離回収して、該炭酸エステルを再利用することが好ましい。また、該液相成分が、カルバミン酸エステルを含有する場合は、該液相成分の一部または全部を、該熱分解反応器の上部に供給し、該カルバミン酸エステルを、再度、熱分解反応に付すことが好ましい。ここでいう、熱分解反応器の上部とは、例えば、該熱分解反応器が蒸留塔の場合は、理論段数で塔底より2段目以上の段を指し、該熱分解反応器が薄膜蒸留器の場合は、加熱されている伝面部分よりも上の部分を指す。該液相成分の一部または全部を熱分解反応器の上部に供給する際は、該液相成分を、50℃~180℃とすることが好ましく、70℃~170℃とすることがより好ましく、100℃~150℃に保持して移送することが特に好ましい。
さらに、例えば、熱分解反応によって生成するイソシアネートとヒドロキシ化合物(芳香族ヒドロキシ化合物)のうち、ヒドロキシ化合物(芳香族ヒドロキシ化合物)を気相成分として回収し、該イソシアネートを含有する混合物を液相成分として、該熱分解反応器の底部より回収する方法を採用することができる。この場合、該液相成分を蒸留装置に供給し、イソシアネートを回収する。該液相成分に、炭酸エステルが含有される場合には、炭酸エステルを分離回収して再利用することが好ましい。また、該液相成分に、カルバミン酸エステルが含有される場合には、好ましくは、該カルバミン酸エステルを含有する混合物は、その一部もしくは全部を、該熱分解反応器の上部に供給し、該カルバミン酸エステルを、再度、熱分解反応に付すことが好ましい。
該液相成分の一部または全部を熱分解反応器の上部に供給する際は、該液相成分を、50℃~180℃とすることが好ましく、70℃~170℃とすることがより好ましく、100℃~150℃に保持して移送することが特に好ましい。
該液相成分の一部または全部を熱分解反応器の上部に供給する際は、該液相成分を、50℃~180℃とすることが好ましく、70℃~170℃とすることがより好ましく、100℃~150℃に保持して移送することが特に好ましい。
先にも述べたが、該熱分解反応においては、液相成分を該熱分解反応器の底部より回収することが好ましい。それは、液相成分を該熱分解反応器中に存在させることによって、カルバミン酸エステルおよび/またはイソシアネートによって生起される副反応によって生成するポリマー状副生物を溶解して、液相成分として熱分解反応器から排出させることができ、以って該ポリマー状化合物の該熱分解反応器への付着・蓄積を低減する効果があるためである。
液相成分にカルバミン酸エステルが含有される場合には、該液相成分の一部もしくは全部を、該熱分解反応器の上部に供給し、該カルバミン酸エステルを、再度、熱分解反応に付すが、この工程を繰り返すと、液相成分にポリマー状の副生物が蓄積される場合がある。その場合には、該液相成分の一部もしくは全部を反応系から除去し、ポリマー状の副生物の蓄積を減少させる、もしくは、一定の濃度に保持することができる。
以上の熱分解反応において得られる気相成分および/または液相成分に含有されるヒドロキシ化合物(芳香族ヒドロキシ化合物)および/または炭酸エステルは、それぞれ、分離回収して、再利用することができる。
具体的には、芳香族ヒドロキシ化合物は、カルバメート化工程における反応溶媒、および/または、炭酸エステルの製造にかかる芳香族ヒドロキシ化合物として再利用できるし、炭酸エステルは、カルバミン酸エステルの製造における原料として再利用することができる。
具体的には、芳香族ヒドロキシ化合物は、カルバメート化工程における反応溶媒、および/または、炭酸エステルの製造にかかる芳香族ヒドロキシ化合物として再利用できるし、炭酸エステルは、カルバミン酸エステルの製造における原料として再利用することができる。
<各材料>
以下、本実施形態に用いる各材料について説明する。
以下、本実施形態に用いる各材料について説明する。
≪炭酸エステル≫
本実施形態の製造方法に用いる炭酸エステルは、下記式(1)で表わされる化合物が好ましい。
本実施形態の製造方法に用いる炭酸エステルは、下記式(1)で表わされる化合物が好ましい。
式中、R1は、それぞれ独立に、炭素数1~20の脂肪族炭化水素基、又は、炭素数6~20の芳香族基を表す。
R1が炭素数1~20の脂肪族炭化水素基の場合、該炭化水素基は直鎖状でも分岐鎖状でもよい。
R1の脂肪族炭化水素基としては、例えば、アルキル基が挙げられる。該アルキル基としては、炭素数が1~5であることが好ましく、1~4がより好ましく、1または2がさらに好ましい。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基等が挙げられる。分岐鎖状のアルキル基は、炭素数が3~10であることが好ましく、3~5がより好ましい。具体的には、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、1,1-ジエチルプロピル基、2,2-ジメチルブチル基等が挙げられる。
また、脂環式炭化水素基は、多環式であってもよく、単環式であってもよい。単環式の脂環式炭化水素基としては、具体的にはシクロペンタン、シクロヘキサン等が挙げられる。多環式の脂環式炭化水素基としては、具体的にはアダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
R1の脂肪族炭化水素基としては、例えば、アルキル基が挙げられる。該アルキル基としては、炭素数が1~5であることが好ましく、1~4がより好ましく、1または2がさらに好ましい。具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基等が挙げられる。分岐鎖状のアルキル基は、炭素数が3~10であることが好ましく、3~5がより好ましい。具体的には、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、ネオペンチル基、1,1-ジエチルプロピル基、2,2-ジメチルブチル基等が挙げられる。
また、脂環式炭化水素基は、多環式であってもよく、単環式であってもよい。単環式の脂環式炭化水素基としては、具体的にはシクロペンタン、シクロヘキサン等が挙げられる。多環式の脂環式炭化水素基としては、具体的にはアダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロドデカン等が挙げられる。
上記式(1)のR1としては、炭素数6~20の芳香族炭化水素基が好ましく、炭素数6~12の芳香族炭化水素基がより好ましい。R1が、炭素数21以上の芳香族炭化水素基であることもできるが、カルバミン酸エステルの熱分解反応によって生成するイソシアネートとの分離を容易にするという観点から、R1を構成する炭素数は20以下が好ましい。
このようなR1の例としては、フェニル基、メチルフェニル基(各異性体)、エチルフェニル基(各異性体)、プロピルフェニル基(各異性体)、ブチルフェニル基(各異性体)、ペンチルフェニル基(各異性体)、ヘキシルフェニル基(各異性体)、ジメチルフェニル基(各異性体)、メチルエチルフェニル基(各異性体)、メチルプロピルフェニル基(各異性体)、メチルブチルフェニル基(各異性体)、メチルペンチルフェニル基(各異性体)、ジエチルフェニル基(各異性体)、エチルプロピルフェニル基(各異性体)、エチルブチルフェニル基(各異性体)、ジプロピルフェニル基(各異性体)、トリメチルフェニル基(各異性体)、トリエチルフェニル基(各異性体)、ナフチル基(各異性体)等が挙げられる。
これらの炭酸ジアリールの中でも、R1が、炭素数6~8の芳香族炭化水素基である炭酸ジアリールが好ましく、このような炭酸ジアリールとしては、炭酸ジフェニル、炭酸ジ(メチルフェニル)(各異性体)、炭酸ジ(ジエチルフェニル)(各異性体)、炭酸ジ(メチルエチルフェニル)(各異性体)等が挙げられる。
本実施形態においては、上記式(1)で表される化合物は、下記一般式(1)-1で表される炭酸ジアリールであることが好ましい。
式中、R10はそれぞれ独立に、炭素数6~20の芳香族炭化水素基を表す。
上記式(1)-1のR10としては、炭素数6~20の芳香族炭化水素基であり、炭素数6~12の芳香族炭化水素基がより好ましく、炭素数6~8の芳香族炭化水素基がより更に好ましく、フェニル基であることがより更に好ましい。
上記の炭酸エステル又は炭酸ジアリールは、金属原子を、前記炭酸エステル又は炭酸ジアリールの総質量に対して、0.001質量ppm~10質量%の範囲で含有することが好ましく、0.001質量ppm~5質量%の範囲がより好ましく、0.002質量ppm~3質量%の範囲で含有していることが特に好ましい。
また、該金属原子は、金属イオンとして存在していても、金属原子単体として存在していてもよい。金属原子としては、2価ないし4価の原子価をとりうる金属原子が好ましく、中でも、鉄、コバルト、ニッケル、亜鉛、スズ、銅、チタンから選ばれる1種もしくは複数種の金属がより好ましい。
また、該金属原子は、金属イオンとして存在していても、金属原子単体として存在していてもよい。金属原子としては、2価ないし4価の原子価をとりうる金属原子が好ましく、中でも、鉄、コバルト、ニッケル、亜鉛、スズ、銅、チタンから選ばれる1種もしくは複数種の金属がより好ましい。
上記の炭酸エステル又は炭酸ジアリールの製造方法としては、公知の方法を用いることができる。一例としては、国際公開第2009/139061号に記載されている、スズ-酸素-炭素結合を有する有機スズ化合物と二酸化炭素を反応させて炭酸エステルを製造し、該炭酸エステルと芳香族ヒドロキシ化合物とから炭酸ジアリールを製造する方法を使用することが好ましい。該炭酸エステル又は炭酸ジアリールは蒸留等の公知の方法によって精製し、本実施形態における炭酸エステル又は炭酸ジアリールとして用いることが好ましい。炭酸エステル又は炭酸ジアリールの製造方法や製造条件、精製方法や精製条件によっては、該炭酸エステル又は炭酸ジアリールに、上で例示した金属原子が、上記の好ましい範囲で含有される場合があり、その場合は該炭酸エステル又は炭酸ジアリールをそのまま使用することができる。また、該炭酸エステル又は炭酸ジアリールに含有される該金属原子の量が、上記した範囲よりも少ない場合は、別途金属原子を、例えば、酢酸塩、ナフテン酸塩などの有機酸塩、塩化物、アセチルアセトン錯体として添加することができる。また、上記した範囲よりも多い場合は、例えば、溶媒洗浄、蒸留精製、晶析、イオン交換樹脂による除去、キレート樹脂による除去等の方法によって、該金属原子の量を上記した範囲まで低減して、使用することができる。該炭酸エステル又は炭酸ジアリールに含有される金属成分の量は、公知の方法によって定量することができ、例えば、原子吸光分析法、誘導結合型プラズマ発光分析法、誘導結合型プラズマ質量分析法、蛍光X線分析法、X線光電子分光法、電子線マイクロアナライザ、二次イオン質量分析法等の種々の方法から、試料の形態や、含有される金属成分の量を勘案して選択することができる。
また、該金属原子は、金属イオンとして存在していても、金属原子単体として存在していてもよい。金属原子としては、2価ないし4価の原子価をとりうる金属原子が好ましく、中でも、鉄、コバルト、ニッケル、亜鉛、スズ、銅、チタンから選ばれる1種もしくは複数種の金属がより好ましく、鉄であることがより更に好ましい。本発明者らは、驚くべきことに、上記範囲の濃度で金属原子を含有する炭酸ジアリールを使用すると、炭酸ジアリールとアミノ酸誘導体無機酸塩との反応において、生成するカルバミン酸エステルの変性反応を抑制する効果を奏する。このような効果を奏するメカニズムについては明らかではないが、本発明者らは、これらの金属原子が、該反応において生成するカルバミン酸エステルのウレタン結合(-NHCOO-)に配位し、該ウレタン結合を安定化させて、副反応を抑制するためではないかと推測している。また、金属原子によるカルバミン酸エステルの変性反応を抑制する効果は、後述する、カルバミン酸エステルを含有する反応液の移送においても認められるが、そのメカニズムについても、上記と同様ではないかと推測している。
炭酸エステルとアミノ酸誘導体無機酸塩とを混合して混合物を製造し、該混合物に上記で例示した金属原子を、上記した範囲で添加しても同様の効果が得られると期待されるが、本発明者らの鋭意検討した結果、炭酸エステルとアミノ酸誘導体無機酸塩との混合物に、金属原子を添加するだけでは、上記のような効果は得られにくいことが判明した。このような結果となる理由は明確ではないが、本発明者らは、該炭酸ジアリールに含有されている金属原子は、該炭酸ジアリールが金属原子に配位しているのに対して、炭酸ジアリールとアミノ酸誘導体無機酸塩との混合物に添加された金属原子は、金属原子と炭酸ジアリールとの相互作用に比べて、金属原子とアミノ酸誘導体無機酸塩との相互作用が大きいために、金属原子がアミノ酸誘導体無機酸塩に強く配位し、生成するカルバミン酸エステルのウレタン結合に配位しにくいためではないかと推測している。
なお、炭酸エステルに上記の範囲で含有される金属原子には、炭酸エステルとアミノ酸エステル無機酸塩との反応における触媒作用が認められない場合がほとんどであり、その意味で、上述したカルバミン酸エステル製造用の触媒とは明確に区別される。
≪アミノ酸誘導体無機酸塩≫
本実施形態においてアミノ酸誘導体という文言を使用しているが、これはアミノ酸を原料として合成される化合物という意味である。後述するように、アミノ酸としては天然アミノ酸であっても合成アミノ酸であってもよい。
本実施形態に用いることができるアミノ酸誘導体無機酸塩は、好ましくは下記式(A-1)又は式(A-2)で表されるアミノ酸誘導体の無機酸塩である。
本実施形態においてアミノ酸誘導体という文言を使用しているが、これはアミノ酸を原料として合成される化合物という意味である。後述するように、アミノ酸としては天然アミノ酸であっても合成アミノ酸であってもよい。
本実施形態に用いることができるアミノ酸誘導体無機酸塩は、好ましくは下記式(A-1)又は式(A-2)で表されるアミノ酸誘導体の無機酸塩である。
前記式中、Rxは脂肪族基又は芳香族基を表す。
Xは、酸素原子、または第2級アミノ基(-NH-)を表し、好ましくは酸素原子を表す。
RWは炭素数1~15の脂肪族基、炭素数6~15の芳香族基または水素原子をあらわし、好ましくは、cは2又は3を表す。
前記式(A-1)において、Rxは、好ましくは、第1級アミノ基、硫黄原子、酸素原子、ハロゲン原子を含んでもよい、炭素数1以上の脂肪族基または炭素数6以上の芳香族基であり、より好ましくはアミノ酸から-NHCOOH基を除いた構造であり、より更に好ましくは炭素数1~15の脂肪族基または炭素数6~15の芳香族基である。
なお、α-アミノ酸では、α炭素へのアミノ基やカルボキシル基などの結合様式が立体的に2通り可能であり、それぞれ、D型、L型の光学異性体として区別される。本実施形態で使用されるアミノ酸(およびアミノ酸骨核を有する化合物)は、D型、L型でもよく、その混合物やラセミ体であってもよい。工業的に安価に入手できる多くのアミノ酸は、発酵で生産されるアミノ酸で、L型であることがほとんどであるが、それらは好ましく使用できる。本明細書中では、立体配置を示していないが、D型、L型のいずれかを示している。
前記式(A-1)で表される化合物としては、具体的には下記式で表される化合物が挙げられる。
Xは、酸素原子、または第2級アミノ基(-NH-)を表し、好ましくは酸素原子を表す。
RWは炭素数1~15の脂肪族基、炭素数6~15の芳香族基または水素原子をあらわし、好ましくは、cは2又は3を表す。
前記式(A-1)において、Rxは、好ましくは、第1級アミノ基、硫黄原子、酸素原子、ハロゲン原子を含んでもよい、炭素数1以上の脂肪族基または炭素数6以上の芳香族基であり、より好ましくはアミノ酸から-NHCOOH基を除いた構造であり、より更に好ましくは炭素数1~15の脂肪族基または炭素数6~15の芳香族基である。
なお、α-アミノ酸では、α炭素へのアミノ基やカルボキシル基などの結合様式が立体的に2通り可能であり、それぞれ、D型、L型の光学異性体として区別される。本実施形態で使用されるアミノ酸(およびアミノ酸骨核を有する化合物)は、D型、L型でもよく、その混合物やラセミ体であってもよい。工業的に安価に入手できる多くのアミノ酸は、発酵で生産されるアミノ酸で、L型であることがほとんどであるが、それらは好ましく使用できる。本明細書中では、立体配置を示していないが、D型、L型のいずれかを示している。
前記式(A-1)で表される化合物としては、具体的には下記式で表される化合物が挙げられる。
上記式中、RWは前記の通りであり、好ましくは炭素数1~6のアルキル基であり、より好ましくは炭素数1~3のアルキル基である。
前記式中、Ryは、脂肪族基、芳香族基または水素原子を表す。
Xは酸素原子または第2級アミノ基(-NH-)を表し、好ましくは酸素原子を表す。
Rvは炭素数1~15の脂肪族基、炭素数6~15の芳香族基または水素原子をあらわし、dは1~4のいずれかの整数を表す。
前記式(A-2)において、Ryは、好ましくは、第1級アミノ基、硫黄原子、酸素原子、ハロゲン原子を含んでもよい、炭素数1以上の脂肪族基または炭素数6以上の芳香族基、または水素原子であり、より好ましくは、下記式(i)~(iv)で表される基からなる群から選ばれる基を含んでもよい炭素数1~15の脂肪族基、前記式(i)~(iv)で表される基からなる群から選ばれる基を含んでもよい炭素数6~15の芳香族基、脂肪族基と芳香族基とが結合した、前記式(i)~(iv)で表される基からなる群から選ばれる基を含んでもよい炭素数7~15の基、下記式(I)または(II)で表される基、あるいは水素原子のいずれかである。
Xは酸素原子または第2級アミノ基(-NH-)を表し、好ましくは酸素原子を表す。
Rvは炭素数1~15の脂肪族基、炭素数6~15の芳香族基または水素原子をあらわし、dは1~4のいずれかの整数を表す。
前記式(A-2)において、Ryは、好ましくは、第1級アミノ基、硫黄原子、酸素原子、ハロゲン原子を含んでもよい、炭素数1以上の脂肪族基または炭素数6以上の芳香族基、または水素原子であり、より好ましくは、下記式(i)~(iv)で表される基からなる群から選ばれる基を含んでもよい炭素数1~15の脂肪族基、前記式(i)~(iv)で表される基からなる群から選ばれる基を含んでもよい炭素数6~15の芳香族基、脂肪族基と芳香族基とが結合した、前記式(i)~(iv)で表される基からなる群から選ばれる基を含んでもよい炭素数7~15の基、下記式(I)または(II)で表される基、あるいは水素原子のいずれかである。
前記式(i)~(iv)において、窒素原子、硫黄原子が結合する原子は炭素原子である。
前記式(I)において、Rcは下記式(III)、(IV)、又は(V)で示される基あるいは炭素数1~10の炭化水素基を表し、eは0~5のいずれかの整数を表し、前記式(II)において、Rdは炭素数1~15の脂肪族炭化水素基、炭素数6~15の芳香族炭化水素基を表し、eは0~5のいずれかの整数を表す。
前記式中、Rgは炭素数1~10の脂肪族炭化水素基(好ましくは炭素数1~6の直鎖状又は分岐状アルキレン基)を表し、hは1~9のいずれかの整数を表し、jは0~9のいずれかの整数を表す。
本実施形態において、アミノ酸誘導体としてはアミノ酸エステルが好ましい。したがって、上記式(A-2)の好ましい化合物として下記式(A-3)~(A-6)で表される化合物が挙げられる。
本実施形態において、アミノ酸誘導体としてはアミノ酸エステルが好ましい。したがって、上記式(A-2)の好ましい化合物として下記式(A-3)~(A-6)で表される化合物が挙げられる。
本実施形態においては、アミノ酸エステル無機酸塩として下記式(11)で表されるアミノ酸エステルも好ましく使用される。
前記式(11)中、fは1又は2を表す。
Raは、下記式(i)~(ii)で表される基を含んでもよい炭素数1~15の脂肪族基、下記式(i)~(ii)で表される基を含んでもよい炭素数6~15の芳香族基、脂肪族基と芳香族基とが結合した、下記式(i)~(ii)で表される基を含んでもよい炭素数7~15の基、下記式(III)、(IV)、又は(V)で表される基のいずれかである。
Raは、下記式(i)~(ii)で表される基を含んでもよい炭素数1~15の脂肪族基、下記式(i)~(ii)で表される基を含んでもよい炭素数6~15の芳香族基、脂肪族基と芳香族基とが結合した、下記式(i)~(ii)で表される基を含んでもよい炭素数7~15の基、下記式(III)、(IV)、又は(V)で表される基のいずれかである。
前記式(i)、(ii)において、酸素原子、硫黄原子が結合する原子は炭素原子である。
前記式中、Rgは炭素数1~10の脂肪族炭化水素基(好ましくは炭素数1~6の直鎖状又は分岐状アルキレン基)を表し、hは1~9のいずれかの整数を表し、jは0~9のいずれかの整数を表す。
前記式(11)中、Rbは、前記式(i)~(iv)で表される基からなる群から選ばれる基を含んでもよい炭素数1~15の脂肪族基、前記式(i)~(iv)で表される基からなる群から選ばれる基を含んでもよい炭素数6~15の芳香族基、脂肪族基と芳香族基とが結合した、前記式(i)~(iv)で表される基からなる群から選ばれる基を含んでもよい炭素数7~15の基、前記式(I)又は(II)で表される基、水素原子のいずれかである。
より好ましくは、下記式で表されるアミノ酸エステルと、無機酸とから形成される塩が使用される。
上記式中、R3、R4は各々独立に炭素数1~10の脂肪族炭化水素基または水素原子を表し、Rは、ハロゲン原子、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基を表し、nは0~2のいずれかの整数を表し、m、pは各々独立に1~10(好ましくは1~6、より好ましくは1~3)のいずれかの整数を表す。
これらの中でも、下記式で示される化合物が好ましい。
上記式中、R3、R4、R、n及びmは前記の通りである。好ましくは、R3は炭素数1~4のアルキル基であり、R4は炭素数1~6のアルキル基であり、Rはハロゲン原子、炭素数1~4のアルキル基、又は炭素数1~4のアルコキシ基を表し、nは1又は2を表し、mは1~6のいずれかの整数を表す。
中でも、リジン骨核に由来するアミノ酸エステル、例えばリジンメチルエステル、リジンエチルエステル、リジンβ-アミノエチルエステル、グルタミン酸骨核に由来するアミノ酸エステル、例えばグルタミン酸メチルエステル、グルタミン酸ジ(β-アミノエチル)エステル、メチオニン骨格に由来するアミノ酸エステル、例えばメチオニンメチルエステル、グリシン骨格に由来するアミノ酸エステル、例えばグリシンメチルエステル、フェニルアラニン骨格に由来するアミノ酸エステル、例えばフェニルアラニンメチルエステル、アスパラギン酸骨格に由来するアミノ酸エステル、例えばアスパラギン酸メチルエステル、アラニン骨格に由来するアミノ酸エステル、例えばアラニンメチルエステル、ロイシン骨格に由来するアミノ酸エステル、例えばロイシンメチルエステル、イソロイシン骨格に由来するアミノ酸エステル、例えばイソロイシンメチルエステル、バリン骨格に由来するアミノ酸エステル、例えばバリンメチルエステル等が特に好ましい。
本実施形態で好ましく使用されるアミノ酸エステルは、例えばアミノ酸とアルコール性ヒドロキシ基を有する化合物とを、無機酸の存在下で反応させる、あるいは、アミノ酸無機酸塩とアミノアルコール無機酸塩とを無機酸の存在下で反応させることにより製造できる。
無機酸としては、塩酸、硝酸、リン酸、硫酸、ホウ酸、フッ化水素酸等の任意の無機酸であってよいが、好ましくは、硫酸、リン酸、塩酸であり、より好ましくは塩酸である。
本実施形態に用いることができるアミノ酸エステル無機酸塩は、上記無機酸により形成され、アミノ酸エステル硫酸塩、アミノ酸エステルリン酸塩、アミノ酸エステル塩酸塩であることが好ましく、アミノ酸エステル塩酸塩であることがより好ましい。
無機酸としては、塩酸、硝酸、リン酸、硫酸、ホウ酸、フッ化水素酸等の任意の無機酸であってよいが、好ましくは、硫酸、リン酸、塩酸であり、より好ましくは塩酸である。
本実施形態に用いることができるアミノ酸エステル無機酸塩は、上記無機酸により形成され、アミノ酸エステル硫酸塩、アミノ酸エステルリン酸塩、アミノ酸エステル塩酸塩であることが好ましく、アミノ酸エステル塩酸塩であることがより好ましい。
アミノ酸は、少なくとも1個のアミノ基と少なくとも1個のカルボキシル基とを持つ、炭素原子数2~18個の脂肪族もしくは芳香族アミノ酸、または3~12員環のラクタムであることが好ましい。
アミノ酸としては天然アミノ酸であっても合成アミノ酸であってもよい。
天然アミノ酸としては、アラニン、アルギニン、アスパラギン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、アスパラギン酸、メチオニン、フェニルアラニン、トリプトファン、バリン、オルニチン等を挙げることができる。
合成アミノ酸は、公知の方法で製造することができるが、例えば、アルデヒド化合物を用いるストレッカー合成によって製造することができる。アルデヒドとしては下記式(B)で表される化合物が使用できる。
アミノ酸としては天然アミノ酸であっても合成アミノ酸であってもよい。
天然アミノ酸としては、アラニン、アルギニン、アスパラギン、グルタミン、グルタミン酸、グリシン、ヒスチジン、イソロイシン、ロイシン、リジン、アスパラギン酸、メチオニン、フェニルアラニン、トリプトファン、バリン、オルニチン等を挙げることができる。
合成アミノ酸は、公知の方法で製造することができるが、例えば、アルデヒド化合物を用いるストレッカー合成によって製造することができる。アルデヒドとしては下記式(B)で表される化合物が使用できる。
前記式中、Rzは酸素原子、ハロゲン原子を含んでもよい、炭素数1以上の脂肪族基または炭素数6以上の芳香族基を表し、zは1~3のいずれかの整数を表す。
前記式においてRzは、好ましくは炭素数1~12であり、化合物(B)として好ましい具体的な化合物として、アセトアルデヒド、プロピオンアルデヒド、ヘキシルアルデヒド、オクチルアルデヒド、カプリンサンアルデヒド、フェニルアセトアルデヒド、ベンズアルデヒド、ジメトキシベンズアルデヒド、クロロベンズアルデヒド、フルオロベンズアルデヒド、ヘリオトロピン、シクラメンベンズアルデヒド、フルフラール、ナフトアルデヒド、フタルアルデヒド等を挙げることができる。なお、これらの化合物が異性体構造を有する場合は、異性体も含まれる。
前記式においてRzは、好ましくは炭素数1~12であり、化合物(B)として好ましい具体的な化合物として、アセトアルデヒド、プロピオンアルデヒド、ヘキシルアルデヒド、オクチルアルデヒド、カプリンサンアルデヒド、フェニルアセトアルデヒド、ベンズアルデヒド、ジメトキシベンズアルデヒド、クロロベンズアルデヒド、フルオロベンズアルデヒド、ヘリオトロピン、シクラメンベンズアルデヒド、フルフラール、ナフトアルデヒド、フタルアルデヒド等を挙げることができる。なお、これらの化合物が異性体構造を有する場合は、異性体も含まれる。
アミノ酸無機酸塩は、前記アミノ酸の無機酸塩である。
特に好ましく用いられるアミノ酸は、脂肪族のモノアミノモノカルボン酸、ジアミノモノカルボン酸、モノアミノジカルボン酸、ジアミノジカルボン酸などである。これらのアミノ酸が環化して形成するラクタムもまた好ましく用いられる。上記化合物の具体例としては、グリシン、3-アミノプロピオン酸、ω-アミノカプロン酸、ω-アミノラウリン酸、アラニン、イソロイシン、3-アミノ酪酸、4-アミノシクロヘキサンカルボン酸、フェニルアラニン、メチオニン、アミノ安息香酸、アスパラギン酸、グルタミン酸、リジン、ランチオニン、1-アミノ-2・3・4-ブタントリカルボン酸、上記アミノ酸のラクタム、ピロリドン、カプロラクタム、ラウロラクタムなどが挙げられる。
特に好ましく用いられるアミノ酸は、脂肪族のモノアミノモノカルボン酸、ジアミノモノカルボン酸、モノアミノジカルボン酸、ジアミノジカルボン酸などである。これらのアミノ酸が環化して形成するラクタムもまた好ましく用いられる。上記化合物の具体例としては、グリシン、3-アミノプロピオン酸、ω-アミノカプロン酸、ω-アミノラウリン酸、アラニン、イソロイシン、3-アミノ酪酸、4-アミノシクロヘキサンカルボン酸、フェニルアラニン、メチオニン、アミノ安息香酸、アスパラギン酸、グルタミン酸、リジン、ランチオニン、1-アミノ-2・3・4-ブタントリカルボン酸、上記アミノ酸のラクタム、ピロリドン、カプロラクタム、ラウロラクタムなどが挙げられる。
前記アルコール性ヒドロキシ基を含有する化合物は、アミノアルコール無機酸塩であることが好ましい。
アミノアルコール無機酸塩は、前記アミノ酸無機酸塩とアルコールとを反応させることにより製造できる。
アミノアルコール無機酸塩は、1個の第一もしくは第二水酸基および1個の第一アミノ基を有する炭素原子2~12個のアミノアルコールの無機酸塩である。上記アミノアルコールは、そのアルキレン連鎖中に酸素、硫黄などの複素原子を含んだものや、エステル化反応に対して不活性な基、例えばニトロ、ハロゲン、アルキル、フェニル基などの置換基を含むものであってもよい。アミノアルコールの具体例としては、エタノールアミン、1-アミノ-2-プロパノール、2-アミノ-1-プロパノール、2-アミノイソブタノール、2-アミノ-1-ブタノール、2-(2-アミノエトキシ)-エタノール、2-アミノシクロヘキサノールなどが挙げられる。
アミノアルコール無機酸塩は、前記アミノ酸無機酸塩とアルコールとを反応させることにより製造できる。
アミノアルコール無機酸塩は、1個の第一もしくは第二水酸基および1個の第一アミノ基を有する炭素原子2~12個のアミノアルコールの無機酸塩である。上記アミノアルコールは、そのアルキレン連鎖中に酸素、硫黄などの複素原子を含んだものや、エステル化反応に対して不活性な基、例えばニトロ、ハロゲン、アルキル、フェニル基などの置換基を含むものであってもよい。アミノアルコールの具体例としては、エタノールアミン、1-アミノ-2-プロパノール、2-アミノ-1-プロパノール、2-アミノイソブタノール、2-アミノ-1-ブタノール、2-(2-アミノエトキシ)-エタノール、2-アミノシクロヘキサノールなどが挙げられる。
アルコールは公知のものを使用することができるが、好ましくは、炭素数1~10のモノアルコールである。具体的には、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノール、デカノール、シクロペンタノール、シクロヘキサノール等が挙げられる。なお、これらの化合物が異性体を含む場合は、該異性体も使用できる。
<カルバミン酸エステル>
前記アミノ酸エステルの無機酸塩を用い、本実施形態の方法をおこなって得られるカルバミン酸エステルは前記式(C)で表されるカルバミン酸エステルである。具体的には、前記式で表されるアミノ酸エステルを形成するアミノ基(-NH2)が、カルバメート基(-NHCOO-R1)に変換されてなるカルバミン酸エステルである。なお、R1は前記式(C)で定義した基である。
前記アミノ酸エステルの無機酸塩を用い、本実施形態の方法をおこなって得られるカルバミン酸エステルは前記式(C)で表されるカルバミン酸エステルである。具体的には、前記式で表されるアミノ酸エステルを形成するアミノ基(-NH2)が、カルバメート基(-NHCOO-R1)に変換されてなるカルバミン酸エステルである。なお、R1は前記式(C)で定義した基である。
≪塩基性化合物≫
本実施形態に用いることができる塩基性化合物は、上記したように、アミノ酸誘導体の無機酸塩を形成する無機酸を中和することによりアミノ酸誘導体のアミノ基の反応性を高める効果を奏すると推定している。このような観点から、塩基性化合物としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物等の無機塩基等の無機塩基、アンモニア、アミン、フォスファゼン等の有機塩基が用いられる。
中でも、有機アミンが好ましく、脂肪族アミンの場合は第2級脂肪族アミンや第3級脂肪族アミンがより好ましい。
本実施形態に用いることができる塩基性化合物は、上記したように、アミノ酸誘導体の無機酸塩を形成する無機酸を中和することによりアミノ酸誘導体のアミノ基の反応性を高める効果を奏すると推定している。このような観点から、塩基性化合物としては、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物等の無機塩基等の無機塩基、アンモニア、アミン、フォスファゼン等の有機塩基が用いられる。
中でも、有機アミンが好ましく、脂肪族アミンの場合は第2級脂肪族アミンや第3級脂肪族アミンがより好ましい。
脂肪族アミンとは、1つ以上の脂肪族基を有するアミンであり、該脂肪族基は炭素数が1~12であることが好ましい。
脂肪族アミンとしては、アンモニアNH3の水素原子の少なくとも1つを、炭素数12以下のアルキル基もしくはヒドロキシアルキル基で置換したアミン(アルキルアミンもしくはアルキルアルコールアミン)又は環式アミンが挙げられる。
脂肪族アミンとしては、アンモニアNH3の水素原子の少なくとも1つを、炭素数12以下のアルキル基もしくはヒドロキシアルキル基で置換したアミン(アルキルアミンもしくはアルキルアルコールアミン)又は環式アミンが挙げられる。
アルキルアミン及びアルキルアルコールアミンの各具体例としては、n-ヘキシルアミン、n-ヘプチルアミン、n-オクチルアミン、n-ノニルアミン、n-デシルアミン等のモノアルキルアミン;ジエチルアミン、ジ-n-プロピルアミン、ジ-n-ヘプチルアミン、ジ-n-オクチルアミン、ジシクロヘキシルアミン等のジアルキルアミン;トリメチルアミン、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリ-n-ペンチルアミン(トリアミルアミン)、トリ-n-ヘキシルアミン、トリ-n-ヘプチルアミン、トリ-n-オクチルアミン、トリ-n-ノニルアミン、トリ-n-デシルアミン、トリ-n-ドデシルアミン等のトリアルキルアミン;ジエタノールアミン、トリエタノールアミン、ジイソプロパノールアミン、トリイソプロパノールアミン、ジ-n-オクタノールアミン、トリ-n-オクタノールアミン等のアルキルアルコールアミンが挙げられる。これらの中でも、炭素数5~10のトリアルキルアミンがさらに好ましく、トリエチルアミン、トリ-n-ペンチルアミン又はトリ-n-オクチルアミンが特に好ましい。
環式アミンとしては、例えば、ヘテロ原子として窒素原子を含む複素環化合物が挙げられる。該複素環化合物としては、単環式のもの(脂肪族単環式アミン)であっても、多環式のもの(脂肪族多環式アミン)であってもよい。
また、脂肪族単環式アミンとして、具体的には、ピペリジン、ピペラジン等が挙げられる。脂肪族多環式アミンとしては、炭素数が6~10のものが好ましく、具体的には、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ヘキサメチレンテトラミン、1,4-ジアザビシクロ[2.2.2]オクタン等が挙げられる。
また、脂肪族単環式アミンとして、具体的には、ピペリジン、ピペラジン等が挙げられる。脂肪族多環式アミンとしては、炭素数が6~10のものが好ましく、具体的には、1,5-ジアザビシクロ[4.3.0]-5-ノネン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ヘキサメチレンテトラミン、1,4-ジアザビシクロ[2.2.2]オクタン等が挙げられる。
また、アミンとして芳香族アミンを用いてもよい。芳香族アミンとしては、4-ジメチルアミノピリジン、ピロール、インドール、ピラゾール、イミダゾールまたはこれらの誘導体、トリベンジルアミン、2,6-ジイソプロピルアニリン、N-tert-ブトキシカルボニルピロリジン等が挙げられる
≪洗浄工程に用いる酸(洗浄溶剤)≫
洗浄工程に用いる酸としては、該ポリマー状副生物を溶解するものであれば、特に限定されず、有機酸、無機酸のいずれが用いられてもよいが、好ましくは、有機酸が用いられる。
有機酸としては、カルボン酸、スルホン酸、スルフィン酸、フェノール類、エノール類、チオフェノール類、イミド類、オキシム類、芳香族スルホンアミド類等を例示することができるが、好ましくは、安息香酸、サリチル酸等のカルボン酸、フェノール類(例えば、置換基として炭素数1~20(好ましくは炭素数1~12)のアルキル基、炭素数1~6のアルキル基で置換されていてもよいベンジル基、炭素数1~20(好ましくは炭素数1~6)のアルコキシ基、フェニル基を有していてもよいフェノール)が使用される。これらの有機酸の中でも、該熱分解反応器の洗浄操作後に該洗浄溶剤が残存した場合の影響を考慮して、より好ましくは、芳香族ヒドロキシ化合物、さらに好ましくは炭酸ジアリールとアミノ酸誘導体無機酸塩との反応において使用される芳香族ヒドロキシ化合物と同種の化合物である。
洗浄工程に用いる酸としては、該ポリマー状副生物を溶解するものであれば、特に限定されず、有機酸、無機酸のいずれが用いられてもよいが、好ましくは、有機酸が用いられる。
有機酸としては、カルボン酸、スルホン酸、スルフィン酸、フェノール類、エノール類、チオフェノール類、イミド類、オキシム類、芳香族スルホンアミド類等を例示することができるが、好ましくは、安息香酸、サリチル酸等のカルボン酸、フェノール類(例えば、置換基として炭素数1~20(好ましくは炭素数1~12)のアルキル基、炭素数1~6のアルキル基で置換されていてもよいベンジル基、炭素数1~20(好ましくは炭素数1~6)のアルコキシ基、フェニル基を有していてもよいフェノール)が使用される。これらの有機酸の中でも、該熱分解反応器の洗浄操作後に該洗浄溶剤が残存した場合の影響を考慮して、より好ましくは、芳香族ヒドロキシ化合物、さらに好ましくは炭酸ジアリールとアミノ酸誘導体無機酸塩との反応において使用される芳香族ヒドロキシ化合物と同種の化合物である。
なお、洗浄の酸として芳香族ヒドロキシ化合物を用いる場合、該芳香族ヒドロキシ化合物の標準沸点は、洗浄効果の観点から、前述のカルバミン酸エステルの熱分解反応によって生成するイソシアネートに相当する化合物や、該カルバミン酸エステルの熱分解反応によって生成する芳香族ヒドロキシ化合物の標準沸点と10℃以上の沸点差を有することが好ましい。
次に、実施例を示して、本発明をより詳細に説明する。ただし、本発明は、実施例に限定されるものではない。
<分析方法>
1)NMR分析方法
装置:日本国、日本電子(株)社製JNM-A400 FT-NMRシステム
(1)1Hおよび13C-NMR分析サンプルの調製
サンプル溶液を約0.3g秤量し、重クロロホルム(米国、アルドリッチ社製、99.8%)を約0.7gと内部標準物質としてテトラメチルシラン(日本国、和光純薬工業社製、和光一級)を0.05g加えて均一に混合した溶液をNMR分析サンプルとした。
(2)定量分析法
各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
1)NMR分析方法
装置:日本国、日本電子(株)社製JNM-A400 FT-NMRシステム
(1)1Hおよび13C-NMR分析サンプルの調製
サンプル溶液を約0.3g秤量し、重クロロホルム(米国、アルドリッチ社製、99.8%)を約0.7gと内部標準物質としてテトラメチルシラン(日本国、和光純薬工業社製、和光一級)を0.05g加えて均一に混合した溶液をNMR分析サンプルとした。
(2)定量分析法
各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
2)液体クロマトグラフィー分析方法
装置:日本国、島津社製 LC-10ATシステム
カラム:日本国、東ソー社製 Silica-60カラム 2本直列に接続
展開溶媒:ヘキサン/テトラヒドロフラン=80/20(体積比)の混合液
溶媒流量:2mL/分
カラム温度:35℃
検出器:R.I.(屈折率計)
(1)液体クロマトグラフィー分析サンプル
サンプルを約0.1g秤量し、テトラヒドロフラン(日本国、和光純薬工業社製、脱水)を約1gと内部標準物質としてビスフェノールA(日本国、和光純薬工業社製、一級)を約0.02g加えて均一に混合した溶液を、液体クロマトグラフィー分析のサンプルとした。
(2)定量分析法
各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
装置:日本国、島津社製 LC-10ATシステム
カラム:日本国、東ソー社製 Silica-60カラム 2本直列に接続
展開溶媒:ヘキサン/テトラヒドロフラン=80/20(体積比)の混合液
溶媒流量:2mL/分
カラム温度:35℃
検出器:R.I.(屈折率計)
(1)液体クロマトグラフィー分析サンプル
サンプルを約0.1g秤量し、テトラヒドロフラン(日本国、和光純薬工業社製、脱水)を約1gと内部標準物質としてビスフェノールA(日本国、和光純薬工業社製、一級)を約0.02g加えて均一に混合した溶液を、液体クロマトグラフィー分析のサンプルとした。
(2)定量分析法
各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
3)ガスクロマトグラフィー分析方法
装置:日本国、島津社製 GC-2010
カラム:米国、アジレントテクノロジーズ社製 DB-1
長さ30m、内径0.250mm、膜厚1.00μm
カラム温度:50℃で5分間保持後、昇温速度10℃/分で200℃まで昇温
200℃で5分間保持後、昇温速度10℃/分で300℃まで昇温
検出器:FID
(1)ガスクロマトグラフィー分析サンプル
サンプルを約0.05g秤量し、アセトン(日本国、和光純薬工業社製、脱水)を約1gと内部標準物質としてトルエン(日本国、和光純薬工業社製、脱水)を約0.02g加えて均一に混合した溶液を、ガスクロマトグラフィー分析のサンプルとした。
(2)定量分析法
各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
装置:日本国、島津社製 GC-2010
カラム:米国、アジレントテクノロジーズ社製 DB-1
長さ30m、内径0.250mm、膜厚1.00μm
カラム温度:50℃で5分間保持後、昇温速度10℃/分で200℃まで昇温
200℃で5分間保持後、昇温速度10℃/分で300℃まで昇温
検出器:FID
(1)ガスクロマトグラフィー分析サンプル
サンプルを約0.05g秤量し、アセトン(日本国、和光純薬工業社製、脱水)を約1gと内部標準物質としてトルエン(日本国、和光純薬工業社製、脱水)を約0.02g加えて均一に混合した溶液を、ガスクロマトグラフィー分析のサンプルとした。
(2)定量分析法
各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
4)誘導結合型プラズマ質量分析法
装置:日本国、セイコー電子社製、SPQ-8000
(1)誘導結合型プラズマ質量分析サンプル
試料約0.15gを希硫酸で灰化させた後、希硝酸に溶解した。
(2)定量分析法
各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した
装置:日本国、セイコー電子社製、SPQ-8000
(1)誘導結合型プラズマ質量分析サンプル
試料約0.15gを希硫酸で灰化させた後、希硝酸に溶解した。
(2)定量分析法
各標準物質について分析を実施し、作成した検量線を基に、分析サンプル溶液の定量分析を実施した
[参考例1]炭酸ジフェニルの製造
・工程(I-1):ジアルキルスズ触媒の製造
容積3000mLのナス型フラスコに、ジ-n-ブチルスズオキシド692g(2.78mol)および1-ブタノール(日本国、和光純薬工業社製)2000g(27mol)を入れた。白色スラリー状の該混合物を入れたフラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したエバポレーターに取り付けた。エバポレーターのパージバルブ出口は常圧で流れている窒素ガスのラインと接続した。エバポレーターのパージバルブを閉め、系内の減圧を行った後、パージバルブを徐々に開き、系内に窒素を流し、常圧に戻した。オイルバス温度を126℃に設定し、該フラスコを該オイルバスに浸漬してエバポレーターの回転を開始した。エバポレーターのパージバルブを開放したまま常圧で約30分間回転攪拌と加熱した後、混合液が沸騰し、低沸成分の蒸留が始まった。この状態を8時間保った後、パージバルブを閉め、系内を徐々に減圧し、系内の圧力が76~54kPaの状態で残存低沸成分を蒸留した。低沸成分が出なくなった後、該フラスコをオイルバスからあげた。反応液は透明な液になっていた。その後、該フラスコをオイルバスからあげてパージバルブを徐々に開き系内の圧力を常圧に戻した。該フラスコには反応液952gを得た。119Sn,1H,13C-NMRの分析結果から、生成物1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンがジ-n-ブチルスズオキシド基準で収率99%を得た。同様な操作を12回繰り返し、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンを合計11480g得た。
・工程(I-1):ジアルキルスズ触媒の製造
容積3000mLのナス型フラスコに、ジ-n-ブチルスズオキシド692g(2.78mol)および1-ブタノール(日本国、和光純薬工業社製)2000g(27mol)を入れた。白色スラリー状の該混合物を入れたフラスコを、温度調節器のついたオイルバスと真空ポンプと真空コントローラーを接続したエバポレーターに取り付けた。エバポレーターのパージバルブ出口は常圧で流れている窒素ガスのラインと接続した。エバポレーターのパージバルブを閉め、系内の減圧を行った後、パージバルブを徐々に開き、系内に窒素を流し、常圧に戻した。オイルバス温度を126℃に設定し、該フラスコを該オイルバスに浸漬してエバポレーターの回転を開始した。エバポレーターのパージバルブを開放したまま常圧で約30分間回転攪拌と加熱した後、混合液が沸騰し、低沸成分の蒸留が始まった。この状態を8時間保った後、パージバルブを閉め、系内を徐々に減圧し、系内の圧力が76~54kPaの状態で残存低沸成分を蒸留した。低沸成分が出なくなった後、該フラスコをオイルバスからあげた。反応液は透明な液になっていた。その後、該フラスコをオイルバスからあげてパージバルブを徐々に開き系内の圧力を常圧に戻した。該フラスコには反応液952gを得た。119Sn,1H,13C-NMRの分析結果から、生成物1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンがジ-n-ブチルスズオキシド基準で収率99%を得た。同様な操作を12回繰り返し、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンを合計11480g得た。
・工程(I-2):炭酸ジブチルの製造
図1に示すような連続製造装置において、炭酸エステルを製造した。充填物Mellapak 750Y(スイス国、Sulzer Chemtech Ltd.社製)を充填した、内径151mm,有効長さ5040mmの塔型反応器102に、ライン4から、工程(I-1)で製造した1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンを、4201g/hrで供給した。ライン2から、蒸留塔101で精製した1-ブタノールを、24717g/hrで、前記塔型反応器102に供給した。該塔型反応器102内は、液温度が160℃になるようにヒーターおよびリボイラー112によって調整し、圧力が約150kPa-Gになるように圧力調節バルブによって調整した。該塔型反応器102内の滞留時間は約10分であった。該塔型反応器102上部から、ライン6を経て、水を含む1-ブタノールが、24715g/hrで蒸留塔101に輸送された。ライン1から、1-ブタノールが、824g/hrで、蒸留塔101に輸送された。蒸留塔101は、充填物Metal Gauze CY(スイス国、Sulzer Chemtech Ltd.社製)が充填され、リボイラー111および凝縮器121を備えており、蒸留精製が実施された。蒸留塔101の上部では高濃度の水を含む留分が凝縮器121によって凝縮され、ライン3から回収された。蒸留塔101の下部にあるライン2を経て、精製された1-ブタノールが、塔型反応器102に輸送された。塔型反応器102の下部から、ジ-n-ブチルスズ-ジ-n-ブトキシドと1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンを含むアルキルスズアルコキシド触媒組成物を得、ライン5を経て、薄膜蒸発装置103(日本国、神鋼環境ソリューション社製)に供給した。薄膜蒸発装置103において、1-ブタノールを留去した後、凝縮器123、ライン8およびライン4を経て、塔型反応器102に、蒸発残渣を戻した。薄膜蒸発装置103の下部から、ライン7を経て、アルキルスズアルコキシド触媒組成物を輸送し、ジブチルスズジブトキシドと1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンの活性成分の流量が、約4812g/hrになるように調節し、オートクレーブ104に供給した。オートクレーブにライン9を介し二酸化炭素を973g/hrで供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素とアルキルスズアルコキシド触媒組成物との反応を行い、炭酸ジブチルを含む反応液を得た。該反応液をライン10と調節バルブを介して除炭槽105に移送し、残存二酸化炭素を除去し、ライン11から二酸化炭素を回収した。その後、該反応液を、ライン12を経て、140℃、約1.4kPaとした薄膜蒸発装置106(日本国、神鋼環境ソリューション社製)に輸送し、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンの流量が約4201g/hrになるように調節し供給して炭酸ジブチルを含む留分を得た。一方で蒸発残渣を、ライン13とライン4を介して、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサン流量が、約4201g/hrになるように調節し、塔型反応器102に循環させた。炭酸ジブチルを含む留分は、凝縮器126およびライン14を経て、充填物Metal Gauze CY(スイス国、Sulzer Chemtech Ltd.社製)を充填しリボイラー117および凝縮器127を備えた蒸留塔107に、830g/hrで供給して、蒸留精製を行った後、ライン15から、99質量%の炭酸ジブチルを814g/hr得た。薄膜蒸留装置106からライン13に送られた蒸発残渣を119Sn,1H,13C-NMRによる分析を行ったところ、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンが含まれており、ジ-n-ブチルスズ-ジ-n-ブトキシドは含まれていなかった。上記連続運転を約600時間行った後、ライン16から蒸発残渣を16g/hrで排出させた。一方でライン17から工程(I-1)で製造した1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンを16g/hrで供給した。
図1に示すような連続製造装置において、炭酸エステルを製造した。充填物Mellapak 750Y(スイス国、Sulzer Chemtech Ltd.社製)を充填した、内径151mm,有効長さ5040mmの塔型反応器102に、ライン4から、工程(I-1)で製造した1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンを、4201g/hrで供給した。ライン2から、蒸留塔101で精製した1-ブタノールを、24717g/hrで、前記塔型反応器102に供給した。該塔型反応器102内は、液温度が160℃になるようにヒーターおよびリボイラー112によって調整し、圧力が約150kPa-Gになるように圧力調節バルブによって調整した。該塔型反応器102内の滞留時間は約10分であった。該塔型反応器102上部から、ライン6を経て、水を含む1-ブタノールが、24715g/hrで蒸留塔101に輸送された。ライン1から、1-ブタノールが、824g/hrで、蒸留塔101に輸送された。蒸留塔101は、充填物Metal Gauze CY(スイス国、Sulzer Chemtech Ltd.社製)が充填され、リボイラー111および凝縮器121を備えており、蒸留精製が実施された。蒸留塔101の上部では高濃度の水を含む留分が凝縮器121によって凝縮され、ライン3から回収された。蒸留塔101の下部にあるライン2を経て、精製された1-ブタノールが、塔型反応器102に輸送された。塔型反応器102の下部から、ジ-n-ブチルスズ-ジ-n-ブトキシドと1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンを含むアルキルスズアルコキシド触媒組成物を得、ライン5を経て、薄膜蒸発装置103(日本国、神鋼環境ソリューション社製)に供給した。薄膜蒸発装置103において、1-ブタノールを留去した後、凝縮器123、ライン8およびライン4を経て、塔型反応器102に、蒸発残渣を戻した。薄膜蒸発装置103の下部から、ライン7を経て、アルキルスズアルコキシド触媒組成物を輸送し、ジブチルスズジブトキシドと1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンの活性成分の流量が、約4812g/hrになるように調節し、オートクレーブ104に供給した。オートクレーブにライン9を介し二酸化炭素を973g/hrで供給し、オートクレーブ内圧を4MPa-Gに維持した。オートクレーブにおける温度を120℃に設定し、滞留時間を約4時間に調整し、二酸化炭素とアルキルスズアルコキシド触媒組成物との反応を行い、炭酸ジブチルを含む反応液を得た。該反応液をライン10と調節バルブを介して除炭槽105に移送し、残存二酸化炭素を除去し、ライン11から二酸化炭素を回収した。その後、該反応液を、ライン12を経て、140℃、約1.4kPaとした薄膜蒸発装置106(日本国、神鋼環境ソリューション社製)に輸送し、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンの流量が約4201g/hrになるように調節し供給して炭酸ジブチルを含む留分を得た。一方で蒸発残渣を、ライン13とライン4を介して、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサン流量が、約4201g/hrになるように調節し、塔型反応器102に循環させた。炭酸ジブチルを含む留分は、凝縮器126およびライン14を経て、充填物Metal Gauze CY(スイス国、Sulzer Chemtech Ltd.社製)を充填しリボイラー117および凝縮器127を備えた蒸留塔107に、830g/hrで供給して、蒸留精製を行った後、ライン15から、99質量%の炭酸ジブチルを814g/hr得た。薄膜蒸留装置106からライン13に送られた蒸発残渣を119Sn,1H,13C-NMRによる分析を行ったところ、1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンが含まれており、ジ-n-ブチルスズ-ジ-n-ブトキシドは含まれていなかった。上記連続運転を約600時間行った後、ライン16から蒸発残渣を16g/hrで排出させた。一方でライン17から工程(I-1)で製造した1,1,3,3-テトラ-n-ブチル-1,3-ジ(n-ブチルオキシ)-ジスタンオキサンを16g/hrで供給した。
・工程(I-3):芳香族炭酸エステルの製造
[触媒の調製]
フェノール79gと一酸化鉛32gを180℃で10時間加熱し、生成する水をフェノールと共に留去した。10時間で水を約2.5g抜き出した。その後、反応器上部からフェノールを留去し、触媒を調製した。
[触媒の調製]
フェノール79gと一酸化鉛32gを180℃で10時間加熱し、生成する水をフェノールと共に留去した。10時間で水を約2.5g抜き出した。その後、反応器上部からフェノールを留去し、触媒を調製した。
[芳香族炭酸エステルの製造]
図2に示すような装置を使用した。
ディクソンパッキング(6mmφ)を充填して内径約5cm、塔長2mの連続多段蒸留塔202の中段に、工程(I-2)で得た炭酸ジブチル、フェノール、および上記で調製した触媒からなる混合液(混合液中の炭酸ジブチルとフェノールの質量比が約65/35、鉛濃度が約1質量%となるように調製した)を、予熱器201を経て、ライン21から約270g/hrで、液状で連続的に供給して反応をおこなった。反応および蒸留に必要な熱量は、連続多段蒸留塔202の下部の液を、ライン23とリボイラー204を経て循環させることによって供給した。連続多段蒸留塔202の塔底部の液温度は238℃、塔頂圧力は約250kPaであり、還流比は約2となる様、ライン24から連続多段蒸留塔202への還流量を調整した。連続多段蒸留塔202の塔頂から留出するガスをライン22より抜き出し、凝縮器203を経て、ライン24より約67g/hrで、貯槽205に連続的に抜き出した。塔底からはライン23を経て貯槽206に約204g/hrで連続的に抜き出した。
ライン24から抜き出された液の組成は、1-ブタノール約33質量%、フェノール約65質量%、炭酸ジブチル約2質量%であった。貯槽206へ抜き出された液の組成は、フェノール約11質量%、炭酸ジブチル約60質量%、炭酸ブチルフェニル約26質量%、炭酸ジフェニル約1.6質量%、鉛濃度約1質量%であった。
図2に示すような装置を使用した。
ディクソンパッキング(6mmφ)を充填して内径約5cm、塔長2mの連続多段蒸留塔202の中段に、工程(I-2)で得た炭酸ジブチル、フェノール、および上記で調製した触媒からなる混合液(混合液中の炭酸ジブチルとフェノールの質量比が約65/35、鉛濃度が約1質量%となるように調製した)を、予熱器201を経て、ライン21から約270g/hrで、液状で連続的に供給して反応をおこなった。反応および蒸留に必要な熱量は、連続多段蒸留塔202の下部の液を、ライン23とリボイラー204を経て循環させることによって供給した。連続多段蒸留塔202の塔底部の液温度は238℃、塔頂圧力は約250kPaであり、還流比は約2となる様、ライン24から連続多段蒸留塔202への還流量を調整した。連続多段蒸留塔202の塔頂から留出するガスをライン22より抜き出し、凝縮器203を経て、ライン24より約67g/hrで、貯槽205に連続的に抜き出した。塔底からはライン23を経て貯槽206に約204g/hrで連続的に抜き出した。
ライン24から抜き出された液の組成は、1-ブタノール約33質量%、フェノール約65質量%、炭酸ジブチル約2質量%であった。貯槽206へ抜き出された液の組成は、フェノール約11質量%、炭酸ジブチル約60質量%、炭酸ブチルフェニル約26質量%、炭酸ジフェニル約1.6質量%、鉛濃度約1質量%であった。
次に、図3に示すような装置を使用した。
ディクソンパッキング(6mmφ)を充填した内径5cm、塔長2mの連続多段蒸留塔302の中段に、貯槽206に抜き出された液を、予熱器301を経て、ライン31から、約203g/hrで、液状で連続的に供給した。反応および蒸留に必要な熱量は、連続多段蒸留塔302の下部液をライン33とリボイラー304を経て循環させることにより供給した。連続多段蒸留塔302の塔底部の液温度は240℃、塔頂圧力は約27kPaであり、還流比は約2となる様、ライン34から連続多段蒸留塔302への還流量を調整した。連続多段蒸留塔302の塔頂から留出するガスを、ライン32を経て凝縮器303で凝縮してライン34より貯槽305へ、約165g/hrで連続的に抜き出した。塔底からは、ライン33を経て貯槽306へ約39g/hrで連続的に抜き出した。
ライン34より抜き出された液の組成は、1-ブタノール約500質量ppm、フェノール約13質量%、炭酸ジブチル約85質量%、炭酸ブチルフェニル約2質量%であった。貯槽306に抜き出された液の組成は、炭酸ジブチル約0.3質量%、炭酸ブチルフェニル約32質量%、炭酸ジフェニル約61質量%、鉛濃度約7質量%であった。
ディクソンパッキング(6mmφ)を充填した内径5cm、塔長2mの連続多段蒸留塔302の中段に、貯槽206に抜き出された液を、予熱器301を経て、ライン31から、約203g/hrで、液状で連続的に供給した。反応および蒸留に必要な熱量は、連続多段蒸留塔302の下部液をライン33とリボイラー304を経て循環させることにより供給した。連続多段蒸留塔302の塔底部の液温度は240℃、塔頂圧力は約27kPaであり、還流比は約2となる様、ライン34から連続多段蒸留塔302への還流量を調整した。連続多段蒸留塔302の塔頂から留出するガスを、ライン32を経て凝縮器303で凝縮してライン34より貯槽305へ、約165g/hrで連続的に抜き出した。塔底からは、ライン33を経て貯槽306へ約39g/hrで連続的に抜き出した。
ライン34より抜き出された液の組成は、1-ブタノール約500質量ppm、フェノール約13質量%、炭酸ジブチル約85質量%、炭酸ブチルフェニル約2質量%であった。貯槽306に抜き出された液の組成は、炭酸ジブチル約0.3質量%、炭酸ブチルフェニル約32質量%、炭酸ジフェニル約61質量%、鉛濃度約7質量%であった。
[アルコールのリサイクル]
図4に示すような装置を使用して、アルコールのリサイクルをおこなった。
ディクソンパッキング(6mmφ)を充填した内径約5cm、塔長2mの連続多段蒸留塔402の塔最下部より約0.7mの位置に、上記工程において貯槽205に連続的に抜き出された液を、ライン41から予熱器401を経て約201g/hrで連続的に供給して、蒸留分離をおこなった。蒸留分離に必要な熱量は、連続多段蒸留塔402の下部液をライン43とリボイラー404を経て循環させることにより供給した。連続多段蒸留塔402の塔底部の液温度は145℃、塔頂圧力は約13kPaであり、還流比は約0.3とした。連続多段蒸留塔402より留出するガスを、ライン42を経て、凝縮器403で凝縮し、ライン44より貯槽405へ約68g/hrで抜き出した。塔底からは、ライン43を経て、貯槽406へ、約133g/hrで連続的に抜き出した。
ライン44から抜き出された液の組成は、1-ブタノール約99質量%、フェノール約100質量ppmであった。貯槽406へ抜き出された液の組成は、炭酸ジブチル約2質量%、フェノール約98質量%であった。
図4に示すような装置を使用して、アルコールのリサイクルをおこなった。
ディクソンパッキング(6mmφ)を充填した内径約5cm、塔長2mの連続多段蒸留塔402の塔最下部より約0.7mの位置に、上記工程において貯槽205に連続的に抜き出された液を、ライン41から予熱器401を経て約201g/hrで連続的に供給して、蒸留分離をおこなった。蒸留分離に必要な熱量は、連続多段蒸留塔402の下部液をライン43とリボイラー404を経て循環させることにより供給した。連続多段蒸留塔402の塔底部の液温度は145℃、塔頂圧力は約13kPaであり、還流比は約0.3とした。連続多段蒸留塔402より留出するガスを、ライン42を経て、凝縮器403で凝縮し、ライン44より貯槽405へ約68g/hrで抜き出した。塔底からは、ライン43を経て、貯槽406へ、約133g/hrで連続的に抜き出した。
ライン44から抜き出された液の組成は、1-ブタノール約99質量%、フェノール約100質量ppmであった。貯槽406へ抜き出された液の組成は、炭酸ジブチル約2質量%、フェノール約98質量%であった。
[炭酸ジアリールの精製]
図5、6に示す装置を使用して、炭酸ジアリールの精製をおこなった。
ディクソンパッキング(6mmφ)を充填した内径約5cm、塔長2mの連続多段蒸留塔502の中段に、貯槽306に抜き出された液をライン51から予熱器501を経て、約195g/hrで連続的に供給した。蒸留分離に必要な熱量は、連続多段蒸留塔502の下部液をライン53とリボイラー504を経て循環させることにより供給した。連続多段蒸留塔502の塔底部の液温度は210℃、塔頂圧力は約1.5kPaであり、還流比は約1とした。連続多段蒸留塔502の塔頂から留出するガスを、ライン52を経て凝縮器503で凝縮してライン54より連続的に抜き出した。塔底からはライン53を経て貯槽506へ約14g/hrで抜き出した。
ライン54より抜き出された液の組成は、炭酸ジブチル約0.3質量%、炭酸ブチルフェニル約34質量%、炭酸ジフェニル約66質量%であった。
図5、6に示す装置を使用して、炭酸ジアリールの精製をおこなった。
ディクソンパッキング(6mmφ)を充填した内径約5cm、塔長2mの連続多段蒸留塔502の中段に、貯槽306に抜き出された液をライン51から予熱器501を経て、約195g/hrで連続的に供給した。蒸留分離に必要な熱量は、連続多段蒸留塔502の下部液をライン53とリボイラー504を経て循環させることにより供給した。連続多段蒸留塔502の塔底部の液温度は210℃、塔頂圧力は約1.5kPaであり、還流比は約1とした。連続多段蒸留塔502の塔頂から留出するガスを、ライン52を経て凝縮器503で凝縮してライン54より連続的に抜き出した。塔底からはライン53を経て貯槽506へ約14g/hrで抜き出した。
ライン54より抜き出された液の組成は、炭酸ジブチル約0.3質量%、炭酸ブチルフェニル約34質量%、炭酸ジフェニル約66質量%であった。
ディクソンパッキング(6mmφ)を充填した内径約5cm、塔長2mの連続多段蒸留塔602の中段に、ライン54より抜き出された液をライン61から予熱器601を経て、約181g/hrで連続的に供給した。蒸留分離に必要な熱量は、連続多段蒸留塔602の下部液をライン63とリボイラー604を経て循環させることにより供給した。連続多段蒸留塔602の塔底部の液温度は232℃、塔頂圧力は約15kPaであり、還流比は約2とした。連続多段蒸留塔602の塔頂から留出するガスを、ライン62を経て凝縮器603で凝縮してライン64より貯槽605へ連続的に抜き出した。塔底からはライン63を経て貯槽606へ約119g/hrで抜き出した。
ライン64より抜き出された液の組成は、炭酸ジブチル約0.6質量%、炭酸ブチルフェニル約99質量%、炭酸ジフェニル約0.4質量%であった。貯槽606に抜き出された液の組成は、炭酸ブチルフェニル0.1質量%、炭酸ジフェニル約99.9質量%であった。該炭酸ジフェニルには、金属成分として、鉄が22質量ppm含有されていた。
ライン64より抜き出された液の組成は、炭酸ジブチル約0.6質量%、炭酸ブチルフェニル約99質量%、炭酸ジフェニル約0.4質量%であった。貯槽606に抜き出された液の組成は、炭酸ブチルフェニル0.1質量%、炭酸ジフェニル約99.9質量%であった。該炭酸ジフェニルには、金属成分として、鉄が22質量ppm含有されていた。
[実施例1]
・前駆体製造工程:リジンβ-アミノエチルエステル三塩酸塩の合成
撹拌機を具備する1Lの4口フラスコに35質量%塩酸を313g(3.0モル)仕込み、氷浴で冷却し、エタノールアミン122g(2.0モル)をゆっくり滴下した。次いで、リジン一塩酸塩183g(1.0モル)を添加した。反応器内の圧力を4kPaとし、反応液温度を110℃に加熱して、反応液中の水を200g留去した。
・前駆体製造工程:リジンβ-アミノエチルエステル三塩酸塩の合成
撹拌機を具備する1Lの4口フラスコに35質量%塩酸を313g(3.0モル)仕込み、氷浴で冷却し、エタノールアミン122g(2.0モル)をゆっくり滴下した。次いで、リジン一塩酸塩183g(1.0モル)を添加した。反応器内の圧力を4kPaとし、反応液温度を110℃に加熱して、反応液中の水を200g留去した。
(工程A)
反応器中に、圧力4kPa、反応液温度110℃を保ったまま、余熱器で圧力4kPa、温度110℃に加熱したキシレンガスを反応液底部から供給した。キシレンガスの流量は18g/Hrであった。キシレンガスを供給しながら、キシレンと水とを反応系外に留去し、反応液中の水含有量を0.4質量%以下とした。
得られた反応液を、撹拌機を具備する500mLフラスコに入れ、反応液温度を110℃として、常圧下で塩化水素ガスを反応液質量の1.0質量%となるように供給した。
上記した工程Aをさらに2回繰り返し、エステル化率が80%の反応液を得た。
なお、エステル化率は下記式により算出した。
エステル化率(%)=X/Y×100
上記式において、Xは、生成したリジンβ-アミノエチルエステル三塩酸塩のモル数(高速液体クロマトグラフィーにて分析し定量した値)を表し、Yは、原料として用いたリジン一塩酸塩のモル数を表す。
反応器中に、圧力4kPa、反応液温度110℃を保ったまま、余熱器で圧力4kPa、温度110℃に加熱したキシレンガスを反応液底部から供給した。キシレンガスの流量は18g/Hrであった。キシレンガスを供給しながら、キシレンと水とを反応系外に留去し、反応液中の水含有量を0.4質量%以下とした。
得られた反応液を、撹拌機を具備する500mLフラスコに入れ、反応液温度を110℃として、常圧下で塩化水素ガスを反応液質量の1.0質量%となるように供給した。
上記した工程Aをさらに2回繰り返し、エステル化率が80%の反応液を得た。
なお、エステル化率は下記式により算出した。
エステル化率(%)=X/Y×100
上記式において、Xは、生成したリジンβ-アミノエチルエステル三塩酸塩のモル数(高速液体クロマトグラフィーにて分析し定量した値)を表し、Yは、原料として用いたリジン一塩酸塩のモル数を表す。
(工程B)
工程Aで得られた反応液にメタノール720gおよびオルトジクロロベンゼン480gの混合液を加えて溶解した後、少量の種晶を加えて晶析した。固体を濾別し、晶析時と同一組成のメタノール/オルトジクロロベンゼン混合液を用いて固体を洗浄し濾別した。減圧乾燥器を用いて固体を乾燥し、液体クロマトグラフィーで分析したところリジンβ-アミノエチルエステル三塩酸塩であった。
工程Aで得られた反応液にメタノール720gおよびオルトジクロロベンゼン480gの混合液を加えて溶解した後、少量の種晶を加えて晶析した。固体を濾別し、晶析時と同一組成のメタノール/オルトジクロロベンゼン混合液を用いて固体を洗浄し濾別した。減圧乾燥器を用いて固体を乾燥し、液体クロマトグラフィーで分析したところリジンβ-アミノエチルエステル三塩酸塩であった。
・カルバメート化工程:カルバミン酸エステル(カルバメート)の製造
撹拌機を具備する1Lの4口フラスコを用い、窒素雰囲気下で、炭酸ジフェニル510g(2.4モル)とトリエチルアミン136g(1.35モル)と、前記前駆体製造工程で得たリジンβ-アミノエチルエステル三塩酸塩150g(0.34モル)をトルエン中、温度50℃、常圧で8時間反応させた。反応液をサンプリングし、液体クロマトグラフィーで分析したところ、目的とするカルバミン酸エステルが生成していた。反応液に濃度が1モル/Lの塩酸を加えて撹拌した後、有機層を回収し、次いで、有機層をイオン交換水で洗浄した。
ロータリエバポレーターを用いて有機層からトルエンを留去して得た固体の1H-NMR分析をおこなったところ、該固体は、2-((フェノキシカルボニル)アミノ)エチル-2,6-ビス((フェノキシカルボニル)アミノ)ヘキサノエートであった。
撹拌機を具備する1Lの4口フラスコを用い、窒素雰囲気下で、炭酸ジフェニル510g(2.4モル)とトリエチルアミン136g(1.35モル)と、前記前駆体製造工程で得たリジンβ-アミノエチルエステル三塩酸塩150g(0.34モル)をトルエン中、温度50℃、常圧で8時間反応させた。反応液をサンプリングし、液体クロマトグラフィーで分析したところ、目的とするカルバミン酸エステルが生成していた。反応液に濃度が1モル/Lの塩酸を加えて撹拌した後、有機層を回収し、次いで、有機層をイオン交換水で洗浄した。
ロータリエバポレーターを用いて有機層からトルエンを留去して得た固体の1H-NMR分析をおこなったところ、該固体は、2-((フェノキシカルボニル)アミノ)エチル-2,6-ビス((フェノキシカルボニル)アミノ)ヘキサノエートであった。
・原料調合工程
・原料調合工程:前記カルバメート化工程で得た2-((フェノキシカルボニル)アミノ)エチル-2,6-ビス((フェノキシカルボニル)アミノ)ヘキサノエート500g(0.91モル)とフェノール500gを貯槽700にて60℃で混合して均一な混合液とした。
・原料調合工程:前記カルバメート化工程で得た2-((フェノキシカルボニル)アミノ)エチル-2,6-ビス((フェノキシカルボニル)アミノ)ヘキサノエート500g(0.91モル)とフェノール500gを貯槽700にて60℃で混合して均一な混合液とした。
・熱分解工程および分離工程:2-((フェノキシカルボニル)アミノ)エチル-2,6-ビス((フェノキシカルボニル)アミノ)ヘキサノエートの熱分解によるリジンエステルトリイソシアネートの製造
図7に示した伝熱面積0.1m2の薄膜蒸留装置701を270℃に加熱し、内部の圧力を10kPaとした。貯槽700からライン71を用いて500g/hrで原料を薄膜蒸留装置701に供給し、該薄膜蒸留装置701の底部からライン72を経由して液体(高沸点成分)を回収し、冷却器703で100℃に冷却後、ライン73を用いて貯槽720に回収した。また、薄膜蒸留装置701の上部から回収された低沸点成分の蒸気は凝縮器702で凝縮し、ライン74を用いて貯槽710に回収した。
次いで、貯槽720に回収した該液体を、180℃に加熱し内部の圧力を約0.05kPaとした伝熱面積0.1m2の薄膜蒸留装置704にライン75を用いて250g/hrで供給した。なお、ライン75を通じて、該液体を貯槽720から薄膜蒸留装置704に移相する際の温度(移送工程の温度)は130℃とした。該薄膜蒸留装置704から生成する気相成分(前記高沸点成分中に含まれていた低沸点成分)を凝縮器705で凝縮し、ライン76を用いて貯槽730に回収した。前記高沸点成分中に含まれていた低沸点成分が除去された高沸点成分は冷却器706で80℃に冷却後、ライン77を用いて貯槽740に回収した。貯槽730に回収した回収液を1Hおよび13C-NMRおよびガスクロマトグラフィー(GC)で分析したところ、該回収液はリジンエステルトリイソシアネートであった。リジンβ-アミノエチルエステル三塩酸塩を基準とする収率は70%であった。10日間連続運転を行った所、薄膜蒸留装置701の壁面に付着物は見られなかった。
図7に示した伝熱面積0.1m2の薄膜蒸留装置701を270℃に加熱し、内部の圧力を10kPaとした。貯槽700からライン71を用いて500g/hrで原料を薄膜蒸留装置701に供給し、該薄膜蒸留装置701の底部からライン72を経由して液体(高沸点成分)を回収し、冷却器703で100℃に冷却後、ライン73を用いて貯槽720に回収した。また、薄膜蒸留装置701の上部から回収された低沸点成分の蒸気は凝縮器702で凝縮し、ライン74を用いて貯槽710に回収した。
次いで、貯槽720に回収した該液体を、180℃に加熱し内部の圧力を約0.05kPaとした伝熱面積0.1m2の薄膜蒸留装置704にライン75を用いて250g/hrで供給した。なお、ライン75を通じて、該液体を貯槽720から薄膜蒸留装置704に移相する際の温度(移送工程の温度)は130℃とした。該薄膜蒸留装置704から生成する気相成分(前記高沸点成分中に含まれていた低沸点成分)を凝縮器705で凝縮し、ライン76を用いて貯槽730に回収した。前記高沸点成分中に含まれていた低沸点成分が除去された高沸点成分は冷却器706で80℃に冷却後、ライン77を用いて貯槽740に回収した。貯槽730に回収した回収液を1Hおよび13C-NMRおよびガスクロマトグラフィー(GC)で分析したところ、該回収液はリジンエステルトリイソシアネートであった。リジンβ-アミノエチルエステル三塩酸塩を基準とする収率は70%であった。10日間連続運転を行った所、薄膜蒸留装置701の壁面に付着物は見られなかった。
[実施例2~57]
実施例1のリジンをリジンと等モルの各種アミノ酸に変更した以外は実施例1に記載した条件で操作を実施し、気相成分を凝縮回収した。なお、使用するアルコールは各アミノ酸(誘導体含む)の構造中カルボキシル基の基数に対応するモル数のアルコールを添加した。また、各実施例のカルバミン酸エステルを得る際は、各アミノ酸(誘導体含む)の構造中、アミノ基の基数に対応するモル数の炭酸エステルを添加して反応させた。回収液中に含まれる成分を1H-NMRおよび13C-NMR及びGCで分析した所、該回収液は各種アミノ酸(誘導体含む)に対応するアミノ酸エステルイソシアネートであった。収率(%)や付着物挙動について下記表に記載した。なお、表中「炭酸エステル」の「略号」の項において、DPCは炭酸ジフェニル、DMCは炭酸ジメチル、DECは炭酸ジエチル、DBCは炭酸ジ(n-ブチル)を表す。なお、アルギニンを使用する場合は公知の方法によりオルニチンに分解して使用した。また、グルタミン、アスパラギンを使用する場合は、公知の方法により、それぞれ、グルタミン酸、アスパラギン酸に加水分解して使用した。
実施例1のリジンをリジンと等モルの各種アミノ酸に変更した以外は実施例1に記載した条件で操作を実施し、気相成分を凝縮回収した。なお、使用するアルコールは各アミノ酸(誘導体含む)の構造中カルボキシル基の基数に対応するモル数のアルコールを添加した。また、各実施例のカルバミン酸エステルを得る際は、各アミノ酸(誘導体含む)の構造中、アミノ基の基数に対応するモル数の炭酸エステルを添加して反応させた。回収液中に含まれる成分を1H-NMRおよび13C-NMR及びGCで分析した所、該回収液は各種アミノ酸(誘導体含む)に対応するアミノ酸エステルイソシアネートであった。収率(%)や付着物挙動について下記表に記載した。なお、表中「炭酸エステル」の「略号」の項において、DPCは炭酸ジフェニル、DMCは炭酸ジメチル、DECは炭酸ジエチル、DBCは炭酸ジ(n-ブチル)を表す。なお、アルギニンを使用する場合は公知の方法によりオルニチンに分解して使用した。また、グルタミン、アスパラギンを使用する場合は、公知の方法により、それぞれ、グルタミン酸、アスパラギン酸に加水分解して使用した。
[実施例58~65]
各種アミノ酸およびアルコールからなるエステル体に対応するカルバメート体を、下記表に示す各種炭酸エステルと反応させた以外は実施例1と同様の操作を行った。なお、添加した炭酸エステルのモル数は各実施例で生成するエステル体のアミノ基数に相当するモル数の炭酸エステルを添加した。なお、アルギニンを使用する場合は公知の方法によりオルニチンに分解して使用した。また、グルタミン、アスパラギンを使用する場合は、公知の方法により、それぞれ、グルタミン酸、アスパラギン酸に加水分解して使用した。
各種アミノ酸およびアルコールからなるエステル体に対応するカルバメート体を、下記表に示す各種炭酸エステルと反応させた以外は実施例1と同様の操作を行った。なお、添加した炭酸エステルのモル数は各実施例で生成するエステル体のアミノ基数に相当するモル数の炭酸エステルを添加した。なお、アルギニンを使用する場合は公知の方法によりオルニチンに分解して使用した。また、グルタミン、アスパラギンを使用する場合は、公知の方法により、それぞれ、グルタミン酸、アスパラギン酸に加水分解して使用した。
[実施例66~77]
各種アミノ酸およびアルコールからなるエステル体に対応するカルバメート体を得る際に使用する塩基性化合物を下記表に示すものとした事以外は実施例1と同様の操作を行った。なお、添加した塩基性化合物のモル数は実施例1に記載のモル数と同じとした。なお、アルギニンを使用する場合は公知の方法によりオルニチンに分解して使用した。また、グルタミン、アスパラギンを使用する場合は、公知の方法により、それぞれ、グルタミン酸、アスパラギン酸に加水分解して使用した。
各種アミノ酸およびアルコールからなるエステル体に対応するカルバメート体を得る際に使用する塩基性化合物を下記表に示すものとした事以外は実施例1と同様の操作を行った。なお、添加した塩基性化合物のモル数は実施例1に記載のモル数と同じとした。なお、アルギニンを使用する場合は公知の方法によりオルニチンに分解して使用した。また、グルタミン、アスパラギンを使用する場合は、公知の方法により、それぞれ、グルタミン酸、アスパラギン酸に加水分解して使用した。
[実施例78~89]
参考例1の炭酸ジフェニルに、アセチルアセトナト鉄(II)を添加し、金属原子として鉄を2.3質量%あるいは11質量%含有する炭酸ジフェニルを調製したこと、あるいは参考例1の炭酸ジフェニルを公知の手法で蒸留により単離し、含有する金属原子として鉄を0.0009質量ppmとしたこと以外は実施例1と同じ操作を行った。各種アミノ酸については、実施例1で使用したリジンと等モルの各種アミノ酸を使用した。
実施例1に記載した条件で運転を実施し、気相成分を凝縮回収した。回収液を1H-NMRおよび13C-NMRで分析した所、該回収液はリジンエステルトリイソシアネートであった。リジンβ-アミノエチルエステル二塩酸塩を基準とする収率は68%であった。10日間連続運転を行った所、薄膜蒸発装置の壁面に付着物は見られなかった。なお、アルギニンを使用する場合は公知の方法によりオルニチンに分解して使用した。また、グルタミン、アスパラギンを使用する場合は、公知の方法により、それぞれ、グルタミン酸、アスパラギン酸に加水分解して使用した。
参考例1の炭酸ジフェニルに、アセチルアセトナト鉄(II)を添加し、金属原子として鉄を2.3質量%あるいは11質量%含有する炭酸ジフェニルを調製したこと、あるいは参考例1の炭酸ジフェニルを公知の手法で蒸留により単離し、含有する金属原子として鉄を0.0009質量ppmとしたこと以外は実施例1と同じ操作を行った。各種アミノ酸については、実施例1で使用したリジンと等モルの各種アミノ酸を使用した。
実施例1に記載した条件で運転を実施し、気相成分を凝縮回収した。回収液を1H-NMRおよび13C-NMRで分析した所、該回収液はリジンエステルトリイソシアネートであった。リジンβ-アミノエチルエステル二塩酸塩を基準とする収率は68%であった。10日間連続運転を行った所、薄膜蒸発装置の壁面に付着物は見られなかった。なお、アルギニンを使用する場合は公知の方法によりオルニチンに分解して使用した。また、グルタミン、アスパラギンを使用する場合は、公知の方法により、それぞれ、グルタミン酸、アスパラギン酸に加水分解して使用した。
[実施例90]
実施例5の熱分解工程の運転を連続して200日間連続運転を行った所、薄膜蒸留装置701の壁面に若干量の付着物が確認された。なお、グルタミンは、公知の方法により、グルタミン酸に加水分解して使用した。
実施例5の熱分解工程の運転を連続して200日間連続運転を行った所、薄膜蒸留装置701の壁面に若干量の付着物が確認された。なお、グルタミンは、公知の方法により、グルタミン酸に加水分解して使用した。
[実施例91]
実施例90において付着物の蓄積がみられた薄膜蒸留装置701の洗浄操作をおこなった。一旦熱分解運転を停止し、薄膜蒸留装置701を180℃に加熱し、薄膜蒸留装置701内部を大気圧窒素雰囲気とした。ライン78より2,6-ジフェノールを約1200g/hrで供給し、ライン72より抜き出し、冷却器703およびライン79を経て貯槽750に洗浄液を回収した。この操作を1時間おこなったところ、薄膜蒸留装置701の内部に付着物はみられなかった。なお、グルタミンは、公知の方法により、グルタミン酸に加水分解して使用した。
実施例90において付着物の蓄積がみられた薄膜蒸留装置701の洗浄操作をおこなった。一旦熱分解運転を停止し、薄膜蒸留装置701を180℃に加熱し、薄膜蒸留装置701内部を大気圧窒素雰囲気とした。ライン78より2,6-ジフェノールを約1200g/hrで供給し、ライン72より抜き出し、冷却器703およびライン79を経て貯槽750に洗浄液を回収した。この操作を1時間おこなったところ、薄膜蒸留装置701の内部に付着物はみられなかった。なお、グルタミンは、公知の方法により、グルタミン酸に加水分解して使用した。
[実施例92~101]
下記表12に記載の洗浄溶剤を使用した以外は、実施例91と同様の方法で洗浄操作を行い、熱分解工程で使用した薄膜蒸発装置701の壁面に付着した付着物を除去する操作を行った。結果を下記表12に示す。なお、表中「洗浄操作後の付着」の項において、「無」は洗浄操作により付着が解消された結果、「有」は洗浄操作をおこなっても付着が解消されなかった結果を表す。なお、グルタミンは、公知の方法により、グルタミン酸に加水分解して使用した。
下記表12に記載の洗浄溶剤を使用した以外は、実施例91と同様の方法で洗浄操作を行い、熱分解工程で使用した薄膜蒸発装置701の壁面に付着した付着物を除去する操作を行った。結果を下記表12に示す。なお、表中「洗浄操作後の付着」の項において、「無」は洗浄操作により付着が解消された結果、「有」は洗浄操作をおこなっても付着が解消されなかった結果を表す。なお、グルタミンは、公知の方法により、グルタミン酸に加水分解して使用した。
[比較例1]
実施例5のカルバメート化工程に於いて使用したトリエチルアミンを使用しなかったこと以外は実施例5と同じ操作を行ったが、対応するカルバミン酸エステルが痕跡量しか得られず、運転操作を中断した。なお、グルタミンは、公知の方法により、グルタミン酸に加水分解して使用した。
実施例5のカルバメート化工程に於いて使用したトリエチルアミンを使用しなかったこと以外は実施例5と同じ操作を行ったが、対応するカルバミン酸エステルが痕跡量しか得られず、運転操作を中断した。なお、グルタミンは、公知の方法により、グルタミン酸に加水分解して使用した。
本発明によれば、カルバメート化反応効率や分離回収効率が高められたカルバミン酸エステルの製造方法と、該カルバミン酸エステルを用いるイソシアネートの製造方法が提供される。
1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、21、22、23、24、25、31、32、33、34、35、41、42、43、44、45、51、52、53、54、55、61、62、63、64、65、71、72、73、74、75、76、77、78、79:ライン
101:蒸留塔
102:塔型反応器
103:薄膜蒸留槽
104:オートクレーブ
105:除炭槽
106:薄膜蒸留装置
107:蒸留塔 111、112、117、204、304、404、504、604:リボイラー
121、123、126、127、203、303、403、603、702、705:凝縮器
201、301、401、501、601:予熱器
703、706:冷却器
205、206、305、306、405、406、506、605、606、700、710、720、730、740、750:貯槽
202、302、402、502、602:連続多段蒸留塔
701、704:薄膜蒸留装置
101:蒸留塔
102:塔型反応器
103:薄膜蒸留槽
104:オートクレーブ
105:除炭槽
106:薄膜蒸留装置
107:蒸留塔 111、112、117、204、304、404、504、604:リボイラー
121、123、126、127、203、303、403、603、702、705:凝縮器
201、301、401、501、601:予熱器
703、706:冷却器
205、206、305、306、405、406、506、605、606、700、710、720、730、740、750:貯槽
202、302、402、502、602:連続多段蒸留塔
701、704:薄膜蒸留装置
Claims (9)
- カルバメート化反応器に、炭酸エステル、アミノ酸誘導体の無機酸塩、及び塩基性化合物を供給し、反応させることを含む、炭酸エステルに由来するカルバミン酸エステルの製造方法。
- 前記アミノ酸誘導体がアミノ酸エステルであって、アミノ酸と、アルコール性ヒドロキシ基を有する化合物とを、無機酸の存在下で反応させて前記アミノ酸エステルの無機酸塩を製造する工程を更に有する、請求項1または2に記載のカルバミン酸エステルの製造方法。
- 前記塩基性化合物が有機アミンである、請求項1~3のいずれか一項に記載のカルバミン酸エステルの製造方法。
- 前記炭酸エステルが、前記炭酸エステルの総質量に対して、金属原子を0.001質量ppm~10質量%含有する、請求項1~4のいずれか一項に記載のカルバミン酸エステルの製造方法。
- 前記アミノ酸誘導体の無機酸塩は、前記カルバメート化反応器へ、液体の状態で供給される、請求項1~5のいずれか一項に記載のカルバミン酸エステルの製造方法。
- 請求項1~6のいずれか一項に記載のカルバミン酸エステルの製造方法により製造されたカルバミン酸エステルを、熱分解反応に付すことによってイソシアネートを得る熱分解工程を有するイソシアネートの製造方法。
- 前記熱分解工程は熱分解反応器において実施され、
前記熱分解工程の後、前記熱分解反応器を酸によって洗浄する洗浄工程を更に有する、請求項7に記載のイソシアネートの製造方法。 - 前記熱分解反応が液相で行われる、請求項7または8に記載のイソシアネートの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019518817A JP6843977B2 (ja) | 2017-05-15 | 2018-05-15 | イソシアネートの製造方法 |
US16/612,790 US11306055B2 (en) | 2017-05-15 | 2018-05-15 | Isocyanate production method |
EP18801582.0A EP3626704B1 (en) | 2017-05-15 | 2018-05-15 | Isocyanate production method |
CN201880024187.5A CN110494416A (zh) | 2017-05-15 | 2018-05-15 | 异氰酸酯的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-096777 | 2017-05-15 | ||
JP2017096777 | 2017-05-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018212206A1 true WO2018212206A1 (ja) | 2018-11-22 |
Family
ID=64274451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018822 WO2018212206A1 (ja) | 2017-05-15 | 2018-05-15 | イソシアネートの製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11306055B2 (ja) |
EP (1) | EP3626704B1 (ja) |
JP (1) | JP6843977B2 (ja) |
CN (1) | CN110494416A (ja) |
TW (1) | TW201900606A (ja) |
WO (1) | WO2018212206A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019221210A1 (ja) * | 2018-05-15 | 2019-11-21 | 旭化成株式会社 | カルバメートの製造方法及びイソシアネートの製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112457218B (zh) * | 2020-11-05 | 2022-08-09 | 宁夏医科大学 | 2,4-二氨基丁酸衍生物的合成方法 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE925496C (de) | 1943-03-27 | 1955-03-24 | Dehydag Gmbh | Verfahren zur Herstellung superpolymerer Verbindungen |
US3992430A (en) | 1975-09-11 | 1976-11-16 | Chevron Research Company | Process for preparing aromatic isocyanates |
JPS5271443A (en) | 1975-12-03 | 1977-06-14 | Anic Spa | Production of aromatic urethane |
JPS52136147A (en) | 1976-05-10 | 1977-11-14 | Nippon Polyurethan Kogyo Kk | Preparation of carbamate compounds |
US4081472A (en) | 1975-08-07 | 1978-03-28 | Mitsui Toatsu Chemicals Inc. | Process for preparation of aromatic isocyanates |
JPS61183257A (ja) | 1985-02-08 | 1986-08-15 | エニーケム・シンテシース・エセ・ピ・ア | N−メチルカルバメ−トの製法 |
JPH01230550A (ja) | 1988-03-11 | 1989-09-14 | Asahi Chem Ind Co Ltd | アルキルポリカルバミン酸アリールエステルの製造方法 |
JPH02174751A (ja) * | 1988-12-27 | 1990-07-06 | Mitsui Toatsu Chem Inc | アミノ酸アルキルエステル鉱酸塩の製造法 |
JPH03275662A (ja) | 1990-03-27 | 1991-12-06 | Ube Ind Ltd | カルバメートの製造法 |
JPH06109207A (ja) | 1992-09-28 | 1994-04-19 | Mitsubishi Heavy Ind Ltd | ボイラ出口蒸気中の溶存酸素低減方法 |
JPH07509461A (ja) * | 1992-07-23 | 1995-10-19 | ゼネカ・リミテッド | アミノ酸を結合したナイトロジェンマスタード誘導体及び腫瘍の治療におけるプロドラッグとしてのそれらの使用 |
JPH10316645A (ja) | 1997-05-20 | 1998-12-02 | Ube Ind Ltd | カルバメートの製造法 |
JP2003252846A (ja) | 2001-12-28 | 2003-09-10 | Mitsui Takeda Chemicals Inc | カルバメートの製造方法およびイソシアネートの製造方法 |
JP2004262834A (ja) | 2003-02-28 | 2004-09-24 | Mitsui Chemicals Inc | 芳香族ウレタン化合物の製造方法 |
JP2007022932A (ja) * | 2005-07-13 | 2007-02-01 | Jsr Corp | アミノ酸−n−カルボキシ無水物の製造方法 |
WO2009139061A1 (ja) | 2008-05-15 | 2009-11-19 | 旭化成ケミカルズ株式会社 | 炭酸ジアリールを用いるイソシアネートの製造方法 |
CN103864810A (zh) * | 2012-12-07 | 2014-06-18 | 天津科技大学 | 一种新颖的10-羟基喜树碱10位衍生物制备方法及其在抗肿瘤药物中的应用 |
EP2774915A1 (en) * | 2013-03-06 | 2014-09-10 | Andrea Mattarei | New derivatives of resveratrol |
JP2017096777A (ja) | 2015-11-25 | 2017-06-01 | 日立オートモティブシステムズ株式会社 | ステレオカメラ装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3285398B2 (ja) | 1992-11-09 | 2002-05-27 | 株式会社トクヤマ | ウレタン化合物の製造方法 |
JP2915306B2 (ja) | 1994-12-06 | 1999-07-05 | 株式会社トクヤマ | N−アルコキシカルボニルアミノ酸エステルの製造方法 |
EP0902014A1 (en) | 1997-02-14 | 1999-03-17 | Ube Industries Limited | Process for producing aryl carbamates |
SG115512A1 (en) | 2001-12-28 | 2005-10-28 | Mitsui Takeda Chemicals Inc | Method for producing carbamates and method for producing isocyanates |
-
2018
- 2018-05-15 JP JP2019518817A patent/JP6843977B2/ja active Active
- 2018-05-15 US US16/612,790 patent/US11306055B2/en active Active
- 2018-05-15 EP EP18801582.0A patent/EP3626704B1/en active Active
- 2018-05-15 CN CN201880024187.5A patent/CN110494416A/zh active Pending
- 2018-05-15 WO PCT/JP2018/018822 patent/WO2018212206A1/ja unknown
- 2018-05-15 TW TW107116704A patent/TW201900606A/zh unknown
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE925496C (de) | 1943-03-27 | 1955-03-24 | Dehydag Gmbh | Verfahren zur Herstellung superpolymerer Verbindungen |
US4081472A (en) | 1975-08-07 | 1978-03-28 | Mitsui Toatsu Chemicals Inc. | Process for preparation of aromatic isocyanates |
US3992430A (en) | 1975-09-11 | 1976-11-16 | Chevron Research Company | Process for preparing aromatic isocyanates |
JPS5271443A (en) | 1975-12-03 | 1977-06-14 | Anic Spa | Production of aromatic urethane |
JPS52136147A (en) | 1976-05-10 | 1977-11-14 | Nippon Polyurethan Kogyo Kk | Preparation of carbamate compounds |
JPS61183257A (ja) | 1985-02-08 | 1986-08-15 | エニーケム・シンテシース・エセ・ピ・ア | N−メチルカルバメ−トの製法 |
JPH01230550A (ja) | 1988-03-11 | 1989-09-14 | Asahi Chem Ind Co Ltd | アルキルポリカルバミン酸アリールエステルの製造方法 |
JPH02174751A (ja) * | 1988-12-27 | 1990-07-06 | Mitsui Toatsu Chem Inc | アミノ酸アルキルエステル鉱酸塩の製造法 |
JPH03275662A (ja) | 1990-03-27 | 1991-12-06 | Ube Ind Ltd | カルバメートの製造法 |
JPH07509461A (ja) * | 1992-07-23 | 1995-10-19 | ゼネカ・リミテッド | アミノ酸を結合したナイトロジェンマスタード誘導体及び腫瘍の治療におけるプロドラッグとしてのそれらの使用 |
JPH06109207A (ja) | 1992-09-28 | 1994-04-19 | Mitsubishi Heavy Ind Ltd | ボイラ出口蒸気中の溶存酸素低減方法 |
JPH10316645A (ja) | 1997-05-20 | 1998-12-02 | Ube Ind Ltd | カルバメートの製造法 |
JP2003252846A (ja) | 2001-12-28 | 2003-09-10 | Mitsui Takeda Chemicals Inc | カルバメートの製造方法およびイソシアネートの製造方法 |
JP2004262834A (ja) | 2003-02-28 | 2004-09-24 | Mitsui Chemicals Inc | 芳香族ウレタン化合物の製造方法 |
JP2007022932A (ja) * | 2005-07-13 | 2007-02-01 | Jsr Corp | アミノ酸−n−カルボキシ無水物の製造方法 |
WO2009139061A1 (ja) | 2008-05-15 | 2009-11-19 | 旭化成ケミカルズ株式会社 | 炭酸ジアリールを用いるイソシアネートの製造方法 |
CN103864810A (zh) * | 2012-12-07 | 2014-06-18 | 天津科技大学 | 一种新颖的10-羟基喜树碱10位衍生物制备方法及其在抗肿瘤药物中的应用 |
EP2774915A1 (en) * | 2013-03-06 | 2014-09-10 | Andrea Mattarei | New derivatives of resveratrol |
JP2017096777A (ja) | 2015-11-25 | 2017-06-01 | 日立オートモティブシステムズ株式会社 | ステレオカメラ装置 |
Non-Patent Citations (4)
Title |
---|
BERCHTE DER DEUTECHEN CHEMISCHEN GESELLSCHAFT, vol. 3, pages 653,1870 |
FRICKE, NICOLE ET AL.: "Carbonate couplers and functional cyclic carbonates from amino acids and glucosamine", MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 210, no. 3-4, 2009, pages 242 - 255, XP055110063 * |
JOURNAL OF POLYMER SCIENCE POLYMER CHEMISTRY EDITION, vol. 17, 1979, pages 835 |
See also references of EP3626704A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019221210A1 (ja) * | 2018-05-15 | 2019-11-21 | 旭化成株式会社 | カルバメートの製造方法及びイソシアネートの製造方法 |
JPWO2019221210A1 (ja) * | 2018-05-15 | 2021-01-07 | 旭化成株式会社 | カルバメートの製造方法及びイソシアネートの製造方法 |
US11352319B2 (en) | 2018-05-15 | 2022-06-07 | Asahi Kasei Kabushiki Kaisha | Method for producing carbamate and method for producing isocyanate |
Also Published As
Publication number | Publication date |
---|---|
CN110494416A (zh) | 2019-11-22 |
US11306055B2 (en) | 2022-04-19 |
EP3626704B1 (en) | 2021-11-24 |
EP3626704A1 (en) | 2020-03-25 |
JP6843977B2 (ja) | 2021-03-17 |
US20200216387A1 (en) | 2020-07-09 |
JPWO2018212206A1 (ja) | 2019-11-14 |
TW201900606A (zh) | 2019-01-01 |
EP3626704A4 (en) | 2020-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5242678B2 (ja) | 炭酸ジアリールを用いるイソシアネートの製造方法 | |
JP5067906B2 (ja) | N−置換カルバミン酸エステルの製造方法および該n−置換カルバミン酸エステルを使用するイソシアネートの製造方法 | |
JP5592786B2 (ja) | イソシアネートの製造方法 | |
JP5591289B2 (ja) | イソシアネートの製造方法 | |
US9321024B2 (en) | Method for producing carbamate, method for producing isocyanate, carbamate production system, and isocyanate production system | |
JP2019172671A (ja) | アルコキシシラン基含有イソシアネートの製造方法 | |
WO2018212206A1 (ja) | イソシアネートの製造方法 | |
CN1432563A (zh) | 制备氨基甲酸酯的方法及制备异氰酸酯的方法 | |
JP5518605B2 (ja) | トルエンジカルバメートの製造方法、トルエンジイソシアネートの製造方法、および、トルエンジカルバメート | |
EP2711357B1 (en) | Method for manufacturing tolylene diisocyanate | |
JP5650777B2 (ja) | 炭酸ジアリールを用いるイソシアネートの製造方法 | |
TWI408120B (zh) | A process for producing isocyanates using diaryl carbonates | |
TWI496763B (zh) | Preparation of isocyanates | |
JP2010215586A (ja) | カルバミン酸フェニル化合物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18801582 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019518817 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018801582 Country of ref document: EP Effective date: 20191216 |