WO2018211645A1 - 運転支援方法及び運転支援装置 - Google Patents

運転支援方法及び運転支援装置 Download PDF

Info

Publication number
WO2018211645A1
WO2018211645A1 PCT/JP2017/018609 JP2017018609W WO2018211645A1 WO 2018211645 A1 WO2018211645 A1 WO 2018211645A1 JP 2017018609 W JP2017018609 W JP 2017018609W WO 2018211645 A1 WO2018211645 A1 WO 2018211645A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
wheeled
preceding vehicle
wheeled vehicle
route
Prior art date
Application number
PCT/JP2017/018609
Other languages
English (en)
French (fr)
Inventor
元伸 青木
直樹 古城
博幸 ▲高▼野
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to US16/613,634 priority Critical patent/US10766490B2/en
Priority to PCT/JP2017/018609 priority patent/WO2018211645A1/ja
Priority to BR112019024122-1A priority patent/BR112019024122B1/pt
Priority to CN201780090811.7A priority patent/CN110621563B/zh
Priority to MX2019013552A priority patent/MX2019013552A/es
Priority to KR1020197034498A priority patent/KR20190141724A/ko
Priority to RU2019138462A priority patent/RU2721436C1/ru
Priority to JP2019518684A priority patent/JP6658968B2/ja
Priority to EP17909718.3A priority patent/EP3626570B1/en
Priority to CA3064011A priority patent/CA3064011C/en
Publication of WO2018211645A1 publication Critical patent/WO2018211645A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • B60W30/165Automatically following the path of a preceding lead vehicle, e.g. "electronic tow-bar"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/588Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0004In digital systems, e.g. discrete-time systems involving sampling
    • B60W2050/0005Processor details or data handling, e.g. memory registers or chip architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/006Interpolation; Extrapolation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/201Dimensions of vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance

Definitions

  • the present disclosure relates to a driving support method and a driving support device that cause the host vehicle to follow the preceding vehicle.
  • the preceding vehicle is a two-wheeled vehicle
  • the route tracking is performed for the two-wheeled vehicle having a large lateral movement amount compared to the four-wheeled vehicle
  • the own vehicle becomes unstable due to the lateral movement. The behavior of the vehicle may be greatly disturbed.
  • the present disclosure has been made paying attention to the above-described problem, and an object of the present disclosure is to provide a driving support method and a driving support device that secures a stable own vehicle behavior in which lateral movement is suppressed when a preceding vehicle is a two-wheeled vehicle.
  • the present disclosure is a driving support method for causing a vehicle to travel following a preceding vehicle.
  • the presence / absence of a preceding vehicle relative to the own vehicle is determined, and when it is determined that there is a preceding vehicle, the preceding vehicle type is determined as to whether the preceding vehicle of the own vehicle is a four-wheeled vehicle or a two-wheeled vehicle.
  • the preceding vehicle is a four-wheeled vehicle
  • both the inter-vehicle control with the four-wheeled vehicle and the route following of the four-wheeled vehicle are performed.
  • the preceding vehicle is a two-wheeled vehicle
  • the distance between the two-wheeled vehicle is controlled without following the route of the two-wheeled vehicle.
  • the distance between the two-wheeled vehicle is controlled without following the route of the two-wheeled vehicle. It is possible to ensure the vehicle behavior.
  • FIG. 1 is a block configuration diagram showing a driving support system to which a driving support method and a driving support device of Example 1 are applied. It is a block block diagram which shows the various control processing in the processor of the driving
  • FIG. 3 is a flowchart illustrating a flow of a driving support control process executed by a processor of the driving planning apparatus included in the driving support apparatus according to the first embodiment.
  • FIG. 6 is an operation explanatory diagram illustrating an example in which the vehicle travels on a one-lane road on one side where there is no preceding vehicle and the preceding vehicle is a two-wheeled vehicle by the driving support device of the first embodiment.
  • FIG. 5 is an operation explanatory diagram illustrating an example in which the driving support device according to the first embodiment travels on a one-lane road where a preceding vehicle is a four-wheeled vehicle and a preceding vehicle is a two-wheeled vehicle. It is a block block diagram which shows the various control processing in the processor of the driving
  • FIG. 6 is a flowchart illustrating a flow of a driving support control process executed by a processor of an operation planning apparatus included in the driving support apparatus according to the second embodiment.
  • FIG. 10 is an operation explanatory diagram illustrating an example in which a host vehicle travels on a one-sided one-lane road in which a preceding vehicle is a two-wheeled vehicle by the driving support device according to the second embodiment.
  • FIG. 10 is a block configuration diagram illustrating various control processes in a processor of an operation planning apparatus included in an operation support apparatus according to a third embodiment.
  • 10 is a flowchart illustrating a flow of a driving support control process executed by a processor of an operation planning apparatus included in the driving support apparatus according to the third embodiment.
  • FIG. 10 is an operation explanatory diagram illustrating an example in which a host vehicle travels on a one-sided one-lane road in which a preceding vehicle is a two-wheeled vehicle by the driving support device according to the second embodiment.
  • FIG. 10 is a block configuration diagram illustrating various control processes in a processor of an operation planning apparatus included in an operation support apparatus according to a third embodiment.
  • 10 is a flowchart illustrating a flow of
  • FIG. 10 is an operation explanatory diagram illustrating an example in which the vehicle travels along a linear interpolation route on a one-sided one-lane road in which the preceding vehicle is a two-wheeled vehicle by the driving support device according to the third embodiment.
  • FIG. 10 is an operation explanatory diagram illustrating a case where the vehicle travels along a curve interpolation route on a one-sided one-lane road in which the preceding vehicle is a two-wheeled vehicle by the driving support device according to the third embodiment.
  • the driving support method and the driving support device according to the first embodiment are applied to an automatic driving vehicle equipped with a driving support system in which steering / driving / braking is automatically controlled by selecting an automatic driving mode.
  • the configuration of the first embodiment will be described by being divided into “entire system configuration”, “detailed configuration of the operation planning device”, and “driving support control processing configuration”.
  • FIG. 1 is a block diagram illustrating a driving support system to which the driving support method and the driving support apparatus according to the first embodiment are applied. The overall system configuration will be described below with reference to FIG.
  • the driving support system 1 includes a driving support device 100 and an in-vehicle device 200 as shown in FIG.
  • the driving assistance system 1, the driving assistance apparatus 100, the vehicle-mounted apparatus 200, and each apparatus with which these are provided are arithmetic processing apparatuses, such as CPU, and are computers which perform arithmetic processing.
  • the in-vehicle device 200 includes a vehicle controller 210, a navigation device 220, an object detection device 230, and an output device 240.
  • the devices constituting the in-vehicle device 200 are connected by a CAN (Controller Area Network) and other in-vehicle LANs to exchange information with each other.
  • the in-vehicle device 200 can exchange information with the driving support device 100 via the in-vehicle LAN.
  • the vehicle controller 210 is an in-vehicle computer such as an engine control unit (Engine ECU), and electronically controls the operation of the vehicle.
  • Examples of the vehicle include an electric vehicle including an electric motor as a travel drive source, an engine vehicle including an internal combustion engine as a travel drive source, and a hybrid vehicle including both the electric motor and the internal combustion engine as a travel drive source.
  • electric vehicles and hybrid vehicles using an electric motor as a driving source include a type using a secondary battery as a power source for the electric motor and a type using a fuel cell as a power source for the electric motor. Then, the vehicle controller 210 operates the detection device 250, the drive device 260, and the steering device 270.
  • the detection device 250 includes a steering angle sensor 251, a vehicle speed sensor 252, and an attitude sensor 253.
  • the steering angle sensor 251 detects information such as a steering amount, a steering speed, and a steering acceleration, and outputs the information to the vehicle controller 210.
  • the vehicle speed sensor 252 detects the speed and / or acceleration of the vehicle and outputs it to the vehicle controller 210.
  • the attitude sensor 253 detects the position of the vehicle, the pitch angle of the vehicle, the yaw angle of the vehicle, and the roll angle of the vehicle, and outputs it to the vehicle controller 210.
  • the attitude sensor 253 includes a gyro sensor.
  • the driving device 260 includes a driving mechanism of the own vehicle.
  • the drive mechanism includes an electric motor and / or an internal combustion engine that are the above-described travel drive sources, a power transmission device including a drive shaft and an automatic transmission that transmits output from these travel drive sources to the drive wheels, and brakes the wheels.
  • a braking device 261 and the like are included.
  • the drive device 260 generates each control signal of these drive mechanisms based on the input signals by the accelerator operation and the brake operation, and the control signals acquired from the vehicle controller 70 or the driving support device 100, and performs traveling control including acceleration / deceleration of the vehicle. Execute. By sending control information to the driving device 260, it is possible to automatically perform traveling control including acceleration / deceleration of the vehicle.
  • torque distribution output to each of the electric motor and the internal combustion engine corresponding to the traveling state of the vehicle is also sent to the drive device 260.
  • the steering device 270 includes a steering actuator.
  • the steering actuator includes a motor and the like attached to the column shaft of the steering.
  • the steering device 270 executes control for changing the traveling direction of the vehicle based on a control signal acquired from the vehicle controller 210 or an input signal by a steering operation.
  • the vehicle controller 210 executes steering control of the host vehicle so that the host vehicle travels along the travel route by sending control information including the steering amount to the steering device 270.
  • the driving support device 100 may control the traveling direction of the vehicle by controlling the braking amount of each wheel of the vehicle. In this case, the vehicle controller 210 performs control of the traveling direction of the vehicle by sending control information including the braking amount of each wheel to the braking device 261.
  • control of the driving device 260 and the control of the steering device 270 may be performed completely automatically, or may be performed in a manner that supports the driving operation (progression operation) of the driver.
  • the control of the driving device 260 and the control of the steering device 270 can be interrupted / stopped by the driver's intervention operation.
  • the vehicle controller 210 controls the operation of the host vehicle according to the operation plan of the operation planning device 10.
  • the in-vehicle device 200 includes a navigation device 220, an object detection device 230, and an output device 240.
  • Navigation device 220 calculates a route from the current position of the vehicle to the destination.
  • a route calculation method a method known at the time of filing based on a graph search theory such as the Dijkstra method or A * can be used.
  • the calculated route is sent to the vehicle controller 210 to be used for driving support of the host vehicle.
  • the calculated route is output through the output device 240 as route guidance information.
  • the navigation device 220 includes a position detection device 221, accessible map information 222, and road information 223. Note that the map information 222 and the road information 223 need only be readable by the navigation device 120, and may be configured physically separate from the navigation device 120, or provided in the communication device 30 (or the in-vehicle device 200). May be stored in a server that can be read via a communication device.
  • the position detection device 221 includes a global positioning system (Global Positioning System, GPS) and detects the traveling position (latitude / longitude) of the traveling vehicle.
  • GPS Global Positioning System
  • the map information 222 is a so-called electronic map, and is information in which latitude and longitude are associated with map information.
  • the map information 222 has road information 223 associated with each point.
  • the road information 223 is defined by nodes and links connecting the nodes.
  • the road information 223 includes information for specifying a road by the position / area of the road, road type for each road, road width for each road, and road shape information.
  • the road information 223 stores information regarding the position of the intersection, the approach direction of the intersection, the type of the intersection, and other intersection information for each road link identification information.
  • the road information 223 includes road type, road width, road shape, whether to go straight, whether to go straight ahead, whether to overtake, whether to pass (whether to enter an adjacent lane), and other roads. Information is stored in association with each other.
  • Navigation device 220 identifies a travel route on which the vehicle travels based on the current position of the vehicle detected by the position detection device 221.
  • the travel route is a planned travel route of the own vehicle and / or a travel performance route of the own vehicle.
  • the travel route may be a route to the destination designated by the user, or a route to the destination estimated based on the travel history of the own vehicle / user.
  • the travel route on which the vehicle travels may be specified for each road, may be specified for each road for which the up / down direction is specified, or may be specified for each single lane in which the vehicle actually travels. You may specify.
  • the navigation device 220 refers to road information 223, which will be described later, and identifies a road link for each lane of the travel route on which the vehicle travels.
  • the travel route includes specific information (coordinate information) of one or more points where the vehicle will pass in the future.
  • the travel route includes at least one point that suggests the next travel position on which the vehicle travels.
  • the travel route may be configured by a continuous line or may be configured by discrete points.
  • the travel route is specified by a road identifier, a lane identifier, and a link identifier. These lane identifier, lane identifier, and link identifier are defined in the map information 222 and the road information 223.
  • the object detection device 230 detects the situation around the host vehicle, and detects the presence of an object including an obstacle existing around the host vehicle and the position of the target.
  • the object detection device 230 includes a camera 231 and a radar device 232.
  • the camera 231 is an imaging device including an imaging element such as a CCD, and may be an infrared camera or a stereo camera.
  • the camera 231 is installed at a predetermined position of the own vehicle, and images an object around the own vehicle.
  • the surroundings of the own vehicle include the front, rear, left side, and right side of the own vehicle.
  • the object includes a two-dimensional sign such as a stop line marked on the road surface.
  • the object includes a three-dimensional object.
  • the object includes a stationary object such as a sign.
  • the objects include moving objects such as pedestrians, two-wheeled vehicles, and four-wheeled vehicles (other vehicles).
  • the objects include road structures such as guardrails, median strips, curbs.
  • the object detection device 230 may analyze the image data and identify the type of the object based on the analysis result.
  • the object detection device 230 uses a pattern matching technique or the like to identify whether the object included in the image data is a vehicle, a pedestrian, or a sign.
  • the object detection device 230 processes the acquired image data, and acquires the distance from the own vehicle to the object based on the position of the object existing around the own vehicle. In particular, the target object detection device 230 acquires the positional relationship between the target object and the own vehicle.
  • the radar device 232 a system known at the time of filing such as a millimeter wave radar, a laser radar, an ultrasonic radar, and a laser range finder can be used.
  • the object detection device 230 detects the presence / absence of the object, the position of the object, and the distance to the object based on the received signal of the radar device 232.
  • the object detection device 230 detects the presence / absence of the object, the position of the object, and the distance to the object based on the clustering result of the point cloud information acquired by the laser radar.
  • the output device 240 includes a display 241 and a speaker 242.
  • the output device 240 outputs various types of information related to driving assistance to a user or an occupant of a surrounding vehicle.
  • the output device 240 outputs a planned driving action plan and information related to travel control based on the driving action plan.
  • the vehicle occupant is notified in advance via the display 241 and the speaker 242 that the steering operation and acceleration / deceleration are executed.
  • the output device 240 may output various types of information related to driving support to an external device such as an intelligent road traffic system via a communication device. Further, when the travel route is corrected, the output device may output the information on the corrected travel route and that the travel route is corrected.
  • the driving support device 100 includes an operation planning device 10, an output device 20, and a communication device 30.
  • the operation planning device 10 includes a processor 11 that functions as a control device for the operation planning device 10.
  • the processor 11 includes a ROM (Read OnlyROMMemory) in which a program for executing a preceding vehicle presence / absence determination process, an inter-vehicle distance control process, a preceding vehicle path tracking determination process, a preceding vehicle path acquisition process, and a path tracking control process is stored.
  • ROM Read OnlyROMMemory
  • a program for executing a preceding vehicle presence / absence determination process, an inter-vehicle distance control process, a preceding vehicle path tracking determination process, a preceding vehicle path acquisition process, and a path tracking control process is stored.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • the output device 20 has the same function as the output device 240 of the on-vehicle device 200 described above.
  • a display 241 and a speaker 242 are used as the configuration of the output device 20.
  • the operation planning device 10 and the output device 20 can exchange information with each other via a wired or wireless communication line.
  • the communication device 30 exchanges information with the in-vehicle device 200, exchanges information inside the driving support device 100, and exchanges information with the outside of the driving support system 1.
  • FIG. 2 is a block configuration diagram illustrating various control processes in the processor 11 of the operation planning apparatus 10 included in the operation support apparatus 100 according to the first embodiment.
  • the detailed configuration of the operation planning apparatus 10 will be described with reference to FIG.
  • Various control processes in the processor 11 can be applied not only to one-sided one-lane roads but also to other road environments such as one-sided two-lane roads.
  • the driving plan apparatus 10 includes a preceding vehicle presence / absence determination processing unit 300, a preceding vehicle type determination processing unit 310, an inter-vehicle distance control processing unit 320, a preceding vehicle route follow-up processing unit 330, and a preceding vehicle presence / absence.
  • a determination processing unit 340, a preceding vehicle type determination processing unit 350, and a preceding vehicle route follow-up processing unit 360 are provided.
  • the preceding vehicle presence / absence determination processing unit 300 determines the presence / absence of a preceding vehicle.
  • the presence or absence of a preceding vehicle is determined by whether or not there is a vehicle ahead in the same lane as the host vehicle 1A on the map data.
  • a specific processing method of the preceding vehicle presence / absence determination processing is not described in detail, for example, a determination method known at the time of filing can be used.
  • the motorcycle 1B is detected as a preceding vehicle (see FIGS. 4 and 5). If it is determined that there is a preceding vehicle, a preceding vehicle type determination process is performed.
  • the preceding vehicle type determination processing unit 310 determines whether the preceding vehicle is a four-wheeled vehicle or a two-wheeled vehicle.
  • the type of the preceding vehicle is determined using image recognition technology. Although not described in detail, for example, an object type determination method known at the time of filing can be used.
  • a two-wheeled vehicle is detected as the preceding vehicle.
  • an inter-vehicle distance control process is performed.
  • an inter-vehicle distance control process and a preceding vehicle route following process are performed.
  • the inter-vehicle distance control processing unit 320 performs inter-vehicle distance control.
  • the inter-vehicle distance control the inter-vehicle distance d is controlled to be constant.
  • T1 Time Head Way
  • T2 Time to Collision
  • d (A / T1) + (B / T2)
  • the preceding vehicle route tracking processing unit 330 performs route tracking of the preceding vehicle.
  • the route of the preceding vehicle is obtained by projecting the locus of the preceding vehicle tracked by the stereo camera, LIDAR or RADER on the map data, and acquiring the locus as the route on which the preceding vehicle has traveled. And the control process which tracks the path
  • a route following method for a preceding vehicle known at the time of filing can be used.
  • the first vehicle presence / absence determination processing unit 340 determines whether or not there is a first vehicle.
  • the presence or absence of a preceding vehicle is determined by whether or not there is a vehicle in the same lane at a further forward position than the preceding vehicle in the same lane as the host vehicle 1A on the map data.
  • the destination vehicle type determination processing unit 350 determines whether the destination vehicle traveling in front of the preceding vehicle is a four-wheeled vehicle or a two-wheeled vehicle.
  • the type of the preceding vehicle is determined using image recognition technology. Although not described in detail, for example, an object type determination method known at the time of filing can be used. In the first embodiment, when it is determined that the preceding vehicle is a four-wheeled vehicle, an inter-vehicle control process and a preceding vehicle route follow-up process are performed.
  • the first-preceding vehicle route follow-up processing unit 360 performs the following vehicle route-following.
  • the method is the same as the method by the preceding vehicle route follow-up processing unit 330.
  • FIG. 3 illustrates a driving support control process flow executed by the processor 11 of the driving planning apparatus 10 included in the driving support apparatus 100 according to the first embodiment. Hereinafter, each step of FIG. 3 showing a driving assistance control processing structure is demonstrated.
  • step S1 it is determined whether there is a preceding vehicle. If YES (there is a preceding vehicle), the process proceeds to step S2, and if NO (there is no preceding car), the process proceeds to a return.
  • step S2 following the determination that there is a preceding vehicle in step S1, it is determined whether the preceding vehicle is a two-wheeled vehicle or a four-wheeled vehicle. In the case of a four-wheeled vehicle, the process proceeds to step S3, and in the case of a two-wheeled vehicle, the process proceeds to step S5.
  • step S3 following the determination that the preceding vehicle in step S2 is a four-wheeled vehicle, inter-vehicle distance control is performed on the preceding vehicle (four-wheeled vehicle), and the process proceeds to step S4.
  • step S4 following the headway control in step S3, following the preceding vehicle route to the preceding vehicle (four-wheeled vehicle) is performed, and the process proceeds to return.
  • step S5 following the determination that the preceding vehicle in step S2 is a two-wheeled vehicle, it is determined whether there is a preceding vehicle. If YES (previous vehicle is present), the process proceeds to step S6. If NO (previous vehicle is not present), the process proceeds to step S7.
  • step S6 it is determined whether the preceding vehicle is a two-wheeled vehicle or a four-wheeled vehicle following the presence of the preceding vehicle in step S5. In the case of a four-wheeled vehicle, the process proceeds to step S8, and in the case of a two-wheeled vehicle, the process proceeds to step S7.
  • step S7 following the determination that there is no preceding vehicle in step S5 or the determination that the preceding vehicle is a two-wheeled vehicle in step S6, inter-vehicle distance control is performed, and the process proceeds to return.
  • step S8 following the determination that the preceding vehicle in step S6 is a four-wheeled vehicle, inter-vehicle distance control for the preceding vehicle (four-wheeled vehicle) is performed, and the process proceeds to step S9.
  • step S9 following the inter-vehicle distance control in step S8, the preceding vehicle route to the preceding vehicle (four-wheeled vehicle) is followed, and the process proceeds to return.
  • the operation of the first embodiment will be described by being divided into “driving support control operation” and “characteristic operation of driving support control”.
  • step S1 When the preceding vehicle of the own vehicle is a four-wheeled vehicle, the flow of step S1, step S2, step S3, step S4, and return is repeated in the flowchart of FIG. That is, inter-vehicle distance control is performed in step S3, and preceding vehicle path tracking is performed in step S4.
  • step S3 When the preceding vehicle is a four-wheeled vehicle, route following and inter-vehicle distance control for the four-wheeled vehicle that is the preceding vehicle is performed.
  • step S1, step S2, step S5, step S7, and return is repeated in the flowchart of FIG.
  • the preceding vehicle of the own vehicle is a two-wheeled vehicle and the preceding vehicle is also a two-wheeled vehicle
  • step S1, step S2, step S5, step S6, step S7, and return is repeated.
  • step S7 only the inter-vehicle distance control is performed without following the route of the two-wheeled vehicle.
  • the preceding vehicle of the own vehicle 1A is the two-wheeled vehicle 1B
  • only the inter-vehicle distance control for the two-wheeled vehicle 1B that is the preceding vehicle is performed without following the route of the two-wheeled vehicle 1B that is the preceding vehicle, as shown in FIG. To be implemented.
  • the preceding vehicle of the own vehicle is a two-wheeled vehicle and the preceding vehicle is also a two-wheeled vehicle
  • only the inter-vehicle distance control for the two-wheeled vehicle 1B that is the preceding vehicle is performed without following the route of the two-wheeled vehicle 1B that is the preceding vehicle.
  • the travel lane information of the own vehicle 1A and the motorcycle 1B is acquired from the map information 222.
  • step S8 the inter-vehicle distance control for the preceding vehicle (two-wheeled vehicle) is performed, and in step S9, the preceding vehicle route tracking for the preceding vehicle (four-wheeled vehicle) is performed.
  • step S9 the preceding vehicle route tracking for the preceding vehicle (four-wheeled vehicle) is performed.
  • the inter-vehicle control with the two-wheeled vehicle 1B, which is the preceding vehicle, and the preceding vehicle The following of the four-wheeled vehicle 1C is performed.
  • the travel lane information of the own vehicle 1A, the two-wheeled vehicle 1B, and the four-wheeled vehicle 1C is acquired from the map information 222.
  • the presence / absence of a preceding vehicle with respect to the own vehicle is determined.
  • the preceding vehicle type is determined as to whether the preceding vehicle of the own vehicle is a four-wheeled vehicle or a two-wheeled vehicle.
  • the preceding vehicle is a four-wheeled vehicle
  • both the inter-vehicle control with the four-wheeled vehicle and the route following of the four-wheeled vehicle are performed, and when the preceding vehicle is a two-wheeled vehicle, the two-wheeled vehicle is not followed and the two-wheeled vehicle is not followed.
  • Example 1 the presence or absence of a preceding vehicle with respect to the own vehicle is determined, and when it is determined that there is a preceding vehicle, the type of the preceding vehicle is determined as to whether the preceding vehicle of the own vehicle is a four-wheeled vehicle or a two-wheeled vehicle.
  • the preceding vehicle is a two-wheeled vehicle and the preceding vehicle is a four-wheeled vehicle
  • the following vehicle route is followed without following the route of the two-wheeled vehicle but following the route of the four-wheeled vehicle that is the preceding vehicle.
  • the route of the own vehicle must be determined by another method unless the route of the two-wheeled vehicle is followed.
  • the predecessor is a four-wheeled vehicle
  • the route of the host vehicle need not be determined by another method. Therefore, when the preceding vehicle is a four-wheeled vehicle, a stable own vehicle behavior in which lateral movement is suppressed is ensured by a simple method of following the preceding vehicle route.
  • the preceding vehicle of the own vehicle is a four-wheeled vehicle or a two-wheeled vehicle.
  • the preceding vehicle type is determined.
  • the preceding vehicle is a four-wheeled vehicle
  • both the inter-vehicle control with the four-wheeled vehicle and the route following of the four-wheeled vehicle are performed.
  • the preceding vehicle is a two-wheeled vehicle
  • the distance between the two-wheeled vehicle is controlled without following the route of the two-wheeled vehicle (FIG. 4). For this reason, when a preceding vehicle is a two-wheeled vehicle, the driving assistance method which ensures the stable own vehicle behavior which suppressed lateral movement can be provided.
  • a vehicle controller (operation planning device 10 and processor 11) that performs inter-vehicle distance control between the host vehicle and the preceding vehicle and path follow-up control to the preceding vehicle is provided.
  • the vehicle controller determines whether there is a preceding vehicle with a preceding vehicle presence / absence determination processing unit 300 that determines whether there is a preceding vehicle with respect to the own vehicle.
  • a preceding vehicle type determination processing unit 310 that determines a preceding vehicle type of whether the preceding vehicle is a four-wheeled vehicle or a two-wheeled vehicle.
  • both the inter-vehicle control with the four-wheeled vehicle and the route following of the four-wheeled vehicle are performed.
  • the preceding vehicle is a two-wheeled vehicle
  • the distance between the two-wheeled vehicle is controlled without following the route of the two-wheeled vehicle (FIG. 2).
  • the driving assistance device which ensures the stable own vehicle behavior which suppressed lateral movement can be provided.
  • Example 2 is an example in which, when the preceding vehicle is a two-wheeled vehicle, lane tracking is performed to follow the planned travel route acquired from the result of lane recognition without following the route of the two-wheeled vehicle.
  • FIG. 6 is a block configuration diagram illustrating various control processes in the processor 11 of the operation planning apparatus 10 included in the operation support apparatus 100 according to the second embodiment.
  • the detailed configuration of the operation planning apparatus 10 will be described with reference to FIG.
  • Various control processes in the processor 11 can be applied not only to one-sided one-lane roads but also to other road environments such as one-sided two-lane roads.
  • the driving plan apparatus 10 includes a preceding vehicle presence / absence determination processing unit 300, a preceding vehicle type determination processing unit 310, an inter-vehicle distance control processing unit 320, a preceding vehicle route tracking processing unit 330, and a lane tracking process. Part 430.
  • the preceding vehicle presence / absence determination processing unit 300, the preceding vehicle type determination processing unit 310, the inter-vehicle distance control processing unit 320, and the preceding vehicle route follow-up processing unit 330 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the lane tracking processing unit 430 recognizes the lane in which the host vehicle travels using white line information or road boundary information recognized by a stereo camera, LIDAR or RADER.
  • the lane 2A is detected as shown in FIG. And the control process which drive
  • a lane tracking method known at the time of filing can be used.
  • FIG. 7 shows a driving assistance control process flow executed by the processor 11 of the driving planning apparatus 10 included in the driving assistance apparatus 100 of the second embodiment.
  • FIG. 7 shows a driving assistance control process flow executed by the processor 11 of the driving planning apparatus 10 included in the driving assistance apparatus 100 of the second embodiment.
  • step S21 it is determined whether there is a preceding vehicle. If YES (there is a preceding vehicle), the process proceeds to step S22, and if NO (there is no preceding car), the process proceeds to a return.
  • step S22 following the determination that there is a preceding vehicle in step S21, it is determined whether the preceding vehicle is a two-wheeled vehicle or a four-wheeled vehicle. In the case of a four-wheeled vehicle, the process proceeds to step S23, and in the case of a two-wheeled vehicle, the process proceeds to step S25.
  • step S23 following the determination that the preceding vehicle in step S22 is a four-wheeled vehicle, inter-vehicle distance control is performed on the preceding vehicle (four-wheeled vehicle), and the process proceeds to step S24.
  • step S24 following the inter-vehicle distance control in step S23, the vehicle follows the preceding vehicle to the preceding vehicle (four-wheeled vehicle) and proceeds to return.
  • step S25 following the determination that the preceding vehicle in step S22 is a two-wheeled vehicle, inter-vehicle distance control between the own vehicle and the two-wheeled vehicle is performed, and the process proceeds to step S26.
  • step S26 following the inter-lane control in step S25, lane tracking is performed to follow the planned travel route acquired from the result of lane recognition, and the process proceeds to return.
  • step S21 ⁇ step S22 ⁇ step S23 ⁇ step S24 ⁇ return is repeated in the flowchart of FIG. That is, inter-vehicle distance control is performed in step S23, and preceding vehicle path tracking is performed in step S24.
  • route following and inter-vehicle distance control for the four-wheeled vehicle that is the preceding vehicle is performed.
  • step S21 ⁇ step S22 ⁇ step S25 ⁇ step S26 ⁇ return is repeated in the flowchart of FIG. That is, inter-vehicle distance control is performed in step S25, and lane tracking is performed in step S26.
  • the preceding vehicle of the own vehicle 1A is the two-wheeled vehicle 1B, as shown in FIG. 8, the planned traveling route obtained from the result of the lane recognition is obtained without following the route of the two-wheeled vehicle 1B as the preceding vehicle.
  • lane is followed.
  • Information on the lane 2A in which the host vehicle 1A and the motorcycle 1B travel is acquired from the map information 222.
  • the two-wheeled vehicle 1B having a large lateral movement when the two-wheeled vehicle 1B having a large lateral movement is the preceding vehicle, the two-wheeled vehicle 1B does not follow the route, the inter-vehicle distance control with the two-wheeled vehicle 1B, and the own vehicle 1A along the lane 2A.
  • Lane tracking is performed in which the vehicle travels on a planned travel route (for example, a central position route of the travel lane) set in the travel lane. Therefore, when the preceding vehicle is a two-wheeled vehicle, by determining the travel route of the host vehicle by following the lane, a stable host vehicle behavior with suppressed lateral movement is ensured.
  • Example 3 is an example in which, when the preceding vehicle is a two-wheeled vehicle, an interpolation lane tracking that follows an interpolation lane generated based on a planned travel route obtained from the result of lane recognition without performing the route tracking of the two-wheeled vehicle is used. It is.
  • FIG. 9 is a block configuration diagram illustrating various control processes in the processor 11 of the operation planning apparatus 10 included in the operation support apparatus 100 according to the third embodiment.
  • the detailed configuration of the operation planning apparatus 10 will be described with reference to FIG.
  • Various control processes in the processor 11 can be applied not only to one-sided one-lane roads but also to other road environments such as one-sided two-lane roads.
  • the driving planning apparatus 10 includes a preceding vehicle presence / absence determination processing unit 300, a preceding vehicle type determination processing unit 310, an inter-vehicle distance control processing unit 320, a preceding vehicle route tracking processing unit 330, and an interpolation lane tracking. And a processing unit 500.
  • the preceding vehicle presence / absence determination processing unit 300, the preceding vehicle type determination processing unit 310, the inter-vehicle distance control processing unit 320, and the preceding vehicle route follow-up processing unit 330 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the interpolation lane tracking processing unit 500 recognizes the lane in which the vehicle travels using the white line information or road boundary information recognized by the stereo camera, LIDAR or RADER.
  • the lanes 3A and 3A ′ are detected.
  • the length L2 of the recognized lanes 3A and 3A ' is shorter than the forward gaze distance L1
  • the lanes 3A and 3A' are interpolated.
  • the position between the position of the preceding vehicle two-wheeled vehicle 1B
  • this is set as the interpolation lane 3B.
  • FIG. 11 the position between the position of the preceding vehicle (two-wheeled vehicle 1B) is extended from the end of the lane 3A with a straight line, and this is set as the interpolation lane 3B.
  • the curvature ⁇ at the end of the lane 3A ′ is acquired, and the portion extending to the position of the preceding vehicle (two-wheeled vehicle 1B) with the curvature ⁇ is extended with a curve, which is set as the interpolation lane 3B ′.
  • works inside the interpolation lane 3B, 3B ' is performed.
  • a lane tracking method known at the time of filing can be used.
  • FIG. 10 illustrates a driving support control process flow executed by the processor 11 of the driving planning apparatus 10 included in the driving support apparatus 100 according to the third embodiment. Hereinafter, each step of FIG. 10 showing a driving assistance control processing structure is demonstrated.
  • step S31 it is determined whether there is a preceding vehicle. If YES (there is a preceding vehicle), the process proceeds to step S32. If NO (the preceding vehicle is not present), the process proceeds to a return.
  • step S32 following the determination that there is a preceding vehicle in step S31, it is determined whether the preceding vehicle is a two-wheeled vehicle or a four-wheeled vehicle. In the case of a four-wheeled vehicle, the process proceeds to step S33, and in the case of a two-wheeled vehicle, the process proceeds to step S35.
  • step S33 following the determination that the preceding vehicle in step S32 is a four-wheeled vehicle, inter-vehicle distance control is performed on the preceding vehicle (four-wheeled vehicle), and the process proceeds to step S34.
  • step S34 following the headway control in step S33, the preceding vehicle route to the preceding vehicle (four-wheeled vehicle) is followed, and the process proceeds to return.
  • step S35 following the determination that the preceding vehicle in step S32 is a two-wheeled vehicle, inter-vehicle distance control between the own vehicle and the two-wheeled vehicle is performed, and the process proceeds to step S36.
  • step S36 following the inter-vehicle distance control in step S35, interpolated lane tracking is performed to follow the interpolated lane generated based on the planned travel route acquired from the lane recognition result, and the process proceeds to return.
  • step S31 When the preceding vehicle of the host vehicle is a four-wheeled vehicle, the flow of step S31 ⁇ step S32 ⁇ step S33 ⁇ step S34 ⁇ return is repeated in the flowchart of FIG. That is, inter-vehicle distance control is performed in step S33, and preceding vehicle path tracking is performed in step S34.
  • step S34 As described above, when the preceding vehicle is a four-wheeled vehicle, route following and inter-vehicle distance control for the four-wheeled vehicle that is the preceding vehicle is performed.
  • step S31 When the preceding vehicle of the own vehicle is a two-wheeled vehicle, the flow of step S31 ⁇ step S32 ⁇ step S35 ⁇ step S36 ⁇ return is repeated in the flowchart of FIG. That is, inter-vehicle distance control is performed in step S35, and interpolation lane tracking is performed in step S36.
  • the preceding vehicle of the own vehicle 1A is the two-wheeled vehicle 1B
  • the interpolation lane 3B generated based on the planned traveling route acquired from the result of the lane recognition without following the route of the two-wheeled vehicle 1B that is the preceding vehicle.
  • 3B ′ is followed by interpolation lane tracking.
  • the interpolated lane tracking that follows the interpolated lane 3B is performed using the interpolated lane 3B that is linearly interpolated.
  • an interpolated lane tracking that follows the interpolated lane 3B ′ is performed using the interpolated lane 3B ′ interpolated as shown in FIG. Is called.
  • Information on the lanes 3A and 3A 'on which the host vehicle 1A and the motorcycle 1B travel is acquired from the map information 222.
  • the following control of the distance between the two-wheeled vehicle 1B and the traveling lane of the own vehicle 1A are set without following the route of the two-wheeled vehicle 1B.
  • Interpolation lane tracking is performed to follow the interpolation lanes 3B and 3B ′ set based on the planned travel route. Therefore, when the preceding vehicle is a two-wheeled vehicle and the recognized lanes 3A and 3A 'have a short length L2, the traveling route of the vehicle is determined by interpolating lane tracking, thereby suppressing lateral movement. The vehicle behavior is secured.
  • the two-wheeled vehicle will not follow the route, but will follow the interpolated lane following the interpolated lanes 3B and 3B ′ generated based on the planned travel route obtained from the lane recognition result.
  • the inter-vehicle control with the two-wheeled vehicle is performed (FIG. 10). Therefore, in addition to the effect of (1) or (2) above, when the preceding vehicle is a two-wheeled vehicle and the recognized lanes 3A and 3A 'are short in length, the travel route of the vehicle by interpolation lane tracking It is possible to secure a stable vehicle behavior that suppresses lateral movement.
  • the interpolated lane 3B is generated by linearly extending the planned travel route acquired from the lane recognition result to the position of the two-wheeled vehicle 1B as the preceding vehicle (FIG. 11). For this reason, in addition to the effect of the above (5), when the length of the lane 3A recognized in the traveling scene on the straight road is short, the interpolation lane 3B that ensures a stable own vehicle behavior can be generated.
  • the interpolated lane 3B ′ is generated by extending the planned travel route acquired from the lane recognition result to the position of the two-wheeled vehicle 1B, which is the preceding vehicle, according to the curvature ⁇ of the planned travel route end (FIG. 12). For this reason, in addition to the effect of the above (5), when the length of the lane 3A ′ recognized in the traveling scene on the curved road is short, it is possible to generate the interpolation lane 3B ′ that ensures a stable own vehicle behavior.
  • the driving support system 1 includes the driving support device 100 and the in-vehicle device 200.
  • the driving support system is not limited to the first to third embodiments, and a part of the functions may be applied to a portable terminal device that can exchange vehicle-mounted device information.
  • a terminal device apparatuses, such as a smart phone and PDA, are included.
  • Example 1 when the preceding vehicle is a two-wheeled vehicle, an example in which the route of the two-wheeled vehicle is not basically shown is shown.
  • the second embodiment when the preceding vehicle is a two-wheeled vehicle, an example of lane tracking is shown.
  • the third embodiment when the preceding vehicle is a two-wheeled vehicle, an example in which the interpolation lane is followed is shown.
  • the preceding vehicle similarly to the first embodiment, when the preceding vehicle is a two-wheeled vehicle and the preceding vehicle is a four-wheeled vehicle, the preceding vehicle route that follows the route of the four-wheeled vehicle that is the preceding vehicle. An example of following may be used.
  • the driving support method and the driving support device of the present disclosure are applied to an automatic driving vehicle equipped with a driving support system in which steering / driving / braking is automatically controlled by selecting an automatic driving mode is shown.
  • the driving support method and the driving support device of the present disclosure can be applied to a driving support vehicle that can follow the lateral position of at least the preceding vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

先行車が二輪車である場合、横方向移動を抑えた安定した自車挙動を確保すること。 自車と先行車との車間制御と先行車への経路追従制御を行う運転計画装置(10)及びプロセッサ(11)を備える。この運転支援装置において、運転計画装置(10)及びプロセッサ(11)は、自車に対する先行車の有無を判定する先行車有無判定処理部(300)と、先行車有りと判定されたとき、自車の先行車が四輪車であるか二輪車であるかの先行車種別を判定する先行車有無判定処理部(310)と、を有する。先行車が四輪車である場合は、四輪車との車間制御及び四輪車の経路追従の両方を行う。先行車が二輪車である場合には、二輪車の経路追従はせずに、二輪車との車間制御を実施する。

Description

運転支援方法及び運転支援装置
 本開示は、自車を先行車に追従走行させる運転支援方法及び運転支援装置に関する。
 従来、二輪車を追従対象の先行車として検出し、車幅方向の移動を検出し、且つ、その二輪車に先行する車を検出した場合は、追従加速度を抑制する車両用運転支援装置が知られている(例えば、特許文献1参照)。
特開2004-265238号公報
 しかしながら、従来装置にあっては、先行車が二輪車である場合、四輪車に比べて横移動量が大きな二輪車に対して経路追従を行うと、自車が横方向移動により不安定な挙動になり、自車の挙動が大きく乱れるおそれがある。
 本開示は、上記問題に着目してなされたもので、先行車が二輪車である場合、横方向移動を抑えた安定した自車挙動を確保する運転支援方法及び運転支援装置を提供することを目的とする。
 上記目的を達成するため、本開示は、自車を先行車に追従走行させる運転支援方法である。この運転支援方法において、自車に対する先行車の有無を判定し、先行車有りと判定されたとき、自車の先行車が四輪車であるか二輪車であるかの先行車種別を判定する。
先行車が四輪車である場合は、四輪車との車間制御及び四輪車の経路追従の両方を行う。
先行車が二輪車である場合には、二輪車の経路追従はせずに、二輪車との車間制御を実施する。
 上記のように、先行車が二輪車である場合には、二輪車の経路追従はせずに、二輪車との車間制御を実施することで、先行車が二輪車である場合、横方向移動を抑えた安定した自車挙動を確保することができる。
実施例1の運転支援方法及び運転支援装置が適用された運転支援システムを示すブロック構成図である。 実施例1の運転支援装置に有する運転計画装置のプロセッサにおける各種制御処理を示すブロック構成図である。 実施例1の運転支援装置に有する運転計画装置のプロセッサにて実行される運転支援制御処理の流れを示すフローチャートである。 実施例1の運転支援装置により先々行車が無く先行車が二輪車である片側1車線道路を自車が走行する場合を一例に挙げた作用説明図である。 実施例1の運転支援装置により先々行車が四輪車であり先行車が二輪車である片側1車線道路を走行する場合を一例に挙げた作用説明図である。 実施例2の運転支援装置に有する運転計画装置のプロセッサにおける各種制御処理を示すブロック構成図である。 実施例2の運転支援装置に有する運転計画装置のプロセッサにて実行される運転支援制御処理の流れを示すフローチャートである。 実施例2の運転支援装置により先行車が二輪車である片側1車線道路を自車が走行する場合を一例に挙げた作用説明図である。 実施例3の運転支援装置に有する運転計画装置のプロセッサにおける各種制御処理を示すブロック構成図である。 実施例3の運転支援装置に有する運転計画装置のプロセッサにて実行される運転支援制御処理の流れを示すフローチャートである。 実施例3の運転支援装置により先行車が二輪車である片側1車線道路を直線補間経路に沿って自車が走行する場合を一例に挙げた作用説明図である。 実施例3の運転支援装置により先行車が二輪車である片側1車線道路を曲線補間経路に沿って自車が走行する場合を一例に挙げた作用説明図である。
 以下、本開示による運転支援方法及び運転支援装置を実現する最良の実施形態を、図面に示す実施例1~実施例3に基づいて説明する。
 まず、構成を説明する。
実施例1における運転支援方法及び運転支援装置は、自動運転モードの選択により操舵/駆動/制動が自動制御される運転支援システムが搭載された自動運転車両に適用したものである。以下、実施例1の構成を、「全体システム構成」、「運転計画装置の詳細構成」、「運転支援制御処理構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1の運転支援方法及び運転支援装置が適用された運転支援システムを示すブロック構成図である。以下、図1に基づいて全体システム構成を説明する。
 運転支援システム1は、図1に示すように、運転支援装置100と、車載装置200と、を備える。なお、運転支援システム1、運転支援装置100、車載装置200、及びこれらが備える各装置は、CPUなどの演算処理装置を備え、演算処理を実行するコンピュータである。
 まず、車載装置200について説明する。
車載装置200は、車両コントローラ210、ナビゲーション装置220、対象物検出装置230、及び出力装置240を備える。車載装置200を構成する各装置は、相互に情報の授受を行うためにCAN(Controller Area Network)、その他の車載LANによって接続されている。車載装置200は、車載LANを介して運転支援装置100と情報の授受を行うことができる。
 車両コントローラ210は、エンジンコントロールユニット(Engine Control Unit, ECU)などの車載コンピュータであり、車両の運転を電子的に制御する。車両としては、電動モータを走行駆動源として備える電気自動車、内燃機関を走行駆動源として備えるエンジン自動車、電動モータ及び内燃機関の両方を走行駆動源として備えるハイブリッド自動車を例示できる。なお、電動モータを走行駆動源とする電気自動車やハイブリッド自動車には、二次電池を電動モータの電源とするタイプや燃料電池を電動モータの電源とするタイプのものも含まれる。そして、車両コントローラ210は、検出装置250と駆動装置260と操舵装置270とを動作させる。
 検出装置250は、舵角センサ251、車速センサ252、姿勢センサ253を有する。舵角センサ251は、操舵量、操舵速度、操舵加速度などの情報を検出し、車両コントローラ210へ出力する。車速センサ252は、車両の速度及び/又は加速度を検出し、車両コントローラ210へ出力する。姿勢センサ253は、車両の位置、車両のピッチ角、車両のヨー角車両のロール角を検出し、車両コントローラ210へ出力する。姿勢センサ253は、ジャイロセンサを含む。
 駆動装置260は、自車の駆動機構を備える。駆動機構には、上述した走行駆動源である電動モータ及び/又は内燃機関、これら走行駆動源からの出力を駆動輪に伝達するドライブシャフトや自動変速機を含む動力伝達装置、及び車輪を制動する制動装置261などが含まれる。駆動装置260は、アクセル操作及びブレーキ操作による入力信号、車両コントローラ70又は運転支援装置100から取得した制御信号に基づいてこれら駆動機構の各制御信号を生成し、車両の加減速を含む走行制御を実行する。駆動装置260に制御情報を送出することにより、車両の加減速を含む走行制御を自動的に行うことができる。なお、ハイブリッド自動車の場合には、車両の走行状態に応じた電動モータと内燃機関とのそれぞれに出力するトルク配分も駆動装置260に送出される。
 操舵装置270は、ステアリングアクチュエータを備える。ステアリングアクチュエータは、ステアリングのコラムシャフトに取り付けられるモータ等を含む。操舵装置270は、車両コントローラ210から取得した制御信号、又はステアリング操作により入力信号に基づいて車両の進行方向の変更制御を実行する。車両コントローラ210は、操舵量を含む制御情報を操舵装置270に送出することにより、自車が走行経路上に沿って走行するように、自車の操舵制御を実行する。また、運転支援装置100は、車両の各輪の制動量をコントロールすることにより車両の進行方向の制御を実行してもよい。この場合、車両コントローラ210は、各輪の制動量を含む制御情報を制動装置261へ送出することにより、車両の進行方向の制御を実行する。なお、駆動装置260の制御、操舵装置270の制御は、完全に自動で行われてもよいし、ドライバの駆動操作(進行操作)を支援する態様で行われてもよい。駆動装置260の制御及び操舵装置270の制御は、ドライバの介入操作により中断/中止させることができる。車両コントローラ210は、運転計画装置10の運転計画に従って自車の運転を制御する。
 車載装置200は、ナビゲーション装置220と、対象物検出装置230と、出力装置240と、を備える。
 ナビゲーション装置220は、自車の現在位置から目的地までの経路を算出する。経路の算出手法は、ダイキストラ法やA*などのグラフ探索理論に基づく出願時に知られた手法を用いることができる。算出した経路は、自車の運転支援に用いるために、車両コントローラ210へ送出される。算出した経路は、経路案内情報として出力装置240を介して出力される。このナビゲーション装置220は、位置検出装置221と、アクセス可能な地図情報222と、道路情報223とを備える。なお、地図情報222及び道路情報223は、ナビゲーション装置120が読み込むことができればよく、ナビゲーション装置120とは物理的に別体として構成してもよいし、通信装置30(又は車載装置200に設けられた通信装置)を介して読み込みが可能なサーバに格納してもよい。
 位置検出装置221は、グローバル・ポジショニング・システム(Global Positioning System, GPS)を備え、走行中の自車の走行位置(緯度・経度)を検出する。
 地図情報222は、いわゆる電子地図であり、緯度経度と地図情報が対応づけられた情報である。地図情報222は、各地点に対応づけられた道路情報223を有する。
 道路情報223は、ノードと、ノード間を接続するリンクにより定義される。道路情報223は、道路の位置/領域により道路を特定する情報と、道路ごとの道路種別、道路ごとの道路幅、道路の形状情報とを含む。道路情報223は、各道路リンクの識別情報ごとに、交差点の位置、交差点の進入方向、交差点の種別その他の交差点に関する情報を対応づけて記憶する。また、道路情報223は、各道路リンクの識別情報ごとに、道路種別、道路幅、道路形状、直進の可否、進行の優先関係、追い越しの可否(隣接レーンへの進入の可否)その他の道路に関する情報を対応づけて記憶する。
 ナビゲーション装置220は、位置検出装置221により検出された自車の現在位置に基づいて、自車が走行する走行経路を特定する。走行経路は、自車の走行予定経路、及び/又は、自車の走行実績経路である。走行経路はユーザが指定した目的地に至る経路であってもよいし、自車/ユーザの走行履歴に基づいて推測された目的地に至る経路であってもよい。自車が走行する走行経路は、道路ごとに特定してもよいし、上り/下りの方向が特定された道路ごとに特定してもよいし、自車が実際に走行する単一の車線ごとに特定してもよい。ナビゲーション装置220は、後述する道路情報223を参照して、自車が走行する走行経路の車線ごとに道路リンクを特定する。
 走行経路は、自車が将来通過する一つ又は複数の地点の特定情報(座標情報)を含む。走行経路は、自車が走行する、次の走行位置を示唆する一つの点を少なくとも含む。走行経路は、連続した線により構成されてもよいし、離散的な点により構成されてもよい。特に限定されないが、走行経路は、道路識別子、レーン識別子、リンク識別子により特定される。これらの車線識別子、レーン識別子、リンク識別子は、地図情報222、道路情報223において定義される。
 対象物検出装置230は、自車の周囲の状況を検出するもので、自車の周囲に存在する障害物を含む対象物の存在及びその存在位置を検出する。特に限定されないが、対象物検出装置230としては、カメラ231と、レーダー装置232と、を含む。
 カメラ231は、例えばCCD等の撮像素子を備える撮像装置であり、赤外線カメラ、ステレオカメラでもよい。カメラ231は自車の所定の位置に設置され、自車の周囲の対象物を撮像する。自車の周囲は、自車の前方、後方、左側方、右側方を含む。対象物は、路面に表記された停止線などの二次元の標識を含む。対象物は三次元の物体を含む。対象物は、標識などの静止物を含む。対象物は、歩行者、二輪車、四輪車(他車両)などの移動物体を含む。対象物は、ガードレール、中央分離帯、縁石などの道路構造物を含む。
 対象物検出装置230は、画像データを解析し、その解析結果に基づいて対象物の種別を識別してもよい。対象物検出装置230は、パターンマッチング技術などを用いて、画像データに含まれる対象物が、車両であるか、歩行者であるか、標識であるか否かを識別する。対象物検出装置230は、取得した画像データを処理し、自車の周囲に存在する対象物の位置に基づいて、自車から対象物までの距離を取得する。特に、対象物検出装置230は、対象物と自車との位置関係を取得する。
 レーダー装置232としては、ミリ波レーダー、レーザーレーダー、超音波レーダー、レーザーレンジファインダーなどの出願時に知られた方式のものを用いることができる。対象物検出装置230は、レーダー装置232の受信信号に基づいて対象物の存否、対象物の位置、対象物までの距離を検出する。対象物検出装置230は、レーザーレーダーで取得した点群情報のクラスタリング結果に基づいて、対象物の存否、対象物の位置、対象物までの距離を検出する。
 出力装置240は、ディスプレイ241とスピーカ242とを備える。出力装置240は、運転支援に関する各種の情報をユーザ又は周囲の車両の乗員に向けて出力する。出力装置240は、立案された運転行動計画、その運転行動計画に基づく走行制御に関する情報を出力する。走行経路(目標経路)上を自車に走行させる制御情報に応じた情報として、操舵操作や加減速が実行されることをディスプレイ241、スピーカ242を介して、自車の乗員に予め知らせる。また、これらの運転支援に関する情報を車室外ランプ、車室内ランプを介して、自車の乗員又は他車両の乗員に予め知らせてもよい。また、出力装置240は、通信装置を介して、高度道路交通システムなどの外部装置に運転支援に関する各種の情報を出力してもよい。また、走行経路が補正された場合には、出力装置は、走行経路が補正されること、及び、補正された走行経路の情報を出力してもよい。
 次に、運転支援装置100について説明する。
運転支援装置100は、図1に示すように、運転計画装置10と、出力装置20と、通信装置30と、を備える。
 運転計画装置10は、運転計画装置10の制御装置として機能するプロセッサ11を備える。具体的に、プロセッサ11は、先行車有無判定処理,車間制御処理,先行車経路追従判定処理,先行車経路取得処理,経路追従制御処理を実行させるプログラムが格納されたROM(Read Only Memory)と、このROMに格納されたプログラムを実行することで、運転計画装置10として機能する動作回路としてのCPU(Central Processing Unit)と、アクセス可能な記憶装置として機能するRAM(Random Access Memory)と、を備えるコンピュータである。つまり、プロセッサ11は、先行車有無判定処理、先行車種別判定処理、車間制御処理、先行車経路追従処理、の機能を有する。
 出力装置20は、先述した車載装置200の出力装置240と同様の機能を有する。ディスプレイ241、スピーカ242を、出力装置20の構成として用いる。運転計画装置10と、出力装置20とは、有線又は無線の通信回線を介して互いに情報の授受が可能である。
 通信装置30は、車載装置200との情報授受、運転支援装置100内部の情報授受、運転支援システム1の外部との情報授受を行う。
 [運転計画装置の詳細構成]
 図2は、実施例1の運転支援装置100に有する運転計画装置10のプロセッサ11における各種制御処理を示すブロック構成図である。以下、図2に基づいて運転計画装置10の詳細構成について説明する。なお、プロセッサ11での各種制御処理は、片側1車線道路に限らず、片側2車線道路等、他の道路環境でも適用できる。
 運転計画装置10は、図2に示すように、先行車有無判定処理部300と、先行車種別判定処理部310と、車間制御処理部320と、先行車経路追従処理部330と、先々行車有無判定処理部340と、先々行車種別判定処理部350と、先々行車経路追従処理部360と、を備える。
 先行車有無判定処理部300は、先行車の有無を判定する。ここで、先行車の有無は、地図データ上において自車1Aと同一レーンにいる前方の車両が存在するか否かで判定する。なお、先行車有無判定処理の具体的な処理方法は、詳述しないが、例えば出願時に知られた判定方法を用いることができる。実施例1においては、二輪車1Bが先行車として検出される(図4、図5参照)。先行車が存在すると判定された場合は、先行車種別判定処理を行う。
 先行車種別判定処理部310は、先行車が四輪車か二輪車かを判定する。先行車の種別は、画像認識技術を用いて判別する。詳述しないが、例えば出願時に知られた物体の種類の判定方法を用いることができる。実施例1においては、先行車として二輪車が検出される。実施例1のように先行車が二輪車と判定された場合は、車間制御処理を実施する。一方で、先行車が四輪車と判定された場合は、車間制御処理と先行車経路追従処理を実施する。
 車間制御処理部320は、車間制御を行う。車間制御は、車間距離dを一定にするように制御する。dは、定数A,Bと、T1(THW:Time Head Way),T2(TTC:Time to Collision)を用いて、
d=(A/T1)+(B/T2)
として表現することができる。本処理は,本願出願時において知られた手法を適宜に用いることができる。
 先行車経路追従処理部330は、先行車の経路追従を行う。先行車の経路は、ステレオカメラ,LIDARあるいはRADERによってトラッキングした先行車の軌跡を地図データ上に投影して、その軌跡を先行車の走行した経路として取得する。そして、その先行車の経路を追従する制御処理を行う。詳述しないが、例えば出願時に知られた先行車の経路追従方法を用いることができる。
 先々行車有無判定処理部340は、先々行車の有無を判定する。ここで、先々行車の有無は、地図データ上において自車1Aと同一レーンにいる先行車よりさらに前方位置の同一レーンに車両が存在するか否かで判定する。
 先々行車種別判定処理部350は、先行車の前を走行している先々行車が四輪車か二輪車かを判定する。先々行車の種別は、画像認識技術を用いて判別する。詳述しないが、例えば出願時に知られた物体の種類の判定方法を用いることができる。実施例1において、先々行車が四輪車と判定された場合は、車間制御処理と先々行車経路追従処理を実施する。
 先々行車経路追従処理部360は、先々行車の経路追従を行う。その手法は、先行車経路追従処理部330による手法と同様である。
 [運転支援制御処理構成]
 図3は、実施例1の運転支援装置100に有する運転計画装置10のプロセッサ11により実行される運転支援制御処理流れを示す。以下、運転支援制御処理構成をあらわす図3の各ステップについて説明する。
 ステップS1では、先行車が存在しているか否かを判断する。YES(先行車有り)の場合はステップS2へ進み、NO(先行車無し)の場合はリターンへ進む。
 ステップS2では、ステップS1での先行車有りとの判断に続き、先行車は二輪車であるか四輪車であるかを判断する。四輪車の場合はステップS3へ進み、二輪車の場合はステップS5へ進む。
 ステップS3では、ステップS2での先行車は四輪車であるとの判断に続き、先行車(四輪車)に対する車間制御を行い、ステップS4へ進む。
 ステップS4では、ステップS3での車間制御に続き、先行車(四輪車)への先行車経路追従を行い、リターンへ進む。
 ステップS5では、ステップS2での先行車は二輪車であるとの判断に続き、先々行車が存在しているか否かを判断する。YES(先々行車有り)の場合はステップS6へ進み、NO(先々先行車無し)の場合はステップS7へ進む。
 ステップS6では、ステップS5での先々行車有りとのに続き、先々行車は二輪車であるか四輪車であるかを判断する。四輪車の場合はステップS8へ進み、二輪車の場合はステップS7へ進む。
 ステップS7では、ステップS5での先々行車無しとの判断、或いは、ステップS6での先々行車は二輪車であるとの判断に続き、車間制御を行い、リターンへ進む。
 ステップS8では、ステップS6での先々行車は四輪車であるとの判断に続き、先々行車(四輪車)に対する車間制御を行い、ステップS9へ進む。
 ステップS9では、ステップS8での車間制御に続き、先々行車(四輪車)への先々行車経路追従を行い、リターンへ進む。
 次に、作用を説明する。
実施例1の作用を、「運転支援制御作用」、「運転支援制御の特徴作用」に分けて説明する。
 [運転支援制御処理作用]
 以下、図3~図5に基づいて実施例1の運転支援制御作用を説明する。
 自車の先行車が四輪車のときは、図3のフローチャートにおいて、ステップS1→ステップS2→ステップS3→ステップS4→リターンへと進む流れが繰り返される。即ち、ステップS3では車間制御が行われ、ステップS4では先行車経路追従が行われる。このように、先行車が四輪車の場合は、先行車である四輪車に対する経路追従と車間制御が実施される。
 自車の先行車が二輪車で先々行車が不在のとき、図3のフローチャートにおいて、ステップS1→ステップS2→ステップS5→ステップS7→リターンへと進む流れが繰り返される。又、自車の先行車が二輪車で先々行車も二輪車のとき、図3のフローチャートにおいて、ステップS1→ステップS2→ステップS5→ステップS6→ステップS7→リターンへと進む流れが繰り返される。何れの場合も、ステップS7では、二輪車の経路追従はせずに、車間制御だけが実施される。このように、自車1Aの先行車が二輪車1Bである場合は、図4に示すように、先行車である二輪車1Bの経路追従をせずに、先行車である二輪車1Bに対する車間制御のみが実施される。又、自車の先行車が二輪車で先々行車も二輪車である場合も同様に、先行車である二輪車1Bの経路追従をせずに、先行車である二輪車1Bに対する車間制御のみが実施される。なお、自車1A,二輪車1Bの走行レーン情報は、地図情報222により取得される。
 一方、自車の先行車が二輪車であるが、先々行車が四輪車のとき、図3のフローチャートにおいて、ステップS1→ステップS2→ステップS5→ステップS6→ステップS8→ステップS9→リターンへと進む流れが繰り返される。即ち、ステップS8では先行車(二輪車)に対する車間制御が行われ、ステップS9では先々行車(四輪車)に対する先々行車経路追従が行われる。このように、先行車が二輪車1Bである場合であっても、先々行車が四輪車1Cである場合は、図5に示すように、先行車である二輪車1Bとの車間制御と、先々行車である四輪車1Cの経路追従とが実施される。なお、自車1A,二輪車1B,四輪車1Cの走行レーン情報は、地図情報222により取得される。
 [運転支援制御の特徴作用]
 実施例1では、自車に対する先行車の有無を判定し、先行車有りと判定されたとき、自車の先行車が四輪車であるか二輪車であるかの先行車種別を判定する。先行車が四輪車である場合は、四輪車との車間制御及び四輪車の経路追従の両方を行い、先行車が二輪車である場合には、二輪車の経路追従はせずに、二輪車との車間制御を実施する。
 例えば、自動運転による走行中に先行車が存在するとき、先行車の種別を判別することなく、車間制御及び四輪車の経路追従の両方を行うとする。このとき、先行車が二輪車である場合、二輪車の横方向移動に追従して自車が横方向移動することになり、自車の挙動が不安定になる。
これに対し、自動運転による走行中に先行車が存在するとき、先行車の種別を判別し、先行車が四輪車である場合と先行車が二輪車である場合とで先行車対応制御を異ならせる。つまり、横移動が小さい四輪車が先行車の場合は、車間制御及び四輪車の経路追従の両方を行う。一方、横移動が大きい二輪車が先行車の場合は、二輪車の経路追従はせずに、二輪車との車間制御を実施する。従って、先行車が二輪車である場合、横方向移動を抑えた安定した自車挙動が確保される。
 実施例1では、自車に対する先々行車の有無を判定し、先々行車有りと判定されたとき、自車の先々行車が四輪車であるか二輪車であるかの先々行車種別を判定する。先行車が二輪車であり、先々行車が四輪車である場合には、二輪車の経路追従はせずに、先々行車である四輪車の経路を追従する先々行車経路追従とする。
 例えば、先行車が二輪車の場合、二輪車の経路追従をしないと、自車の経路を別の方法により決める必要がある。
これに対し、先々行車が四輪車である場合には、先々行車である四輪車を利用し、先々行車経路追従とすれば、自車の経路を別の手法により決める必要が無くなる。
従って、先々行車が四輪車である場合、先々行車経路追従という簡単な手法によって、横方向移動を抑えた安定した自車挙動が確保される。
 次に、効果を説明する。
実施例1における運転支援方法及び運転支援装置にあっては、下記に列挙する効果が得られる。
 (1) 自車を先行車に追従走行させる運転支援方法において、自車に対する先行車の有無を判定し、先行車有りと判定されたとき、自車の先行車が四輪車であるか二輪車であるかの先行車種別を判定する。
先行車が四輪車である場合は、四輪車との車間制御及び四輪車の経路追従の両方を行う。
先行車が二輪車である場合には、二輪車の経路追従はせずに、二輪車との車間制御を実施する(図4)。
  このため、先行車が二輪車である場合、横方向移動を抑えた安定した自車挙動を確保する運転支援方法を提供することができる。
 (2) 自車に対する先々行車の有無を判定し、先々行車有りと判定されたとき、自車の先々行車が四輪車であるか二輪車であるかの先々行車種別を判定する。
先行車が二輪車であり、先々行車が四輪車である場合には、二輪車の経路追従はせずに、先々行車である四輪車の経路を追従する先々行車経路追従とする(図5)。
  このため、(1)の効果に加え、先々行車が四輪車である場合、先々行車経路追従という簡単な手法によって、横方向移動を抑えた安定した自車挙動を確保することができる。
 (3) 自車と先行車との車間制御と先行車への経路追従制御を行う車両コントローラ(運転計画装置10及びプロセッサ11)を備える。
この運転支援装置において、車両コントローラ(運転計画装置10及びプロセッサ11)は、自車に対する先行車の有無を判定する先行車有無判定処理部300と、先行車有りと判定されたとき、自車の先行車が四輪車であるか二輪車であるかの先行車種別を判定する先行車種別判定処理部310と、を有する。
先行車が四輪車である場合は、四輪車との車間制御及び四輪車の経路追従の両方を行う。
先行車が二輪車である場合には、二輪車の経路追従はせずに、二輪車との車間制御を実施する(図2)。
  このため、先行車が二輪車である場合、横方向移動を抑えた安定した自車挙動を確保する運転支援装置を提供することができる。
 実施例2は、先行車が二輪車である場合には、二輪車の経路追従はせずに、車線認識の結果から取得した走行予定経路を追従する車線追従とした例である。
 まず、実施例2の構成を、「運転計画装置の詳細構成」、「運転支援制御処理構成」に分けて説明する。ここで、実施例2での「全体システム構成」は、実施例1の図1と同様であるので図示並びに説明を省略する。
[運転計画装置の詳細構成]
 図6は、実施例2の運転支援装置100に有する運転計画装置10のプロセッサ11における各種制御処理を示すブロック構成図である。以下、図6に基づいて運転計画装置10の詳細構成について説明する。なお、プロセッサ11での各種制御処理は、片側1車線道路に限らず、片側2車線道路等、他の道路環境でも適用できる。
 運転計画装置10は、図6に示すように、先行車有無判定処理部300と、先行車種別判定処理部310と、車間制御処理部320と、先行車経路追従処理部330と、車線追従処理部430と、を備える。なお、先行車有無判定処理部300、先行車種別判定処理部310、車間制御処理部320、先行車経路追従処理部330については、実施例1と同様であるので、説明を省略する。
 車線追従処理部430は、ステレオカメラ、LIDARあるいはRADERによって認識した白線情報あるいは道路境界情報を用いて自車が走行する車線を認識する。実施例2の場合、図8に示すように、車線2Aが検出される。そして、その車線2Aの内側を走行する制御処理を行う。詳述しないが、例えば出願時に知られた車線の追従方法を用いることができる。
 [運転支援制御処理構成]
 図7は、実施例2の運転支援装置100に有する運転計画装置10のプロセッサ11により実行される運転支援制御処理流れを示す。以下、運転支援制御処理構成をあらわす図7の各ステップについて説明する。
 ステップS21では、先行車が存在しているか否かを判断する。YES(先行車有り)の場合はステップS22へ進み、NO(先行車無し)の場合はリターンへ進む。
 ステップS22では、ステップS21での先行車有りとの判断に続き、先行車は二輪車であるか四輪車であるかを判断する。四輪車の場合はステップS23へ進み、二輪車の場合はステップS25へ進む。
 ステップS23では、ステップS22での先行車は四輪車であるとの判断に続き、先行車(四輪車)に対する車間制御を行い、ステップS24へ進む。
 ステップS24では、ステップS23での車間制御に続き、先行車(四輪車)への先行車経路追従を行い、リターンへ進む。
 ステップS25では、ステップS22での先行車は二輪輪車であるとの判断に続き、自車と二輪車との車間制御を行い、ステップS26へ進む。
 ステップS26では、ステップS25での車間制御に続き、車線認識の結果から取得した走行予定経路を追従する車線追従を行い、リターンへ進む。
 次に、実施例2の運転支援制御作用を説明する。
 以下、図7及び図8に基づいて運転支援制御作用を説明する。
 自車の先行車が四輪車のときは、図7のフローチャートにおいて、ステップS21→ステップS22→ステップS23→ステップS24→リターンへと進む流れが繰り返される。即ち、ステップS23では車間制御が行われ、ステップS24では先行車経路追従が行われる。このように、先行車が四輪車の場合は、先行車である四輪車に対する経路追従と車間制御が実施される。
 自車の先行車が二輪車のときは、図7のフローチャートにおいて、ステップS21→ステップS22→ステップS25→ステップS26→リターンへと進む流れが繰り返される。即ち、ステップS25では車間制御が行われ、ステップS26では車線追従が行われる。このように、自車1Aの先行車が二輪車1Bである場合は、図8に示すように、先行車である二輪車1Bの経路追従をせずに、車線認識の結果から取得した走行予定経路を追従する車線追従が行われる。なお、自車1A,二輪車1Bが走行する車線2Aの情報は、地図情報222により取得される。
 上記のように、実施例2では、横移動が大きい二輪車1Bが先行車の場合は、二輪車1Bの経路追従はせずに、二輪車1Bとの車間制御と、車線2Aに沿って自車1Aの走行レーンに設定された走行予定経路(例えば、走行レーンの中央位置経路)を走行する車線追従を実施する。従って、先行車が二輪車である場合、車線追従により自車の走行経路を決めることで、横方向移動を抑えた安定した自車挙動が確保される。
 次に、効果を説明する。
実施例2における運転支援方法及び運転支援装置にあっては、下記の効果が得られる。
 (4) 先行車が二輪車である場合には、二輪車の経路追従はせずに、車線認識の結果から取得した走行予定経路を追従する車線追従とし、二輪車との車間制御を実施する(図8)。
  このため、上記(1)又は(2)の効果に加え、先行車が二輪車である場合、車線追従により自車の走行経路を決めることで、横方向移動を抑えた安定した自車挙動を確保することができる。
 実施例3は、先行車が二輪車である場合には、二輪車の経路追従はせずに、車線認識の結果から取得した走行予定経路に基づいて生成した補間車線に追従する補間車線追従とした例である。
 まず、実施例3の構成を、「運転計画装置の詳細構成」、「運転支援制御処理構成」に分けて説明する。ここで、実施例3での「全体システム構成」は、実施例1の図1と同様であるので図示並びに説明を省略する。
[運転計画装置の詳細構成]
 図9は、実施例3の運転支援装置100に有する運転計画装置10のプロセッサ11における各種制御処理を示すブロック構成図である。以下、図9に基づいて運転計画装置10の詳細構成について説明する。なお、プロセッサ11での各種制御処理は、片側1車線道路に限らず、片側2車線道路等、他の道路環境でも適用できる。
 運転計画装置10は、図9に示すように、先行車有無判定処理部300と、先行車種別判定処理部310と、車間制御処理部320と、先行車経路追従処理部330と、補間車線追従処理部500と、を備える。なお、先行車有無判定処理部300、先行車種別判定処理部310、車間制御処理部320、先行車経路追従処理部330については、実施例1と同様であるので、説明を省略する。
 補間車線追従処理部500は、ステレオカメラ、LIDARあるいはRADERによって認識した白線情報あるいは道路境界情報を用いて自車が走行する車線を認識する。実施例3の場合、図11及び図12に示すように、車線3A,3A’が検出される。そして、認識した車線3A,3A’の長さL2が前方注視距離L1より短い場合に車線3A,3A’を補間する。例えば、図11に示すように、車線3Aの末端から、先行車(二輪車1B)の位置の間を直線で延長し、それを補間車線3Bとする。或いは、図12に示すように、車線3A’の末端の曲率ρを取得し、曲率ρで先行車(二輪車1B)の位置までの間を曲線で延長し、それを補間車線3B’とする。そして、その補間車線3B,3B’の内側を走行する制御処理を行う。詳述しないが,例えば出願時に知られた車線の追従方法を用いることができる。
 [運転支援制御処理構成]
 図10は、実施例3の運転支援装置100に有する運転計画装置10のプロセッサ11により実行される運転支援制御処理流れを示す。以下、運転支援制御処理構成をあらわす図10の各ステップについて説明する。
 ステップS31では、先行車が存在しているか否かを判断する。YES(先行車有り)の場合はステップS32へ進み、NO(先行車無し)の場合はリターンへ進む。
 ステップS32では、ステップS31での先行車有りとの判断に続き、先行車は二輪車であるか四輪車であるかを判断する。四輪車の場合はステップS33へ進み、二輪車の場合はステップS35へ進む。
 ステップS33では、ステップS32での先行車は四輪車であるとの判断に続き、先行車(四輪車)に対する車間制御を行い、ステップS34へ進む。
 ステップS34では、ステップS33での車間制御に続き、先行車(四輪車)への先行車経路追従を行い、リターンへ進む。
 ステップS35では、ステップS32での先行車は二輪輪車であるとの判断に続き、自車と二輪車との車間制御を行い、ステップS36へ進む。
 ステップS36では、ステップS35での車間制御に続き、車線認識の結果から取得した走行予定経路に基づいて生成した補間車線に追従する補間車線追従を行い、リターンへ進む。
 次に、実施例3の運転支援制御作用を説明する。
 以下、図10~図12に基づいて運転支援制御作用を説明する。
 自車の先行車が四輪車のときは、図10のフローチャートにおいて、ステップS31→ステップS32→ステップS33→ステップS34→リターンへと進む流れが繰り返される。即ち、ステップS33では車間制御が行われ、ステップS34では先行車経路追従が行われる。このように、先行車が四輪車の場合は、先行車である四輪車に対する経路追従と車間制御が実施される。
 自車の先行車が二輪車のときは、図10のフローチャートにおいて、ステップS31→ステップS32→ステップS35→ステップS36→リターンへと進む流れが繰り返される。即ち、ステップS35では車間制御が行われ、ステップS36では補間車線追従が行われる。このように、自車1Aの先行車が二輪車1Bである場合は、先行車である二輪車1Bの経路追従をせずに、車線認識の結果から取得した走行予定経路に基づいて生成した補間車線3B,3B’に追従する補間車線追従が行われる。
 ここで、直線路走行中、自車1Aの先行車が二輪車1Bである場合は、図11に示すように、直線補間した補間車線3Bを用い、補間車線3Bに追従する補間車線追従が行われる。一方、カーブ路走行中、自車1Aの先行車が二輪車1Bである場合は、図12に示すように、曲線補間した補間車線3B’を用い、補間車線3B’に追従する補間車線追従が行われる。なお、自車1A,二輪車1Bが走行する車線3A,3A’の情報は、地図情報222により取得される。
 上記のように、実施例3では、横移動が大きい二輪車1Bが先行車の場合は、二輪車1Bの経路追従はせずに、二輪車1Bとの車間制御と、自車1Aの走行レーンに設定された走行予定経路に基づいて設定された補間車線3B,3B’に追従する補間車線追従を実施する。従って、先行車が二輪車である場合であって、認識した車線3A,3A’の長さL2が短いとき、補間車線追従により自車の走行経路を決めることで、横方向移動を抑えた安定した自車挙動が確保される。
 次に、効果を説明する。
実施例3における運転支援方法及び運転支援装置にあっては、下記に列挙する効果が得られる。
 (5) 先行車が二輪車である場合には、二輪車の経路追従はせずに、車線認識の結果から取得した走行予定経路に基づいて生成した補間車線3B,3B’に追従する補間車線追従とし、二輪車との車間制御を実施する(図10)。
  このため、上記(1)又は(2)の効果に加え、先行車が二輪車である場合であって、認識した車線3A,3A’の長さが短いとき、補間車線追従により自車の走行経路を決めることで、横方向移動を抑えた安定した自車挙動を確保することができる。
 (6) 補間車線3Bは、車線認識の結果から取得した走行予定経路を、先行車である二輪車1Bの位置まで直線的に延長して生成する(図11)。
  このため、上記(5)の効果に加え、直線路の走行シーンで認識した車線3Aの長さが短いとき、安定した自車挙動が確保される補間車線3Bを生成することができる。
 (7) 補間車線3B’は、車線認識の結果から取得した走行予定経路を、先行車である二輪車1Bの位置まで走行予定経路終端の曲率ρに合わせて延長して生成する(図12)。
  このため、上記(5)の効果に加え、カーブ路の走行シーンで認識した車線3A’の長さが短いとき、安定した自車挙動が確保される補間車線3B’を生成することができる。
 以上、本開示の運転支援方法及び運転支援装置を実施例1~3に基づき説明してきた。しかし、具体的な構成については、これらの実施例に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1~3では、運転支援システム1として、運転支援装置100と車載装置200を備える例を示した。しかし、運転支援システムとしては、実施例1~3には限定されず、車載装置情報の授受が可能な可搬の端末装置に機能の一部を適用してもよい。なお、端末装置としては、スマートフォン、PDAなどの機器を含む。
 実施例1では、先行車が二輪車である場合、基本的に二輪車の経路追従しない例を示した。実施例2では、先行車が二輪車である場合には、車線追従とする例を示した。又、実施例3では、先行車が二輪車である場合、補間車線追従とする例を示した。しかし、実施例2,3において、実施例1と同様に、先行車が二輪車であり、先々行車が四輪車である場合には、先々行車である四輪車の経路を追従する先々行車経路追従とする例であっても良い。
 実施例1では、本開示の運転支援方法及び運転支援装置を、自動運転モードの選択により操舵/駆動/制動が自動制御される運転支援システムが搭載された自動運転車両に適用する例を示した。しかし、本開示の運転支援方法及び運転支援装置は、少なくとも先行車に横位置追従が可能な運転支援車両に対しても適用することができる。

Claims (7)

  1.  自車を先行車に追従走行させる運転支援方法において、
     前記自車に対する先行車の有無を判定し、先行車有りと判定されたとき、自車の先行車が四輪車であるか二輪車であるかの先行車種別を判定し、
     前記先行車が四輪車である場合は、前記四輪車との車間制御及び前記四輪車の経路追従の両方を行い、
     前記先行車が二輪車である場合には、前記二輪車の経路追従はせずに、前記二輪車との車間制御を実施する
     ことを特徴とする運転支援方法。
  2.  請求項1に記載された運転支援方法において、
     前記自車に対する先々行車の有無を判定し、先々行車有りと判定されたとき、自車の先々行車が四輪車であるか二輪車であるかの先々行車種別を判定し、
     先行車が二輪車であり、先々行車が四輪車である場合には、前記二輪車の経路追従はせずに、先々行車である前記四輪車の経路を追従する先々行車経路追従とする
     ことを特徴とする運転支援方法。
  3.  請求項1又は2に記載された運転支援方法において、
     先行車が二輪車である場合には、前記二輪車の経路追従はせずに、車線認識の結果から取得した走行予定経路を追従する車線追従とし、前記二輪車との車間制御を実施する
     ことを特徴とする運転支援方法。
  4.  請求項1又は2に記載された運転支援方法において、
     先行車が二輪車である場合には、前記二輪車の経路追従はせずに、車線認識の結果から取得した走行予定経路と先行車の位置に基づいて生成した補間車線に追従する補間車線追従とし、前記二輪車との車間制御を実施する
     ことを特徴とする運転支援方法。
  5.  請求項4に記載された運転支援方法において、
     前記補間車線は、車線認識の結果から取得した走行予定経路を、走行予定経路終端から先行車である二輪車の位置まで直線的に延長して生成する
     ことを特徴とする運転支援方法。
  6.  請求項4に記載された運転支援方法において、
     前記補間車線は、車線認識の結果から取得した走行予定経路を、先行車である二輪車の位置まで走行予定経路終端の曲率に合わせて延長して生成する
     ことを特徴とする運転支援方法。
  7.  自車と先行車との車間制御と先行車への経路追従制御を行う車両コントローラを備える運転支援装置において、
     前記車両コントローラは、自車に対する先行車の有無を判定する先行車有無判定処理部と、先行車有りと判定されたとき、自車の先行車が四輪車であるか二輪車であるかの先行車種別を判定する先行車種別判定処理部と、を有し、
     前記先行車が四輪車である場合は、前記四輪車との車間制御及び前記四輪車の経路追従の両方を行い、
     前記先行車が二輪車である場合には、前記二輪車の経路追従はせずに、前記二輪車との車間制御を実施する
     ことを特徴とする運転支援装置。
PCT/JP2017/018609 2017-05-18 2017-05-18 運転支援方法及び運転支援装置 WO2018211645A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US16/613,634 US10766490B2 (en) 2017-05-18 2017-05-18 Driving assistance method and driving assistance apparatus
PCT/JP2017/018609 WO2018211645A1 (ja) 2017-05-18 2017-05-18 運転支援方法及び運転支援装置
BR112019024122-1A BR112019024122B1 (pt) 2017-05-18 Método de assistência de direção e aparelho de assistência de direção
CN201780090811.7A CN110621563B (zh) 2017-05-18 2017-05-18 驾驶辅助方法以及驾驶辅助装置
MX2019013552A MX2019013552A (es) 2017-05-18 2017-05-18 Metodo de asistencia a la conduccion y aparato de asistencia a la conduccion.
KR1020197034498A KR20190141724A (ko) 2017-05-18 2017-05-18 운전 지원 방법 및 운전 지원 장치
RU2019138462A RU2721436C1 (ru) 2017-05-18 2017-05-18 Способ помощи вождению и устройство помощи вождению
JP2019518684A JP6658968B2 (ja) 2017-05-18 2017-05-18 運転支援方法及び運転支援装置
EP17909718.3A EP3626570B1 (en) 2017-05-18 2017-05-18 Driving assistance method and driving assistance apparatus
CA3064011A CA3064011C (en) 2017-05-18 2017-05-18 Driving assistance method and driving assistance apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018609 WO2018211645A1 (ja) 2017-05-18 2017-05-18 運転支援方法及び運転支援装置

Publications (1)

Publication Number Publication Date
WO2018211645A1 true WO2018211645A1 (ja) 2018-11-22

Family

ID=64273612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018609 WO2018211645A1 (ja) 2017-05-18 2017-05-18 運転支援方法及び運転支援装置

Country Status (9)

Country Link
US (1) US10766490B2 (ja)
EP (1) EP3626570B1 (ja)
JP (1) JP6658968B2 (ja)
KR (1) KR20190141724A (ja)
CN (1) CN110621563B (ja)
CA (1) CA3064011C (ja)
MX (1) MX2019013552A (ja)
RU (1) RU2721436C1 (ja)
WO (1) WO2018211645A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634135B2 (en) 2020-08-03 2023-04-25 Toyota Jidosha Kabushiki Kaisha Driving support control device for vehicle
JP7435361B2 (ja) 2020-08-25 2024-02-21 スズキ株式会社 運転支援装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK201970148A1 (en) * 2018-12-10 2020-07-06 Aptiv Tech Ltd Motion graph construction and lane level route planning
JP2021142907A (ja) * 2020-03-12 2021-09-24 本田技研工業株式会社 車両追従走行システム、車両制御装置、車両、および制御方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265238A (ja) 2003-03-03 2004-09-24 Fuji Heavy Ind Ltd 車両用運転支援装置
JP2006038697A (ja) * 2004-07-28 2006-02-09 Nissan Motor Co Ltd 他車両検出装置及び車間距離制御装置
JP2006044421A (ja) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd 走行制御装置
JP2006088771A (ja) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd 走行制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3611028B2 (ja) * 2000-08-29 2005-01-19 トヨタ自動車株式会社 走行制御装置
FR2937936B1 (fr) * 2008-11-03 2011-09-02 Valeo Vision Sas Procede d'assistance a la conduite pour vehicule automobile
JP5696444B2 (ja) * 2009-12-24 2015-04-08 日産自動車株式会社 走行制御装置
GB2511841B (en) * 2013-03-15 2015-02-25 Jaguar Land Rover Ltd Vehicle speed control system and method
JP6046190B2 (ja) * 2015-03-31 2016-12-14 本田技研工業株式会社 運転支援装置
JP6303217B2 (ja) * 2015-10-28 2018-04-04 本田技研工業株式会社 車両制御装置、車両制御方法、および車両制御プログラム
CN109789875B (zh) * 2016-09-26 2020-04-14 日产自动车株式会社 行驶路径设定方法及行驶路径设定装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265238A (ja) 2003-03-03 2004-09-24 Fuji Heavy Ind Ltd 車両用運転支援装置
JP2006038697A (ja) * 2004-07-28 2006-02-09 Nissan Motor Co Ltd 他車両検出装置及び車間距離制御装置
JP2006044421A (ja) * 2004-08-03 2006-02-16 Nissan Motor Co Ltd 走行制御装置
JP2006088771A (ja) * 2004-09-21 2006-04-06 Nissan Motor Co Ltd 走行制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3626570A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11634135B2 (en) 2020-08-03 2023-04-25 Toyota Jidosha Kabushiki Kaisha Driving support control device for vehicle
JP7435361B2 (ja) 2020-08-25 2024-02-21 スズキ株式会社 運転支援装置

Also Published As

Publication number Publication date
CN110621563B (zh) 2020-11-03
JP6658968B2 (ja) 2020-03-04
JPWO2018211645A1 (ja) 2019-12-19
BR112019024122A2 (pt) 2020-06-02
CA3064011A1 (en) 2018-11-22
KR20190141724A (ko) 2019-12-24
US10766490B2 (en) 2020-09-08
EP3626570A4 (en) 2020-07-01
RU2721436C1 (ru) 2020-05-19
EP3626570B1 (en) 2022-11-16
US20200189588A1 (en) 2020-06-18
MX2019013552A (es) 2019-12-18
EP3626570A1 (en) 2020-03-25
CN110621563A (zh) 2019-12-27
CA3064011C (en) 2020-06-16

Similar Documents

Publication Publication Date Title
WO2018216194A1 (ja) 車両制御システムおよび車両制御方法
JP6296162B2 (ja) 車両の走行制御装置及び方法
US11225249B2 (en) Vehicle control device, vehicle control method, and storage medium
US10787172B2 (en) Driving assistance device and driving assistance method
JP6809531B2 (ja) 車両判定方法、走行経路補正方法、車両判定装置、及び走行経路補正装置
US10854083B2 (en) Vehicle control device, vehicle control method, and storage medium
JP2019159428A (ja) 車両制御装置、車両制御方法及びプログラム
JP2019137189A (ja) 車両制御システム、車両制御方法、およびプログラム
JP6658968B2 (ja) 運転支援方法及び運転支援装置
JP2019131077A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2019185112A (ja) 車両制御装置、車両制御方法、およびプログラム
WO2016189727A1 (ja) 走行制御装置及び方法
JP7154914B2 (ja) 運転制御方法及び運転制御装置
JPWO2016024312A1 (ja) 車両の走行制御装置及び方法
JP6648384B2 (ja) 車両制御装置、車両制御方法、およびプログラム
WO2024069690A1 (ja) 運転支援方法及び運転支援装置
JP2022090341A (ja) 車両の走行制御方法及び走行制御装置
JP2023169524A (ja) 車両の運転支援方法及び運転支援装置
JP2022056602A (ja) 車両制御装置、車両制御方法、およびプログラム
JP2022036418A (ja) 車両制御装置、車両制御方法、およびプログラム
BR112019024122B1 (pt) Método de assistência de direção e aparelho de assistência de direção

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518684

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3064011

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197034498

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019024122

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017909718

Country of ref document: EP

Effective date: 20191218

ENP Entry into the national phase

Ref document number: 112019024122

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191114