WO2018211581A1 - 車両用空調の制御方法及び車両用空調装置 - Google Patents

車両用空調の制御方法及び車両用空調装置 Download PDF

Info

Publication number
WO2018211581A1
WO2018211581A1 PCT/JP2017/018292 JP2017018292W WO2018211581A1 WO 2018211581 A1 WO2018211581 A1 WO 2018211581A1 JP 2017018292 W JP2017018292 W JP 2017018292W WO 2018211581 A1 WO2018211581 A1 WO 2018211581A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
negative pressure
pressure
period
vehicle
Prior art date
Application number
PCT/JP2017/018292
Other languages
English (en)
French (fr)
Inventor
寧 大村
将裕 大森
信人 森嶌
聖二 勝間
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/018292 priority Critical patent/WO2018211581A1/ja
Priority to US16/606,254 priority patent/US10899354B2/en
Priority to JP2019518627A priority patent/JP6747589B2/ja
Priority to CN201780090756.1A priority patent/CN110621526B/zh
Publication of WO2018211581A1 publication Critical patent/WO2018211581A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor
    • B60H1/3208Vehicle drive related control of the compressor drive means, e.g. for fuel saving purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • B60T13/52Vacuum systems indirect, i.e. vacuum booster units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/30Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18181Propulsion control with common controlling member for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3236Cooling devices information from a variable is obtained
    • B60H2001/3266Cooling devices information from a variable is obtained related to the operation of the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3269Cooling devices output of a control signal
    • B60H2001/327Cooling devices output of a control signal related to a compressing unit
    • B60H2001/3273Cooling devices output of a control signal related to a compressing unit related to the operation of the vehicle, e.g. the compressor driving torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/20Ambient conditions, e.g. wind or rain

Definitions

  • the present invention relates to a control method for a vehicle air conditioner including an air conditioning compressor and a vehicle air conditioner.
  • the vehicle of Patent Document 1 has an air-conditioning compressor that is driven by an engine that is an internal combustion engine, and a master back that assists the brake pedal depression force by using the negative pressure of the intake manifold of the engine. And when the negative pressure in the master back is insufficient, the air conditioner is stopped for a predetermined time triggered by the start of movement of the vehicle, the engine load for the air conditioning compressor is reduced, and the negative pressure in the master back is secured Is disclosed.
  • Patent Document 1 for example, if the brake pedal is repeatedly operated while the vehicle is traveling at a low vehicle speed due to traffic jams or the like, the state of the vehicle starting to move cannot be detected. There was a risk of negative pressure shortage.
  • An object of the present invention is to provide a vehicle air-conditioning control method and a vehicle adjusting device capable of achieving both an air-conditioning function and braking performance.
  • the negative pressure in the master back is estimated based on the pressure in the intake passage of the internal combustion engine and the atmospheric pressure, and the negative pressure in the master back is reduced while the air conditioning compressor is operating.
  • the air conditioning compressor is stopped during the first period, and after the first period, regardless of the predetermined condition, the second period
  • the air conditioning compressor is operated, and after the second period, the operation of the air conditioning compressor is controlled in accordance with the state where the predetermined condition is satisfied.
  • the negative pressure in the master back can be secured by stopping the air conditioning compressor during the first period.
  • the air conditioning compressor is operated during the second period regardless of the predetermined condition, so that air conditioning performance can be ensured.
  • the air-conditioning compressor stops again during the first period. Therefore, even if the brake pedal is operated repeatedly in the low vehicle speed traveling state, the master back The negative pressure inside can be secured. Further, by estimating the negative pressure in the master back, the master back negative pressure sensor becomes unnecessary and the cost can be reduced.
  • FIG. 1 is a system diagram of a vehicle to which a vehicle air conditioner of Example 1 is applied. It is a flowchart showing the air-conditioning control process at the time of the brake negative pressure request
  • FIG. 3 is a time chart illustrating an air conditioning control process when a brake negative pressure is requested in the vehicle air conditioner according to the first embodiment.
  • FIG. 1 is a system diagram of a vehicle to which the vehicle air conditioner of the first embodiment is applied.
  • An engine 1 that is an internal combustion engine sucks air from an intake manifold 10.
  • the intake manifold 10 is provided with a throttle valve 13 to control the amount of intake air.
  • a negative pressure supply passage 11 is connected to the intake manifold 10 between the throttle valve 13 and the engine 1, and an intake pressure sensor 25 is provided.
  • the intake pressure sensor 25 detects a negative pressure (hereinafter referred to as PIM) in the intake manifold 10 and outputs it to an engine control unit 30 described later.
  • the negative pressure supply passage 11 is connected to the master back 3.
  • the master back 3 is a negative pressure booster that assists the depressing force of the brake pedal 4 by introducing a negative pressure into the pressure chamber.
  • a check valve 12 is provided on the negative pressure supply passage 11 to allow air flow from the master back 3 side to the engine 1 side, while prohibiting air flow from the engine 1 side to the master back 3 side.
  • the master back 3 assists the depressing force of the brake pedal 4 using this negative pressure.
  • the rotation speed of the engine 1 decreases, the negative pressure in the intake manifold 10 is not generated, and the negative pressure supply to the master back 3 is insufficient. If the brake pedal 4 is operated a plurality of times in this state, the negative pressure in the master back 3 is consumed and the assist force is insufficient.
  • the magnitude of the negative pressure is described as the same relationship as the magnitude of the absolute value of the pressure.
  • the vehicle air conditioner (hereinafter also referred to as an air conditioner) constitutes a vapor compression refrigerant cycle including a condenser, an expansion valve, an evaporator and the like in addition to the well-known compressor 2.
  • the compressor 2 of the air conditioner is driven by the engine 1. Therefore, when the compressor 2 is operated, the engine load increases and the negative pressure in the intake manifold 10 decreases, so the negative pressure that can be supplied to the master back 3 also decreases.
  • Engine control unit 30 calculates target engine torque based on required torque Td corresponding to accelerator pedal opening APO.
  • the ECU incorporates an atmospheric pressure sensor 41 that detects atmospheric pressure (hereinafter also referred to as POP).
  • POP atmospheric pressure
  • the brake switch 21 outputs an ON signal to the ECU when the brake pedal 4 is operated.
  • the air conditioner switch 22 outputs an ON signal to the ECU when the driver desires to operate the air conditioner.
  • the vehicle speed sensor 23 detects the vehicle speed VSP and outputs it to the ECU.
  • the accelerator opening sensor 24 detects the driver's accelerator pedal opening APO and outputs it to the ECU.
  • the ECU controls the throttle valve 13 and the injector of the engine 1 to control the operating state of the engine 1 and the operating state of the compressor 2.
  • the ECU also includes a negative pressure estimation unit 42 that estimates a master back negative pressure estimated value (hereinafter also referred to as PMB *) that is a negative pressure in the master back 3 based on the PIM and the POP. Thereby, it is not necessary to install a master back negative pressure sensor.
  • PMB * master back negative pressure estimated value
  • the air conditioner control unit 30 (hereinafter referred to as ACU) is a control device that controls the air conditioning of the passenger compartment.
  • the ACU transmits and receives various signals to and from the ECU, and controls the operating state of the compressor 2 based on the ON / OFF command for the operation of the compressor 2 instructed by the ECU. Further, in the ACU, the discharge capacity and the like of the compressor 2 are controlled so as to be the set vehicle interior temperature set by the passenger or the like.
  • the air conditioner is stopped by timer management for a period during which the negative pressure can be surely secured.
  • the air conditioning performance is degraded, which may cause discomfort to the passengers. Therefore, after stopping the air conditioner by timer management, the air conditioner is operated by timer management for a period during which air conditioning performance can be secured. That is, even if the estimated negative pressure in the master back 3 deviates from the actual negative pressure, the negative pressure of the master back 3 can be reduced by repeating the stop and operation of the air conditioner based on the timer management according to a predetermined condition. Both securing and ensuring air conditioning performance were achieved.
  • a control flow for realizing the above-described operation will be described.
  • FIG. 2 is a flowchart illustrating an air conditioning control process when a brake negative pressure is requested in the vehicle air conditioner of the first embodiment.
  • idle determination is performed based on the accelerator opening APO. Specifically, when the APO is less than a predetermined value indicating the foot release, it is determined that the idling state of the engine 1 is established.
  • step S2 it is determined whether or not an idle determination is established. If the idle determination is established, the process proceeds to step S3. Otherwise, the process proceeds to step S11.
  • step S ⁇ b> 3 PMB * is calculated by the negative pressure estimation unit 42. Specifically, PMB * is calculated based on the difference obtained by subtracting the atmospheric pressure POP from the PIM detected by the intake pressure sensor 25. The calculation may be performed by setting an adjustment gain or the like, and is not particularly limited.
  • step S4 it is determined whether or not the master back negative pressure estimated value PMB * is equal to or smaller than a predetermined value P1, and if it is equal to or smaller than the predetermined value P1, the process proceeds to step S5, and if larger than the predetermined value P1, the process proceeds to step S9.
  • the predetermined value P1 is a value at which the negative pressure in the master back 3 can sufficiently generate the assist force. In other words, in the case of the predetermined value P1 or less, the negative pressure in the mass bar tack 3 is not secured to the extent that the assist force can be generated.
  • step S5 it is determined whether or not the brake switch 21 is ON. If ON, the process proceeds to step S6, and if OFF, the process proceeds to step S9. That is, PMB * tends to decrease when the brake switch 21 is ON, and PMB * is held when the brake switch 21 is OFF.
  • step S6 it is determined whether or not the vehicle speed VSP is equal to or higher than a predetermined vehicle speed V1, and if it is equal to or higher than V1, the process proceeds to step S7, and if it is lower than V1, the process proceeds to step S9.
  • the predetermined vehicle speed V1 is a value representing that the vehicle is moving. In other words, when it is less than V1, the vehicle is substantially stopped, and there is not much concern about the lack of negative pressure. On the other hand, when it is V1 or more, it means that the vehicle is in a running state and it is necessary to ensure a negative pressure.
  • step S7 it is determined whether or not the first timer is equal to or longer than the first predetermined time T1, and if it is equal to or longer than T1, the process proceeds to step S9, and if it is less than T1, the process proceeds to step S8.
  • the first timer is a timer that is incremented when an air conditioner cut condition based on a brake negative pressure request described later is satisfied.
  • the first predetermined time T1 is a time necessary for securing the insufficient negative pressure.
  • step S8 the air conditioner cut condition based on the brake negative pressure request is established. That is, it represents that the condition for ensuring the negative pressure is established by stopping the air conditioner and reducing the load of the compressor of the engine 1 due to the shortage of the brake negative pressure.
  • step S9 it is determined whether or not the second timer is equal to or longer than the second predetermined time T2, and if it is equal to or longer than T2, the process proceeds to step S10.
  • the second timer is a timer that is incremented when the air conditioner cut condition based on the brake negative pressure request is not satisfied.
  • the second predetermined time T2 is a time necessary for ensuring the performance of the air conditioner. For example, in the summer vehicle interior, the second predetermined time T2 is a time required to reduce the vehicle interior temperature toward the set temperature to some extent. .
  • step S10 the previous state of the air conditioner cut condition is maintained.
  • the air conditioner cut condition is established, the established state is maintained, and when the air conditioner cut condition is not established, the established state is maintained.
  • step S11 the air conditioner cut condition based on the brake negative pressure request is not established.
  • step S12 it is determined whether or not the air conditioner cut condition is satisfied. If satisfied, the process proceeds to step S13. If not satisfied, the process proceeds to step S15.
  • step S13 the first timer is incremented.
  • step S14 the second timer is cleared.
  • step S15 the second timer is incremented.
  • step S16 the first timer is cleared.
  • FIG. 3 is a time chart showing an air conditioning control process when a brake negative pressure is requested in the vehicle air conditioner of the first embodiment.
  • This time chart shows a state in which the driver depresses the brake pedal 4, the vehicle is in a stopped state, the compressor 2 is turned on by the air conditioner operation, and the master back negative pressure estimated value PMB * is less than or equal to a predetermined value P1.
  • PMB * is the actual negative pressure in the master back 3.
  • the compressor 2 load of the engine 1 is reduced by stopping the air conditioner, and the PMB * starts to rise.
  • the PMB * can be secured.
  • the first timer At time t2, when the first timer reaches the first predetermined time T1, the first timer is cleared. At this time, since the PMB * is larger than the predetermined value P1, the air conditioner cut condition is not satisfied. Therefore, the increment of the second timer is started and the air conditioner is operated to ensure the air conditioning performance. On the other hand, since the load of the compressor 2 is applied to the engine 1 and the brake pedal 4 is continuously operated, the PMB * decreases, but when the second timer starts to be incremented until the second predetermined time T2 elapses. Maintains the established state or unsatisfied state of the previous air conditioner cut condition.
  • Example 1 has the following operational effects.
  • the negative pressure in the master back 3 that assists the brake pedal depression force by introducing the negative pressure generated in the compressor 2 (air conditioning compressor) driven by the engine 1 and the intake manifold 10 (intake passage) of the engine 1
  • a negative pressure estimating unit 42 that estimates the intake manifold 10 based on the pressure in the intake manifold 10 and the atmospheric pressure, and the negative pressure in the master back 3 is insufficient with respect to the predetermined pressure while the compressor 2 is operating.
  • the compressor 2 is stopped for the first predetermined time T1 (first period), and after the first predetermined time T1, the second predetermined time T2 is set regardless of the predetermined condition.
  • the compressor 2 is operated, and after the second predetermined time T2 has elapsed, the operation of the compressor 2 is controlled according to the state where the predetermined condition is satisfied. That is, the negative pressure in the master back 3 can be secured by stopping the compressor 2 for the first predetermined time T1. In addition, after the first predetermined time T1 has elapsed, the compressor 2 is operated for the second predetermined time T2 regardless of the predetermined conditions, so that air conditioning performance can be ensured. If the predetermined condition is satisfied after the second predetermined time T2, the compressor 2 is stopped again for the first predetermined time T1, so that the brake pedal 4 is operated repeatedly while the vehicle is running at a low vehicle speed. However, the negative pressure in the master back 3 can be secured. Further, by estimating the negative pressure in the master back, the master back negative pressure sensor becomes unnecessary and the cost can be reduced.
  • the negative pressure estimation unit 42 detects based on a value obtained by subtracting the atmospheric pressure from the pressure in the intake manifold 10. Therefore, the negative pressure in the master back 3 can be estimated by a simple calculation.
  • the predetermined condition further includes that the brake pedal 4 is depressed, the engine 1 is in an idle operation state, and the vehicle is running. Therefore, it is possible to accurately detect a traveling state in which a negative pressure needs to be ensured.
  • the specific configuration may be other configurations.
  • the negative pressure in the master back 3 is estimated and calculated, but it may be detected directly by providing a sensor. Even if the brake pedal 4 is OFF, even if there is an ON history of the brake pedal 4 within the second predetermined time T2, or even when the engine 1 is not in the idle operation state, the negative pressure is insufficient. If so, the above control may be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

本発明は、渋滞等の低車速走行状態における、空調機能とブレーキ性能を両立可能な車両用空調の制御方法及び車両用調装置を提供する。 本発明は、内燃機関の吸気通路内の圧力と大気圧とに基づいてマスターバック内の負圧を推定し、空調用コンプレッサが作動中にマスターバック内の負圧が所定圧に対して不足している状態を含む所定条件が成立したときは、第1期間の間、空調用コンプレッサを停止し、第1期間の経過後、所定条件に関わらず、第2期間の間は、空調用コンプレッサを作動し、第2期間の経過後、所定条件の成立状態に応じて空調用コンプレッサの作動を制御することとした。

Description

車両用空調の制御方法及び車両用空調装置
 本発明は、空調用コンプレッサを備えた車両用空調の制御方法及び車両用空調装置に関する。
 特許文献1の車両は、内燃機関であるエンジンにより駆動される空調用コンプレッサと、エンジンのインテークマニホールドの負圧を用いてブレーキペダル踏力をアシストするマスターバックと、を有する。そして、マスターバック内の負圧が不足した場合、車両が動き始めたことをトリガーとして所定時間エアコンを停止し、空調用コンプレッサ分のエンジン負荷を軽減し、マスターバック内の負圧を確保する技術が開示されている。
特開2014-136468号公報
 しかしながら、特許文献1の技術にあっては、例えば渋滞等で低車速走行状態のまま繰り返しブレーキペダルを操作すると、車両の動き始めの状態を検出できないため、エアコンが停止せず、マスターバック内の負圧が不足するおそれがあった。
 本発明の目的は、空調機能とブレーキ性能を両立可能な車両用空調の制御方法及び車両用調装置を提供することにある。
 上記目的を達成するため、本発明では、内燃機関の吸気通路内の圧力と大気圧とに基づいてマスターバック内の負圧を推定し、空調用コンプレッサが作動中にマスターバック内の負圧が所定圧に対して不足している状態を含む所定条件が成立したときは、第1期間の間、空調用コンプレッサを停止し、第1期間の経過後、所定条件に関わらず、第2期間の間は、空調用コンプレッサを作動し、第2期間の経過後、所定条件の成立状態に応じて空調用コンプレッサの作動を制御することとした。
 よって、所定条件が成立したときは、第1期間の間、空調用コンプレッサを停止することで、マスターバック内の負圧を確保できる。また、第1期間経過後は、所定条件に係らず第2期間の間、空調用コンプレッサを作動させるため、空調性能を確保できる。また、第2期間経過後、所定条件が成立していれば、再度、第1期間の間、空調用コンプレッサが停止するため、低車速走行状態のまま繰り返しブレーキペダルを操作しても、マスターバック内の負圧を確保できる。また、マスターバック内の負圧を推定することで、マスターバック負圧センサが不要となり、コストを削減できる。
実施例1の車両用空調装置が適用された車両のシステム図である。 実施例1の車両用空調装置におけるブレーキ負圧要求時空調制御処理を表すフローチャートである。 実施例1の車両用空調装置におけるブレーキ負圧要求時空調制御処理を表すタイムチャートである。
1  エンジン
2  コンプレッサ
3  マスターバック
4  ブレーキペダル
10  インテークマニホールド
11  負圧供給通路
12  チェックバルブ
13  スロットルバルブ
21  ブレーキスイッチ
22  エアコンスイッチ
23  車速センサ
24  アクセル開度センサ
25  吸気圧センサ
30  エアコンコントローラ(ACU)
40  エンジンコントローラ(ECU)
41  大気圧センサ
42  負圧推定部
 〔実施例1〕
  図1は、実施例1の車両用空調装置が適用された車両のシステム図である。内燃機関であるエンジン1は、インテークマニホールド10から空気を吸入する。インテークマニホールド10にはスロットルバルブ13が設けられ、吸入空気量を制御する。インテークマニホールド10上であって、スロットルバルブ13とエンジン1との間には、負圧供給通路11が接続されると共に、吸気圧センサ25が設けられている。吸気圧センサ25は、インテークマニホールド10内の負圧(以下、PIMと記載する。)を検出し、後述するエンジンコントロールユニット30に出力する。負圧供給通路11は、マスターバック3と接続されている。
 マスターバック3は、圧力室内に負圧を導入することでブレーキペダル4の踏力をアシストする負圧ブースタである。負圧供給通路11上にはチェックバルブ12が設けられ、マスターバック3側からエンジン1側への空気の流れを許容する一方、エンジン1側からマスターバック3側への空気の流れを禁止する。
 エンジン1が回転すると、ピストンの往復運動によりインテークマニホールド10から空気を吸入するため、インテークマニホールド10内に負圧が生じ、マスターバック3内に負圧を供給する。マスターバック3は、この負圧を利用してブレーキペダル4の踏力をアシストする。尚、エンジン1の回転数が減少すると、インテークマニホールド10内の負圧が発生せず、マスターバック3への負圧供給が不足する。この状態で、ブレーキペダル4を複数回操作すると、マスターバック3内の負圧が消費され、アシスト力が不足する。以下、負圧の大小は、圧力の絶対値での大小と同じ関係として記述する。
 車両用空調装置(以下、エアコンとも記載する。)は、周知のコンプレッサ2に加え、コンデンサ、エキスパンションバルブ、エバポレータ等を備えた蒸気圧縮式冷媒サイクルを構成する。エアコンのコンプレッサ2は、エンジン1により駆動される。よって、コンプレッサ2を作動させると、エンジン負荷が増大し、インテークマニホールド10内の負圧が減少するため、マスターバック3に供給可能な負圧も減少する。
 エンジンコントロールユニット30(以下、ECUと記載する。)は、アクセルペダル開度APOに応じた要求トルクTd基づいて目標エンジントルクを算出する。アクセルペダル開度APOが所定値未満の場合は、スロットルバルブ13の開度を微小に制御し、アイドリング状態とする。ECUは、大気圧(以下、POPとも記載する。)を検出する大気圧センサ41を内蔵する。ブレーキスイッチ21は、ブレーキペダル4が操作されたときにON信号をECUに出力する。エアコンスイッチ22は、運転者がエアコンの作動を希望したときにON信号をECUに出力する。車速センサ23は、車速VSPを検出し、ECUに出力する。アクセル開度センサ24は、運転者のアクセルペダル開度APOを検出し、ECUに出力する。
 ECUは、エンジン1のスロットルバルブ13やインジェクタを制御して、エンジン1の運転状態及びコンプレッサ2の作動状態を制御する。また、ECUは、PIMとPOPとに基づいてマスターバック3内の負圧であるマスターバック負圧推定値(以下、PMB*とも記載する。)を推定する負圧推定部42を有する。これにより、マスターバック負圧センサを設置する必要がない。
 エアコンコントロールユニット30(以下、ACUと記載する。)は、車室内の空調制御を行う制御装置である。ACUは、ECUとの間で相互に各種信号を送受信し、ECUから指示されたコンプレッサ2の作動のON・OFF指令に基づいてコンプレッサ2の作動状態を制御する。また、ACU内では、乗員等が設定した設定車室内温度となるように、コンプレッサ2の吐出容量等を制御する。
 (ブレーキ負圧要求時空調制御について)
 ここで、実施例1のシステムを備えた車両の課題について説明する。マスターバック3内の負圧を検出するにあたり、実施例1の負圧推定部42に代えて、マスターバック3内の負圧を直接検出するセンサを備えた場合、負圧不足を検出した時点でエアコンを停止し、負圧を確保後、エアコンを作動させればよい。しかしながら、直接検出するセンサを備えておらず、インテークマニホールド10内の圧力と大気圧とからマスターバック3内の負圧を推定する場合、精度の高い推定は困難である。インテークマニホールド10とマスターバック3との間にはチェックバルブ12が設けられているため、常に同じ圧力状態を維持しているわけではないからである。よって、負圧推定値と実際の負圧との間に若干の乖離がある。
 そこで、マスターバック3内の負圧推定値が所定値を下回っている場合には、確実に負圧を確保可能な期間、タイマ管理によってエアコンを停止させることとした。一方、エアコンが停止する場面が多くなりすぎると、空調性能が低下し、乗員に不快感を与えるおそれがある。そこで、タイマ管理でエアコンを停止させた後は、空調性能を確保可能な期間、タイマ管理によってエアコンを作動させることとした。すなわち、マスターバック3内の負圧推定値が実際の負圧から乖離していたとしても、タイマ管理に基づくエアコンの停止と作動を所定条件に応じて繰り返すことで、マスターバック3の負圧の確保及び空調性能の確保を両立した。以下、上記作用を実現する制御フローについて説明する。
 (ブレーキ負圧要求時空調制御処理)
 図2は、実施例1の車両用空調装置におけるブレーキ負圧要求時空調制御処理を表すフローチャートである。
 ステップS1では、アクセル開度APOによりアイドル判定を行う。具体的には、APOが足離しを表す所定値未満の場合、エンジン1のアイドリング状態が成立していると判定する。
 ステップS2では、アイドル判定が成立しているか否かを判断し、アイドル判定が成立したときはステップS3へ進み、それ以外の場合はステップS11に進む。
 ステップS3では、負圧推定部42によりPMB*を演算する。具体的には、吸気圧センサ25により検出されたPIMから大気圧POPを差し引いた差分に基づいてPMB*を演算する。尚、調整ゲイン等を設定して演算してもよく、特に限定しない。
 ステップS4では、マスターバック負圧推定値PMB*が所定値P1以下か否かを判断し、所定値P1以下の場合はステップS5に進み、所定値P1より大きい場合はステップS9に進む。ここで、所定値P1は、マスターバック3内の負圧が十分にアシスト力を発生できる値である。言い換えると、所定値P1以下の場合、マスバータック3内の負圧がアシスト力を発生できる程度に確保できていない状態である。
 ステップS5では、ブレーキスイッチ21がONか否かを判断し、ONの場合はステップS6に進み、OFFの場合はステップS9に進む。すなわち、ブレーキスイッチ21がONの場合、PMB*が減少する傾向にあり、ブレーキスイッチ21がOFFの場合、PMB*は保持されるからである。
 ステップS6では、車速VSPが所定車速V1以上か否かを判断し、V1以上の場合はステップS7に進み、V1未満の場合はステップS9に進む。ここで、所定車速V1は、車両が動いていることを表す値である。言い換えると、V1未満の場合は略車両停止状態であり、負圧不足はさほど心配ない。一方、V1以上の場合は車両走行状態であり、負圧を確保する必要があることを表す。
 ステップS7では、第1タイマが第1所定時間T1以上か否かを判断し、T1以上の場合はステップS9に進み、T1未満の場合はステップS8へ進む。ここで、第1タイマとは、後述するブレーキ負圧要求に基づくエアコンカット条件が成立したときにインクリメントされるタイマである。また、第1所定時間T1は、不足している負圧を確保するのに必要な時間である。
 ステップS8では、ブレーキ負圧要求に基づくエアコンカット条件が成立状態とする。すなわち、ブレーキ負圧の不足に伴い、エアコンを停止し、エンジン1のコンプレッサ分の負荷を軽減することで、負圧を確保するための条件が成立していることを表す。
 ステップS9では、第2タイマが第2所定時間T2以上か否かを判断し、T2以上の場合はステップS10に進み、T2未満の場合はステップS11に進む。ここで、第2タイマとは、ブレーキ負圧要求に基づくエアコンカット条件が不成立のときにインクリメントされるタイマである。また、第2所定時間T2は、エアコンの性能を確保するのに必要な時間であり、例えば夏の車室内において、車室内温度を設定温度に向けて、ある程度低下させるのに必要な時間である。
 ステップS10では、エアコンカット条件の前回状態を維持する。エアコンカット条件が成立している場合は成立状態を維持し、不成立の場合は不成立状態を維持する。
 ステップS11では、ブレーキ負圧要求に基づくエアコンカット条件が不成立状態とする。
 ステップS12では、エアコンカット条件が成立しているか否かを判断し、成立している場合はステップS13へ進み、不成立の場合はステップS15に進む。
 ステップS13では、第1タイマをインクリメントする。
 ステップS14では、第2タイマをクリアする。
 ステップS15では、第2タイマをインクリメントする。
 ステップS16では、第1タイマをクリアする。
 図3は、実施例1の車両用空調装置におけるブレーキ負圧要求時空調制御処理を表すタイムチャートである。このタイムチャートは、運転者がブレーキペダル4を踏み込んだ状態で、車両が停止状態であり、エアコン作動によりコンプレッサ2がON、かつ、マスターバック負圧推定値PMB*が所定値P1以下の状態から開始する。尚、PMB*に記載された点線は、実際のマスターバック3内の負圧である。
 運転者がブレーキペダル4の踏み込み量を操作し、ブレーキスイッチ21がONのままエンジン1がアイドリング状態でクリープ走行を開始すると、時刻t1において、車速VSPが所定車速V1を上回る。よって、エアコンカット条件が成立状態となり、第1タイマのインクリメントが開始する。第1タイマがインクリメントされている間は、エアコン停止によりエンジン1のコンプレッサ2負荷が軽減され、PMB*は上昇を開始する。その間、例えば渋滞などでブレーキペダル4を操作し、非常にゆっくり走行していたとしても、PMB*を確保できる。
 時刻t2において、第1タイマが第1所定時間T1に到達すると、第1タイマがクリアされる。このとき、PMB*が所定値P1より大きな値であるため、エアコンカット条件が不成立となる。よって、第2タイマのインクリメントを開始すると共に、エアコンを作動させて空調性能を確保する。一方、エンジン1にコンプレッサ2の負荷が加わり、継続してブレーキペダル4を操作しているため、PMB*は減少するものの、第2タイマのインクリメントを開始すると、第2所定時間T2が経過するまでは、前回のエアコンカット条件の成立状態もしくは不成立状態を維持する。よって、第2タイマのインクリメント中にPMB*が所定値P1を下回ったとしても、エアコンカット条件の不成立状態が維持される。よって、第2タイマのインクリメント開始から第2所定時間T2の間は、エアコンの作動を継続するため、空調性能を確保できる。
 時刻t3において、第2タイマが第2所定時間T2に到達すると、第2タイマがクリアされる。このとき、PMB*が所定値P1を下回っているため、エアコンカット条件が成立状態となる。よって、再度、時刻t1~t2のときと同様、第1タイマのインクリメントを開始し、エアコンを停止する。これにより、PMB*を確保できるため、走行状態が継続し、かつ、ブレーキペダル4の操作が繰り返されたとしても、負圧不足を回避できる。
 以上説明したように、実施例1にあっては、下記の作用効果を奏する。
 (1)エンジン1により駆動されるコンプレッサ2(空調用コンプレッサ)と、エンジン1のインテークマニホールド10(吸気通路)に発生する負圧を導入してブレーキペダル踏力をアシストするマスターバック3内の負圧を、インテークマニホールド10内の圧力と大気圧とに基づいて推定する負圧推定部42と、を備え、コンプレッサ2が作動中にマスターバック3内の負圧が所定圧に対して不足している状態を含む所定条件が成立したときは、第1所定時間T1(第1期間)の間、コンプレッサ2を停止し、第1所定時間T1の経過後、所定条件に関わらず、第2所定時間T2(第2期間)の間は、コンプレッサ2を作動し、第2所定時間T2の経過後、所定条件の成立状態に応じてコンプレッサ2の作動を制御する。
 すなわち、第1所定時間T1の間、コンプレッサ2を停止することで、マスターバック3内の負圧を確保できる。また、第1所定時間T1経過後は、所定条件に係らず第2所定時間T2の間、コンプレッサ2を作動させるため、空調性能を確保できる。また、第2所定時間T2経過後、所定条件が成立していれば、再度、第1所定時間T1の間、コンプレッサ2が停止するため、低車速走行状態のまま繰り返しブレーキペダル4を操作しても、マスターバック3内の負圧を確保できる。また、マスターバック内の負圧を推定することで、マスターバック負圧センサが不要となり、コストを削減できる。
 (2)負圧推定部42は、インテークマニホールド10内の圧力から大気圧を減じた値に基づいて検出する。
 よって、簡易な演算によりマスターバック3内の負圧を推定できる。
 (3)所定条件は、ブレーキペダル4が踏まれており、エンジン1がアイドル運転状態であり、かつ、車両が走行中であることを更に含む。
 よって、負圧の確保が必要な走行状態を精度よく検出できる。
 〔他の実施例〕
  以上、本発明を実施例に基づいて説明したが、具体的な構成は他の構成であっても良い。実施例1では、マスターバック3内の負圧を推定演算したが、センサを設けて直接検出してもよい。また、ブレーキペダル4がOFFであっても、第2所定時間T2内にブレーキペダル4のON履歴がある場合や、エンジン1がアイドル運転状態ではない場合であっても、負圧が不足している場合には、上記制御を適用するようにしてもよい。

Claims (4)

  1.  内燃機関により駆動される空調用コンプレッサと、前記内燃機関の吸気通路に発生する負圧を導入してブレーキペダル踏力をアシストするマスターバック内の負圧を、前記吸気通路内の圧力と大気圧とに基づいて推定する負圧推定部と、を備え、
     前記空調用コンプレッサが作動中に推定された前記マスターバック内の負圧が所定圧に対して不足している状態を含む所定条件が成立したときは、第1期間の間、前記空調用コンプレッサを停止し、前記第1期間の経過後、前記所定条件に関わらず、第2期間の間は、前記空調用コンプレッサを作動し、前記第2期間の経過後、前記所定条件の成立状態に応じて前記空調用コンプレッサの作動を制御することを特徴とする車両用空調の制御方法。
  2.  請求項1に記載の車両用空調の制御方法において、
     前記負圧推定部は、前記吸気通路内の圧力から大気圧を減じた値に基づいて前記マスターバック内の負圧を推定することを特徴とする車両用空調の制御方法。
  3.  請求項1または2に記載の車両用空調の制御方法において、
     前記所定条件は、ブレーキペダルが踏まれており、前記エンジンがアイドル運転状態であり、かつ、車両が走行中であることを更に含むことを特徴とする車両用空調の制御方法。
  4.  内燃機関により駆動される空調用コンプレッサと、
     前記内燃機関の吸気通路に発生する負圧を導入してブレーキペダル踏力をアシストするマスターバック内の負圧を、前記吸入通路内の圧力と大気圧とに基づいて推定する負圧推定部と、
     前記空調用コンプレッサが作動中に、推定された前記マスターバック内の負圧が所定圧に対して不足している状態を含む所定条件が成立したときは、第1期間の間、前記空調用コンプレッサを停止し、前記第1期間の経過後、前記所定条件に関わらず、第2期間の間、前記空調用コンプレッサを作動し、前記第2期間の経過後、前記所定条件の成立状態に応じて前記空調用コンプレッサの作動を制御するコントローラと、
     を備えたことを特徴とする車両用空調装置。
PCT/JP2017/018292 2017-05-16 2017-05-16 車両用空調の制御方法及び車両用空調装置 WO2018211581A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2017/018292 WO2018211581A1 (ja) 2017-05-16 2017-05-16 車両用空調の制御方法及び車両用空調装置
US16/606,254 US10899354B2 (en) 2017-05-16 2017-05-16 Control method for vehicle air conditioning, and vehicle air conditioning device
JP2019518627A JP6747589B2 (ja) 2017-05-16 2017-05-16 車両用空調の制御方法及び車両用空調装置
CN201780090756.1A CN110621526B (zh) 2017-05-16 2017-05-16 车辆用空调的控制方法以及车辆用空调装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/018292 WO2018211581A1 (ja) 2017-05-16 2017-05-16 車両用空調の制御方法及び車両用空調装置

Publications (1)

Publication Number Publication Date
WO2018211581A1 true WO2018211581A1 (ja) 2018-11-22

Family

ID=64274428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/018292 WO2018211581A1 (ja) 2017-05-16 2017-05-16 車両用空調の制御方法及び車両用空調装置

Country Status (4)

Country Link
US (1) US10899354B2 (ja)
JP (1) JP6747589B2 (ja)
CN (1) CN110621526B (ja)
WO (1) WO2018211581A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111284291A (zh) * 2018-12-07 2020-06-16 现代自动车株式会社 空调切断控制系统及其方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110582421B (zh) * 2017-05-18 2020-11-06 日产自动车株式会社 车辆用空调的控制方法及车辆用空调装置
US11851039B2 (en) * 2019-12-30 2023-12-26 Hyundai Motor Company System and method for predicting negative pressure of brake booster of vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104046A (ja) * 2001-09-28 2003-04-09 Mitsubishi Automob Eng Co Ltd エアコン制御装置
JP2003276416A (ja) * 2002-03-27 2003-09-30 Suzuki Motor Corp 車両用エアコン制御装置
JP2013203120A (ja) * 2012-03-27 2013-10-07 Mitsubishi Motors Corp 運転制御装置
JP2015047884A (ja) * 2013-08-29 2015-03-16 ダイハツ工業株式会社 車両用内燃機関

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3475612B2 (ja) * 1995-11-22 2003-12-08 日産自動車株式会社 車両の補機制御装置
CN102050110B (zh) * 2010-11-30 2013-01-16 长城汽车股份有限公司 小排量汽车汽油发动机开空调时制动真空度提高控制系统及方法
CN102050099A (zh) * 2010-12-22 2011-05-11 联合汽车电子有限公司 刹车助力效果改善方法
JP6079999B2 (ja) * 2013-01-16 2017-02-15 スズキ株式会社 車両用エアコン制御装置
CN103350693A (zh) * 2013-07-26 2013-10-16 重庆长安汽车股份有限公司 一种改善制动真空度的方法
JP6011518B2 (ja) * 2013-11-21 2016-10-19 トヨタ自動車株式会社 車両用制御装置、制御方法
JP5999074B2 (ja) * 2013-11-25 2016-09-28 トヨタ自動車株式会社 車両用制御装置、エンジン制御方法
MX365229B (es) * 2015-09-01 2019-05-27 Nissan Motor Método de control de desplazamiento de vehículo y dispositivo de control de desplazamiento de vehículo.
GB2582227B (en) * 2016-01-08 2021-04-21 Cummins Inc Communication interface for start-stop systems and methods
US10632986B2 (en) * 2017-02-07 2020-04-28 Ford Global Technologies, Llc Torque disturbance management system and method
US10746135B2 (en) * 2018-03-26 2020-08-18 Ford Global Technologies, Llc Systems and methods for reducing vehicle emissions
US10767599B2 (en) * 2018-05-23 2020-09-08 Ford Global Technologies, Llc Systems and methods for onboard canister purge valve flow mapping

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003104046A (ja) * 2001-09-28 2003-04-09 Mitsubishi Automob Eng Co Ltd エアコン制御装置
JP2003276416A (ja) * 2002-03-27 2003-09-30 Suzuki Motor Corp 車両用エアコン制御装置
JP2013203120A (ja) * 2012-03-27 2013-10-07 Mitsubishi Motors Corp 運転制御装置
JP2015047884A (ja) * 2013-08-29 2015-03-16 ダイハツ工業株式会社 車両用内燃機関

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111284291A (zh) * 2018-12-07 2020-06-16 现代自动车株式会社 空调切断控制系统及其方法
KR20200069915A (ko) * 2018-12-07 2020-06-17 현대자동차주식회사 에어컨 컷 제어 시스템 및 그 방법
US11458804B2 (en) * 2018-12-07 2022-10-04 Hyundai Motor Company Air conditioner cut control system and method thereof
KR102575169B1 (ko) * 2018-12-07 2023-09-05 현대자동차 주식회사 에어컨 컷 제어 시스템 및 그 방법
CN111284291B (zh) * 2018-12-07 2024-08-23 现代自动车株式会社 空调切断控制系统及其方法

Also Published As

Publication number Publication date
CN110621526A (zh) 2019-12-27
JP6747589B2 (ja) 2020-08-26
JPWO2018211581A1 (ja) 2019-11-07
US10899354B2 (en) 2021-01-26
CN110621526B (zh) 2021-03-30
US20200398851A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
US8382642B2 (en) Vehicle control apparatus
US8880318B2 (en) Vehicle controlling system
US9714621B2 (en) Automatic engine control apparatus
JP5979119B2 (ja) 車両用制御装置
US8560202B2 (en) Method and apparatus for improved climate control function in a vehicle employing engine stop/start technology
US9157382B2 (en) Idling stop control device, vehicle and vehicle control method
JP2524723B2 (ja) 車輌用冷房装置のコンプレツサ制御装置
WO2018211581A1 (ja) 車両用空調の制御方法及び車両用空調装置
US10363935B2 (en) Method for operating a vehicle having a manual transmission
CN110748424B (zh) 冷起动时车辆压缩机控制系统及其方法
EP1854979A1 (en) Abnormality detection device for vehicle
US9080534B2 (en) Idling stop control device, vehicle and vehicle control method
US9267447B2 (en) Engine restart control apparatus, vehicle and vehicle control method
WO2018211647A1 (ja) 車両用空調の制御方法及び車両用空調装置
JP2002173009A (ja) エンジン自動停止始動装置
WO2018185875A1 (ja) 車両用空調の制御方法及び車両用空調装置
JP2007326399A (ja) 制動制御装置
JP6019658B2 (ja) 運転制御装置
JPH09144573A (ja) 車両の補機制御装置
JP2515997B2 (ja) 車輌用冷房装置のコンプレツサ制御装置
JP6311517B2 (ja) 車両用制御装置
JP2014500180A (ja) 発進プロセスでパーキングブレーキを解除する方法
JP2009057028A (ja) 車両用空調制御装置
JPH08183371A (ja) オートクルーズ制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019518627

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17909949

Country of ref document: EP

Kind code of ref document: A1