WO2018209904A1 - 电烹饪器及其加热功率控制方法和装置 - Google Patents

电烹饪器及其加热功率控制方法和装置 Download PDF

Info

Publication number
WO2018209904A1
WO2018209904A1 PCT/CN2017/110367 CN2017110367W WO2018209904A1 WO 2018209904 A1 WO2018209904 A1 WO 2018209904A1 CN 2017110367 W CN2017110367 W CN 2017110367W WO 2018209904 A1 WO2018209904 A1 WO 2018209904A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
power
temperature
electric cooker
ratio
Prior art date
Application number
PCT/CN2017/110367
Other languages
English (en)
French (fr)
Inventor
李娟�
Original Assignee
佛山市顺德区美的电热电器制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佛山市顺德区美的电热电器制造有限公司 filed Critical 佛山市顺德区美的电热电器制造有限公司
Publication of WO2018209904A1 publication Critical patent/WO2018209904A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/02Induction heating

Definitions

  • the invention relates to the technical field of household appliances, in particular to a heating power control method of an electric cooker, a heating power control device of the electric cooker and an electric cooker.
  • EU energy efficiency test standards will be implemented in three phases starting from 2015. The first phase will be implemented from February 20, 2015, requiring energy efficiency values less than 210Wh/Kg; the second phase will be from February 20, 2017. Execution requires an energy efficiency value of less than 200Wh/Kg; the third phase is implemented from February 20, 2019, requiring an energy efficiency value of less than 195Wh/Kg.
  • the test method for compliance with the EU energy efficiency test standard is: select the corresponding pot and water quantity according to the silk screen circle of the electric cooker glass plate.
  • the power parameters of the electric cooker can be individually set by experiments to meet the energy efficiency test standard, but the power parameters set by experiments alone may affect the normal use of the electric cooker by the user.
  • the energy efficiency test standards implemented by 2019 will be more difficult to achieve. Therefore, for all electric cookers sold in Europe, how to meet the energy efficiency test standards without affecting their production efficiency and versatility is currently Need to solve the problem.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned techniques to some extent.
  • an object of the present invention is to provide a heating power control method for an electric cooker, which can effectively ensure that the electric cooking device meets the preset energy efficiency test standard, and can ensure the production efficiency, versatility, and user experience.
  • a second object of the present invention is to provide a heating power control device for an electric cooker.
  • a third object of the invention is to propose an electric cooker.
  • a first aspect of the present invention provides a heating power control method for an electric cooker, comprising the steps of: obtaining heating power of the electric cooking device; monitoring a heating temperature of the electric cooking device in real time, Obtaining a temperature sample value; determining whether the electric cooker enters an energy efficiency test state according to the change of the heating power and the temperature sample value; and if the electric cooker enters the energy efficiency test state, controlling the electricity
  • the cooker heats at an initial power-shift ratio and dynamically adjusts the initial power-shift ratio based on the temperature sample value to cause the electric cooker to meet predetermined energy efficiency test criteria.
  • the heating power control method of the electric cooker first, the heating power of the electric cooking device is obtained, and then the heating temperature of the electric cooking device is monitored in real time to obtain a temperature sampling value, and finally, according to the change of the heating power. And the temperature sampling value determines whether the electric cooker enters the energy efficiency test state, if the electric cooker enters the energy efficiency test state, the electric cooker is controlled to be heated by the initial power adjustment ratio, and the initial power adjustment ratio is dynamically adjusted according to the temperature sampling value, In order to make the electric cooker meet the preset energy efficiency test standards.
  • the control method dynamically adjusts the initial power adjustment ratio according to the heating temperature of the electric cooker under the energy efficiency test state, thereby effectively ensuring that the electric cooker satisfies the preset energy efficiency test standard, and at the same time, by setting certain conditions Controlling whether the electric cooker enters the energy efficiency test state can avoid affecting the production of the product and the normal use of the user, thereby ensuring the production efficiency and user experience of the electric cooker.
  • heating power control method of the electric cooker according to the above embodiment of the present invention may further have the following additional technical features:
  • the working gear of the electric cooker comprises a rated maximum power gear and a variable power ratio variable test power gear, and the maximum heating power corresponding to the rated maximum power gear is greater than the test The test heating power corresponding to the power adjustment file.
  • the electric cooker when the temperature sampling value reaches a preset shift temperature value, if the working gear position of the electric cooker is switched from the rated maximum power level to the test adjustable power level, Then, the electric cooker is judged to enter the energy efficiency test state.
  • dynamically adjusting the initial power-modulation ratio according to the temperature sampling value comprising: determining whether a difference between the temperature sampling value and the first preset determination temperature value is less than a first preset a difference, wherein the first preset determination temperature value is greater than the preset shift temperature value; when a difference between the temperature sample value and the first preset determination temperature value is less than the first pre- When the difference is set, counting is performed by the first counter, and when the count value of the first counter reaches the first threshold, the power adjustment ratio of the electric cooker is adjusted to be the highest one of the test power adjustment files After the preset time is heated by the highest power-modulation ratio in the test power-modulation file, determining whether the difference between the second preset determination temperature value and the temperature sampling value is less than the second preset difference, Wherein the second preset judgment The fixed temperature value is greater than the first preset determination temperature value; when the difference between the second preset determination temperature value and the temperature sampling value is less than the second preset difference, the electric cooker
  • dynamically adjusting an initial power-modulation ratio of the electric cooker according to the temperature sampling value comprising: determining a difference between the temperature sampling value and the first preset determination temperature value When the value is greater than or equal to the first preset difference, further determining whether the temperature sampling value is greater than the second preset determination temperature value; when the temperature sampling value is greater than the second preset determination temperature value, Counting by the second counter, and adjusting the power adjustment ratio of the electric cooker to the lowest power ratio in the test power modulation gear when the count value of the second counter reaches the second threshold; Whether the slope of the temperature sample value change tends to zero; if the absolute value of the slope of the temperature sample value change does not tend to zero, controlling the power cooker's power-modulation ratio to rise by one level; until the temperature sample The slope of the value change tends to zero, or the temperature sample value determined after the power ratio of the electric cooker is raised to the highest power ratio in the test power shift is less than or equal to the second preset determination Temperature value Control
  • a second aspect of the present invention provides a heating power control apparatus for an electric cooker, comprising: an acquisition module, wherein the acquisition module is configured to acquire heating power of the electric cooking device;
  • the monitoring module is configured to monitor the heating temperature of the electric cooking device in real time to obtain a temperature sampling value, and a determining module, wherein the determining module is configured to determine the electric cooking according to the change of the heating power and the temperature sampling value.
  • the main control module when the electric cooker enters the energy efficiency test state, controls the electric cooker to perform heating at an initial power adjustment ratio, and samples according to the temperature The value dynamically adjusts the initial tuning ratio to cause the electric cooker to meet predetermined energy efficiency testing criteria.
  • the heating power of the electric cooking device is obtained by the acquisition module, and then the heating temperature of the electric cooking device is monitored in real time through the monitoring module to obtain the temperature sampling value, and finally, the judgment is made.
  • the module determines whether the electric cooker enters the energy efficiency test state according to the heating power variation condition and the temperature sampling value.
  • the electric control device is controlled by the main control module to initially adjust the power ratio.
  • the line is heated and the initial ratio of power is dynamically adjusted according to the temperature sample value so that the electric cooker meets the preset energy efficiency test standard.
  • the detecting device dynamically adjusts the initial power-modulating ratio according to the heating temperature of the electric cooker under the energy-efficiency test state, thereby effectively ensuring that the electric cooker satisfies the preset energy-efficiency test standard, and at the same time, by setting certain conditions Controlling whether the electric cooker enters the energy efficiency test state can avoid affecting the production of the product and the normal use of the user, thereby ensuring the production efficiency and user experience of the electric cooker.
  • heating power control device of the electric cooker according to the above embodiment of the present invention may further have the following additional technical features:
  • the working gear of the electric cooker includes an additional maximum power gear and a variable power ratio variable test power gear, and the maximum heating power corresponding to the rated maximum power gear is greater than the test The test heating power corresponding to the power adjustment file.
  • the determining module is configured to: when the temperature sampling value reaches a preset shift temperature value, if the working gear position of the electric cooker is switched from the rated maximum power level to the When the test power adjustment file is described, it is determined that the electric cooker enters the energy efficiency test state.
  • the main control module is configured to: determine whether a difference between the temperature sampling value and the first preset determination temperature value is less than a first preset value, wherein the first preset determination The temperature value is greater than the preset shift temperature value; when the difference between the temperature sample value and the first preset determination temperature value is less than the first preset difference value, counting is performed by the first counter, And adjusting, when the count value of the first counter reaches a first threshold, adjusting a power-modulation ratio of the electric cooker to a highest power-modulation ratio in the test power-modulation gear; Determining whether the difference between the second preset determination temperature value and the temperature sampling value is less than a second preset difference value, wherein the second preset determination temperature value is greater than the The first preset determination temperature value; when the difference between the second preset determination temperature value and the temperature sampling value is less than the second preset difference, controlling the power cooking ratio of the electric cooker to decrease by one Level; when the second preset determines a temperature value and the temperature When
  • the main control module is configured to: determine that when the difference between the temperature sampling value and the first preset determination temperature value is greater than or equal to the first preset difference, further determining The temperature sample value is No greater than the second preset determination temperature value; when the temperature sampling value is greater than the second preset determination temperature value, counting is performed by the second counter, and the count value of the second counter reaches the second a threshold value, adjusting a power adjustment ratio of the electric cooker to a lowest power ratio in the test power modulation gear; determining whether a slope of the temperature sample value change tends to zero; when the temperature sample value changes When the absolute value of the slope does not tend to zero, the power-control ratio of the electric cooker is controlled to increase by one level; until the slope of the temperature sample value changes to zero, or the power-modulation ratio of the electric cooker is increased When the temperature sampling value determined after the highest power adjustment ratio in the test power modulation gear is less than or equal to the second preset determination temperature value, the electric cooking device is controlled to be heated at the current
  • an embodiment of the third aspect of the present invention proposes an electric cooking appliance which employs the above-described heating power control device of the electric cooker.
  • the heating power control device of the electric cooker described above can dynamically adjust the initial power adjustment ratio according to the heating temperature of the electric cooker under the energy efficiency test state.
  • the cooker meets the preset energy efficiency test standard, and at the same time, by setting certain conditions to control whether the electric cooker enters the energy efficiency test state, the influence of the production of the product and the normal use of the user can be avoided, thereby ensuring the electric cooker.
  • FIG. 1 is a flow chart of a heating power control method of an electric cooker according to an embodiment of the present invention
  • FIG. 2 is a topological view of an indirect temperature sampling circuit in accordance with one embodiment of the present invention.
  • FIG. 3 is a topological diagram of a direct temperature sampling circuit in accordance with one embodiment of the present invention.
  • FIG. 4 is a flow chart of a heating power control method of an electric cooker according to an embodiment of the present invention.
  • FIG. 5 is a block schematic diagram of a heating power control device of an electric cooker according to an embodiment of the present invention.
  • FIG. 6 is a block schematic illustration of an electric cooker in accordance with an embodiment of the present invention.
  • FIG. 1 is a flow chart of a heating power control method of an electric cooker according to an embodiment of the present invention.
  • a heating power control method for an electric cooker includes the following steps:
  • the electric cooker can be an induction cooker.
  • the induction cooker generally uses the low power gear as the power adjustment gear based on factors such as cooking effect and actual use. That is to say, the low power gear of the induction cooker can work alternately for a period of time and stop heating for a period of time.
  • the common power adjustment files have a 200W gear with a heating power of 200W, a 400W gear with a heating power of 400W, a 600W gear with a corresponding heating power of 600W, and a 800W gear with a corresponding heating power of 800W.
  • the corresponding heating power referred to is the average power value.
  • the heating power 1000W file is used as the reference power file. If the heating and stopping heating time ratio is 20/100, the power adjustment gear is a 200W gear corresponding to a heating power of 200W. If the heating and stopping heating time ratio is 40/100, the power adjustment gear is a 400 W gear corresponding to a heating power of 400 W.
  • the heating temperature of the electric cooker can be monitored in real time by a direct or indirect temperature sampling circuit including a thermistor to obtain a temperature sample value.
  • a direct or indirect temperature sampling circuit including a thermistor to obtain a temperature sample value.
  • the working principle of the direct or indirect temperature sampling circuit is to obtain the temperature sampling value by sampling the voltage and using the correspondence between the resistance value and the temperature.
  • the indirect temperature sampling circuit may include: a current limiting resistor R11, a thermistor RT11, a resistor R12, a voltage dividing resistor R13, and a filter capacitor C11.
  • the working principle is to calculate the voltage across the voltage dividing resistor R13.
  • the voltage across the voltage resistor R13 calculates the voltage across the thermistor RT11 to obtain a temperature sampling signal, and outputs a corresponding temperature sampling signal through the output terminal TMAIN of the indirect temperature sampling circuit, and the chip can receive the temperature sampling signal in real time and sample the signal according to the temperature. Get the temperature sample value.
  • the direct temperature sampling circuit may include: a current limiting resistor R21, a thermistor RT21, a resistor R22, a voltage dividing resistor R23, and a filter capacitor C21.
  • the working principle is to calculate the voltage across the thermistor RT21 to obtain a temperature.
  • the signal is sampled, and the corresponding temperature sampling signal is output through the output terminal TMAIN of the direct temperature sampling circuit, and the chip can receive the temperature sampling signal in real time and obtain the temperature sampling value according to the temperature sampling signal.
  • the selection and design of the thermistor in the temperature sampling circuit are related to its specification and sensitivity.
  • the electric cooker commonly uses low temperature and medium high temperature (25 ° C ⁇ 300 ° C).
  • the thermal change rate is relatively large and relatively sensitive. of Thermistor.
  • a thermistor capable of measuring the temperature of the heating pot may be included in the electric cooker, and the temperature of the water heated in the pot is obtained by sampling the thermistor.
  • the electric cooker is used to heat the water at the maximum power level, and when the water temperature reaches the set temperature, such as 89 ° C, the corresponding temperature of the water temperature at the set temperature is obtained.
  • the sampled value at the same time, can be used to obtain a temperature value corresponding to a temperature sample value.
  • the appropriate voltage divider resistor and voltage divider circuit can be selected in combination with the actual characteristics of the thermistor, which can effectively improve the accuracy of the resistance value corresponding to the sampling temperature value.
  • the working gear of the electric cooker may include a rated maximum power gear and a variable power ratio test variable, and the maximum heating power corresponding to the rated maximum power gear is greater than the test power adjustment gear. Corresponding test heating power.
  • the rated maximum power gear may be the above-mentioned reference power gear 1000W gear
  • the test power gear gear may take 400W gear or 600W gear in the power shift gear.
  • the electric cooker when the temperature sampling value reaches the preset shift temperature value, if the working position of the electric cooker is switched from the rated maximum power level to the test adjustable power level, the electric cooker can be judged to enter. Energy efficiency test status.
  • the preset shift temperature value can be calibrated according to the actual situation, for example, can be set to 89 °C.
  • the energy efficiency test state and the normal heat insulation state can be distinguished, and the water can be set in the chip when the water is heated to the shift temperature value by the maximum power file.
  • the method of pressing the button selects the test power adjustment file as the determination condition. When this condition is met, it can be determined that the electric cooker enters the energy efficiency test state.
  • the button is selected to adjust the heating power gear from the maximum power gear 1000W gear to the power shift gear 400W gear, or by the maximum power gear.
  • the 1000W file is adjusted to the 600W file of the power adjustment file, and the electric cooker can be judged to enter the energy efficiency test state, and the corresponding test power adjustment file is 400W file or 600W file.
  • the electric cooking device is controlled to be heated at an initial power adjustment ratio, and the initial power adjustment ratio is dynamically adjusted according to the temperature sampling value, so that the electric cooker meets the preset energy efficiency test standard.
  • the test tuned work in the electric cooker works by alternately heating and stopping the heating.
  • the ratio of the alternate working time is actually an optional range of intervals, which can be combined by the range and energy efficiency test criteria (maintained
  • the water temperature is above the first predetermined determination temperature value to determine a proportional interval.
  • the ratio of power adjustment is in the range of 37/100 ⁇ 43/100. That is to say, for the test power file 400W file, the corresponding power-modulation ratio can be within the variable range of 37/100 to 43/100. That is to say, the range of the actual heating power corresponding to the test power adjustment file 400W can be set to 400 ⁇ 30W.
  • the electric cooker can be controlled to be heated at an initial power adjustment ratio, and according to the temperature sampling value pair
  • the initial power-shift ratio is dynamically adjusted so that the electric cooker can operate at a lower heating power while maintaining the water temperature above the first predetermined determination temperature value.
  • the electric cooker after controlling the electric cooker to perform heating at an initial power-modulation ratio, it may be determined whether a difference between the temperature sampling value and the first preset determination temperature value is less than a first preset difference value, wherein the first preset determination temperature The value is greater than the preset shift temperature value, for example, 90 ° C.
  • the first counter When the difference between the temperature sample value and the first preset determination temperature value is less than the first preset difference value, the first counter may be used for counting, and when the count value of the first counter reaches the first threshold, the water temperature is low. At 90 ° C possible. In order to maintain the water temperature above 90 ° C, the power cooker's power ratio can be adjusted to the highest power ratio in the test power shift. After the preset time is heated by the highest power adjustment ratio in the test power adjustment gear, it is determined whether the difference between the second preset determination temperature value and the temperature sampling value is less than a second preset difference, wherein the second preset determination The temperature value is greater than the first preset determination temperature value, and the preset time may be calibrated according to actual conditions.
  • the electric cooker In order to heat the water at the lowest possible power and maintain the water temperature above 90 ° C, when the difference between the second predetermined determination temperature value and the temperature sampling value is less than the second preset difference, the electric cooker can be controlled.
  • the power adjustment ratio is reduced by one level.
  • the slope of the temperature sampling value change may be further determined whether Tend to zero.
  • the control of the electric cooker can be continued to decrease by one level.
  • the electric cooker can be controlled to be heated at the current power ratio.
  • the difference between the temperature sampling value and the first preset determination temperature value is greater than or equal to the first preset difference value, it may be further determined whether the temperature sampling value is greater than the second preset determination temperature value.
  • the second counter When the temperature sampling value is greater than the second preset determination temperature value, the second counter can be counted, and when the second counter's count value reaches the second threshold, the electric cooker's power adjustment ratio is adjusted to the test power adjustment file. The lowest power ratio in the middle. Further, it can be determined whether the slope of the temperature sample value change tends to zero.
  • the power cooker's power adjustment ratio can be controlled to increase by one level. Until the slope of the temperature sample value changes to zero, or when the power sample ratio of the electric cooker rises to the highest power ratio in the test power shift, the temperature sample value is less than or equal to the second preset determination temperature value.
  • the electric cooker can be controlled to be heated at the current power ratio. Therefore, the electric cooker can be heated with a small power, and the water temperature can be maintained above 90 ° C, thereby achieving the goal of the lowest energy efficiency.
  • the heating power control method of the electric cooker according to the embodiment of the present invention may include the following steps:
  • step S101 Determine whether to switch from the maximum power level to the power adjustment file. If yes, step S102 is performed; if not, the execution ends, that is, the energy efficiency test state is not entered.
  • step S102 determining whether the sampling temperature is 89 °C. If yes, go to step S103; if no, the execution ends, that is, it does not enter the energy efficiency test state.
  • heating is performed at an initial power-modulation ratio.
  • step S105 Determine whether a difference between the temperature sample AD value and the first preset determination temperature value (AD value of 90 ° C) is less than a first preset difference value (a AD value). If yes, go to step S106; if no, go to step S115.
  • AD value the first preset determination temperature value
  • step S107 Determine whether the count value N reaches the first threshold value n1. If yes, go to step S108; if no, go back to step S104.
  • step S109 Determine whether the difference between the AD value (the AD value of the 90° C.+b AD value) of the second preset determination temperature value and the temperature sample AD value is less than the second preset difference value (c AD values). If yes, go to step S110; if no, go to step S111.
  • control power-modulation ratio is lowered by one level.
  • step S111 whether the absolute value of the slope of the temperature sample AD value change tends to zero. If yes, step S124 is performed; if no, step S112 is performed.
  • step S113 Determine whether the current power-modulation ratio is the lowest power-modulation ratio. If yes, go to step S114; if no, return Go back to step S111.
  • step S114 Determine whether the difference between the temperature sample AD value and the AD value of 90 ° C is less than a AD value. If yes, go back to step S106; if no, go to step S124.
  • step S115 Determine whether the temperature sampling AD value is greater than an AD value of the second preset determination temperature value (AD value of 90 ° C + b AD values). If yes, go to step S116; if no, go to step S117.
  • AD value of the second preset determination temperature value AD value of 90 ° C + b AD values
  • step S118 Determine whether the count value M reaches the second threshold value n2. If yes, go to step S119; if no, go back to step S117.
  • step S120 Determine whether the absolute value of the slope of the temperature sample AD value change tends to zero. If yes, go to step S124; if no, go to step S121.
  • step S122 Determine whether the current power-modulation ratio is the highest power-modulation ratio. If yes, go to step S123; if no, go back to step S120.
  • step S123 Determine whether the temperature sampling AD value is greater than an AD value of the second preset determination temperature value (AD value of 90 ° C + b AD values). If yes, go back to step S116; if no, go to step S124.
  • step S125 determining whether to shut down or switch functions. If yes, the execution ends, that is, the energy efficiency test state is exited; if not, the process returns to step S124.
  • an energy efficiency test is performed by selecting an induction cooker with a screen printing ring of 190 mm as a glass plate, and a pot of 210 mm is selected. Correspondingly, 2050g of water is selected. Under such conditions, the test power adjustment gear capable of maintaining the water temperature above 90 °C and the maximum power gear 1000W as the reference power is 400W.
  • 2050g of water can be heated by using the maximum power position of 1000W.
  • the test power adjustment file of 400W is selected by the button operation, and the energy efficiency test state can be entered.
  • the induction cooker can be controlled to heat at an initial ratio of 40/100. Determining whether the difference between the temperature sample AD value and the AD value of the first preset determination temperature value (such as the AD value of 90 ° C) is less than the first preset difference a (such as 5 AD values). When the difference between the temperature sampling AD value and the AD value of 90 ° C is less than 5 AD values, the first counter can be counted, and when the count value N of the first counter is equal to 3, the water temperature is lower than 90 ° C. Possibly, at this time, the power adjustment ratio of the induction cooker can be adjusted to the highest power adjustment such as 43/100.
  • the difference between the AD value of the second preset determination temperature value (AD value of 90 ° C + 10 AD values) and the temperature sample AD value is determined. Whether it is less than the second preset difference c (4 AD values), when the difference between the AD value of +90°C and the AD value of the temperature sample is less than 4 AD values, the power adjustment of the electric cooker can be controlled. It is lower than a level such as 42/100. When the difference between the AD value of +90°C and the AD value of 90°C is greater than or equal to 4 AD values, or after the control unit of the induction cooker is lowered by a level such as 42/100, the temperature sample AD value is judged to change.
  • the controllability of the induction cooker can be continuously reduced by a level such as 41/100. Until the slope of the temperature sample AD value changes to zero, or after the power cooker's power-shift ratio is reduced to the lowest power adjustment in the test power shift, such as 37/100, the temperature sampled AD value is compared with the AD of 90 °C. When the difference of the values is greater than or equal to 5 AD values, the induction cooker can be controlled to be heated at the current power-modulation ratio.
  • the temperature sample AD value is greater than the AD value of 90 ° C + 10 AD values.
  • the temperature sampling AD value is greater than the AD value of 90 ° C + 10 AD values, it can be counted by the second counter, and when the count value M of the second counter reaches 5, the power adjustment ratio of the induction cooker can be adjusted to test The lowest adjustment ratio in the power adjustment file is 37/100. Further, it is judged whether or not the slope of the change in the temperature sample AD value tends to zero.
  • the controllable ratio of the induction cooker can be increased by a level such as 38/100. Until the slope of the temperature sample AD value changes to zero, or after the induction ratio of the induction cooker rises to the highest power adjustment in the test power modulation gear, such as 43/100, the temperature sampled AD value is less than or equal to 90 °C AD.
  • the electric cooker can be controlled to heat at the current power ratio. This ensures that the water temperature is maintained above 90 °C and the energy consumption is minimal. Therefore, the electric cooker can be heated with a small power, and the water temperature can be maintained above 90 ° C, thereby achieving the goal of the lowest energy efficiency.
  • an energy efficiency test is performed by selecting an induction cooker with a screen printing circle of 220 mm as a glass, and a 240 mm pot is selected. And correspondingly choose 2700g of water. Under such conditions, the test power adjustment gear capable of maintaining the water temperature above 90 ° C and the maximum power gear 1000 W as the reference power is 600 W.
  • 2700g of water can be heated using the maximum power position of 1000W.
  • the test power adjustment file of 600W is selected by pressing the button, and the energy efficiency test state can be entered.
  • the induction cooker can then be controlled to heat at an initial ratio of 60/100. It is determined whether the difference between the temperature sample AD value and the AD value of the first preset determination temperature value (such as the AD value of 90 ° C) is less than the first preset difference a (such as 5 AD values). When the difference between the temperature sampling AD value and the AD value of 90 ° C is less than 5 AD values, the first counter can be counted, and when the count value N of the first counter is equal to 3, the water temperature is lower than 90 ° C. Possibly, at this time, the power adjustment ratio of the induction cooker can be adjusted to the highest power adjustment such as 63/100.
  • the difference between the AD value of the second preset determination temperature value (AD value of 90 ° C + 10 AD values) and the temperature sample AD value is determined. Whether it is less than the second preset difference c (4 AD values), when the difference between the AD value of +90°C and the AD value of the temperature sample is less than 4 AD values, the power adjustment of the electric cooker can be controlled. Than a lower rating such as 62/100. When the difference between the AD value of +90°C and the AD value of 90°C is greater than or equal to 4 AD values, or after controlling the induction ratio of the induction cooker to decrease by one level such as 62/100, determine the change of AD value of temperature sampling.
  • the controllability of the induction cooker can be continuously reduced by a level such as 61/100. Until the slope of the temperature sample AD value changes to zero, or after the power cooker's power-shift ratio is reduced to the lowest power-shift ratio of 57/100 in the test power shift, the judged temperature sample AD value and the AD of 90 °C When the difference of the values is greater than or equal to 5 AD values, the induction cooker is heated at the current power-modulation ratio.
  • the temperature sample AD value is greater than the AD value of 90 ° C + 10 AD values.
  • the temperature sampling AD value is greater than the AD value of 90 ° C + 10 AD values, it can be counted by the second counter, and when the count value M of the second counter is equal to 5, the power adjustment ratio of the induction cooker can be adjusted to the test tone The lowest adjustment in the power file is 57/100. Further, it is judged whether or not the slope of the change in the temperature sample AD value tends to zero.
  • the controllable ratio of the induction cooker can be increased by a level such as 58/100. Until the slope of the temperature sample AD value changes to zero, or after the induction ratio of the induction cooker rises to the highest adjustment work in the test power adjustment gear, such as 63/100, the temperature sampled AD value is less than or equal to 90 °C AD. When the value is +10 AD values, the electric cooker can be controlled to heat at the current power ratio. Therefore, the electric cooker can be heated with a small power, and the water temperature can be maintained above 90 ° C, thereby achieving the goal of the lowest energy efficiency.
  • the heating power control method of the electric cooker according to the embodiment of the present invention, first, the heating power of the electric cooking device is obtained, and then the heating temperature of the electric cooking device is monitored in real time to obtain a temperature sampling value, and finally, according to The change of the heating power and the temperature sampling value determine whether the electric cooker enters the energy efficiency test state. If the electric cooker enters the energy efficiency test state, the electric cooker is controlled to be heated at the initial power adjustment ratio, and the initial power adjustment is performed according to the temperature sampling value. The dynamic adjustment is made so that the electric cooker meets the preset energy efficiency test standard.
  • the control method is in energy efficiency In the test state, by dynamically adjusting the initial power-modulation ratio according to the heating temperature of the electric cooker, it is possible to effectively ensure that the electric cooker satisfies the preset energy efficiency test standard, and at the same time, by setting certain conditions to control whether the electric cooker enters
  • the energy efficiency test state can avoid the influence of the production of the product and the normal use of the user, thereby ensuring the production efficiency and user experience of the electric cooker.
  • FIG. 5 is a block schematic diagram of a heating power control device for an electric cooker in accordance with an embodiment of the present invention.
  • the heating power control device of the electric cooker according to the embodiment of the present invention may include: an acquisition module 10, a monitoring module 20, a determination module 30, and a main control module 40.
  • the acquisition module 10 is configured to obtain heating power of the electric cooker.
  • the monitoring module 20 is configured to monitor the heating temperature of the electric cooker in real time to obtain a temperature sampling value.
  • the judging module 30 is configured to judge whether the electric cooker enters the energy efficiency test state according to the change of the heating power and the temperature sampling value.
  • the main control module 40 controls the electric cooker to heat the initial power-modulation ratio when the electric cooker enters the energy-efficiency test state, and dynamically adjusts the initial power-modulation ratio according to the temperature sampling value, so that the electric cooker satisfies the preset energy efficiency. standard test.
  • the electric cooker may be an induction cooker, and the induction cooker is based on factors such as cooking effect and actual use, and generally the low power gear may be a power shifting gear, that is, the working mode of the low power gear of the induction cooker It may be alternately heating for a period of time and stopping heating for a period of time.
  • the common power adjustment files have a 200W gear with a heating power of 200W, a 400W gear with a heating power of 400W, a 600W gear with a corresponding heating power of 600W, and a 800W gear with a corresponding heating power of 800W.
  • the corresponding heating power referred to is the average power value.
  • the heating power 1000W file is used as the reference power file. If the heating and stopping heating time ratio is 20/100, the power adjustment gear is a 200W gear corresponding to a heating power of 200W. If the heating and stopping heating time ratio is 40/100, the power adjustment gear is a 400 W gear corresponding to a heating power of 400 W.
  • the heating temperature of the electric cooking device can be monitored in real time by the monitoring module 20 to obtain a temperature sampling value.
  • the heating temperature of the electric cooker can be monitored in real time by a direct or indirect temperature sampling circuit including a thermistor to obtain a temperature sample value.
  • a direct or indirect temperature sampling circuit including a thermistor to obtain a temperature sample value.
  • the working principle of the direct or indirect temperature sampling circuit is to obtain the temperature sampling value by sampling the voltage and using the correspondence between the resistance value and the temperature.
  • the indirect temperature sampling circuit may include: a current limiting resistor R11, a thermistor RT11, a resistor R12, a voltage dividing resistor R13, and a filter capacitor C11.
  • the working principle is to calculate the voltage across the voltage dividing resistor R13.
  • the voltage across the voltage resistor R13 calculates the voltage across the thermistor RT11 to obtain a temperature sampling signal and passes through the indirect temperature sampling circuit.
  • the output terminal TMAIN outputs the corresponding temperature sampling signal, and the chip can receive the temperature sampling signal in real time and obtain the temperature sampling value according to the temperature sampling signal.
  • the direct temperature sampling circuit may include: a current limiting resistor R21, a thermistor RT21, a resistor R22, a voltage dividing resistor R23, and a filter capacitor C21.
  • the working principle is to calculate the voltage across the thermistor RT21 to obtain a temperature.
  • the signal is sampled, and the corresponding temperature sampling signal is output through the output terminal TMAIN of the direct temperature sampling circuit, and the chip can receive the temperature sampling signal in real time and obtain the temperature sampling value according to the temperature sampling signal.
  • the selection and design of the thermistor in the temperature sampling circuit are related to its specification and sensitivity.
  • the electric cooker commonly uses low temperature and medium high temperature (25 ° C ⁇ 300 ° C).
  • the thermal change rate is relatively large and relatively sensitive. Thermistor.
  • a thermistor capable of measuring the temperature of the heating pot may be included in the electric cooker, and the temperature of the water heated in the pot is obtained by sampling the thermistor.
  • the electric cooker is used to heat the water at the maximum power level, and when the water temperature reaches the set temperature, such as 89 ° C, the corresponding temperature sampling is obtained when the water temperature is 89 ° C.
  • a temperature value corresponding to a temperature sampling value can be obtained.
  • a suitable voltage dividing resistor and a voltage dividing circuit can be selected in combination with the actual characteristics of the thermistor, which can effectively improve the resistance value and the sampling temperature value. The accuracy.
  • the working gear of the electric cooker may include a rated maximum power gear and a variable power ratio test variable, and the maximum heating power corresponding to the rated maximum power gear is greater than the test power adjustment gear. Corresponding test heating power.
  • the rated maximum power gear may be the above-mentioned reference power gear 1000W gear
  • the test power gear gear may take 400W gear or 600W gear in the power shift gear.
  • the temperature sampling value obtained by the monitoring module 20 reaches the preset shift temperature value, if the working position of the electric cooker is switched from the rated maximum power level to the test adjustable power level, The judging module 30 determines that the electric cooker enters the energy efficiency test state.
  • the temperature value of the power adjustment file can be calibrated according to the actual situation, for example, it can be set to 89 °C.
  • the energy efficiency test state and the normal heat insulation state can be distinguished, and the water maximum power file can be set to the shift temperature value in the judgment module 30.
  • the test power adjustment file is selected as a determination condition by means of a button. When this condition is met, the determination module 30 can determine that the electric cooker enters the energy efficiency test state.
  • the electric cooker can be judged to enter the energy efficiency test state, and the corresponding test tone is adjusted.
  • the power file is 400W or 600W.
  • the electric cooker is controlled by the main control module 40 to perform initial power adjustment ratio, and the initial power adjustment is performed according to the temperature sampling value.
  • the dynamic adjustment is made to make the electric cooker full of preset energy efficiency test standards.
  • the test tuned work in the electric cooker works by alternately heating and stopping the heating.
  • the ratio of the alternate working time is actually an optional range of intervals, which can be combined by the range and energy efficiency test criteria (maintained
  • the water temperature is above the first predetermined determination temperature value to determine a proportional interval.
  • the ratio of power adjustment is in the range of 37/100 ⁇ 43/100. That is to say, for the test power file 400W file, the corresponding power-modulation ratio can be within the variable range of 37/100 to 43/100. That is to say, the range of the actual heating power corresponding to the test power adjustment file 400W can be set to 400 ⁇ 30W.
  • the electric cooker can be controlled to be heated at an initial power adjustment ratio, and according to the temperature sampling value pair
  • the initial power-shift ratio is dynamically adjusted so that the electric cooker can operate at a lower heating power while maintaining the water temperature above the first predetermined determination temperature value.
  • the main control module 40 determines whether the difference between the temperature sampling value and the first preset determination temperature value is less than the first preset. a value, wherein the first preset determination temperature value is greater than a preset shift temperature value, for example, 90 ° C.
  • the first counter When the difference between the temperature sample value and the first preset determination temperature value is less than the first preset difference value, the first counter may be used for counting, and when the count value of the first counter reaches the first threshold, the water temperature is low. At 90 ° C possible. In order to maintain the water temperature above 90 ° C, the power cooker's power ratio can be adjusted to the highest power ratio in the test power shift. After the preset time is heated by the highest power adjustment ratio in the test power adjustment gear, it is determined whether the difference between the second preset determination temperature value and the temperature sampling value is less than a second preset difference, wherein the second preset determination The temperature value is greater than the first preset determination temperature value, and the preset time may be calibrated according to actual conditions.
  • the electric cooker In order to heat the water at the lowest possible power and maintain the water temperature above 90 ° C, when the difference between the second predetermined determination temperature value and the temperature sampling value is less than the second preset difference, the electric cooker can be controlled. Reduce the power ratio by one grade. When the difference between the second preset determination temperature value and the temperature sampling value is greater than or equal to the second preset difference, or after controlling the power cooking ratio of the electric cooker to decrease by one level, the slope of the temperature sampling value change may be further determined whether Tend to zero.
  • the control of the electric cooker continues to decrease by one level.
  • the electric cooker is controlled to be heated at the current power ratio.
  • the main control module 40 when the main control module 40 determines that the difference between the temperature sampling value and the first preset determination temperature value is greater than or equal to the first preset difference, it may further determine whether the temperature sampling value is greater than the second.
  • the temperature value is determined by default.
  • the second counter When the temperature sampling value is greater than the second preset determination temperature value, the second counter can be counted, and when the second counter's count value reaches the second threshold, the electric cooker's power adjustment ratio is adjusted to the test power adjustment file. The lowest power ratio in the middle. Further, it can be determined whether the slope of the temperature sample value change tends to zero.
  • the power cooker's power adjustment ratio can be controlled to increase by one level until the slope of the temperature sample value changes to zero, or the power cooker's power adjustment ratio is raised to After testing the highest power adjustment ratio in the power adjustment file, when the determined temperature sampling value is less than or equal to the second preset determination temperature value, the electric cooker can be controlled to be heated at the current power adjustment ratio. Therefore, the electric cooker can be heated with a small power, and the water temperature can be maintained above 90 ° C, thereby achieving the goal of the lowest energy efficiency.
  • the heating power of the electric cooking device is obtained by the acquisition module, and then the heating temperature of the electric cooking device is monitored in real time through the monitoring module to obtain the temperature sampling value, and finally, the judgment is made.
  • the module determines whether the electric cooker enters the energy efficiency test state according to the heating power change condition and the temperature sampling value.
  • the electric control device is controlled by the main control module to heat the initial power adjustment ratio, and is sampled according to the temperature.
  • the value is dynamically adjusted to the initial tuning ratio so that the electric cooker meets the preset energy efficiency test criteria.
  • the control device dynamically adjusts the initial power adjustment ratio according to the heating temperature of the electric cooker under the energy efficiency test state, thereby effectively ensuring that the electric cooker satisfies the preset energy efficiency test standard, and at the same time, by setting certain conditions Controlling whether the electric cooker enters the energy efficiency test state can avoid affecting the production of the product and the normal use of the user, thereby ensuring the production efficiency and user experience of the electric cooker.
  • the present invention also proposes an electric cooker 1000.
  • FIG. 6 is a block schematic illustration of an electric cooker in accordance with an embodiment of the present invention.
  • the electric cooker 1000 of the embodiment of the present invention may include the above-described heating power control device 100 of the electric cooker.
  • the heating power control device of the electric cooker described above can dynamically adjust the initial power adjustment ratio according to the heating temperature of the electric cooker under the energy efficiency test state.
  • the cooker meets the preset energy efficiency test standard, and at the same time, by setting certain conditions to control whether the electric cooker enters the energy efficiency test state, the influence of the production of the product and the normal use of the user can be avoided, thereby ensuring the electric cooker.

Abstract

电烹饪器及其加热功率控制方法和装置,其中,所述控制方法包括以下步骤:获取电烹饪器的加热功率(S1);实时检测电烹饪器的加热温度,以得到温度采样值(S2);根据加热功率的变化情况和温度采样值判断电烹饪器是否进入能效测试状态(S3);如果电烹饪器进入能效测试状态,则控制电烹饪器以初始调功比进行加热,并根据温度采样值对初始调功比进行动态调整,以使电烹饪器满足预设的能效测试标准(S4)。该控制方法,既能够有效保证电烹饪器满足预设的能效测试标准,又能够保证电烹饪器的生产效率、通用性和用户体验。

Description

电烹饪器及其加热功率控制方法和装置 技术领域
本发明涉及家用电器技术领域,特别涉及一种电烹饪器的加热功率控制方法、一种电烹饪器的加热功率控制装置以及一种电烹饪器。
背景技术
目前,一些国家或地区逐渐开始执行针对电烹饪器如电磁炉等产品单独设定的能效标准。例如,从2015年起,销往欧洲的电磁炉就需要满足欧盟能效测试标准。欧盟能效测试标准从2015年起依次分3个阶段执行,第一个阶段是从2015年2月20日起执行,要求能效值小于210Wh/Kg;第二个阶段从2017年2月20日起执行,要求能效值小于200Wh/Kg;第三个阶段是从2019年2月20日起执行,要求能效值小于195Wh/Kg。对于是否符合欧盟能效测试标准的测试方法是:根据电烹饪器的玻璃板的丝印圈选择对应的锅具和水量,当水温、室温和大气压在标准的状态下时,首先开启电烹饪器以最大功率档对水进行加热,在加热至水温达到89℃时,调整最大功率档至低功率档,使水温维持在90℃以上且持续20分钟(如果中途掉到90℃以下,则判定测试不合格),然后,记录消耗的电能耗,用电能耗除以水的质量可获得能效值。
就目前而言,在生产时,可通过实验单独设定电烹饪器的功率参数以满足能效测试标准,但是,通过实验单独设定的功率参数可能会影响到用户对电烹饪器的正常使用。到2019年执行的能效测试标准就会更难实现了,因此,对于所有销往欧洲的电烹饪器而言,如何既使其能够满足能效测试标准,又不影响其生产效率和通用性是目前亟需解决的问题。
发明内容
本发明旨在至少在一定程度上解决上述技术中的技术问题之一。
为此,本发明的一个目的在于提出一种电烹饪器的加热功率控制方法,其既能够有效保证电烹饪器满足预设的能效测试标准,又能够保证电烹饪器的生产效率、通用性和用户体验。
本发明的第二个目的在于提出一种电烹饪器的加热功率控制装置。
本发明的第三个目的在于提出一种电烹饪器。
为达到上述目的,本发明第一方面实施例提出了一种电烹饪器的加热功率控制方法,包括以下步骤:获取所述电烹饪器的加热功率;实时监测所述电烹饪器的加热温度,以得到温度采样值;根据所述加热功率的变化情况和所述温度采样值判断所述电烹饪器是否进入能效测试状态;如果所述电烹饪器进入所述能效测试状态,则控制所述电烹饪器以初始调功比进行加热,并根据所述温度采样值对所述初始调功比进行动态调整,以使所述电烹饪器满足预设的能效测试标准。
根据本发明实施例的电烹饪器的加热功率控制方法,首先,获取电烹饪器的加热功率,然后,实时监测电烹饪器的加热温度,以得到温度采样值,最后,根据加热功率的变化情况和温度采样值判断电烹饪器是否进入能效测试状态,如果电烹饪器进入能效测试状态,则控制电烹饪器以初始调功比进行加热,并根据温度采样值对初始调功比进行动态调整,以使电烹饪器满足预设的能效测试标准。该控制方法,在能效测试状态下,通过根据电烹饪器的加热温度对其初始调功比进行动态调整,能够有效保证电烹饪器满足预设的能效测试标准,同时,通过设置一定的条件来控制电烹饪器是否进入能效测试状态,能够避免为产品的生产和用户的正常使用带来影响,从而能够保证电烹饪器的生产效率和用户体验。
另外,根据本发明上述实施例提出的电烹饪器的加热功率控制方法还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述电烹饪器的工作档位包括额定最大功率档和调功比可变的测试调功档,所述额定最大功率档所对应的最大加热功率大于所述测试调功档所对应的测试加热功率。
根据本发明的一个实施例,当所述温度采样值达到预设的调档温度值时,如果所述电烹饪器的工作档位由所述额定最大功率档切换至所述测试调功档,则判断所述电烹饪器进入所述能效测试状态。
根据本发明的一个实施例,根据所述温度采样值对所述初始调功比进行动态调整,包括:判断所述温度采样值与第一预设判定温度值的差值是否小于第一预设差值,其中,所述第一预设判定温度值大于所述预设的调档温度值;当所述温度采样值与所述第一预设判定温度值的差值小于所述第一预设差值时,通过第一计数器进行计数,并在所述第一计数器的计数值达到第一阈值时,将所述电烹饪器的调功比调整为所述测试调功档中的最高调功比;在以所述测试调功档中的最高调功比进行加热预设时间后,判断第二预设判定温度值与所述温度采样值的差值是否小于第二预设差值,其中,所述第二预设判 定温度值大于所述第一预设判定温度值;当所述第二预设判定温度值与所述温度采样值的差值小于所述第二预设差值时,控制所述电烹饪器的调功比降低一个等级;当所述第二预设判定温度值与所述温度采样值的差值大于等于所述第二预设差值时,或者在控制所述电烹饪器的调功比降低一个等级后,判断所述温度采样值变化的斜率的绝对值是否趋于零;如果所述温度采样值变化的斜率的绝对值不趋于零,则继续控制所述电烹饪器的调功比降低一个等级;直到所述温度采样值变化的斜率的绝对值趋于零,或者在所述电烹饪器的调功比降低至测试调功档中的最低调功比后所判断的所述温度采样值与所述第一预设判定温度值的差值大于等于所述第一预设差值时,控制所述电烹饪器以当前的调功比进行加热。
根据本发明的一个实施例,根据所述温度采样值对所述电烹饪器的初始调功比进行动态调整,包括:当判断所述温度采样值与所述第一预设判定温度值的差值大于等于所述第一预设差值时,进一步判断所述温度采样值是否大于所述第二预设判定温度值;当所述温度采样值大于所述第二预设判定温度值时,通过第二计数器进行计数,并在所述第二计数器的计数值达到第二阈值时,将所述电烹饪器的调功比调整为所述测试调功档中的最低调功比;判断所述温度采样值变化的斜率是否趋于零;如果所述温度采样值变化的斜率的绝对值不趋于零,则控制所述电烹饪器的调功比升高一个等级;直到所述温度采样值变化的斜率趋于零,或者在所述电烹饪器的调功比升高至测试调功档中的最高调功比后所判断的所述温度采样值小于等于所述第二预设判定温度值时,控制所述电烹饪器以当前的调功比进行加热。
为达到上述目的,本发明第二方面实施例提出了一种电烹饪器的加热功率控制装置,包括:获取模块,所述获取模块用于获取所述电烹饪器的加热功率;监测模块,所述监测模块用于实时监测所述电烹饪器的加热温度,以得到温度采样值;判断模块,所述判断模块用于根据所述加热功率的变化情况和所述温度采样值判断所述电烹饪器是否进入能效测试状态;主控模块,所述主控模块在所述电烹饪器进入所述能效测试状态时,控制所述电烹饪器以初始调功比进行加热,并根据所述温度采样值对所述初始调功比进行动态调整,以使所述电烹饪器满足预设的能效测试标准。
根据本发明实施例的电烹饪器的加热功率控制装置,通过获取模块获取电烹饪器的加热功率,然后,通过监测模块实时监测电烹饪器的加热温度,以得到温度采样值,最后,通过判断模块根据加热功率变化情况和温度采样值判断电烹饪器是否进入能效测试状态,在电烹饪器进入能效测试状态时,通过主控模块控制电烹饪器以初始调功比进 行加热,并根据温度采样值对初始调功比进行动态调整,以使电烹饪器满足预设的能效测试标准。该检测装置,在能效测试状态下,通过根据电烹饪器的加热温度对其初始调功比进行动态调整,能够有效保证电烹饪器满足预设的能效测试标准,同时,通过设置一定的条件来控制电烹饪器是否进入能效测试状态,能够避免为产品的生产和用户的正常使用带来影响,从而能够保证电烹饪器的生产效率和用户体验。
另外,根据本发明上述实施例提出的电烹饪器的加热功率控制装置还可以具有如下附加的技术特征:
根据本发明的一个实施例,所述电烹饪器的工作档位包括额外最大功率档和调功比可变的测试调功档,所述额定最大功率档所对应的最大加热功率大于所述测试调功档所对应的测试加热功率。
根据本发明的一个实施例,所述判断模块用于当所述温度采样值达到预设的调档温度值时,如果所述电烹饪器的工作档位由所述额定最大功率档切换至所述测试调功档,则判断所述电烹饪器进入所述能效测试状态。
根据本发明的一个实施例,所述主控模块用于:判断所述温度采样值与第一预设判定温度值的差值是否小于第一预设值,其中,所述第一预设判定温度值大于所述预设的调档温度值;当所述温度采样值与所述第一预设判定温度值的差值小于所述第一预设差值时,通过第一计数器进行计数,并在所述第一计数器的计数值达到第一阈值时,将所述电烹饪器的调功比调整为所述测试调功档中的最高调功比;在以所述测试调功比的最高调功比加热预设时间后,判断第二预设判定温度值与所述温度采样值的差值是否小于第二预设差值,其中,所述第二预设判定温度值大于所述第一预设判定温度值;当所述第二预设判定温度值与所述温度采样值的差值小于所述第二预设差值时,控制所述电烹饪器的调功比降低一个等级;当所述第二预设判定温度值与所述温度采样值的差值大于等于所述第二预设差值时,或者在控制所述电烹饪器的调功比降低一个等级后,判断所述温度采样值变化的斜率是否趋于零;当所述温度采样值变化的斜率的绝对值不趋于零时,继续控制所述电烹饪器的调功比降低一个等级;直到所述温度采样值变化的斜率趋于零,或者在所述电烹饪器的调功比降低至测试调功档中的最低调功比后所判断的所述温度采样值与所述第一预设判定温度值的差值大于等于所述第一预设差值时,控制所述电烹饪器以当前的调功比进行加热。
根据本发明的一个实施例,所述主控模块用于:判断当所述温度采样值与所述第一预设判定温度值的差值大于等于所述第一预设差值时,进一步判断所述温度采样值是 否大于所述第二预设判定温度值;当所述温度采样值大于所述第二预设判定温度值时,通过第二计数器进行计数,并在所述第二计数器的计数值达到第二阈值时,将所述电烹饪器的调功比调整为所述测试调功档中的最低调功比;判断所述温度采样值变化的斜率是否趋于零;当所述温度采样值变化的斜率的绝对值不趋于零时,控制所述电烹饪器的调功比升高一个等级;直到所述温度采样值变化的斜率趋于零,或者在所述电烹饪器的调功比升高至测试调功档中的最高调功比后所判断的所述温度采样值小于等于所述第二预设判定温度值时,控制所述电烹饪器以当前的调功比进行加热。
为达到上述目的,本发明第三方面实施例提出了一种电烹饪器,其采用上述的电烹饪器的加热功率控制装置。
根据本发明实施例的电烹饪器,采用上述的电烹饪器的加热功率控制装置,在能效测试状态下,通过根据电烹饪器的加热温度对其初始调功比进行动态调整,能够有效保证电烹饪器满足预设的能效测试标准,同时,通过设置一定的条件来控制电烹饪器是否进入能效测试状态,能够避免为产品的生产和用户的正常使用带来影响,从而能够保证电烹饪器的生产效率和用户体验。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1是根据本发明实施例的电烹饪器的加热功率控制方法的流程图;
图2是根据本发明一个实施例的间接温度采样电路的拓扑图;
图3是根据本发明一个实施例的直接温度采样电路的拓扑图;
图4是根据本发明一个实施例的电烹饪器的加热功率控制方法的流程图;
图5是根据本发明实施例的电烹饪器的加热功率控制装置的方框示意图;以及
图6是根据本发明实施例的电烹饪器的方框示意图。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面结合附图来描述本发明实施例的电烹饪器及其加热功率控制方法和装置。
图1是根据本发明实施例的电烹饪器的加热功率控制方法的流程图。
如图1所示,本发明实施例的电烹饪器的加热功率控制方法,包括以下步骤:
S1,获取电烹饪器的加热功率。
在本发明的一个实施例中,电烹饪器可为电磁炉。电磁炉基于烹饪效果和实际使用等因素的考虑,一般将低功率档作为调功档,也就是说,电磁炉低功率档的工作方式可以是交替地加热一段时间和停止加热一段时间。其中,常见的调功档有对应加热功率为200W的200W档、对应加热功率为400W的400W档、对应加热功率为600W的600W档和对应加热功率为800W的800W档等,每个调功档所对应的上述加热功率是指平均功率值。
举例来说,以加热功率1000W档为基准功率档。如果加热和停止加热时间比即调功比为20/100,则调功档为对应加热功率为200W的200W档。如果加热和停止加热时间比即调功比为40/100,则调功档为对应加热功率为400W的400W档。
S2,实时监测电烹饪器的加热温度,以得到温度采样值。
具体地,可通过包括热敏电阻的直接或间接温度采样电路实时监测电烹饪器的加热温度,以得到温度采样值。其中,直接或间接温度采样电路的工作原理均是通过对电压进行采样,并利用阻值和温度的对应关系来获取温度采样值。
图2是根据本发明一个实施例的间接温度采样电路的拓扑图。如图2所示,间接温度采样电路可包括:限流电阻R11、热敏电阻RT11、电阻R12、分压电阻R13和滤波电容C11,其工作原理是计算分压电阻R13两端的电压,根据分压电阻R13两端的电压计算热敏电阻RT11两端的电压,以得到温度采样信号,并通过间接温度采样电路的输出端TMAIN输出相应的温度采样信号,芯片可实时接收温度采样信号并根据温度采样信号得到温度采样值。
图3是根据本发明一个实施例的直接温度采样电路的拓扑图。如图3所示,直接温度采样电路可包括:限流电阻R21、热敏电阻RT21、电阻R22、分压电阻R23和滤波电容C21,其工作原理是计算热敏电阻RT21两端的电压以得到温度采样信号,并通过直接温度采样电路的输出端TMAIN输出相应的温度采样信号,芯片可实时接收温度采样信号并根据温度采样信号得到温度采样值。
需要说明的是,温度采样电路中的热敏电阻的选择和设计与其规格和灵敏度有关,一般电烹饪器常用的是低温和中高温(25℃~300℃)热变化率比较大且相对比较灵敏的 热敏电阻。
在电烹饪器中可包括能够测量出加热锅具温度的热敏电阻,通过热敏电阻采样得到锅具中所加热的水温。通过大量实验测试,对于同一种规格的热敏电阻,使用电烹饪器以最大功率档对水进行加热,在加热至水温达到设定温度如89℃时,获得水温在设定温度时对应的温度采样值,同时,可得出一个温度采样值所对应的温度值。在大量的实验测试中可结合热敏电阻的实际特性选择合适的分压电阻和分压电路,能够有效地提高阻值与采样温度值对应的精确度。
S3,根据加热功率的变化情况和温度采样值判断电烹饪器是否进入能效测试状态。
在本发明的一个实施例中,电烹饪器的工作档位可包括额定最大功率档和调功比可变的测试调功档,额定最大功率档所对应的最大加热功率大于测试调功档所对应的测试加热功率。
具体地,额定最大功率档即可为上述的基准功率档1000W档,测试调功档可取调功档中400W档或600W档。
在本发明的一个实施例中,当温度采样值达到预设的调档温度值时,如果电烹饪器的工作档位由额定最大功率档切换至测试调功档,则可判断电烹饪器进入能效测试状态。其中,预设的调档温度值可根据实际情况进行标定,例如,可设置为89℃。
为了不影响电烹饪器在实际应用中的保温加热的效果,同时,可区别能效测试状态和正常保温加热状态,可在芯片中设定当水用最大功率档加热至调档温度值时,通过按键的方式选择测试调功档作为判定条件。当满足这个条件时,可判定电烹饪器进入能效测试状态。
举例而言,如果锅具内的水用最大功率档1000W档加热至89℃,并通过按键的方式选择将加热功率档由最大功率档1000W档调整为调功档400W档,或者由最大功率档1000W档调整为调功档600W档,可判断电烹饪器进入能效测试状态,对应的测试调功档为400W档或者600W档。
S4,如果电烹饪器进入能效测试状态,则控制电烹饪器以初始调功比进行加热,并根据温度采样值对初始调功比进行动态调整,以使电烹饪器满足预设的能效测试标准。
电烹饪器中的测试调功档的工作方式是以加热和停止加热交替进行工作,其交替工作时间的比例实际上是一个可选的区间范围,可通过结合该区间范围和能效测试标准(保持水温在第一预设判定温度值以上)来确定一个比例区间。
举例而言,对于测试调功档400W档,以额定最大功率档1000W档为基准功率,可以实现既接近测试调功档400W档的加热功率,又能维持水温在第一预设判定温度值以上,且其能效值还符合能效测试标准的调功比在37/100~43/100这个区间范围。也就是说,对于测试调功档400W档,其对应的调功比可处于37/100~43/100这一可变的范围之内。也就是说,对应测试调功档400W档的实际加热功率的区间范围可设定为400±30W。
由于电烹饪器的测试调功档所对应的调功比是可变的,在电烹饪器进入能效测试状态后,可控制电烹饪器以初始调功比进行加热,并可根据温度采样值对初始调功比进行动态调整,以使电烹饪器既能以较低的加热功率进行工作,又能维持水温在第一预设判定温度值以上。
具体地,在控制电烹饪器以初始调功比进行加热后,可判断温度采样值与第一预设判定温度值的差值是否小于第一预设差值,其中,第一预设判定温度值大于预设的调档温度值,例如,可取90℃。
当温度采样值与第一预设判定温度值的差值小于第一预设差值时,可通过第一计数器进行计数,并在第一计数器的计数值达到第一阈值时,可知水温有低于90℃的可能。为了使得水温维持在90℃以上,可将电烹饪器的调功比调整为测试调功档中的最高调功比。在以测试调功档中的最高调功比进行加热预设时间后,判断第二预设判定温度值与温度采样值的差值是否小于第二预设差值,其中,第二预设判定温度值大于第一预设判定温度值,预设时间可根据实际情况进行标定。
为了以尽可能低的功率对水进行加热且使得水温维持在90℃以上,当第二预设判定温度值与温度采样值的差值小于第二预设差值时,可控制电烹饪器的调功比降低一个等级。当第二预设判定温度值与温度采样值的差值大于等于第二预设差值时,或者在控制电烹饪器的调功比降低一个等级后,可进一步判断温度采样值变化的斜率是否趋于零。
如果温度采样值变化的斜率的绝对值不趋于零,则可继续控制电烹饪器的调功比降低一个等级。直到温度采样值变化的斜率趋于零,或者在电烹饪器的调功比降低至测试调功档中的最低调功比后所判断的温度采样值与第一预设判定温度值的差值大于等于第一预设差值时,可控制电烹饪器以当前的调功比进行加热。
而当判断温度采样值与第一预设判定温度值的差值大于等于第一预设差值时,可进一步判断温度采样值是否大于第二预设判定温度值。
当温度采样值大于第二预设判定温度值时,可通过第二计数器进行计数,并在第二计数器的计数值达到第二阈值时,将电烹饪器的调功比调整为测试调功档中的最低调功比。进一步地,可判断温度采样值变化的斜率是否趋于零。
如果温度采样值变化的斜率的绝对值不趋于零,则可控制电烹饪器的调功比升高一个等级。直到温度采样值变化的斜率趋于零,或者在电烹饪器的调功比升高至测试调功档中的最高调功比后所判断的温度采样值小于等于第二预设判定温度值时,可控制电烹饪器以当前的调功比进行加热。因此,可以使得电烹饪器以较小的功率对水进行加热,且能使得水温保持在90℃以上,从而,达到能效最低的目的。
为了使本领域的人员更清楚地了解本发明,如图4所示,本发明实施例的电烹饪器的加热功率控制方法,可包括以下步骤:
S101,判断是否从最大功率档切换至调功档。如果是,执行步骤S102;如果否,执行结束,即不进入能效测试状态。
S102,判断采样温度是否为89℃。如果是,执行步骤S103;如果否,执行结束,即不进入能效测试状态。
S103,进入能效测试状态。
S104,以初始调功比进行加热。
S105,判断温度采样AD值与第一预设判断温度值(90℃的AD值)的差值是否小于第一预设差值(a个AD值)。如果是,执行步骤S106;如果否,执行步骤S115。
S106,通过第一计数器计数,设计数值为N。
S107,判断计数值N是否达到第一阈值n1。如果是,执行步骤S108;如果否,返回步骤S104。
S108,将N置零,并将调功比调整为测试调功档中的最高调功比进行加热。
S109,判断第二预设判定温度值的AD值(90℃的AD值+b个AD值)与温度采样AD值的差值是否小于第二预设差值(c个AD值)。如果是,执行步骤S110;如果否,执行步骤S111。
S110,控制调功比降低一个等级。
S111,温度采样AD值变化的斜率的绝对值是否趋于零。如果是,执行步骤S124;如果否,执行步骤S112。
S112,继续控制调功比降低一个等级。
S113,判断当前调功比是否为最低调功比。如果是,执行步骤S114;如果否,返 回步骤S111。
S114,判断温度采样AD值与90℃的AD值的差值是否小于a个AD值。如果是,返回步骤S106;如果否,执行步骤S124。
S115,判断温度采样AD值是否大于第二预设判定温度值的AD值(90℃的AD值+b个AD值)。如果是,执行步骤S116;如果否,执行步骤S117。
S116,通过第二计数器进行计数,设计数值为M。
S117,以当前调功比进行加热。
S118,判断计数值M是否达到第二阈值n2。如果是,执行步骤S119;如果否,返回步骤S117。
S119,将M置零,并将调功比调整为测试调功档中的最低调功比进行加热。
S120,判断温度采样AD值变化的斜率的绝对值是否趋于零。如果是,执行步骤S124;如果否,执行步骤S121。
S121,继续控制调功比升高一个等级,
S122,判断当前调功比是否为最高调功比。如果是,执行步骤S123;如果否,返回步骤S120。
S123,判断温度采样AD值是否大于第二预设判定温度值的AD值(90℃的AD值+b个AD值)。如果是,返回步骤S116;如果否,执行步骤S124。
S124,以当前调功比进行加热。
S125,判断是否关机或切换功能。如果是,执行结束,即退出能效测试状态;如果否,返回步骤S124。
为了更加清楚地说明本发明实施例的电烹饪器的加热功率控制方法,下面结合具体示例进行说明。
在本发明的一个具体示例中,为了避免外界的干扰,在水温、室温和大气压标准的状态下,以选择玻璃板的丝印圈为190mm的电磁炉进行能效测试为例,对应选择210mm的锅具,并对应选择2050g的水,在这种条件下,能够维持水温在90℃以上的以最大功率档1000W档为基准功率的测试调功档是400W档。
首先,可使用最大功率档位1000W档对2050g的水进行加热,当水温达到89℃时,通过按键操作,选择400W档的测试调功档,即可进入能效测试状态。
然后,可控制电磁炉以40/100的初始调功比进行加热。判断温度采样AD值与第一预设判定温度值的AD值(如90℃的AD值)的差值是否小于第一预设差值a(如5 个AD值)。当温度采样AD值与90℃的AD值的差值小于5个AD值时,可通过第一计数器进行计数,并在第一计数器的计数值N等于3时,可知水温有低于90℃的可能,此时,可将电磁炉的调功比调整为最高调功比如43/100。在以测试调功档中的最高调功比进行加热预设时间后,判断第二预设判定温度值的AD值(90℃的AD值+10个AD值)与温度采样AD值的差值是否小于第二预设差值c(4个AD值),当90℃的AD值+10个AD值与温度采样AD值的差值小于4个AD值时,可控制电烹饪器的调功比降低一个等级如42/100。当90℃的AD值+10个AD值与温度采样AD值的差值大于等于4个AD值时,或者在控制电磁炉的调功比降低一个等级如42/100后,判断温度采样AD值变化的斜率是否趋于零。如果温度采样AD值变化的斜率的绝对值不趋于零且采样温度呈上升趋势,则可继续控制电磁炉的调功比降低一个等级如41/100。直到温度采样AD值变化的斜率趋于零,或者在电烹饪器的调功比降低至测试调功档中的最低调功比如37/100后,所判断的温度采样AD值与90℃的AD值的差值大于等于5个AD值时,可控制电磁炉以当前的调功比进行加热。
然而,当判断温度采样AD值与90℃的AD值的差值大于等于5个AD值时,接着判断温度采样AD值是否大于90℃的AD值+10个AD值。当温度采样AD值大于90℃的AD值+10个AD值时,可通过第二计数器进行计数,并在第二计数器的计数值M达等于5时,可将电磁炉的调功比调整为测试调功档中的最低调功比37/100。进一步地,判断温度采样AD值变化的斜率是否趋于零。如果温度采样AD值变化的斜率的绝对值不趋于零且采样温度呈下降趋势,则可控制电磁炉的调功比升高一个等级如38/100。直到温度采样AD值变化的斜率趋于零,或者在电磁炉的调功比升高至测试调功档中的最高调功比如43/100后,所判断的温度采样AD值小于等于90℃的AD值+10个AD值时,可控制电烹饪器以当前的调功比进行加热。这样可以保证水温维持在90℃以上且耗能最小。因此,可以使得电烹饪器以较小的功率对水进行加热,且能使得水温保持在90℃以上,从而,达到能效最低的目的。
在本发明的另一个具体示例中,为了避免外界的干扰,在水温、室温和大气压标准的状态下,以选择玻璃板的丝印圈为220mm的电磁炉进行能效测试为例,对应选择240mm的锅具,并对应选择2700g的水。在这种条件下,能够维持水温在90℃以上的以最大功率档1000W档为基准功率的测试调功档是600W档。
首先,可使用最大功率档位1000W档对2700g的水进行加热,当水温达到89℃,通过按键操作,选择600W档的测试调功档,即可进入能效测试状态。
然后,可控制电磁炉以60/100的初始调功比进行加热。判断温度采样AD值与第一预设判定温度值的AD值(如90℃的AD值)的差值是否小于第一预设差值a(如5个AD值)。当温度采样AD值与90℃的AD值的差值小于5个AD值时,可通过第一计数器进行计数,并在第一计数器的计数值N等于3时,可知水温有低于90℃的可能,此时,可将电磁炉的调功比调整为最高调功比如63/100。在以测试调功档中的最高调功比进行加热预设时间后,判断第二预设判定温度值的AD值(90℃的AD值+10个AD值)与温度采样AD值的差值是否小于第二预设差值c(4个AD值),当90℃的AD值+10个AD值与温度采样AD值的差值小于4个AD值时,可控制电烹饪器的调功比降低一个等级如62/100。当90℃的AD值+10个AD值与温度采样AD值的差值大于等于4个AD值时,或者在控制电磁炉的调功比降低一个等级如62/100后,判断温度采样AD值变化的斜率是否趋于零。如果温度采样AD值变化的斜率的绝对值不趋于零且采样温度呈上升趋势,则可继续控制电磁炉的调功比降低一个等级如61/100。直到温度采样AD值变化的斜率趋于零,或者在电烹饪器的调功比降低至测试调功档中的最低调功比57/100后,所判断的温度采样AD值与90℃的AD值的差值大于等于5个AD值时,控制电磁炉以当前的调功比进行加热。
然而,当判断温度采样AD值与90℃的AD值的差值大于等于5个AD值时,接着判断温度采样AD值是否大于90℃的AD值+10个AD值。当温度采样AD值大于90℃的AD值+10个AD值时,可通过第二计数器进行计数,并在第二计数器的计数值M等于5时,可将电磁炉的调功比调整为测试调功档中的最低调功比如57/100。进一步地,判断温度采样AD值变化的斜率是否趋于零。如果温度采样AD值变化的斜率的绝对值不趋于零且采样温度呈下降趋势,则可控制电磁炉的调功比升高一个等级如58/100。直到温度采样AD值变化的斜率趋于零,或者在电磁炉的调功比升高至测试调功档中的最高调功比如63/100后,所判断的温度采样AD值小于等于90℃的AD值+10个AD值时,可控制电烹饪器以当前的调功比进行加热。因此,可以使得电烹饪器以较小的功率对水进行加热,且能使得水温保持在90℃以上,从而,达到能效最低的目的。
综上所述,根据本发明实施例的电烹饪器的加热功率控制方法,首先,获取电烹饪器的加热功率,然后,实时监测电烹饪器的加热温度,以得到温度采样值,最后,根据加热功率的变化情况和温度采样值判断电烹饪器是否进入能效测试状态,如果电烹饪器进入能效测试状态,则控制电烹饪器以初始调功比进行加热,并根据温度采样值对初始调功比进行动态调整,以使电烹饪器满足预设的能效测试标准。该控制方法,在能效 测试状态下,通过根据电烹饪器的加热温度对其初始调功比进行动态调整,能够有效保证电烹饪器满足预设的能效测试标准,同时,通过设置一定的条件来控制电烹饪器是否进入能效测试状态,能够避免为产品的生产和用户的正常使用带来影响,从而能够保证电烹饪器的生产效率和用户体验。
图5是根据本发明实施例的电烹饪器的加热功率控制装置的方框示意图。如图5所示,本发明实施例的电烹饪器的加热功率控制装置,可包括:获取模块10、监测模块20、判断模块30和主控模块40。
其中,获取模块10用于获取电烹饪器的加热功率。监测模块20用于实时监测电烹饪器的加热温度,以得到温度采样值。判断模块30用于根据加热功率的变化情况和温度采样值判断电烹饪器是否进入能效测试状态。主控模块40在电烹饪器进入能效测试状态时,控制电烹饪器以初始调功比进行加热,并根据温度采样值对初始调功比进行动态调整,以使电烹饪器满足预设的能效测试标准。
在本发明的一个实施例中,电烹饪器可为电磁炉,电磁炉是基于烹饪效果和实际使用等因素的考虑,一般低功率档可为调功档,也就是说,电磁炉低功率档的工作方式可以是交替地加热一段时间和停止加热一段时间。其中,常见的调功档有对应加热功率为200W的200W档、对应加热功率为400W的400W档、对应加热功率为600W的600W档和对应加热功率为800W的800W档等,每个调功档所对应的上述加热功率是指平均功率值。
举例来说,以加热功率1000W档为基准功率档。如果加热和停止加热时间比即调功比为20/100,则调功档为对应加热功率为200W的200W档。如果加热和停止加热时间比即调功比为40/100,则调功档为对应加热功率为400W的400W档。
在本发明的一个实施例中,在通过获取模块10获取电烹饪器的加热功率后,可通过监测模块20实时监测电烹饪器的加热温度,以得到温度采样值。
具体地,可通过包括热敏电阻的直接或间接温度采样电路实时监测电烹饪器的加热温度,以得到温度采样值。其中,直接或间接温度采样电路的工作原理均是通过对电压进行采样,并利用阻值和温度的对应关系来获取温度采样值。
图2是根据本发明一个实施例的间接温度采样电路的拓扑图。如图2所示,间接温度采样电路可包括:限流电阻R11、热敏电阻RT11、电阻R12、分压电阻R13和滤波电容C11,其工作原理是计算分压电阻R13两端的电压,根据分压电阻R13两端的电压计算热敏电阻RT11两端的电压,以得到温度采样信号,并通过间接温度采样电路的 输出端TMAIN输出相应的温度采样信号,芯片可实时接收温度采样信号并根据温度采样信号得到温度采样值。
图3是根据本发明一个实施例的直接温度采样电路的拓扑图。如图3所示,直接温度采样电路可包括:限流电阻R21、热敏电阻RT21、电阻R22、分压电阻R23和滤波电容C21,其工作原理是计算热敏电阻RT21两端的电压以得到温度采样信号,并通过直接温度采样电路的输出端TMAIN输出相应的温度采样信号,芯片可实时接收温度采样信号并根据温度采样信号得到温度采样值。
需要说明的是,温度采样电路中的热敏电阻的选择和设计与其规格和灵敏度有关,一般电烹饪器常用的是低温和中高温(25℃~300℃)热变化率比较大且相对比较灵敏的热敏电阻。
在电烹饪器中可包括能够测量出加热锅具温度的热敏电阻,通过热敏电阻采样得到锅具中所加热的水温。通过大量实验测试,对于同一种规格的热敏电阻,使用电烹饪器以最大功率档对水进行加热,在加热至水温达到设定温度如89℃时,获得水温在89℃时对应的温度采样值,同时,可得出一个温度采样值所对应的温度值,在实验中可结合热敏电阻的实际特性选择合适的分压电阻和分压电路,可以有效地提高阻值与采样温度值对应的精确度。
在本发明的一个实施例中,电烹饪器的工作档位可包括额定最大功率档和调功比可变的测试调功档,额定最大功率档所对应的最大加热功率大于测试调功档所对应的测试加热功率。
具体地,额定最大功率档即可为上述的基准功率档1000W档,测试调功档可取调功档中400W档或600W档。
在本发明的一个实施例中,当监测模块20获得的温度采样值达到预设的调档温度值时,如果电烹饪器的工作档位由额定最大功率档切换至测试调功档,则可通过判断模块30判断电烹饪器进入能效测试状态。其中,调功档温度值可根据实际情况进行标定,例如,可设置为89℃。
为了不影响电烹饪器在实际应用中的保温加热的效果,同时,可区别能效测试状态和正常保温加热状态,可在判断模块30中设定当水用最大功率档加热至调档温度值时,通过按键的方式选择测试调功档作为判定条件。当满足这个条件时,即可通过判断模块30判定电烹饪器进入能效测试状态。
举例而言,如果锅具内的水用最大功率档1000W档加热至89℃,并通过按键的方 式选择将加热功率档由最大功率档1000W档调整为调功档400W档,或者由最大功率档1000W档调整为调功档600W档,则可判断电烹饪器进入能效测试状态,对应的测试调功档为400W档或者600W档。
在本发明的一个实施例中,在通过判断模块30判断电烹饪器进入能效测试状态后,通过主控模块40控制电烹饪器以初始调功比进行加热,并根据温度采样值对初始调功比进行动态调整,以使电烹饪器满需预设的能效测试标准。
电烹饪器中的测试调功档的工作方式是以加热和停止加热交替进行工作,其交替工作时间的比例实际上是一个可选的区间范围,可通过结合该区间范围和能效测试标准(保持水温在第一预设判定温度值以上)来确定一个比例区间。
举例而言,对于测试调功档400W档,以额定最大功率档1000W档为基准功率,可以实现既接近测试调功档400W档的加热功率,又能维持水温在第一预设判定温度值以上,且其能效值还符合能效测试标准的调功比在37/100~43/100这个区间范围。也就是说,对于测试调功档400W档,其对应的调功比可处于37/100~43/100这一可变的范围之内。也就是说,对应测试调功档400W档的实际加热功率的区间范围可设定为400±30W。
由于电烹饪器的测试调功档所对应的调功比是可变的,在电烹饪器进入能效测试状态后,可控制电烹饪器以初始调功比进行加热,并可根据温度采样值对初始调功比进行动态调整,以使电烹饪器既能以较低的加热功率进行工作,又能维持水温在第一预设判定温度值以上。
在本发明的一个实施例中,在控制电烹饪器以初始调功比进行加热后,可通过主控模块40判断温度采样值与第一预设判定温度值的差值是否小于第一预设值,其中,第一预设判定温度值大于预设的调档温度值,例如,可取90℃。
当温度采样值与第一预设判定温度值的差值小于第一预设差值时,可通过第一计数器进行计数,并在第一计数器的计数值达到第一阈值时,可知水温有低于90℃的可能。为了使得水温维持在90℃以上,可将电烹饪器的调功比调整为测试调功档中的最高调功比。在以测试调功档中的最高调功比进行加热预设时间后,判断第二预设判定温度值与温度采样值的差值是否小于第二预设差值,其中,第二预设判定温度值大于第一预设判定温度值,预设时间可根据实际情况进行标定。
为了以尽可能低的功率对水进行加热且使得水温维持在90℃以上,当第二预设判定温度值与温度采样值的差值小于第二预设差值时,可控制电烹饪器的调功比降低一个 等级。当第二预设判定温度值与温度采样值的差值大于等于第二预设差值时,或者在控制电烹饪器的调功比降低一个等级后,可进一步判断温度采样值变化的斜率是否趋于零。
当温度采样值变化的斜率不趋于零时,继续控制电烹饪器的调功比降低一个等级。直到温度采样值变化的斜率趋于零,或者在电烹饪器的调功比降低至测试调功档中的最低调功比后所判断的温度采样值与第一预设判定温度值的差值大于等于第一预设差值时,控制电烹饪器以当前的调功比进行加热。
在本发明的一个实施例中,当通过主控模块40判断温度采样值与第一预设判定温度值的差值大于等于第一预设差值时,可进一步判断温度采样值是否大于第二预设判定温度值。
当温度采样值大于第二预设判定温度值时,可通过第二计数器进行计数,并在第二计数器的计数值达到第二阈值时,将电烹饪器的调功比调整为测试调功档中的最低调功比。进一步地,可判断温度采样值变化的斜率是否趋于零。
当温度采样值变化的斜率不趋于零时,可控制电烹饪器的调功比升高一个等级,直到温度采样值变化的斜率趋于零,或者在电烹饪器的调功比升高至测试调功档中的最高调功比后,所判断的温度采样值小于等于第二预设判定温度值时,可控制电烹饪器以当前的调功比进行加热。因此,可以使得电烹饪器以较小的功率对水进行加热,且能使得水温保持在90℃以上,从而,达到能效最低的目的。
根据本发明实施例的电烹饪器的加热功率控制装置,通过获取模块获取电烹饪器的加热功率,然后,通过监测模块实时监测电烹饪器的加热温度,以得到温度采样值,最后,通过判断模块根据加热功率变化情况和温度采样值判断电烹饪器是否进入能效测试状态,在电烹饪器进入能效测试状态时,通过主控模块控制电烹饪器以初始调功比进行加热,并根据温度采样值对初始调功比进行动态调整,以使电烹饪器满足预设的能效测试标准。该控制装置,在能效测试状态下,通过根据电烹饪器的加热温度对其初始调功比进行动态调整,能够有效保证电烹饪器满足预设的能效测试标准,同时,通过设置一定的条件来控制电烹饪器是否进入能效测试状态,能够避免为产品的生产和用户的正常使用带来影响,从而能够保证电烹饪器的生产效率和用户体验。
基于上述实施例,本发明还提出了一种电烹饪器1000。
图6是根据本发明实施例的电烹饪器的方框示意图。如图6所示,本发明实施例的电烹饪器1000可包括上述的电烹饪器的加热功率控制装置100。
需要说明的是,本发明实施例的电烹饪器1000中未披露的细节,请参考本发明实施例的电烹饪器的加热功率控制装置100中所披露的细节,具体这里不再详述。
根据本发明实施例的电烹饪器,采用上述的电烹饪器的加热功率控制装置,在能效测试状态下,通过根据电烹饪器的加热温度对其初始调功比进行动态调整,能够有效保证电烹饪器满足预设的能效测试标准,同时,通过设置一定的条件来控制电烹饪器是否进入能效测试状态,能够避免为产品的生产和用户的正常使用带来影响,从而能够保证电烹饪器的生产效率和用户体验。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (11)

  1. 一种电烹饪器的加热功率控制方法,其特征在于,包括以下步骤:
    获取所述电烹饪器的加热功率;
    实时监测所述电烹饪器的加热温度,以得到温度采样值;
    根据所述加热功率的变化情况和所述温度采样值判断所述电烹饪器是否进入能效测试状态;
    如果所述电烹饪器进入所述能效测试状态,则控制所述电烹饪器以初始调功比进行加热,并根据所述温度采样值对所述初始调功比进行动态调整,以使所述电烹饪器满足预设的能效测试标准。
  2. 根据权利要求1所述的电烹饪器的加热功率控制方法,其特征在于,所述电烹饪器的工作档位包括额定最大功率档和调功比可变的测试调功档,所述额定最大功率档所对应的最大加热功率大于所述测试调功档所对应的测试加热功率。
  3. 根据权利要求2所述的电烹饪器的加热功率控制方法,其特征在于,当所述温度采样值达到预设的调档温度值时,如果所述电烹饪器的工作档位由所述额定最大功率档切换至所述测试调功档,则判断所述电烹饪器进入所述能效测试状态。
  4. 根据权利要求3所述的电烹饪器的加热功率控制方法,其特征在于,根据所述温度采样值对所述初始调功比进行动态调整,包括:
    判断所述温度采样值与第一预设判定温度值的差值是否小于第一预设差值,其中,所述第一预设判定温度值大于所述预设的调档温度值;
    当所述温度采样值与所述第一预设判定温度值的差值小于所述第一预设差值时,通过第一计数器进行计数,并在所述第一计数器的计数值达到第一阈值时,将所述电烹饪器的调功比调整为所述测试调功档中的最高调功比;
    在以所述测试调功档中的最高调功比进行加热预设时间后,判断第二预设判定温度值与所述温度采样值的差值是否小于第二预设差值,其中,所述第二预设判定温度值大于所述第一预设判定温度值;
    当所述第二预设判定温度值与所述温度采样值的差值小于所述第二预设差值时,控制所述电烹饪器的调功比降低一个等级;
    当所述第二预设判定温度值与所述温度采样值的差值大于等于所述第二预设差值,且该差值趋于稳定,或者在控制所述电烹饪器的调功比降低一个等级后,判断所述温度采样值变化的斜率的绝对值是否趋于零;
    如果所述温度采样值变化的斜率的绝对值不趋于零,继续控制所述电烹饪器的调功比降低一个等级;
    直到所述温度采样值变化的斜率的绝对值趋于零,或者在所述电烹饪器的调功比降低至测试调功档中的最低调功比后,所判断的所述温度采样值与所述第一预设判定温度值的差值大于等于所述第一预设差值时,控制所述电烹饪器以当前的调功比进行加热。
  5. 根据权利要求4所述的电烹饪器的加热功率控制方法,其特征在于,根据所述温度采样值对所述电烹饪器的初始调功比进行动态调整,包括:
    当判断所述温度采样值与所述第一预设判定温度值的差值大于等于所述第一预设差值时,进一步判断所述温度采样值是否大于所述第二预设判定温度值;
    当所述温度采样值大于所述第二预设判定温度值时,通过第二计数器进行计数,并在所述第二计数器的计数值达到第二阈值时,将所述电烹饪器的调功比调整为所述测试调功档中的最低调功比;
    判断所述温度采样值变化的斜率的绝对值是否趋于零;
    如果所述温度采样值变化的斜率的绝对值不趋于零,则控制所述电烹饪器的调功比升高一个等级;
    直到所述温度采样值变化的斜率的绝对值趋于零,或者在所述电烹饪器的调功比升高至测试调功档中的最高调功比后所判断的所述温度采样值小于等于所述第二预设判定温度值时,控制所述电烹饪器以当前的调功比进行加热。
  6. 一种电烹饪器的加热功率控制装置,其特征在于,包括:
    获取模块,所述获取模块用于获取所述电烹饪器的加热功率;
    监测模块,所述监测模块用于实时监测所述电烹饪器的加热温度,以得到温度采样值;
    判断模块,所述判断模块用于根据所述加热功率的变化情况和所述温度采样值判断所述电烹饪器是否进入能效测试状态;
    主控模块,所述主控模块在所述电烹饪器进入所述能效测试状态时,控制所述电烹饪器以初始调功比进行加热,并根据所述温度采样值对所述初始调功比进行动态调整,以使所述电烹饪器满足预设的能效测试标准。
  7. 根据权利要求6所述的电烹饪器的加热功率控制装置,其特征在于,所述电烹饪器的工作档位包括额外最大功率档和调功比可变的测试调功档,所述额定最大功率档所对应的最大加热功率大于所述测试调功档所对应的测试加热功率。
  8. 根据权利要求7所述的电烹饪器的加热功率控制装置,其特征在于,所述判断模块用于:
    当所述温度采样值达到预设的调档温度值时,如果所述电烹饪器的工作档位由所述额定最大功率档切换至所述测试调功档,则判断所述电烹饪器进入所述能效测试状态。
  9. 根据权利要求8所述的电烹饪器的加热功率控制装置,其特征在于,所述主控模块用于:
    判断所述温度采样值与第一预设判定温度值的差值是否小于第一预设值,其中,所述第一预设判定温度值大于所述预设的调档温度值;
    当所述温度采样值与所述第一预设判定温度值的差值小于所述第一预设差值时,通过第一计数器进行计数,并在所述第一计数器的计数值达到第一阈值时,将所述电烹饪器的调功比调整为所述测试调功档中的最高调功比;
    在以所述测试调功档中的最高调功比进行加热预设时间后,判断第二预设判定温度值与所述温度采样值的差值是否小于第二预设差值,其中,所述第二预设判定温度值大于所述第一预设判定温度值;
    当所述第二预设判定温度值与所述温度采样值的差值小于所述第二预设差值时,控制所述电烹饪器的调功比降低一个等级;
    当所述第二预设判定温度值与所述温度采样值的差值大于等于所述第二预设差值时,或者在控制所述电烹饪器的调功比降低一个等级后,判断所述温度采样值变化的斜率的绝对值是否趋于零;
    当所述温度采样值变化的斜率的绝对值不趋于零时,继续控制所述电烹饪器的调 功比降低一个等级;
    直到所述温度采样值变化的斜率的绝对值趋于零,或者在所述电烹饪器的调功比降低至测试调功档中的最低调功比后所判断的所述温度采样值与所述第一预设判定温度值的差值大于等于所述第一预设差值时,控制所述电烹饪器以当前的调功比进行加热。
  10. 根据权利要求9所述的电烹饪器的加热功率控制装置,其特征在于,所述主控模块用于:
    当判断所述温度采样值与所述第一预设判定温度值的差值大于等于所述第一预设差值时,进一步判断所述温度采样值是否大于所述第二预设判定温度值;
    当所述温度采样值大于所述第二预设判定温度值时,通过第二计数器进行计数,并在所述第二计数器的计数值达到第二阈值时,将所述电烹饪器的调功比调整为所述测试调功档中的最低调功比;
    判断所述温度采样值变化的斜率的绝对值是否趋于零;
    当所述温度采样值变化的斜率的绝对值不趋于零时,控制所述电烹饪器的调功比升高一个等级;
    直到所述温度采样值变化的斜率的绝对值趋于零,或者在所述电烹饪器的调功比升高至测试调功档中的最高调功比后所判断的所述温度采样值小于等于所述第二预设判定温度值时,控制所述电烹饪器以当前的调功比进行加热。
  11. 一种电烹饪器,其特征在于,包括根据权利要求6-10中任一项所述的电烹饪器的加热功率控制装置。
PCT/CN2017/110367 2017-05-19 2017-11-10 电烹饪器及其加热功率控制方法和装置 WO2018209904A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710358595.1 2017-05-19
CN201710358595.1A CN108966392B (zh) 2017-05-19 2017-05-19 电烹饪器及其加热功率控制方法和装置

Publications (1)

Publication Number Publication Date
WO2018209904A1 true WO2018209904A1 (zh) 2018-11-22

Family

ID=64273295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110367 WO2018209904A1 (zh) 2017-05-19 2017-11-10 电烹饪器及其加热功率控制方法和装置

Country Status (2)

Country Link
CN (1) CN108966392B (zh)
WO (1) WO2018209904A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764740A1 (en) * 2019-07-12 2021-01-13 Electrolux Appliances Aktiebolag Method for controlling an induction cooking hob

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393439A (zh) * 2008-10-23 2009-03-25 美的集团有限公司 一种用于煲汤的电炊具的控制方法
JP2011014363A (ja) * 2009-07-01 2011-01-20 Sanyo Electric Co Ltd 電磁調理器
CN102727102A (zh) * 2012-06-27 2012-10-17 美的集团有限公司 一种加热器判断沸腾的控制方法
CN102798158A (zh) * 2012-08-28 2012-11-28 中标能效科技(北京)有限公司 电磁灶能效测试方法和电磁灶能效测试用锅具
CN103425153A (zh) * 2012-05-16 2013-12-04 珠海格力电器股份有限公司 豆浆制作的控制方法和豆浆机及豆腐的制作方法和豆腐机
CN104918342A (zh) * 2014-03-14 2015-09-16 美的集团股份有限公司 电磁加热装置及其的控制组件和控制方法
CN105615619A (zh) * 2015-12-23 2016-06-01 珠海格力电器股份有限公司 煮饭电器及其控制方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102419395B (zh) * 2011-09-19 2014-04-23 广东出入境检验检疫局检验检疫技术中心 一种电磁炉的能效测试方法及测试装置
CN204374320U (zh) * 2014-12-12 2015-06-03 中标能效科技(北京)有限公司 一种电饭锅能效自动测试装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101393439A (zh) * 2008-10-23 2009-03-25 美的集团有限公司 一种用于煲汤的电炊具的控制方法
JP2011014363A (ja) * 2009-07-01 2011-01-20 Sanyo Electric Co Ltd 電磁調理器
CN103425153A (zh) * 2012-05-16 2013-12-04 珠海格力电器股份有限公司 豆浆制作的控制方法和豆浆机及豆腐的制作方法和豆腐机
CN102727102A (zh) * 2012-06-27 2012-10-17 美的集团有限公司 一种加热器判断沸腾的控制方法
CN102798158A (zh) * 2012-08-28 2012-11-28 中标能效科技(北京)有限公司 电磁灶能效测试方法和电磁灶能效测试用锅具
CN104918342A (zh) * 2014-03-14 2015-09-16 美的集团股份有限公司 电磁加热装置及其的控制组件和控制方法
CN105615619A (zh) * 2015-12-23 2016-06-01 珠海格力电器股份有限公司 煮饭电器及其控制方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3764740A1 (en) * 2019-07-12 2021-01-13 Electrolux Appliances Aktiebolag Method for controlling an induction cooking hob
WO2021008855A1 (en) * 2019-07-12 2021-01-21 Electrolux Appliances Aktiebolag Method for controlling an induction cooking hob
CN113924822A (zh) * 2019-07-12 2022-01-11 伊莱克斯家用电器股份公司 用于控制感应烹饪灶具的方法
CN113924822B (zh) * 2019-07-12 2024-04-26 伊莱克斯家用电器股份公司 用于控制感应烹饪灶具的方法

Also Published As

Publication number Publication date
CN108966392B (zh) 2020-09-01
CN108966392A (zh) 2018-12-07

Similar Documents

Publication Publication Date Title
JP3762580B2 (ja) 加熱調理器
US8102080B2 (en) Control system for an appliance
WO2010050159A1 (ja) 誘導加熱調理器
WO2018209904A1 (zh) 电烹饪器及其加热功率控制方法和装置
CN102637053A (zh) 烹饪用品的温度调节方法
US20080057170A1 (en) Baking device and method thereof for controlling a reliable browning level
GB2464927A (en) Apparatus and method for metering the use of electricity
CN107951389B (zh) 一种食品加工机
CN107491119B (zh) 多士炉温控方法和多士炉
CN107450624B (zh) 电水壶
CN109237545A (zh) 防干烧的控制方法和防干烧系统
CN108397792A (zh) 一种烹饪控制方法、锅具、灶具、烟机和烹饪系统
CN208652636U (zh) 电磁炉
US20190293298A1 (en) Cooktop appliance
CN111513582B (zh) 电饭煲及其控制方法
JP2012049059A (ja) 誘導加熱調理器
KR100354777B1 (ko) 전기보온밥솥의 취사방법
McKenna et al. Electrical and thermal characteristics of household appliances: Voltage dependency, harmonics and thermal rc parameters
JP4301064B2 (ja) 誘導加熱調理器
CN111358305A (zh) 电饭煲及其控制方法
CN114113740A (zh) 一种加热设备的电压检测方法、温度控制方法和加热设备
CN108241393A (zh) 无线温度传感器的控制系统、控制方法及家用电器
US20070095819A1 (en) Controller to provide a uniform temperature for electric frying pans
TWI523630B (zh) The heating control method of the pot
CN203217405U (zh) 高精度恒温槽自动控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17909816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17909816

Country of ref document: EP

Kind code of ref document: A1