WO2018207251A1 - 空気調和システム及びその冷媒量設定方法 - Google Patents

空気調和システム及びその冷媒量設定方法 Download PDF

Info

Publication number
WO2018207251A1
WO2018207251A1 PCT/JP2017/017516 JP2017017516W WO2018207251A1 WO 2018207251 A1 WO2018207251 A1 WO 2018207251A1 JP 2017017516 W JP2017017516 W JP 2017017516W WO 2018207251 A1 WO2018207251 A1 WO 2018207251A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air
conditioning system
air conditioning
detection device
Prior art date
Application number
PCT/JP2017/017516
Other languages
English (en)
French (fr)
Inventor
康巨 鈴木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780090313.2A priority Critical patent/CN110603412A/zh
Priority to PCT/JP2017/017516 priority patent/WO2018207251A1/ja
Priority to US16/484,545 priority patent/US11067321B2/en
Priority to JP2019516765A priority patent/JP6701444B2/ja
Priority to AU2017413868A priority patent/AU2017413868B2/en
Priority to EP17909643.3A priority patent/EP3623716A4/en
Publication of WO2018207251A1 publication Critical patent/WO2018207251A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/04Refrigerant level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system including a heat exchange unit connected to a plurality of air-conditioned spaces through a plurality of air supply paths, and a refrigerant amount setting method thereof.
  • Patent Document 1 describes an air conditioner.
  • the air conditioner includes a refrigerant detection device provided on the outer surface of the indoor unit, and a control unit that performs control to rotate the indoor fan when the refrigerant detection device detects the refrigerant.
  • a control unit that performs control to rotate the indoor fan when the refrigerant detection device detects the refrigerant.
  • the refrigerant detection device when the refrigerant leaks into the room from the extension pipe connected to the indoor unit, or when the refrigerant leaked inside the indoor unit flows out of the indoor unit through the clearance of the indoor unit casing, Can be detected by the refrigerant detection device.
  • the indoor blower fan is rotated so that the indoor air is sucked from the suction port provided in the housing of the indoor unit, and the air is blown out from the air outlet to the room.
  • the leaked refrigerant can be diffused.
  • the amount of refrigerant may be large with respect to each volume of the air-conditioned space. If refrigerant leakage occurs in such an air conditioning system, the refrigerant concentration in the air-conditioned space may increase even if the leaked refrigerant is evenly diffused in any one of the air-conditioned spaces. There was a problem.
  • the present invention has been made to solve the above-described problems, and is capable of preventing the refrigerant concentration in the air-conditioned space from becoming high even if the refrigerant leaks, and the refrigerant amount setting thereof. It aims to provide a method.
  • the air conditioning system includes a refrigerant circuit that circulates a refrigerant, and a plurality of air supply paths that contain the load-side heat exchanger of the refrigerant circuit and supply air that has passed through the load-side heat exchanger.
  • a heat exchange unit that is connected to a plurality of air-conditioned spaces, a refrigerant detection device that detects leakage of the refrigerant, and a plurality of opening and closing devices that are provided in the plurality of air supply paths and that are opened and closed independently of each other And when the refrigerant detection device detects leakage of the refrigerant, all of the plurality of opening / closing devices are opened.
  • a refrigerant amount setting method for an air conditioning system according to the present invention is a method for setting the refrigerant amount of the air conditioning system according to the present invention, wherein the amount of refrigerant enclosed in the refrigerant circuit is M [kg], The lower limit concentration of combustion of the refrigerant is LFL [kg / m 3 ], and the air-conditioned space connected to the heat exchange unit is connected to the heat exchange unit via an opening / closing device that is opened when the refrigerant detection device detects leakage of the refrigerant.
  • the enclosed amount M is set so that the enclosed amount M satisfies the relationship M ⁇ LFL ⁇ V.
  • the leaked refrigerant can be diffused into the air-conditioned space via the open switchgear, thus preventing the refrigerant concentration in the air-conditioned space from increasing. can do.
  • FIG. 1 is a diagram showing a schematic configuration of an air conditioning system according to the present embodiment.
  • an air conditioning system an internal adjustment type air conditioning system that processes indoor loads in three air-conditioned spaces A, B, and C is illustrated.
  • the air-conditioned spaces A, B, and C are a plurality of rooms partitioned from each other.
  • the floor area of the air-conditioned space A is Aa
  • the ceiling height from the floor surface of the air-conditioned space A is Ha.
  • the floor area of the air-conditioned space B is Ab
  • the ceiling height from the floor surface of the air-conditioned space B is Hb.
  • the floor area of the air-conditioned space C is Ac, and the ceiling height from the floor surface of the air-conditioned space C is Hc.
  • the air conditioning system has one refrigerant circuit 10 that circulates the refrigerant.
  • the refrigerant circuit 10 has a configuration in which a compressor, a refrigerant flow switching device (for example, a four-way valve), a heat source side heat exchanger, a pressure reducing device, and a load side heat exchanger 11 are annularly connected via a refrigerant pipe. ing.
  • a slightly flammable refrigerant such as R1234yf and R1234ze (E) or a strong flammable refrigerant such as R290 and R1270 is used.
  • These refrigerants may be used as a single refrigerant, or may be used as a mixed refrigerant in which two or more kinds are mixed.
  • a refrigerant having a flammability at or above a slight combustion level (for example, 2 L or more in the ASHRAE 34 classification) may be referred to as a “flammable refrigerant”.
  • coolants such as R22 and R410A which have nonflammability (for example, 1 by the classification of ASHRAE34), can also be used.
  • these refrigerants have a density higher than that of air at atmospheric pressure (for example, the temperature is room temperature (25 ° C.)).
  • the air conditioning system includes at least one heat source unit 20 that houses the heat source side heat exchanger of the refrigerant circuit 10 and one load unit 30 (heat) that houses at least the load side heat exchanger 11 of the refrigerant circuit 10.
  • the heat source unit 20 and the load unit 30 are connected by two extension pipes 12 a and 12 b that are part of the refrigerant pipe of the refrigerant circuit 10.
  • the extension pipe 12a is connected to the load side heat exchanger 11 via the joint part 13a
  • the extension pipe 12b is connected to the load side heat exchanger 11 via the joint part 13b.
  • the heat source unit 20 of this example not only the heat source side heat exchanger but also a compressor of the refrigerant circuit 10, a refrigerant flow switching device, and a decompression device are accommodated.
  • the refrigerant circuit 10, the heat source unit 20, and the load unit 30 are controlled by a control unit 300 described later.
  • the housing of the load unit 30 is formed with an inlet 41 for sucking air and an outlet 42 for blowing air.
  • a space in the housing of the load unit 30 is partitioned into a fan chamber 31 and a heat exchanger chamber 32 by a partition plate 33.
  • the partition plate 33 is formed with an opening serving as an air path between the fan chamber 31 and the heat exchanger chamber 32.
  • a fan fan 34 is accommodated in the fan chamber 31.
  • the load side heat exchanger 11 In the heat exchanger 11, the joint portions 13a and 13b, and the refrigerant detection device 35 are accommodated.
  • the refrigerant detector 35 is configured to detect refrigerant leakage.
  • the refrigerant detection device 35 for example, a semiconductor gas sensor or the like can be used, but is not limited thereto.
  • the refrigerant detection device 35 detects the refrigerant concentration in the air and outputs a detection signal to the control unit 300 described later.
  • the installation position of the refrigerant detection device 35 is not limited to the heat exchanger chamber 32 but may be the fan chamber 31 or outside the load unit 30 such as in an air supply duct described later.
  • the installation position of the refrigerant detection device 35 may be in the load unit 30 or in the air supply path from the load unit 30 to the air-conditioned spaces A, B, and C.
  • the location where the refrigerant may leak in the load unit 30 is the brazed portion and the joint portions 13a and 13b of the load-side heat exchanger 11. Therefore, it is desirable that the load-side heat exchanger 11 and the joint portions 13a and 13b are arranged in the casing of the load unit 30 (for example, in the heat exchanger chamber 32) or in the air supply duct.
  • the control unit 300 has a microcomputer equipped with a CPU, ROM, RAM, I / O port, timer, and the like.
  • the control unit 300 can communicate with the operation unit 310.
  • the operation unit 310 is configured to accept an operation by a user and output an operation signal based on the operation to the control unit 300.
  • the operation unit 310 includes, for example, a plurality of remote controllers provided in each of the air-conditioned spaces A, B, and C, and a centralized controller that is an upper operation unit of the plurality of remote controllers.
  • the control unit 300 is based on the operation signal from the operation unit 310, the detection signal from the sensors, and the like, the refrigerant circuit 10, the heat source unit 20, the load unit 30, and dampers 71, 72, 73, 81, 82, 83 to be described later. Control the overall operation of the air conditioning system.
  • the control unit 300 may be provided in the housing of the heat source unit 20 or may be provided in the housing of the load unit 30.
  • the control part 300 may be comprised by the heat source side control part provided in the heat source unit 20, and the load side control part provided in the load unit 30 and communicable with the heat source side control part.
  • the load-side heat exchanger 11, the blower fan 34, the refrigerant detection device 35, and the control unit 300 may be provided in the load unit 30, or may be assembled at the time of site construction separately from the load unit 30. .
  • the air outlet 42 of the load unit 30 is connected in parallel to the air-conditioned spaces A, B, and C via a plurality of air supply paths.
  • An air supply path between the air outlet 42 and the air-conditioned space A is formed by air supply ducts 51, 52, and 53.
  • An air supply path between the air outlet 42 and the air-conditioned space B is formed by air supply ducts 51, 52, and 54.
  • An air supply path between the air outlet 42 and the air-conditioned space C is formed by the air supply ducts 51 and 55.
  • the air supply ducts 53, 54, and 55 are preferably connected to high positions (for example, near the ceiling) of the air-conditioned spaces A, B, and C, respectively.
  • the air supply ducts 53, 54, and 55 are connected to low positions (for example, near the floor surface) of the air-conditioned spaces A, B, and C, respectively. desirable.
  • the suction port 41 of the load unit 30 is connected in parallel to the air-conditioned spaces A, B, and C through a plurality of return air paths.
  • the return air path between the air-conditioned space A and the suction port 41 is formed by return air ducts 63, 62, 61.
  • the return air path between the air-conditioned space B and the suction port 41 is formed by return air ducts 64, 62, 61.
  • a return air path between the air-conditioned space C and the suction port 41 is formed by return air ducts 65 and 61.
  • the air conditioning system has a plurality of dampers 71, 72, 73 (an example of an opening / closing device).
  • the damper 71 is provided in the air supply duct 53 and is configured to open and close the air supply path between the air outlet 42 and the air-conditioned space A.
  • the damper 72 is provided in the air supply duct 54 and is configured to open and close an air supply path between the air outlet 42 and the air-conditioned space B.
  • the damper 73 is provided in the air supply duct 55, and is configured to open and close an air supply path between the air outlet 42 and the air-conditioned space C.
  • the dampers 71, 72, and 73 are opened and closed independently of each other under the control of the control unit 300.
  • the damper 71 is opened and closed based on an operation with a centralized controller and a remote controller provided in the air-conditioned space A
  • the damper 72 is opened and closed based on an operation with a remote controller provided in the centralized controller and the air-conditioned space B
  • the damper 73 is opened and closed based on an operation with a centralized controller and a remote controller provided in the air-conditioned space C.
  • the air conditioning system which concerns on this Embodiment functions as a multi-type air conditioning system of what is called an individual operation system which can select the presence or absence of supply of conditioned air for every to-be-conditioned space A, B, and C.
  • the dampers 71, 72, and 73 may be provided at the air outlet 42 of the load unit 30.
  • the air conditioning system has a plurality of dampers 81, 82, 83.
  • the damper 81 is provided in the return air duct 63 and is configured to open and close a return air path between the air-conditioned space A and the suction port 41.
  • the damper 82 is provided in the return air duct 64 and is configured to open and close a return air path between the air-conditioned space B and the suction port 41.
  • the damper 83 is provided in the return air duct 65 and is configured to open and close a return air path between the air-conditioned space C and the suction port 41.
  • the damper 81 is opened and closed in conjunction with the damper 71 under the control of the control unit 300.
  • the damper 82 is opened and closed in conjunction with the damper 72 under the control of the control unit 300.
  • the damper 83 is opened and closed in conjunction with the damper 73 under the control of the control unit 300. Further, the dampers 81, 82, 83 may be provided at the suction port 41 of the load unit 30.
  • the refrigerant detection device 35, the operation unit 310, and the dampers 71, 72, 73, 81, 82, 83, and the like are communicably connected to the control unit 300 via control lines.
  • etc. Can share the state of an air conditioning system with the heat source unit 20 and the load unit 30.
  • the control unit 300 can acquire information from the refrigerant detection device 35, the operation unit 310, and the dampers 71, 72, 73, 81, 82, 83, and the like, and the refrigerant detection device 35, the operation unit 310, and the damper 71. 72, 73, 81, 82, 83, etc. can be controlled.
  • the control unit 300 can confirm that the refrigerant detection device 35 and the dampers 71, 72, 73, 81, 82, 83 are connected by communication via the control line.
  • the control unit 300 permits the operation of the air conditioning system (for example, the refrigerant circuit 10) unless it can be confirmed that the refrigerant detection device 35 and at least the dampers 71, 72, 73 on the air supply path are communicably connected. It is supposed not to.
  • FIG. 2 is a flowchart showing an example of the refrigerant leakage detection process executed by the control unit 300 of the air-conditioning system according to the present embodiment.
  • This refrigerant leakage detection process is repeatedly executed at predetermined time intervals only during operation of the air conditioning system, or at all times including operation and stop of the air conditioning system as long as power is supplied to the air conditioning system. The When power from the original power source is supplied to the air conditioning system via the power supply switch, it is desirable that the power supply switch is always kept in the on state.
  • the control unit 300 acquires information on the refrigerant concentration around the refrigerant detection device 35 based on the detection signal from the refrigerant detection device 35.
  • step S2 the control unit 300 determines whether or not the refrigerant concentration around the refrigerant detection device 35 is equal to or higher than a preset threshold value. If it is determined that the refrigerant concentration is greater than or equal to the threshold value, the process proceeds to step S3, and if it is determined that the refrigerant concentration is less than the threshold value, the process ends.
  • step S3 the control unit 300 causes the blower fan 34 to operate. That is, the control unit 300 continues the operation when the blower fan 34 is already operating, and starts the operation of the blower fan 34 when the blower fan 34 is stopped. It is desirable to set the operation rotational speed (that is, the air volume) of the blower fan 34 to the maximum.
  • the controller 300 opens all the dampers 71, 72, 73 provided on at least the air supply path. That is, the control unit 300 opens the damper in the closed state among the dampers 71, 72, and 73, and maintains the damper in the open state among the dampers 71, 72, and 73 as it is. Thereby, all the dampers 71, 72, 73 provided on the air supply path are opened.
  • step S ⁇ b> 3 the control unit 300 may notify the user that the refrigerant has leaked using a display unit or an audio output unit provided in the operation unit 310.
  • the operation of the blower fan 34 is started.
  • all the dampers 71, 72, 73, 81, 82, 83 are opened.
  • the refrigerant leaked in the load unit 30 is blown out to all the air-conditioned spaces A, B, and C through the air supply paths together with the air blown by the blower fan 34.
  • the leaked refrigerant can be diffused to all the air-conditioned spaces A, B, C. It is possible to prevent the refrigerant concentration from increasing only in the part of the air-conditioned space.
  • the load unit 30 is arrange
  • coolant is detected. It is not always necessary to operate the blower fan 34 at the time. For example, when the refrigerant leaks in the load unit 30 while the blower fan 34 is stopped, all the dampers 71, 72, 73, 81, 82, 83 are opened, so that the leaked refrigerant is removed from the load unit 30. It flows down to all the air-conditioned spaces A, B, C via the air supply path or the return air path.
  • the leaked refrigerant can be diffused to all the air-conditioned spaces A, B, and C, it is possible to prevent the refrigerant concentration from increasing only in some of the air-conditioned spaces.
  • a refrigerant having a density lower than that of air is used under atmospheric pressure and the load unit 30 is disposed below the air-conditioned spaces A, B, and C.
  • the volume of the air-conditioned space A is Aa ⁇ Ha [m 3 ]
  • the volume of the air-conditioned space B is Ab ⁇ Hb [m 3 ]
  • the amount of refrigerant enclosed M [kg] is M ⁇ LFL ⁇ V Is set to satisfy the relationship.
  • the heat source unit 20 and the load unit 30 are selected so as to satisfy the above relationship.
  • the lengths of the extension pipes 12a and 12b may be increased, and additional charging of the refrigerant may be required. In this case, it is desirable that the enclosed amount M after the refrigerant is additionally filled satisfy the above relationship.
  • the amount of enclosed M is set so as to satisfy the above relationship, so that the air-conditioned space It is possible to prevent the combustible concentration range from being generated in A, B, and C.
  • FIG. 3 is a diagram showing a schematic configuration of an air conditioning system according to a first modification of the present embodiment.
  • the air conditioning system of the present modification is an external conditioning air conditioning system that processes an outdoor air load.
  • the air conditioning system of the present modification is different from the air conditioning system shown in FIG. 1 in that the return air path dampers 81, 82, and 83 are not provided. Outside air is introduced into the suction port 41 of the load unit 30.
  • the other structure is the same as that of the air conditioning system shown in FIG. Also by this modification, the effect similar to the air conditioning system shown in FIG. 1 is acquired.
  • FIG. 4 is a diagram illustrating a schematic configuration of an air conditioning system according to a second modification of the present embodiment.
  • the air conditioning system of the present modification includes an air supply path that introduces outside air from the outside air introduction port 44 by the blower fan 34 and supplies the air-conditioned spaces A, B, and C, and the blower fan 36. And an exhaust path for exhausting the air in the air-conditioned spaces A, B, and C to the outside.
  • the load unit 30 includes a total heat exchanger 90 that exchanges sensible heat and latent heat between the outside air introduced into the air supply path and the return air passing through the exhaust path. All the return air that has passed through the total heat exchanger 90 is exhausted to the outside through the exhaust port 43.
  • the load unit 30 may include a sensible heat exchanger instead of the total heat exchanger 90.
  • dampers 71, 72, 73, 81, 82, and 83 only the dampers 71, 72, and 73 on the air supply path where the load-side heat exchanger 11 is provided are open when the refrigerant leaks. If it becomes. Accordingly, it is only necessary that the dampers 71, 72, 73 can communicate with the control unit 300. Note that the dampers 81, 82, and 83 on the exhaust path may be communicable with the control unit 300.
  • dampers 81, 82, 83 are opened when the refrigerant leaks, the refrigerant leaked in the load unit 30 is not only diffused in the air-conditioned spaces A, B, C, but is also discharged to the outside through the exhaust path. The For this reason, the refrigerant
  • the dampers 81, 82, 83 may be configured to open and close in conjunction with the dampers 71, 72, 73, respectively.
  • FIG. 5 is a diagram showing a schematic configuration of an air conditioning system according to a third modification of the present embodiment.
  • the air conditioning system of the present modification includes a plurality of heat source units 20 connected in parallel to one refrigerant circuit 10 and one load unit 30. Also by this modification, the effect similar to the air conditioning system shown in FIG. 1 is acquired.
  • FIG. 6 is a diagram showing a schematic configuration of an air conditioning system according to a fourth modification of the present embodiment.
  • the air conditioning system of this modification has a plurality of sets of the refrigerant circuit 10, the load unit 30, and the heat source unit 20.
  • the plurality of load units 30 are connected in parallel to the air supply path and the return air path. Also by this modification, the effect similar to the air conditioning system shown in FIG. 1 is acquired.
  • the air conditioning system accommodates the refrigerant circuit 10 that circulates the refrigerant and the load-side heat exchanger 11 of the refrigerant circuit 10, and the air that has passed through the load-side heat exchanger 11.
  • a load unit 30 (an example of a heat exchange unit) connected to a plurality of air-conditioned spaces A, B, and C via a plurality of air supply paths that supply the refrigerant, a refrigerant detector 35 that detects refrigerant leakage,
  • a plurality of dampers 71, 72, 73 (an example of an opening / closing device) provided in each of the plurality of air supply paths and opened / closed independently of each other, and when the refrigerant detection device 35 detects leakage of the refrigerant, All of the dampers 71, 72, and 73 are in the open state.
  • the air conditioning system further includes a blower fan 34, and the blower fan 34 operates when the refrigerant detection device 35 detects the leakage of the refrigerant. According to this configuration, the leaked refrigerant can be more reliably diffused into the air-conditioned spaces A, B, and C.
  • the air conditioning system further includes a control unit 300 that controls the refrigerant circuit 10, and the control unit 300 includes the control unit 300, the refrigerant detection device 35, and the plurality of dampers 71, 72, and 73. Unless it is connected so as to be communicable, operation of the refrigerant circuit 10 is not permitted. According to this structure, the safety
  • the refrigerant may be a combustible refrigerant.
  • the amount of refrigerant enclosed in the refrigerant circuit 10 is M [kg]
  • the lower combustion limit concentration of the refrigerant is LFL [kg / m 3 ]
  • the refrigerant detection device 35 is the refrigerant.
  • Air-conditioned spaces for example, a plurality of air-conditioned spaces A, B, etc.
  • dampers for example, all of the plurality of dampers 71, 72, 73
  • the enclosed amount M satisfies the relationship M ⁇ LFL ⁇ V. According to this configuration, it is possible to prevent a combustible concentration region from being generated in the air-conditioned spaces A, B, and C.
  • the refrigerant amount setting method for the air conditioning system is a method for setting the refrigerant amount of the air conditioning system, wherein the amount of refrigerant enclosed in the refrigerant circuit 10 is M [kg]
  • the load unit is set via a damper (for example, all of the plurality of dampers 71, 72, 73) that is in an open state when the lower combustion limit concentration is LFL [kg / m 3 ] and the refrigerant detection device 35 detects leakage of the refrigerant.
  • the total volume of the air-conditioned space connected to 30 (for example, all of the air-conditioned spaces A, B, and C) is V [m 3 ]
  • the enclosed amount M satisfies the relationship of M ⁇ LFL ⁇ V.
  • the enclosing amount M is set. According to this configuration, it is possible to prevent a combustible concentration region from being generated in the air-conditioned spaces A, B, and C.
  • the air conditioning system and its refrigerant amount setting method according to Embodiment 2 of the present invention will be described.
  • the air conditioning system according to the present embodiment includes a setting device that presets a damper that is opened when the refrigerant leaks out of the dampers 71, 72, and 73 by an operation of an installer.
  • the setting device for example, the operation unit 310 is used.
  • the damper that is opened when the refrigerant leaks at least one of the dampers 71, 72, and 73 provided on the air supply path is selected.
  • the damper identification information set so as to be opened when the refrigerant leaks is stored in the ROM (eg, flash memory) of the control unit 300.
  • the damper that is opened when the refrigerant leaks is set in consideration of the volume of the air-conditioned space that communicates with the load unit 30 via the damper.
  • the total volume of the air-conditioned space that communicates with the load unit 30 via the damper that is opened when the refrigerant leaks among the dampers 71, 72, and 73 is represented by V [m 3
  • the refrigerant lower limit concentration is LFL [kg / m 3 ]
  • the refrigerant charging amount M [m 3 ] is M ⁇ LFL ⁇ V Is set to satisfy the relationship.
  • the damper that is opened when the refrigerant leaks is set at the time of installation of the air-conditioning system or the like so that the above relationship is satisfied.
  • FIG. 7 is a flowchart showing an example of the refrigerant leakage detection process executed by the control unit 300 of the air conditioning system according to the present embodiment.
  • This refrigerant leakage detection process is repeatedly executed at predetermined time intervals only during operation of the air conditioning system, or at all times including operation and stop of the air conditioning system as long as power is supplied to the air conditioning system.
  • the Step S11 and step S12 are the same as step S1 and step S2 shown in FIG.
  • step S12 If it is determined in step S12 that the refrigerant concentration is equal to or higher than the threshold value, the process proceeds to step S13.
  • step S ⁇ b> 13 the control unit 300 acquires from the ROM identification information of the damper that is set to be in an open state when the refrigerant leaks.
  • step S14 the control unit 300 operates the blower fan 34. That is, the control unit 300 continues the operation when the blower fan 34 is already operating, and starts the operation of the blower fan 34 when the blower fan 34 is stopped. Moreover, in step S14, the control part 300 opens the damper set so that it may be in an open state at the time of a refrigerant
  • the operation of the blower fan 34 is started, and a preset damper among the dampers 71, 72, 73 is opened. .
  • the refrigerant leaked in the load unit 30 is blown out together with the air blown by the blower fan 34 to the at least one air-conditioned space via the opened damper. Therefore, even if the refrigerant leaks in a state where conditioned air is supplied only to the air-conditioned space having a small volume, the leaked refrigerant can be diffused into at least one air-conditioned space having the necessary total volume. Therefore, it is possible to prevent the refrigerant concentration from increasing only in the air-conditioned space having a small volume.
  • the air conditioning system accommodates the refrigerant circuit 10 that circulates the refrigerant and the load-side heat exchanger 11 of the refrigerant circuit 10, and the air that has passed through the load-side heat exchanger 11.
  • a load unit 30 (an example of a heat exchange unit) connected to a plurality of air-conditioned spaces A, B, and C via a plurality of air supply paths that supply the refrigerant
  • a refrigerant detector 35 that detects refrigerant leakage
  • the plurality of dampers 71, 72, 73 an example of an opening / closing device
  • the refrigerant detection device 35 is the refrigerant
  • a setting device for example, the operation unit 310) that sets a damper that is opened when the leakage of the refrigerant is detected.
  • the amount of refrigerant enclosed in the refrigerant circuit 10 is M [kg]
  • the lower combustion limit concentration of the refrigerant is LFL [kg / m 3 ]
  • the refrigerant detection device 35 is the refrigerant.
  • the refrigerant amount setting method for the air conditioning system is a method for setting the refrigerant amount of the air conditioning system, wherein the amount of refrigerant enclosed in the refrigerant circuit 10 is M [kg] Connected to the load unit 30 via a damper (for example, a damper set by a setting device) that is opened when the refrigerant lower limit concentration is LFL [kg / m 3 ] and the refrigerant detector 35 detects leakage of the refrigerant.
  • the total volume of the air-conditioned space is V [m 3 ]
  • the enclosed amount M is set so that the enclosed amount M satisfies the relationship M ⁇ LFL ⁇ V. According to this configuration, it is possible to prevent a combustible concentration region from being generated in the air-conditioned space.
  • an air conditioning system for the purpose of interpersonal air conditioning has been taken as an example, but the air conditioning system of the present invention also includes an air conditioning system for the purpose of objective air conditioning such as a refrigerated warehouse or a refrigerated warehouse. included.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和システムは、冷媒を循環させる冷媒回路と、冷媒回路の負荷側熱交換器を収容し、負荷側熱交換器を通過した空気を供給する複数の給気経路をそれぞれ介して複数の被空調空間に接続される熱交換ユニットと、冷媒の漏洩を検知する冷媒検知装置と、複数の給気経路にそれぞれ設けられ、互いに独立して開閉される複数の開閉装置と、を備え、冷媒検知装置が冷媒の漏洩を検知したとき、複数の開閉装置の全てが開状態となるものである。

Description

空気調和システム及びその冷媒量設定方法
 本発明は、複数の給気経路をそれぞれ介して複数の被空調空間に接続される熱交換ユニットを備えた空気調和システム及びその冷媒量設定方法に関するものである。
 特許文献1には、空気調和装置が記載されている。この空気調和装置は、室内機の外表面に設けられた冷媒検知装置と、冷媒検知装置が冷媒を検知したときに室内送風ファンを回転させる制御を行う制御部と、を備えている。この空気調和装置では、室内機につながる延長配管から室内へ冷媒が漏洩した場合や、室内機内部で漏洩した冷媒が室内機の筐体の隙間を通して室内機の外部へ流出した場合に、漏洩冷媒を冷媒検知装置によって検知できる。また、冷媒検知装置が冷媒の漏洩を検知したときに室内送風ファンを回転させることにより、室内機の筐体に設けられた吸込口から室内の空気を吸い込み、吹出口から室内へ空気を吹き出すので、漏洩した冷媒を拡散させることができる。
特許第4599699号公報
 例えば、1つの冷媒回路を用いて複数の被空調空間の空気調和を行う空気調和システムでは、被空調空間のそれぞれの容積に対して冷媒量が多量である場合がある。このような空気調和システムで冷媒の漏洩が生じた場合、漏洩した冷媒を被空調空間のいずれかに均一に拡散させたとしても、被空調空間の冷媒濃度が高くなってしまう可能性があるという課題があった。
 本発明は、上述のような課題を解決するためになされたものであり、冷媒が漏洩したとしても、被空調空間の冷媒濃度が高くなってしまうのを防止できる空気調和システム及びその冷媒量設定方法を提供することを目的とする。
 本発明に係る空気調和システムは、冷媒を循環させる冷媒回路と、前記冷媒回路の負荷側熱交換器を収容し、前記負荷側熱交換器を通過した空気を供給する複数の給気経路をそれぞれ介して複数の被空調空間に接続される熱交換ユニットと、前記冷媒の漏洩を検知する冷媒検知装置と、前記複数の給気経路にそれぞれ設けられ、互いに独立して開閉される複数の開閉装置と、を備え、前記冷媒検知装置が前記冷媒の漏洩を検知したとき、前記複数の開閉装置の全てが開状態となるものである。
 本発明に係る空気調和システムの冷媒量設定方法は、上記本発明に係る空気調和システムの冷媒量を設定する方法であって、前記冷媒回路における前記冷媒の封入量をM[kg]とし、前記冷媒の燃焼下限濃度をLFL[kg/m]とし、前記冷媒検知装置が前記冷媒の漏洩を検知したときに開状態となる開閉装置を介して前記熱交換ユニットに接続される被空調空間の総容積をV[m]としたとき、前記封入量MがM<LFL×Vの関係を満たすように前記封入量Mを設定するものである。
 本発明によれば、冷媒が漏洩したとしても、漏洩した冷媒を開状態の開閉装置を介して被空調空間に拡散させることができるため、被空調空間の冷媒濃度が高くなってしまうのを防止することができる。
本発明の実施の形態1に係る空気調和システムの概略構成を示す図である。 本発明の実施の形態1に係る空気調和システムの制御部300で実行される冷媒漏洩検知処理の一例を示すフローチャートである。 本発明の実施の形態1の第1変形例に係る空気調和システムの概略構成を示す図である。 本発明の実施の形態1の第2変形例に係る空気調和システムの概略構成を示す図である。 本発明の実施の形態1の第3変形例に係る空気調和システムの概略構成を示す図である。 本発明の実施の形態1の第4変形例に係る空気調和システムの概略構成を示す図である。 本発明の実施の形態2に係る空気調和システムの制御部300で実行される冷媒漏洩検知処理の一例を示すフローチャートである。
実施の形態1.
 本発明の実施の形態1に係る空気調和システム及びその冷媒量設定方法について説明する。図1は、本実施の形態に係る空気調和システムの概略構成を示す図である。本実施の形態では、空気調和システムとして、3つの被空調空間A、B、Cの室内負荷を処理する内調型の空気調和システムを例示している。例えば、被空調空間A、B、Cは、互いに仕切られた複数の部屋である。被空調空間Aの床面積はAaであり、被空調空間Aの床面からの天井高さはHaである。被空調空間Bの床面積はAbであり、被空調空間Bの床面からの天井高さはHbである。被空調空間Cの床面積はAcであり、被空調空間Cの床面からの天井高さはHcである。
 図1に示すように、本実施の形態に係る空気調和システムは、冷媒を循環させる1つの冷媒回路10を有している。冷媒回路10は、圧縮機、冷媒流路切替装置(例えば、四方弁)、熱源側熱交換器、減圧装置及び負荷側熱交換器11が冷媒配管を介して環状に接続された構成を有している。
 冷媒回路10に封入される冷媒としては、例えば、R1234yf、R1234ze(E)等の微燃性冷媒、又は、R290、R1270等の強燃性冷媒が用いられる。これらの冷媒は単一冷媒として用いられてもよいし、2種以上が混合された混合冷媒として用いられてもよい。以下、微燃レベル以上(例えば、ASHRAE34の分類で2L以上)の可燃性を有する冷媒のことを「可燃性冷媒」という場合がある。また、冷媒回路10に封入される冷媒としては、不燃性(例えば、ASHRAE34の分類で1)を有するR22、R410A等の不燃性冷媒を用いることもできる。これらの冷媒は、例えば、大気圧下(例えば、温度は室温(25℃))において空気よりも大きい密度を有している。
 また、空気調和システムは、少なくとも冷媒回路10の熱源側熱交換器を収容する1台の熱源ユニット20と、少なくとも冷媒回路10の負荷側熱交換器11を収容する1台の負荷ユニット30(熱交換ユニットの一例)と、を有している。熱源ユニット20と負荷ユニット30との間は、冷媒回路10の冷媒配管の一部である2本の延長配管12a、12bによって接続されている。延長配管12aは、継手部13aを介して負荷側熱交換器11に接続されており、延長配管12bは、継手部13bを介して負荷側熱交換器11に接続されている。本例の熱源ユニット20には、熱源側熱交換器だけでなく、冷媒回路10の圧縮機、冷媒流路切替装置及び減圧装置も収容されている。冷媒回路10、熱源ユニット20及び負荷ユニット30は、後述する制御部300により制御される。
 負荷ユニット30の筐体には、空気を吸い込む吸込口41と、空気を吹き出す吹出口42とが形成されている。負荷ユニット30の筐体内の空間は、仕切板33によってファン室31と熱交換器室32とに仕切られている。仕切板33には、ファン室31と熱交換器室32との間の風路となる開口部が形成されている。ファン室31には、送風ファン34が収容されている。熱交換器室32には、負荷側熱交換器11、継手部13a、13b及び冷媒検知装置35が収容されている。
 冷媒検知装置35は、冷媒の漏洩を検知するように構成されている。冷媒検知装置35としては、例えば、半導体式ガスセンサなどを用いることができるが、これに限られない。冷媒検知装置35は、空気中の冷媒濃度を検知し、後述する制御部300に検知信号を出力するようになっている。冷媒検知装置35の設置位置は、熱交換器室32には限られず、ファン室31であってもよいし、後述する給気ダクト内などの負荷ユニット30の外部であってもよい。冷媒検知装置35の設置位置は、負荷ユニット30内、又は負荷ユニット30から被空調空間A、B、Cまでの給気経路内であればよい。
 負荷ユニット30において冷媒が漏洩する可能性のある箇所は、負荷側熱交換器11のろう付け部及び継手部13a、13bである。したがって、負荷側熱交換器11及び継手部13a、13bは、負荷ユニット30の筐体内(例えば、熱交換器室32内)又は給気ダクト内に配置されるのが望ましい。
 制御部300は、CPU、ROM、RAM、I/Oポート、タイマー等を備えたマイクロコンピュータを有している。制御部300は、操作部310との間で相互に通信を行うことができるようになっている。操作部310は、ユーザによる操作を受け付け、操作に基づく操作信号を制御部300に出力するように構成されている。操作部310は、例えば、被空調空間A、B、Cにそれぞれ設けられた複数のリモコンと、複数のリモコンの上位の操作部となる集中コントローラーと、により構成されている。
 制御部300は、操作部310からの操作信号及びセンサ類からの検出信号等に基づき、冷媒回路10、熱源ユニット20、負荷ユニット30及び後述するダンパー71、72、73、81、82、83等を含む空気調和システム全体の動作を制御する。制御部300は、熱源ユニット20の筐体内に設けられていてもよいし、負荷ユニット30の筐体内に設けられていてもよい。また、制御部300は、熱源ユニット20に設けられる熱源側制御部と、負荷ユニット30に設けられ、熱源側制御部と通信可能な負荷側制御部と、により構成されていてもよい。
 負荷側熱交換器11、送風ファン34、冷媒検知装置35、制御部300は、負荷ユニット30内に備えられていてもよいし、負荷ユニット30とは別に現地施工の際に組み付けられてもよい。
 送風ファン34が作動すると、負荷ユニット30の筐体内には、吸込口41から吹出口42に向かう空気の流れが形成される。これにより、吸込口41からファン室31に吸い込まれた空気は、仕切板33の開口部、及び熱交換器室32の負荷側熱交換器11をこの順に通過する。負荷側熱交換器11を通過した空気は、冷媒との熱交換によって冷却又は加熱され、調和空気として吹出口42から吹き出される。
 負荷ユニット30の吹出口42は、複数の給気経路をそれぞれ介して被空調空間A、B、Cに並列に接続されている。吹出口42と被空調空間Aとの間の給気経路は、給気ダクト51、52、53により形成されている。吹出口42と被空調空間Bとの間の給気経路は、給気ダクト51、52、54により形成されている。吹出口42と被空調空間Cとの間の給気経路は、給気ダクト51、55により形成されている。空気よりも密度の大きい冷媒が用いられる場合、給気ダクト53、54、55は、それぞれ被空調空間A、B、Cの高さの高い位置(例えば、天井付近)に接続されるのが望ましい。空気よりも密度の小さい冷媒が用いられる場合、給気ダクト53、54、55は、それぞれ被空調空間A、B、Cの高さの低い位置(例えば、床面付近)に接続されるのが望ましい。
 負荷ユニット30の吸込口41は、複数の還気経路をそれぞれ介して被空調空間A、B、Cに並列に接続されている。被空調空間Aと吸込口41との間の還気経路は、還気ダクト63、62、61により形成されている。被空調空間Bと吸込口41との間の還気経路は、還気ダクト64、62、61により形成されている。被空調空間Cと吸込口41との間の還気経路は、還気ダクト65、61により形成されている。
 空気調和システムは、複数のダンパー71、72、73(開閉装置の一例)を有している。ダンパー71は、給気ダクト53に設けられており、吹出口42と被空調空間Aとの間の給気経路を開閉するように構成されている。ダンパー72は、給気ダクト54に設けられており、吹出口42と被空調空間Bとの間の給気経路を開閉するように構成されている。ダンパー73は、給気ダクト55に設けられており、吹出口42と被空調空間Cとの間の給気経路を開閉するように構成されている。ダンパー71、72、73は、制御部300の制御により、互いに独立して開閉される。例えば、ダンパー71は、集中コントローラー及び被空調空間Aに設けられたリモコンでの操作に基づいて開閉され、ダンパー72は、集中コントローラー及び被空調空間Bに設けられたリモコンでの操作に基づいて開閉され、ダンパー73は、集中コントローラー及び被空調空間Cに設けられたリモコンでの操作に基づいて開閉される。これにより、本実施の形態に係る空気調和システムは、調和空気の供給の有無を被空調空間A、B、C毎に選択できる、いわゆる個別運転方式のマルチ型空気調和システムとして機能する。ダンパー71、72、73は、負荷ユニット30の吹出口42に設けられていてもよい。
 また、空気調和システムは、複数のダンパー81、82、83を有している。ダンパー81は、還気ダクト63に設けられており、被空調空間Aと吸込口41との間の還気経路を開閉するように構成されている。ダンパー82は、還気ダクト64に設けられており、被空調空間Bと吸込口41との間の還気経路を開閉するように構成されている。ダンパー83は、還気ダクト65に設けられており、被空調空間Cと吸込口41との間の還気経路を開閉するように構成されている。ダンパー81は、制御部300の制御により、ダンパー71と連動して開閉される。ダンパー82は、制御部300の制御により、ダンパー72と連動して開閉される。ダンパー83は、制御部300の制御により、ダンパー73と連動して開閉される。また、ダンパー81、82、83は、負荷ユニット30の吸込口41に設けられていてもよい。
 冷媒検知装置35、操作部310及びダンパー71、72、73、81、82、83等は、制御線を介して制御部300と通信可能に接続されている。これにより、冷媒検知装置35、操作部310及びダンパー71、72、73、81、82、83等は、熱源ユニット20及び負荷ユニット30と共に、空気調和システムの状態を共有することができる。また、制御部300は、冷媒検知装置35、操作部310及びダンパー71、72、73、81、82、83等から情報を取得することができるとともに、冷媒検知装置35、操作部310及びダンパー71、72、73、81、82、83等の動作を制御することができる。
 制御部300は、制御線を介した通信により、冷媒検知装置35及びダンパー71、72、73、81、82、83が接続されていることを確認できる。制御部300は、冷媒検知装置35及び少なくとも給気経路上のダンパー71、72、73が通信可能に接続されていることを確認できない限り、空気調和システム(例えば、冷媒回路10)の運転を許可しないようになっている。
 図2は、本実施の形態に係る空気調和システムの制御部300で実行される冷媒漏洩検知処理の一例を示すフローチャートである。この冷媒漏洩検知処理は、空気調和システムの運転中のみ、又は、空気調和システムに電力が供給されている限り空気調和システムの運転中及び停止中を含む常時、所定の時間間隔で繰り返して実行される。空気調和システムに元電源からの電力が給電スイッチを介して供給されている場合、給電スイッチは常にオン状態に維持されるのが望ましい。
 図2のステップS1では、制御部300は、冷媒検知装置35からの検知信号に基づき、冷媒検知装置35の周囲の冷媒濃度の情報を取得する。
 次に、ステップS2では、制御部300は、冷媒検知装置35の周囲の冷媒濃度があらかじめ設定された閾値以上であるか否かを判定する。冷媒濃度が閾値以上であると判定した場合にはステップS3に進み、冷媒濃度が閾値未満であると判定した場合には処理を終了する。
 ステップS3では、制御部300は、送風ファン34を運転させる。すなわち、制御部300は、送風ファン34が既に運転している場合にはそのまま運転を継続させ、送風ファン34が停止している場合には送風ファン34の運転を開始する。送風ファン34の運転回転数(すなわち、風量)は最大に設定することが望ましい。また、ステップS3では、制御部300は、少なくとも給気経路上に設けられた全てのダンパー71、72、73を開状態にする。すなわち、制御部300は、ダンパー71、72、73のうち閉状態にあるダンパーを開状態にするとともに、ダンパー71、72、73のうち開状態にあるダンパーをそのまま開状態に維持する。これにより、給気経路上に設けられた全てのダンパー71、72、73が開状態になる。これに伴い、還気経路上に設けられた全てのダンパー81、82、83も、ダンパー71、72、73とそれぞれ連動して開状態になる。ステップS3では、制御部300は、操作部310に設けられている表示部又は音声出力部を用いて、冷媒の漏洩が生じたことをユーザに報知するようにしてもよい。
 以上のように、この冷媒漏洩検知処理では、冷媒の漏洩が検知された場合(すなわち、冷媒検知装置35で検知される冷媒濃度が閾値以上である場合)、送風ファン34の運転が開始されるとともに、全てのダンパー71、72、73、81、82、83が開状態になる。これにより、負荷ユニット30内で漏洩した冷媒は、送風ファン34により送風される空気と共に、各給気経路を経由して全ての被空調空間A、B、Cに吹き出される。したがって、一部の被空調空間のみに調和空気が供給されている状態で冷媒の漏洩が生じたとしても、漏洩した冷媒を全ての被空調空間A、B、Cに拡散させることができるため、当該一部の被空調空間のみで冷媒濃度が高くなってしまうのを防止することができる。
 なお、大気圧下で空気よりも大きい密度を有する冷媒が用いられ、かつ、負荷ユニット30が被空調空間A、B、Cよりも上方に配置されている場合には、冷媒の漏洩が検知されたときに必ずしも送風ファン34を運転させなくてもよい。例えば、送風ファン34の停止中に負荷ユニット30内で冷媒が漏洩した場合、全てのダンパー71、72、73、81、82、83が開状態になることにより、漏洩した冷媒は負荷ユニット30から給気経路又は還気経路を経由して全ての被空調空間A、B、Cに流れ落ちる。したがって、漏洩した冷媒を全ての被空調空間A、B、Cに拡散させることができるため、一部の被空調空間のみで冷媒濃度が高くなってしまうのを防止することができる。大気圧下で空気よりも小さい密度を有する冷媒が用いられ、かつ、負荷ユニット30が被空調空間A、B、Cよりも下方に配置されている場合も同様である。
 ここで、冷媒として可燃性冷媒が用いられている場合には、被空調空間Aの容積をAa×Ha[m]とし、被空調空間Bの容積をAb×Hb[m]とし、被空調空間Cの容積をAc×Hc[m]とし、冷媒の燃焼下限濃度をLFL[kg/m]としたとき、冷媒の封入量M[kg]は、
 M<LFL×Σ(Ak×Hk)(k=a~c)
 の関係を満たすように設定される。すなわち、空気調和システムで空調される全ての被空調空間の総容積をV[m]とすると、冷媒の封入量M[kg]は、
 M<LFL×V
 の関係を満たすように設定される。例えば、熱源ユニット20及び負荷ユニット30は、上記の関係を満たすように機種選定される。また、熱源ユニット20及び負荷ユニット30の位置関係によっては、延長配管12a、12bの配管長が長くなり、冷媒の追加充填が必要になる場合がある。この場合、冷媒が追加充填された後の封入量Mが上記の関係を満たすことが望ましい。
 本実施の形態によれば、漏洩した冷媒を全ての被空調空間A、B、Cに拡散させることができるため、封入量Mが上記の関係を満たすように設定されることによって、被空調空間A、B、Cに可燃濃度域が生成されるのを防止することができる。
 図3は、本実施の形態の第1変形例に係る空気調和システムの概略構成を示す図である。図3に示すように、本変形例の空気調和システムは、外気負荷を処理する外調型の空気調和システムである。本変形例の空気調和システムは、還気経路のダンパー81、82、83が設けられていない点で図1に示した空気調和システムと異なっている。負荷ユニット30の吸込口41には、外気が導入されるようになっている。それ以外の構成は、図1に示した空気調和システムと同様である。本変形例によっても、図1に示した空気調和システムと同様の効果が得られる。
 図4は、本実施の形態の第2変形例に係る空気調和システムの概略構成を示す図である。図4に示すように、本変形例の空気調和システムは、送風ファン34によって外気を外気導入口44から導入して被空調空間A、B、Cに供給する給気経路と、送風ファン36によって被空調空間A、B、Cの空気を屋外に排気する排気経路と、を有している。負荷ユニット30は、給気経路に導入された外気と、排気経路を通る戻り空気と、の間で顕熱及び潜熱を交換する全熱交換器90を有している。全熱交換器90を通過した戻り空気は、排気口43を介して全て屋外に排出される。一方、全熱交換器90を通過した外気は、負荷側熱交換器11でさらに冷媒との熱交換を行った上で、被空調空間A、B、Cに供給される。なお、負荷ユニット30は、全熱交換器90に代えて顕熱交換器を備えていてもよい。
 本変形例の構成では、ダンパー71、72、73、81、82、83のうち、負荷側熱交換器11が設けられる給気経路上のダンパー71、72、73のみが、冷媒漏洩時に開状態になればよい。したがって、ダンパー71、72、73が制御部300と通信可能であればよい。なお、排気経路上のダンパー81、82、83も制御部300と通信可能であってもよい。ダンパー81、82、83が冷媒漏洩時に開状態になれば、負荷ユニット30内で漏洩した冷媒は、被空調空間A、B、Cで拡散するだけでなく、排気経路を介して屋外に排出される。このため、被空調空間A、B、Cの冷媒濃度をさらに低減させることができる。また、ダンパー81、82、83は、ダンパー71、72、73とそれぞれ連動して開閉するようになっていてもよい。
 図5は、本実施の形態の第3変形例に係る空気調和システムの概略構成を示す図である。図5に示すように、本変形例の空気調和システムは、1つの冷媒回路10に並列に接続された複数台の熱源ユニット20と、1台の負荷ユニット30と、を有している。本変形例によっても、図1に示した空気調和システムと同様の効果が得られる。
 図6は、本実施の形態の第4変形例に係る空気調和システムの概略構成を示す図である。図6に示すように、本変形例の空気調和システムは、冷媒回路10、負荷ユニット30及び熱源ユニット20の組を複数組有している。複数の負荷ユニット30は、給気経路及び還気経路に互いに並列に接続されている。本変形例によっても、図1に示した空気調和システムと同様の効果が得られる。
 以上説明したように、本実施の形態に係る空気調和システムは、冷媒を循環させる冷媒回路10と、冷媒回路10の負荷側熱交換器11を収容し、負荷側熱交換器11を通過した空気を供給する複数の給気経路をそれぞれ介して複数の被空調空間A、B、Cに接続される負荷ユニット30(熱交換ユニットの一例)と、冷媒の漏洩を検知する冷媒検知装置35と、複数の給気経路にそれぞれ設けられ、互いに独立して開閉される複数のダンパー71、72、73(開閉装置の一例)と、を備え、冷媒検知装置35が冷媒の漏洩を検知したとき、複数のダンパー71、72、73の全てが開状態となるものである。
 この構成によれば、漏洩した冷媒を全ての被空調空間A、B、Cに拡散させることができるため、一部の被空調空間で冷媒濃度が高くなってしまうのを防止することができる。
 また、本実施の形態に係る空気調和システムは、送風ファン34をさらに備え、冷媒検知装置35が冷媒の漏洩を検知したとき、送風ファン34が運転する。この構成によれば、漏洩した冷媒をより確実に被空調空間A、B、Cに拡散させることができる。
 また、本実施の形態に係る空気調和システムは、冷媒回路10を制御する制御部300をさらに備え、制御部300は、制御部300と冷媒検知装置35及び複数のダンパー71、72、73とが通信可能に接続されない限り、冷媒回路10の運転を許可しないように構成されている。この構成によれば、空気調和システムの安全性をより高めることができる。
 また、本実施の形態に係る空気調和システムにおいて、冷媒は可燃性冷媒であってもよい。
 また、本実施の形態に係る空気調和システムにおいて、冷媒回路10における冷媒の封入量をM[kg]とし、冷媒の燃焼下限濃度をLFL[kg/m]とし、冷媒検知装置35が冷媒の漏洩を検知したときに開状態となるダンパー(例えば、複数のダンパー71、72、73の全て)を介して負荷ユニット30に接続される被空調空間(例えば、複数の被空調空間A、B、Cの全て)の総容積をV[m]としたとき、封入量Mは、M<LFL×Vの関係を満たす。この構成によれば、被空調空間A、B、Cに可燃濃度域が生成されるのを防ぐことができる。
 また、本実施の形態に係る空気調和システムの冷媒量設定方法は、上記空気調和システムの冷媒量を設定する方法であって、冷媒回路10における冷媒の封入量をM[kg]とし、冷媒の燃焼下限濃度をLFL[kg/m]とし、冷媒検知装置35が冷媒の漏洩を検知したときに開状態となるダンパー(例えば、複数のダンパー71、72、73の全て)を介して負荷ユニット30に接続される被空調空間(例えば、複数の被空調空間A、B、Cの全て)の総容積をV[m]としたとき、封入量MがM<LFL×Vの関係を満たすように封入量Mを設定するものである。この構成によれば、被空調空間A、B、Cに可燃濃度域が生成されるのを防ぐことができる。
実施の形態2.
 本発明の実施の形態2に係る空気調和システム及びその冷媒量設定方法について説明する。本実施の形態に係る空気調和システムは、ダンパー71、72、73のうち冷媒の漏洩時に開状態となるダンパーを据付業者の操作によってあらかじめ設定する設定装置を有している。設定装置としては、例えば操作部310が用いられる。冷媒漏洩時に開状態となるダンパーには、給気経路上に設けられた全てのダンパー71、72、73のうち少なくとも1つのダンパーが選択される。冷媒漏洩時に開状態となるように設定されたダンパーの識別情報は、制御部300のROM(例えば、フラッシュメモリ)に記憶される。
 冷媒漏洩時に開状態となるダンパーは、当該ダンパーを介して負荷ユニット30と連通する被空調空間の容積を考慮して設定される。冷媒として可燃性冷媒が用いられている場合には、ダンパー71、72、73のうち冷媒漏洩時に開状態となるダンパーを介して負荷ユニット30と連通する被空調空間の総容積をV[m]とし、冷媒の燃焼下限濃度をLFL[kg/m]としたとき、冷媒の封入量M[m]は、
 M<LFL×V
 の関係を満たすように設定される。言い換えれば、ダンパー71、72、73のうち冷媒漏洩時に開状態となるダンパーは、上記の関係が満たされるように空気調和システムの据付け時などに設定される。
 図7は、本実施の形態に係る空気調和システムの制御部300で実行される冷媒漏洩検知処理の一例を示すフローチャートである。この冷媒漏洩検知処理は、空気調和システムの運転中のみ、又は、空気調和システムに電力が供給されている限り空気調和システムの運転中及び停止中を含む常時、所定の時間間隔で繰り返して実行される。ステップS11及びステップS12は、図2に示したステップS1及びステップS2と同様である。
 ステップS12で冷媒濃度が閾値以上であると判定した場合には、ステップS13の処理に移行する。ステップS13では、制御部300は、冷媒漏洩時に開状態となるように設定されたダンパーの識別情報をROMから取得する。
 ステップS14では、制御部300は、送風ファン34を運転させる。すなわち、制御部300は、送風ファン34が既に運転している場合にはそのまま運転を継続させ、送風ファン34が停止している場合には送風ファン34の運転を開始する。また、ステップS14では、制御部300は、冷媒漏洩時に開状態となるように設定されたダンパーを開状態にする。すなわち、制御部300は、冷媒漏洩時に開状態となるように設定されたダンパーのうち閉状態にあるダンパーを開状態にするとともに、冷媒漏洩時に開状態となるように設定されたダンパーのうち開状態にあるダンパーをそのまま開状態に維持する。これにより、ダンパー71、72、73のうち冷媒漏洩時に開状態となるように設定されたダンパーの全てが開状態になる。必要に応じて、ダンパー81、82、83のうちの一部又は全ても開状態になる。
 以上のように、この冷媒漏洩検知処理では、冷媒の漏洩が検知された場合、送風ファン34の運転が開始されるとともに、ダンパー71、72、73のうちあらかじめ設定されたダンパーが開状態となる。これにより、負荷ユニット30内で漏洩した冷媒は、送風ファン34により送風される空気と共に、開状態となったダンパーを経由して少なくとも1つの被空調空間に吹き出される。したがって、容積の小さい被空調空間のみに調和空気が供給されている状態で冷媒の漏洩が生じたとしても、漏洩した冷媒を、必要な総容積を有する少なくとも1つの被空調空間に拡散させることができるため、容積の小さい被空調空間のみで冷媒濃度が高くなってしまうのを防止することができる。
 以上説明したように、本実施の形態に係る空気調和システムは、冷媒を循環させる冷媒回路10と、冷媒回路10の負荷側熱交換器11を収容し、負荷側熱交換器11を通過した空気を供給する複数の給気経路をそれぞれ介して複数の被空調空間A、B、Cに接続される負荷ユニット30(熱交換ユニットの一例)と、冷媒の漏洩を検知する冷媒検知装置35と、複数の給気経路にそれぞれ設けられ、互いに独立して開閉される複数のダンパー71、72、73(開閉装置の一例)と、複数のダンパー71、72、73のうち、冷媒検知装置35が冷媒の漏洩を検知したときに開状態となるダンパーを設定する設定装置(例えば、操作部310)と、を備え、冷媒検知装置35が冷媒の漏洩を検知したとき、設定装置により設定されたダンパーが開状態となるものである。
 この構成によれば、漏洩した冷媒を、必要な総容積を有する少なくとも1つの被空調空間に拡散させることができるため、容積の小さい被空調空間で冷媒濃度が高くなってしまうのを防止することができる。
 また、本実施の形態に係る空気調和システムにおいて、冷媒回路10における冷媒の封入量をM[kg]とし、冷媒の燃焼下限濃度をLFL[kg/m]とし、冷媒検知装置35が冷媒の漏洩を検知したときに開状態となるダンパー(例えば、設定装置により設定されたダンパー)を介して負荷ユニット30に接続される被空調空間の総容積をV[m]としたとき、封入量Mは、M<LFL×Vの関係を満たす。この構成によれば、被空調空間に可燃濃度域が生成されるのを防ぐことができる。
 また、本実施の形態に係る空気調和システムの冷媒量設定方法は、上記空気調和システムの冷媒量を設定する方法であって、冷媒回路10における冷媒の封入量をM[kg]とし、冷媒の燃焼下限濃度をLFL[kg/m]とし、冷媒検知装置35が冷媒の漏洩を検知したときに開状態となるダンパー(例えば、設定装置により設定されたダンパー)を介して負荷ユニット30に接続される被空調空間の総容積をV[m]としたとき、封入量MがM<LFL×Vの関係を満たすように封入量Mを設定するものである。この構成によれば、被空調空間に可燃濃度域が生成されるのを防ぐことができる。
 本発明は、上記実施の形態に限らず種々の変形が可能である。
 例えば、上記実施の形態では、対人空調を目的とした空気調和システムを例に挙げたが、本発明の空気調和システムには、冷凍倉庫又は冷蔵倉庫などの対物空調を目的とした空気調和システムも含まれる。
 上記の各実施の形態や変形例は、互いに組み合わせて実施することが可能である。
 10 冷媒回路、11 負荷側熱交換器、12a、12b 延長配管、13a、13b 継手部、20 熱源ユニット、30 負荷ユニット、31 ファン室、32 熱交換器室、33 仕切板、34 送風ファン、35 冷媒検知装置、36 送風ファン、41 吸込口、42 吹出口、43 排気口、44 外気導入口、51、52、53、54、55 給気ダクト、61、62、63、64、65 還気ダクト、71、72、73、81、82、83 ダンパー、90 全熱交換器、300 制御部、310 操作部。

Claims (7)

  1.  冷媒を循環させる冷媒回路と、
     前記冷媒回路の負荷側熱交換器を収容し、前記負荷側熱交換器を通過した空気を供給する複数の給気経路をそれぞれ介して複数の被空調空間に接続される熱交換ユニットと、
     前記冷媒の漏洩を検知する冷媒検知装置と、
     前記複数の給気経路にそれぞれ設けられ、互いに独立して開閉される複数の開閉装置と、
     を備え、
     前記冷媒検知装置が前記冷媒の漏洩を検知したとき、前記複数の開閉装置の全てが開状態となる空気調和システム。
  2.  冷媒を循環させる冷媒回路と、
     前記冷媒回路の負荷側熱交換器を収容し、前記負荷側熱交換器を通過した空気を供給する複数の給気経路をそれぞれ介して複数の被空調空間に接続される熱交換ユニットと、
     前記冷媒の漏洩を検知する冷媒検知装置と、
     前記複数の給気経路にそれぞれ設けられ、互いに独立して開閉される複数の開閉装置と、
     前記複数の開閉装置のうち、前記冷媒検知装置が前記冷媒の漏洩を検知したときに開状態となる開閉装置を設定する設定装置と、
     を備え、
     前記冷媒検知装置が前記冷媒の漏洩を検知したとき、前記設定装置により設定された開閉装置が開状態となる空気調和システム。
  3.  送風ファンをさらに備え、
     前記冷媒検知装置が前記冷媒の漏洩を検知したとき、前記送風ファンが運転する請求項1又は請求項2に記載の空気調和システム。
  4.  前記冷媒回路を制御する制御部をさらに備え、
     前記制御部は、当該制御部と前記冷媒検知装置及び前記複数の開閉装置とが通信可能に接続されない限り、前記冷媒回路の運転を許可しないように構成されている請求項1~請求項3のいずれか一項に記載の空気調和システム。
  5.  前記冷媒は可燃性冷媒である請求項1~請求項4のいずれか一項に記載の空気調和システム。
  6.  前記冷媒回路における前記冷媒の封入量をM[kg]とし、前記冷媒の燃焼下限濃度をLFL[kg/m]とし、前記冷媒検知装置が前記冷媒の漏洩を検知したときに開状態となる開閉装置を介して前記熱交換ユニットに接続される被空調空間の総容積をV[m]としたとき、前記封入量Mは、
     M<LFL×V
     の関係を満たす請求項1~請求項5のいずれか一項に記載の空気調和システム。
  7.  請求項1~請求項5のいずれか一項に記載の空気調和システムの冷媒量を設定する方法であって、
     前記冷媒回路における前記冷媒の封入量をM[kg]とし、前記冷媒の燃焼下限濃度をLFL[kg/m]とし、前記冷媒検知装置が前記冷媒の漏洩を検知したときに開状態となる開閉装置を介して前記熱交換ユニットに接続される被空調空間の総容積をV[m]としたとき、前記封入量Mが
     M<LFL×V
     の関係を満たすように前記封入量Mを設定する空気調和システムの冷媒量設定方法。
PCT/JP2017/017516 2017-05-09 2017-05-09 空気調和システム及びその冷媒量設定方法 WO2018207251A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780090313.2A CN110603412A (zh) 2017-05-09 2017-05-09 空调系统及其制冷剂量设定方法
PCT/JP2017/017516 WO2018207251A1 (ja) 2017-05-09 2017-05-09 空気調和システム及びその冷媒量設定方法
US16/484,545 US11067321B2 (en) 2017-05-09 2017-05-09 Air-conditioning system and refrigerant-amount setting method for the same
JP2019516765A JP6701444B2 (ja) 2017-05-09 2017-05-09 空気調和システム及びその冷媒量設定方法
AU2017413868A AU2017413868B2 (en) 2017-05-09 2017-05-09 Air-conditioning system and refrigerant-amount setting method for the same
EP17909643.3A EP3623716A4 (en) 2017-05-09 2017-05-09 AIR CONDITIONING SYSTEM AND METHOD FOR ADJUSTING QUANTITY OF REFRIGERATED FLUID

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017516 WO2018207251A1 (ja) 2017-05-09 2017-05-09 空気調和システム及びその冷媒量設定方法

Publications (1)

Publication Number Publication Date
WO2018207251A1 true WO2018207251A1 (ja) 2018-11-15

Family

ID=64105279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017516 WO2018207251A1 (ja) 2017-05-09 2017-05-09 空気調和システム及びその冷媒量設定方法

Country Status (6)

Country Link
US (1) US11067321B2 (ja)
EP (1) EP3623716A4 (ja)
JP (1) JP6701444B2 (ja)
CN (1) CN110603412A (ja)
AU (1) AU2017413868B2 (ja)
WO (1) WO2018207251A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020178956A1 (ja) * 2019-03-04 2020-09-10 三菱電機株式会社 空気調和システム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11879650B2 (en) * 2018-08-06 2024-01-23 Daikin Industries, Ltd. Air conditioning system
US11231198B2 (en) 2019-09-05 2022-01-25 Trane International Inc. Systems and methods for refrigerant leak detection in a climate control system
US11835244B2 (en) * 2019-09-13 2023-12-05 Carrier Corporation Evaporator with one or more leak mitigation dampers
EP3875861B1 (en) * 2020-03-06 2023-05-17 Daikin Industries, Ltd. Air-conditioner, air-conditioning system, and method for monitoring air-conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688638A (ja) * 1992-04-13 1994-03-29 Hitachi Ltd 空気調和装置
US20050155365A1 (en) * 2004-01-20 2005-07-21 Shah Rajendra K. Zone damper fault detection in an HVAC system
JP4599699B2 (ja) 2000-09-26 2010-12-15 ダイキン工業株式会社 空気調和機
WO2016080050A1 (ja) * 2014-11-18 2016-05-26 三菱電機株式会社 空気調和装置
US20160363358A1 (en) * 2015-06-09 2016-12-15 Carrier Corporation System and method of diluting a leaked refrigerant in an hvac/r system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291407B2 (ja) * 1995-01-31 2002-06-10 三洋電機株式会社 冷房装置
JP3066828B1 (ja) * 1999-02-17 2000-07-17 株式会社前川製作所 アンモニア冷凍装置の漏洩アンモニア除外装置
CN1161570C (zh) 2000-09-26 2004-08-11 大金工业株式会社 空调机
CN102066851B (zh) * 2008-06-13 2013-03-27 三菱电机株式会社 冷冻循环装置及其控制方法
US20100082162A1 (en) * 2008-09-29 2010-04-01 Actron Air Pty Limited Air conditioning system and method of control
US20130074690A1 (en) * 2010-06-02 2013-03-28 Kazutaka Tomimatsu Method for operation of dust collection device, and dust collection device
CN103958978B (zh) * 2011-11-30 2016-08-31 三菱电机株式会社 空调系统施工时的利用侧换热器的热介质选定方法
JP5804027B2 (ja) * 2013-11-14 2015-11-04 ダイキン工業株式会社 空気調和機の室内機
US10488065B2 (en) * 2014-12-17 2019-11-26 Carrier Corporation Leak detection unit for refrigerant system
JP6466219B2 (ja) * 2015-03-20 2019-02-06 日立ジョンソンコントロールズ空調株式会社 空気調和機の室内機
JP6468347B2 (ja) * 2015-03-31 2019-02-13 ダイキン工業株式会社 空気調和装置
JP6135705B2 (ja) 2015-04-06 2017-05-31 ダイキン工業株式会社 利用側空調装置
US10088178B2 (en) * 2015-05-05 2018-10-02 MJC, Inc. Multi-zone variable refrigerant flow heating/cooling unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0688638A (ja) * 1992-04-13 1994-03-29 Hitachi Ltd 空気調和装置
JP4599699B2 (ja) 2000-09-26 2010-12-15 ダイキン工業株式会社 空気調和機
US20050155365A1 (en) * 2004-01-20 2005-07-21 Shah Rajendra K. Zone damper fault detection in an HVAC system
WO2016080050A1 (ja) * 2014-11-18 2016-05-26 三菱電機株式会社 空気調和装置
US20160363358A1 (en) * 2015-06-09 2016-12-15 Carrier Corporation System and method of diluting a leaked refrigerant in an hvac/r system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3623716A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020178956A1 (ja) * 2019-03-04 2020-09-10 三菱電機株式会社 空気調和システム
JPWO2020178956A1 (ja) * 2019-03-04 2021-10-07 三菱電機株式会社 空気調和システム
JP7076626B2 (ja) 2019-03-04 2022-05-27 三菱電機株式会社 空気調和システム
AU2019432740B2 (en) * 2019-03-04 2022-07-07 Mitsubishi Electric Corporation Air conditioning system
US11739972B2 (en) 2019-03-04 2023-08-29 Mitsubishi Electric Corporation Air-conditioning system

Also Published As

Publication number Publication date
US20200056820A1 (en) 2020-02-20
AU2017413868A1 (en) 2019-09-12
AU2017413868B2 (en) 2020-11-26
JP6701444B2 (ja) 2020-05-27
EP3623716A1 (en) 2020-03-18
US11067321B2 (en) 2021-07-20
JPWO2018207251A1 (ja) 2019-07-25
EP3623716A4 (en) 2020-05-20
CN110603412A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
JP6701444B2 (ja) 空気調和システム及びその冷媒量設定方法
US10488072B2 (en) Air conditioning system with leak protection control
JP6528446B2 (ja) 空気調和装置
JP6572622B2 (ja) 空調換気システム
WO2017154161A1 (ja) 冷凍サイクル装置
EP3792565B1 (en) Air conditioning system
WO2018220810A1 (ja) 空気調和装置
JP2016211762A (ja) 空調換気システム
US11692725B2 (en) Air-conditioning system with refrigerant leak detection and countermeasures
WO2017187483A1 (ja) 室内機および空気調和装置
US9279607B2 (en) Method of part replacement for refrigeration cycle apparatus
JP6851500B2 (ja) ダクト式空気調和機
JP2019174110A (ja) 空調換気システム
KR20140077253A (ko) 해양구조물의 배기 시스템 및 그 배기 시스템을 이용한 배기 방법
JP2020183829A (ja) 空調システム及び補助ファン
JPH0688638A (ja) 空気調和装置
JP6448658B2 (ja) 空気調和システム
JP2001012763A (ja) 空調換気システム
JP2021085642A (ja) 空気調和装置
US20220349601A1 (en) Air-conditioning system
JPH04257636A (ja) 空気調和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019516765

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017413868

Country of ref document: AU

Date of ref document: 20170509

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017909643

Country of ref document: EP

Effective date: 20191209