WO2018203511A1 - エンジンの着火および燃焼促進技術 - Google Patents

エンジンの着火および燃焼促進技術 Download PDF

Info

Publication number
WO2018203511A1
WO2018203511A1 PCT/JP2018/017066 JP2018017066W WO2018203511A1 WO 2018203511 A1 WO2018203511 A1 WO 2018203511A1 JP 2018017066 W JP2018017066 W JP 2018017066W WO 2018203511 A1 WO2018203511 A1 WO 2018203511A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
electrode
ignition
plasma
fuel mixture
Prior art date
Application number
PCT/JP2018/017066
Other languages
English (en)
French (fr)
Inventor
高橋 栄一
武彦 瀬川
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Publication of WO2018203511A1 publication Critical patent/WO2018203511A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/01Electric spark ignition installations without subsequent energy storage, i.e. energy supplied by an electrical oscillator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B11/00Engines characterised by both fuel-air mixture compression and air compression, or characterised by both positive ignition and compression ignition, e.g. in different cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/04Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by electric means, ionisation, polarisation or magnetism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition

Definitions

  • the present invention relates to a technology for accelerating engine ignition and accelerating combustion, and more particularly to an engine using dielectric barrier discharge and an ignition method thereof.
  • a premixed compression ignition engine in which an air-fuel mixture subjected to plasma processing in an intake pipe is introduced into a combustion chamber, and the air-fuel mixture is adiabatically compressed by a compression stroke of a piston to raise the temperature and ignite. ).
  • a recirculation exhaust introduction part is provided downstream of the swirl control valve provided in the intake pipe, and the recirculated exhaust gas is distributed to a portion having a high mixture concentration in the center of the combustion chamber and ignited by a spark plug to improve combustibility.
  • a technique for ensuring is known (for example, see Patent Document 2).
  • the diluted air-fuel mixture has problems that it is difficult to ignite with the spark plug and becomes unstable, the engine cannot be operated, and that the ignition timing needs to be controlled with high accuracy.
  • the present invention solves the above-described problems, and provides a new and useful engine that promotes ignition and combustion and an engine ignition method.
  • a plasma generator that is provided on a cylinder inner wall and generates non-thermal plasma in a combustion chamber to reform an air-fuel mixture containing air and fuel
  • the plasma generator Includes a first electrode exposed to the combustion chamber and a second electrode that is opposed to the first electrode and is covered with a dielectric material, and is embedded in the cylinder inner wall, ,
  • An igniter provided on the inner wall of the cylinder for igniting the reformed air-fuel mixture by discharge;
  • An engine is provided.
  • the air-fuel mixture is reformed by the non-thermal plasma generated by the plasma generation unit in the combustion chamber, and the reformed air-fuel mixture is ignited by the ignition unit. Since the plasma generating part is embedded in the cylinder inner wall and does not protrude toward the fuel chamber side, the turbulence of the air-fuel mixture caused thereby is reduced. This facilitates ignition of the air-fuel mixture modified by non-thermal plasma, enables stable ignition, and further increases the combustion rate.
  • generating non-thermal plasma in the combustion chamber wherein the non-thermal plasma is brought into contact with an air-fuel mixture containing air and fuel, and Igniting the air-fuel mixture in contact with the non-thermal plasma by discharge;
  • the non-thermal plasma has a first electrode provided on an inner wall of the cylinder and exposed to the combustion chamber, and a second electrode opposed to the first electrode and covered with a dielectric material, and the inner wall of the cylinder.
  • the air-fuel mixture in contact with the non-thermal plasma SP is ignited by the discharge of the ignition plug, so that ignition is reliably performed and the ignition timing is stabilized. Furthermore, the burning rate is increased. Since the plasma generating part is embedded in the cylinder inner wall, non-thermal plasma is generated on the surface of the dielectric material covering the second electrode, and the plasma generating part does not protrude toward the fuel chamber, so that the air-fuel mixture flows thereby. To reduce disturbances. As a result, the non-thermal plasma is brought into contact with the air-fuel mixture and reformed, so that it is considered that ignition of the reformed air-fuel mixture becomes even more reliable.
  • FIG. 1 It is a figure showing the schematic structure of the engine concerning one embodiment of the present invention. It is a figure which shows the plasma generation part which faces the (a) cross section and (b) combustion chamber of the dielectric material barrier discharge plug of the engine which concerns on one Embodiment of this invention. It is a figure which shows schematic structure of the other engine which concerns on one Embodiment of this invention. It is a figure which shows schematic structure of the cylinder of the engine which concerns on other embodiment of this invention. It is a figure which shows schematic structure of the cylinder of the engine which concerns on other embodiment of this invention. It is a figure which shows schematic structure of the modification of the cylinder of the engine which concerns on other embodiment of this invention.
  • FIG. 1 is a diagram showing a schematic configuration of an engine according to an embodiment of the present invention.
  • an engine according to an embodiment of the present invention is referred to as an intake port 20 and a dielectric barrier discharge plug 30 (hereinafter referred to as a “DBD plug”) in a cylinder head portion 11. ), An ignition plug 50, an ignition power source 60, a high frequency power source 61, and a control unit 62.
  • the cylinder head portion 11 is provided with an exhaust system such as at least one exhaust port and an exhaust valve, illustration thereof is omitted.
  • the intake port 20 is provided on the inner wall 11a of the cylinder head portion 11, and an intake pipe 21 is connected thereto.
  • the intake pipe 21 is connected to a carburetor (not shown) that vaporizes the fuel and mixes it with air to form an air-fuel mixture.
  • the air-fuel mixture is supplied from the intake port 20 to the combustion chamber 12 through the intake pipe 21 by opening the intake valve 22 and lowering the piston 13.
  • the air-fuel mixture may be formed using a port injection method in which fuel is injected into the intake pipe 21 instead of the carburetor.
  • the ignition plug 50 is provided on the inner wall 11a of the cylinder head portion 11 so that an ignition portion 51 having a center electrode 52 and a ground electrode 53 is exposed to the combustion chamber 12.
  • the center electrode 52 and the ground electrode 53 are made of a conductive material having excellent heat resistance.
  • the center electrode 52 is electrically connected to the ignition power source 60, and the ground electrode 53 is grounded.
  • a voltage pulse is supplied from the ignition power supply 60.
  • an ignition spark is generated between the center electrode 52 and the ground electrode 53.
  • the ignition timing is controlled by a control unit 62 connected to the ignition power source 60 so as to be capable of signal communication.
  • the control unit 62 acquires information on the crank angle from the crank angle detection unit 63 of the crank 14 that is linked to the piston 13 and controls the ignition timing.
  • the DBD plug 30 is provided on the cylinder head portion 11, and the plasma generation portion 31 is provided on the inner wall 11 a of the cylinder head portion 11.
  • the DBD plug 30 is supplied with a high-frequency or pulsed high-voltage signal from a high-frequency power supply 61, and the plasma generator 31 generates non-thermal plasma in the combustion chamber 12.
  • the plasma generating unit 31 may be provided on the side wall 10 a of the cylinder 10 at a position that does not interfere with the piston 13.
  • FIG. 2 is a diagram showing (a) a cross section and (b) a plasma generation unit facing a combustion chamber of a DBD plug of an engine according to an embodiment of the present invention.
  • FIG. 3B is a view of the plasma generator 31 provided on the inner wall 11 a of the cylinder head portion 11 from the inside of the combustion chamber 12.
  • the DBD plug 30 has a shape of a rotating body with respect to the axis X which is a virtual line.
  • the DBD plug 30 includes a support fitting 32, a center electrode 33, and a dielectric member 34.
  • the support fitting 32 is made of a conductive material, and for example, stainless steel or carbon steel can be used, and a material having high heat resistance similar to that of the center electrode 52 of the spark plug 50 can be used.
  • the support fitting 32 has an annular electrode 32 a on the tip surface exposed to the combustion chamber 12.
  • the annular electrode 32 a serves as the first electrode of the plasma generator 31.
  • the support fitting 32 is electrically connected to the cylinder head portion 11 and grounded via the engine block.
  • the center electrode 33 is made of a conductive material extending on the axis, and has a disc-shaped electrode 33a at the tip thereof.
  • the disc-shaped electrode 33a serves as the second electrode of the plasma generator 31.
  • a high-frequency power source 61 is connected to the rear end of the center electrode 33, and a high-frequency or pulsed high voltage signal is applied to the disc-shaped electrode 33 a via the center electrode 33.
  • the dielectric member 34 is formed so that the outer peripheral surface thereof is held by the support fitting 32 and covers the center electrode 33, and so as to cover the disk-shaped member 33 a so that the disk-shaped member 33 a is not exposed to the combustion chamber 12.
  • the thickness from the surface of the disk-shaped member 33a to the surface of the dielectric member 34 is, for example, several hundred ⁇ m to several mm.
  • the dielectric member 34 is made of a dielectric material, and a plurality of dielectric materials may be combined.
  • the dielectric member 34 is preferably made of a material having a high melting point, such as alumina ceramic or sapphire, for the portion covering the disc-shaped electrode 33a.
  • the plasma generating unit 31 is embedded in the inner wall 11 a of the cylinder head unit 11 and does not protrude into the combustion chamber 12. Thereby, the disturbance of the flow of the air-fuel mixture due to the plasma generating unit 31 can be reduced. Furthermore, it is preferable that the plasma generation unit 31 is flush mounted on the inner wall 11a of the cylinder head unit 11 without a step. Thereby, it is possible to efficiently contact non-thermal plasma with the air-fuel mixture while further reducing the turbulence of the air-fuel mixture caused by the plasma generator 31.
  • the dielectric member 34 is filled inside the annular electrode 32a, and the disc-like electrode 33a is provided inside the annular electrode 32a.
  • the disc-shaped electrode 33a preferably has an outer diameter that is the same as or smaller than the inner diameter of the annular electrode 32a. Thereby, non-thermal plasma can be generated efficiently.
  • the plasma generator 31 generates non-thermal plasma SP on the surface of the dielectric member 34 close to the outer peripheral portion of the disc-shaped electrode 33a from the inner peripheral portion of the annular electrode 32a.
  • the ring-shaped electrode 32a is formed in an annular shape along the inner periphery.
  • control unit 62 supplies a high-frequency or pulsed high-voltage voltage from the high-frequency power supply 61 to the air-fuel mixture introduced from the intake port 20 from the intake stroke to the compression stroke, thereby causing the plasma generating unit 31. Then, non-thermal plasma is generated, and the mixture is reformed by bringing the mixture into contact with the non-thermal plasma.
  • the control unit 62 further performs control so that the air-fuel mixture reformed by the ignition unit 51 is ignited during generation of non-thermal plasma.
  • the control unit 62 may perform control so that the air-fuel mixture reformed by the ignition unit 51 is ignited after the generation of non-thermal plasma is stopped.
  • the air-fuel mixture modified by non-thermal plasma includes radicals, partial oxides, and ozone as components of the air-fuel mixture, and ozone is considered to further change into radicals.
  • ozone is considered to further change into radicals.
  • the air-fuel mixture is reformed by the nonthermal plasma generated by the plasma generator 31 in the combustion chamber 12, and the reformed air-fuel mixture is ignited by the ignition unit 51.
  • the annular electrode 32 a (first electrode) and the disc-shaped electrode 33 a (second electrode) are embedded in the inner wall 11 a of the head cylinder unit 11. Reduce the turbulence of the flow. This facilitates ignition of the air-fuel mixture modified by non-thermal plasma, enables stable ignition, and further increases the combustion rate.
  • FIG. 3 is a diagram showing a schematic configuration of another engine according to an embodiment of the present invention.
  • the engine 150 introduces air from the intake port 20, provides a fuel injection valve on the side wall of the cylinder, and injects fuel into the fuel chamber to form an air-fuel mixture (direct fuel injection method).
  • the timing of fuel injection is controlled by the control unit.
  • the engine 150 has the same configuration and effects as those of the engine 100 shown in FIG. In the following, for convenience of explanation, a case where the air-fuel mixture is introduced into the combustion chamber will be described as an example. However, it should be understood that this does not exclude the direct fuel injection embodiment.
  • FIG. 4 is a diagram illustrating a schematic configuration of a cylinder of an engine according to another embodiment of the present invention, and is a diagram illustrating an arrangement of an intake port, a plasma generation unit, and an ignition unit.
  • 4A is a perspective view of the cylinder
  • FIG. 4B is a view of the cylinder head portion as viewed from the combustion chamber side.
  • the air-fuel mixture introduced from the intake port 20 flows in the circumferential CF of the cylinder 110, that is, the swirl flow SW in the combustion chamber by a known structure or method. Is formed. It is considered that the direction in which the swirl flow SW flows due to its inertia during the intake stroke to the compression stroke is maintained.
  • the DBD plug 30 and the spark plug 50 are disposed in the circumferential direction CF of the cylinder head portion 111 with respect to the intake port 20.
  • the plasma generation unit 31 and the ignition unit 51 are arranged in the circumferential direction CF on the inner wall 111a of the cylinder head 111 with respect to the intake port 20, that is, the intake port 20, the plasma generation unit 31, and the ignition unit 51 are mutually connected to the cylinder. Arranged on the inner wall 111a of the head portion 111 in the circumferential direction CF.
  • the swirl flow SW of the air-fuel mixture flows clockwise when the inner wall 111a of the cylinder head 111 is viewed from the combustion chamber 12 side.
  • the plasma generation unit 31 and the ignition unit 51 are arranged in this order clockwise from the position of the intake port 20. That is, it is preferable that the plasma generation unit 31 is disposed upstream of the swirl flow SW with respect to the ignition unit 51.
  • the ignition unit 51 can ignite the air-fuel mixture modified by the non-thermal plasma generated by the plasma generation unit 31 in a short time. Items not described here are the same as those described with reference to FIGS.
  • the effect can be obtained if at least one intake port 20 has the configuration of this embodiment.
  • the two intake ports are arranged in the circumferential direction CF with each other. It is preferable that the portion 31 and the ignition portion 51 are arranged on the inner wall 111a of the cylinder head portion 111 in the circumferential direction CF.
  • FIG. 5 is a diagram showing a schematic configuration of a cylinder of another engine according to an embodiment of the present invention, and is a diagram showing an arrangement of an intake port, a plasma generation unit, and an ignition unit.
  • Fig.5 (a) is a perspective view of a cylinder
  • FIG.5 (b) is the figure which looked at the cylinder head part from the combustion chamber side.
  • the air-fuel mixture introduced from the intake port 20 flows in the radial direction RD1 of the cylinder 210, that is, the tumble flow TB1 in the combustion chamber by a known structure or technique. Is formed.
  • the tumble flow TB1 is formed around an axis perpendicular to the axial direction of the cylinder 210. It is considered that the flow direction is maintained by the inertia from the intake stroke to the compression stroke.
  • the DBD plug 30 and the spark plug 50 are disposed in the radial direction RD1 of the cylinder head portion 11 with respect to the intake port 20.
  • the plasma generation unit 31 and the ignition unit 51 are arranged in the radial direction RD1 of the cylinder 210 on the inner wall 211a of the cylinder head unit 211 with respect to the intake port 20. That is, the intake port 20, the plasma generation unit 31, and the ignition unit 51 are arranged on the inner wall 211 a of the cylinder head unit 211 in the radial direction RD ⁇ b> 1.
  • the tumble flow TB1 of the air-fuel mixture flows from the lower right to the upper left in the radial direction RD1 when the inner wall 211a of the cylinder head portion 211 is viewed from the combustion chamber 12 side.
  • the plasma generation unit 31 and the ignition unit 51 are arranged in this order from diagonally downward to diagonally upward in the radial direction RD1 along the tumble flow TB1 from the position of the intake port. That is, it is preferable that the plasma generation unit 31 is disposed upstream of the tumble flow TB1 with respect to the ignition unit 51.
  • the ignition unit 51 can ignite the air-fuel mixture modified by the non-thermal plasma generated by the plasma generation unit 31 in a short time. Items not described here are the same as those described with reference to FIGS.
  • the effect can be obtained if at least one intake port 20 has the configuration of this embodiment.
  • the two intake ports are arranged in the radial direction RD1, that is, the two intake ports and It is preferable that the plasma generation unit 31 and the ignition unit 51 are arranged in the radial direction RD1 on the inner wall 211a of the cylinder head unit 211.
  • the two intake ports are adjacent to each other in a direction perpendicular to the radial direction RD1. May be arranged.
  • the two intake ports form a substantially parallel radial tumble flow
  • the two intake ports, the plasma generation unit 31 and the ignition unit 51 are arranged in the radial direction on the inner wall 211a of the cylinder head unit 211.
  • FIG. 6 is a diagram showing a schematic configuration of a modified example of the cylinder of the engine according to another embodiment of the present invention, and is a diagram showing an arrangement of an intake port, a plasma generation unit, and an ignition unit.
  • FIG. 6A is a perspective view of the cylinder
  • FIG. 6B is a view of the cylinder head portion viewed from the combustion chamber side.
  • the cylinder shown in FIG. 6 is a modification of the case of FIG. 5, and the direction of the tumble flow is reversed.
  • the air-fuel mixture introduced from the intake port 20 flows in the radial direction RD2 of the cylinder, that is, the tumble flow TB2 in the combustion chamber 12 by a known structure or method. Is formed.
  • the tumble flow TB2 has a flow direction opposite to that in the case of FIG.
  • the plasma generator 31 of the DBD plug 30 is provided on the side wall 310a of the cylinder 310 closer to the cylinder head 311 than the top dead center of the piston 13.
  • the ignition part 51 of the ignition plug 50 is provided on the inner wall 311 a of the cylinder head part 311.
  • the plasma generation unit 31 and the ignition unit 51 are disposed in the radial direction RD2 of the cylinder in the combustion chamber with respect to the intake port 20.
  • the tumble flow TB2 of the air-fuel mixture flows from the upper left to the lower right in the radial direction RD2 when the inner wall 311a of the cylinder head portion 311 is viewed from the combustion chamber 12 side.
  • the plasma generation unit 31 and the ignition unit 51 are arranged in this order along the direction of the tumble flow TB2 in the radial direction RD2 from the position of the intake port 20. . That is, it is preferable that the plasma generation unit 31 is disposed upstream of the tumble flow TB2 with respect to the ignition unit 51.
  • the ignition unit 51 can ignite the air-fuel mixture modified by the non-thermal plasma generated by the plasma generation unit 31 in a short time. Items not described here are the same as those described with reference to FIGS.
  • the effect is obtained if at least one intake port 20 has the configuration of this embodiment.
  • the two intake ports are arranged in the radial direction RD2 with each other. It is preferable that the part 31 and the ignition part 51 are mutually arranged in the radial direction RD2 of the cylinder in the combustion chamber.
  • the two intake ports are adjacent to each other in a direction perpendicular to the radial direction RD2. May be arranged.
  • the two intake ports form a substantially parallel radial tumble flow
  • the two intake ports, the plasma generation unit 31 and the ignition unit 51 are arranged in the radial direction RD2 of the cylinder in the combustion chamber.
  • FIG. 7 is a view showing (a) a cross section of another dielectric barrier discharge plug of an engine according to an embodiment of the present invention and (b) a plasma generation unit facing the combustion chamber.
  • the DBD plug 130 is provided so as to surround the spark plug 50.
  • the plasma generator 131 of the DBD plug 130 includes a first annular electrode 132 exposed to the combustion chamber, a second annular electrode 133, and a dielectric member 134 that covers the second annular electrode 133.
  • the first annular electrode 132 can be made of the same conductive material as that of the support fitting 32 (or the annular electrode 32a) shown in FIG.
  • the first annular electrode 132 may have an annular shape centered on the central axis X of the spark plug 50.
  • the first annular electrode 132 serves as the first electrode of the plasma generator 131 and is electrically grounded.
  • the first annular electrode 132 may be provided so as to be electrically connected to the cylinder head portion 11, and in this case, the first annular electrode 132 is grounded via the engine block.
  • the second annular electrode 133 is made of a conductive material.
  • the second annular electrode 133 is a second electrode of the plasma generator 131 and is electrically connected to a high-frequency power source (connection line is not shown), and a high-frequency or pulsed high voltage signal is applied to the second annular electrode 133. Is done.
  • the second annular electrode 133 is provided behind the dielectric member 134 and inside the first annular electrode 133.
  • the second annular electrode 133 preferably has an outer diameter that is the same as or smaller than the inner diameter of the first annular electrode 132. Thereby, non-thermal plasma is efficiently formed on the surface of the dielectric member 134 that covers the second annular electrode 133 from the surface of the inner peripheral portion of the first annular electrode 132.
  • the dielectric member 134 is formed so as to cover the second annular electrode 133.
  • the same material as that of the dielectric member shown in FIG. 3 can be used.
  • the plasma generating part 131 is embedded in the inner wall 11a of the cylinder head part 11, and non-thermal plasma SP is generated on the surface of the inner wall 11a.
  • the plasma generation part 131 protrudes to the combustion chamber 12 side, it causes a disturbance in the flow of the air-fuel mixture, but this disturbance can be reduced by being embedded in the inner wall 11a of the cylinder head part 11.
  • the air-fuel mixture modified by the non-thermal plasma SP can be smoothly supplied to the ignition part 51 including the tip of the center electrode 52 of the ignition plug 50 and the ground electrode 53.
  • the plasma generating part 131 is flush mounted on the inner wall 11a of the cylinder head part 11 without a step. As a result, the non-thermal plasma SP can be brought into contact with the air-fuel mixture and reformed efficiently while further reducing the turbulence of the air-fuel mixture.
  • the spark plug 50 includes a center electrode 52, a ground electrode 53, and an insulating member 54 that electrically insulates them, and the tip portion of the center electrode 52 and the ground electrode 53 constitute the ignition unit 51.
  • a spark plug having the structure may be used.
  • each of the first annular electrode 132 and the second annular electrode 133 includes a plurality of electrode pieces arranged in an annular shape, and the electrode piece of the first annular electrode 132 and the electrode of the second annular electrode 133 You may be comprised so that a piece may oppose.
  • FIG. 8 is a flowchart of an engine ignition method according to an embodiment of the present invention.
  • an engine ignition method according to an embodiment of the present invention will be described with reference to FIG.
  • an air-fuel mixture is introduced from the intake port 20 into the combustion chamber 12 (S100).
  • air is introduced into the fuel chamber from the intake port instead of S100 (S102), and fuel is injected into the fuel chamber by the fuel injection valve 160 to form an air-fuel mixture.
  • the air-fuel mixture may form a swirl flow (SW) or a tumble flow (TB1 or TB2) according to the shape of the intake port 20, a known configuration, or a known method.
  • non-thermal plasma SP is generated in the combustion chamber 12 of the cylinder 10, and the non-thermal plasma SP is brought into contact with the introduced air-fuel mixture (S110).
  • non-thermal plasma SP is generated on the inner wall 11 a of the head cylinder portion 11 by applying a high-frequency or pulsed high voltage signal from the high-frequency power source 61 to the plasma generating portion 31 of the DBD plug 30.
  • the plasma generating unit 31 includes an annular electrode 32a exposed on the inner wall 11a of the head cylinder unit 11, and a disk-shaped electrode 33a facing the annular electrode 32a and covered with a dielectric member 34.
  • the head cylinder unit 11 Embedded in the inner wall 11a.
  • Non-thermal plasma SP is generated on the surface of the dielectric member 34 from the inner peripheral portion of the annular electrode 32a toward the disc-shaped electrode 33a, and the non-thermal plasma SP contacts the air-fuel mixture. Furthermore, since the air-fuel mixture flows along the surface of the cylinder inner wall, it is considered that the reformed air-fuel mixture easily comes into contact with the ignition unit 51 and ignition is ensured.
  • the air-fuel mixture in contact with the non-thermal plasma SP is ignited by discharge (S120). Specifically, the timing for igniting the air-fuel mixture by discharge is performed while the non-thermal plasma SP is being generated.
  • the spread of the air-fuel mixture modified by the non-thermal plasma SP can be controlled by the start timing of the generation of the non-thermal plasma SP in S110. By igniting before it diffuses excessively, as will be described later, the combustion speed is also increased.
  • the generation of the non-thermal plasma SP may be stopped (S115), and then ignited by discharge (S120). It is presumed that the life of the reformed air-fuel mixture is longer than 40 ms by experiments to be described later, so that ignition is reliably performed even after the generation of the non-thermal plasma SP is stopped.
  • non-thermal plasma SP may be generated upstream of each, and ignition may be performed by the ignition unit 51 downstream thereof.
  • the swirl flow SW or tumble flow TB of the air-fuel mixture reformed by the non-thermal plasma can be reliably ignited in a short time before it is excessively diffused.
  • the air-fuel mixture in contact with the non-thermal plasma SP is ignited by the discharge of the spark plug, so that the ignition is surely performed, the ignition timing is stabilized, and the combustion speed is increased.
  • the plasma generating part 31 is embedded in the inner wall 11a of the head cylinder part 11, a non-thermal plasma SP is generated on the surface of the dielectric member 34, and is reformed because it is in contact with and reformed without disturbing the air-fuel mixture. It is considered that ignition of the air-fuel mixture becomes more reliable.
  • FIG. 9 is a diagram showing a schematic configuration of the rapid compression / expansion device used in the effect confirmation experiment of the embodiment of the present invention.
  • a spark plug 50 and a DBD plug 130 are provided in a cylinder 410.
  • the spark plug 50 and the DBD plug 130 have the same configuration as that shown in FIG. 7, and the first annular electrode 132 and the second annular ring of the plasma generator 131 of the DBD plug 130 are disposed around the spark plug 50.
  • An electrode 132 is disposed.
  • the rapid compression / expansion device 400 is provided with a porous flow forming plate 416 in which a large number of holes are formed in the combustion chamber 412 in order to form a flow of the air-fuel mixture.
  • the air-fuel mixture passes through the holes of the porous flow forming plate 416, so that a desired flow of the air-fuel mixture is formed.
  • the rapid compression / expansion device 400 is provided with a quartz window 417 in the cylinder head portion so that the spread of the flame during combustion can be observed.
  • FIG. 10 is a diagram showing the timing of plasma generation and ignition by the spark plug in the effect confirmation experiment.
  • Example 1 Referring to FIG. 10A, in Example 1, prior to ignition by the spark plug, non-thermal plasma was generated by the DBD plug for a time period of 13.4 milliseconds (ms). After the non-thermal plasma generation was stopped, ignition was performed with a spark plug 40 ms later. The time from the time of ignition by the spark plug to the stop of generation of the non-thermal plasma is represented by ⁇ t (the same applies hereinafter). In the case of the first embodiment, ⁇ t is a negative value. One experiment was conducted under these conditions.
  • Example 2 Referring to FIG. 10 (b), in Example 1, prior to ignition by the spark plug, generation of non-thermal plasma was started by the DBD plug and generated for a time period of 13.4 ms. A non-thermal plasma was ignited by a spark plug. The experiment was performed twice under the condition that the time ⁇ t from the time of ignition by the spark plug to the stop of the generation of the non-thermal plasma was ⁇ 2 ms and 5 ms, respectively, and ⁇ 5 ms.
  • Comparative Example 1 Referring to FIG. 10 (c), in Comparative Example 1, after the ignition by the spark plug, the generation of non-thermal plasma was started by the DBD plug and generated for a time period of 13.4 ms. The experiment was performed once under the condition that the time ⁇ t from the time of ignition by the spark plug to the stop of generation of the non-thermal plasma was 15 ms.
  • Comparative Example 2 In Comparative Example 2, although not shown, non-thermal plasma was not generated by the DBD plug, but ignition was performed by the spark plug. The experiment was performed three times under these conditions.
  • FIG. 11 is a diagram showing changes in pressure in the combustion chamber in the effect confirmation experiment.
  • the horizontal axis of FIG. 11 indicates time, the left end is the time when ignition is performed by the spark plug, and the vertical axis indicates the pressure change in the combustion chamber from the compression stroke to the expansion stroke.
  • Example 1 and Example 2 the pressure rises substantially simultaneously with respect to the three data curves of Comparative Example 1 and Comparative Example 2 and rises rapidly.
  • the three data curves of Comparative Example 2 have many variations in the rise timing of the pressure, and the ignition is not stable. From these facts, in the case of Example 1 and Example 2, it can be seen that the air-fuel mixture reformed by the non-thermal plasma was stably ignited and accelerated. Furthermore, in the case of Example 1 and Example 2, it turns out that the combustion speed increased and the time to the maximum pressure was shortened by the reforming process using non-thermal plasma.
  • FIG. 12 is a diagram for explaining the combustion ratio in the effect confirmation experiment.
  • the horizontal axis in FIG. 12 represents the elapsed time (ms) from ignition by the spark plug, and the vertical axis represents the combustion rate estimated from the pressure change shown in FIG.
  • the data of the comparative example 2 uses the data in which the pressure rises the fastest in FIG.
  • Example 1 and Example 2 the combustion rate rises faster and the slope of the combustion rate curve is larger than in Comparative Example 1 and Comparative Example 2. From this, as described above, in the case of Example 1 and Example 2, it can be seen that ignition is promoted, the combustion speed is increased, and the time to the maximum pressure is shortened. Thereby, it turns out that the output of an engine can be improved.
  • FIG. 13 is a diagram showing the effective maintenance time of the non-thermal plasma in the effect confirmation experiment.
  • the horizontal axis in FIG. 13 represents the time ⁇ t (ms) from ignition by the spark plug to non-thermal plasma generation stop, and the vertical axis represents ignition by the spark plug as an effect of reforming the air-fuel mixture by dielectric barrier discharge.
  • ⁇ t of Example 2 is ⁇ 5 ms, the data of the two experiments almost overlap.
  • Example 1 reached 20 bar in substantially the same time as Example 2 despite 40 ms from the non-thermal plasma generation stop to ignition by the spark plug. For this reason, the air-fuel mixture modified by dielectric barrier discharge maintains an easily ignited state for a relatively long time of several tens of milliseconds, and is ignited reliably by ignition with a spark plug, thereby increasing the combustion speed. I understand.
  • Comparative Example 1 the time to reach 20 bar was 24 ms, and the same result as Comparative Example 2 in which non-thermal plasma was not generated was obtained. From this, it can be seen that ignition by the spark plug is preferably performed in advance during generation of non-thermal plasma or during generation of non-thermal plasma.
  • a plasma generating part provided on the inner wall of the cylinder and capable of generating a non-thermal plasma in the combustion chamber to reform an air-fuel mixture containing air and fuel, the plasma generating part being exposed to the combustion chamber
  • the plasma generation unit having a first electrode and a second electrode opposed to the first electrode and covered with a dielectric material, embedded in the inner wall of the cylinder;
  • An igniter provided on the inner wall of the cylinder for igniting the reformed mixture by discharge; With an engine.
  • the engine according to supplementary note 1 further comprising an intake port for introducing the air-fuel mixture into the combustion chamber.
  • (Appendix 3) an intake port for introducing the air into the combustion chamber; A fuel injection valve for injecting the fuel into the introduced air;
  • the intake port generates a swirl flow of the air-fuel mixture in the combustion chamber,
  • a plurality of the intake ports are provided for one cylinder, At least one of the plurality of intake ports generates a swirl flow of the air-fuel mixture in the combustion chamber;
  • Two intake ports are provided for one cylinder. The two intake ports create a swirl flow of the mixture in the combustion chamber;
  • the engine according to appendix 2 or 3, wherein the two intake ports, the plasma generation unit, and the ignition unit are arranged in the circumferential direction of the cylinder head.
  • a plurality of the intake ports are provided for one cylinder, At least one of the plurality of intake ports generates a tumble flow of the air-fuel mixture in the combustion chamber;
  • Two intake ports are provided for one cylinder. The two intake ports cause a tumble flow of the mixture in the combustion chamber;
  • the engine according to claim 2 or 3, wherein the two intake ports, the plasma generation unit, and the ignition unit are arranged in the radial direction of the combustion chamber.
  • the control unit controls the ignition unit to ignite the mixture after the plasma generation unit starts generating non-thermal plasma to contact the mixture and stops generating the non-thermal plasma.
  • the engine according to any one of appendices 1 to 15.
  • Appendix 20 Prior to the step of generating the non-thermal plasma, Introducing the air into the combustion chamber; Injecting the fuel into the introduced air to form the air-fuel mixture;

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

吸気ポート20と、シリンダヘッド部11の内壁11aに設けられ、燃焼室12に非熱プラズマを発生して、吸気ポート20から導入された混合気、または、吸気ポート20から導入された空気に燃料噴射弁により燃料を噴射して形成された混合気を改質可能なプラズマ発生部31であって、プラズマ発生部31は、燃焼室12に露出する第1の電極と、第1の電極と対向し誘電体材料に覆われた第2の電極とを有し、シリンダヘッド部11の内壁11aに埋め込まれてなる、プラズマ発生部と、シリンダヘッド部11の内壁11aに設けられ、放電により改質された混合気に点火する点火部と、を備える、エンジン100を提供する。さらにエンジンの点火方法も開示する。

Description

エンジンの着火および燃焼促進技術
 本発明は、エンジンの着火を促進し燃焼を促進する技術に関し、特に、誘電体バリア放電を用いたエンジンおよびその点火方法に関する。
 省エネルギー化および環境対策のため、エンジンの燃費改善や窒素酸化物の排出低減が進められている。その一つの解決策として、燃料および空気からなる混合気を希薄化しても動作するエンジンの開発が行われている。希薄化した混合気を使用した場合、混合気の着火や燃焼の安定性が懸念される。
 吸気管内でプラズマ処理した混合気を燃焼室に導入し、ピストンの圧縮行程により混合気を断熱圧縮して高温化して着火する予混合圧縮着火エンジンが知られている(例えば、特許文献1参照。)。また、吸気管に設けたスワール制御弁の下流に、還流排気導入部を設け、還流した排気を燃焼室中央の混合気濃度の高い部分に排気を分布させ点火プラグで点火することで燃焼性を確保する技術が知られている(例えば、特許文献2参照。)。
特開2015-55224号公報 特開平11-2158号公報
 希薄化した混合気には、点火プラグによる着火が困難で不安定になり、エンジンが運転できないという問題があり、また、着火時期の高精度の制御が必要になるという問題がある。
 本発明は、上述した問題を解決するもので、新規で有用な着火および燃焼を促進するエンジンおよびエンジンの点火方法を提供する。
 本発明の一態様によれば、シリンダ内壁に設けられ、燃焼室に非熱プラズマを発生して、空気と燃料とを含む混合気を改質可能なプラズマ発生部であって、そのプラズマ発生部は、燃焼室に露出する第1の電極と、その第1の電極と対向し誘電体材料に覆われた第2の電極とを有し、上記シリンダ内壁に埋め込まれてなる、プラズマ発生部と、
 上記シリンダ内壁に設けられ、放電により上記改質された混合気に点火する点火部と、
を備える、エンジンが提供される。
 上記態様によれば、混合気が燃焼室でプラズマ発生部によって発生した非熱プラズマにより改質され、改質された混合気に点火部により点火される。プラズマ発生部はシリンダ内壁に埋め込まれており、燃料室内側に突出していないので、それによる混合気の流れの乱れが低減される。これにより、非熱プラズマにより改質された混合気に着火が容易になるとともに安定して着火が可能となり、さらに燃焼速度を高めることができる。
 本発明の他の態様によれば、燃焼室に非熱プラズマを発生するステップであって、空気と燃料とを含む混合気に該非熱プラズマを接触させる、該非熱プラズマを発生するステップと、
 前記非熱プラズマに接触した混合気に放電により点火するステップと、
を含み、
 前記非熱プラズマは、シリンダ内壁に設けられ前記燃焼室に露出する第1の電極と、該第1の電極と対向し誘電体材料に覆われた第2の電極とを有し、該シリンダ内壁に埋め込まれてなるプラズマ発生部によって発生される、エンジンの点火方法が提供される。
 上記態様によれば、本実施形態に係るエンジンの点火方法によれば、非熱プラズマSPに接触した混合気に点火プラグの放電により点火するので、確実に着火し、着火のタイミングも安定する。さらに、燃焼速度が高まる。プラズマ発生部がシリンダ内壁に埋め込まれているので第2の電極を覆う誘電体材料の表面に非熱プラズマが発生し、プラズマ発生部が燃料室内側に突出していないので、それによる混合気の流れの乱れを低減する。それにより非熱プラズマが混合気に接触して改質するため、改質された混合気への点火がいっそう確実になると考えられる。
本発明の一実施形態に係るエンジンの概略構成を示す図である。 本発明の一実施形態に係るエンジンの誘電体バリア放電プラグの(a)断面および(b)燃焼室に臨むプラズマ発生部を示す図である。 本発明の一実施形態に係る他のエンジンの概略構成を示す図である。 本発明の他の実施形態に係るエンジンのシリンダの概略構成を示す図である。 本発明のその他の実施形態に係るエンジンのシリンダの概略構成を示す図である。 本発明のその他の実施形態に係るエンジンのシリンダの変形例の概略構成を示す図である。 本発明の一実施形態に係るエンジンの他の誘電体バリア放電プラグの(a)断面および(b)燃焼室に臨むプラズマ発生部を示す図である。 本発明の一実施形態に係るエンジンの点火方法のフローチャートである。 本発明の実施形態の効果確認実験に使用した急速圧縮膨張装置の概略構成を示す図である。 効果確認実験におけるプラズマ発生と点火プラグによる点火のタイミングを示す図である。 効果確認実験における燃焼室の圧力変化を示す図である。 効果確認実験における燃焼割合を説明する図である。 効果確認実験における非熱プラズマの有効維持時間を示す図である。
 以下、図面に基づいて本発明の一実施形態を説明する。なお、図面間において共通する要素については同じ符号を付し、その要素の詳細な説明の繰り返しを省略する。
 図1は、本発明の一実施形態に係るエンジンの概略構成を示す図である。
 図1を参照するに、本発明の一実施形態に係るエンジンは、シリンダヘッド部11に、吸気ポート20と、誘電体バリア放電(Dielectric Barrier Discharge)プラグ30(以下、「DBDプラグ」と称する。)と、点火プラグ50と、点火電源60と、高周波電源61と、制御部62とを有している。なお、シリンダヘッド部11に少なくとも一つの排気ポートおよび排気バルブ等の排気系が設けられるが、図示を省略する。
 吸気ポート20は、シリンダヘッド部11の内壁11aに設けられ、吸気管21が接続される。吸気管21には、燃料を気化して空気と混合し、混合気を形成する気化器(不図示)が接続される。混合気は、吸気管21を介して吸気バルブ22の開動作およびピストン13の下降により吸気ポート20から燃焼室12に供給される。なお、気化器の代わりに吸気管21内に燃料を噴射するポート噴射法を用いて混合気を形成してもよい。
 点火プラグ50は、シリンダヘッド部11の内壁11aに、中心電極52と接地電極53とを有する点火部51が燃焼室12に露出して設けられる。中心電極52および接地電極53は、耐熱性に優れた導電材料からなる。中心電極52は、点火電源60に電気的に接続され、接地電極53は接地される。点火電源60から電圧パルスが供給される。これにより、中心電極52と接地電極53との間に点火火花が発生する。点火時期は、点火電源60に信号通信可能に接続される制御部62によって制御される。制御部62は、例えば、ピストン13と連動するクランク14のクランク角検出部63からのクランク角の情報を取得して点火時期を制御する。
 DBDプラグ30はシリンダヘッド部11に設けられ、そのプラズマ発生部31がシリンダヘッド部11の内壁11aに設けられる。DBDプラグ30は、高周波電源61から高周波あるいはパルスの高電圧信号が供給され、プラズマ発生部31が燃焼室12に非熱プラズマを発生する。プラズマ発生部31は、シリンダ10の側壁10aにピストン13に干渉しない位置に設けられてもよい。
 図2は、本発明の一実施形態に係るエンジンのDBDプラグの(a)断面および(b)燃焼室に臨むプラズマ発生部を示す図である。
 図2(a)および(b)を参照するに、DBDプラグ30は、シリンダヘッド部11に配置されており、図3(a)の紙面下側が燃焼室12である。図3(b)は燃焼室12の内側からシリンダヘッド部11の内壁11aに設けられたプラズマ発生部31を視た図である。
 DBDプラグ30は、仮想線である軸線Xに対して回転体の形状を有している。DBDプラグ30は、支持金具32と、中心電極33と、誘電体部材34とを有する。
 支持金具32は、導電材料からなり、例えば、ステンレス鋼、炭素鋼を用いることができ、点火プラグ50の中心電極52と同様の耐熱性の高い材料を用いることができる。支持金具32は、燃焼室12に露出する先端面に円環状電極32aを有する。円環状電極32aはプラズマ発生部31の第1の電極となる。支持金具32はシリンダヘッド部11に電気的に接続されエンジンブロックを介して接地される。
 中心電極33は、軸上に伸びる導電材料からなり、その先端に円盤状電極33aを有する。円盤状電極33aはプラズマ発生部31の第2の電極となる。中心電極33は後端部に高周波電源61が接続され、高周波またはパルスの高電圧信号が中心電極33を介して円盤状電極33aに印加される。
 誘電体部材34は、その外周面が支持金具32に保持され、中心電極33を覆うように形成され、円盤状部材33aが燃焼室12に露出しないように、円盤状部材33aを覆うように形成されており、円盤状部材33aの表面から誘電体部材34の表面までの厚さは、例えば、数百μm~数mmである。誘電体部材34は、誘電体材料からなり、複数の誘電体材料を組み合わせてもよい。誘電体部材34は、円盤状電極33aを覆う部分は、アルミナセラミック、サファイヤ等の融点の高い材料を用いることが好ましい。
 プラズマ発生部31は、シリンダヘッド部11の内壁11aに埋め込まれており、燃焼室12に突出していない。これにより、プラズマ発生部31による混合気の流れの乱れを低減できる。さらに、プラズマ発生部31は、シリンダヘッド部11の内壁11aに段差なく、フラッシュマウント化されていることが好ましい。これにより、プラズマ発生部31による混合気の流れの乱れをいっそう低減しつつ、効率良く非熱プラズマを混合気に接触可能である。
 図2(b)を参照するに、プラズマ発生部31は、円環状電極32aの内側に、誘電体部材34が充填され、円盤状電極33aが、円環状電極32aの内側に設けられる。円盤状電極33aは、円環状電極32aの内径と同一の外径あるいはそれよりも小さい外径を有することが好ましい。これにより、効率良く非熱プラズマを発生できる。
 プラズマ発生部31は、図3(a)に示すように、円環状電極32aの内周部から円盤状電極33aの外周部に近い誘電体部材34の表面に非熱プラズマSPを発生し、例えば、円環状電極32aの内周部に沿って環状に形成される。
 図1に戻り、制御部62は、吸気行程から圧縮行程に亘って、吸気ポート20から導入された混合気に対して、高周波電源61から高周波またはパルスの高圧電圧を供給させてプラズマ発生部31に非熱プラズマを発生させ、混合気に非熱プラズマを接触させて混合気を改質する。制御部62は、さらに、非熱プラズマの発生中に点火部51により改質された混合気に点火させるように制御する。変形例として、制御部62は、非熱プラズマの発生を停止した後に、点火部51により改質された混合気に点火させるように制御してもよい。非熱プラズマにより改質された混合気は、混合気の成分のラジカルや部分酸化物やオゾンを含み、オゾンはさらにラジカルに変化すると考えられる。改質された混合気は、後述する実施例において説明するが、比較的長い間(40ms、あるいはそれよりも長い時間)易着火状態を維持することが可能であると推察される。
 本実施形態に係るエンジンによれば、混合気が燃焼室12でプラズマ発生部31によって発生した非熱プラズマにより改質され、改質された混合気に点火部51により点火される。プラズマ発生部31は、円環状電極32a(第1の電極)と円盤状電極33a(第2の電極)とがヘッドシリンダ部11の内壁11aに埋め込まれているので、プラズマ発生部31による混合気の流れの乱れを低減する。これにより、非熱プラズマにより改質された混合気に着火が容易になるとともに安定して着火が可能となり、さらに燃焼速度を高めることができる。
 図3は、本発明の一実施形態に係る他のエンジンの概略構成を示す図である。図3を参照するに、エンジン150は、吸気ポート20から空気を導入し、シリンダの側壁に燃料噴射弁を設け燃料を燃料室に噴射して混合気を形成する(直接燃料噴射法)。燃料噴射弁は、制御部によって燃料の噴射のタイミングが制御される、エンジン150は、その他の構成要素は図1に示したエンジン100と同様の構成および効果を有している。以下では、説明の便宜のため、混合気が燃焼室に導入される場合を例に挙げる。しかしながら、このことは、直接燃料噴射法の実施形態を排除するものではないことを理解されたい。
 図4は、本発明の他の実施形態に係るエンジンのシリンダの概略構成を示す図であり、吸気ポートとプラズマ発生部と点火部の配置を示した図である。図4(a)は、シリンダの斜視図であり、図4(b)は、シリンダヘッド部を燃焼室側から視た図である。
 図4(a)および(b)を参照するに、吸気ポート20から導入される混合気は、公知の構造または手法により、燃焼室において、シリンダ110の周方向CFの流れ、つまり、スワール流SWを形成するように構成されている。スワール流SWは、吸気行程から圧縮行程においてその慣性により流れる方向が維持されると考えられる。
 DBDプラグ30および点火プラグ50は、吸気ポート20に対して、シリンダヘッド部111の周方向CFに配置される。プラズマ発生部31および点火部51は、吸気ポート20に対して、シリンダヘッド部111の内壁111aに周方向CFに配置され、すなわち、吸気ポート20とプラズマ発生部31と点火部51とが互いにシリンダヘッド部111の内壁111aに周方向CFに配置される。
 図4(b)に示すように、混合気のスワール流SWは、燃焼室12側からシリンダヘッド部111の内壁111aを視ると、時計回りに流れている。吸気ポート20の位置から時計回りに、プラズマ発生部31および点火部51がこの順に配置されることが好ましい。すなわち、プラズマ発生部31は、点火部51に対して、スワール流SWの上流に配置されることが好ましい。これにより、プラズマ発生部31で発生した非熱プラズマによって改質された混合気に点火部51で短時間に点火が可能になる。なお、ここで説明しない事項は、図1~図3を用いて説明した事項と同様である。
 なお、吸気ポート20が一つのシリンダヘッド部111の内壁111aに複数設けられた場合でも、少なくとも一つの吸気ポート20が本実施形態の構成を有していればその効果が生じる。さらに、例えば、2つの吸気ポートが一つのシリンダヘッド部111の内壁111aに設けられている場合、2つの吸気ポートが互いに周方向CFに配置されていることが好ましく、2つの吸気ポートとプラズマ発生部31と点火部51とが互いにシリンダヘッド部111の内壁111aに周方向CFに配置されることが好ましい。
 図5は、本発明の一実施形態に係るその他のエンジンのシリンダの概略構成を示す図であり、吸気ポートとプラズマ発生部と点火部の配置を示した図である。図5(a)は、シリンダの斜視図であり、図5(b)は、シリンダヘッド部を燃焼室側から視た図である。
 図5(a)および(b)を参照するに、吸気ポート20から導入される混合気は、公知の構造または手法により、燃焼室において、シリンダ210の径方向RD1の流れ、つまり、タンブル流TB1を形成するように構成されている。タンブル流TB1は、シリンダ210の軸方向に対して垂直方向の軸の周りに形成される。吸気行程から圧縮行程においてその慣性により流れる方向が維持されると考えられる。
 DBDプラグ30および点火プラグ50は、吸気ポート20に対して、シリンダヘッド部11の径方向RD1に配置される。プラズマ発生部31および点火部51は、吸気ポート20に対して、シリンダヘッド部211の内壁211aにシリンダ210の径方向RD1に配置される。すなわち、吸気ポート20とプラズマ発生部31と点火部51とが互いにシリンダヘッド部211の内壁211aに径方向RD1に配置される。
 図5(b)に示すように、混合気のタンブル流TB1は、燃焼室12側からシリンダヘッド部211の内壁211aを視ると、径方向RD1に右斜め下から左斜め上に流れている。吸気ポートの位置からタンブル流TB1に沿って、径方向RD1に斜め下から斜め上に、プラズマ発生部31および点火部51がこの順に配置されることが好ましい。すなわち、プラズマ発生部31は、点火部51に対して、タンブル流TB1の上流に配置されることが好ましい。これにより、プラズマ発生部31で発生した非熱プラズマによって改質された混合気に点火部51で短時間に点火が可能になる。なお、ここで説明しない事項は、図1~図3を用いて説明した事項と同様である。
 なお、吸気ポート20が一つのシリンダヘッド部211の内壁211aに複数設けられた場合でも、少なくとも一つの吸気ポート20が本実施形態の構成を有していればその効果が生じる。さらに、例えば、2つの吸気ポートが一つのシリンダヘッド部211の内壁211aに設けられている場合、2つの吸気ポートが互いに径方向RD1に配置されていることが好ましく、すなわち、2つの吸気ポートとプラズマ発生部31と点火部51とが互いにシリンダヘッド部211の内壁211aに径方向RD1に配置されることが好ましい。
 変形例としては、図示を省略するが、2つの吸気ポートが一つのシリンダヘッド部211の内壁211aに設けられている場合、2つの吸気ポートが互いに径方向RD1に対して直交する方向に互いに隣接して配置してもよい。これにより、2つの吸気ポートが略平行な径方向のタンブル流を形成し、2つの吸気ポートとプラズマ発生部31および点火部51とがシリンダヘッド部211の内壁211aに径方向に配置される。
 図6は、本発明のその他の実施形態に係るエンジンのシリンダの変形例の概略構成を示す図であり、吸気ポートとプラズマ発生部と点火部の配置を示した図である。図6(a)は、シリンダの斜視図であり、図6(b)は、シリンダヘッド部を燃焼室側から視た図である。図6に示すシリンダは、図5の場合の変形例であり、タンブル流の向きが逆になっている。
 図6(a)および(b)を参照するに、吸気ポート20から導入される混合気は、公知の構造または手法により、燃焼室12において、シリンダの径方向RD2の流れ、つまり、タンブル流TB2を形成するように構成されている。タンブル流TB2は、図5の場合と流れの向きが逆になっている。
 DBDプラグ30のプラズマ発生部31はシリンダ310の側壁310aに、ピストン13の上死点よりもシリンダヘッド部311側に設けられる。点火プラグ50の点火部51はシリンダヘッド部311の内壁311aに設けられる。プラズマ発生部31および点火部51は、吸気ポート20に対して、燃焼室内のシリンダの径方向RD2に配置される。
 図6(b)に示すように、混合気のタンブル流TB2は、燃焼室12側からシリンダヘッド部311の内壁311aを視ると、径方向RD2に左斜め上から右斜め下に流れている。シリンダヘッド部311を燃焼室12側から視た場合、吸気ポート20の位置から径方向RD2に、タンブル流TB2の方向に沿ってプラズマ発生部31および点火部51がこの順に配置されることが好ましい。すなわち、プラズマ発生部31は、点火部51に対して、タンブル流TB2の上流に配置されることが好ましい。これにより、プラズマ発生部31で発生した非熱プラズマによって改質された混合気に点火部51で短時間に点火が可能になる。なお、ここで説明しない事項は、図1~図3を用いて説明した事項と同様である。
 なお、吸気ポート20が一つのシリンダヘッド部311の内壁311aに複数設けられた場合でも、少なくとも一つの吸気ポート20が本実施形態の構成を有していればその効果が生じる。さらに、例えば、2つの吸気ポートが一つのシリンダヘッド部311の内壁311aに設けられている場合、2つの吸気ポートが互いに径方向RD2に配置されていることが好ましく、2つの吸気ポートとプラズマ発生部31と点火部51とが互いに燃焼室内のシリンダの径方向RD2に配置されることが好ましい。
 変形例としては、図示を省略するが、2つの吸気ポートが一つのシリンダヘッド部311の内壁311aに設けられている場合、2つの吸気ポートが互いに径方向RD2に対して直交する方向に互いに隣接して配置してもよい。これにより、2つの吸気ポートが略平行な径方向のタンブル流を形成し、2つの吸気ポートとプラズマ発生部31および点火部51とが互いに燃焼室内のシリンダの径方向RD2に配置される。
 図7は、本発明の一実施形態に係るエンジンの他の誘電体バリア放電プラグの(a)断面および(b)燃焼室に臨むプラズマ発生部を示す図である。
 図7(a)および(b)を参照するに、DBDプラグ130は、点火プラグ50を囲むように設けられている。DBDプラグ130のプラズマ発生部131は、燃焼室に露出する第1円環状電極132と、第2円環状電極133と、第2円環状電極133を覆う誘電体部材134とを有する。
 第1円環状電極132は、図3に示した支持金具32(あるいは、円環状電極32a)と同様の導電材料を用いることができる。第1円環状電極132は、点火プラグ50の中心軸Xを中心とする円環状としてもよい。第1円環状電極132は、プラズマ発生部131の第1の電極となり、電気的に接地される。第1円環状電極132は、シリンダヘッド部11と電気的に導通するように設けられてもよく、その場合は、エンジンブロックを介して接地される。
 第2円環状電極133は、導電材料からなる。第2円環状電極133はプラズマ発生部131の第2の電極となり、高周波電源に電気的に接続され(接続線は不図示)、高周波またはパルスの高電圧信号が第2円環状電極133に印加される。第2円環状電極133は、燃焼室12側から視た場合、誘電体部材134の奥に第1円環状電極133の内側に設けられる。第2円環状電極133は、第1円環状電極132の内径と同一の外径あるいはそれよりも小さい外径を有することが好ましい。これにより、非熱プラズマが第1円環状電極132の内周部の表面から第2円環状電極133を覆う誘電体部材134の表面に効率良く形成される。
 誘電体部材134は、第2円環状電極133を覆うように形成される。誘電体部材は、図3に示した誘電体部材と同様の材料を用いることができる。
 プラズマ発生部131は、シリンダヘッド部11の内壁11aに埋め込まれており、非熱プラズマSPが内壁11aの表面に発生する。プラズマ発生部131が燃焼室12側に突出している場合は、混合気の流れに乱れを生じさせる原因となるが、シリンダヘッド部11の内壁11aに埋め込まれることによってこの乱れを低減できる。これにより、点火プラグ50の中心電極52の先端部と接地電極53とからなる点火部51に、非熱プラズマSPによって改質した混合気を円滑に供給できる。さらに、プラズマ発生部131は、シリンダヘッド部11の内壁11aに段差なくフラッシュマウント化されていることが好ましい。これにより、混合気の流れの乱れをいっそう低減しつつ、非熱プラズマSPを混合気に接触させて効率良く改質できる。
 なお、点火プラグ50は、中心電極52と接地電極53とこれらを電気的に絶縁する絶縁部材54を有し、中心電極52の先端部と接地電極53とから点火部51を構成するが、公知の構造の点火プラグを用いてもよい。
 変形例として、第1円環状電極132および第2円環状電極133は、それぞれ、複数の電極片が円環状に配置され、第1円環状電極132の電極片と第2円環状電極133の電極片が対向するように構成されてもよい。
 図8は、本発明の一実施形態に係るエンジンの点火方法のフローチャートである。以下、図8を参照しつつ、本発明の一実施形態に係るエンジンの点火方法を説明する。
 最初に、吸気ポート20から燃焼室12に混合気を導入する(S100)。なお、変形例として、直接噴射方式の場合は、S100の代わりに吸気ポートから燃料室に空気を導入し(S102)、燃料噴射弁160によって燃料室で燃料を噴射して混合気を形成してもよい。なお、いずれの場合も、混合気は、吸気ポート20の形状や公知の構成または公知の手法によってスワール流(SW)またはタンブル流(TB1またはTB2)を形成するようにしてもよい。
 次いで、シリンダ10の燃焼室12に非熱プラズマSPを発生し、導入した混合気に非熱プラズマSPを接触させる(S110)。具体的には、DBDプラグ30のプラズマ発生部31に高周波電源61から高周波あるいはパルスの高電圧信号を印加することでヘッドシリンダ部11の内壁11aに非熱プラズマSPを発生する。プラズマ発生部31は、ヘッドシリンダ部11の内壁11aに露出する円環状電極32aと、円環状電極32aに対向し誘電体部材34に覆われた円盤状電極33aとを有し、ヘッドシリンダ部11の内壁11aに埋め込まれている。円環状電極32aの内周部から円盤状電極33aに向かう誘電体部材34の表面に非熱プラズマSPが発生し、混合気に非熱プラズマSPが接触する。さらに、混合気がシリンダ内壁の表面に沿って流れるので、改質された混合気が点火部51に接触し易くなり、点火が確実になると考えられる。
 次いで、非熱プラズマSPに接触した混合気に放電により点火する(S120)。具体的には、混合気に放電により点火するタイミングは、非熱プラズマSPの発生中に行う。S110における非熱プラズマSPの発生の開始タイミングによって、非熱プラズマSPで改質された混合気の広がりを制御することができる。過度に拡散してしまう前に点火することで、後述するように、燃焼速度も高まる。
 次いで、非熱プラズマSPの発生を停止する(S125)。この後に、圧縮行程により燃焼室内の圧力が上昇し、混合気の燃焼が起こる。
 なお、変形例として、非熱プラズマSPの発生(S110)の後に、非熱プラズマSPの発生を停止(S115)し、その後に、放電により点火(S120)してもよい。後述する実験により、改質された混合気の寿命が40msよりも長いと推察されるため、非熱プラズマSPの発生停止後にも点火が確実に行われる。
 また、混合気がスワール流SWまたはタンブル流TBを形成している場合は、それぞれの上流で非熱プラズマSPの発生を行い、その下流で点火部51により点火を行うようにしてもよい。これにより、非熱プラズマによって改質された混合気のスワール流SWまたはタンブル流TBが過度に拡散しないうちにその下流において確実に短時間で点火が可能になる。
 本実施形態に係るエンジンの点火方法によれば、非熱プラズマSPに接触した混合気に点火プラグの放電により点火するので、確実に着火し、着火のタイミングも安定し、さらに、燃焼速度が高まる。プラズマ発生部31がヘッドシリンダ部11の内壁11aに埋め込まれているので誘電体部材34の表面に非熱プラズマSPが発生し、混合気を乱すことなく接触して改質するため、改質された混合気への点火がいっそう確実になると考えられる。
 次に、誘電体バリア放電による混合気の改質処理の効果確認実験について説明する。
 図9は、本発明の実施形態の効果確認実験に使用した急速圧縮膨張装置の概略構成を示す図である。図9を参照するに、急速圧縮膨張装置400は、シリンダ410に、点火プラグ50およびDBDプラグ130が設けられる。点火プラグ50およびDBDプラグ130は、図7に示した構成と同様の構成を有し、点火プラグ50の周囲に、DBDプラグ130のプラズマ発生部131の第1円環状電極132および第2円環状電極132が配置されている。急速圧縮膨張装置400は、混合気の流動を形成するために、燃焼室412に多数の孔を形成した多孔流動形成板416を設けた。ピストン413の圧縮行程において、混合気が多孔流動形成板416の孔を通過することで、混合気の所望の流動が形成される。急速圧縮膨張装置400は、シリンダヘッド部に石英窓417が設けられ、燃焼時の火炎の広がりを観察できるようになっている。
 図10は、効果確認実験におけるプラズマ発生と点火プラグによる点火のタイミングを示す図である。
 [実施例1]
 図10(a)を参照するに、実施例1では、点火プラグによる点火に先立って、DBDプラグによって非熱プラズマを13.4ミリ秒(ms)の時間期間発生させた。非熱プラズマの発生停止後、40ms後に点火プラグによって点火した。点火プラグによる点火の時点から非熱プラズマの発生停止までの時間をΔtで表す(以下同様である)。実施例1の場合は、Δtはマイナス値になる。この条件で1回実験を行った。
 [実施例2]
 図10(b)を参照するに、実施例1では、点火プラグによる点火に先立って、DBDプラグによって非熱プラズマの発生を開始し、13.4msの時間期間発生させた。非熱プラズマの発生中に、点火プラグによって点火した。点火プラグによる点火の時点から非熱プラズマの発生停止までの時間Δtが、-2ms、5msの条件で各1回、-5msの条件で2回実験を行った。
 [比較例1]
 図10(c)を参照するに、比較例1では、点火プラグによる点火を行った後でDBDプラグによって非熱プラズマの発生を開始し、13.4msの時間期間発生させた。点火プラグによる点火の時点から非熱プラズマの発生停止までの時間Δtが15msの条件で1回実験を行った。
 [比較例2]
 比較例2では、図示を省略したが、DBDプラグによって非熱プラズマの発生を行わず、点火プラグによる点火を行った。この条件で3回実験を行った。
 この効果確認実験における条件は以下の通りである。燃料:n(ノルマル)-ヘプタン、圧縮比:7.5、圧縮端温度:600K、当量比:0.56。
 図11は、効果確認実験における燃焼室の圧力変化を示す図である。図11の横軸は、時間を示し、左端が点火プラグによる点火した時間であり、縦軸は圧縮行程から膨張行程における燃焼室の圧力変化を示す。
 図11を参照するに、実施例1および実施例2は、比較例1や比較例2の3つのデータ曲線に対して、ほぼ同時に圧力が立ち上がり、急激に上昇していることが分かる。一方、比較例2の3つのデータ曲線は、圧力の立ち上がりのタイミングにばらつきが多く、着火が安定しないことが分かる。これらのことから、実施例1および実施例2の場合は、非熱プラズマによって改質処理された混合気は、着火が安定し、着火が促進されたことが分かる。さらに、実施例1および実施例2の場合は、非熱プラズマによる改質処理によって、燃焼速度が高まり、最大圧力までの時間が短縮されたことが分かる。
 図12は、効果確認実験における燃焼割合を説明する図である。図12の横軸は点火プラグによる点火からの経過時間(ms)であり、縦軸は図10に示す圧力変化から推定した燃焼割合を示す。なお、比較例2のデータは、図11において最も速く圧力が立ち上がったデータを使用している。
 図12を参照するに、実施例1および実施例2は、比較例1および比較例2と比較して、燃焼割合が速く立ち上がり、燃焼割合の曲線の傾きも大きいことが分かる。このことから、上述したように、実施例1および実施例2の場合は、着火が促進され燃焼速度が高まり、最大圧力までの時間が短縮されたことが分かる。これにより、エンジンの出力を向上できることが分かる。
 図13は、効果確認実験における非熱プラズマの有効維持時間を示す図である。図13の横軸は、点火プラグによる点火から非熱プラズマの発生停止までの時間Δt(ms)を示し、縦軸は、誘電体バリア放電による混合気の改質処理効果として、点火プラグによる点火から燃焼室の圧力が20barになるまでの時間(ms)である。なお、実施例2のΔtが-5msの場合は2回の実験のデータがほぼ重なっている。
 図13を参照するに実施例1は、非熱プラズマの発生停止から点火プラグによる点火まで40msあるのにも拘わらず、実施例2とほぼ同じ時間で20barに到達した。このことから、誘電体バリア放電による改質された混合気は、数十msの比較的長い時間、易着火の状態を維持し、点火プラグによる点火によって確実に着火して燃焼速度が高まることが分かる。
 一方、比較例1は、20barになるまでの時間が24msであり、非熱プラズマの発生を行わなかった比較例2と同様の結果になった。このことから、点火プラグによる点火は、非熱プラズマの発生を予め行うか、非熱プラズマの発生中に行うことが好ましいことが分かる。
 以上、本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、請求の範囲に記載された本発明の範囲内において、種々の変形・変更が可能である。上述した実施形態は互いに組み合わせることができ、例えば、シリンダとDBDプラグとを互いに組み合わせることができる。また、エンジンの点火方法の実施形態の説明では、主に、図13に示したエンジンおよびシリンダの実施形態を例に説明したが、エンジンの点火方法の実施形態は、図4~図7に示した、シリンダあるいはDBDプラグに適用可能である。
 なお、以上の説明に関してさらに以下の付記を開示する。
(付記1)
 シリンダ内壁に設けられ、前記燃焼室に非熱プラズマを発生して、空気と燃料とを含む混合気を改質可能なプラズマ発生部であって、該プラズマ発生部は、該燃焼室に露出する第1の電極と、該第1の電極と対向し誘電体材料に覆われた第2の電極とを有し、該シリンダ内壁に埋め込まれてなる、該プラズマ発生部と、
 前記シリンダ内壁に設けられ、放電により前記改質された混合気に点火する点火部と、
を備える、エンジン。
(付記2) 前記燃焼室に前記混合気を導入する吸気ポートをさらに備える、付記1記載のエンジン。
(付記3) 前記燃焼室に前記空気を導入する吸気ポートと、
 前記導入された空気に前記燃料を噴射する燃料噴射弁と、
を更に備える、付記1記載のエンジン。
(付記4) 前記吸気ポートは、前記燃焼室に前記混合気のスワール流を生じさせ、
 前記吸気ポートと前記プラズマ発生部と前記点火部とが互いにシリンダヘッド部の周方向に配置してなる、付記2または3記載のエンジン。
(付記5) 前記吸気ポートは一つのシリンダに対して複数設けられ、
 前記複数の吸気ポートの少なくとも一つが、前記燃焼室に前記混合気のスワール流を生じさせ、
 前記少なくとも一つの吸気ポートと前記プラズマ発生部と前記点火部とが互いにシリンダヘッド部の周方向に配置してなる、付記2または3記載のエンジン。
(付記6) 前記吸気ポートは一つのシリンダに対して2つ設けられ、
 前記2つの吸気ポートが、前記燃焼室に前記混合気のスワール流を生じさせ、
 前記2つの吸気ポートと前記プラズマ発生部と前記点火部とが互いにシリンダヘッド部の周方向に配置してなる、付記2または3記載のエンジン。
(付記7) 前記プラズマ発生部は、前記点火部に対して、前記スワール流の上流に配置してなる、付記4~6のうちいずれか一項記載のエンジン。
(付記8) 前記吸気ポートは、前記燃焼室に前記混合気のタンブル流を生じさせ、
 前記吸気ポートと前記プラズマ発生部と前記点火部とが互いにシリンダの径方向に配置してなる、付記2または3記載のエンジン。
(付記9) 前記吸気ポートは一つのシリンダに対して複数設けられ、
 前記複数の吸気ポートの少なくとも一つが、前記燃焼室に前記混合気のタンブル流を生じさせ、
 前記少なくとも一つの吸気ポートと前記プラズマ発生部と前記点火部とが互いに前記燃焼室の径方向に配置してなる、付記2または3記載のエンジン。
(付記10) 前記吸気ポートは一つのシリンダに対して2つ設けられ、
 前記2つの吸気ポートが、前記燃焼室に前記混合気のタンブル流を生じさせ、
 前記2つの吸気ポートと前記プラズマ発生部と前記点火部とが互いに前記燃焼室の径方向に配置してなる、付記2または3記載のエンジン。
(付記11) 前記プラズマ発生部は、前記点火部に対して、前記タンブル流の上流に配置してなる、付記8~10のうちいずれか一項記載のエンジン。
(付記12) 前記プラズマ発生部は、前記第1の電極が前記燃焼室に露出する円環状電極であり、前記第2の電極が該円環状電極と同一の中心を有する円盤状である、付記1~11のいずれか一項記載のエンジン。
(付記13) 前記プラズマ発生部の第1の電極および第2の電極は、前記点火部を囲むように配置される、付記1~3のうちいずれか一項記載のエンジン。
(付記14) 前記第1の電極および第2の電極は互い異なる半径を有する環状である、付記13記載のエンジン。
(付記15) 前記第1の電極および第2の電極は互い異なる半径位置に、互いに対向して複数配置される、付記13記載のエンジン。
(付記16) 制御部をさらに備え、
 前記制御部が、前記プラズマ発生部が非熱プラズマの発生を開始して前記混合気に接触させ、該非熱プラズマの発生中に前記点火部により該混合気に点火させるように制御する、付記1~15のうちいずれか一項記載のエンジン。
(付記17) 制御部をさらに備え、
 前記制御部が、前記プラズマ発生部が非熱プラズマの発生を開始して前記混合気に接触させ、該非熱プラズマの発生を停止した後に、前記点火部により該混合気に点火させるように制御する、付記1~15のうちいずれか一項記載のエンジン。
(付記18) 燃焼室に非熱プラズマを発生するステップであって、空気と燃料とを含む混合気に該非熱プラズマを接触させる、該非熱プラズマを発生するステップと、
 前記非熱プラズマに接触した混合気に放電により点火するステップと、
を含み、
 前記非熱プラズマは、シリンダ内壁に設けられ前記燃焼室に露出する第1の電極と、該第1の電極と対向し誘電体材料に覆われた第2の電極とを有し、該シリンダ内壁に埋め込まれてなるプラズマ発生部によって発生される、エンジンの点火方法。
(付記19) 前記非熱プラズマ発生するステップに先立って、前記燃焼室に前記混合気を導入するステップをさらに備える、付記18記載のエンジンの点火方法。
(付記20) 前記非熱プラズマ発生するステップに先立って、
 前記燃焼室に前記空気を導入するステップと、
 前記導入された空気に前記燃料を噴射して、前記混合気を形成するステップと、
を更に備える、付記18記載のエンジンの点火方法。
(付記21) 前記非熱プラズマを発生するステップにおいて前記非熱プラズマの発生を停止した後に、前記点火するステップにおいて前記混合気に放電により点火する、付記18~20のうちいずれか一項記載のエンジンの点火方法。
(付記22) 前記非熱プラズマを発生するステップにおいて前記非熱プラズマの発生中に、前記点火するステップにおいて前記混合気に放電により点火する、付記18~20のうちいずれか一項記載のエンジンの点火方法。
(付記23) 前記混合気はスワール流またはタンブル流を形成し、
 前記非熱プラズマを発生するステップは、前記点火するステップに対して、該スワール流またはタンブル流の上流で行われる、付記18~22のうちいずれか一項記載のエンジンの点火方法。
10,110,210,310,410  シリンダ
10a  側壁
11,111,211,311  シリンダヘッド部
11a,111a,211a,311a  内壁
12,412  燃焼室
13,413  ピストン
20  吸気ポート
30,130  DBDプラグ
31,131  プラズマ発生部
32a  円環状電極
33a  円盤状電極
34,134  誘電体部材
50  点火プラグ
51  点火部
62  制御部
100,150  エンジン
132  第1円環状電極
133  第2円環状電極
160  燃料噴射弁

Claims (12)

  1.  シリンダ内壁に設けられ、燃焼室に非熱プラズマを発生して、空気と燃料とを含む混合気を改質可能なプラズマ発生部であって、該プラズマ発生部は、該燃焼室に露出する第1の電極と、該第1の電極と対向し誘電体材料に覆われた第2の電極とを有し、該シリンダ内壁に埋め込まれてなる、該プラズマ発生部と、
     前記シリンダ内壁に設けられ、放電により前記改質された混合気に点火する点火部と、
    を備える、エンジン。
  2.  前記燃焼室に前記混合気を導入する吸気ポートをさらに備える、請求項1記載のエンジン。
  3.  前記燃焼室に前記空気を導入する吸気ポートと、
     前記導入された空気に前記燃料を噴射する燃料噴射弁と、
    を更に備える、請求項1記載のエンジン。
  4.  前記吸気ポートは、前記燃焼室に前記混合気のスワール流を生じさせ、
     前記吸気ポートと前記プラズマ発生部と前記点火部とが互いにシリンダヘッド部の周方向に配置してなる、請求項2または3記載のエンジン。
  5.  前記プラズマ発生部は、前記点火部に対して、前記スワール流の上流に配置してなる、請求項4記載のエンジン。
  6.  前記吸気ポートは、前記燃焼室に前記混合気のタンブル流を生じさせ、
     前記吸気ポートと前記プラズマ発生部と前記点火部とが互いにシリンダの径方向に配置してなる、請求項2または3記載のエンジン。
  7.  前記プラズマ発生部は、前記点火部に対して、前記タンブル流の上流に配置してなる、請求項6記載のエンジン。
  8.  前記プラズマ発生部は、前記第1の電極が前記燃焼室に露出する円環状電極であり、前記第2の電極が該円環状電極と同一の中心を有する円盤状である、請求項1~7のいずれか一項記載のエンジン。
  9.  前記プラズマ発生部の第1の電極および第2の電極は、前記点火部を囲むように配置される、請求項1~3のうちいずれか一項記載のエンジン。
  10.  燃焼室に非熱プラズマを発生するステップであって、空気と燃料とを含む混合気に該非熱プラズマを接触させる、該非熱プラズマを発生するステップと、
     前記非熱プラズマに接触した混合気に放電により点火するステップと、
    を含み、
     前記非熱プラズマは、シリンダ内壁に設けられ前記燃焼室に露出する第1の電極と、該第1の電極と対向し誘電体材料に覆われた第2の電極とを有し、該シリンダ内壁に埋め込まれてなるプラズマ発生部によって発生される、エンジンの点火方法。
  11.  前記非熱プラズマを発生するステップにおいて前記非熱プラズマの発生を停止した後に、前記点火するステップにおいて前記混合気に放電により点火する、請求項10記載のエンジンの点火方法。
  12.  前記非熱プラズマを発生するステップにおいて前記非熱プラズマの発生中に、前記点火するステップにおいて前記混合気に放電により点火する、請求項10記載のエンジンの点火方法。
PCT/JP2018/017066 2017-05-02 2018-04-26 エンジンの着火および燃焼促進技術 WO2018203511A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017091645A JP2020114991A (ja) 2017-05-02 2017-05-02 エンジンの着火および燃焼促進技術
JP2017-091645 2017-05-02

Publications (1)

Publication Number Publication Date
WO2018203511A1 true WO2018203511A1 (ja) 2018-11-08

Family

ID=64016115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017066 WO2018203511A1 (ja) 2017-05-02 2018-04-26 エンジンの着火および燃焼促進技術

Country Status (2)

Country Link
JP (1) JP2020114991A (ja)
WO (1) WO2018203511A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113570A (ja) * 2005-09-20 2007-05-10 Imagineering Kk 点火装置、内燃機関、点火プラグ、プラズマ装置、排ガス分解装置、オゾン発生・滅菌・消毒装置及び消臭装置
JP2007309233A (ja) * 2006-05-19 2007-11-29 Denso Corp O−イオン発生部材付き内燃機関
JP2008101529A (ja) * 2006-10-18 2008-05-01 Toyota Motor Corp 内燃機関
JP2009036200A (ja) * 2007-07-12 2009-02-19 Imagineering Kk 内燃機関
WO2013011968A1 (ja) * 2011-07-16 2013-01-24 イマジニアリング株式会社 プラズマ生成装置、及び内燃機関
JP2013148098A (ja) * 2013-03-13 2013-08-01 Nissan Motor Co Ltd エンジンの着火制御装置
JP2015055224A (ja) * 2013-09-13 2015-03-23 独立行政法人産業技術総合研究所 均一予混合圧縮自着火エンジンの燃焼制御装置
WO2016125857A1 (ja) * 2015-02-04 2016-08-11 イマジニアリング株式会社 点火プラグ
JP2016217224A (ja) * 2015-05-19 2016-12-22 本田技研工業株式会社 内燃機関の点火装置
WO2017038561A1 (ja) * 2015-08-31 2017-03-09 株式会社デンソー 点火装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113570A (ja) * 2005-09-20 2007-05-10 Imagineering Kk 点火装置、内燃機関、点火プラグ、プラズマ装置、排ガス分解装置、オゾン発生・滅菌・消毒装置及び消臭装置
JP2007309233A (ja) * 2006-05-19 2007-11-29 Denso Corp O−イオン発生部材付き内燃機関
JP2008101529A (ja) * 2006-10-18 2008-05-01 Toyota Motor Corp 内燃機関
JP2009036200A (ja) * 2007-07-12 2009-02-19 Imagineering Kk 内燃機関
WO2013011968A1 (ja) * 2011-07-16 2013-01-24 イマジニアリング株式会社 プラズマ生成装置、及び内燃機関
JP2013148098A (ja) * 2013-03-13 2013-08-01 Nissan Motor Co Ltd エンジンの着火制御装置
JP2015055224A (ja) * 2013-09-13 2015-03-23 独立行政法人産業技術総合研究所 均一予混合圧縮自着火エンジンの燃焼制御装置
WO2016125857A1 (ja) * 2015-02-04 2016-08-11 イマジニアリング株式会社 点火プラグ
JP2016217224A (ja) * 2015-05-19 2016-12-22 本田技研工業株式会社 内燃機関の点火装置
WO2017038561A1 (ja) * 2015-08-31 2017-03-09 株式会社デンソー 点火装置

Also Published As

Publication number Publication date
JP2020114991A (ja) 2020-07-30

Similar Documents

Publication Publication Date Title
US8104444B2 (en) Pre-chamber igniter having RF-aided spark initiation
JP2007032349A (ja) 内燃機関用点火装置
JP2006140072A (ja) 内燃機関の火花点火装置及び当該火花点火装置を備えた内燃機関
US9951743B2 (en) Plasma ignition device
KR101932367B1 (ko) 점화 어셈블리 및 내연 피스톤 엔진의 연소 챔버에서 연소 가능한 연료 혼합물을 점화하는 방법
WO2016075361A1 (en) Lean-burn internal combustion gas engine provided with a dielectric barrier discharge plasma ignition device within a combustion prechamber
JP2012184718A (ja) 非熱平衡プラズマ点火装置
US20090107437A1 (en) RF igniter having integral pre-combustion chamber
JP2011106377A (ja) 筒内噴射式内燃機関及びその制御方法
JP6583748B2 (ja) 着火促進方法、着火促進装置およびエンジン
JP2009257320A (ja) エンジン
JP2002061556A (ja) ガソリンエンジン
WO2018203511A1 (ja) エンジンの着火および燃焼促進技術
JP2010242739A (ja) ガスエンジンのための点火システム、当該点火システムを備えるガスエンジンおよび当該ガスエンジンを駆動する方法
JP2000110697A (ja) 希薄燃焼ガスエンジン
JP3556783B2 (ja) 低セタン価エンジンの燃焼装置
WO2019205908A1 (zh) 火花塞、发动机、火花塞点火方法和发动机点火方法
JP2007134127A (ja) 点火プラグ及び点火装置
CN109253029A (zh) 一种具有渐扩接地电极出口结构的等离子体点火器
CN109083797A (zh) 一种具有出气斜孔及多阳极结构的等离子体点火器
CN109253017A (zh) 一种具有双进气口结构的等离子体点火器工作方法
CN109253019A (zh) 一种具有渐扩接地电极出口结构的等离子体点火器使用方法
CN109162854B (zh) 一种双放电模式等离子体点火器的控制方法
CN118009351A (zh) 一种基于滑动弧放电的气体燃料点火器
JP2010203295A (ja) プラズマ点火装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP