WO2018203498A1 - Moteur à implosion - Google Patents

Moteur à implosion Download PDF

Info

Publication number
WO2018203498A1
WO2018203498A1 PCT/JP2018/016694 JP2018016694W WO2018203498A1 WO 2018203498 A1 WO2018203498 A1 WO 2018203498A1 JP 2018016694 W JP2018016694 W JP 2018016694W WO 2018203498 A1 WO2018203498 A1 WO 2018203498A1
Authority
WO
WIPO (PCT)
Prior art keywords
implosion
intake
exhaust
stroke
working chamber
Prior art date
Application number
PCT/JP2018/016694
Other languages
English (en)
Japanese (ja)
Inventor
東洋治 向山
義治 向山
Original Assignee
東洋治 向山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋治 向山 filed Critical 東洋治 向山
Publication of WO2018203498A1 publication Critical patent/WO2018203498A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the operation of a two-cycle, four-cycle implosion type engine is a combination of an intake expansion stroke, an ignition timing, an implosion exhaust stroke, an implosion stroke, a cooling process, and an exhaust stroke. There is no engine.
  • the 2-cycle implosion type engine can obtain twice the output of the 4-cycle implosion type.
  • a one-rotation six-ignition rotary implosion type engine can obtain twice the output of a one-rotation three-ignition rotary implosion type engine.
  • a one-turn, three-ignition rotary implosion type engine has an intake / expansion / explosion stroke and a cooling / exhaust stroke, and exhausts products of ignition and implosion material during the intake / expansion stroke.
  • the one-rotation six-ignition rotary implosion-type engine has a first intake / expansion / explosion stroke and a second intake / expansion / expansion stroke, and ignites in the first half of each stroke and exhausts the product of the implosion material in the second half.
  • the surplus power is charged into the battery (9) and the capacitor stack (10) by the charger (8).
  • direct current is converted into a pulse by the pulse width converter (13), and electric power is supplied to the electrode (15) immersed in the electrolyte (14) of the oxyhydrogen gas generator (2) for electrolysis.
  • a check valve 1 (18) is arranged in the pipe to prevent backflow of the oxyhydrogen gas (16) and the electrolyte bubbles (17) generated in the oxyhydrogen gas generator (2).
  • a check valve 2 (22) is installed in the middle of the bypass pipe (21).
  • the bubbling tank 1 (19) and the bubbling tank 2 (24) are connected by a communication pipe.
  • pure water (25) passes from the bubbling tank 2 (24) through the communication pipe. Replenished and the water level is the same.
  • a check valve 3 (26) is inserted in the middle of this communication pipe to prevent back flow of the electrolyte in the bubbling tank 1 (19).
  • the oxyhydrogen gas (27) that has passed through the bubbling tank 2 (24) is stored in the accumulator (34).
  • the pressure detector (38) measures the pressure of the oxyhydrogen gas (45), sends a control signal to the pulse width converter (13) according to the pressure setting, and controls the power supplied to the oxyhydrogen gas generator (2).
  • the amount of oxyhydrogen gas (16) generated is monitored and the pressure of the oxyhydrogen gas (37) is controlled.
  • the pressure of the pressure blower (40) is controlled by the setting of the pressure detector (38) to adjust the pressure of the oxyhydrogen gas (45) supplied to the implosion type engine (1).
  • the gas supply valve (41) opens, the gas amount adjustment valve (42) opens in proportion to the accelerator pedal (36), and the supply amount of the oxyhydrogen gas (45) is controlled.
  • the fuel is supplied from the intake port (46) of the implosion type engine (1) through the arrester (43), the fuel injection valve (44), and the ejector (35).
  • Each timing of the intake valve (47) and the exhaust valve (52) is performed by individually adjusting the shapes of the intake cam and the exhaust cam.
  • the exhaust valve (52) opens the piston (49) before top dead center, and exhausts and drains the exhaust water vapor (54), which is water or water vapor that is condensed and generated from the exhaust port (53).
  • the exhaust valve (52) is closed near the top dead center, and the implosion exhaust stroke is completed.
  • the exhaust water vapor (54) exhausted and discharged from the exhaust port (53) is cooled to become water and returns to the supply tank (29).
  • the generator (3) connected to the power shaft of the implosion type engine (1) starts power generation by the rotation of the implosion type engine (1).
  • the main components of the two-cycle implosion type engine are a camshaft (60), a crankshaft (61), a connecting rod (62), a cylinder (63), a piston (64), a spark plug (65), an intake port (66), An intake valve (67), an intake cam (68), an exhaust port (69), an exhaust valve (70), an exhaust cam (71), and the like are included.
  • the exhaust valve (70) is closed.
  • the crankshaft (61) rotates clockwise, the connecting rod (62) is lowered, and the piston (64) is lowered from the top dead center.
  • the intake valve (67) is opened by the intake cam (68), and the inside of the cylinder (63) is opened. A negative pressure is applied, and the implosive material is charged into the cylinder (63) through the intake port (66).
  • the intake valve (67) is closed by the intake cam (68) synchronized with the camshaft (60) at the cycle intermediate position of the intake expansion stroke (56), and filling of the implosion material is stopped.
  • the implosion material burns, and at the same time the expansion ends, the phase state of the implosion material changes and implosion occurs. Water and water vapor are generated.
  • the volume ratio of the implosion material at this time is condensed to about 1/1200 or less, and the inside of the cylinder (63) is in a vacuum state, and the piston (77) is sucked in the direction of the top dead center by the suction force. 77) Ascend from bottom dead center.
  • the crankshaft (79) rotates to the right due to inertia, and the exhaust cam (80) exhausts bubbles from the middle position of the implosion exhaust stroke (58) before the top dead center (80).
  • 81) is opened, and the water and water vapor explosively expelled from the exhaust port (69) are exhausted to just before the top dead center, and the exhaust bubble (81) is closed by the exhaust cam (80) before the top dead center, (58) ends and ends two cycles.
  • crankshaft (79) rotates clockwise with inertia and repeats the intake and expansion strokes (56) and the implosion and exhaust stroke (58).
  • the crankshaft (61) rotates once and the camshaft (60) rotates once.
  • the ignition (76) by the spark plug (65) is performed once. 2-cycle implosion type engine.
  • the ignition timing is independent, continuous ignition (109) from the state where the intake valve (98) and the exhaust valve (101) are closed in the cycle of the intake expansion stroke (83) to the middle position of the cycle of the implosion exhaust stroke (85). Or intermittent ignition (109) at any position.
  • the volume ratio of the implosion material at this time is condensed to about 1/1200 or less, and the inside of the cylinder (94) becomes a vacuum state, and the piston (110) is sucked in the direction of the top dead center by the suction force. 110) rise from bottom dead center.
  • the space between the rotary housing (138) and the rotor (140) is called a working chamber, and the space capacity changes depending on the rotational position.
  • the front and rear ends of the rotor (140) in the first working chamber (146) I will explain between.
  • the rotor (140) rotates clockwise, the space capacity of the first working chamber (146) increases, and the implosive material is sucked into the first working chamber (146) from the intake hole (142). To charge.
  • the rear end of the first working chamber (146) of the rotor passes through the intake hole (142) just before the space capacity of the first working chamber (146) reaches the maximum value.
  • the rotor (140) rotates clockwise and the rear end of the rotor (140) of the first working chamber (146) passes through the intake hole (142) and the first working chamber (146).
  • the front end of the rotor (140) is in front of the exhaust hole (143), that is, when the first working chamber (146) is sealed, the space capacity of the first working chamber (146) is maximized.
  • the implosive material filled in the first working chamber (146) is ignited (149) by the spark plug (141), the implosive material is combusted, and the expansion force due to the expansion accompanying the temperature rise of the implosive material by the combustion Then, it rotates clockwise to increase the space capacity of the first working chamber (146).
  • the rotor (140) rotates to the right and the space capacity of the first working chamber (146) increases, and the first working chamber (146) becomes negative pressure and cools the outside air as a cooling intake hole. Aspirate from (144). The rotor (140), the first working chamber (146), and the rotary housing (138) are further cooled.
  • the cooling exhaust stroke (135) becomes the cooling exhaust stroke (135) when the rotor (140) rotates clockwise due to inertial force and the front end of the rotor (140) passes through the cooling exhaust hole (145).
  • This rotary implosion type engine has a first working chamber (146), a second working chamber (147), a third working chamber (148) and three working chambers, and each working chamber performs the same process.
  • the spark plug (141) is ignited three times (149). In other words, it is a one-rotation three-ignition rotary implosion type engine that imploses three times in one rotation.
  • the main configuration of the one-rotation six-ignition rotary implosion type engine is as follows: rotary housing (162), eccentric shaft (163), rotor (164), first spark plug (165), second spark plug (166), first intake air Hole (167), first exhaust hole (168), second intake hole (169), second exhaust hole (170), first working chamber (171), second working chamber (172), third working chamber ( 173) and the like, and implosive material is supplied to the first exhaust hole (168) and the second intake hole (169).
  • the space between the rotary housing (162) and the rotor (164) is called a working chamber, and the space capacity changes depending on the rotational position.
  • the front and rear ends of the rotor (164) in the first working chamber (171) are arranged. I will explain between.
  • the rotor (164) rotates to the right, the space capacity of the first working chamber (171) increases, and the implosion material passes through the first working chamber (171) from the first intake hole (167). ) Will be sucked and filled.
  • the rear end of the rotor (164) of the first working chamber (171) passes through the intake hole (167) just before the space capacity of the first working chamber (171) reaches the maximum value.
  • the first exhaust stroke (154) rotates clockwise by the inertial force of the rotor (164) while the space capacity of the first working chamber (171) is reduced, and the front end of the rotor (164) of the first working chamber (171). Passes through the first exhaust hole (168), and the water and water vapor exploded inside the first working chamber (171) are exhausted and discharged from the first exhaust hole (168).
  • the first intake hole, the first exhaust hole, the second intake hole, and the second exhaust hole are fitted with intake bubbles, exhaust bubbles, and rotary bubbles synchronized with the rotor, so that the timing of intake and exhaust can be adjusted. Adjust and improve the sealing to prevent backfire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Le problème décrit par la présente invention concerne la production de dioxyde de carbone, de gaz dangereux et de la suie par un moteur du type à explosion classique, contribuant ainsi au réchauffement global. De plus, les combustibles fossiles sont actuellement en cours d'épuisement. La présente invention utilise comme matériau d'implosion, c'est-à-dire comme combustible, un gaz oxhydrique (2H2+O2), un gaz élémentaire à base d'hydrogène (H2) ou un mélange gazeux desdits gaz avec de l'oxygène (O2), de l'air, ou analogues. La présente invention utilise des réactions d'expansion et de condensation se produisant suite au changement de phase dû à la combustion du matériau d'implosion, et le seul produit qu'il en résulte est de l'eau. La solution selon l'invention concerne un moteur à implosion comprenant un étage d'admission et d'expansion dans lequel un matériau d'implosion est allumé après avoir été aspiré dans un cylindre pour être isolé à son intérieur, et, avec la force d'expansion produite en raison de l'expansion survenant en conséquence de l'élévation de la température au moment de la combustion, un piston est déplacé vers le point mort bas. Dans un étage d'implosion et d'échappement, le piston est déplacé vers le point mort haut par la force d'aspiration du vide produit en conséquence de la réaction d'implosion après la combustion. Près du point mort haut, de l'eau et de la vapeur d'eau sont évacuées. Ce moteur présente un petit déplacement, peut fonctionner en état anoxique sans dépendre du carbone, et ne requiert pas un étage de compression ou un étage d'explosion. La présente invention est applicable à un moteur à implosion à deux temps ou à quatre temps, ou à un moteur rotatif à implosion à trois temps d'allumage par tour ou à six temps d'allumage par tour.
PCT/JP2018/016694 2017-05-03 2018-04-25 Moteur à implosion WO2018203498A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017092035A JP2018189024A (ja) 2017-05-03 2017-05-03 爆縮式エンジン
JP2017-092035 2017-05-03

Publications (1)

Publication Number Publication Date
WO2018203498A1 true WO2018203498A1 (fr) 2018-11-08

Family

ID=64016627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016694 WO2018203498A1 (fr) 2017-05-03 2018-04-25 Moteur à implosion

Country Status (2)

Country Link
JP (1) JP2018189024A (fr)
WO (1) WO2018203498A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070797A (ja) * 2018-10-25 2020-05-07 清水 勲生 ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮エンジンシステム。
JP2021127737A (ja) * 2020-02-14 2021-09-02 勲生 清水 ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮4サイクルエンジンシステム。
JP2021139320A (ja) * 2020-03-04 2021-09-16 勲生 清水 ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮ブラウンガスロータリーエンジンシステム。

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949039A (fr) * 1972-09-19 1974-05-13
JPS4971303A (fr) * 1972-11-16 1974-07-10
JPS49101706A (fr) * 1973-02-03 1974-09-26
JPS5137349A (ja) * 1974-08-05 1976-03-29 Tadahiro Yoshida Genshukukotei
JPH04148033A (ja) * 1990-10-06 1992-05-21 Shuhei Aiba ロータリーエンジン
JPH0777053A (ja) * 1993-09-09 1995-03-20 Shin Motoda 水素燃料内燃機関動力発電機
JPH09170444A (ja) * 1995-12-18 1997-06-30 Takashi Hikita 2サイクル・ロータリーエンジン
JP2000179349A (ja) * 1998-12-15 2000-06-27 Honda Motor Co Ltd 負圧力エンジン
US20120186542A1 (en) * 2011-01-21 2012-07-26 Fred Dawson Process for powering an engine with water by simultaneously separating hydrogen from oxygen and igniting the hydrogen in the compression/combustion chamber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949039A (fr) * 1972-09-19 1974-05-13
JPS4971303A (fr) * 1972-11-16 1974-07-10
JPS49101706A (fr) * 1973-02-03 1974-09-26
JPS5137349A (ja) * 1974-08-05 1976-03-29 Tadahiro Yoshida Genshukukotei
JPH04148033A (ja) * 1990-10-06 1992-05-21 Shuhei Aiba ロータリーエンジン
JPH0777053A (ja) * 1993-09-09 1995-03-20 Shin Motoda 水素燃料内燃機関動力発電機
JPH09170444A (ja) * 1995-12-18 1997-06-30 Takashi Hikita 2サイクル・ロータリーエンジン
JP2000179349A (ja) * 1998-12-15 2000-06-27 Honda Motor Co Ltd 負圧力エンジン
US20120186542A1 (en) * 2011-01-21 2012-07-26 Fred Dawson Process for powering an engine with water by simultaneously separating hydrogen from oxygen and igniting the hydrogen in the compression/combustion chamber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070797A (ja) * 2018-10-25 2020-05-07 清水 勲生 ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮エンジンシステム。
JP2021127737A (ja) * 2020-02-14 2021-09-02 勲生 清水 ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮4サイクルエンジンシステム。
JP2021139320A (ja) * 2020-03-04 2021-09-16 勲生 清水 ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮ブラウンガスロータリーエンジンシステム。

Also Published As

Publication number Publication date
JP2018189024A (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2018203498A1 (fr) Moteur à implosion
JP2012528270A (ja) 火花点火エンジンの動作方法および本方法を用いた火花点火エンジン
CN102844544B (zh) 热力发动机
JP2009281200A (ja) 水素エンジンを搭載した車両の制御装置
KR101371955B1 (ko) 수소를 이용한 내연기관 발전시스템
JP6622374B1 (ja) ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮エンジンシステム。
JP6802449B1 (ja) ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮4サイクルエンジンシステム。
TR201802811T4 (tr) Hareketli Bir Makine için Yakıt Doldurma Sistemi.
JP5721129B2 (ja) 圧縮空気熱機関
JP2010106798A (ja) 動力発生装置
JP2012002191A (ja) 同一気筒ハイブリッド機関
WO2007104087A1 (fr) Moteur à vapeur
JP6796748B1 (ja) ブラウンガス発生システムを備えたブラウンガスの爆発爆縮機能を利用した爆発爆縮ブラウンガスロータリーエンジンシステム。
CN203271950U (zh) 活塞冲压自燃脉冲喷气发动机
US7654072B2 (en) Method and apparatus for generating compressed air from liquefied air, for supplying compressed air to an engine
JP5623860B2 (ja) 水素ガスエンジン及び省エネ自動車
RU2493387C2 (ru) Устройство для преобразования энергии, система и метод для сжигания водорода и кислорода
RU2453715C1 (ru) Двигатель внутреннего сгорания
RU2247841C1 (ru) Двухтактный двигатель внутреннего сгорания
WO2006027623A1 (fr) Procede de combustion, appareil a vapeur et procede permettant d'imprimer un mouvement a un appareil
WO2011152365A1 (fr) Système de moteur et station d'hydrogène
RU2267622C2 (ru) Двигатель внутреннего сгорания
CN1054474A (zh) 水燃料点燃式内燃机动力系统
RU2276274C1 (ru) Двухтактный двигатель внутреннего сгорания
CN202732116U (zh) 一种混合动力发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794055

Country of ref document: EP

Kind code of ref document: A1