WO2018203498A1 - Implosion-type engine - Google Patents

Implosion-type engine Download PDF

Info

Publication number
WO2018203498A1
WO2018203498A1 PCT/JP2018/016694 JP2018016694W WO2018203498A1 WO 2018203498 A1 WO2018203498 A1 WO 2018203498A1 JP 2018016694 W JP2018016694 W JP 2018016694W WO 2018203498 A1 WO2018203498 A1 WO 2018203498A1
Authority
WO
WIPO (PCT)
Prior art keywords
implosion
intake
exhaust
stroke
working chamber
Prior art date
Application number
PCT/JP2018/016694
Other languages
French (fr)
Japanese (ja)
Inventor
東洋治 向山
義治 向山
Original Assignee
東洋治 向山
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋治 向山 filed Critical 東洋治 向山
Publication of WO2018203498A1 publication Critical patent/WO2018203498A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • F02B43/10Engines or plants characterised by use of other specific gases, e.g. acetylene, oxyhydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the operation of a two-cycle, four-cycle implosion type engine is a combination of an intake expansion stroke, an ignition timing, an implosion exhaust stroke, an implosion stroke, a cooling process, and an exhaust stroke. There is no engine.
  • the 2-cycle implosion type engine can obtain twice the output of the 4-cycle implosion type.
  • a one-rotation six-ignition rotary implosion type engine can obtain twice the output of a one-rotation three-ignition rotary implosion type engine.
  • a one-turn, three-ignition rotary implosion type engine has an intake / expansion / explosion stroke and a cooling / exhaust stroke, and exhausts products of ignition and implosion material during the intake / expansion stroke.
  • the one-rotation six-ignition rotary implosion-type engine has a first intake / expansion / explosion stroke and a second intake / expansion / expansion stroke, and ignites in the first half of each stroke and exhausts the product of the implosion material in the second half.
  • the surplus power is charged into the battery (9) and the capacitor stack (10) by the charger (8).
  • direct current is converted into a pulse by the pulse width converter (13), and electric power is supplied to the electrode (15) immersed in the electrolyte (14) of the oxyhydrogen gas generator (2) for electrolysis.
  • a check valve 1 (18) is arranged in the pipe to prevent backflow of the oxyhydrogen gas (16) and the electrolyte bubbles (17) generated in the oxyhydrogen gas generator (2).
  • a check valve 2 (22) is installed in the middle of the bypass pipe (21).
  • the bubbling tank 1 (19) and the bubbling tank 2 (24) are connected by a communication pipe.
  • pure water (25) passes from the bubbling tank 2 (24) through the communication pipe. Replenished and the water level is the same.
  • a check valve 3 (26) is inserted in the middle of this communication pipe to prevent back flow of the electrolyte in the bubbling tank 1 (19).
  • the oxyhydrogen gas (27) that has passed through the bubbling tank 2 (24) is stored in the accumulator (34).
  • the pressure detector (38) measures the pressure of the oxyhydrogen gas (45), sends a control signal to the pulse width converter (13) according to the pressure setting, and controls the power supplied to the oxyhydrogen gas generator (2).
  • the amount of oxyhydrogen gas (16) generated is monitored and the pressure of the oxyhydrogen gas (37) is controlled.
  • the pressure of the pressure blower (40) is controlled by the setting of the pressure detector (38) to adjust the pressure of the oxyhydrogen gas (45) supplied to the implosion type engine (1).
  • the gas supply valve (41) opens, the gas amount adjustment valve (42) opens in proportion to the accelerator pedal (36), and the supply amount of the oxyhydrogen gas (45) is controlled.
  • the fuel is supplied from the intake port (46) of the implosion type engine (1) through the arrester (43), the fuel injection valve (44), and the ejector (35).
  • Each timing of the intake valve (47) and the exhaust valve (52) is performed by individually adjusting the shapes of the intake cam and the exhaust cam.
  • the exhaust valve (52) opens the piston (49) before top dead center, and exhausts and drains the exhaust water vapor (54), which is water or water vapor that is condensed and generated from the exhaust port (53).
  • the exhaust valve (52) is closed near the top dead center, and the implosion exhaust stroke is completed.
  • the exhaust water vapor (54) exhausted and discharged from the exhaust port (53) is cooled to become water and returns to the supply tank (29).
  • the generator (3) connected to the power shaft of the implosion type engine (1) starts power generation by the rotation of the implosion type engine (1).
  • the main components of the two-cycle implosion type engine are a camshaft (60), a crankshaft (61), a connecting rod (62), a cylinder (63), a piston (64), a spark plug (65), an intake port (66), An intake valve (67), an intake cam (68), an exhaust port (69), an exhaust valve (70), an exhaust cam (71), and the like are included.
  • the exhaust valve (70) is closed.
  • the crankshaft (61) rotates clockwise, the connecting rod (62) is lowered, and the piston (64) is lowered from the top dead center.
  • the intake valve (67) is opened by the intake cam (68), and the inside of the cylinder (63) is opened. A negative pressure is applied, and the implosive material is charged into the cylinder (63) through the intake port (66).
  • the intake valve (67) is closed by the intake cam (68) synchronized with the camshaft (60) at the cycle intermediate position of the intake expansion stroke (56), and filling of the implosion material is stopped.
  • the implosion material burns, and at the same time the expansion ends, the phase state of the implosion material changes and implosion occurs. Water and water vapor are generated.
  • the volume ratio of the implosion material at this time is condensed to about 1/1200 or less, and the inside of the cylinder (63) is in a vacuum state, and the piston (77) is sucked in the direction of the top dead center by the suction force. 77) Ascend from bottom dead center.
  • the crankshaft (79) rotates to the right due to inertia, and the exhaust cam (80) exhausts bubbles from the middle position of the implosion exhaust stroke (58) before the top dead center (80).
  • 81) is opened, and the water and water vapor explosively expelled from the exhaust port (69) are exhausted to just before the top dead center, and the exhaust bubble (81) is closed by the exhaust cam (80) before the top dead center, (58) ends and ends two cycles.
  • crankshaft (79) rotates clockwise with inertia and repeats the intake and expansion strokes (56) and the implosion and exhaust stroke (58).
  • the crankshaft (61) rotates once and the camshaft (60) rotates once.
  • the ignition (76) by the spark plug (65) is performed once. 2-cycle implosion type engine.
  • the ignition timing is independent, continuous ignition (109) from the state where the intake valve (98) and the exhaust valve (101) are closed in the cycle of the intake expansion stroke (83) to the middle position of the cycle of the implosion exhaust stroke (85). Or intermittent ignition (109) at any position.
  • the volume ratio of the implosion material at this time is condensed to about 1/1200 or less, and the inside of the cylinder (94) becomes a vacuum state, and the piston (110) is sucked in the direction of the top dead center by the suction force. 110) rise from bottom dead center.
  • the space between the rotary housing (138) and the rotor (140) is called a working chamber, and the space capacity changes depending on the rotational position.
  • the front and rear ends of the rotor (140) in the first working chamber (146) I will explain between.
  • the rotor (140) rotates clockwise, the space capacity of the first working chamber (146) increases, and the implosive material is sucked into the first working chamber (146) from the intake hole (142). To charge.
  • the rear end of the first working chamber (146) of the rotor passes through the intake hole (142) just before the space capacity of the first working chamber (146) reaches the maximum value.
  • the rotor (140) rotates clockwise and the rear end of the rotor (140) of the first working chamber (146) passes through the intake hole (142) and the first working chamber (146).
  • the front end of the rotor (140) is in front of the exhaust hole (143), that is, when the first working chamber (146) is sealed, the space capacity of the first working chamber (146) is maximized.
  • the implosive material filled in the first working chamber (146) is ignited (149) by the spark plug (141), the implosive material is combusted, and the expansion force due to the expansion accompanying the temperature rise of the implosive material by the combustion Then, it rotates clockwise to increase the space capacity of the first working chamber (146).
  • the rotor (140) rotates to the right and the space capacity of the first working chamber (146) increases, and the first working chamber (146) becomes negative pressure and cools the outside air as a cooling intake hole. Aspirate from (144). The rotor (140), the first working chamber (146), and the rotary housing (138) are further cooled.
  • the cooling exhaust stroke (135) becomes the cooling exhaust stroke (135) when the rotor (140) rotates clockwise due to inertial force and the front end of the rotor (140) passes through the cooling exhaust hole (145).
  • This rotary implosion type engine has a first working chamber (146), a second working chamber (147), a third working chamber (148) and three working chambers, and each working chamber performs the same process.
  • the spark plug (141) is ignited three times (149). In other words, it is a one-rotation three-ignition rotary implosion type engine that imploses three times in one rotation.
  • the main configuration of the one-rotation six-ignition rotary implosion type engine is as follows: rotary housing (162), eccentric shaft (163), rotor (164), first spark plug (165), second spark plug (166), first intake air Hole (167), first exhaust hole (168), second intake hole (169), second exhaust hole (170), first working chamber (171), second working chamber (172), third working chamber ( 173) and the like, and implosive material is supplied to the first exhaust hole (168) and the second intake hole (169).
  • the space between the rotary housing (162) and the rotor (164) is called a working chamber, and the space capacity changes depending on the rotational position.
  • the front and rear ends of the rotor (164) in the first working chamber (171) are arranged. I will explain between.
  • the rotor (164) rotates to the right, the space capacity of the first working chamber (171) increases, and the implosion material passes through the first working chamber (171) from the first intake hole (167). ) Will be sucked and filled.
  • the rear end of the rotor (164) of the first working chamber (171) passes through the intake hole (167) just before the space capacity of the first working chamber (171) reaches the maximum value.
  • the first exhaust stroke (154) rotates clockwise by the inertial force of the rotor (164) while the space capacity of the first working chamber (171) is reduced, and the front end of the rotor (164) of the first working chamber (171). Passes through the first exhaust hole (168), and the water and water vapor exploded inside the first working chamber (171) are exhausted and discharged from the first exhaust hole (168).
  • the first intake hole, the first exhaust hole, the second intake hole, and the second exhaust hole are fitted with intake bubbles, exhaust bubbles, and rotary bubbles synchronized with the rotor, so that the timing of intake and exhaust can be adjusted. Adjust and improve the sealing to prevent backfire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

[Problem] A conventional explosion-type engine generates carbon dioxide gas, hazardous gas, and soot, and thereby causes global warming. In addition, fossil fuel has been presently becoming depleted. The present invention uses, as an implosion material that is fuel, hydroxygen gas (2H2+O2), elemental gas of hydrogen (H2), or a gas mixture of these gases with oxygen (O2), air, or the like. The present invention makes use of expansion and condensation reactions that occur as a result of phase change due to combustion of the implosion material, and the only product generated as a result is water. [Solution] In an implosion-type engine according to the present invention, in an intake-and-expansion stage, an implosion material is ignited after being sucked into a cylinder to be sealed therein, and, with the expansion force generated owing to expansion occurring as a result of temperature rise at the time of combustion, a piston is moved to the bottom dead center. In an implosion-and-exhaust stage, the piston is moved to the top dead center by the suction force of the vacuum generated as a result of the implosion reaction after the combustion. Near the top dead center, water and water vapor are exhaust. This engine has a small displacement, can be operated in an anoxic state without relying on carbon, and does not require a compression stage or an explosion stage. The present invention is applicable to a two-cycle or four-cycle implosion-type engine, or an implosion-type rotary engine with three times of ignition per revolution or with six times of ignition per revolution.

Description

爆縮式エンジンImplosion engine
 本発明は、爆縮材に、酸水素ガス(2H2+O2)や水素(H2)の単体ガスや、これらの単体ガスと酸素(O2)や空気等の混合ガスを使用して、この爆縮材を密閉容器内で点火着火すると、爆縮材は、燃焼する、燃焼による温度上昇により爆縮材が膨張して膨張力を生じて密閉容器の内部が加圧される。続いて燃焼後に相変化して水や水蒸気となり凝縮する、この爆縮反応で約1200分1に凝縮して真空状態となり、吸引力を生じて密閉容器の内部が負圧となる。この膨張力と吸引力を動力源としたエンジンです。排気量が少なく、無炭素状態で運転が可能で、圧縮行程と爆発行程のない爆縮式エンジンです。 In the present invention, a simple gas such as oxyhydrogen gas (2H2 + O2) or hydrogen (H2) or a mixed gas such as oxygen (O2) or air is used as the implosion material. When ignition is ignited in the sealed container, the implosion material burns, and the implosion material expands due to a temperature rise due to combustion to generate an expansion force, and the inside of the closed container is pressurized. Subsequently, the phase changes after combustion and condenses into water and water vapor. This implosion reaction condenses to about 1200 minutes to form a vacuum state, generating a suction force, and the inside of the sealed container becomes negative pressure. This engine is powered by this expansion force and suction force. It is an implosion type engine that has a small displacement, can be operated in a carbon-free state, and has no compression stroke and no explosion stroke.
 従来から、爆縮材となる酸水素ガスは簡単に生成できる、これを利用した装置や設備や機器はあります。酸水素ガスを、エンジンやバーナーの主燃料と混合して補助燃料として使用していた。しかし、爆縮材のみを燃料にしたエンジンはない。 Conventionally, there are devices, facilities and equipment that can easily generate oxyhydrogen gas that can be used as implosion material. Oxyhydrogen gas was mixed with the main fuel for engines and burners and used as an auxiliary fuel. However, there is no engine that uses only implosion material as fuel.
 従来の2サイクル、4サイクルエンジンやロータリーエンジンは、ガソリン、軽油、LPガス等を燃料として、燃焼時の爆発力を利用する爆発式エンジンです、これらから発生する排気ガスは、一酸化炭酸ガス、二酸化炭素ガス、有毒ガス、煤煙の発生があり、地球温暖化の原因となっている。化石燃料は、枯渇する現状です。 Conventional two-cycle, four-cycle engines and rotary engines are explosive engines that use gasoline, light oil, LP gas, etc. as fuel and use the explosive power during combustion. The exhaust gas generated from these engines is carbon monoxide, Carbon dioxide gas, toxic gas, and soot are emitted, causing global warming. Fossil fuels are currently depleted.
従来のエンジンの動作は、吸気行程、圧縮行程、点火、爆発行程、排気行程であり、圧縮行程で出力の損失があった。 Conventional engine operations are an intake stroke, a compression stroke, an ignition stroke, an explosion stroke, and an exhaust stroke, and there is a loss of output in the compression stroke.
 本発明の爆縮式エンジンで使用する爆縮材は、水素が主成分の無炭素エネルギーです、生成される排気ガスは、水分のみで、一酸化炭酸ガス、二酸化炭素ガス、有毒ガス、煤煙の発生がありません。酸水素ガス(2H2+O2)は、電気分解等で簡単に生成できます。 The implosion material used in the implosion-type engine of the present invention is carbon-free energy mainly composed of hydrogen. The generated exhaust gas is only moisture, and is composed of carbon monoxide gas, carbon dioxide gas, toxic gas, and soot. There is no occurrence. Oxyhydrogen gas (2H2 + O2) can be easily generated by electrolysis.
2サイクル爆縮式エンジンの動作は、吸気膨張行程、点火時期、爆縮排気行程です。4サイクル爆縮式エンジンの動作は、吸気膨張行程、点火時期、爆縮行程、冷却工程、排気行程です。圧縮行程と爆発行程がありません。 The operation of the two-cycle implosion type engine is the intake expansion stroke, ignition timing, and implosion exhaust stroke. The operation of a 4-cycle implosion type engine is an intake expansion stroke, an ignition timing, an implosion stroke, a cooling process, and an exhaust stroke. There is no compression stroke or explosion stroke.
1回転3点火ロータリー爆縮式エンジンは、吸気膨張爆縮行程、冷却排気行程です、吸気膨張爆縮行程中に点火と爆縮材の生成物を排気します。1回転6点火ロータリー爆縮式エンジンは、第1吸気膨張爆縮行程、第2吸気膨張爆縮行程があり、それぞれの行程の前半で点火、後半で爆縮材の生成物を排気します。圧縮行程と爆発行程がありません。 A one-turn, three-ignition rotary implosion type engine has an intake expansion / explosion stroke and a cooling / exhaust stroke. During the intake expansion / explosion stroke, the product of ignition and implosion material is exhausted. The 1-rotation 6-ignition rotary implosion-type engine has a first intake / expansion / explosion stroke and a second intake / expansion / explosion stroke. The first half of each stroke is ignited, and the product of the implosion material is exhausted in the second half. There is no compression stroke or explosion stroke.
特開2013-144984号公報JP 2013-144984 A 特開2008-063980号公報JP 2008-063980 A
 解決しようとする問題点は、爆縮材に点火すると、燃焼により爆縮材が温度上昇で膨張する、次の瞬間に、爆縮反応で爆縮材が相変化して約1200分の1に凝縮し、真空状態となる。膨張と爆縮が連続して発生する。 The problem to be solved is that when the implosion material is ignited, the implosion material expands due to a temperature rise due to combustion, and at the next moment, the implosion material undergoes a phase change due to the implosion reaction and is reduced to about 1/1200. Condensate to a vacuum. Expansion and implosion occur continuously.
 爆縮材は、発火温度が高く、引火力のエネルギーの容量は小さく、安定している気体です、しかし、一度燃焼すると一気に燃焼するためバブリングタンクやアレスター等のバックファイヤー対策が必要となる。 The implosion material is a stable gas with a high ignition temperature, small flammable power, and stable combustion. However, once burned, it burns all at once, and measures such as bubbling tanks and arresters are required.
爆縮反応によりシリンダー内に水や水蒸気が生成され、点火プラグの電極が濡れて絶縁不良となる、エンジンオイルと混合してのエンジンオイルの劣化がある。 The implosion reaction generates water or water vapor in the cylinder, and the spark plug electrode gets wet, resulting in poor insulation, resulting in deterioration of engine oil when mixed with engine oil.
 本案は、4サイクルエンジンやジーゼルエンジンのタイミングチェーン、又は、ベルトの変更、歯車の変更、吸気バルブ、及び、排気バブルの動作間隔をカムの位置とカムの形状で調整、点火時期の調整、燃料噴射弁、燃料噴射ポンプ、加圧ポンプ、エジェクター、アレスターを追加する。 This proposal is to adjust the timing chain of 4-cycle engine or diesel engine, belt change, gear change, intake valve, and exhaust bubble operation interval with cam position and cam shape, ignition timing adjustment, fuel Add injection valve, fuel injection pump, pressurization pump, ejector, arrester.
2サイクル、4サイクル爆縮式エンジンの動作は、吸気膨張行程、点火時期、爆縮排気行程、爆縮行程、冷却工程、排気行程を組み合わせて爆縮式エンジンとした  The operation of the 2-cycle and 4-cycle implosion type engine is an implosion type engine by combining the intake expansion stroke, ignition timing, implosion exhaust stroke, implosion stroke, cooling process, and exhaust stroke.
吸気バルブと排気バルブの開閉のタイミングは、ピストンとコンロッド及びクランクシャフト、カムシャフト、吸気カム、排気カム、ベルト、ロッド等と同期していて、吸気カムと排気カムのカム形状を個々に調節して行う。動作範囲は従来のエンジンに比べて吸気カムは約1/2,排気カムは1/10程度にする。 The timing of opening and closing the intake and exhaust valves is synchronized with pistons, connecting rods, crankshafts, camshafts, intake cams, exhaust cams, belts, rods, etc., and the cam shapes of intake cams and exhaust cams are individually adjusted. Do it. The operating range is about 1/2 for the intake cam and about 1/10 for the exhaust cam compared to the conventional engine.
点火時期は、2サイクル爆縮式エンジンの場合は、吸気膨張行程中の吸気完了後から爆縮排気行程サイクル中の間、4サイクル爆縮式エンジンの場合は、吸気膨張行程中の吸気完了後から爆縮工程のサイクル中の間までに単独、連続、又は、任意位置で間欠動作により爆縮材に点火する。 In the case of a two-cycle implosion-type engine, the ignition timing is from the completion of the intake during the intake-expansion stroke until the implosion-exhaust stroke cycle. The implosion material is ignited by an intermittent operation alone, continuously, or at an arbitrary position by the middle of the contraction process cycle.
ロータリー爆縮式エンジンは、吸気孔、排気孔の位置の変更と追加、吸気孔の入り口に吸気弁、又は、ロータリーバルブ。排気孔の出口に排気弁、又は、ロータリーバルブを取り付け、点火プラグの位置を変更した。 The rotary implosion type engine has intake and exhaust hole position changes and additions, and an intake valve or rotary valve at the inlet. An exhaust valve or a rotary valve was attached to the outlet of the exhaust hole, and the position of the spark plug was changed.
ロータリー爆縮式エンジンの動作は、吸気膨張爆縮行程、冷却排気行程、点火時期、第1吸気膨張爆縮行程、第2吸気膨張爆縮行程を組み合わせてロータリー爆縮式エンジンとした。 The operation of the rotary implosion type engine is a rotary implosion type engine that combines an intake expansion / explosion compression stroke, a cooling / exhaust stroke, an ignition timing, a first intake expansion / explosion compression stroke, and a second intake expansion / expansion stroke.
 ロータリー爆縮式エンジンの点火時期は、吸気完了後からローターの前端が排気孔の手前で作動室が密閉状態となり、作動室の空間容量が最大になる手前の位置で点火プラグにより任意位置で単独、連続、間欠動作により爆縮材に点火する。 The ignition timing of the rotary implosion-type engine is independent at any position by the spark plug at the position before the front end of the rotor is in front of the exhaust hole and the working chamber is sealed after the intake is completed, and before the space capacity of the working chamber is maximized. The implosion material is ignited by continuous and intermittent operation.
爆縮式エンジンの吸気口、及び、ロータリー爆縮式エンジンの吸気孔の入口にアレスターを設置、酸水素ガス発生器の出口にバブリングタンクや逆止弁を取り付け、逆火防止対策とした。 Arresters were installed at the inlet of the implosion engine and the inlet of the rotary implosion engine, and a bubbling tank and check valve were installed at the outlet of the oxyhydrogen gas generator to prevent backfire.
点火プラグが爆縮反応で生成された水や水蒸気による電極の濡れによる絶縁不良対策は、点火プラグの点火ロッドを長くして水滴を防ぎ、点火プラグに吸気ガスをブローする、又、点火プラグを吸気バルブポット内に設置する。エンジンオイルの劣化対策は、排気口の位置を水平面、又は、エンジンヘッドを下向き方向に取り付けて対策とする。 Measures against poor insulation due to electrode wetting caused by water or water vapor generated by the implosion reaction of the spark plug prevent the water droplets by lengthening the spark rod of the spark plug, blow the intake gas to the spark plug, Install in the intake valve pot. To prevent engine oil deterioration, mount the exhaust port in a horizontal plane or mount the engine head downward.
 本発明の爆縮式エンジンに使用する燃料の爆縮材の原料は水素で無炭素エネルギーです、爆縮材は、電気分解等で簡単に生成でき、爆縮材発生により電解液を消費した水分を補給する。ガソリン、天然ガス等の化石燃料は不要となります。 The raw material of the fuel implosion material used in the implosion type engine of the present invention is hydrogen and carbon-free energy. The implosion material can be easily generated by electrolysis, etc., and the moisture consumed by the electrolyte due to the generation of the implosion material Replenish. There is no need for fossil fuels such as gasoline and natural gas.
この爆縮式エンジンの運転環境は、酸水素ガス(2H2+O2)、又は、水素(2H2)と酸素(O2)の混合ガスを使用した場合、酸素の供給が不要で爆縮材のみで運転が出来ます、室内、真空中、水中、悪環境等で動作可能となります。気化器が不要です。爆縮材で生成される排気は、二酸化炭素ガス、一酸化炭素ガス、有毒ガスや煤煙の発生が無く、水や水蒸気と爆縮材の未燃焼分となります。無炭素、無酸素状態で使用可能のため、室内、真空中、水中、悪環境等で運転可能となります。 The operating environment of this implosion type engine can be operated with only implosion material without supplying oxygen when oxyhydrogen gas (2H2 + O2) or mixed gas of hydrogen (2H2) and oxygen (O2) is used. It can be operated indoors, in a vacuum, underwater, and in a bad environment. No vaporizer is required. Exhaust gas generated from implosion material does not generate carbon dioxide, carbon monoxide gas, toxic gas or soot, and is an unburned part of water, water vapor and implosion material. Since it can be used in a carbon-free and oxygen-free state, it can be operated indoors, in a vacuum, underwater, or in a bad environment.
爆縮で生成された、水分と水蒸気は純水で、これを回収して再利用すれば閉状態で水分補給なしで長時間運転が可能となります。 The water and water vapor generated by implosion is pure water, and if this is recovered and reused, it can be operated for a long time without rehydration in a closed state.
排気量は、吸気量と排気量の容量比が約1200分の1程度となり微量となる、排気カムの動作範囲は少量でよい。又、排気口にマフラーが不要となる。 The displacement of the exhaust cam is a small amount with the volume ratio of the intake air amount to the exhaust gas amount being about 1/1200, and the operating range of the exhaust cam may be small. Also, no muffler is required at the exhaust port.
 太陽光発電、風力発電、水力発電等の自然電力を使用すれば省エネ対策となりランニングコストが安価となる。余剰エネルギーを用いて爆縮材をタンクやアキュムレーター等に貯蔵すればエネルギーの蓄積が出来る。 If natural power such as solar power generation, wind power generation, and hydropower generation is used, it will save energy and reduce running costs. Energy can be accumulated by storing the implosion material in a tank or accumulator using surplus energy.
2サイクル、4サイクル爆縮式エンジンの動作は、吸気膨張行程、点火時期、爆縮排気行程、爆縮行程、冷却工程、排気行程を組み合わせて、圧縮行程、爆発行程がない圧縮による出力損失がないエンジンです。 The operation of a two-cycle, four-cycle implosion type engine is a combination of an intake expansion stroke, an ignition timing, an implosion exhaust stroke, an implosion stroke, a cooling process, and an exhaust stroke. There is no engine.
ロータリー爆縮式エンジンの動作は、吸気膨張爆縮行程、冷却排気行程、点火時期、第1吸気膨張爆縮行程、第2吸気膨張爆縮行程を組み合わせて、圧縮行程、爆発行程がなく、圧縮による出力損失がないロータリーエンジンです。 The operation of the rotary implosion type engine is a combination of the intake / expansion / explosion stroke, the cooling / exhaust stroke, the ignition timing, the first intake / expansion / explosion stroke, and the compression stroke / explosion stroke, without compression. This is a rotary engine with no output loss due to.
2サイクル爆縮式エンジンは、4サイクル爆縮式の2倍の出力を得る事が出来る。1回転6点火ロータリー爆縮式エンジンは、1回転3点火ロータリー爆縮式エンジンの2倍の出力を得る事が出来る。 The 2-cycle implosion type engine can obtain twice the output of the 4-cycle implosion type. A one-rotation six-ignition rotary implosion type engine can obtain twice the output of a one-rotation three-ignition rotary implosion type engine.
従来の4サイクルエンジン、ロータリーエンジンの基本的な構造と技術を利用できる。 The basic structure and technology of the conventional 4-cycle engine and rotary engine can be used.
図1は酸水素ガス(2H2+O2)の発生方法と爆縮式エンジンの動作システムの実施方法を示した説明図である。(実施例1)FIG. 1 is an explanatory diagram showing a method for generating oxyhydrogen gas (2H2 + O2) and a method for implementing an operating system of an implosion type engine. Example 1 図2は2サイクル爆縮式エンジン動作の実施方法を示した説明図である。(実施例2)FIG. 2 is an explanatory view showing a method for carrying out a two-cycle implosion type engine operation. (Example 2) 図3は4サイクル爆縮式エンジン動作の実施方法を示した説明図である。(実施例3)FIG. 3 is an explanatory view showing a method of performing a 4-cycle implosion type engine operation. (Example 3) 図4は1回転3点火ロータリー爆縮式エンジン動作の実施方法を示した説明図である。(実施例4)FIG. 4 is an explanatory view showing a method for carrying out a one-rotation three-ignition rotary implosion type engine operation. Example 4 図5は1回転6点火ロータリー爆縮式エンジン動作の実施方法を示した説明図である。(実施例5)FIG. 5 is an explanatory diagram showing a method for carrying out a one-rotation six-ignition rotary implosion-type engine operation. (Example 5)
爆縮材は、酸水素ガス(2H2+O2)や水素(H2)の単体ガスや、これらの単体ガスと酸素(O2)や空気等の混合ガスを爆縮材として使用する。この爆縮材を爆縮式エンジンの吸気口からシリンダー内に直接、又は、燃料噴射弁やエジェクターで加圧供給する。 As the implosion material, an oxyhydrogen gas (2H2 + O2) or hydrogen (H2) simple gas, or a mixed gas such as oxygen (O2) or air is used as the implosion material. This implosion material is pressurized and supplied directly from the air inlet of the implosion type engine into the cylinder, or by a fuel injection valve or ejector.
 本案の爆縮式エンジンは、従来の4サイクルエンジンの形態を利用して、タイミングチェーン、又は、ベルトの変更、歯車の変更、カムの位置とカムの形状の変更、吸入バルブ、及び、排気バブルの開度とタイミングの変更、点火プラグの位置、点火時期の変更、排気口の位置変更、燃料噴射弁、燃料噴射ポンプ、加圧ポンプ、エジェクター、アレスターを追加して、2サイクル爆縮式エンジン及び4サイクル爆縮式エンジンとした。 The implosion type engine of the present plan utilizes the form of a conventional four-cycle engine, changes in timing chain or belt, changes in gears, changes in cam position and cam shape, intake valves, and exhaust bubbles. 2 cycle implosion type engine by adding a change in opening and timing, spark plug position, ignition timing change, exhaust port position change, fuel injection valve, fuel injection pump, pressurization pump, ejector, arrester And a 4-cycle implosion type engine.
2サイクル爆縮式エンジンの動作は、吸気膨張行程、点火時期、爆縮排気行程です。4サイクル爆縮式エンジンの動作は、吸気膨張行程、点火時期、爆縮行程、冷却工程、排気行程とした。 The operation of the two-cycle implosion type engine is the intake expansion stroke, ignition timing, and implosion exhaust stroke. The operation of the 4-cycle implosion-type engine was an intake expansion stroke, an ignition timing, an implosion stroke, a cooling process, and an exhaust stroke.
点火時期は、2サイクル爆縮式エンジンの場合は、吸気完了後から爆縮排気行程サイクル中の間、4サイクル爆縮式エンジンの場合は、吸気完了後から爆縮工程のサイクル中の間まで連続、又は、任意位置で間欠、又は、単独動作により爆縮材に点火する点火装置とした。 In the case of a two-cycle implosion-type engine, the ignition timing is continuous from the completion of intake to the implosion exhaust stroke cycle, and in the case of a four-cycle implosion-type engine, from the completion of intake to the middle of the implosion process cycle, or It was set as the ignition device which ignites the implosion material intermittently by arbitrary positions or by independent operation.
本案のロータリー爆縮式エンジンは、従来のロータリーエンジンエンジンの形態を利用した、ロータリーハウジングとローターの回転による作動室の空間容量が最小となる所と最大となる所はそれぞれ2カ所ある。1回転3点火ロータリー爆縮式エンジンの場合、最小となる1カ所に吸気孔と冷却排気孔、他方に排気孔と冷却吸気孔を、吸気孔と排気孔の間で作動室の空間容量が最大値付近に点火プラグを設置する。排気孔と冷却吸気孔は冷却吸気孔のみでも可能である。 The rotary implosion type engine of this proposal has two places where the space capacity of the working chamber is minimized and maximized by the rotation of the rotary housing and the rotor using the form of the conventional rotary engine. In the case of a one-rotation, three-ignition rotary implosion type engine, the intake hole and the cooling exhaust hole are located at one minimum, the exhaust hole and the cooling intake hole are located at the other, and the working chamber has the largest space capacity between the intake and exhaust holes Install a spark plug near the value. The exhaust holes and the cooling intake holes can be only the cooling intake holes.
1回転6点火ロータリー爆縮式エンジンの場合、作動室の空間容量が最小となる1カ所に第1吸気孔と第2排気孔、他方に第1排気孔と第2吸気孔を、第1吸気孔と第1排気孔の間で作動室の空間容量が最大値付近に第1点火プラグ、第2吸気孔と第2排気孔の間で作動室の空間容量が最大値付近に第2点火プラグを設置する。 In the case of a one-rotation six-ignition rotary implosion-type engine, the first intake hole and the second exhaust hole are provided at one place where the space capacity of the working chamber is minimized, and the first exhaust hole and the second intake hole are provided at the other position. The first spark plug is near the maximum value of the working chamber space capacity between the hole and the first exhaust hole, and the second spark plug is near the maximum value of the space capacity of the working chamber between the second intake hole and the second exhaust hole. Is installed.
1回転3点火ロータリー爆縮式エンジンは、吸気膨張爆縮行程、冷却排気行程があり吸気膨張爆縮行程中に点火と爆縮材の生成物を排気します。1回転6点火ロータリー爆縮式エンジンは、第1吸気膨張爆縮行程、第2吸気膨張爆縮行程があり、それぞれの行程の前半で点火、後半で爆縮材の生成物を排気する。 A one-turn, three-ignition rotary implosion type engine has an intake / expansion / explosion stroke and a cooling / exhaust stroke, and exhausts products of ignition and implosion material during the intake / expansion stroke. The one-rotation six-ignition rotary implosion-type engine has a first intake / expansion / explosion stroke and a second intake / expansion / expansion stroke, and ignites in the first half of each stroke and exhausts the product of the implosion material in the second half.
爆縮式エンジンに必要な酸水素ガス(2H2+O2)の発生方法と爆縮式エンジンの動作システムについて図1により説明をする。 The generation method of oxyhydrogen gas (2H2 + O2) necessary for the implosion type engine and the operation system of the implosion type engine will be described with reference to FIG.
爆縮式エンジン(1)は、主燃料に爆縮材の酸水素ガス(45)(2H2+O2)を使用した場合、無酸素状態で運転出来る、又は、酸水素ガス(45)と酸素、空気をエジェクター(35)で混合して混合ガスとして爆縮材とする事ができる。 The implosion type engine (1) can be operated in an oxygen-free state when oxyhydrogen gas (45) (2H2 + O2) is used as the main fuel, or the oxyhydrogen gas (45), oxygen, and air are used. It can be mixed with an ejector (35) to make an implosion material as a mixed gas.
酸水素ガス発生装置(2)に供給される電力は、爆縮式エンジン(1)に直結された発電機(3)、太陽光発電(4)、風力発電(5)、商用電源(6)バッテリー(9)、コンデンサースタック(10)等から電源セレクター(7)により選択して単独、又は、複数を用いて給電して得る。 Electric power supplied to the oxyhydrogen gas generator (2) includes a generator (3) directly connected to the implosion engine (1), solar power generation (4), wind power generation (5), and commercial power supply (6). The battery is selected from the battery (9), the capacitor stack (10), etc. by the power supply selector (7), and the power can be supplied by using one or more.
電源セレクター(7)で選択された電力は、充電器(8)により直流電圧に変換され、バッテリー(9)、及び、コンデンサースタック(10)を充電しつつ、昇降圧DC-DC変換器(11)に給電される、昇降圧DC-DC変換器(11)により昇降圧した直流に変換する、この直流は、電力検出器(12)により電力量を制御、監視する。 The power selected by the power supply selector (7) is converted into a DC voltage by the charger (8), and the step-up / step-down DC-DC converter (11) is charged while charging the battery (9) and the capacitor stack (10). ) Is converted into a direct current that is stepped up and down by a step-up / step-down DC-DC converter (11), and this direct current controls and monitors the amount of power by a power detector (12).
余剰電力は、充電器(8)によりバッテリー(9)、コンデンサースタック(10)へ充電する。 The surplus power is charged into the battery (9) and the capacitor stack (10) by the charger (8).
更に、パルス幅変換器(13)により直流をパルスに変換し、酸水素ガス発生装置(2)の電解液(14)に浸された電極(15)に電力を供給し電気分解する。 Furthermore, direct current is converted into a pulse by the pulse width converter (13), and electric power is supplied to the electrode (15) immersed in the electrolyte (14) of the oxyhydrogen gas generator (2) for electrolysis.
電力により酸水素ガス発生装置(2)から発生した酸水素ガス(16)と電解液の泡(17)は、酸水素ガス(16)と電解液の泡(17)を分離するためにバブリングタンク1(19)の電解液中を通過させ、酸水素ガスを分離する。 The oxyhydrogen gas (16) and the electrolyte bubble (17) generated from the oxyhydrogen gas generator (2) by electric power are used as a bubbling tank to separate the oxyhydrogen gas (16) and the electrolyte bubble (17). 1 (19) is passed through the electrolyte to separate the oxyhydrogen gas.
酸水素ガス発生装置(2)で生じた、酸水素ガス(16)と電解液の泡(17)の逆流防止のために逆止弁1(18)を配管中に配置する。 A check valve 1 (18) is arranged in the pipe to prevent backflow of the oxyhydrogen gas (16) and the electrolyte bubbles (17) generated in the oxyhydrogen gas generator (2).
酸水素ガス発生装置(2)内の電解液(14)は電気分解で、酸水素ガス(16)と電解液の泡(17)になる。電解液(14)が電解液の泡(17)となり、バブリングタンク1(19)に流入して水位が上昇する、水位が上昇した電解液(20)は、オーバーフローする、オーバーフローした電解液(20)は、バイパス配管(21)により酸水素ガス発生装置(2)に戻る。 The electrolytic solution (14) in the oxyhydrogen gas generator (2) is electrolyzed into oxyhydrogen gas (16) and electrolytic bubbles (17). The electrolytic solution (14) becomes the foam (17) of the electrolytic solution and flows into the bubbling tank 1 (19) to increase the water level. The electrolytic solution (20) with the increased water level overflows, and the overflowed electrolytic solution (20 ) Returns to the oxyhydrogen gas generator (2) by the bypass pipe (21).
酸水素ガス発生装置(2)からバブリングタンク1(19)へ電解液(14)の逆流を防ぐため逆止弁2(22)をバイパス配管(21)の途中に設置する。 In order to prevent the back flow of the electrolyte (14) from the oxyhydrogen gas generator (2) to the bubbling tank 1 (19), a check valve 2 (22) is installed in the middle of the bypass pipe (21).
バブリングタンク1(19)の電解液中を通過した酸水素ガスとバブリングタンク1(19)で発生した水蒸気、酸水素ガスと水蒸気(23)は、バブリングタンク2(24)の純水(25)中を通過させ、酸水素ガスと水蒸気(23)を分離して、酸水素ガス(27)を得る。 The oxyhydrogen gas that has passed through the electrolyte in the bubbling tank 1 (19) and the water vapor generated in the bubbling tank 1 (19), the oxyhydrogen gas and the water vapor (23) are purified water (25) of the bubbling tank 2 (24). The oxyhydrogen gas and the water vapor (23) are separated through the inside to obtain the oxyhydrogen gas (27).
バブリンクタンク1(19)とバブリンクタンク2(24)は連通管で結ばれ、バブリングタンク1(19)の水位が低くなるとバブリングタンク2(24)から純水(25)が連通管を通過して補給され水位は同一となる。 The bubbling tank 1 (19) and the bubbling tank 2 (24) are connected by a communication pipe. When the water level of the bubbling tank 1 (19) becomes low, pure water (25) passes from the bubbling tank 2 (24) through the communication pipe. Replenished and the water level is the same.
この連通管の中間に逆止弁3(26)を入れバブリングタンク1(19)の電解液の逆流を防ぐ。 A check valve 3 (26) is inserted in the middle of this communication pipe to prevent back flow of the electrolyte in the bubbling tank 1 (19).
バブリングタンク2(24)の水位が低くなると、水位検出器(28)の設定値により給水タンク(29)の純水を給水ポンプ(30)で加圧し、給水電磁弁(31)を開いて補給する。逆流防止の為に、給水タンク(29)とバブリングタンク2(24)の間に逆止弁4(32)を入れる。 When the water level of the bubbling tank 2 (24) becomes low, pure water in the water supply tank (29) is pressurized by the water supply pump (30) according to the set value of the water level detector (28), and the water supply electromagnetic valve (31) is opened to replenish. To do. In order to prevent backflow, a check valve 4 (32) is inserted between the water supply tank (29) and the bubbling tank 2 (24).
給水タンク(29)への補給水は、純水を使用する。純水装置、又は、RO純水装置(33)を通して純水を補給する。 Pure water is used as makeup water to the water supply tank (29). Pure water is supplied through the pure water device or the RO pure water device (33).
バブリングタンク2(24)を通過した酸水素ガス(27)は、アキュムレーター(34)に貯蔵される。 The oxyhydrogen gas (27) that has passed through the bubbling tank 2 (24) is stored in the accumulator (34).
アキュムレーター(34)は、アクセルペダル(36)と酸水素ガス発生器(2)の発生量に時間遅れがあるため、アキュムレーター(34)を設け、エンジンの発進、加速運転時の酸水素ガス(45)の消費に対応する。 The accumulator (34) is provided with an accumulator (34) because there is a time lag in the generation amount of the accelerator pedal (36) and the oxyhydrogen gas generator (2). This corresponds to the consumption of (45).
圧力検出器(38)により酸水素ガス(45)の圧力を測定し、圧力設定によりパルス幅変換器(13)に制御信号を送り、酸水素ガス発生装置(2)に供給する電力を制御、監視して酸水素ガス(16)の発生量を制御して、酸水素ガス(37)の圧力を制御する。 The pressure detector (38) measures the pressure of the oxyhydrogen gas (45), sends a control signal to the pulse width converter (13) according to the pressure setting, and controls the power supplied to the oxyhydrogen gas generator (2). The amount of oxyhydrogen gas (16) generated is monitored and the pressure of the oxyhydrogen gas (37) is controlled.
圧力検出器(38)の設定により加圧ブロアー(40)の回転数を制御して爆縮式エンジン(1)に供給される酸水素ガス(45)の圧力を調整する。 The pressure of the pressure blower (40) is controlled by the setting of the pressure detector (38) to adjust the pressure of the oxyhydrogen gas (45) supplied to the implosion type engine (1).
酸水素ガス(45)は、逆止弁5(39)を通過し、爆縮式エンジン(1)に供給される。 The oxyhydrogen gas (45) passes through the check valve 5 (39) and is supplied to the implosion type engine (1).
アクセルペダル(36)を踏み込むと、ガス供給弁(41)が開き、ガス量調節弁(42)がアクセルペダル(36)に比例して開き、酸水素ガス(45)の供給量を制御して、アレスター(43)、及び、燃料噴射弁(44)、エジェクター(35)を通過して、爆縮式エンジン(1)の吸気口(46)から供給する。 When the accelerator pedal (36) is depressed, the gas supply valve (41) opens, the gas amount adjustment valve (42) opens in proportion to the accelerator pedal (36), and the supply amount of the oxyhydrogen gas (45) is controlled. The fuel is supplied from the intake port (46) of the implosion type engine (1) through the arrester (43), the fuel injection valve (44), and the ejector (35).
吸気膨張行程の時に排気バルブ(52)は閉じて、吸気バルブ(47)が開き、ピストン(49)は上死点から下死点に向かう、アクセルペダル(36)に比例した酸水素ガス(45)が、吸気膨張爆縮行程のサイクルの中間までシリンダー(48)内に吸気、充填され、吸気バルブ(47)を閉じ、点火プラグ(50)により点火と同時にシリンダー(48)内の酸水素ガス(51)が発火すると、発熱して膨張し下死点に至り。吸気膨張行程を終了する。 During the intake expansion stroke, the exhaust valve (52) is closed, the intake valve (47) is opened, and the piston (49) is directed from the top dead center to the bottom dead center. The oxyhydrogen gas (45) is proportional to the accelerator pedal (36). ) Is sucked and filled in the cylinder (48) until the middle of the cycle of the intake / expansion / explosion stroke, the intake valve (47) is closed, and the ignition plug (50) is ignited by the spark plug (50) to oxyhydrogen gas in the cylinder (48). When (51) ignites, it generates heat and expands to the bottom dead center. End the intake expansion stroke.
次の瞬間に酸水素ガス(51)が相変化して爆縮すると。シリンダー(48)内はこの爆縮で真空状態となりピストン(49)は上死点に吸引され、ピストン(49)が上死点に向かい、爆縮排気行程となる。 When the oxyhydrogen gas (51) changes phase and implodes at the next moment. The inside of the cylinder (48) is evacuated by this implosion, and the piston (49) is sucked to the top dead center, and the piston (49) goes to the top dead center, and the implosion exhaust stroke is performed.
吸気バルブ(47)と排気バルブ(52)のそれぞれのタイミングは、吸気カムと排気カムの形状を個々に調節して行う。 Each timing of the intake valve (47) and the exhaust valve (52) is performed by individually adjusting the shapes of the intake cam and the exhaust cam.
排気バルブ(52)は、ピストン(49)が上死点の手前で開き、排気口(53)から凝縮され生成された水や水蒸気である排気水蒸気(54)を排気排水する。上死点近くで排気バルブ(52)を閉じ、爆縮排気行程を終了する。 The exhaust valve (52) opens the piston (49) before top dead center, and exhausts and drains the exhaust water vapor (54), which is water or water vapor that is condensed and generated from the exhaust port (53). The exhaust valve (52) is closed near the top dead center, and the implosion exhaust stroke is completed.
排気口(53)から排気排水された排気水蒸気(54)は、冷却され水となり、供給タンク(29)へ戻る。 The exhaust water vapor (54) exhausted and discharged from the exhaust port (53) is cooled to become water and returns to the supply tank (29).
次に、再び、吸気膨張行程に戻り、爆縮排気行程と移行してこの動作を繰り返す。 Next, the operation returns to the intake / expansion stroke again and shifts to the implosion / exhaust stroke to repeat this operation.
爆縮式エンジン(1)の動力軸と結ばれた発電機(3)は、爆縮式エンジン(1)の回転により発電を開始する。 The generator (3) connected to the power shaft of the implosion type engine (1) starts power generation by the rotation of the implosion type engine (1).
これらの全ての制御、監視のコントロールはコントローラー(55)で行う。 All these controls and monitoring controls are performed by the controller (55).
2サイクル爆縮式エンジン動作を図2で説明する。 A two-cycle implosion type engine operation will be described with reference to FIG.
2サイクル爆縮式エンジンの主要構成は、カムシャフト(60)、クランクシャフト(61)、コンロッド(62)、シリンダー(63)、ピストン(64)、点火プラグ(65)、吸気口(66)、吸気バルブ(67)、吸気カム(68)、排気口(69)、排気バルブ(70)、排気カム(71)等で構成されている。 The main components of the two-cycle implosion type engine are a camshaft (60), a crankshaft (61), a connecting rod (62), a cylinder (63), a piston (64), a spark plug (65), an intake port (66), An intake valve (67), an intake cam (68), an exhaust port (69), an exhaust valve (70), an exhaust cam (71), and the like are included.
吸気膨張行程(56)は、排気バルブ(70)は,閉じている。クランクシャフト(61)が右回転して、コンロッド(62)が下がりピストン(64)が上死点から下降する、同時に吸気カム(68)により吸気バルブ(67)を開き、シリンダー(63)内が負圧となり、爆縮材は、吸気口(66)からシリンダー(63)内へ吸気充填される。吸気膨張行程(56)のサイクル中間位置でカムシャフト(60)と同期した吸気カム(68)により吸気バルブ(67)を閉じ、爆縮材の充填を止める。 In the intake expansion stroke (56), the exhaust valve (70) is closed. The crankshaft (61) rotates clockwise, the connecting rod (62) is lowered, and the piston (64) is lowered from the top dead center. At the same time, the intake valve (67) is opened by the intake cam (68), and the inside of the cylinder (63) is opened. A negative pressure is applied, and the implosive material is charged into the cylinder (63) through the intake port (66). The intake valve (67) is closed by the intake cam (68) synchronized with the camshaft (60) at the cycle intermediate position of the intake expansion stroke (56), and filling of the implosion material is stopped.
点火膨張中(57)は、吸気バルブ(75)を閉じた後に、シリンダー(63)内の爆縮材に点火プラグ(65)により点火(76)する。爆縮材が燃焼し温度上昇により膨張し、膨張力でピストン(72)が下死点に至り。クランクシャフト(73)が右回転し、吸気膨張行程(56)が終了して、1サイクルが終了する。 During ignition expansion (57), the implosive material in the cylinder (63) is ignited (76) by the spark plug (65) after the intake valve (75) is closed. The implosion material burns and expands as the temperature rises, and the piston (72) reaches bottom dead center due to the expansion force. The crankshaft (73) rotates to the right, the intake expansion stroke (56) ends, and one cycle ends.
点火時期は、吸気膨張行程(56)のサイクル中で、吸気バルブ(67)と排気バルブ(70)が閉じた状態から爆縮排気行程(58)のサイクルの中間位置まで単独、連続、又は、任意位置で間欠の点火(76)点火(78)でよい。 The ignition timing is independent, continuous from the state in which the intake valve (67) and the exhaust valve (70) are closed in the cycle of the intake expansion stroke (56) to the middle position of the cycle of the implosion exhaust stroke (58), or Intermittent ignition (76) ignition (78) may be used at any position.
爆縮排気行程(58)は、爆縮材が燃焼し、膨張が終わると同時に爆縮材の相状態が変化し爆縮する。水や水蒸気が生成する。 In the implosion exhaust stroke (58), the implosion material burns, and at the same time the expansion ends, the phase state of the implosion material changes and implosion occurs. Water and water vapor are generated.
このときの爆縮材の容積比は約1200分の1以下に凝縮されてシリンダー(63)内は、真空状態となり吸引力でピストン(77)は、上死点の方向に吸引され、ピストン(77)は、下死点から上昇する。 The volume ratio of the implosion material at this time is condensed to about 1/1200 or less, and the inside of the cylinder (63) is in a vacuum state, and the piston (77) is sucked in the direction of the top dead center by the suction force. 77) Ascend from bottom dead center.
爆縮排気行程中(59)は、クランクシャフト(79)は、慣性で右回転し、爆縮排気行程(58)のサイクル中間位置から上死点の手前で排気カム(80)により排気バブル(81)を開き、排気口(69)から爆縮された水や水蒸気を上死点手前まで排出する、上死点手前で排気カム(80)により排気バブル(81)は閉じ、爆縮排気行程(58)は終了し、2サイクルを終了する。 During the implosion exhaust stroke (59), the crankshaft (79) rotates to the right due to inertia, and the exhaust cam (80) exhausts bubbles from the middle position of the implosion exhaust stroke (58) before the top dead center (80). 81) is opened, and the water and water vapor explosively expelled from the exhaust port (69) are exhausted to just before the top dead center, and the exhaust bubble (81) is closed by the exhaust cam (80) before the top dead center, (58) ends and ends two cycles.
再び、クランクシャフト(79)は慣性で右回転し、吸気膨張行程(56)及び爆縮排気行程(58)を繰り返す。この爆縮式エンジンは、ピストン(64)が2サイクルすると、クランクシャフト(61)は、1回転してカムシャフト(60)が1回転する。点火プラグ(65)による点火(76)は1回する。2サイクル爆縮式エンジンです。 Again, the crankshaft (79) rotates clockwise with inertia and repeats the intake and expansion strokes (56) and the implosion and exhaust stroke (58). In this implosion type engine, when the piston (64) is cycled twice, the crankshaft (61) rotates once and the camshaft (60) rotates once. The ignition (76) by the spark plug (65) is performed once. 2-cycle implosion type engine.
4サイクル爆縮式エンジン動作を図3で説明する。 A 4-cycle implosion type engine operation will be described with reference to FIG.
4サイクル爆縮式エンジンの主要構成は、カムシャフト(91)、クランクシャフト(92)、コンロッド(93)、シリンダー(94)、ピストン(95)、点火プラグ(96)、吸気口(97)、吸気バルブ(98)、吸気カム(99)、排気口(100)、排気バルブ(101)、排気カム(102)等で構成されている。 The main components of the 4-cycle implosion type engine are a camshaft (91), a crankshaft (92), a connecting rod (93), a cylinder (94), a piston (95), a spark plug (96), an intake port (97), An intake valve (98), an intake cam (99), an exhaust port (100), an exhaust valve (101), an exhaust cam (102), and the like are included.
吸気膨張行程(83)は、排気バルブ(101)は,閉じている。クランクシャフト(92)が右回転して、コンロッド(93)が下がりピストン(95)が上死点から下降する、同時に吸気カム(99)により吸気バルブ(98)を開き、シリンダー(94)内が負圧となり、爆縮材は、吸気口(97)からシリンダー(94)内へ吸気充填される。吸気膨張行程(83)のサイクル中間位置でカムシャフト(91)に同期した吸気カム(99)により吸気バルブ(98)を閉じ、爆縮材の充填を止める。 In the intake expansion stroke (83), the exhaust valve (101) is closed. The crankshaft (92) rotates clockwise, the connecting rod (93) is lowered, and the piston (95) is lowered from the top dead center. At the same time, the intake valve (98) is opened by the intake cam (99), and the inside of the cylinder (94) is opened. Negative pressure is reached, and the implosive material is sucked into the cylinder (94) through the suction port (97). The intake valve (98) is closed by the intake cam (99) synchronized with the camshaft (91) at the cycle intermediate position of the intake expansion stroke (83), and filling of the implosion material is stopped.
点火膨張中(84)は、吸気バルブ(106)を閉じた後に、シリンダー(94)内の爆縮材に点火プラグ(96)により点火(109)する。爆縮材が燃焼し温度上昇により膨張し、膨張力でピストン(108)が下死点に至り。クランクシャフト(103)が右回転し、膨張行程(83)が終了して、1サイクルが終了する。 During ignition expansion (84), after closing the intake valve (106), the implosive material in the cylinder (94) is ignited (109) by the spark plug (96). The implosion material burns and expands as the temperature rises, and the expansion force causes the piston (108) to reach bottom dead center. The crankshaft (103) rotates to the right, the expansion stroke (83) ends, and one cycle ends.
点火時期は、吸気膨張行程(83)のサイクル中で吸気バルブ(98)と排気バルブ(101)が閉じた状態から爆縮排気行程(85)のサイクルの中間位置まで単独、連続点火(109)、又は、任意位置で間欠の点火(109)でよい。 The ignition timing is independent, continuous ignition (109) from the state where the intake valve (98) and the exhaust valve (101) are closed in the cycle of the intake expansion stroke (83) to the middle position of the cycle of the implosion exhaust stroke (85). Or intermittent ignition (109) at any position.
爆縮行程(85)は、爆縮材が燃焼し、膨張が終わると同時に爆縮材の相状態が変化し爆縮する。水や水蒸気が生成する。 In the implosion stroke (85), the implosion material burns, and at the same time the expansion ends, the phase state of the implosion material changes and implosion occurs. Water and water vapor are generated.
このときの爆縮材の容積比は約1200分の1以下に凝縮されてシリンダー(94)内は、真空状態となり吸引力でピストン(110)は、上死点の方向に吸引され、ピストン(110)は、下死点から上昇する。 The volume ratio of the implosion material at this time is condensed to about 1/1200 or less, and the inside of the cylinder (94) becomes a vacuum state, and the piston (110) is sucked in the direction of the top dead center by the suction force. 110) rise from bottom dead center.
爆縮行程中(86)は、吸気バルブ(106)、及び、排気バブル(101)は閉じ、シリンダー(94)内の爆縮材は、凝縮して水分や水蒸気に相状態が変化し、シリンダー(94)内は真空状態となりピストン(113)は、上死点まで吸引され、コンロッド(111)も上昇する、爆縮行程(85)は終了し、2サイクル目を終了する。 During the implosion stroke (86), the intake valve (106) and the exhaust bubble (101) are closed, and the implosion material in the cylinder (94) is condensed to change its phase state to moisture and water vapor. The inside of (94) is in a vacuum state, the piston (113) is sucked to the top dead center, the connecting rod (111) is also raised, the implosion stroke (85) is finished, and the second cycle is finished.
冷却工程(87)は、ピストン(114)が上死点に達すると再びピストン(114)は慣性力により下死点に向かう。 In the cooling step (87), when the piston (114) reaches the top dead center, the piston (114) again moves to the bottom dead center by the inertial force.
冷却工程中(88)は、クランクシャフト(117)の慣性力でピストン(118)が上死点から下死点に向かう。このとき排気カム(115)により排気バブル(116)を開き、排気口(100)から、外気をピストン(118)の吸引力で吸気し、シリンダー(94)内に充填し、凝縮した水や水蒸気と混合して、ピストン(118)、シリンダー(94)、点火プラグ(96)、エンジンブロックを冷却する。クランクシャフト(117)が半周回転してピストン(118)が下死点に達して、冷却工程(87)を終了し、3サイクルが終了する。このとき、排気バブル(116)は、開いた状態。 During the cooling process (88), the piston (118) moves from the top dead center to the bottom dead center by the inertial force of the crankshaft (117). At this time, the exhaust bubble (116) is opened by the exhaust cam (115), the outside air is sucked from the exhaust port (100) by the suction force of the piston (118), filled into the cylinder (94), and condensed water or water vapor. To cool the piston (118), cylinder (94), spark plug (96) and engine block. The crankshaft (117) rotates half a round and the piston (118) reaches bottom dead center, the cooling step (87) is completed, and three cycles are completed. At this time, the exhaust bubble (116) is in an open state.
排気行程(89)は、排気バブル(121)は引き続き開いたまま、ピストン(120)が下死点から、クランクシャフト(119)の慣性力により上昇する。 In the exhaust stroke (89), the piston (120) rises from the bottom dead center by the inertial force of the crankshaft (119) while the exhaust bubble (121) continues to open.
排気行程中(90)は、排気バブル(124)は開いたまま、クランクシャフト(122)の慣性力によりピストン(125)が下死点から上死点に向かう、ピストン(125)はシリンダー(94)内の水や水蒸気、冷却済み外気を排気口(100)から排気する。ピストン(125)が上死点に至り、クランクシャフト(122)半周回転して排気カム(123)により排気バブル(124)を閉じて、排気行程(89)を終了し、4サイクルが終了する。 During the exhaust stroke (90), the exhaust bubble (124) remains open and the piston (125) moves from bottom dead center to top dead center due to the inertial force of the crankshaft (122). ) Water, water vapor, and cooled outside air are exhausted from the exhaust port (100). The piston (125) reaches top dead center, the crankshaft (122) rotates half a circle, the exhaust bubble (124) is closed by the exhaust cam (123), the exhaust stroke (89) is completed, and the four cycles are completed.
クランクシャフト(122)の慣性力で右回転し、吸気膨張行程(83)に至り、爆縮行程(85)、冷却工程(87)、排気行程(89)を繰り返す。この爆縮式エンジンは、ピストン(95)は、4サイクルして、クランクシャフト(92)は、2回転して、カムシャフト(91)が1回転する、点火プラグ(96)による点火(109)は1回する、4サイクル爆縮式エンジンです。 The crankshaft (122) rotates clockwise by the inertial force, reaches the intake expansion stroke (83), and repeats the implosion stroke (85), the cooling step (87), and the exhaust stroke (89). In this implosion type engine, the piston (95) performs four cycles, the crankshaft (92) rotates twice, and the camshaft (91) rotates once. Is a one-time four-cycle implosion-type engine.
1回転3点火ロータリー爆縮式エンジン動作を図4で説明する。 The operation of the one-rotation / three-ignition rotary implosion-type engine will be described with reference to FIG.
1回転3点火ロータリー爆縮式エンジンの主要構成は、ロータリーハウジング(138)、エキセントリックシャフト(139)、ローター(140)、点火プラグ(141),吸気孔(142)、排気孔(143)、冷却吸気孔(144)、冷却排気孔(145)、第1作動室(146)、第2作動室(147)、第3作動室(148)等で構成され、吸気孔(142)には、爆縮材が供給されている。 The main components of the one-rotation / three-ignition rotary implosion type engine are a rotary housing (138), an eccentric shaft (139), a rotor (140), a spark plug (141), an intake hole (142), an exhaust hole (143), and a cooling unit. The intake hole (144), the cooling exhaust hole (145), the first working chamber (146), the second working chamber (147), the third working chamber (148) and the like are formed. Shrink material is supplied.
ロータリーハウジング(138)とローター(140)の空間は、作動室と呼ばれ回転位置により空間容量が変化する、この説明では、第1作動室(146)におけるローター(140)の前端と後端の間について説明を行う。 The space between the rotary housing (138) and the rotor (140) is called a working chamber, and the space capacity changes depending on the rotational position. In this description, the front and rear ends of the rotor (140) in the first working chamber (146) I will explain between.
吸気膨張爆縮行程(126)は、ローター(140)が右回転して、第1作動室(146)のローター(140)の前端が吸気孔(142)を通過し、第1作動室(146)の第1作動室の空間容積が最小から増加する時点から吸気膨張爆縮行程(126)になります、更に、ローター(140)が右回転すると第1作動室(146)の容積が増加し、第1作動室(146)内が負圧になり吸気孔(142)から爆縮材が第1作動室(146)に吸い込まれる。 In the intake expansion / contraction stroke (126), the rotor (140) rotates clockwise, the front end of the rotor (140) of the first working chamber (146) passes through the intake hole (142), and the first working chamber (146) ) From the point when the space volume of the first working chamber increases from the minimum to the intake expansion / expansion stroke (126). Further, when the rotor (140) rotates clockwise, the volume of the first working chamber (146) increases. The inside of the first working chamber (146) becomes negative pressure, and the implosion material is sucked into the first working chamber (146) from the intake hole (142).
吸気中(127)は、ローター(140)が右回転し、第1作動室(146)の空間容量は増加し、吸気孔(142)から爆縮材が第1作動室(146)に吸い込まれ充満する。第1作動室(146)の空間容量が最大値になる手前で、ローターの第1作動室(146)の後端が吸気孔(142)を通過する。 During intake (127), the rotor (140) rotates clockwise, the space capacity of the first working chamber (146) increases, and the implosive material is sucked into the first working chamber (146) from the intake hole (142). To charge. The rear end of the first working chamber (146) of the rotor passes through the intake hole (142) just before the space capacity of the first working chamber (146) reaches the maximum value.
膨張中(128)は、ローター(140)が右回転して、第1作動室(146)のローター(140)の後端が吸気孔(142)を通過した状態と、第1作動室(146)のローター(140)の前端が排気孔(143)の手前の状態、即ち、第1作動室(146)が密閉状態となった時、第1作動室(146)の空間容量が最大になる手前で、点火プラグ(141)により第1作動室(146)に充満した爆縮材に点火(149)する、爆縮材が燃焼し、燃焼により爆縮材の温度上昇に伴う膨張による膨張力で第1作動室(146)の空間容量を増加する方向へ右回転する。 During expansion (128), the rotor (140) rotates clockwise and the rear end of the rotor (140) of the first working chamber (146) passes through the intake hole (142) and the first working chamber (146). ) When the front end of the rotor (140) is in front of the exhaust hole (143), that is, when the first working chamber (146) is sealed, the space capacity of the first working chamber (146) is maximized. In front, the implosive material filled in the first working chamber (146) is ignited (149) by the spark plug (141), the implosive material is combusted, and the expansion force due to the expansion accompanying the temperature rise of the implosive material by the combustion Then, it rotates clockwise to increase the space capacity of the first working chamber (146).
爆縮中(129)は、爆縮材の燃焼後に相変化により爆縮材の容積比は約1200分の1以下に凝縮されて爆縮する。爆縮により第1作動室(146)は、真空状態となり負圧となる、ローター(140)は、吸引力で空間容量を減少する排気孔(143)の方向に右回転する。 During implosion (129), the volume ratio of the implosion material is condensed to about 1/1200 or less due to the phase change after the implosion material is burned, and implosion occurs. As a result of implosion, the first working chamber (146) is in a vacuum state and has a negative pressure. The rotor (140) rotates rightward in the direction of the exhaust hole (143) that reduces the space capacity by the suction force.
排気行程(130)は、ローター(140)の慣性力で右回転しつつ、第1作動室(146)内部で爆縮された水や水蒸気を、第1作動室(146)空間容量が最小値になる手前で第1作動室(146)のローター(140)の前端が排気孔(143)を通過して排気孔(143)から排気する。排気孔を取り付けない場合、排気行程(130)と排気行程終了(131)を、飛ばして冷却吸気工程(132)になる。 The exhaust stroke (130) rotates right by the inertial force of the rotor (140), while the water and water vapor exploded inside the first working chamber (146) is converted into a minimum value in the first working chamber (146) space capacity. The front end of the rotor (140) of the first working chamber (146) passes through the exhaust hole (143) and exhausts from the exhaust hole (143). When the exhaust hole is not attached, the exhaust stroke (130) and the exhaust stroke end (131) are skipped and the cooling intake step (132) is started.
排気行程終了(131)は、ローター(140)は右回転して、第1作動室(146)の空間容量は最小となり、全ての水や水蒸気を排気孔(143)から排気排水する。第1作動室(146)のローター(140)の後端が排気孔(143)を通過して排気行程終了(131)となる。 At the end of the exhaust stroke (131), the rotor (140) rotates clockwise, the space capacity of the first working chamber (146) is minimized, and all water and water vapor are exhausted and drained from the exhaust hole (143). The rear end of the rotor (140) of the first working chamber (146) passes through the exhaust hole (143), and the exhaust stroke ends (131).
冷却吸気工程(132)は、慣性力によりローター(140)は右回転し,第1作動室(146)のローター(140)の前端が冷却吸気孔(144)を通過すると、冷却吸気孔(144)より外気を第1作動室(146)に吸い込み、ローター(140)、第1作動室(146)、ロータリーハウジング(138)を冷却する。排気孔(143)を取り付けない場合、爆縮中(129)で生じた水や水蒸気と、冷却吸気工程(132)で冷却吸気孔(144)より吸い込まれた外気が混合される。 In the cooling intake process (132), the rotor (140) rotates clockwise due to inertial force, and when the front end of the rotor (140) of the first working chamber (146) passes through the cooling intake hole (144), the cooling intake hole (144) ) Sucks outside air into the first working chamber (146), and cools the rotor (140), the first working chamber (146), and the rotary housing (138). When the exhaust hole (143) is not attached, water and water vapor generated during implosion (129) and the outside air sucked from the cooling intake hole (144) in the cooling intake process (132) are mixed.
冷却吸気工程中(133)は、ローター(140)が、右回転して第1作動室(146)の空間容量は増加し、第1作動室(146)は、負圧となり外気を冷却吸気孔(144)から吸引する。ローター(140)、第1作動室(146)、ロータリーハウジング(138)を更に冷却する。 During the cooling and intake process (133), the rotor (140) rotates to the right and the space capacity of the first working chamber (146) increases, and the first working chamber (146) becomes negative pressure and cools the outside air as a cooling intake hole. Aspirate from (144). The rotor (140), the first working chamber (146), and the rotary housing (138) are further cooled.
冷却吸気工程終了(134)は、ローター(140)が右回転して、ローター(140)の後端が冷却吸気孔(144)を通過と、ローター(140)の前端が冷却排気孔(145)の手前で冷却吸気工程(132)を終了する。 At the end of the cooling intake process (134), the rotor (140) rotates clockwise, the rear end of the rotor (140) passes through the cooling intake hole (144), and the front end of the rotor (140) is the cooling exhaust hole (145). The cooling air intake step (132) is terminated before.
冷却排気行程(135)は、慣性力によりローター(140)が右回転し、ローター(140)の前端が冷却排気孔(145)を通過すると冷却排気行程(135)となる。 The cooling exhaust stroke (135) becomes the cooling exhaust stroke (135) when the rotor (140) rotates clockwise due to inertial force and the front end of the rotor (140) passes through the cooling exhaust hole (145).
冷却排気行程中(136)は、慣性力によりローター(140)が右回転し、第1作動室(146)の空間容量が縮小して、第1作動室(146)は、加圧され第1作動室(146)内の水や水蒸気や冷却済み外気を冷却排気孔(145)より排気排液する。 During the cooling and exhaust stroke (136), the rotor (140) rotates clockwise by the inertial force, the space capacity of the first working chamber (146) is reduced, and the first working chamber (146) is pressurized and the first Water, water vapor and cooled outside air in the working chamber (146) are exhausted and discharged from the cooling exhaust hole (145).
冷却排気行程終了(137)は、慣性力によりローター(140)が右回転し、第1作動室(146)の空間容量は最小となり、水や水蒸気や冷却済み外気を全て冷却排気孔(145)より排気排液し。第1作動室(146)のローター(140)の後端が冷却排気孔(145)を通過して、冷却排気行程(135)を終了する。 At the end of the cooling exhaust stroke (137), the rotor (140) rotates clockwise due to the inertial force, the space capacity of the first working chamber (146) is minimized, and all the water, water vapor, and cooled outside air are cooled by the cooling exhaust hole (145). Drain the exhaust more. The rear end of the rotor (140) of the first working chamber (146) passes through the cooling exhaust hole (145) to complete the cooling exhaust stroke (135).
更に、ローター(140)が慣性で右回転して、吸気膨張爆縮行程(126)、排気行程(130)、冷却吸気工程(132)、冷却排気行程(135)を繰り返す。このロータリー爆縮式エンジンは、第1作動室(146)、第2作動室(147)、第3作動室(148)と作動室が3室あり、各作動室が同様な工程を行う。ローター(140)が1回転すると、点火プラグ(141)は3回点火(149)する。則ち、1回転で3回爆縮する、1回転3点火ロータリー爆縮式エンジンです。 Further, the rotor (140) rotates to the right due to inertia, and the intake / expansion / expansion stroke (126), the exhaust stroke (130), the cooling / intake step (132), and the cooling / exhaust stroke (135) are repeated. This rotary implosion type engine has a first working chamber (146), a second working chamber (147), a third working chamber (148) and three working chambers, and each working chamber performs the same process. When the rotor (140) rotates once, the spark plug (141) is ignited three times (149). In other words, it is a one-rotation three-ignition rotary implosion type engine that imploses three times in one rotation.
1回転6点火ロータリー爆縮式エンジン動作を図5で説明する。 The operation of the 1-rotation 6-ignition rotary implosion type engine will be described with reference to FIG.
1回転6点火ロータリー爆縮式エンジンの主要構成は、ロータリーハウジング(162)、エキセントリックシャフト(163)、ローター(164)、第1点火プラグ(165),第2点火プラグ(166),第1吸気孔(167)、第1排気孔(168)、第2吸気孔(169)、第2排気孔(170)、第1作動室(171)、第2作動室(172)、第3作動室(173)等で構成され、第1排気孔(168)及び第2吸気孔(169)には、爆縮材が供給されている。 The main configuration of the one-rotation six-ignition rotary implosion type engine is as follows: rotary housing (162), eccentric shaft (163), rotor (164), first spark plug (165), second spark plug (166), first intake air Hole (167), first exhaust hole (168), second intake hole (169), second exhaust hole (170), first working chamber (171), second working chamber (172), third working chamber ( 173) and the like, and implosive material is supplied to the first exhaust hole (168) and the second intake hole (169).
ロータリーハウジング(162)とローター(164)の空間は、作動室と呼ばれ回転位置により空間容量が変化する、この説明では、第1作動室(171)におけるローター(164)の前端と後端の間について説明を行う。 The space between the rotary housing (162) and the rotor (164) is called a working chamber, and the space capacity changes depending on the rotational position. In this description, the front and rear ends of the rotor (164) in the first working chamber (171) are arranged. I will explain between.
第1吸気膨張爆縮行程(150)は、ローター(164)が右回転し、第1作動室(171)のローター(164)の前端が第1吸気孔(167)を通過して、第1作動室(171)の空間容量が最小から増加する時点から第1吸気膨張爆縮行程(150)になります、ローター(164)が右回転すると第1作動室(171)の空間容量が増加し、第1作動室(171)内が負圧になり第1吸気孔(167)から爆縮材が第1作動室(171)に吸い込まれる。 In the first intake / expansion / expansion stroke (150), the rotor (164) rotates to the right, and the front end of the rotor (164) of the first working chamber (171) passes through the first intake hole (167). From the point of time when the space capacity of the working chamber (171) increases from the minimum, it becomes the first intake / expansion / explosion stroke (150). When the rotor (164) rotates to the right, the space capacity of the first working chamber (171) increases. The inside of the first working chamber (171) becomes negative pressure, and the implosive material is sucked into the first working chamber (171) from the first intake hole (167).
第1吸気中(151)は、ローター(164)が右回転し、第1作動室(171)の空間容量は増加し、第1吸気孔(167)から爆縮材が第1作動室(171)に吸い込まれ充満する。第1作動室(171)の空間容量が最大値になる手前で、第1作動室(171)のローター(164)の後端が吸気孔(167)を通過する。 During the first intake (151), the rotor (164) rotates to the right, the space capacity of the first working chamber (171) increases, and the implosion material passes through the first working chamber (171) from the first intake hole (167). ) Will be sucked and filled. The rear end of the rotor (164) of the first working chamber (171) passes through the intake hole (167) just before the space capacity of the first working chamber (171) reaches the maximum value.
第1膨張中(152)は、ローター(164)が右回転して、第1作動室(171)のローター(164)の後端が第1吸気孔(167)を通過した状態と、第1作動室(171)のローター(164)の前端が第1排気孔(168)の手前の状態、即ち、第1作動室(171)が密閉状態となった時と、第1作動室(171)の空間容量が最大になる手前で、第1点火プラグ(165)により第1作動室(171)に充満した爆縮材に第1点火(174)する、爆縮材が燃焼し、燃焼により爆縮材の温度上昇に伴う膨張による膨張力で第1作動室(171)の空間容量を増加する方向へ右回転する。 During the first expansion (152), the rotor (164) rotates clockwise and the rear end of the rotor (164) of the first working chamber (171) passes through the first intake hole (167), and the first When the front end of the rotor (164) of the working chamber (171) is in front of the first exhaust hole (168), that is, when the first working chamber (171) is in a sealed state, the first working chamber (171) Before the space capacity reaches the maximum, the first spark plug (165) first ignites (174) the implosive material filled in the first working chamber (171). It rotates rightward in the direction of increasing the space capacity of the first working chamber (171) by the expansion force due to the expansion accompanying the temperature rise of the contracted material.
第1爆縮中(153)は、第1作動室(171)内の爆縮材の燃焼後に相変化により爆縮材の容積比は約1200分の1以下に凝縮されて爆縮する。爆縮により第1作動室(171)は、真空状態となり負圧となる、ローター(164)は空間容量を減少する方向に右回転する。第1排気孔(168)の方向に右回転する。 During the first implosion (153), after the implosive material in the first working chamber (171) is combusted, the volume ratio of the implosive material is condensed to about 1/1200 or less due to the phase change. As a result of implosion, the first working chamber (171) becomes a vacuum state and becomes negative pressure, and the rotor (164) rotates rightward in the direction of decreasing the space capacity. Turn right in the direction of the first exhaust hole (168).
第1排気行程(154)は、ローター(164)の慣性力で右回転しつつ、第1作動室(171)の空間容量が縮小し、第1作動室(171)のローター(164)の前端が第1排気孔(168)を通過して、第1作動室(171)内部で爆縮された水や水蒸気を、第1排気孔(168)から排気排液する。 The first exhaust stroke (154) rotates clockwise by the inertial force of the rotor (164) while the space capacity of the first working chamber (171) is reduced, and the front end of the rotor (164) of the first working chamber (171). Passes through the first exhaust hole (168), and the water and water vapor exploded inside the first working chamber (171) are exhausted and discharged from the first exhaust hole (168).
第1排気行程終了(155)は、ローター(164)は右回転しつつ、第1作動室(171)の空間容量は最小となり、第1排気孔(168)から水や水蒸気を全て排気排液する。第1作動室(171)のローター(164)の後端が第1排気孔(168)を通過すると第1排気行程終了(155)が終了する。 At the end of the first exhaust stroke (155), the rotor (164) rotates clockwise while the space capacity of the first working chamber (171) is minimized, and all water and water vapor are exhausted from the first exhaust hole (168). To do. When the rear end of the rotor (164) of the first working chamber (171) passes through the first exhaust hole (168), the first exhaust stroke end (155) ends.
第2吸気膨張爆縮行程(156)は、ローター(164)が右回転しつつ、第1作動室(171)のローター(164)の前端が第2吸気孔(169)を通過して、第1作動室(171)の空間容量が最小から増加する時点から第2吸気膨張爆縮行程(156)になります。ローター(164)が右回転すると第1作動室(171)の空間容量が増加し、第1作動室(171)内が負圧になり第2吸気孔(169)から爆縮材が第1作動室(171)に吸い込まれる。 In the second intake / expansion / expansion stroke (156), the rotor (164) rotates clockwise, and the front end of the rotor (164) of the first working chamber (171) passes through the second intake hole (169). From the point when the space capacity of one working chamber (171) increases from the minimum, it becomes the second intake expansion / expansion stroke (156). When the rotor (164) rotates to the right, the space capacity of the first working chamber (171) increases, the inside of the first working chamber (171) becomes negative pressure, and the implosive material is first actuated from the second intake hole (169). Inhaled into chamber (171).
第2吸気中(157)は、ローター(164)が右回転し、第1作動室(171)の空間容量は増加し、第2吸気孔(169)から爆縮材が第1作動室(171)に吸い込まれ充満する。第1作動室(171)の空間容量が最大値になる手前で、第1作動室(171)のローター(164)の後端が第2吸気孔(169)を通過する。 During the second intake (157), the rotor (164) rotates to the right, the space capacity of the first working chamber (171) increases, and the implosion material flows from the second intake hole (169) into the first working chamber (171). ) Will be sucked and filled. Before the space capacity of the first working chamber (171) reaches the maximum value, the rear end of the rotor (164) of the first working chamber (171) passes through the second intake hole (169).
第2膨張中(158)は、ローター(164)が右回転して、第1作動室(171)のローター(164)の後端が第2吸気孔(169)を通過した状態と、第1作動室(171)のローター(164)の前端が第2排気孔(170)の手前の状態、即ち、第1作動室(171)が密閉状態となった時と、第1作動室(171)の空間容量が最大になる手前で、第2点火プラグ(166)により第1作動室(171)に充満した爆縮材に第2点火(175)する、爆縮材が燃焼し、燃焼により爆縮材の温度上昇に伴う膨張による膨張力で第1作動室(171)の空間容量を増加する方向へ右回転する。 During the second expansion (158), the rotor (164) rotates clockwise and the rear end of the rotor (164) of the first working chamber (171) passes through the second intake hole (169), and the first When the front end of the rotor (164) of the working chamber (171) is in front of the second exhaust hole (170), that is, when the first working chamber (171) is in a sealed state, the first working chamber (171) Before the space capacity reaches the maximum, the second spark plug (166) ignites the implosion material filled in the first working chamber (171) for the second time (175). It rotates rightward in the direction of increasing the space capacity of the first working chamber (171) by the expansion force due to the expansion accompanying the temperature rise of the contracted material.
第2爆縮中(159)は、第1作動室(171)内の爆縮材の燃焼後に相変化により爆縮材の容積比は約1200分の1以下に凝縮されて爆縮する。爆縮により第1作動室(171)は、真空状態となり負圧になる、ローター(164)は吸引力で空間容量を減少する方向に右回転する。第2排気孔(170)の方向に右回転する。 During the second implosion (159), after the implosive material in the first working chamber (171) is combusted, the volume ratio of the implosive material is condensed to about 1/1200 or less due to the phase change. By the implosion, the first working chamber (171) becomes a vacuum state and becomes negative pressure, and the rotor (164) rotates rightward in the direction of decreasing the space capacity by the suction force. Turn right in the direction of the second exhaust hole (170).
第2排気行程(160)は、ローター(164)の慣性力で右回転しつつ、第1作動室(171)の空間容量が縮小し、第1作動室(171)内部の爆縮された水や水蒸気を、第2排気孔(170)から排気排液する。 In the second exhaust stroke (160), the space capacity of the first working chamber (171) is reduced while rotating to the right by the inertial force of the rotor (164), and the implosed water inside the first working chamber (171) is reduced. And water vapor are discharged from the second exhaust hole (170).
第2排気行程終了(161)は、ローター(164)は右回転しつつ、第1作動室(171)の空間容量は最小となり、第2排気孔(170)から水や水蒸気を全て排気排液する。 At the end of the second exhaust stroke (161), the rotor (164) rotates clockwise while the space capacity of the first working chamber (171) is minimized, and all the water and water vapor are exhausted and discharged from the second exhaust hole (170). To do.
更に、ローター(164)が慣性で右回転して、第1吸気膨張爆縮行程(150)、第1排気行程(154)、第2吸気膨張爆縮行程(156)、第2排気行程(160)を繰り返す。このロータリー爆縮式エンジンは、第1作動室(171)、第2作動室(172)、第3作動室(173)と作動室が3室あり、各作動室が同様な工程を行う。ローター(164)が1回転すると、第1点火プラグ(165)は3回点火(174)し、第2点火プラグ(166)も3回点火(175)する、則ち、1回転で6回点火する、則ち、6回爆縮する、1回転6点火ロータリー爆縮式エンジンです。 Further, the rotor (164) rotates to the right due to inertia, and the first intake expansion / explosion / reduction stroke (150), the first exhaust stroke (154), the second intake expansion / explosion / reduction stroke (156), and the second exhaust stroke (160). )repeat. This rotary implosion type engine has a first working chamber (171), a second working chamber (172), a third working chamber (173) and three working chambers, and each working chamber performs the same process. When the rotor (164) rotates once, the first spark plug (165) ignites three times (174), and the second spark plug (166) also ignites three times (175), that is, six times per revolution. That is, it is a one-rotation six-ignition rotary implosion type engine that imploses six times.
ロータリー爆縮式エンジンの、第1吸気孔、第1排気孔、第2吸気孔、第2排気孔にはローターに同期した吸気バブル及び排気バブルやロータリーバブルを取り付けて、吸気、排気のタイミングを調節する、及び、密閉度を良くしてバックファイヤー防止する。 In the rotary implosion-type engine, the first intake hole, the first exhaust hole, the second intake hole, and the second exhaust hole are fitted with intake bubbles, exhaust bubbles, and rotary bubbles synchronized with the rotor, so that the timing of intake and exhaust can be adjusted. Adjust and improve the sealing to prevent backfire.
主燃料の爆縮材の原料は枯渇することのない水を使用することが出来る。ガソリン、天然ガス等の化石燃料は不要となります。爆縮材は無炭素エネルギーです。無酸素で運転が可能です。爆縮式エンジンの排気物は、二酸化炭素ガス、有毒ガスや煤煙の発生が無く、水分や水蒸気のみで、排気量は微量となり、室内、真空中、水中、悪環境等で動作可能となります。気化器が不要となります。排気音が小さくマフラーが不要となります。 The main fuel implosion material can be water that will not be depleted. There is no need for fossil fuels such as gasoline and natural gas. Implosion material is carbon-free energy. Operation without oxygen is possible. The explosive engine exhaust does not generate carbon dioxide gas, toxic gas or soot, and only moisture and water vapor. The displacement is very small, and it can be operated indoors, in vacuum, in water, and in bad environments. No vaporizer is required. Exhaust sound is small and no muffler is required.
太陽光発電、風力発電、水力発電等の自然エネルギーを使用すれば省エネ対策となりランニングコストが安価となる。爆縮材をアキュムレーター等に貯蔵すればエネルギーの蓄積が出来る。 If natural energy such as solar power generation, wind power generation, and hydroelectric power generation is used, it becomes an energy saving measure and the running cost is reduced. Energy can be accumulated if implosion material is stored in an accumulator.
爆縮式エンジンで生成された水や水蒸気は純水でこれを回収して再利用すれば水分補給なしで、長時間使用が可能となり、閉サイクルのエンジンとなる。 Water and water vapor generated by the implosion type engine can be used for a long time without hydration if it is recovered and reused with pure water, resulting in a closed cycle engine.
圧縮行程、爆発行程のないエンジンとなり、圧縮損失が無い。2サイクル爆縮式エンジンは、4サイクル爆縮式エンジンの二倍の出力を得られる。1回転6点火ロータリー爆縮式エンジンは、1回転3点火ロータリー爆縮式エンジンの二倍の出力が得られる。 The engine has no compression stroke or explosion stroke, and there is no compression loss. A two-cycle implosion type engine can obtain twice the output of a four-cycle implosion type engine. A 1-rotation 6-ignition rotary implosion type engine can output twice as much as a 1-revolution 3-ignition rotary implosion type engine.
従来のエンジン、ジーゼルエンジンのタイミングチェーン、又は、ベルトの交換。歯車の交換。カムの位置の変更。カムの形状変更。燃料噴射弁、燃料噴射ポンプ、エジェクター、アレスターの追加。点火時期の変更で転用改造が出来ます。 Replacing the conventional engine, diesel engine timing chain, or belt. Gear change. Change cam position. Cam shape change. Add fuel injection valve, fuel injection pump, ejector, arrester. The diversion can be modified by changing the ignition timing.
従来のロータリーエンジンの吸気孔の位置変更。排気孔の位置変更。点火プラグ位置の変更。点火時期の変更。吸気弁、及び、排気弁の追加で転用改造が出来ます。 The position of the intake port of a conventional rotary engine is changed. Change the position of the exhaust hole. Change the spark plug position. Change ignition timing. Conversion can be made by adding intake and exhaust valves.
1   爆縮式エンジン
2   酸水素ガス発生装置
3   発電機
4   太陽光発電
5   風力発電
6   商用電源
7   電源セレクター
8   充電器
9   バッテリー
10  コンデンサースタック
11  昇降圧DC-DC変換器
12  電力検出器
13  パルス幅変換器
14  電解液
15  電極
16  酸水素ガス
17  電解液の泡
18  逆止弁1
19  バブリングタンク1
20  電解液
21  バイパス配管
22  逆止弁2
23  酸水素ガスと水蒸気
24  バブリングタンク2
25  純水
26  逆止弁3
27  酸水素ガス
28  水位検出器
29  供給タンク
30  給水ポンプ
31  給水電磁弁
32  逆止弁4
33  純水装置、又は、RO純水装置
34  アキュムレーター
35  エジェクター
36  アクセルペダル
37  酸水素ガス
38  圧力検出器
39  逆止弁5
40  加圧ブロアー
41  ガス供給弁
42  ガス量調節弁
43  アレスター 
44  燃料噴射弁
45  酸水素ガス
46  吸気口
47  吸気バルブ
48  シリンダー
49  ピストン
50  点火プラグ
51  酸水素ガス
52  排気バルブ
53  排気口
54  排気水蒸気
55  コントローラー
56  吸気膨張行程
57  点火膨張中
58  爆縮排気行程
59  爆縮排気行程中
60  カムシャフト
61  クランクシャフト
62  コンロッド
63  シリンダー
64  ピストン
65  点火プラグ
66  吸気口
67  吸気バルブ
68  吸気カム
69  排気口
70  排気バルブ
71  排気カム
72  ピストン
73  クランクシャフト
74  吸気カム
75  吸気バブル
76  点火
77  ピストン
78  点火
79  クランクシャフト
80  排気カム
81  排気バブル
82  ピストン
83  吸気膨張行程
84  点火膨張中
85  爆縮行程
86  爆縮行程中
87  冷却工程
88  冷却工程中
89  排気行程
90  排気行程中
91  カムシャフト
92  クランクシャフト
93  コンロッド
94  シリンダー
95  ピストン
96  点火プラグ
97  吸気口
98  吸気バルブ
99  吸気カム
100 排気口
101 排気バルブ
102 排気カム
103 クランクシャフト
104 カムシャフト
105 排気バルブ
106 吸気バブル
107 吸気カム
108 ピストン
109 点火
110 ピストン
111 コンロッド
112 クランクシャフト
113 ピストン
114 ピストン
115 排気カム
116 排気バブル
117 クランクシャフト
118 ピストン
119 クランクシャフト
120 ピストン
121 排気バブル
122 クランクシャフト
123 排気カム
124 排気バルブ
125 ピストン
126 吸気膨張爆縮行程
127 吸気中
128 膨張中
129 爆縮中
130 排気行程
131 排気行程終了
132 冷却吸気工程
133 冷却吸気工程中
134 冷却吸気工程終了
135 冷却排気行程
136 冷却排気行程中
137 冷却排気行程終了
138 ロータリーハウジング
139 エキセントリックシャフト
140 ローター
141 点火プラグ
142 吸気孔
143 排気孔
144 冷却吸気孔
145 冷却排気孔
146 第1作動室
147 第2作動室
148 第3作動室
149 点火
150 第1吸気膨張爆縮行程
151 第1吸気中
152 第1膨張中
153 第1爆縮中
154 第1排気行程
155 第1排気行程終了
156 第2吸気膨張爆縮行程
157 第2吸気中
158 第2膨張中
159 第2爆縮中
160 第2排気行程
161 第2排気行程終了
162 ロータリーハウジング
163 エキセントリックシャフト
164 ローター
165 第1点火プラグ
166 第2点火プラグ
167 第1吸気孔
168 第1排気孔
169 第2吸気孔
170 第2排気孔
171 第1作動室
172 第2作動室
173 第3作動室
174 第1点火
175 第2点火
DESCRIPTION OF SYMBOLS 1 Implosion type engine 2 Oxyhydrogen gas generator 3 Generator 4 Solar power generation 5 Wind power generation 6 Commercial power supply 7 Power supply selector 8 Battery charger 9 Battery 10 Capacitor stack 11 Buck-boost DC-DC converter 12 Power detector 13 Pulse width Converter 14 Electrolyte 15 Electrode 16 Oxyhydrogen Gas 17 Electrolyte Bubble 18 Check Valve 1
19 Bubbling tank 1
20 Electrolyte 21 Bypass piping 22 Check valve 2
23 Oxyhydrogen gas and water vapor 24 Bubbling tank 2
25 Pure water 26 Check valve 3
27 Oxyhydrogen gas 28 Water level detector 29 Supply tank 30 Water supply pump 31 Water supply solenoid valve 32 Check valve 4
33 Pure water device or RO pure water device 34 Accumulator 35 Ejector 36 Accelerator pedal 37 Oxyhydrogen gas 38 Pressure detector 39 Check valve 5
40 Pressurizing blower 41 Gas supply valve 42 Gas amount control valve 43 Arrester
44 Fuel injection valve 45 Oxyhydrogen gas 46 Intake port 47 Intake valve 48 Cylinder 49 Piston 50 Spark plug 51 Oxygen gas 52 Exhaust valve 53 Exhaust port 54 Exhaust steam 55 Controller 56 Intake expansion stroke 57 During ignition expansion 58 Explosion exhaust stroke 59 Camshaft 61 Crankshaft 62 Connecting rod 63 Cylinder 64 Piston 65 Spark plug 66 Intake port 67 Intake valve 68 Intake cam 69 Exhaust port 70 Exhaust valve 71 Exhaust cam 72 Piston 73 Crankshaft 74 Intake cam 75 Intake bubble 76 Ignition 77 Piston 78 Ignition 79 Crankshaft 80 Exhaust cam 81 Exhaust bubble 82 Piston 83 Intake expansion stroke 84 Ignition expansion 85 Explosion stroke 86 Explosion stroke 87 Cooling process 88 Cool During process 89 Exhaust stroke 90 Exhaust stroke 91 Camshaft 92 Crankshaft 93 Connecting rod 94 Cylinder 95 Piston 96 Spark plug 97 Intake port 98 Intake valve 99 Intake cam 100 Exhaust port 101 Exhaust valve 102 Exhaust cam 103 Crankshaft 104 Camshaft 105 Exhaust Valve 106 Intake bubble 107 Intake cam 108 Piston 109 Ignition 110 Piston 111 Connecting rod 112 Crankshaft 113 Piston 114 Piston 115 Exhaust cam 116 Exhaust bubble 117 Crankshaft 118 Piston 119 Crankshaft 120 Piston 121 Exhaust bubble 122 Crankshaft 123 Exhaust cam 124 Exhaust valve 125 Piston 126 Inspiratory expansion / reduction stroke 127 During intake 128 During expansion 129 Explosion 130 Exhaust stroke 131 Exhaust stroke end 132 Cooling intake process 133 During cooling intake process 134 Cooling intake process completed 135 Cooling exhaust stroke 136 Cooling exhaust stroke completed 137 Cooling exhaust stroke end 138 Rotary housing 139 Eccentric shaft 140 Rotor 141 Spark plug 142 Inlet hole 143 Exhaust hole 144 Cooling intake hole 145 Cooling exhaust hole 146 First working chamber 147 Second working chamber 148 Third working chamber 149 Ignition 150 First intake expansion / expansion stroke 151 First intake 152 During first expansion 153 First expansion Medium 154 First exhaust stroke 155 First exhaust stroke end 156 Second intake expansion / expansion stroke 157 Second intake expansion 158 Second expansion 159 Second expansion / expansion 160 Second exhaust stroke 161 Second exhaust stroke end 162 Rotary housing 163 Eccentric shaft 164 Rotor 165 First spark plug 166 Second spark plug 167 First intake hole 168 First exhaust hole 169 Second intake hole 170 Second exhaust hole 171 First working chamber 172 Second working chamber 173 Third working chamber 174 First ignition 175 Second ignition

Claims (12)

  1. 酸水素ガス(2H2+O2)や水素(H2)の単体ガスや、これらの単体ガスと酸素(O2)や空気等の混合ガスを爆縮材として、この爆縮材を燃料とした爆縮式エンジン。 An implosion-type engine that uses oxyhydrogen gas (2H2 + O2) or hydrogen (H2) alone, or a mixture of these simple gases and oxygen (O2), air, etc. as the implosion, and this implosion as fuel.
  2. 密閉中に充満した請求項1を特徴とする爆縮材に点火する、この燃焼により生ずる温度上昇に伴い爆縮材が膨張する膨張反応による膨張力、及び、燃焼後に相変化し凝縮する、この爆縮反応で、爆縮材が真空状態となり負圧となり吸引力を生じる、爆縮材の燃焼後は水や水蒸気となる。この時、発生した膨張力と吸引力を動力源とする爆縮式エンジン。 The implosion material characterized in claim 1 filled in a sealed state is ignited, the expansion force due to an expansion reaction in which the implosion material expands as the temperature rises due to this combustion, and the phase change and condensation after combustion In the implosion reaction, the implosion material becomes a vacuum and becomes a negative pressure, which generates suction force. After the implosion material burns, it becomes water or steam. An implosion engine that uses the generated expansion force and suction force as power sources.
  3. 2サイクル爆縮式エンジンの動作は、吸気膨張行程、点火、爆縮排気行程である。
    1サイクル目の吸気膨張行程は、吸気バルブが開きピストンが慣性で上死点から下死点に向かい吸気バルブに供給されている爆縮材をシリンダー内に吸気する、このサイクル中間付近で吸気バルブが閉じて吸気動作を完了する。点火は、吸気動作完了から爆縮排気行程のサイクル中の間で爆縮材に点火する、燃焼により爆縮材の膨張反応でピストンが下死点に至る。
    2サイクル目の爆縮排気行程は、爆縮材が燃焼後に、爆縮反応で、シリンダー内は、真空状態となり吸引力でピストンは下死点から上死点に向かう、このサイクルの後半に排気バブルを開き爆縮反応で生じた水や水蒸気を上死点前までに排気排液する、上死点付近で排気バブルを閉じる、ピストンが慣性力で上死点に至る。圧縮行程と爆発行程のない、請求項2を特徴とする爆縮式エンジン。
    The operation of the two-cycle implosion type engine is an intake expansion stroke, ignition, and an implosion exhaust stroke.
    The intake expansion stroke of the first cycle is that the intake valve opens and the piston is inertial, and the implosive material supplied to the intake valve is drawn from the top dead center to the bottom dead center. Closes and the intake operation is completed. In the ignition, the implosion material is ignited during the cycle of the implosion exhaust stroke from the completion of the intake operation, and the piston reaches the bottom dead center by the expansion reaction of the implosion material by combustion.
    The implosion exhaust stroke of the second cycle is an implosion reaction after the implosion material burns, the inside of the cylinder is in a vacuum state, and the piston moves from bottom dead center to top dead center by suction force. The bubble is opened and water or water vapor generated by the implosion reaction is exhausted and discharged before top dead center. The exhaust bubble is closed near top dead center. The piston reaches top dead center due to inertia. An implosion type engine characterized by having no compression stroke and no explosion stroke.
  4. 4サイクル爆縮式エンジンの動作は、吸気膨張行程、点火、爆縮行程、冷却工程、排気行程である。
    1サイクル目の吸気膨張行程は、吸気バルブが開きピストンが慣性で上死点から下死点に向かい吸気バルブに供給されている爆縮材をシリンダー内に吸気する、このサイクル中間付近で吸気バルブが閉じて吸気動作を完了する、点火は、吸気動作完了から爆縮行程のサイクル中の間で爆縮材に点火する、燃焼により爆縮材の膨張反応でピストンが下死点に至る。
    2サイクル目の爆縮行程は、爆縮材が燃焼後に、爆縮反応でシリンダー内は、真空状態となりピストンは吸引力で下死点から上死点に至る。爆縮反応で生じた水や水蒸気は、シリンダー内に残る。
    3サイクル目の冷却工程は、上死点の前後で排気バルブが開き、慣性でビストンは上死点から下死点に向かい、排気口からシリンダー内部へ外気を吸気し、爆縮反応で生じた水や水蒸気と混合し、エンジン本体、ピストン、点火プラグを冷却する、ピストンは慣性で下死点に至る。
    4サイクル目の排気行程は、排気バブルは開いたまま慣性でピストンは下死点から上死点に向かい、シリンダー内の水や水蒸気と冷却済み外気の混合物を排気排液し、上死点付近で排気バブルを閉じ、上死点に至る。圧縮行程と爆発行程のない、請求項2を特徴とする爆縮式エンジン。
    The operation of the 4-cycle implosion type engine is an intake expansion stroke, ignition, an implosion stroke, a cooling process, and an exhaust stroke.
    The intake expansion stroke of the first cycle is that the intake valve opens and the piston is inertial, and the implosive material supplied to the intake valve is drawn from the top dead center to the bottom dead center. Is closed to complete the intake operation. The ignition ignites the implosion material during the cycle of the implosion stroke from the completion of the intake operation, and the piston reaches the bottom dead center due to the expansion reaction of the implosion material by combustion.
    In the implosion stroke of the second cycle, after the implosion material burns, the inside of the cylinder is evacuated by the implosion reaction, and the piston reaches from the bottom dead center to the top dead center by the suction force. Water and water vapor generated by the implosion reaction remain in the cylinder.
    The cooling process in the third cycle was caused by an implosion reaction by opening the exhaust valve before and after top dead center, and by inertia, Biston headed from top dead center to bottom dead center, sucking outside air from the exhaust port into the cylinder. Mixing with water or steam to cool the engine body, piston and spark plug, the piston reaches the bottom dead center due to inertia.
    In the exhaust stroke of the fourth cycle, the exhaust bubble is open and inertia, the piston moves from bottom dead center to top dead center, and the mixture of water and water vapor in the cylinder and cooled outside air is exhausted and drained, and near the top dead center Close the exhaust bubble and reach top dead center. An implosion type engine characterized by having no compression stroke and no explosion stroke.
  5. 1回転3点火ロータリー爆縮式エンジンの動作は、一つの作動室ごとに吸気膨張爆縮行程、点火、排気行程、冷却吸気行程、冷却排気行程がある、ローターとロータリーハウジングの作動室の空間容量の最小となるところが2カ所ある、この一方に吸気孔に供給された爆縮材を作動室にローターの回転により吸気する吸気孔と作動室内の冷却済み外気や爆縮反応で生じた水や水蒸気と冷却外気の混合物の排気排液をする冷却吸気孔を設置、他方に作動室内で爆縮反応により生じた水や水蒸気を排気排液する排気孔と作動室に冷却外気を吸気する冷却吸気孔を備え。吸気孔と排気孔間の作動室の空間容量の最大となる付近のロータリーハウジングに点火プラグを設置する。ローターの前端と後端が回転に従い、吸気孔、排気孔、冷却吸気孔、冷却排気孔を通過する。
    吸気膨張爆縮行程は、ローターが回転して、前端が吸気孔を通過すると吸気孔に供給された爆縮材を吸気孔から作動室に吸気する、ローターの後端が吸気孔を通過すると吸気が完了すると同時に、ローターの前端が排気孔の手前で作動室が密閉状態となり作動室の空間容量が最大になる。最大になる手前で、爆縮材に点火し燃焼する、燃焼により膨張力が生じ空間容量が最大になる方向に回転、燃焼後に爆縮反応で、作動室は、真空状態となり吸引力が生じて空間容量が最小となる方向にローターが回転する。排気行程は、ローターが回転して空間容量が最小となる手前より爆縮反応より生じた水や水蒸気を排気孔から排気排液する。冷却吸気行程は、ローターが慣性で回転し、前端が冷却吸気孔を通過すると冷却吸気孔から外気を吸気し、ローター、ロータリーハウジング等を冷却する。冷却排気行程は、ローターが慣性で回転してローターの前端が冷却排気孔を通過すると、作動室の空間容量が縮小し最小に成るまで、作動室の冷却済み外気及び水や水蒸気を冷却排気孔から排気排液する。圧縮行程と爆発行程のない、請求項2を特徴とする爆縮式エンジン。
    The operation of the one-rotation / three-ignition rotary implosion type engine has a space capacity of the working chambers of the rotor and the rotary housing, each of which has an intake / expansion / explosion stroke, ignition, exhaust stroke, cooling intake stroke, and cooling exhaust stroke. There are two places where the minimum of the water is the implosive material supplied to the air intake holes in one of the air intake holes by the rotation of the rotor to the working chamber, the cooled outside air in the working chamber, the water or water vapor generated by the implosion reaction A cooling air intake hole that exhausts and discharges water and water vapor generated by the implosion reaction in the working chamber and a cooling air intake hole that sucks cooling air into the working chamber Equipped with. A spark plug is installed in a rotary housing near the maximum space capacity of the working chamber between the intake and exhaust holes. The front and rear ends of the rotor follow the rotation and pass through the intake holes, exhaust holes, cooling intake holes, and cooling exhaust holes.
    When the rotor rotates and the front end passes through the intake hole, the intake expansion / reduction stroke takes in the implosion material supplied to the intake hole from the intake hole to the working chamber, and when the rear end of the rotor passes through the intake hole, At the same time, the working chamber is sealed with the front end of the rotor in front of the exhaust hole, and the space capacity of the working chamber is maximized. The implosion material is ignited and combusted before it reaches the maximum, the combustion generates an expansion force and rotates in the direction that maximizes the space capacity. The rotor rotates in the direction that minimizes the space capacity. In the exhaust stroke, water or water vapor generated by the implosion reaction is exhausted and discharged from the exhaust hole before the rotor rotates and the space capacity is minimized. In the cooling intake stroke, when the rotor rotates by inertia and the front end passes through the cooling intake hole, outside air is sucked from the cooling intake hole to cool the rotor, the rotary housing, and the like. In the cooling exhaust stroke, when the rotor rotates by inertia and the front end of the rotor passes through the cooling exhaust hole, the cooled outside air of the working chamber and water or water vapor are cooled and exhausted until the space capacity of the working chamber is reduced to the minimum. Exhaust fluid from the exhaust. An implosion type engine characterized by having no compression stroke and no explosion stroke.
  6. 1回転6点火ロータリー爆縮式エンジンの動作は、一つの作動室ごとに第1吸気膨張爆縮行程、第1点火、第1排気行程、第2吸気膨張爆縮行程、第2点火、第2排気行程がある、ロータリーハウジングの作動室の空間容量の最小となる所が2カ所ある、この一方に爆縮材を作動室にローターの回転により吸気する第1吸気孔と作動室内で爆縮反応により生じた水や水蒸気を排気排液する第2排気孔を設置、他方に作動室内で爆縮反応により生じた水や水蒸気を排気排液する第1排気孔と爆縮材を作動室にローターの回転により吸気する第2吸気孔を備える。第1吸気孔と第1排気孔間の作動室の空間容量の最大となる付近のロータリーハウジングに第1点火プラグを備え、第2吸気孔と第2排気孔間の作動室の空間容量の最大となる付近のロータリーハウジングに第2点火プラグを備える、ローターの前端と後端が回転に従い、第1吸気孔、第1排気孔、第2吸気孔、第2排気孔を通過する。
    第1吸気膨張爆縮行程は、ローターが回転して、前端が第1吸気孔を通過すると、吸気孔に供給された爆縮材を第1吸気孔から作動室に吸気する、ローターの後端が第1吸気孔を通過すると吸気が完了すると同時に、ローターの前端が第1排気孔の手前で作動室が密閉状態となる、作動室の空間容量が最大になる。最大になる手前で、第1点火プラグにより爆縮材に第1点火し燃焼する、燃焼により膨張力が生じ空間容量が最大になる方向にローターが回転、燃焼後に爆縮反応で、真空状態となり吸引力が生じて空間容量が最小となる方向に回転する。
    第1排気行程は、ローターの前端が第1排気孔を通過すると、作動室の空間容量が縮小し最小に成るまで、爆縮反応より生じた水や水蒸気を第1排気孔から排気排液する。
    第2吸気膨張爆縮行程は、ローターが回転して、前端が第2吸気孔を通過すると、吸気孔に供給された爆縮材を第2吸気孔から作動室に吸気する、ローターの後端が第2吸気孔を通過すると吸気が完了すると同時に、ローターの前端が第2排気孔の手前で作動室が密閉状態となる、作動室の空間容量が最大になる。最大になる手前で、第2点火プラグにより爆縮材に第2点火し燃焼する、燃焼により膨張力が生じ空間容量が最大になる方向にローターが回転、燃焼後に爆縮反応で、真空状態となり吸引力が生じて空間容量が最小となる方向に回転する。
    第2排気行程は、ローターの前端が第2排気孔を通過すると作動室の空間容量が縮小し最小に成るまで、爆縮反応より生じた水や水蒸気を第2排気孔から排気排液する。
    圧縮行程と爆発行程のない、請求項2を特徴とする爆縮式エンジン。
    The operation of the one-rotation six-ignition rotary implosion type engine is as follows. For each working chamber, the first intake / expansion / explosion stroke, the first ignition, the first exhaust stroke, the second intake / expansion / explosion stroke, the second ignition, the second There are two places where the space capacity of the working chamber of the rotary housing is minimized, there is an exhaust stroke, one of which is implosion reaction in the working chamber and the first suction hole that sucks the implosive material into the working chamber by the rotation of the rotor The second exhaust hole for exhausting and discharging water and water vapor generated by the above is installed, and the first exhaust hole for exhausting and discharging water and water vapor generated by the implosion reaction in the working chamber and the implosion material are rotors in the working chamber. A second intake hole for intake by rotation of the. A rotary housing in the vicinity of which the space capacity of the working chamber between the first intake hole and the first exhaust hole is maximized is provided with a first spark plug, and the space capacity of the working chamber between the second intake hole and the second exhaust hole is maximized. A rotary housing in the vicinity of the second is provided with a second spark plug, and the front end and the rear end of the rotor follow the rotation and pass through the first intake hole, the first exhaust hole, the second intake hole, and the second exhaust hole.
    In the first intake / expansion / expansion stroke, when the rotor rotates and the front end passes through the first intake hole, the implosion material supplied to the intake hole is sucked into the working chamber from the first intake hole. When the air passes through the first air intake hole, the intake air is completed, and at the same time, the working chamber is sealed with the front end of the rotor in front of the first exhaust hole, and the space capacity of the working chamber is maximized. The implosive material is first ignited and burned by the first spark plug before it reaches the maximum, and the rotor rotates in the direction in which expansion force is generated by combustion and the space capacity is maximized. After combustion, the implosion reaction results in a vacuum state. It rotates in the direction where the suction capacity is generated and the space capacity is minimized.
    In the first exhaust stroke, when the front end of the rotor passes through the first exhaust hole, water and water vapor generated by the implosion reaction are exhausted and discharged from the first exhaust hole until the space capacity of the working chamber is reduced to the minimum. .
    In the second intake expansion / expansion stroke, when the rotor rotates and the front end passes through the second intake hole, the implosion material supplied to the intake hole is sucked into the working chamber from the second intake hole. When the air passes through the second air intake hole, the air intake is completed, and at the same time, the working chamber is sealed with the front end of the rotor in front of the second exhaust hole, and the space capacity of the working chamber is maximized. Before the maximum, the second spark plug ignites the implosion material for the second time and burns. The rotor rotates in the direction in which the expansion force is generated by the combustion and the space capacity is maximized. It rotates in the direction where the suction capacity is generated and the space capacity is minimized.
    In the second exhaust stroke, when the front end of the rotor passes through the second exhaust hole, water and water vapor generated by the implosion reaction are exhausted and discharged from the second exhaust hole until the space capacity of the working chamber is reduced to the minimum.
    An implosion type engine characterized by having no compression stroke and no explosion stroke.
  7. 請求項5、請求項6を特徴としたロータリー爆縮式エンジンで、ローターの回転に同期した吸気孔の入口に吸気弁と排気孔の出口に排気弁を取り付けた爆縮式エンジン。 7. A rotary implosion type engine characterized in that an intake valve and an exhaust valve are attached to an inlet of an intake hole synchronized with the rotation of a rotor and an outlet valve of the exhaust hole, respectively.
  8. 発電機、電動機を備えた、請求項3、請求項4、請求項5、請求項6、請求項7を特徴とした爆縮式エンジン。 An implosion type engine characterized by comprising a generator and an electric motor, and characterized by claim 3, claim 4, claim 5, claim 6 and claim 7.
  9.  爆縮式エンジンの吸気口にエジェクター、逆火防止アレスター等の安全装置を備えた、請求項3、請求項4、請求項5、請求項6、請求項7を特徴とした爆縮式エンジン。 An implosion type engine characterized in that a safety device such as an ejector or a backfire prevention arrester is provided at an intake port of the implosion type engine, as claimed in claim 3, claim 4, claim 5, claim 6 or claim 7.
  10.  爆縮式エンジンの吸気口に爆縮材の供給の為に燃料噴射弁や加圧装置を備えた、請求項3、請求項4、請求項5、請求項6、請求項7を特徴とした爆縮式エンジン。 A fuel injection valve and a pressurizing device are provided for supplying implosion material to an intake port of an implosion type engine, and characterized by claim 3, claim 4, claim 6, claim 7, and claim 7. Implosion type engine.
  11. 太陽光発電、風力発電、水力発電等の自然エネルギー、外部電源を備えた、請求項3、請求項4、請求項5、請求項6、請求項7を特徴とする爆縮エンジン。 An implosion engine characterized by claim 3, claim 4, claim 5, claim 6, and claim 7, comprising natural energy such as solar power generation, wind power generation, and hydropower generation, and an external power source.
  12. 爆縮材を貯蔵する為のアキュムレータや貯蔵施設を備えた、請求項3、請求項4、請求項5、請求項6、請求項7を特徴とする爆縮エンジン。 An implosion engine characterized by comprising an accumulator or a storage facility for storing implosion material, and claim 4, claim 5, claim 6, claim 7, and claim 7.
PCT/JP2018/016694 2017-05-03 2018-04-25 Implosion-type engine WO2018203498A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-092035 2017-05-03
JP2017092035A JP2018189024A (en) 2017-05-03 2017-05-03 Implosion type engine

Publications (1)

Publication Number Publication Date
WO2018203498A1 true WO2018203498A1 (en) 2018-11-08

Family

ID=64016627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016694 WO2018203498A1 (en) 2017-05-03 2018-04-25 Implosion-type engine

Country Status (2)

Country Link
JP (1) JP2018189024A (en)
WO (1) WO2018203498A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070797A (en) * 2018-10-25 2020-05-07 清水 勲生 Explosion implosion engine system including brown gas generation system and utilizing explosion implosion function of brown gas
JP2021127737A (en) * 2020-02-14 2021-09-02 勲生 清水 Explosion/implosion four-cycle engine system comprising brown's gas generation system and utilizing explosion/implosion function for brown gas
JP2021139320A (en) * 2020-03-04 2021-09-16 勲生 清水 Explosion/implosion brown gas rotary engine system comprising brown gas generation system and utilizing explosion implosion function for brown gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7539746B1 (en) 2024-02-27 2024-08-26 勲生 清水 An internal combustion engine that runs on hydrogen, oxygen, and water vapor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949039A (en) * 1972-09-19 1974-05-13
JPS4971303A (en) * 1972-11-16 1974-07-10
JPS49101706A (en) * 1973-02-03 1974-09-26
JPS5137349A (en) * 1974-08-05 1976-03-29 Tadahiro Yoshida GENSHUKUKOTEI
JPH04148033A (en) * 1990-10-06 1992-05-21 Shuhei Aiba Rotary engine
JPH0777053A (en) * 1993-09-09 1995-03-20 Shin Motoda Hydrogen fuel internal combustion engine power generator
JPH09170444A (en) * 1995-12-18 1997-06-30 Takashi Hikita Two-cycle rotary engine
JP2000179349A (en) * 1998-12-15 2000-06-27 Honda Motor Co Ltd Negative-pressure engine
US20120186542A1 (en) * 2011-01-21 2012-07-26 Fred Dawson Process for powering an engine with water by simultaneously separating hydrogen from oxygen and igniting the hydrogen in the compression/combustion chamber

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4949039A (en) * 1972-09-19 1974-05-13
JPS4971303A (en) * 1972-11-16 1974-07-10
JPS49101706A (en) * 1973-02-03 1974-09-26
JPS5137349A (en) * 1974-08-05 1976-03-29 Tadahiro Yoshida GENSHUKUKOTEI
JPH04148033A (en) * 1990-10-06 1992-05-21 Shuhei Aiba Rotary engine
JPH0777053A (en) * 1993-09-09 1995-03-20 Shin Motoda Hydrogen fuel internal combustion engine power generator
JPH09170444A (en) * 1995-12-18 1997-06-30 Takashi Hikita Two-cycle rotary engine
JP2000179349A (en) * 1998-12-15 2000-06-27 Honda Motor Co Ltd Negative-pressure engine
US20120186542A1 (en) * 2011-01-21 2012-07-26 Fred Dawson Process for powering an engine with water by simultaneously separating hydrogen from oxygen and igniting the hydrogen in the compression/combustion chamber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020070797A (en) * 2018-10-25 2020-05-07 清水 勲生 Explosion implosion engine system including brown gas generation system and utilizing explosion implosion function of brown gas
JP2021127737A (en) * 2020-02-14 2021-09-02 勲生 清水 Explosion/implosion four-cycle engine system comprising brown's gas generation system and utilizing explosion/implosion function for brown gas
JP2021139320A (en) * 2020-03-04 2021-09-16 勲生 清水 Explosion/implosion brown gas rotary engine system comprising brown gas generation system and utilizing explosion implosion function for brown gas

Also Published As

Publication number Publication date
JP2018189024A (en) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2018203498A1 (en) Implosion-type engine
JP2012528270A (en) Method of operating spark ignition engine and spark ignition engine using the method
CN102844544B (en) Heat engine
JP6622374B1 (en) Explosion-implosion engine system that uses Brown Gas's explosion-explosion function equipped with a Brown gas generation system.
JP2010106798A (en) Power generation equipment
JP2009281200A (en) Control device for vehicle equipped with hydrogen engine
KR101371955B1 (en) Internal combustion engine generating system using hydrogen
JP6802449B1 (en) An explosive implosion 4-cycle engine system that utilizes the explosive implosion function of brown gas equipped with a brown gas generation system.
JP6796748B1 (en) Explosion implosion brown gas rotary engine system using the explosion implosion function of brown gas equipped with a brown gas generation system.
TR201802811T4 (en) Fuel System for a Moving Machine.
JP5721129B2 (en) Compressed air heat engine
US7654072B2 (en) Method and apparatus for generating compressed air from liquefied air, for supplying compressed air to an engine
JP2012002191A (en) Hybrid engine using the same cylinder
WO2007104087A1 (en) A steam driven engine
CN203271950U (en) Piston punching self-ignition pulse jet engine
JP5623860B2 (en) Hydrogen gas engine and energy-saving car
RU2493387C2 (en) Device for energy conversion, system and method for hydrogen and oxygen burning
CN102392734B (en) Method for controlling motion of cylinder piston of piston engine and device for implementing method
RU2453715C1 (en) Internal combustion engine
RU2247841C1 (en) Two-stroke internal combustion engine
WO2006027623A1 (en) Combustion process, steam driven apparatus and method for imparting motion to an apparatus
WO2011152365A1 (en) Engine system and hydrogen station
RU2267622C2 (en) Internal combustion engine
CN1054474A (en) Watery fuel ignited internal combustion engine system
RU2276274C1 (en) Two-stroke internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18794055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18794055

Country of ref document: EP

Kind code of ref document: A1