WO2018201742A1 - 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用 - Google Patents

一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用 Download PDF

Info

Publication number
WO2018201742A1
WO2018201742A1 PCT/CN2017/119418 CN2017119418W WO2018201742A1 WO 2018201742 A1 WO2018201742 A1 WO 2018201742A1 CN 2017119418 W CN2017119418 W CN 2017119418W WO 2018201742 A1 WO2018201742 A1 WO 2018201742A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
based catalyst
iron
reaction
modified iron
Prior art date
Application number
PCT/CN2017/119418
Other languages
English (en)
French (fr)
Inventor
刘小浩
胥月兵
姜枫
刘冰
Original Assignee
江南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江南大学 filed Critical 江南大学
Publication of WO2018201742A1 publication Critical patent/WO2018201742A1/zh
Priority to US16/546,467 priority Critical patent/US10946363B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/34Apparatus, reactors
    • C10G2/342Apparatus, reactors with moving solid catalysts
    • C10G2/344Apparatus, reactors with moving solid catalysts according to the "fluidised-bed" technique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Definitions

  • the invention relates to a graphene-modified iron-based catalyst and its preparation and application in a Fischer-Tropsch reaction, and belongs to the technical field of syngas catalytic conversion.
  • Low carbon olefins including ethylene, propylene and butene are important chemical raw materials, mainly derived from the cracking of naphtha.
  • the direct production of low-carbon olefins from syngas as an alternative technical route for the production of low-carbon olefins such as ethylene and propylene is of great significance for utilizing China's rich coal resources and relieving dependence on petroleum resources.
  • the process does not require further production of olefins from syngas via methanol or dimethyl ether as in the indirect process, simplifying the process, low operating costs, and greatly reducing investment.
  • Direct synthesis of low-carbon olefins from syngas refers to a process in which synthesis gas (CO and H 2 ) is produced by Fischer-Tropsch synthesis of olefins having a carbon number of less than or equal to 4, which produces by-product water and CO 2 . Since the distribution of Fischer-Tropsch synthesis products is limited by the Anderson-Schulz-Flory law (chain growth is dependent on the exponential decreasing molar distribution), and the strong exothermicity of the reaction easily leads to the formation of methane and lower alkanes, and promotes the formation of olefins. In the secondary reaction, it is difficult to obtain low-carbon olefins with high selectivity, and the key lies in the development of high-performance catalysts.
  • graphene As a new type of carbon material, graphene has the advantages of large specific surface area, unique two-dimensional structure, excellent electrical and thermal conductivity, and easy chemical modification. It is considered to be an ideal catalyst carrier or auxiliary. . Most of the current researches have added graphene to the iron-based catalyst precursor process, and the preparation process is complicated, and the improvement of catalytic performance and stability is not very significant. Therefore, there is a need to develop a method capable of directly using graphene modification on an iron-based catalyst to simplify the preparation process of the catalyst while improving catalyst activity, selectivity and stability of low-carbon olefins.
  • the invention relates to a graphene-modified iron-based catalyst capable of realizing high-selective preparation of low-carbon olefins by syngas, and capable of preparing high-grade ⁇ -olefin, high activity, good stability and simple preparation method, and a preparation method thereof.
  • the catalyst of the present invention is a graphene-modified iron-based catalyst and its use in the Fischer-Tropsch reaction to produce olefins.
  • the graphene-modified iron-based catalyst of the present invention contains 0.01 to 30 parts of graphene, 0 to 20 parts of an auxiliary agent, and 60 to 99.99 parts of an iron oxide powder in parts by mass.
  • the iron oxide is one or a combination of any of triiron tetroxide, ferric oxide, and ferrous oxide, and the iron oxide particle size is 50 to 1000 nm, preferably 100 to 500 nm.
  • the auxiliary agent is one or a combination of any of K, Na, Mn, Cu, Zn, Mo, Co, S.
  • the invention also provides a method of preparing the graphene modified iron-based catalyst, comprising the steps of:
  • the graphene is dispersed in an aqueous solution to form a suspension, ultrasonic dispersion for 0.5 ⁇ 5h, then stirred for 1 ⁇ 24h;
  • the precursor of the oxide of iron is a soluble iron salt, preferably chloride, nitrate, acetate, sulfate, ammonium ferric citrate, ammonium ferrocyanide and ferricyanide.
  • a soluble iron salt preferably chloride, nitrate, acetate, sulfate, ammonium ferric citrate, ammonium ferrocyanide and ferricyanide.
  • ammonium acid preferably chloride, nitrate, acetate, sulfate, ammonium ferric citrate, ammonium ferrocyanide and ferricyanide.
  • the auxiliary precursor is selected from a soluble compound containing an auxiliary element, preferably one or more of a nitrate, a carbonate, an acetate, a molybdate, and a sulfide.
  • the present invention also provides the use of the graphene-modified iron-based catalyst to a catalyst for preparing synthesis gas a good method of preparation, the catalyst is employed prior to the reaction H 2 prereduction predetermined time, and then cooled to the reaction temperature for the catalytic reaction.
  • the graphene-modified iron-based catalyst is shaped, crushed, and passed through a 40-60 mesh screen at a pressure of 5.5 MPa for use in a Fischer-Tropsch reaction.
  • a graphene-modified iron-based catalyst is placed in a continuously flowing reactor to catalyze a continuous reaction.
  • the present invention has the following advantages:
  • the prepared catalyst is simple in preparation and formed in one step.
  • the micro-iron carbide active phase that can be effectively formed during the reaction maintains its high activity. In particular, it exhibits very excellent activity in the Fischer-Tropsch reaction, and maintains a high CO conversion rate of 90% or more over a long period of time at a high reaction space velocity.
  • the product has a low alkane content and an olefin ratio of up to 14, which has a very high industrial application value.
  • the prepared catalyst has extremely high total olefin selectivity and low methane selectivity.
  • the catalyst is extremely active and maintains the stability of the catalyst at very high space velocities.
  • the prepared catalyst was molded, crushed and sieved under a pressure of 5.5 MPa to obtain a sample of 40 to 60 mesh. 0.15 g of the catalyst was placed in a continuous flow reactor, and the catalyst was pre-reduced with H 2 for a certain period of time, and then cooled to the reaction temperature for continuous reaction.
  • the reaction gas was composed of 47.5 vol% CO, 47.5 vol% H 2 and 5 vol% Ar, wherein Ar was used as an internal standard gas to calculate the conversion of CO.
  • the product was analyzed by atmospheric pressure after cold trap and analyzed by gas chromatography with both TCD and FID detectors.
  • Catalyst A was placed in a pressurized fixed bed reactor, heated to 380 ° C at 5 ° C/min in a H 2 atmosphere, and reduced at a space velocity of 1000 h -1 for 10 h under normal pressure. Subsequently, the reaction gas was introduced into the reaction to reduce the temperature, the reaction pressure was 1.0 MPa, the reaction space velocity was 20000 h -1 , the reaction temperature was 300 ° C, 320 ° C and 340 ° C, and the influence of the reaction temperature was examined. The results of CO conversion and olefin selectivity are shown in Table 1.
  • Catalyst B was placed in a pressurized fixed bed reactor, heated to 380 ° C at 5 ° C / min in a H 2 atmosphere, and reduced at a space velocity of 1000 h -1 for 10 h under normal pressure.
  • the reaction gas is introduced into the reaction, the reaction pressure 1.0MPa, reaction temperature 300 °C, space velocity 10000h -1, 20000h -1 and 40000h -1, reactive airspeed investigated.
  • the results of CO conversion and olefin selectivity are shown in Table 1.
  • Catalyst C was placed in a pressurized fixed bed reactor, heated to 380 ° C at 5 ° C / min in a H 2 atmosphere, and reduced at a space velocity of 1000 h -1 for 10 h under normal pressure. Subsequently, the reaction gas was introduced into the reaction to reduce the temperature, the reaction pressure was 1.0 MPa, the reaction space velocity was 20000 h -1 , the reaction temperature was 340 ° C, and the CO conversion rate and olefin selectivity were shown in Table 1.
  • Catalyst D was placed in a pressurized fixed bed, a fluidized bed and a slurry bed reactor, respectively, and both were heated to 380 ° C at 5 ° C / min in a H 2 atmosphere, and at a space pressure of 1000 h -1 for 10 h under normal pressure. Subsequently, the reaction gas was introduced into the reaction to reduce the temperature, the reaction pressure was 1.0 MPa, the reaction space velocity was 20000 h -1 , the reaction temperature was 340 ° C, and the CO conversion rate and olefin selectivity were shown in Table 1. This result was used to compare the results of the catalyst reaction in different reactors.
  • the catalyst was placed in a pressurized fixed bed and a fluidized bed reactor, and the temperature was raised to 380 ° C at 5 ° C / min in a H 2 atmosphere, and the space velocity was reduced at 1000 h -1 for 10 h under normal pressure. Subsequently, the reaction gas was introduced into the reaction to reduce the temperature, the reaction pressure was 1.0 MPa, the reaction space velocity was 20000 h -1 , and the reaction temperature was 340 ° C.
  • the CO conversion and olefin selectivity results are shown in Table 2.
  • Reaction conditions fixed bed reactor, 1.0 MPa, average data within 100-500 h of reaction.
  • Reaction conditions fixed bed reactor, 1.0 MPa, average data within 5-10 h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种石墨烯修饰的铁基催化剂及其在费托反应制烯烃中的应用。催化剂是由质量百分含量为0.01~30%的石墨烯、0~20%助剂和60~99.99%的铁氧化物组成。催化剂的制备过程是将石墨烯、氧化铁粉末和助剂先后置于水溶液中进行超声、搅拌,再经旋转蒸发、干燥和焙烧制得。催化剂在费托反应中表现出非常优异的活性,在很高的反应空速下长时间内保持高CO转化率,90%以上;同时产物中烷烃含量低,烯烷比可达14,具有极高的工业应用价值。

Description

一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用 技术领域
本发明涉及一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用,属于合成气催化转化技术领域。
背景技术
低碳烯烃包括乙烯、丙烯和丁烯是重要的化工原料,其主要来源于石脑油的裂解。随着原油资源的减少和环境问题的日益突出,同时页岩气规模性的开发,使得从石油路线获得烯烃受到挑战,也变得不可持续。因此,非石油路线制取低碳烯烃越来越受到重视。合成气直接制低碳烯烃作为生产乙烯和丙烯等低碳烯烃的一条替代技术路线,对于利用我国较为丰富的煤炭资源、缓解对石油资源的依赖,具有重要意义。该工艺无需像间接法工艺那样从合成气经甲醇或二甲醚,进一步制备烯烃,简化工艺流程,操作成本低、大大减少投资。
合成气直接制低碳烯烃是指合成气(CO和H 2)在催化剂作用下,通过费托合成制得碳原子数小于或等于4的烯烃的过程,该过程副产水和CO 2。由于费托合成产品分布受Anderson-Schulz-Flory规律(链增长依指数递减的摩尔分布)的限制,且反应的强放热性易导致甲烷和低碳烷烃的生成,并促使生成的烯烃发生二次反应,想要高选择性地得到低碳烯烃较为困难,关键在于高性能催化剂的开发。
尽管也有文献报道将钴基或钌基催化剂用于费托反应制低碳烯烃,但因铁基催化剂其成本低,具有较高的低碳烯烃选择性,成为费托合成直接制低碳烯烃反应首选的活性组分。近来,有较多的文献报道在制备铁基催化剂过程中使用到了碳材料。碳材料不仅能提供所需的稳定性,也有利于铁物种的还原和活化,因而碳材料无论作为载体或助剂都成为近年来的研究热点。石墨烯作为一种新型的碳材料,具有大的比表面积、独特的二维结构、优良的导电和导热性、以及易于进行化学修饰等优点,而被认为是一种理想的催化剂载体或助剂。而目前的大多数研究多将石墨烯添加到铁基催化剂前驱体过程中,制备过程较为复杂,同时催化性能及稳定性改善也不是非常显著。因此需要开发一种能够对铁基催化剂直接采用石墨烯修饰的方法,以简化催化剂的制备过程,同时提高催化剂活性、低碳烯烃选择性和稳定性。
发明内容
本发明涉及一种能实现合成气高选择性地制备低碳烯烃,同时可制备高级α-烯烃、活性高、稳定性好和制备方法简单的石墨烯修饰的铁基催化剂及其制备方法。
本发明的催化剂是一种石墨烯修饰的铁基催化剂及其在费托反应制烯烃中的应用。
本发明所述石墨烯修饰的铁基催化剂,按质量份数计,含有0.01~30份的石墨烯、0~20份的助剂和60~99.99份的铁氧化物粉体。
在本发明的一种实施方式中,所述铁氧化物为四氧化三铁、三氧化二铁、氧化亚铁中的一种或任意几种组合,铁氧化物颗粒尺寸为50~1000nm,优选100~500nm。
在本发明的一种实施方式中,所述助剂为K、Na、Mn、Cu、Zn、Mo、Co、S中的一种或任意几种组合。
本发明还提供制备所述石墨烯修饰的铁基催化剂的方法,包括以下步骤:
(1)10~80℃条件下,将石墨烯分散于水溶液中形成悬浊液,超声分散0.5~5h后搅拌1~24h;
(2)根据计量比将铁氧化物前躯体加入步骤(1)形成的悬浊液中,并不断搅拌0.5~24h;
(3)根据计量比将助剂前驱体加入到步骤(2)形成的悬浊液中,并不断搅拌1~24h;
(4)对步骤(3)所得到的溶液旋转蒸发至干,所得固体80~120℃下干燥1~24h,随后在氮气或氦气或氩气中的一种气体中250~800℃焙烧1~24h,即得石墨烯修饰的铁基催化剂。
在本发明的一种实施方式中,铁元素的氧化物的前躯体为可溶性铁盐,优选氯化物、硝酸盐、醋酸盐、硫酸盐、柠檬酸铁铵、亚铁氰酸铵和铁氰酸铵中一种或两种以上。
在本发明的一种实施方式中,助剂前躯体选取含助剂元素的可溶性化合物,优选硝酸盐、碳酸盐、醋酸盐、钼酸盐、硫化物中的一种或两种以上。
本发明还提供应用所述石墨烯修饰的铁基催化剂将制备好的催化剂制备合成气的方法,是在反应前将催化剂采用H 2预还原一定时间,然后降温至反应温度用于催化反应。
在本发明的一种实施方式中,石墨烯修饰的铁基催化剂在5.5MPa压力下成型、破碎、过40~60目筛后用于费托反应。
在本发明的一种实施方式中,石墨烯修饰的铁基催化剂置于连续流动的反应器中,催化连续反应。
与现有技术比较,本发明具有的优点如下:
(1)所制备的催化剂其制备方法简单,一步形成。在反应过程中可有效形成的微小碳化铁活性相,维持其高活性。尤其在费托反应中表现出非常优异的活性,在很高的反应空速下长时间内保持高CO转化率,90%以上。同时产物中烷烃含量低,烯烷比可达14,具有极高的工业应用价值。
(2)所制备的催化剂具有极高的总烯烃选择性和较低甲烷选择性。催化剂的活性极高,可在极高空速下保持催化剂的稳定性。
具体实施方式
实施例1~4石墨烯修饰的铁基催化剂的制备
实施例1
分别取0.677g氧化石墨烯、3.112g三氧化二铁粉体40℃下先后溶解于水溶液中,并不断搅拌12h;然后85℃下进行旋转蒸发至干,并在105℃干燥24h。随后在氮气氛围中400℃焙烧5h,得石墨烯含量为17.8%,三氧化二铁含量为82.2%的催化剂A。
实施例2
分别取0.325g氧化石墨烯、2.876g三氧化二铁粉体、0.0715g碳酸钾40℃下先后溶解于水溶液中,并不断搅拌12h;然后85℃下进行旋转蒸发至干,并在105℃干燥24h。随后在氮气氛围中400℃焙烧5h,得石墨烯含量为10%,三氧化二铁含量为88.5%和氧化钾含量为1.5%的催化剂B。
实施例3
分别取0.551g氧化石墨烯、4.052g四氧化三铁粉体40℃下先后溶解于水溶液中,并不断搅拌12h;然后85℃下进行旋转蒸发至干,并在105℃干燥24h。随后在氮气氛围中400℃焙烧5h,得石墨烯含量为12%,四氧化三铁含量为88%的催化剂C。
实施例4
分别取0.861g氧化石墨烯、4.001g四氧化三铁粉体和0.435g硝酸钾40℃下先后溶解于水溶液中,并不断搅拌12h;然后85℃下进行旋转蒸发至干,并在105℃干燥24h。随后在氮气氛围中400℃焙烧5h,得石墨烯含量为17%,四氧化三铁含量为79%和氧化钾含量为4%的催化剂D。
实施例5~8石墨烯修饰的铁基催化剂在合成气转化中的利用。
将制备好的催化剂在5.5MPa压力下成型、破碎、过筛获取40~60目的样品。取0.15g催化剂置于连续流动的反应器中,反应前催化剂均要采用H 2预还原一定时间,然后降温至反应温度进行连续反应。反应气由47.5vol%CO、47.5vol%H 2和5vol%Ar组成,其中Ar作为内标气,用来计算CO的转化率。产物经冷阱后常压在线分析,由一台同时配置TCD和FID检测器的气相色谱来分析。
实施例5
催化剂A置于加压固定床反应器中,在H 2氛围中以5℃/min升温至380℃,常压下,空速1000h -1还原10h。随后降温引入反应气体进行反应,反应压力1.0MPa,反应空速20000h -1,反应温度为300℃,320℃和340℃,考察反应温度的影响。CO转化率和烯烃选择性结果见表 1。
实施例6
催化剂B置于加压固定床反应器中,在H 2氛围中以5℃/min升温至380℃,常压下,空速1000h -1还原10h。随后降温引入反应气体进行反应,反应压力1.0MPa,反应温度300℃,反应空速10000h -1,20000h -1和40000h -1,考察反应空速的影响。CO转化率和烯烃选择性结果见表1。
实施例7
催化剂C置于加压固定床反应器中,在H 2氛围中以5℃/min升温至380℃,常压下,空速1000h -1还原10h。随后降温引入反应气体进行反应,反应压力1.0MPa,反应空速20000h -1,反应温度340℃,CO转化率和烯烃选择性结果见表1。
实施例8
催化剂D分别置于加压固定床、流化床和浆态床反应器中,均在H 2氛围中以5℃/min升温至380℃,常压下,空速1000h -1还原10h。随后降温引入反应气体进行反应,反应压力1.0MPa,反应空速20000h -1,反应温度340℃,CO转化率和烯烃选择性结果见表1。该结果用于比较催化剂在不同反应器中反应结果。
对比例1
分别取3.88g三氧化二铁粉体和0.176g碳酸钾40℃下先后溶解于水溶液中,并不断搅拌12h;然后85℃下进行旋转蒸发至干,并在105℃干燥24h。随后在氮气氛围中400℃焙烧5h,得三氧化二铁含量为97%和氧化钾含量为3%的催化剂E。将该催化剂置于加压固定床反应器中,在H 2氛围中以5℃/min升温至380℃,常压下,空速1000h -1还原10h。随后降温引入反应气体进行反应,反应压力1.0MPa,反应空速20000h -1,反应温度为300和340℃,考察反应温度的影响。CO转化率和烯烃选择性结果见表2。
对比例2
分别取0.506g活性炭,4.948四氧化三铁粉体和0.248g碳酸钾40℃下先后溶解于水溶液中,并不断搅拌12h;然后85℃下进行旋转蒸发至干,并在105℃干燥24h。随后在氮气氛围中400℃焙烧5h,得活性炭含量为9%,四氧化三铁含量为89%和氧化钾含量为3%的催化剂F。将该催化剂置于加压固定床和流化床反应器中,在H 2氛围中以5℃/min升温至380℃,常压下,空速1000h -1还原10h。随后降温引入反应气体进行反应,反应压力1.0MPa,反应空速20000h -1,反应温度为340℃。CO转化率和烯烃选择性结果见表2。
表1不同催化剂的合成气转化制低碳烯烃的反应性能
Figure PCTCN2017119418-appb-000001
反应条件:固定床反应器,1.0MPa,反应100-500h内的平均数据。
*流化床反应器;**浆态床反应器;
表2对比例实验结果
Figure PCTCN2017119418-appb-000002
反应条件:固定床反应器,1.0MPa,5-10h内的平均数据。
*流化床反应器。
对比表1和表2中实验结果,可清晰地看出石墨烯修饰的铁基催化剂表现出优异的催化性能,在反应500小时内保持活性稳定;在很高的反应空速仍然表现出很高的CO转化率。即使在没有助剂添加的情况下,产物中烯烃选择性就已接近50%,烯烷比可达13。而没有石墨烯 修饰或采用其它碳材料修饰的铁基催化剂,在反应数小时内就快速失去活性,且产物中以烷烃为主。该结果表明石墨烯修饰的铁基催化剂具有极好的工业应用价值。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (11)

  1. 一种制备石墨烯修饰的铁基催化剂的方法,其特征在于,原料按质量份计,含有0.01~30份的石墨烯、0~20份的助剂和60~99.99份的铁氧化物粉体;
    制备过程包括以下步骤:
    (1)10~80℃条件下,将石墨烯分散于水溶液中形成悬浊液,超声分散0.5~5h后搅拌1~24h;
    (2)根据计量比将铁氧化物前驱体加入步骤(1)形成的悬浊液中,并不断搅拌0.5~24h;
    (3)根据计量比将助剂前驱体加入到步骤(2)形成的悬浊液中,并不断搅拌1~24h;
    (4)对步骤(3)所得到的溶液旋转蒸发至干,所得固体80~120℃下干燥1~24h,随后在氮气或氦气或氩气中的一种气体中250~800℃焙烧1~24h,即得石墨烯修饰的铁基催化剂。
  2. 根据权利要求1所述的一种制备石墨烯修饰的铁基催化剂的方法,其特征在于,铁氧化物前躯体包括可溶性铁盐,优选氯化物、硝酸盐、醋酸盐、硫酸盐、柠檬酸铁铵、亚铁氰酸铵和铁氰酸铵中一种或两种以上。
  3. 根据权利要求1所述的一种制备石墨烯修饰的铁基催化剂的方法,其特征在于,助剂前躯体选取含助剂元素的可溶性化合物,优选硝酸盐、碳酸盐、醋酸盐、钼酸盐、硫化物中的一种或两种以上。
  4. 根据权利要求1或2所述的一种制备石墨烯修饰的铁基催化剂的方法,其特征在于,所述铁氧化物为四氧化三铁、三氧化二铁、氧化亚铁中的一种或任意几种组合,铁氧化物颗粒尺寸为50~1000nm。
  5. 根据权利要求4所述的一种制备石墨烯修饰的铁基催化剂的方法,其特征在于,铁氧化物颗粒尺寸为100~500nm。
  6. 根据权利要求1或3所述的一种制备石墨烯修饰的铁基催化剂的方法,其特征在于,所述助剂为K、Na、Mn、Cu、Zn、Mo、Co、S中的一种或任意几种组合。
  7. 根据权利要求1~6任一所述方法制备得到的石墨烯修饰的铁基催化剂。
  8. 权利要求7所述石墨烯修饰的铁基催化剂在费托反应中的应用。
  9. 根据权利要求8所述的应用,其特征在于,应用所述石墨烯修饰的铁基催化剂催化合成气的费托反应,在反应前将催化剂采用H 2预还原一定时间,然后降温至反应温度再进行催化反应。
  10. 根据权利要求9所述的应用,其特征在于,石墨烯修饰的铁基催化剂在5.5MPa压力下成型、破碎、过40~60目筛后用于费托反应。
  11. 根据权利要求9或10所述的应用,其特征在于,石墨烯修饰的铁基催化剂置于连续流动的反应器中,催化连续反应。
PCT/CN2017/119418 2017-05-02 2017-12-28 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用 WO2018201742A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/546,467 US10946363B2 (en) 2017-05-02 2019-08-21 Graphene modified iron-based catalyst and preparation and application thereof for use in Fischer-Tropsch reaction

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710300472.2A CN107051461B (zh) 2017-05-02 2017-05-02 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用
CN201710300472.2 2017-05-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/546,467 Continuation US10946363B2 (en) 2017-05-02 2019-08-21 Graphene modified iron-based catalyst and preparation and application thereof for use in Fischer-Tropsch reaction

Publications (1)

Publication Number Publication Date
WO2018201742A1 true WO2018201742A1 (zh) 2018-11-08

Family

ID=59603936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/119418 WO2018201742A1 (zh) 2017-05-02 2017-12-28 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用

Country Status (3)

Country Link
US (1) US10946363B2 (zh)
CN (1) CN107051461B (zh)
WO (1) WO2018201742A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107051461B (zh) * 2017-05-02 2020-05-08 江南大学 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用
CN107597120B (zh) * 2017-09-22 2020-08-04 中石化炼化工程(集团)股份有限公司 石墨烯负载钴系催化剂及其制备方法和用途
CN110614099B (zh) * 2018-06-20 2022-10-04 国家能源投资集团有限责任公司 费托合成铁基催化剂及其制备方法和费托合成的方法
CN111111723B (zh) * 2020-02-06 2023-07-04 江南大学 一种铁基费托催化剂及其制备方法与应用
CN114100623B (zh) * 2020-08-26 2023-12-08 中国石油化工股份有限公司 一种提升苯氧化制顺酐选择性的催化剂及其制备方法和应用
CN112569947B (zh) * 2020-12-29 2022-02-15 中国科学院山西煤炭化学研究所 一种形貌可控的均匀棒状结构铁/石墨烯催化剂及其制备方法和应用
CN113649010B (zh) * 2021-08-31 2023-12-19 安徽大学 一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法及应用
CN114538424B (zh) * 2022-03-22 2023-07-14 中国科学技术大学 一种有序介孔碳修饰的石墨烯材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130085189A1 (en) * 2007-08-17 2013-04-04 Juzer Jangbarwala Fischer-Tropsch Process Using Fibrous Composite Catalytic Structures Having at Least Three Solid Phases
CN103934040A (zh) * 2014-04-22 2014-07-23 沈阳化工大学 一种高选择性、高分散的金属催化剂的制备方法
CN104403682A (zh) * 2014-12-09 2015-03-11 中国科学院山西煤炭化学研究所 一种光催化费托合成方法及使用的催化剂
CN105964263A (zh) * 2016-05-14 2016-09-28 复旦大学 石墨烯负载的高效铁基费托合成制低碳烯烃催化剂及其制备方法
CN107051461A (zh) * 2017-05-02 2017-08-18 江南大学 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2537699A (en) * 1946-09-12 1951-01-09 Standard Oil Dev Co Magnetite containing catalyst for the synthesis of hydrocarbons
US8871171B2 (en) * 2010-03-26 2014-10-28 Virginia Commonwealth University Production of graphene and nanoparticle catalysts supported on graphene using microwave radiation
CA2757012C (en) * 2011-11-03 2021-05-04 University Of Saskatchewan Promoted iron catalysts supported on carbon nanotubes for fischer-tropsch synthesis
KR101558735B1 (ko) * 2014-02-13 2015-10-08 포항공과대학교 산학협력단 무기나노입자를 담지한 수소화 촉매, 이의 제조방법 및 이를 이용한 바이오매스 유래 탄화수소 화합물의 수소화 방법
CN103934002A (zh) * 2014-04-25 2014-07-23 苏州大学 铁锰石墨烯三元光催化剂及其制备方法
CN106391015B (zh) * 2015-07-31 2019-10-01 南开大学 催化材料及其制备方法和用途
CN105195189B (zh) * 2015-10-29 2018-05-29 江南大学 一种从合成气直接制取低碳烯烃的催化剂及其制备与应用
CN105195205B (zh) * 2015-10-29 2018-07-06 江南大学 一种用于费托反应的氮掺杂铁基催化剂的制备及其应用
WO2017185260A1 (zh) * 2016-04-27 2017-11-02 中国科学技术大学 用于富氢气氛中优先氧化co的宽温催化剂的制备方法及其产品和应用
CN107127351B (zh) * 2017-05-03 2019-03-19 广州特种承压设备检测研究院 石墨烯与四氧化三铁@金复合材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130085189A1 (en) * 2007-08-17 2013-04-04 Juzer Jangbarwala Fischer-Tropsch Process Using Fibrous Composite Catalytic Structures Having at Least Three Solid Phases
CN103934040A (zh) * 2014-04-22 2014-07-23 沈阳化工大学 一种高选择性、高分散的金属催化剂的制备方法
CN104403682A (zh) * 2014-12-09 2015-03-11 中国科学院山西煤炭化学研究所 一种光催化费托合成方法及使用的催化剂
CN105964263A (zh) * 2016-05-14 2016-09-28 复旦大学 石墨烯负载的高效铁基费托合成制低碳烯烃催化剂及其制备方法
CN107051461A (zh) * 2017-05-02 2017-08-18 江南大学 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用

Also Published As

Publication number Publication date
CN107051461A (zh) 2017-08-18
CN107051461B (zh) 2020-05-08
US20190374928A1 (en) 2019-12-12
US10946363B2 (en) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2018201742A1 (zh) 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用
CN105195189B (zh) 一种从合成气直接制取低碳烯烃的催化剂及其制备与应用
CN105195205B (zh) 一种用于费托反应的氮掺杂铁基催化剂的制备及其应用
CN111672529B (zh) 一种纳米碳负载钴氮碳催化材料及其制备方法和应用
CN108435239B (zh) 一种联产烯烃和芳烃的催化剂及其制备方法与应用
CN105964263B (zh) 石墨烯负载的高效铁基费托合成制低碳烯烃催化剂及其制备方法
CN104549343A (zh) 合成气制低碳烯烃催化剂、制备方法及其用途
CN104549359A (zh) 生产低碳烯烃催化剂、催化剂的制备方法及其使用方法
WO2019183842A1 (zh) 一种复合催化剂、其制备方法和乙烯的制备方法
CN111054410B (zh) 液相脱氢催化剂、制备及用途
CN109647492B (zh) 合成气直接生产低碳烯烃的催化剂
CN104549358A (zh) 合成低碳烯烃的催化剂、制备方法及其使用方法
CN112569947B (zh) 一种形貌可控的均匀棒状结构铁/石墨烯催化剂及其制备方法和应用
CN115703074B (zh) 一种含MnGaOx的双功能催化剂及其在一氧化碳高温加氢制低碳烯烃中的应用
CN109651031B (zh) 合成气直接生产低碳烯烃的方法
CN110639495B (zh) 用于合成气合成低碳烯烃的催化剂及合成低碳烯烃中的应用
CN112892543B (zh) 一种合成气油-醇联产的催化剂及其制备与应用
CN110639486B (zh) 合成气制低碳烯烃催化剂及在合成气制低碳烯烃中的应用
CN109092291A (zh) 合成气制低碳烯烃催化剂
CN109092292B (zh) Co加氢制低碳烯烃催化剂
CN109092289B (zh) Co和h2直接制低碳烯烃催化剂
CN109092290B (zh) Co和h2直接制低碳烯烃的反应方法
CN109092293B (zh) 合成气直接制低碳烯烃催化剂
CN109096025B (zh) 合成气制低碳烯烃的反应方法
CN109096024B (zh) Co加氢制低碳烯烃的反应方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908234

Country of ref document: EP

Kind code of ref document: A1