CN104403682A - 一种光催化费托合成方法及使用的催化剂 - Google Patents

一种光催化费托合成方法及使用的催化剂 Download PDF

Info

Publication number
CN104403682A
CN104403682A CN201410745484.2A CN201410745484A CN104403682A CN 104403682 A CN104403682 A CN 104403682A CN 201410745484 A CN201410745484 A CN 201410745484A CN 104403682 A CN104403682 A CN 104403682A
Authority
CN
China
Prior art keywords
catalyzer
tropsch synthesis
synthesis method
fischer
photochemical catalysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410745484.2A
Other languages
English (en)
Other versions
CN104403682B (zh
Inventor
郭向云
郭晓宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Institute of Coal Chemistry of CAS
Original Assignee
Shanxi Institute of Coal Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Institute of Coal Chemistry of CAS filed Critical Shanxi Institute of Coal Chemistry of CAS
Priority to CN201410745484.2A priority Critical patent/CN104403682B/zh
Publication of CN104403682A publication Critical patent/CN104403682A/zh
Application granted granted Critical
Publication of CN104403682B publication Critical patent/CN104403682B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

一种光催化费托合成方法是将催化剂体在搅拌条件下分散在水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中;将反应器密封并用惰性气体吹洗后,依次充入H2和CO,其中H2和CO的总压力为0.1-10MPa;H2与CO的摩尔比为0.5-3;在搅拌条件下,加热反应体系至100-220oC,在强度为0.01-5W/cm2的光照下进行反应。本发明具有成本低廉、操作条件温和、反应速率高的优点。

Description

一种光催化费托合成方法及使用的催化剂
技术领域
本发明涉及一种费托合成的方法,具体涉及一种使用负载型金属催化剂的光催化费托合成的方法。
背景技术
费托合成是指合成气(一氧化碳和氢气)经由特定的催化剂,在一定压力和温度下,催化合成烃类液体燃料的反应。通过催化剂和反应条件的调变,可以获得燃气、液态烃、重质蜡和烯烃等众多燃料与化学产品。合成气来源广泛,可以从煤炭、天然气和生物质中得到。因此,费托合成已成为非石油路线生产油品及其它化工基础原料的重要技术路线之一,有望解决未来由于石油枯竭带来的能源问题。
催化剂是实现费托合成的关键,活性组分通常以铁、钴、镍、钌和铑为主。工业上用的较多的是铁和钴,反应温度在200-350℃,反应压力在1-50atm左右。但是费托合成是一个放热反应,高温对反应平衡不利,容易使催化剂局部过热而烧结;同时也使水煤气变换反应加剧,从而使产物中CO2的选择性增加。另外,在现有费托合成反应条件下,汽油和柴油(主要是C5+)选择性较低,而甲烷选择性偏高;CO转化不完全,需要在尾气中回收利用,从而增加生产成本。因此,研究人员采用各种方法来解决以上问题。中国专利(CN 101979138 B)公布了一种钴-铜费托合成双金属催化剂,能够实现在低CO2选择性的前提下,高选择性获得汽油产物。中国专利(CN 102911694 B)公布了一种多孔钛硅铂氧化物复合粒子担载的钴基催化剂,可以在保持很高的CO转化率的同时,得到较低的二氧化碳和甲烷选择性,并高选择性生产C20以内烃类产物。中国专利(CN102911694 B)公布了一种高沸点醇或高分子液态聚合物液相保护的铁催化剂体系,可在低温(150℃)和液相条件下实现费托合成反应,所得产物与催化剂体系自动分相,其中可用的C5+组分含量也较高(70.8-79.8%),CO2选择性低,烯烃含量较高。以上方法或者需要较高的操作温度,或者催化剂制备过程复杂,而且均未利用光能促进反应。
发明内容
本发明的目的是提供一种成本低廉、操作条件温和、反应速率高的一种光催化费托合成方法及使用的催化剂。
铁、钴、镍、钌和铑等金属纳米颗粒均可吸收光,引起能带间电子跃迁。这些电子吸收光能成为高能“热”电子,富集在金属纳米粒子表面,从而可以高效活化吸附在颗粒表面的反应物分子,促进反应进行。本发明利用存量丰富且可再生的太阳能来促进费托合成进行,提高反应速率。
本发明提供的光催化费托合成反应的方法,其具体过程如下:
(1)将催化剂体在搅拌条件下分散在水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中;
(2)将反应器密封并用惰性气体吹洗后,依次充入H2和CO,其中H2和CO的总压力为0.1-10MPa;H2与CO的摩尔比为0.5-3;
(3)在搅拌条件下,加热反应体系至100-220℃,在强度为0.01-5W/cm2的光照下进行反应。
如上所述的光照是太阳光直接照射、汞灯照射或者模拟太阳光的人工光源照射。
本发明的催化剂是负载型多相催化剂,其中催化剂包括载体,活性金属组分和助剂金属组分,按最终催化剂重量计,活性金属组分的质量分数为1%-20%;助剂金属组分的质量分数为0-40%,其余为载体;金属纳米颗粒的粒径小于100纳米。
如上所述的载体为石墨烯、碳化硅、氧化铝、二氧化硅或活性炭中的一种;活性金属组分为铁、钴、镍、钌或铑中的任意一种或两种,助剂金属组分为金、铜、锰、铈或锆中的任意一种。
如上所述催化剂的制备方法包括如下步骤:
(1)按照催化剂活性组分与助剂金属组分的组成比例,将Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、RuCl3或RhCl3中的任意一种或两种盐,HAuCl4、Cu(NO3)2·3H2O、MnCl2、Ce(NO3)3·6H2O或Zr(NO3)4·5H2O中的任意一种盐同时溶解于蒸馏水中,得到溶液(A);
(2)将催化剂载体分散于上述溶液(A)中,在室温下搅拌12h,蒸干,得到混合物(B);
(3)将上述混合物(B)在110℃下干燥12h后,置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到光催化费托合成反应的催化剂。
本发明与技术相比具有如下优点:
成本低廉,操作简单,反应温度低,反应速率高、催化剂易回收,产物中CH4和CO2选择性低且C5+选择性高。其中最显著的特点是能够有效利用太阳能促进反应进行。
具体实施方式
实施例1
将0.72g Fe(NO3)3·9H2O溶解于20mL蒸馏水后,将1.9g石墨烯分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到2g负载量为5wt%石墨烯负载的金属Fe催化剂,其中Fe纳米颗粒粒径为5纳米。
将2g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入2.0MPa的H2,1.0MPa的CO(H2与CO的摩尔比为2),在搅拌条件下,加热至150℃,在强度为0.5W/cm2的模拟太阳光的人工光源照射下反应8小时。测定体系中的气体压力,计算转化频率(转化频率=转化的CO的量(mol)/催化剂的量(mol)/反应时间(h)),并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例2
将0.35g Co(NO3)2·6H2O溶解于20mL蒸馏水后,将0.93g碳化硅分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到1g负载量为7wt%碳化硅负载的金属Co催化剂,其中Co纳米颗粒粒径为14纳米。
将1g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H21.8MPa,CO 1.2MPa(H2与CO的摩尔比为1.5),在搅拌条件下,加热至200℃,在光照强度为3W/cm2的汞灯照射下反应15小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例3
将0.02g Ni(NO3)2·6H2O溶解于20mL蒸馏水后,将0.016g氧化铝分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到0.02g负载量为20wt%氧化铝负载的金属Ni催化剂,其中Ni纳米颗粒粒径为30纳米。
将0.02g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H24.0MPa,CO 1.5MPa(H2与CO的摩尔比约为2.7),在搅拌条件下,加热至220℃,在光照强度为5W/cm2的汞灯照射下反应24小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。实施例4
将0.14g RuCl3溶解于20mL蒸馏水后,将0.63g二氧化硅分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到0.7g负载量为10wt%二氧化硅负载的金属Ru催化剂,其中Ru纳米颗粒粒径为8纳米。
将0.7g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H21.0MPa,CO 1.0MPa(H2与CO的摩尔比为1),在搅拌条件下,加热至100℃,在光照强度为1.5W/cm2的模拟太阳光的人工光源照射下反应9小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例5
将0.49g RhCl3溶解于20mL蒸馏水后,将0.96g活性炭分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到1.2g负载量为20wt%活性炭负载的金属Rh催化剂,其中Rh纳米颗粒粒径为22纳米。
将1.2g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H21.5MPa,CO 3.0MPa(H2与CO的摩尔比为0.5),在搅拌条件下,加热至120℃,在光照强度为2.5W/cm2的模拟太阳光的人工光源照射下反应11小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例6
将0.29g Fe(NO3)3·9H2O和0.3g Co(NO3)2·6H2O溶解于20mL蒸馏水后,将0.3g石墨烯分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到0.4g Fe负载量为10wt%、Co负载量为15wt%的石墨烯负载的Fe-Co双金属催化剂,其中Fe-Co双金属纳米颗粒粒径为47纳米。
将0.4g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H26.0MPa,CO 3.0MPa(H2与CO的摩尔比为2),在搅拌条件下,加热至170℃,在光照强度为2W/cm2的模拟太阳光的人工光源照射下反应18小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例7
将0.22g Co(NO3)2·6H2O和0.12g RhCl3溶解于20mL蒸馏水后,将0.2g碳化硅分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到0.3g Co负载量为15wt%、Rh负载量为20wt%的碳化硅负载的Co-Rh双金属催化剂,其中Co-Rh双金属纳米颗粒粒径为47纳米。
将0.3g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H25.0MPa,CO 2.0MPa(H2与CO的摩尔比为2.5),在搅拌条件下,加热至140℃,在光照强度为1.3W/cm2的模拟太阳光的人工光源照射下反应20小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例8
将0.81g Fe(NO3)3·9H2O和0.26g RuCl3溶解于20mL蒸馏水后,将1.162g活性炭分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到1.4g Fe负载量为8wt%、Ru负载量为9wt%的活性炭负载的Fe-Ru双金属催化剂,其中Fe-Ru双金属纳米颗粒粒径为31纳米。
将1.4g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H23.0MPa,CO 2.0MPa(H2与CO的摩尔比为1.5),在搅拌条件下,加热至130℃,在光照强度为0.04W/cm2的太阳光照射下反应12小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。实施例9
将0.22g Fe(NO3)3·9H2O和0.13g HAuCl4溶解于20mL蒸馏水后,将0.145g石墨烯分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到0.25g Fe负载量为12wt%、Au负载量为30wt%的石墨烯负载的Fe-Au双金属催化剂,其中Fe-Au双金属纳米颗粒粒径为72纳米。
将0.25g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H23.0MPa,CO 1.0MPa(H2与CO的摩尔比为3),在搅拌条件下,加热至160℃,在光照强度为0.9W/cm2的模拟太阳光的人工光源照射下反应16小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例10
将0.2g Ni(NO3)2·6H2O和0.07g MnCl2溶解于20mL蒸馏水后,将0.128g氧化铝分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到0.2gNi负载量为20wt%、Mn负载量为16wt%的氧化铝负载的Ni-Mn双金属催化剂,其中Ni-Mn双金属纳米颗粒粒径为60纳米。
将0.2g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H22.5MPa,CO 1.5MPa(H2与CO的摩尔比约为1.7),在搅拌条件下,加热至190℃,在光照强度为2.8W/cm2的模拟太阳光的人工光源照射下反应24小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例11
将0.82g RuCl3和6.2g Ce(NO3)3·6H2O溶解于20mL蒸馏水后,将0.128g二氧化硅分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到5gRu负载量为8wt%、Ce负载量为40wt%的二氧化硅负载的Ru-Ce双金属催化剂,其中Ru-Ce双金属纳米颗粒粒径为93纳米。
将5g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H25.0MPa,CO 4.0MPa(H2与CO的摩尔比为1.25),在搅拌条件下,加热至150℃,在光照强度为3.5W/cm2的汞灯照射下反应6小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例12
将0.52g Fe(NO3)3·9H2O、0.15g RuCl3和0.18g Cu(NO3)2·3H2O溶解于20mL蒸馏水后,将2.208g石墨烯分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到2.4g铁负载量为3wt%、钌负载量为3wt%、铜负载量为2wt%的石墨烯负载的Fe-Ru-Cu三元金属催化剂,其中Fe-Ru-Cu三元金属纳米颗粒粒径为21纳米。
将2.4g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后,转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H22.0MPa,CO 1.0MPa(H2与CO的摩尔比为2),在搅拌条件下,加热至140℃,在光照强度为0.01W/cm2的太阳光照射下反应10小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。实施例13
将0.22g Co(NO3)2·6H2O、0.22g Ni(NO3)2·6H2O和0.14g Ce(NO3)3·6H2O溶解于20mL蒸馏水后,将0.765g活性炭分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到0.9gCo负载量为5wt%、Ni负载量为5wt%、Ce负载量为5wt%的活性炭负载的Co-Ni-Ce三元金属,其中Co-Ni-Ce三元金属纳米颗粒粒径为38纳米。
将上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H21.0MPa,CO1.0MPa(H2与CO的摩尔比为1),在搅拌条件下,加热至170℃,在光照强度为4.2W/cm2的汞灯照射下反应24小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例14
将0.16g RuCl3、0.16g RhCl3和0.09g MnCl2溶解于20mL蒸馏水后,将3.8g碳化硅分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到4g Ru负载量为2wt%、Rh负载量为2wt%、Mn负载量为1wt%的碳化硅负载的Ru-Rh-Mn三元金属催化剂,其中Ru-Rh-Mn三元金属纳米颗粒粒径为10纳米。
将4g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后,移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H23.0MPa,CO 1.0MPa(H2与CO的摩尔比为3),在搅拌条件下,加热至130℃,在光照强度为0.05W/cm2的太阳光照射下反应8小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
实施例15
将7.23g Fe(NO3)3·9H2O、1.02g RhCl3和9.41g Zr(NO3)4·5H2O溶解于20mL蒸馏水后,将6.5g石墨烯分散其中,在室温下搅拌12h,蒸干,然后在110℃下干燥12h,最后将其置于管式炉中,在500℃下,用H2/Ar(体积比为5:95)还原5h,气体流速为20mL/min,可得到10g Fe负载量为10wt%、Rh负载量为5wt%、Zr负载量为20wt%的碳化硅负载的Fe-Rh-Zr三元金属催化剂,其中Fe-Rh-Zr三元金属纳米颗粒粒径为100纳米。
将10g上述催化剂,在搅拌条件下分散在适量水中形成悬浮液,然后,移至带有石英窗口的高压反应釜中密封,用惰性气体吹洗后,依次充入H24.0MPa,CO 4.0MPa(H2与CO的摩尔比为1),在搅拌条件下,加热至220℃,在光照强度为4.5W/cm2的模拟太阳光的人工光源照射下反应6小时。测定体系中的气体压力,计算转化频率,并结合色谱和质谱等分析仪器计算各种产物的选择性。结果见表1。
表1.不同实施例中的光催化费托合成反应活性
注:表中graphene为石墨烯。

Claims (7)

1.一种光催化费托合成方法,其特征在于包括如下步骤:
(1)将催化剂体在搅拌条件下分散在水中形成悬浮液,然后转移至带有石英窗口的高压反应釜中;
(2)将反应器密封并用惰性气体吹洗后,依次充入H2和CO,其中H2和CO的总压力为0.1-10MPa; H2与CO的摩尔比为0.5-3;
(3)在搅拌条件下,加热反应体系至100-220oC,在强度为0.01-5W/cm2的光照下进行反应。
2.如权利要求1所述的一种光催化费托合成方法,其特征在于所述的光照是太阳光直接照射、汞灯照射或者模拟太阳光的人工光源照射。
3.如权利要求1或2所述的一种光催化费托合成方法使用的催化剂,其特征在于催化剂包括载体,活性金属组分和助剂金属组分,按最终催化剂重量计,活性金属组分的质量分数为1%-20%;助剂金属组分的质量分数为0-40%,其余为载体;金属纳米颗粒的粒径小于100纳米。
4.如权利要求3所述的一种光催化费托合成方法使用的催化剂,其特征在于所述的载体为石墨烯、碳化硅、氧化铝、二氧化硅或活性炭中的一种。
5.如权利要求3所述的一种光催化费托合成方法使用的催化剂,其特征在于活性金属组分为铁、钴、镍、钌或铑中的任意一种或两种。
6.如权利要求3所述的一种光催化费托合成方法使用的催化剂,其特征在于助剂金属组分为金、铜、锰、铈或锆中的任意一种。
7.如权利要求3-6任一项所述的一种光催化费托合成方法使用催化剂的制备方法,其特征在于包括如下步骤:
(1)按照催化剂活性组分与助剂金属组分的组成比例,将Fe(NO3)3·9H2O、Co(NO3)2·6H2O、Ni(NO3)2·6H2O、RuCl3或RhCl3中的任意一种或两种盐, HAuCl4、Cu(NO3)2·3H2O、MnCl2、Ce(NO3)3·6H2O或Zr(NO3)4·5H2O中的任意一种盐同时溶解于蒸馏水中,得到溶液(A);
(2)将催化剂载体分散于上述溶液(A)中,在室温下搅拌12h,蒸干,得到混合物(B);
(3)将上述混合物(B)在110oC下干燥12h后,置于管式炉中,在500oC下,用体积比为5:95的H2/Ar还原5h,气体流速为20mL/min,可得到光催化费托合成反应的催化剂。
CN201410745484.2A 2014-12-09 2014-12-09 一种光催化费托合成方法及使用的催化剂 Active CN104403682B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410745484.2A CN104403682B (zh) 2014-12-09 2014-12-09 一种光催化费托合成方法及使用的催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410745484.2A CN104403682B (zh) 2014-12-09 2014-12-09 一种光催化费托合成方法及使用的催化剂

Publications (2)

Publication Number Publication Date
CN104403682A true CN104403682A (zh) 2015-03-11
CN104403682B CN104403682B (zh) 2016-01-20

Family

ID=52641354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410745484.2A Active CN104403682B (zh) 2014-12-09 2014-12-09 一种光催化费托合成方法及使用的催化剂

Country Status (1)

Country Link
CN (1) CN104403682B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105056952A (zh) * 2015-08-19 2015-11-18 中国科学院理化技术研究所 一种光催化一氧化碳加氢制备碳二以上高碳烃用镍基光催化剂的制备方法及应用
CN106083601A (zh) * 2016-06-14 2016-11-09 中国科学院山西煤炭化学研究所 一种常压下光催化合成苯胺类化合物的方法及其使用的催化剂
CN106268892A (zh) * 2015-06-12 2017-01-04 中国科学院大连化学物理研究所 用于co加氢制c2含氧化合物的催化剂及其制备和应用
CN106925262A (zh) * 2017-04-06 2017-07-07 中国科学院山西煤炭化学研究所 一种光催化制备2,5‑呋喃二甲酸的催化剂及制备方法和应用
CN107417649A (zh) * 2017-04-06 2017-12-01 中国科学院山西煤炭化学研究所 水相催化5‑羟甲基糠醛制备2,5‑呋喃二甲醛的催化剂及制法和应用
CN107699271A (zh) * 2017-08-17 2018-02-16 天津大学 一种利用光热‑费托合成实现低压下低甲烷选择性的费托合成方法
WO2018201742A1 (zh) * 2017-05-02 2018-11-08 江南大学 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用
CN108822883A (zh) * 2018-06-19 2018-11-16 天津大学 钴及等离子活性金属共负载钛酸锶实现光热费托合成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684756A (en) * 1986-05-01 1987-08-04 Mobil Oil Corporation Process for upgrading wax from Fischer-Tropsch synthesis
US20070260100A1 (en) * 2003-10-02 2007-11-08 Yun-Feng Cheng Molecular sieve catalyst composition, its making and use in conversion processes
CN101224425A (zh) * 2008-01-30 2008-07-23 中国科学院山西煤炭化学研究所 一种费托合成产物分布可控的钴催化剂及其制备和应用
CN102441386A (zh) * 2010-10-13 2012-05-09 中国石油化工股份有限公司 新型费托合成方法
CN103447039A (zh) * 2012-05-30 2013-12-18 南京大学 一种碳纳米管为载体的钴基催化剂及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684756A (en) * 1986-05-01 1987-08-04 Mobil Oil Corporation Process for upgrading wax from Fischer-Tropsch synthesis
US20070260100A1 (en) * 2003-10-02 2007-11-08 Yun-Feng Cheng Molecular sieve catalyst composition, its making and use in conversion processes
CN101224425A (zh) * 2008-01-30 2008-07-23 中国科学院山西煤炭化学研究所 一种费托合成产物分布可控的钴催化剂及其制备和应用
CN102441386A (zh) * 2010-10-13 2012-05-09 中国石油化工股份有限公司 新型费托合成方法
CN103447039A (zh) * 2012-05-30 2013-12-18 南京大学 一种碳纳米管为载体的钴基催化剂及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王航等: "钴钠米粒子催化水相费托合成", 《CHINESE JOURNAL OF CATALYST》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106268892A (zh) * 2015-06-12 2017-01-04 中国科学院大连化学物理研究所 用于co加氢制c2含氧化合物的催化剂及其制备和应用
CN106268892B (zh) * 2015-06-12 2018-08-24 中国科学院大连化学物理研究所 用于co加氢制c2含氧化合物的催化剂及其制备和应用
CN105056952A (zh) * 2015-08-19 2015-11-18 中国科学院理化技术研究所 一种光催化一氧化碳加氢制备碳二以上高碳烃用镍基光催化剂的制备方法及应用
CN106083601A (zh) * 2016-06-14 2016-11-09 中国科学院山西煤炭化学研究所 一种常压下光催化合成苯胺类化合物的方法及其使用的催化剂
CN106925262A (zh) * 2017-04-06 2017-07-07 中国科学院山西煤炭化学研究所 一种光催化制备2,5‑呋喃二甲酸的催化剂及制备方法和应用
CN107417649A (zh) * 2017-04-06 2017-12-01 中国科学院山西煤炭化学研究所 水相催化5‑羟甲基糠醛制备2,5‑呋喃二甲醛的催化剂及制法和应用
CN107417649B (zh) * 2017-04-06 2020-08-28 中国科学院山西煤炭化学研究所 水相催化5-羟甲基糠醛制备2,5-呋喃二甲醛的催化剂及制法和应用
WO2018201742A1 (zh) * 2017-05-02 2018-11-08 江南大学 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用
US10946363B2 (en) 2017-05-02 2021-03-16 Jiangnan University Graphene modified iron-based catalyst and preparation and application thereof for use in Fischer-Tropsch reaction
CN107699271A (zh) * 2017-08-17 2018-02-16 天津大学 一种利用光热‑费托合成实现低压下低甲烷选择性的费托合成方法
CN107699271B (zh) * 2017-08-17 2019-09-13 天津大学 一种利用光热-费托合成实现低压下低甲烷选择性的费托合成方法
CN108822883A (zh) * 2018-06-19 2018-11-16 天津大学 钴及等离子活性金属共负载钛酸锶实现光热费托合成方法

Also Published As

Publication number Publication date
CN104403682B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN104403682B (zh) 一种光催化费托合成方法及使用的催化剂
Tran et al. Conversion of glycerol to hydrogen rich gas
AU2012343061B2 (en) Fischer-Tropsch synthesis cobalt nano-catalyst based on porous material confinement, and preparation method therefor
CN106831331B (zh) 一种光催化转化甲醇制备乙二醇的方法
Sajjadi et al. Sol–gel synthesis of Ni–Co/Al2O3–MgO–ZrO2 nanocatalyst used in hydrogen production via reforming of CH4/CO2 greenhouse gases
AU2011252180B2 (en) Process for the production of light olefins from synthesis gas
CN105944751A (zh) 一种用于合成气直接制备芳香族化合物的催化剂及其制备与应用
Mehariya et al. Fischer–Tropsch synthesis of syngas to liquid hydrocarbons
Lou et al. A core-shell catalyst design boosts the performance of photothermal reverse water gas shift catalysis
US4687753A (en) Laser produced iron carbide-based catalysts
Tang et al. Encapsulating Ir nanoparticles into UiO-66 for photo-thermal catalytic CO 2 methanation under ambient pressure
Sancho-Sanz et al. Catalytic valorization of CO2 by hydrogenation: Current status and future trends
Yan et al. Hydrogen production by steam reforming of dimethyl ether and CO-PrOx in a metal foam micro-reactor
Minyukova et al. Hydrogen for CO2 processing in heterogeneous catalytic reactions
CN103586060A (zh) 提高ft合成制高碳醇选择性的催化剂和其制备方法及应用
KR102117933B1 (ko) 단원자 구조의 로듐 촉매를 사용한 효율적인 액상 메탄 직접 전환 방법
İzgi̇ et al. Green and active hydrogen production from hydrolysis of ammonia borane by using caffeine carbon quantum dot-supported ruthenium catalyst in methanol solvent by hydrothermal treatment
Hussain et al. The critical role of intrinsic physicochemical properties of catalysts for CO2 hydrogenation to methanol: A state of the art review
Ahmed et al. Green approach for sustainable production of paraffin fuel from CO2 hydrogenation on Fe-MOF catalyst
CN104591960A (zh) 用于烯烃氢甲酰化合成醛和醇的多相催化方法及装置
JP2545734B2 (ja) 炭化水素製造用触媒及び炭化水素の製造方法
Koyuncu et al. Decomposition of formic acid over Ni-containing SiO2 catalysts synthesized by various one-pot synthesis routes
Romero-Sáez et al. Nanomaterials for CO 2 Hydrogenation
EP0202911B1 (en) Iron-carbon-based catalysts and a method for the production of hydrocarbons using those catalysts
Aluha et al. Low-temperature fischer-tropsch synthesis with carbon-supported nanometric iron-cobalt catalysts

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant