WO2017185260A1 - 用于富氢气氛中优先氧化co的宽温催化剂的制备方法及其产品和应用 - Google Patents

用于富氢气氛中优先氧化co的宽温催化剂的制备方法及其产品和应用 Download PDF

Info

Publication number
WO2017185260A1
WO2017185260A1 PCT/CN2016/080364 CN2016080364W WO2017185260A1 WO 2017185260 A1 WO2017185260 A1 WO 2017185260A1 CN 2016080364 W CN2016080364 W CN 2016080364W WO 2017185260 A1 WO2017185260 A1 WO 2017185260A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
precursor
hydrogen
rich atmosphere
nickel
Prior art date
Application number
PCT/CN2016/080364
Other languages
English (en)
French (fr)
Inventor
路军岭
曹丽娜
姚琪
陈飔
严欢
韦世强
杨金龙
Original Assignee
中国科学技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学技术大学 filed Critical 中国科学技术大学
Priority to US16/089,012 priority Critical patent/US11491471B2/en
Priority to PCT/CN2016/080364 priority patent/WO2017185260A1/zh
Priority to EP16899773.2A priority patent/EP3450013A4/en
Publication of WO2017185260A1 publication Critical patent/WO2017185260A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • C01B3/58Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction
    • C01B3/583Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids including a catalytic reaction the reaction being the selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0435Catalytic purification
    • C01B2203/044Selective oxidation of carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a metal catalyst for preferential oxidation of CO in a hydrogen-rich atmosphere, and a preparation method and application thereof.
  • the fuel cell is an environmentally friendly power generation device.
  • Proton exchange membrane fuel cell (PEMFC) is an ideal fuel cell. It has the characteristics of small size, light weight, zero emission, high energy conversion density, etc. In the future, static devices, hydrogen fuel cell vehicles, military equipment, aerospace, etc. The field has broad application prospects.
  • the hydrogen source of the fuel cell is mainly derived from steam reforming of hydrocarbons such as methanol and natural gas, water gas shift reaction, etc., and such a hydrogen source usually contains about 0.5% to 2% of trace CO. CO is easily adsorbed on the surface of the Pt electrode of the PEMFC, which poisons the electrode and seriously degrades the battery performance.
  • PROX catalysts for preferential oxidation of CO in a hydrogen-rich atmosphere
  • (a) Gold-based catalyst The supported Au catalyst has received great attention due to its extremely high low-temperature CO oxidation activity. However, due to the competition of the H 2 oxidation reaction, it was found that as the reaction temperature increases, the CO oxidation selectivity rapidly decreases, and it is difficult to reduce the CO concentration to below 10 ppm.
  • Chinese patent application CN102441401A mentions that Au nanoparticles are supported on a copper-titanium mixed oxide carrier, the Au loading is 0.5 to 5 wt%, and the CO 100% conversion temperature range is only 30-60 ° C, and the operating temperature is limited. Sexually large. In addition, the stability of the Au catalyst is relatively poor, and its activity is very strict on the preparation method and process, so that the application of the Au catalyst in the PROX reaction is greatly limited.
  • Platinum group noble metal catalysts Currently, single Pt group metals (Pt, Ru, Rh, Pd, Ir) catalysts have poor activity below 100 ° C (J. Phys. Chem. B 2005, 109, 23430-23443), usually It is necessary to increase the catalytic activity by means of a bimetallic alloy or an additive. For example, Nippon Oil Co., Ltd. proposes a catalyst using a PtRu bimetal alloy as an active component (see CN101507924A).
  • Chinese patent application CN 101856621 proposes a catalyst containing a platinum group metal as an active component and adding a transition metal such as Fe, Co, Ni or the like as an auxiliary agent by an equal volume impregnation method, which can be in a temperature range of 60 to 100 ° C.
  • the CO in the hydrogen is completely removed.
  • Chinese patent application CN101428227A proposes a ruthenium-based two-component catalyst prepared by a stepwise or co-impregnation method, wherein the auxiliary agent is Fe, Sn, Mn, Co, Ni, Cr, and/or Zn, and the catalyst can be Highly selective conversion of CO in hydrogen over a temperature range of 60 to 100 °C.
  • Japan's Watanabe research team used a ion exchange method to deposit Pt-Fe/Zeolite alloy catalysts with different Pt:Fe mass ratios on Mordenite zeolite. They prepared catalysts capable of achieving high selectivity conversion of CO in hydrogen at temperatures ranging from 85 to 150 ° C (Appl. Catal. B: Environ. 2003, 46, 595-600).
  • the Baoxin and research groups of the Dalian Institute of Chemical Physics of the Chinese Academy of Sciences obtained two-component Pt-Fe/SiO 2 , Pt-Fe/carbon black catalyst samples by continuous impregnation method and co-impregnation method. However, these catalysts can only be used in 25 ⁇ .
  • the above-mentioned work on the oxide encapsulation of the metal catalyst by the atomic layer deposition technique mainly focuses on the physical barrier layer of the oxide coating layer to solve the sintering problem of the metal particles in the catalytic reaction process, and the deposited oxide coating layer is thicker ( Above 1 nm) to achieve an effect of improved stability, the oxide-coated metal particles participate in the catalytic reaction through the micropores in their oxide layers.
  • the deposition of highly dispersible oxide species on metal particles, even oxide monomer (M 1 O x , M is a metal atom) species, to achieve maximum optimization of the metal-oxide interface has not been studied.
  • the preparation of catalysts by chemical vapor deposition or atomic layer deposition techniques has not been reported in the application of preferential oxidation of CO in a hydrogen-rich atmosphere.
  • a broad temperature catalyst which preferentially oxidizes CO under a hydrogen-rich atmosphere, which can be in a wide temperature range (for example, at -80 to 200 ° C) It is used within the temperature range and is capable of exhibiting excellent catalytic activity, selectivity and stability in a CO-rich oxidation reaction in a hydrogen-rich atmosphere.
  • the present invention provides a method for preferentially oxidizing a broad temperature catalyst of CO in a hydrogen-rich atmosphere, characterized in that the catalyst comprises a carrier, an active component and an auxiliary agent, wherein the carrier Is one or more selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2 , MgO, CeO 2 , ZrO 2 , activated carbon, carbon black, graphene and carbon nanotubes; the active component is selected from Pt One or more of Ir, Ru, Rh and Pd in an amount of from 0.1 to 10% by weight in the wide temperature catalyst; the auxiliary agent is selected from the group consisting of iron oxides, cobalt oxides and nickel oxides One or more of the content of the metal oxide in the wide temperature catalyst of 0.01 to 15% by weight,
  • the method includes:
  • the auxiliary agent is deposited on the surface of the supported catalyst precursor by chemical vapor deposition or atomic layer deposition to obtain the broad temperature catalyst.
  • the deposition of the auxiliary agent comprises the following steps:
  • the iron precursor is selected from the group consisting of ferrocene, vinyl ferrocene, ethyl ferrocene, amino ferrocene, dimethylaminoferrocene, iron acetylacetonate, and bis(2,4-di Methylpentadienyl) iron, (2,2,6,6-tetramethyl-3,5-heptanedionate) iron (III), bis(N,N'-di-tert-butyl acetamidine
  • the iron precursor is selected from the group consisting of ferrocene;
  • the cobalt precursor is selected from the group consisting of cobaltocene, cobalt acetylacetonate, bis(N,N'-diisopropylethenyl)cobalt, dicarbonylcyclopentadienylcobalt, tert-butyltricarbonylcobalt, (2) One or more of 2,6,6-tetramethyl-3,5-heptanedionate cobalt and 2-methoxyethanol cobalt; most preferably, the cobalt precursor is selected from two Cobalt
  • the nickel precursor is selected from the group consisting of nickel pentoxide, nickel acetylacetonate, bis(N,N'-diisopropylethenyl)nickel, (2,2,6,6-tetramethyl-3,5- One or more of heptanedione acid) nickel (II), nickel (II) dibutyldithiocarbamate, and nickel 2-methoxyethanol.
  • the oxidizing agent is one or more selected from the group consisting of O 2 , O 3 , H 2 O, H 2 O 2 , NO and NO 2 ; more preferably, the oxidizing agent is selected from O 2 , O 3 , H 2 O, H 2 O 2 ; the reducing agent is one or more selected from the group consisting of H 2 , NH 3 and N 2 H 4 ; more preferably, the reducing agent is selected from H 2 .
  • the method further comprises the step of purging the reactor with an inert gas between the step (a) and the step (b) and after the step (b).
  • said steps (a) and (b) are repeated one to ten times in succession.
  • the supported catalyst precursor is obtained commercially or by dipping a suitable amount of soluble salt of the active component onto a support and then obtained by dry calcination.
  • the present invention provides a broad temperature catalyst for preferentially oxidizing CO in a hydrogen-rich atmosphere, characterized in that the catalyst comprises a carrier, an active component and an auxiliary agent,
  • the carrier is one or more selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2 , MgO, CeO 2 , ZrO 2 , activated carbon, carbon black, graphene and carbon nanotubes;
  • the active component is one or more selected from the group consisting of Pt, Ir, Ru, Rh, and Pd, and is contained in the wide temperature catalyst in an amount of 0.1 to 10% by weight;
  • the auxiliary agent is one or more selected from the group consisting of iron oxides, cobalt oxides, and nickel oxides, and the content thereof is 0.01 to 15% by weight based on the metal element in the wide temperature catalyst.
  • the wide temperature catalyst is obtained by depositing an auxiliary agent onto a surface of a supported catalyst precursor including the active component and the carrier by a chemical vapor deposition method or an atomic layer deposition method, and the wide temperature
  • the catalyst enables preferential oxidation of CO in a hydrogen-rich atmosphere.
  • the active component is selected from Pt; preferably, the adjuvant is selected from iron oxide; preferably, the carrier is selected from SiO 2 and the wide temperature catalyst can be in -80 ⁇ A wide temperature range of 200 ° C enables preferential oxidation of CO in a hydrogen-rich atmosphere.
  • the present invention provides the use of a broad temperature catalyst prepared by the above process or the above wide temperature catalyst for preferential oxidation of CO in a hydrogen rich atmosphere.
  • the wide temperature catalyst is pretreated prior to use, wherein the pretreatment is first oxidized with oxygen at a temperature of 100 to 600 ° C for 0.5 to 5 hours and then reduced with hydrogen for 0.5 to 5 hours.
  • the wide temperature catalyst is pretreated prior to use, wherein the pretreatment is first oxidized with oxygen at a temperature of 150 to 300 ° C for 0.5 to 2 hours and then reduced with hydrogen for 0.5 to 2 hours.
  • the volume ratio of CO to O 2 in the hydrogen-rich atmosphere is from 1:0.5 to 1:2.
  • the volume ratio of CO to O 2 in the hydrogen-rich atmosphere is from 1:0.5 to 1:1.
  • the present invention realizes the precious metal active component of the catalyst by depositing a metal oxide promoter onto the surface of a Pt-type noble metal (Pt, Ir, Ru, Rh or Pd) supported catalyst precursor by chemical vapor deposition or atomic layer deposition. - Optimal optimization of the oxide builder interface.
  • the noble metal catalyst obtained by such a method can exhibit excellent catalytic performance in a CO preferential oxidation reaction in a hydrogen-rich atmosphere, and can exhibit a significantly wider temperature range (for example, a width of -80 to 200 ° C) than a conventional catalyst. The temperature range) achieves high selectivity and high conversion oxidation of CO in a hydrogen-rich atmosphere. Furthermore, in the presence of water vapor and CO 2 , the catalyst can also remain stable for a long time.
  • Example 1 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in a Pt-1cFeO x /SiO 2 wide temperature catalyst prepared according to Example 1 of the present invention, wherein a hydrogen-rich reaction gas is used.
  • the volume ratio of CO:O 2 :H 2 in the sample was 1 :0.5:48.
  • Example 2 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in a Pt-1cFeO x /SiO 2 wide temperature catalyst prepared according to Example 1 of the present invention, wherein a hydrogen-rich reaction gas is used.
  • the volume ratio of CO:O 2 :H 2 in the sample was 1 : 1 :48.
  • Example 4 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in a Pt-5cFeO x /SiO 2 wide temperature catalyst prepared according to Example 2 of the present invention, in which a reaction gas sample is used.
  • the volume ratio of CO:O 2 :H 2 was 1 :0.5:48.
  • Example 5 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in a Pt-1cFeO x /C wide temperature catalyst prepared according to Example 9 of the present invention, in which a reaction gas sample is used.
  • the volume ratio of CO:O 2 :H 2 was 1 : 1 :48.
  • Example 6 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in a Pt-1cFeO x /TiO 2 wide temperature catalyst prepared according to Example 10 of the present invention, in which a reaction gas sample is used.
  • the volume ratio of CO:O 2 :H 2 is 1 : 1 :48.
  • Example 7 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in a Pt-1cFeO x /Al 2 O 3 wide temperature catalyst prepared according to Example 11 of the present invention, in which a reaction gas is used.
  • the volume ratio of CO:O 2 :H 2 in the sample was 1 : 1 :48.
  • Example 8 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in a Pt-1cCoO x /SiO 2 wide temperature catalyst prepared according to Example 12 of the present invention, in which a reaction gas sample is used.
  • the volume ratio of CO:O 2 :H 2 was 1 :0.5:48.
  • FIG. 9 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in a Pt-1cNiO x /SiO 2 wide temperature catalyst prepared according to Example 19 of the present invention, in which a reaction gas sample is used.
  • the volume ratio of CO:O 2 :H 2 was 1 :0.5:48.
  • Figure 10 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in an Ir-2cFeO x /SiO 2 wide temperature catalyst prepared according to Example 25 of the present invention, in which a reaction gas sample is used.
  • the volume ratio of CO:O 2 :H 2 is 1 : 1 :48.
  • Figure 11 is a graph showing the stability of an Ir-2cFeO x /SiO 2 wide temperature catalyst prepared according to Example 25 of the present invention at a temperature of 80 °C.
  • Figure 12 is a graph showing CO conversion and CO selectivity of preferential oxidation of CO in a hydrogen-rich atmosphere in an Ir-1cCoO x /SiO 2 wide temperature catalyst prepared according to Example 26 of the present invention, in which a reaction gas sample is used.
  • the volume ratio of CO:O 2 :H 2 is 1 : 1 :48.
  • Figure 13 is a graph showing CO conversion and CO selectivity of Pt-1cFeO x /SiO 2 (Fe(acac) 3 ) wide temperature catalyst prepared according to Example 27 of the present invention in a hydrogen-rich atmosphere for preferential oxidation of CO.
  • the volume ratio of CO:O 2 :H 2 in the reaction gas sample used was 1 :0.5:48.
  • a Pt, Ir, Ru, Rh or Pd supported catalyst precursor is used by chemical vapor deposition or atomic layer deposition.
  • the optimal optimization in order to maximize the activity of the catalyst and the utilization of the precious metal, achieves a hydrogen-rich atmosphere that can be realized in a significantly wider temperature range than the existing catalyst (for example, a wide temperature range of -80 to 200 ° C) Wide temperature catalyst with high selectivity and high conversion oxidation of CO.
  • the present invention provides a broad temperature high performance catalyst for preferential oxidation of CO in a hydrogen-rich atmosphere comprising a support, a noble metal active component and a non-precious metal oxide promoter, wherein the support is an oxide or carbon-based material; a precious metal
  • the active component is one or more selected from the group consisting of Pt, Ir, Ru, Rh, and Pd (ie, Pt noble metals);
  • the non-noble metal oxide promoter is selected from the group consisting of iron oxides (FeO x ), cobalt oxides (CoO) x ) and nickel oxide (NiO x ) (wherein the subscript x represents only one of the atomic coefficients of O in the corresponding oxide formed, which is well known to those skilled in the art, without a specific value limitation) a plurality, and wherein, based on the total weight of the wide temperature catalyst, the precious metal active component is contained in an amount of 0.1 to 10% by weight, preferably 1 to 5% by weight,
  • the Pt group noble metal supported catalyst precursor to be used is not particularly limited, and it may be a commercially available or commercially supported catalyst, or may be impregnated, ion exchanged, precipitated, or sol known in the art.
  • the obtained supported catalyst precursor is prepared by a method such as a gel method.
  • the carrier to be used is not particularly required as long as it can support the above noble metal active component.
  • the carrier used is one or more selected from the group consisting of SiO 2 , Al 2 O 3 , TiO 2 , MgO, CeO 2 , ZrO 2 , activated carbon, carbon black, graphene and carbon nanotubes.
  • SiO 2 , Al 2 O 3 , TiO 2 , CeO 2 , ZrO 2 or activated carbon is more preferable, and SiO 2 is more preferable.
  • the non-precious metal oxide auxiliary agent is deposited on the surface of the Pt group noble metal supported catalyst precursor by a chemical vapor deposition method or an atomic layer deposition method, and is not limited to any theory.
  • a nucleation growth theory is: since the Pt group metal particles generally have high catalytic activity, when the metal precursor of the oxide auxiliary agent is introduced onto the surface of the Pt noble metal supported catalyst precursor, the oxide auxiliary agent The metal precursor is usually adsorbed to the surface of the Pt group metal particles by dissociative adsorption; thereafter, the metal precursor precursor of the oxide promoter can be effectively removed by using an oxidizing agent or a reducing agent, and a Pt noble metal active component is formed. - Oxide additive interface.
  • the deposition of the non-precious metal oxide promoter comprises the following steps:
  • step (c) optionally performing the above steps (a) and (b) one or more times (i.e., depositing one cycle or cycles), optionally or sequentially, to modulate the content of the oxide promoter in the wide temperature catalyst .
  • the deposition or addition of the oxide promoter is achieved by atomic layer deposition. More preferably, the depositing therein comprises the steps of:
  • the reactor or reaction chamber is optionally purged with an inert gas to purge the remaining oxidant or reducing agent and other reaction products therein, thereby obtaining the broad temperature catalyst.
  • steps (1) to (4) are optionally repeatedly performed one or more times (i.e., one cycle or a plurality of cycles are deposited) to adjust the content of the oxide auxiliary agent in the wide temperature catalyst.
  • oxide auxiliary agent during the deposition of the oxide auxiliary agent, only one oxide auxiliary agent may be deposited, or two or three kinds of oxide auxiliary agents may be deposited. Moreover, these oxide promoters can be deposited separately in different deposition cycles, or simultaneously in the same deposition cycle or in several deposition cycles.
  • the auxiliary precursor for deposition by chemical vapor deposition or atomic layer deposition is as follows:
  • the iron precursor of the iron oxide auxiliary is preferably selected from the group consisting of ferrocene, vinyl ferrocene, ethyl ferrocene, amino ferrocene, dimethylaminoferrocene, iron acetylacetonate, and bis ( 2,4-dimethylpentadienyl)iron, (2,2,6,6-tetramethyl-3,5-heptanedionate) iron (III), double (N, N'-di-uncle One or more of butyl ethyl hydrazide) iron, carbonyl iron, and iron tert-butoxide.
  • a particularly preferred iron precursor is ferrocene.
  • cobalt precursor of the cobalt oxide promoter it is preferably selected from the group consisting of cobalt dicobalt and cobalt acetylacetonate.
  • cobalt dicobalt and cobalt acetylacetonate Bis(N,N'-diisopropylethenyl)cobalt, dicarbonylcyclopentadienylcobalt, tert-butyltricarbonylcobalt, (2,2,6,6-tetramethyl-3,5-heptane
  • a particularly preferred cobalt precursor is cobaltocene.
  • nickel precursor of nickel oxide promoter it is preferably selected from the group consisting of nickel pentoxide, nickel acetylacetonate, bis(N,N'-diisopropylethenyl) nickel, (2,2,6,6- One or more of tetramethyl-3,5-heptanedionate) nickel (II), nickel (II) dibutyldithiocarbamate, and nickel 2-methoxyethanol.
  • a particularly preferred nickel precursor is nickel pentoxide.
  • the oxidizing agent used in the deposition of the oxide auxiliary agent is preferably one or more selected from the group consisting of O 2 , O 3 , H 2 O, H 2 O 2 , NO and NO 2
  • the reducing agent used is preferably It is one or more selected from the group consisting of H 2 , NH 3 and N 2 H 4 . More preferably, the oxidizing agent or reducing agent used is selected from the group consisting of O 2 , O 3 , H 2 O, H 2 O 2 , H 2 or NH 3 .
  • the inert gas used is N 2 , Ar, He or a combination thereof, preferably N 2 .
  • the heating temperature of the reactor or the reaction chamber or the temperature of the supported catalyst precursor is preferably 20 to 500 ° C, more preferably 50 to 350 ° C, and most preferably 100 to 200 ° C.
  • the number of depositions or the number of deposition cycles is not particularly limited, and one or more depositions may be performed as needed.
  • the number of times the oxide builder is deposited is from 1 to 50 times, more preferably from 1 to 20 times, and most preferably from 1 to 10 times.
  • the composition of the hydrogen-rich atmosphere to which the wide temperature catalyst is applied is not particularly limited.
  • the content of CO in the hydrogen-rich reaction atmosphere is less than 5%
  • the content of H 2 is more than 10%
  • the volume ratio of CO to O 2 is in the range of 1:0.5 to 2.
  • the content of CO is less than 5%
  • the content of H 2 is more than 30%
  • the volume ratio of CO to O 2 is in the range of 1:0.5 to 1.
  • the wide temperature catalyst is pretreated prior to use of the wide temperature catalyst of the present invention.
  • the pretreatment process is carried out with hydrogen at a temperature of 100 to 600 ° C for 0.5 to 5 hours. More preferably, the pretreatment process is carried out with hydrogen at a temperature of 200 to 300 ° C for 0.5 to 2 hours. Further preferably, the pretreatment process is carried out by hydrogen reduction at a temperature of 200 to 300 ° C for 0.5 to 2 hours, and then further treated with a hydrogen-rich atmosphere reaction gas at a temperature of from room temperature to 300 ° C (for example, a temperature of 100 to 200 ° C) of 0.1 to 5 Hours (for example, 0.2 to 1 hour).
  • the method for depositing an oxide auxiliary provided by the invention has good repeatability and wide applicability, and is suitable for any Pt noble metal supported catalyst, including commercially available (commodity) Pt noble metals (Pt, Ir, Ru, Rh, Pd).
  • the supported catalyst is a supported catalyst of various Pt noble metals (Pt, Ir, Ru, Rh, Pd) prepared by a dipping method, an ion exchange method, a precipitation method, a sol-gel method, or the like.
  • the method for depositing an oxide auxiliary agent provided by the invention is simple in operation, and only requires a chemical vapor deposition method or an atomic layer deposition method to realize the performance of a Pt-type noble metal (Pt, Ir, Ru, Rh, Pd) supported catalyst. Greatly improved.
  • Pt-type noble metal Pt, Ir, Ru, Rh, Pd
  • the metal organic precursor of the oxide auxiliary agent used is inexpensive, and the catalyst performance can be greatly improved at a low cost.
  • the present invention utilizes a chemical vapor deposition method, particularly an atomic layer deposition method, to deposit an oxide promoter on the surface of a conventional Pt noble metal (Pt, Ir, Ru, Rh, Pd) supported catalyst, and the obtained catalyst can be obtained.
  • Wide temperature range for example, in the temperature range of -80 to 200 ° C
  • high selectivity, high conversion oxidation of CO in a hydrogen-rich atmosphere is the widest range of operating temperatures hitherto; in addition, the present invention
  • the wide temperature catalyst can be stabilized for a long time in the presence of water vapor and CO 2 .
  • Example 1 Preparation of Pt-1cFeO x /SiO 2 catalyst and its activity test for preferential oxidation of CO in a hydrogen-rich atmosphere
  • Pt/SiO 2 catalyst precursor obtained by atomic layer deposition.
  • the temperature of the atomic layer deposition was 250 ° C
  • the experimental Pt precursor was (trimethyl)methylcyclopentadienyl platinum (IV) (MeCpPtMe 3 , Strem Chemicals)
  • the temperature of the metal precursor source vessel was heated to 70 ° C to obtain sufficient MeCpPtMe 3 precursor vapor pressure.
  • the oxidant is high purity O 2 (99.999%, Nanjing specialty gas), and the inert gas is high purity N 2 (99.999%, Nanjing specialty gas).
  • Deposition of FeO x promoter The temperature of the reaction chamber of the viscous flow Atomic deposition apparatus (Arradiance) is heated to 120 ° C by resistance heating, and the metal precursor of the FeO x promoter used is ferrocene (FeCp 2 , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel is heated to 90 ° C to obtain sufficient ferrocene precursor vapor pressure. A 500 mg sample of Pt/SiO 2 catalyst precursor was placed in the atomic layer deposition reaction chamber.
  • the isolation valve between the ferrocene vessel and the atomic layer deposition reaction chamber is opened, and the ferrocene vapor is mixed into high-purity N 2 (99.999%, Nanjing specialty gas), and introduced into the atomic layer deposition reaction chamber by high-purity N 2 .
  • the ferrocene and the surface of the Pt particles in the Pt/SiO 2 catalyst precursor undergo dissociative adsorption, and then the nucleation of Fe on the surface of Pt is achieved, and the introduction time is 5 minutes.
  • Activity Test 1 Perform an activity test for preferential oxidation of CO in a hydrogen-rich atmosphere. 100 mg of the Pt-1cFeO x /SiO 2 catalyst obtained in Example 1 was first uniformly mixed with 1 g of quartz sand (to prevent formation of "hot spots" in the reaction), and the reactor was a U-type quartz tube (home-made); catalyst pretreatment : Firstly treated at 200 ° C for 1 hour in a 10% O 2 /He atmosphere, then switched to 10% H 2 /He, continued for 2 hours, and finally with 1% CO + 0.5% O 2 + 48% H 2 + 50.5 The reaction gas of %He was further treated for 20 minutes.
  • the composition of the reaction gas sample for the activity test was 1% CO + 0.5% O 2 + 48% H 2 + 50.5% He, and the flow rate of the reaction gas was 60 mL/min.
  • the catalyst was tested for activity in a temperature range of -80 to 200 ° C.
  • the test results are shown in Fig. 1.
  • the wide temperature catalyst prepared by the present invention can be at a temperature of -80 to 200 °C. High conversion conversion of CO in a hydrogen-rich atmosphere is achieved within the interval.
  • Activity Test 2 Similar to the procedure in Activity Test 1, the above Pt-1cFeO x /SiO 2 catalyst was subjected to an activity test for preferential oxidation of CO in a hydrogen-rich atmosphere, wherein the amount of the catalyst and the pretreatment process were the same as described above, except that the reaction was carried out.
  • the composition of the gas sample was adjusted to 1% CO + 1% O 2 + 48% H 2 + 50% He, and the flow rate of the reaction gas was 60 mL / min.
  • the results of the activity test are shown in Fig. 2. As can be seen from Fig. 2, with the wide temperature catalyst prepared by the present invention, a preferred complete conversion of CO in a hydrogen-rich atmosphere can be achieved in a temperature range of -80 to 200 °C.
  • Stability test The above Pt-1cFeO x /SiO 2 catalyst was subjected to stability test in which the amount of the catalyst and the pretreatment process were as described in Activity Test 1.
  • the total flow rate of the reaction gas in the stability test was 60 mL/min, and the composition of the gas was 1% CO + 0.5% O 2 + 48% H 2 + 3% H 2 O + 20% CO 2 + 27.5% He (simulated fuel cell)
  • the composition of the hydrogen-rich atmosphere was maintained, the reaction temperature was maintained at 80 ° C, and the sample was continuously tested for 160 hours.
  • the results of the stability test are shown in Fig. 3. As can be seen from Fig. 3, the catalyst can remain active for a long time without significant deactivation in a hydrogen-rich atmosphere containing water and CO 2 .
  • Example 2 Preparation of Pt-5cFeO x /SiO 2 catalyst and preferential oxidation of CO in a hydrogen-rich atmosphere
  • Preparation of Pt/SiO 2 catalyst precursor First, monodisperse silica beads (SiO 2 ) were synthesized by alkaline hydrolysis using tetraethyl silicate (TEOS) as a raw material. Next, the synthesized silica pellets were subjected to a high temperature calcination treatment at 300 °C. Thereafter, the surface of the calcined silica beads was modified with 3-aminopropyl-triethoxysilane (ATPES) (ATPES-SiO 2 ). 1.4 g of ATPES-SiO 2 and 7.9 mL of chloroplatinic acid were added to 30 mL of ethanol, and stirred at room temperature for 24 hours.
  • ATPES 3-aminopropyl-triethoxysilane
  • the mixture was dried by centrifugation and treated in a 10% H 2 /Ar atmosphere at 350 ° C for 2 hours to obtain Pt / SiO 2 (WI).
  • the mass content of Pt in the catalyst is 3.2 wt%, and the size of Pt particles is about 3 nm.
  • Deposition of FeO x promoter The temperature of the reaction chamber of the viscous flow Atomic deposition apparatus (Arradiance) is heated to 120 ° C by resistance heating, and the metal precursor of the FeO x promoter used is ferrocene (FeCp 2 , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel is heated to 90 ° C to obtain sufficient ferrocene precursor vapor pressure. A 150 mg sample of the Pt/SiO 2 catalyst precursor was placed in the atomic layer deposition reaction chamber.
  • CO preferential oxidation activity test in a hydrogen-rich atmosphere The volume ratio of CO:O 2 :H 2 in the reaction gas was 1 :0.5:48.
  • Catalyst 100 mg of the above Pt-5cFeO x /SiO 2 catalyst was uniformly mixed with 1 g of quartz sand; reactor: U-type quartz tube; catalyst pretreatment: firstly treated at 200 ° C for 1 hour in a 10% O 2 /He atmosphere, Subsequently, it was switched to 10% H 2 /He, the treatment was continued for 2 hours, and finally treated with a reaction gas of 1% CO + 0.5% O 2 + 48% H 2 + 50.5% He for 20 minutes.
  • the composition of the reaction gas 1% CO + 0.5% O 2 + 48% H 2 + 50.5% He, and the reaction gas flow rate was 60 mL / min.
  • the catalyst was tested for activity in a temperature range of -80 to 200 ° C.
  • the test results are shown in Fig. 4.
  • the wide temperature catalyst prepared by the present invention can be in the temperature range of -80 to 200 °C. High conversion conversion of CO in a hydrogen-rich atmosphere is achieved.
  • Example 3-8 Preparation of Pt-3cFeO x /SiO 2 catalyst and preferential oxidation of CO in a hydrogen-rich atmosphere
  • the mass content of Pt was 3.2 wt%
  • the mass content of FeO x promoter in terms of iron element was 0.18 wt%, 0.14 wt%, 0.15 wt%, 0.2 wt%, 0.3, respectively. Wt% and 0.26 wt%.
  • Example 2 The respective catalysts obtained above, under the same procedures and conditions in Example 2, exhibited a hydrogen-rich atmosphere in a wide temperature range similar to that of Example 2 in the CO preferential oxidation reaction test in a hydrogen-rich atmosphere. High conversion conversion of CO.
  • Example 9 Preparation of Pt-1cFeO x /C catalyst and preferential oxidation of CO in a hydrogen-rich atmosphere
  • the Pt/C catalyst precursor is a commercial catalyst, purchased from Sigma Aldrich, and the mass content of Pt in the catalyst is 5 wt%. According to the high resolution electron micrograph, the size of the Pt particles is 2.1 ⁇ 0.3. Nm.
  • Deposition of FeO x promoter The temperature of the reaction chamber of the viscous flow Atomic deposition apparatus (Arradiance) is heated to 120 ° C by resistance heating, and the metal precursor of the FeO x promoter used is ferrocene (FeCp 2 , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel is heated to 90 ° C to obtain sufficient ferrocene precursor vapor pressure. A 200 mg Pt/C commercial catalyst precursor sample was placed into the atomic layer deposition reaction chamber.
  • the isolation valve between the ferrocene vessel and the atomic layer deposition reaction chamber is opened, and the ferrocene vapor is mixed into high-purity N 2 (99.999%, Nanjing specialty gas), and introduced into the atomic layer deposition reaction chamber by high-purity N 2 .
  • the ferrocene and the surface of the Pt particles in the Pt/C catalyst precursor undergo dissociative adsorption, and then the nucleation of Fe on the surface of Pt is achieved, and the introduction time is 2.5 minutes.
  • CO preferential oxidation reaction activity in a hydrogen-rich atmosphere The volume ratio of CO:O 2 :H 2 in the reaction gas was 1 : 1 :48.
  • Catalyst 100 mg of the above Pt-1cFeO x /C catalyst was uniformly mixed with 1 g of quartz sand; reactor: U-type quartz tube; catalyst pretreatment: first treated at 200 ° C for 1 hour in a 10% O 2 /He atmosphere, followed by Switch to 10% H 2 /He, continue treatment for 2 hours, and finally treat with a reaction gas of 1% CO + 1% O 2 + 48% H 2 + 50% He for another 20 minutes.
  • the composition of the reaction gas 1% CO + 1% O 2 + 48% H 2 + 50% He, and the reaction gas flow rate was 60 mL / min.
  • the catalyst was tested for activity in a temperature range of -80 to 200 ° C. The test results are shown in Fig. 5. With the wide temperature catalyst prepared by the present invention, complete conversion of CO can be achieved in the temperature range of -50 to 120 °C.
  • Example 10 Preparation of Pt-1cFeO x /TiO 2 catalyst and preferential oxidation of CO in a hydrogen-rich atmosphere
  • Pt/TiO 2 catalyst precursor preparation The catalyst precursor was obtained by atomic layer deposition. Using a viscous flow atomic layer deposition reactor (Arradiance), the temperature of the atomic layer deposition was 250 ° C, and the experimental Pt precursor was (trimethyl)methylcyclopentadienyl platinum (IV) (MeCpPtMe 3 , Strem Chemicals), using a heating mantle, the temperature of the metal precursor source vessel was heated to 70 ° C to obtain sufficient MeCpPtMe 3 precursor vapor pressure.
  • the oxidant is high purity O 2 (99.999%, Nanjing specialty gas), and the inert gas is high purity N 2 (99.999%, Nanjing specialty gas).
  • Deposition of FeO x promoter The temperature of the reaction chamber of the viscous flow Atomic deposition apparatus (Arradiance) is heated to 120 ° C by resistance heating, and the metal precursor of the FeO x promoter used is ferrocene (FeCp 2 , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel is heated to 90 ° C to obtain sufficient ferrocene precursor vapor pressure.
  • the above 200 mg Pt/TiO 2 catalyst precursor sample was placed in an atomic layer deposition reaction chamber.
  • the ferrocene vapor is mixed into high purity N 2 (99.999%, Nanjing specialty gas), and is introduced into the atomic layer deposition reaction chamber by high purity N 2 .
  • N 2 99.999%, Nanjing specialty gas
  • the ferrocene and the surface of the Pt particles in the Pt/TiO 2 catalyst precursor undergo dissociative adsorption, and then the nucleation of Fe on the surface of Pt is achieved, and the introduction time is 2.5 minutes.
  • CO preferential oxidation reaction activity in a hydrogen-rich atmosphere The volume ratio of CO:O 2 :H 2 in the reaction gas was 1 : 1 :48.
  • Catalyst 100 mg of the above Pt-1cFeO x /TiO 2 catalyst was uniformly mixed with 1 g of quartz sand; reactor: U-type quartz tube; catalyst pretreatment: firstly treated at 200 ° C for 1 hour in a 10% O 2 /He atmosphere, Subsequently, it was switched to 10% H 2 /He, the treatment was continued for 2 hours, and finally treated with a reaction gas of 1% CO + 1% O 2 + 48% H 2 + 50% He for 20 minutes.
  • the composition of the reaction gas 1% CO + 1% O 2 + 48% H 2 + 50% He, and the reaction gas flow rate was 60 mL / min.
  • the catalyst was tested for activity in a temperature range of -80 to 200 ° C. The test results are shown in Fig. 6. With the wide temperature catalyst prepared by the present invention, complete conversion of CO can be achieved in the temperature range of -70 to 100 °C.
  • Example 11 Preparation of Pt-1cFeO x /Al 2 O 3 catalyst and preferential oxidation of CO in a hydrogen-rich atmosphere
  • Pt/Al 2 O 3 catalyst precursor obtained by atomic layer deposition.
  • the temperature of the atomic layer deposition was 250 ° C
  • the experimental Pt precursor was (trimethyl)methylcyclopentadienyl platinum (IV) (MeCpPtMe 3 , Strem Chemicals)
  • the temperature of the metal precursor source vessel was heated to 70 ° C to obtain sufficient MeCpPtMe 3 precursor vapor pressure.
  • the oxidant is high purity O 2 (99.999%, Nanjing specialty gas), and the inert gas is high purity N 2 (99.999%, Nanjing specialty gas).
  • Deposition of FeO x promoter The temperature of the reaction chamber of the viscous flow Atomic deposition apparatus (Arradiance) is heated to 120 ° C by resistance heating, and the metal precursor of the FeO x promoter used is ferrocene (FeCp 2 , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel is heated to 90 ° C to obtain sufficient ferrocene precursor vapor pressure.
  • the above 200 mg Pt/Al 2 O 3 catalyst precursor sample was placed in an atomic layer deposition reaction chamber.
  • the ferrocene vapor is mixed into high purity N 2 (99.999%, Nanjing specialty gas), and is introduced into the atomic layer deposition reaction chamber by high purity N 2 .
  • N 2 99.999%, Nanjing specialty gas
  • the ferrocene and the surface of the Pt particles in the Pt/Al 2 O 3 catalyst precursor undergo dissociative adsorption, and then the nucleation of Fe on the surface of Pt is achieved, and the introduction time is 2.5 minutes.
  • CO preferential oxidation reaction activity in a hydrogen-rich atmosphere The volume ratio of CO:O 2 :H 2 in the reaction gas was 1 : 1 :48.
  • Catalyst 100 mg of the above Pt-1cFeO x /Al 2 O 3 catalyst was uniformly mixed with 1 g of quartz sand; reactor: U-type quartz tube; catalyst pretreatment: first treated at 200 ° C in a 10% O 2 /He atmosphere 1 After an hour, it was switched to 10% H 2 /He, and the treatment was continued for 2 hours, and finally treated with a reaction gas of 1% CO + 0.5% O 2 + 48% H 2 + 50.5% He for 20 minutes.
  • the composition of the reaction gas 1% CO + 1% O 2 + 48% H 2 + 50.5% He, and the reaction gas flow rate was 60 mL / min.
  • the catalyst was tested for activity in a temperature range of -80 to 200 ° C. The test results are shown in Fig. 7. With the wide temperature catalyst prepared by the present invention, complete conversion of CO can be achieved in the temperature range of 50-200 °C.
  • Example 12 Preparation of Pt-1cCoO x /SiO 2 catalyst and preferential oxidation of CO in a hydrogen-rich atmosphere
  • Preparation of Pt/SiO 2 catalyst precursor First, monodisperse silica beads (SiO 2 ) were synthesized by alkaline hydrolysis using tetraethyl silicate (TEOS) as a raw material. Next, the synthesized silica pellets were subjected to a high temperature calcination treatment at 300 °C. Thereafter, the surface of the calcined silica beads was modified with 3-aminopropyl-triethoxysilane (ATPES) (ATPES-SiO 2 ).
  • TEOS tetraethyl silicate
  • CoO x additive deposition The temperature of the reaction chamber of the viscous flow Atomic deposition apparatus (Arradiance) is heated to 150 ° C by resistance heating, and the metal precursor of the CoO x promoter used is cobaltocene (CoCp 2 , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel is heated to 90 ° C to obtain sufficient vapor pressure of the ferrocene precursor.
  • the above 200 mg Pt/SiO 2 catalyst precursor sample was placed in an atomic layer deposition reaction chamber.
  • the ferrocene vapor is mixed into high purity N 2 (99.999%, Nanjing specialty gas), and is introduced into the atomic layer deposition reaction chamber by high purity N 2 .
  • the cobaltocene is chemisorbed on the surface of the chloroplatinate ion in the Pt/SiO 2 catalyst precursor, and then the nucleation of Co on the Pt ion is achieved, and the introduction time is 3 minutes.
  • the composition of the reaction gas 1% CO + 0.5% O 2 + 48% H 2 + 50.5% He, and the reaction gas flow rate was 60 mL / min.
  • the catalyst was tested for activity in a temperature range of 30 to 200 ° C. The test results are shown in Fig. 8. With the wide temperature catalyst prepared by the present invention, complete conversion of CO can be achieved in a temperature range of 30 to 140 °C.
  • the mass content of Pt was 3.2 wt%
  • the mass content of CoO x promoter in terms of cobalt element was 0.8 wt%, 0.7 wt%, 0.7 wt%, 0.8 wt%, 08 wt%, respectively. % and 0.9wt%.
  • Each of the catalysts obtained above exhibited the hydrogen-rich atmosphere in a wide temperature range similar to that of Example 12 under the same procedures and conditions as in Example 12 under the conditions of the CO preferential oxidation reaction in a hydrogen-rich atmosphere. High conversion conversion of CO.
  • Example 19 Preparation of Pt-1cNiO x /SiO 2 catalyst and CO preferential oxidation activity in a hydrogen-rich atmosphere
  • Pt/SiO 2 catalyst precursor obtained by atomic layer deposition.
  • the temperature of the atomic layer deposition was 250 ° C
  • the experimental Pt precursor was (trimethyl)methylcyclopentadienyl platinum (IV) (MeCpPtMe 3 , Strem Chemicals)
  • the temperature of the metal precursor source vessel was heated to 70 ° C to obtain sufficient MeCpPtMe 3 precursor vapor pressure.
  • the oxidant is high purity O 2 (99.999%, Nanjing specialty gas), and the inert gas is high purity N 2 (99.999%, Nanjing specialty gas).
  • NiO x additive The temperature of the reaction chamber of the viscous flow type atomic layer deposition reaction device (Arradiance) is heated to 120 ° C by resistance heating, and the metal precursor of the NiO x promoter used is nickel (NiCp 2 ) , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel is heated to 90 ° C to obtain sufficient vapor pressure of the nickel precursor precursor.
  • the above 150 mg Pt/SiO 2 catalyst precursor sample was placed in an atomic layer deposition reaction chamber.
  • the nickel-nickel vapor is mixed into high-purity N 2 (99.999%, Nanjing specialty gas), and is introduced into the atomic layer deposition reaction chamber by high-purity N 2 .
  • high-purity N 2 99.999%, Nanjing specialty gas
  • the nickel ferrocene dissociated and adsorbed on the surface of the Pt nanoparticles in the Pt/SiO 2 catalyst precursor, and then the nucleation of Ni on the Pt particles was carried out, and the introduction time was 2.5 minutes.
  • CO preferential oxidation activity test in a hydrogen-rich atmosphere The volume ratio of CO:O 2 :H 2 in the reaction gas was 1 :0.5:48.
  • Catalyst 100 mg of the above Pt-1cNiO x /SiO 2 catalyst was uniformly mixed with 1 g of quartz sand; reactor: U-type quartz tube; catalyst pretreatment: firstly treated at 200 ° C for 2 hours in a 10% O 2 /He atmosphere, Subsequently, it was switched to 10% H 2 /He, and treatment was continued for 1 hour, 1% CO + 0.5% O 2 + 48% H 2 + 50.5% He, and the reaction gas flow rate was 60 mL/min.
  • the catalyst was tested for activity in a temperature range of -80 to 200 ° C. The test results are as shown in Fig. 9.
  • the wide temperature catalyst prepared by the present invention can realize complete conversion of CO in a temperature range of 35 to 60 °C.
  • the mass content of the Pt element was 3.6 wt%
  • the mass content of the NiO x promoter based on the nickel element was 1.0 wt%, 0.8 wt%, 0.7 wt%, 0.7 wt%, respectively. 0.7 wt% and 0.7 wt%.
  • Each of the catalysts obtained above exhibited the hydrogen-rich atmosphere in a wide temperature range similar to that of Example 19 under the same procedures and conditions as in Example 19 under the conditions of the CO preferential oxidation reaction in a hydrogen-rich atmosphere. High conversion conversion of CO.
  • Example 25 Preparation of Ir-2cFeO x /SiO 2 catalyst and preferential oxidation of CO in a hydrogen-rich atmosphere
  • Ir / SiO 2 Catalyst Precursors Ir / SiO 2 Catalyst Precursors: Ir / SiO 2 catalyst precursor is obtained by impregnating synthesis. 480 mg of SiO 2 was added to an aqueous solution containing 2.12 mL of chlorodecanoic acid (2.46 ⁇ 10 -3 M), and stirred for 24 hours. The aqueous solution was again evaporated to dryness at a temperature of 80 ° C, and then placed in an oven at 70 ° C to obtain an Ir/SiO 2 catalyst. The mass content of Ir in the catalyst was 3.7 wt%, and the Ir particle size was 1.50 ⁇ 0.6 nm.
  • Deposition of FeO x additive The temperature of the reaction chamber of the viscous flow Atomic deposition apparatus (Arradiance) is heated to 200 ° C by resistance heating, and the metal precursor of the FeO x promoter used is ferrocene (FeCp 2 , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel is heated to 90 ° C to obtain sufficient ferrocene precursor vapor pressure.
  • the above 200 mg Ir/SiO 2 catalyst precursor sample was placed in an atomic layer deposition reaction chamber.
  • CO preferential oxidation reaction activity in a hydrogen-rich atmosphere The volume ratio of CO:O 2 :H 2 in the reaction gas was 1 : 1 :48.
  • Catalyst 100 mg of Ir-1cFeO x /SiO 2 catalyst described in [087] was uniformly mixed with 1 g of quartz sand; reactor: U-type quartz tube; catalyst pretreatment: first in a 10% O 2 /Ar atmosphere at 200 The mixture was treated at ° C for 1 hour, then switched to 10% H 2 /Ar, and treatment was continued for 2 hours.
  • the composition of the reaction gas 1% CO + 1% O 2 + 48% H 2 + 50% Ar, and the reaction gas flow rate was 60 mL / min.
  • the catalyst was tested for activity in a temperature range from room temperature to 200 ° C. The test results are shown in FIG. 10.
  • the wide temperature catalyst prepared by the present invention can realize complete conversion of CO in a temperature range of 60 to 180 ° C.
  • Stability test Stability test of CO preferential oxidation reaction in a hydrogen-rich atmosphere of the above Ir-1cFeO x /SiO 2 catalyst, the volume ratio of CO:O 2 :H 2 in the reaction gas was 1 : 1 :48.
  • the amount of the catalyst, the pretreatment, and the reaction conditions are as described above.
  • the reaction temperature was maintained at 80 ° C and the sample was continuously tested for 20 hours.
  • the reaction temperature was 80 °C.
  • the stability test time is 20 hours. As shown in Figure 11, the catalyst was able to be held at 80 ° C for 20 hours without any catalyst deactivation.
  • Example 26 Preparation of Ir-1cCoO x /SiO 2 catalyst and preferential oxidation of CO in a hydrogen-rich atmosphere
  • Ir/SiO 2 catalyst precursor First, monodisperse silica beads (SiO 2 ) were synthesized by alkaline hydrolysis using tetraethyl silicate (TEOS) as a raw material. Next, the synthesized silica pellets were subjected to a high temperature calcination treatment at 300 °C. Thereafter, the surface of the calcined silica beads was modified with 3-aminopropyl-triethoxysilane (ATPES) (ATPES-SiO 2 ).
  • ATPES 3-aminopropyl-triethoxysilane
  • 480 mg of ATPES-SiO 2 and 2.12 mL of chlorinic acid were added to 50 mL of an aqueous solution, stirred at room temperature for 24 hours, and the aqueous solution was evaporated to dryness at a temperature of 80 ° C, and dried to obtain Ir/SiO 2 .
  • CoO x additive deposition The temperature of the reaction chamber of the viscous flow Atomic deposition apparatus (Arradiance) is heated to 150 ° C by resistance heating, and the metal precursor of the CoO x promoter used is cobaltocene (CoCp 2 , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel is heated to 90 ° C to obtain sufficient vapor pressure of the ferrocene precursor.
  • the above 200 mg Ir/SiO 2 catalyst precursor sample was placed in an atomic layer deposition reaction chamber.
  • the ferrocene vapor is mixed into high purity N 2 (99.999%, Nanjing specialty gas), and is introduced into the atomic layer deposition reaction chamber by high purity N 2 .
  • the cobaltocene is chemisorbed on the surface of the chloroantimonate ion in the Ir/SiO 2 catalyst precursor, and then the nucleation of Co on the Pt ion is achieved, and the introduction time is 3 minutes.
  • CO preferential oxidation reaction activity in a hydrogen-rich atmosphere The volume ratio of CO:O 2 :H 2 in the reaction gas was 1 : 1 :48.
  • Catalyst 100 mg of the above Ir-1cCoO x /SiO 2 catalyst was uniformly mixed with 1 g of quartz sand; reactor: U-type quartz tube; catalyst pretreatment: firstly treated at 500 ° C for 1 hour in a 10% O 2 /Ar atmosphere, It was then cooled to 250 ° C and switched to 10% H 2 /He for further 1 hour.
  • the composition of the reaction gas 1% CO + 1% O 2 + 48% H 2 + 50% Ar, and the reaction gas flow rate was 30 mL / min.
  • the catalyst was tested for activity in a temperature range of 20 to 200 ° C. The test results are shown in Fig. 12. With the wide temperature catalyst prepared by the present invention, complete conversion of CO can be achieved in the temperature range of 80 to 120 °C.
  • Example 27 Preparation of Pt-1cFeO x /SiO 2 (Fe(acac) 3 ) catalyst and preferential oxidation of CO in a hydrogen-rich atmosphere
  • Pt/SiO 2 catalyst precursor obtained by atomic layer deposition.
  • the temperature of the atomic layer deposition was 250 ° C
  • the experimental Pt precursor was (trimethyl)methylcyclopentadienyl platinum (IV) (MeCpPtMe 3 , Strem Chemicals)
  • the temperature of the metal precursor source vessel was heated to 70 ° C to obtain sufficient MeCpPtMe 3 precursor vapor pressure.
  • the oxidant is high purity O 2 (99.999%, Nanjing specialty gas), and the inert gas is high purity N 2 (99.999%, Nanjing specialty gas).
  • Deposition of FeO x additive The temperature of the reaction chamber of the viscous flow Atomic deposition apparatus (Arradiance) is heated to 120 ° C by resistance heating, and the metal precursor of the FeO x promoter used is iron acetylacetonate (Fe ( Acac) 3 , Sigma Aldrich), using a heating mantle, the temperature of the metal precursor source vessel was heated to 90 ° C to obtain sufficient vapor pressure of the iron precursor of acetylacetonate.
  • the above 200 mg Pt/SiO 2 catalyst precursor sample was placed in an atomic layer deposition reaction chamber. Open the isolation valve between the acetylacetone iron source vessel and the atomic layer deposition reaction chamber.
  • the iron acetylacetonate vapor is mixed into high purity N 2 (99.999%, Nanjing specialty gas) and introduced into the atomic layer deposition reaction chamber by high purity N 2 . .
  • High purity N 2 (99.999%, Nanjing specialty gas)
  • the introduction time was 2.5 minutes.
  • high-purity O 2 (99.999%, Nanjing specialty gas) as an oxidant was introduced into the reaction chamber for 3 minutes to dissociate the adsorbed organic ligand portion of iron acetylacetonate on the surface of Pt.
  • CO preferential oxidation activity test in a hydrogen-rich atmosphere The volume ratio of CO:O 2 :H 2 in the reaction gas was 1 :0.5:48.
  • Catalyst 100 mg of Pt-1cFeO x /SiO 2 (Fe(acac) 3 ) catalyst described in [095] was uniformly mixed with 1 g of quartz sand; reactor: U-type quartz tube; catalyst pretreatment: first at 10% Treatment in O 2 /He atmosphere at 200 ° C for 1 hour, then switch to 10% H 2 /He, continue treatment for 2 hours, and finally use 1% CO + 0.5% O 2 + 48% H 2 + 50.5% He of reaction gas Treat for another 20 minutes.
  • the composition of the reaction gas 1% CO + 0.5% O 2 + 48% H 2 + 50.5% He, and the reaction gas flow rate was 60 mL / min.
  • the catalyst was tested for activity in a temperature range of -80 to 200 ° C. The test results are shown in Fig. 13. With the wide temperature catalyst prepared by the present invention, complete conversion of CO can be achieved in the temperature range of -30 to 42 °C.

Abstract

一种用于在富氢气氛中优先氧化 CO 的催化剂的制备方法及获得的催化剂产品和应用。催化剂通过化学气相沉积法或原子层沉积法将作为助剂的铁氧化物、钴氧化物和镍氧化物中的一种或多种沉积到负载型 Pt族贵金属催化剂前驱体的表面上而制得。其在富氢气氛中的 CO 优先氧化反应中能够表现出优异的催化性能。

Description

用于富氢气氛中优先氧化CO的宽温催化剂的制备方法及其产品和应用 技术领域
本发明涉及用于富氢气氛中优先氧化CO的金属催化剂及其制备方法和应用。
背景技术
近年来,清洁能源愈来愈受到人们的重视。其中,燃料电池是一种环境友好型的发电装置。质子交换膜燃料电池(PEMFC)是一种非常理想的燃料电池,它具有体积小、重量轻、零排放、能量转换密度高等特点,在未来静态装置、氢燃料电池汽车、军事设备、航空航天等领域具有广阔的应用前景。燃料电池的氢源主要来源于甲醇和天然气等碳氢化合物的水蒸汽重整、水煤气变换反应等,该类氢源通常含有大约0.5%~2%的微量CO。CO极易吸附在PEMFC的Pt电极表面,使电极毒化,严重降低电池性能。因此,氢源在进入燃料电池前,必须首先进行CO净化处理,把CO的含量控制在10ppm以下。为解决该问题,科研人员尝试了很多方法。目前去除燃料电池的所用氢源中CO的方法主要有吸附法、Pd膜分离法、CO甲烷化法和CO选择性氧化法。经对比,人们发现CO选择性氧化是去除该类氢源中微量CO的最理想方法。
目前,用于富氢气氛CO优先氧化(下文中以PROX表示)的催化剂主要分为以下几种:
(a)金基催化剂:负载型Au催化剂由于具有极高的低温CO氧化活性,因而受到了人们极大的关注。然而由于H2氧化反应的竞争,人们发现随着反应温度升高,CO氧化选择性迅速降低,很难将CO浓度降到10ppm以下。例如,中国专利申请CN102441401A中提到将Au纳米颗粒负载在铜-钛混合氧化物载体上,Au负载量为0.5~5wt%,CO 100%转化的温度区间仅为30-60℃,工作温度局限性较大。另外,Au催化剂的稳定性相对较差,而且其活性对制备方法与过程的要求非常严格,使得Au催化剂在PROX反应中的应用受到了较大限制。
(b)铜基非贵金属催化剂:该类催化剂和其它类型的催化剂相比,虽 然成本较低,但是该类催化剂在PROX反应中,通常反应温度达到100℃以上才会有活性,而且在CO2和水汽存在的条件下稳定性差。如中国专利申请CN102407123A中提及的CuO担载的CeO2催化剂。
(c)铂族贵金属催化剂:目前单一Pt族金属(Pt、Ru、Rh、Pd、Ir)催化剂在100℃以下活性很差(J.Phys.Chem.B 2005,109,23430-23443),通常需要以双金属合金或添加助剂的方式来提高催化活性。如新日本石油株式会社提出以PtRu双金属合金作为活性组分的催化剂(参见CN101507924A)。另外,中国专利申请CN 101856621提出了以铂族金属为活性成分,并以等体积浸渍法添加Fe、Co、Ni等过渡金属作为助剂的催化剂,它们能够在60~100℃的温度范围内将氢气中的CO完全脱除。中国专利申请CN101428227A提出了一种利用分步或共浸渍的方法制备的铱基双组份催化剂,其中助剂为Fe、Sn、Mn、Co、Ni、Cr、和/或Zn,该催化剂可以在60~100℃的温度范围内将氢气中的CO高选择性转化。日本的Watanabe研究小组利用离子交换法,在Mordenite沸石上沉积了不同Pt:Fe质量比例的Pt-Fe/Zeolite合金催化剂。他们制备的催化剂能够在85-150℃的温度范围内实现将氢气中的CO高选择性转化(Appl.Catal.B:Environ.2003,46,595-600)。中科院大连化学物理研究所的包信和课题组利用连续浸渍法和共浸渍法,分别获得了双组份Pt-Fe/SiO2,Pt-Fe/炭黑催化剂样品,然而这些催化剂仅仅可以在25~50℃的狭窄温度范围内将氢气中的CO高选择性转化(Science,2005328,1141-1144,Energy Environ.Sci.,2012,5,6313-6320)。在他们的工作中,他们首次指出以氧化物为助剂的Pt基催化剂,CO氧化的活性中心为Pt-氧化物助剂的界面(Science,2005328,1141-1144,Acc.Chem.Res.,2013,46,1692-1701);厦门大学的郑南峰老师课题组也同样指出,Pt-Fe催化剂体系的CO氧化的活性中心为Pt-Fe(OH)3助剂的界面。然而,在这些研究中,氧化物助剂的添加是通过使用浸渍法、沉淀法、等液相方法实现的,这些方法无法实现催化剂中贵金属活性组分-氧化物助剂界面的最佳优化,抑制了催化剂性能的有效提高,导致CO完全转化的工作温度区间窄,无法满足实际应用要求。
另外,自原子层沉积技术问世以来(US 4,058,430(1977)),利用原子层沉积精确控制的技术优势尝试催化剂制备已获得了人们的关注(Surf. Sci.Rep.,(2016)doi:10.1016/j.surfrep.2016.03.003;Acc.Chem.Res.,2013,46,1806-1815;ACS Catal.2015,5,1804-1825)。其中,利用原子层沉积技术对金属催化剂进行氧化物包裹,进而实现催化剂性能的调控,也已有一些相关文献报道例如:利用原子层沉积技术在Pd/Al2O3催化剂表面沉积Al2O3包裹层,实现催化剂在高温乙烷部分氧化脱氢反应中的抗烧结和抗积炭性能(Science,2012,335,1205-1208;PCT/US2012/039343);利用子层沉积技术在Cu/γ-Al2O3催化剂表面沉积Al2O3包裹层,防止Cu活性组分在液相催化反应中的浸出(Angew.Chem.2013,125,14053-14057);利用原子层沉积技术在Co/C催化剂表面沉积TiO2包裹层,实现催化剂在电催化反映中活性的提高(ACS Catal.2015,5,3463-3469);利用原子层沉积技术在Pd/Al2O3催化剂表面沉积ZrO2包裹层,实现催化剂在甲烷完全燃烧反应中的稳定性和催化活性的提高(ACS Catal.2015,5,5696-5701)等。上述有关利用原子层沉积技术对金属催化剂进行氧化物包裹的工作,主要侧重通过氧化物包裹层的物理阻隔层,以解决金属颗粒在催化反应过程中的烧结问题,沉积的氧化包裹层较厚(大于1nm)以达到稳定性提高的效果,氧化物包裹的金属颗粒是通过其氧化物层内的微孔而参与催化反应的。然而,在金属颗粒上沉积高分散性的氧化物物种,甚至氧化物单体(M1Ox,M是金属原子)物种,从而实现金属-氧化物界面的最大优化还无相关研究。此外,到目前为止,利用化学气相沉积或原子层沉积技术制备催化剂,更是没有在富氢气氛中优先氧化CO反应中应用的相关报道。
发明内容
为了克服现有技术中的一个或多个缺陷,本发明的目的是提供一种在富氢气氛下优先氧化CO的宽温催化剂,其可以在宽温度范围(例如可在-80~200℃的温度范围)内使用,并且能够在富氢气氛CO优先氧化反应中表现出优异的催化活性、选择性和稳定性。
为此,在一方面,本发明提供一种用于在富氢气氛中优先氧化CO的宽温催化剂的方法,其特征在于,所述催化剂包括载体、活性组分和助剂,其中所述载体是选自SiO2、Al2O3、TiO2、MgO、CeO2、ZrO2、活性炭、炭黑、石墨烯和碳纳米管中的一种或多种;所述活性组分是选自Pt、Ir、 Ru、Rh和Pd中的一种或多种,其在所述宽温催化剂中的含量为0.1~10wt%;所述助剂是选自铁氧化物、钴氧化物和镍氧化物中的一种或多种,其以金属元素计在所述宽温催化剂中的含量为0.01~15wt%,
所述方法包括:
提供包括所述活性组分和所述载体的负载型催化剂前驱体;
通过化学气相沉积法或原子层沉积法将所述助剂沉积到所述负载型催化剂前驱体的表面上,从而得到所述宽温催化剂。
优选地,所述助剂的沉积包括以下步骤:
(a)将所述负载型催化剂前驱体放置在处于20~500℃的反应器中,并引入作为助剂前驱体的铁前驱体、钴前驱体和/或镍前驱体的蒸汽以吸附到所述负载型催化剂前驱体的表面上;
(b)引入氧化剂或还原剂以使吸附在所述负载型催化剂前驱体的表面上的所述助剂前驱体转化为所述助剂;
(c)任选地相继或同时重复执行以上步骤(a)和(b)一次或多次以调控所述助剂的质量含量。
优选地,所述铁前驱体是选自二茂铁、乙烯基二茂铁、乙基二茂铁、氨基二茂铁、二甲氨基二茂铁、乙酰丙酮铁、双(2,4-二甲基戊二烯基)铁、、(2,2,6,6-四甲基-3,5-庚二酮酸)铁(III)、双(N,N′-二叔丁基乙脒基)铁、羰基铁和叔丁醇铁中的一种或多种;最优选地,所述铁前驱体是选自二茂铁;
所述钴前驱体是选自二茂钴、乙酰丙酮钴、双(N,N′-二异丙基乙脒基)钴、二羰基环戊二烯钴、叔丁基三羰基钴、(2,2,6,6-四甲基-3,5-庚二酮酸)钴和2-甲氧基乙醇钴中的一种或多种;最优选地,所述钴前驱体是选自二茂钴;
所述镍前驱体是选自二茂镍、乙酰丙酮镍、双(N,N′-二异丙基乙脒基)镍、(2,2,6,6-四甲基-3,5-庚二酮酸)镍(II)、二丁基二硫代氨基甲酸镍(II)和2-甲氧基乙醇镍中的一种或多种。
优选地,所述氧化剂是选自O2、O3、H2O、H2O2、NO和NO2中的一种或多种;更优选地,所述氧化剂是选自O2、O3、H2O、H2O2;所述还原剂是选自H2、NH3和N2H4中的一种或多种;更有选地,所述还原剂是选自H2
优选地,所述方法还包括以下步骤:在所述步骤(a)和步骤(b)之间以及在所述步骤(b)之后,利用惰性气体吹扫所述反应器。
优选地,所述步骤(a)和(b)相继重复执行1-10次。
优选地,所述负载型催化剂前驱体通过商购获得,或者通过浸渍法将所需量的活性组分的可溶性盐负载到载体上然后经过干燥焙烧获得。
在另一方面,本发明提供一种用于在富氢气氛中优先氧化CO的宽温催化剂,其特征在于,所述催化剂包括载体、活性组分和助剂,
其中所述载体是选自SiO2、Al2O3、TiO2、MgO、CeO2、ZrO2、活性炭、炭黑、石墨烯和碳纳米管中的一种或多种;
所述活性组分是选自Pt、Ir、Ru、Rh和Pd中的一种或多种,其在所述宽温催化剂中的含量为0.1~10wt%;
所述助剂是选自铁氧化物、钴氧化物和镍氧化物中的一种或多种,其以金属元素计在所述宽温催化剂中的含量为0.01~15wt%,
并且其中所述宽温催化剂是通过化学气相沉积法或原子层沉积法将助剂沉积到包括所述活性组分和所述载体的负载型催化剂前驱体的表面上获得的,并且所述宽温催化剂能够实现在富氢气氛中优先氧化CO。
优选地,所述活性组分是选自Pt;优选地,所述助剂是选自铁氧化物;优选地,所述载体是选自SiO2,并且所述宽温催化剂能够在-80~200℃的宽温度范围实现在富氢气氛中优先氧化CO。
在另一方面,本发明提供通过上述方法制备的宽温催化剂或上述宽温催化剂用于在富氢气氛中优先氧化CO的应用。
优选地,所述宽温催化剂在使用之前进行预处理,其中所述预处理是在100~600℃温度下首先用氧气氧化0.5~5小时,然后用氢气还原0.5~5小时。
优选地,所述宽温催化剂在使用之前进行预处理,其中所述预处理是在150~300℃温度下首先用氧气氧化0.5~2小时,然后用氢气还原0.5~2小时。
优选地,所述富氢气氛中CO和O2的体积比为1∶0.5至1∶2。
优选地,所述富氢气氛中CO和O2的体积比为1∶0.5至1∶1。
本发明通过化学气相沉积法或原子层沉积法将金属氧化物助剂沉积 到Pt族贵金属(Pt、Ir、Ru、Rh或Pd)负载型催化剂前驱体表面上而实现对催化剂的贵金属活性组分-氧化物助剂界面的最佳优化。通过这样的方法获得的贵金属催化剂在富氢气氛中CO优先氧化反应中能够表现出优异的催化性能,并且能够在比现有催化剂显著更宽的温度区间(例如可在-80~200℃的宽温度区间)实现富氢气氛中CO的高选择性、高转化率氧化。此外,在水蒸气和CO2存在的情况下,所述催化剂也能够长时间保持稳定。
附图说明
图1示出了根据本发明实施例1制备的Pt-1cFeOx/SiO2宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的富氢反应气样品中的CO∶O2∶H2的体积比为1∶0.5∶48。
图2示出了根据本发明实施例1制备的Pt-1cFeOx/SiO2宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的富氢反应气样品中的CO∶O2∶H2的体积比为1∶1∶48。
图3示出了根据本发明实施例1制备的Pt-1cFeOx/SiO2宽温催化剂在80℃温度下在反应气样品含有水蒸汽(H2O)和CO2的情况下的稳定性曲线图。
图4示出了根据本发明实施例2制备的Pt-5cFeOx/SiO2宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的反应气样品中的CO∶O2∶H2的体积比为1∶0.5∶48。
图5示出了根据本发明实施例9制备的Pt-1cFeOx/C宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的反应气样品中的CO∶O2∶H2的体积比为1∶1∶48。
图6示出了根据本发明实施例10制备的Pt-1cFeOx/TiO2宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的反应气样品中的CO∶O2∶H2的体积比为1∶1∶48。
图7示出了根据本发明实施例11制备的Pt-1cFeOx/Al2O3宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的反应气样品中的CO∶O2∶H2的体积比为1∶1∶48。
图8示出了根据本发明实施例12制备的Pt-1cCoOx/SiO2宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的反应气样品中的CO∶O2∶H2的体积比为1∶0.5∶48。
图9示出了根据本发明实施例19制备的Pt-1cNiOx/SiO2宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的反应气样品中的CO∶O2∶H2的体积比为1∶0.5∶48。
图10示出了根据本发明实施例25制备的Ir-2cFeOx/SiO2宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的反应气样品中的CO∶O2∶H2的体积比为1∶1∶48。
图11示出了根据本发明实施例25制备的Ir-2cFeOx/SiO2宽温催化剂在80℃温度下的稳定性曲线图。
图12示出了根据本发明实施例26制备的Ir-1cCoOx/SiO2宽温催化剂在富氢气氛中优先氧化CO的CO转化率和CO选择性的曲线图,其中使用的反应气样品中的CO∶O2∶H2的体积比为1∶1∶48。
图13示出了根据本发明实施例27制备的Pt-1cFeOx/SiO2(Fe(acac)3)宽温催化剂在富氢气氛CO优先氧化的CO转化率和CO选择性的曲线图,其中使用的反应气样品中的CO∶O2∶H2的体积比为1∶0.5∶48。
具体实施方式
为实现上述目的,本发明的发明人经过深入研究,出乎意料地发现,利用化学气相沉积法或原子层沉积法,在Pt族贵金属(Pt、Ir、Ru、Rh或Pd)负载型催化剂前驱体表面上可以实现精准沉积具有高分散性的氧化物助剂;而且通过利用化学气相沉积,尤其是原子层沉积技术的精确控制优势,能够实现对催化剂的贵金属活性组分-氧化物助剂界面的最佳优化,进而最大程度提高催化剂的活性和贵金属的利用率,获得了能够在比现有催化剂显著更宽的温度区间(例如可在-80~200℃的宽温度区间)实现富氢气氛中CO的高选择性、高转化率氧化的宽温催化剂。
更具体地,本发明提供的用于富氢气氛中优先氧化CO的宽温高性能催化剂包括载体、贵金属活性组分和非贵金属氧化物助剂,其中的载体为氧化物或碳基材料;贵金属活性组分为选自Pt、Ir、Ru、Rh和Pd(即Pt 族贵金属)的一种或多种;非贵金属氧化物助剂为选自铁氧化物(FeOx)、钴氧化物(CoOx)和镍氧化物(NiOx)(其中的下标x仅表示所形成的相应氧化物中O的原子系数,其对于本领域技术人员是熟知的,没有特定值限制)中的一种或多种,并且其中,基于所述宽温催化剂的总重量,所述贵金属活性组分的含量为0.1~10wt%,优选1~5wt%,所述非贵金属氧化物助剂以金属元素计的含量为0.01~10wt%,优选0.1~10wt%。
在本发明中,对使用的Pt族贵金属负载型催化剂前驱体没有特别限制,其可以是商购或商品负载型催化剂,也可以是通过本领域熟知的浸渍法、离子交换法、沉淀法、溶胶凝胶法等方法制备获得的负载型催化剂前驱体。
在本发明中,对所使用的载体没有特别要求,只要能够负载上述贵金属活性组分即可。常见的或优选的,使用的载体是选自SiO2、Al2O3、TiO2、MgO、CeO2、ZrO2、活性炭、炭黑、石墨烯和碳纳米管中的一种或多种,其中更优选SiO2、Al2O3、TiO2、CeO2、ZrO2或活性炭,更优选SiO2
在本发明中,非贵金属氧化物助剂是通过化学气相沉积法或原子层沉积方法沉积到Pt族贵金属负载型催化剂前驱体的表面上的,不受限于任何理论。其中,一种成核生长理论是:由于Pt族金属颗粒通常具有高催化活性,当氧化物助剂的金属前驱体被引入到Pt族贵金属负载型催化剂前驱体的表面上时,氧化物助剂的金属前驱体通常通过解离吸附的方式吸附到Pt族金属颗粒表面;此后,利用氧化剂或还原剂可以把氧化物助剂的金属前驱体配体有效去除,并形成Pt族贵金属活性组分--氧化物助剂界面。
优选地,所述非贵金属氧化物助剂的沉积包括以下步骤:
(a)将所述负载型催化剂前驱体放入反应器或反应腔内,并加热到适当的温度(例如为20~500℃),然后引入适当剂量的助剂前驱体的蒸汽以吸附在所述负载型催化剂前驱体的表面上;
(b)引入适当剂量的氧化剂或还原剂(取决于所述助剂前驱体至所述氧化物助剂的转化反应所需,即如果该转化是氧化反应,则引入氧化剂;如果该转化是还原反应,则引入还原剂),使氧化剂或还原剂与吸附在催化剂前驱体表面上的物助剂前驱体发生化学反应,从而实现氧化物助剂在 催化剂表面上的沉积,由此获得所需宽温催化剂
(c)任选地相继或同时重复执行上述步骤(a)和(b)一次或多次(即沉积一个周期或多个周期),以调控氧化物助剂在所述宽温催化剂中的含量。
更优选地,通过原子层沉积法实现氧化物助剂的沉积或添加。更优选地,其中的沉积包括以下步骤:
(1)将所述负载型催化剂前驱体放入反应器或反应腔内,并加热到一定的温度(例如为20~500℃),然后面引入适当剂量的助剂前驱体的蒸汽以吸附在所述负载型催化剂前驱体的表面上;
(2)任选地利用惰性气吹扫所述反应器或反应腔,以将其中剩余的助剂前驱体和其他反应产物吹扫干净;
(3)引入适当剂量的氧化剂或还原剂,使氧化剂或还原剂与吸附在催化剂前驱体表面上的助剂前驱体发生化学反应,从而实现氧化物助剂在催化剂表面上的可控沉积。
(4)任选地利用惰性气体吹扫所述反应器或反应腔,以将其中剩余的氧化剂或还原剂以及其他反应产物吹扫干净,由此获得所述宽温催化剂。
(5)任选地相继重复执行上述步骤(1)~(4)一次或多次(即沉积一个周期或多个周期),以调控氧化物助剂在在所述宽温催化剂中的含量。
在本发明中,氧化物助剂的沉积期间,可以仅沉积一种氧化物助剂,也可以沉积两种或三种氧化物助剂。而且,这些氧化物助剂可以分别在不同沉积周期中进行沉积,也可以同时在同一个或几个沉积周期中进行沉积。
在本发明中,用于通过化学气相法沉积或原子层沉积法沉积的助剂前驱体为如下:
作为铁氧化物助剂的铁前驱体,其优选是选自二茂铁、乙烯基二茂铁、乙基二茂铁、氨基二茂铁、二甲氨基二茂铁、乙酰丙酮铁、双(2,4-二甲基戊二烯基)铁、(2,2,6,6-四甲基-3,5-庚二酮酸)铁(III)、双(N,N′-二叔丁基乙脒基)铁、羰基铁、和叔丁醇铁中一种或多种。在这些之中,特别优选的铁前驱体是二茂铁。
作为钴氧化物助剂的钴前驱体,其优选是选自二茂钴、乙酰丙酮钴、 双(N,N′-二异丙基乙脒基)钴、二羰基环戊二烯钴、叔丁基三羰基钴、(2,2,6,6-四甲基-3,5-庚二酮酸)钴和2-甲氧基乙醇钴中的一种或多种。在这些之中,特别优选的钴前驱体是二茂钴。
作为镍氧化物助剂的镍前驱体,其优先是选自二茂镍、乙酰丙酮镍、双(N,N′-二异丙基乙脒基)镍、(2,2,6,6-四甲基-3,5-庚二酮酸)镍(II)、二丁基二硫代氨基甲酸镍(II)和2-甲氧基乙醇镍中的一种或多种。在这些之中,特别优选的镍前驱体是二茂镍。
在本发明中,氧化物助剂沉积中使用的氧化剂优选是选自O2、O3、H2O、H2O2、NO和NO2中的一种或多种,使用的还原剂优选是选自H2、NH3和N2H4中的一种或多种。其中更优选地,使用的氧化剂或还原剂选自O2、O3、H2O、H2O2、H2或NH3
在本发明中,使用的惰性气体是N2、Ar、He或其组合,优选为N2
在本发明中,在沉积氧化物助剂过程中,反应器或反应腔的加热温度或负载型催化剂前驱体的温度优选为20~500℃,更优选为50~350℃,最优选为100~200℃。
在本发明中,对于沉积次数或沉积周期数没有特别限制,可以根据需要进行一次或多次沉积。优选地,氧化物助剂的沉积次数1~50次,更优选为1~20次,最优选为1~10次。
在本发明中,对于所述宽温催化剂应用的富氢气氛的组成没有特别限制。通常,在所述宽温催化剂的应用中,富氢反应气氛中CO的含量小于5%,H2的含量大于10%,CO和O2的体积比为在1∶0.5~2的范围内。优选地,针对用于氢燃料电池的氢源气氛,其中CO的含量小于5%,H2的含量大于30%,CO和O2的体积比为在1∶0.5~1的范围内。
优选地,在使用本发明的宽温催化剂之前,对该宽温催化剂进行预处理。例如,预处理过程是在100~600℃温度下用氢气还原0.5~5小时。更优选地,预处理过程是在200~300℃温度下用氢气还原0.5~2小时。进一步优选地,预处理过程是在200~300℃温度下用氢气还原0.5~2小时,然后用富氢气氛反应气体在室温~300℃温度(例如100~200℃温度)下再处理0.1~5小时(例如0.2~1小时)。
本发明的优点包括但不限于以下方面:
本发明提供的沉积氧化物助剂的方法的重复性好、适用性广,适合于任何Pt族贵金属负载型催化剂,包括商购(商品)Pt族贵金属(Pt、Ir、Ru、Rh、Pd)负载型催化剂,或者是通过浸渍法、离子交换法、沉淀法、溶胶凝胶法等制备的各种Pt族贵金属(Pt、Ir、Ru、Rh、Pd)负载型催化剂。
本发明提供的沉积氧化物助剂的方法操作简单,仅仅需要化学气相沉积法或者原子层沉积法一步操作,便可实现Pt族贵金属(Pt、Ir、Ru、Rh、Pd)负载型催化剂性能的极大提高。
本发明提供的氧化物助剂添加方法中,所用的氧化物助剂的金属有机前驱体价格低廉,能够以较低的成本实现催化剂性能的极大提高。
本发明利用化学气相沉积法,尤其是原子层沉积法,在传统的Pt族贵金属(Pt、Ir、Ru、Rh、Pd)负载型催化剂表面上沉积氧化物助剂后,所获得的催化剂可以在宽温区间(例如可在-80~200℃温度区间)实现富氢气氛中CO的高选择性、高转化率氧化,这样的工作温度范围是迄今适用工作温度范围最宽的;此外,本发明的宽温催化剂可以在水蒸气和CO2存在的情况下,能够长时间保持稳定。
下面通过实施例进一步说明本发明,但本发明并不限于以下实施例。
实施例1:Pt-1cFeOx/SiO2催化剂的制备及其在富氢气氛中优先氧化CO的活性测试
Pt/SiO2催化剂前驱体的制备:利用原子层沉积法获取的。使用粘滞流动型原子层沉积反应器(Arradiance),原子层沉积的温度为250℃,实验的Pt前驱体为(三甲基)甲基环戊二烯合铂(IV)(MeCpPtMe3,Strem Chemicals),利用加热套,把该金属前驱体源容器的温度加热到70℃,以获得足够的MeCpPtMe3前驱体蒸汽压。氧化剂为高纯O2(99.999%,南京特种气体),惰性气体为高纯N2(99.999%,南京特种气体)。在催化剂制备过程中,把700mg SiO2载体(300m2/g,Alfa Aesar)放入其反应腔内,(a)利用高纯N2把MeCpPtMe3的蒸气引入到反应腔内,时间为10分钟;(b)把MeCpPtMe3源停止后,用高纯N2气吹扫5分钟;(c)引高纯O2 进入反应腔内,时间为3分钟;(d)然后再关掉O2源,并用高纯N2气吹扫5分钟。重复上述步骤(a-d)2次,即做2个原子层沉积周期。从反应腔内取出样品,获得Pt/SiO2催化剂前驱体。其中Pt的质量含量为3.6wt%,根据高分辨电镜结果,Pt颗粒尺寸为2.7±0.4nm。
FeOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设备(Arradiance)的反应腔温度加热到120℃,使用的FeOx助剂的金属前驱体是二茂铁(FeCp2,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的二茂铁前驱体蒸汽压。将500mg Pt/SiO2催化剂前驱体样品放置到原子层沉积反应腔内。打开二茂铁容器和原子层沉积反应腔之间的隔离阀门,二茂铁蒸汽混入高纯N2(99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。二茂铁并在Pt/SiO2催化剂前驱体中的Pt颗粒表面发生解离吸附,继而实现Fe在Pt表面的成核生成,引入时间为5分钟。关闭二茂铁源后,引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为3.3分钟,以将在Pt表面解离吸附的二茂铁的有机配体部分通过氧化燃烧掉,并转化为FeOx,从而实现FeOx在催化剂表面的沉积。
最后,从反应腔内取出样品,获得Pt-1cFeOx/SiO2宽温催化剂(其Pt的质量含量仍为3.6wt%),FeOx助剂以铁元素计的质量含量是0.1wt%。
活性测试1:进行富氢气氛中优先氧化CO的活性测试。将实施例1中获得的Pt-1cFeOx/SiO2催化剂100mg首先与1g石英砂研磨均匀混合(以防止反应中形成“热点”),反应器为U-型石英管(自制);催化剂预处理:首先在10%O2/He气氛中在200℃处理1小时,随后切换为10%H2/He,继续处理2小时,最后用1%CO+0.5%O2+48%H2+50.5%He的反应气体再处理20分钟。活性测试的反应气体样品的组成为1%CO+0.5%O2+48%H2+50.5%He,反应气的流速为60mL/min。并在-80~200℃温度区间内对催化剂进行活性测试,测试结果如图1所示,从该图1中可以看出,利用本发明制备的宽温催化剂,能够在-80~200℃温度区间内实现富氢气氛中CO的高转化率转化。
活性测试2:类似于活性测试1中的过程,将上述Pt-1cFeOx/SiO2催化剂进行富氢气氛中优先氧化CO的活性测试,其中催化剂的用量和预处理过程同上所述,只是将反应气体样品的组成调整为1%CO+1%O2+48%H2+50%He,反应气的流速为60mL/min。活性测试结果如图2所示,从该图2中可以看出,利用本发明制备的宽温催化剂,能够在-80~200℃温度区间内实现富氢气氛中CO的优选完全转化。
稳定性测试:对上述Pt-1cFeOx/SiO2催化剂进行稳定性测试,其中催化剂的用量和预处理过程如活性测试1中所述。稳定性测试中反应气的总流量为60mL/min,气体的组成为1%CO+0.5%O2+48%H2+3%H2O+20%CO2+27.5%He(模拟燃料电池中的富氢气氛组成),把反应温度保持在80℃维持不变,对样品连续测试160小时。稳定性测试结果如图3所示,从该图3可以看出,所述催化剂对于含有水和CO2的富氢气氛,能够长时间保持活性而无明显失活现象。
实施例2:Pt-5cFeOx/SiO2催化剂制备以及富氢气氛中CO优先氧化反应活性
Pt/SiO2催化剂前驱体的制备:首先以硅酸四乙酯(TEOS)为原料,通过碱性水解的方法合成单分散二氧化硅小球(SiO2)。其次将合成的二氧化硅小球进行300℃的高温煅烧处理。此后,用3-氨基丙基-三乙氧基硅烷(ATPES)对煅烧后的二氧化硅小球表面进行修饰(ATPES-SiO2)。将1.4g的ATPES-SiO2和7.9mL的氯铂酸加入30mL乙醇中,室温下搅拌24小时。离心烘干,并在10%H2/Ar气氛中350℃条件下处理2小时,得Pt/SiO2(WI)。其中,催化剂中Pt的质量含量是3.2wt%,Pt颗粒尺寸约为3nm。
FeOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设备(Arradiance)的反应腔温度加热到120℃,使用的FeOx助剂的金属前驱体是二茂铁(FeCp2,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的二茂铁前驱体蒸汽压。将150mg Pt/SiO2催化剂前驱体样品放置到原子层沉积反应腔内。(a)打开二茂铁容 器和原子层沉积反应腔之间的隔离阀门,二茂铁蒸汽混入高纯N2(99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。二茂铁并在Pt/SiO2催化剂前驱体中的Pt颗粒表面发生解离吸附,继而实现Fe在Pt表面的成核生成,引入时间为2.5分钟。(b)关闭二茂铁源后,并用高纯N2气继续吹扫5分钟,(c)引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为2分钟,以将在Pt表面解离吸附的二茂铁的有机配体部分通过氧化燃烧掉,并转化为FeOx,从而实现FeOx在催化剂表面的沉积;(d)并用高纯N2气继续吹扫5分钟重复上述步骤(a-d)5次,即做5个原子层沉积周期。从反应腔内取出样品,获得Pt-5cFeOx/SiO2催化剂。所获催化剂中Pt的质量含量仍是3.2wt%,几乎不变,FeOx助剂以铁元素计的质量含量是0.15wt%。
富氢气氛中CO优先氧化反应活性测试:反应气中的CO∶O2∶H2的体积比为1∶0.5∶48。催化剂:上述Pt-5cFeOx/SiO2催化剂100mg与1g石英砂研磨均匀混合;反应器:U-型石英管;催化剂预处理:首先在10%O2/He气氛中在200℃处理1小时,随后切换为10%H2/He,继续处理2小时,最后用1%CO+0.5%O2+48%H2+50.5%He的反应气体再处理20分钟。反应气体的组成:1%CO+0.5%O2+48%H2+50.5%He,反应气流速为60mL/min。在-80~200℃温度区间内对催化剂进行活性测试,测试结果如图4所示,从该图1中可以看出,利用本发明制备的宽温催化剂,能够在-80~200℃温度区间内实现富氢气氛中CO的高转化率转化。
实施例3-8:Pt-3cFeOx/SiO2催化剂制备以及富氢气氛中CO优先氧化反应活性
按照实施例2的相同程序,只是分别利用二甲氨基二茂铁(CpFeC5H4CHN(CH3)2,Sigma Aldrich)、双(2,4-二甲基戊二烯基)铁(Fe(2,4-C7H11)2,自合成)、(2,2,6,6-四甲基-3,5-庚二酮酸)铁(III)(Fe(thd)3,Alfa Aesar)、双(N,N′-二叔丁基乙脒基)铁(Strem Chemicals)、羰基铁(Fe(CO)5,Sigma Aldrich)和叔丁醇铁(Fe2(OtBu)6,Sigma Aldrich)代替二茂铁(FeCp2,Sigma Aldrich)作为FeOx助剂的金属前驱体,并且沉积 周期为3个,获得相应的六个Pt-3cFeOx/iO2催化剂样品。在所获得的这六个催化剂样品中,Pt的质量含量为3.2wt%,FeOx助剂以铁元素计的质量含量分别为0.18wt%、0.14wt%、0.15wt%、0.2wt%、0.3wt%和0.26wt%。
将以上获得的各个催化剂,在实施例2中的相同程序和条件下,在富氢气氛中CO优先氧化反应活性测试中均表现出了与实施例2类似的在宽温度范围内实现富氢气氛中CO的高转化率转化。
实施例9:Pt-1cFeOx/C催化剂制备以及富氢气氛中CO优先氧化反应活性
Pt/C催化剂前驱体的获得:该Pt/C催化剂前驱体是商用催化剂,购于Sigma Aldrich,Pt在催化剂中的质量含量为5wt%,根据高分辨电镜照片,Pt颗粒的尺寸为2.1±0.3nm。
FeOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设备(Arradiance)的反应腔温度加热到120℃,使用的FeOx助剂的金属前驱体是二茂铁(FeCp2,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的二茂铁前驱体蒸汽压。将200mg Pt/C商用催化剂前驱体样品放置到原子层沉积反应腔内。打开二茂铁容器和原子层沉积反应腔之间的隔离阀门,二茂铁蒸汽混入高纯N2(99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。二茂铁并在Pt/C催化剂前驱体中的Pt颗粒表面发生解离吸附,继而实现Fe在Pt表面的成核生成,引入时间为2.5分钟。关闭二茂铁源后,引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为3分钟,以将在Pt表面解离吸附的二茂铁的有机配体部分通过氧化燃烧掉,并转化为FeOx,从而实现FeOx在催化剂表面的沉积。最后,从反应腔内取出样品,获得Pt-1cFeOx/C催化剂。所获催化剂中FeOx助剂的铁元素的质量含量是8.6wt%。
富氢气氛中CO优先氧化反应活性测试:反应气中的CO∶O2∶H2的体积比为1∶1∶48。催化剂:上述Pt-1cFeOx/C催化剂100mg与1g石英砂研 磨均匀混合;反应器:U-型石英管;催化剂预处理:首先在10%O2/He气氛中在200℃处理1小时,随后切换为10%H2/He,继续处理2小时,最后用1%CO+1%O2+48%H2+50%He的反应气体再处理20分钟。反应气体的组成:1%CO+1%O2+48%H2+50%He,反应气流速为60mL/min。在-80~200℃温度区间内对催化剂进行活性测试,测试结果如图5所示,利用本发明制备的宽温催化剂,能够在-50~120℃温度区间实现CO的完全转化。
实施例10:Pt-1cFeOx/TiO2催化剂制备以及富氢气氛中CO优先氧化反应活性
Pt/TiO2催化剂前驱体制备:该催化剂前驱体是利用原子层沉积的办法获取的。使用粘滞流动型原子层沉积反应器(Arradiance),原子层沉积的温度为250℃,实验的Pt前驱体为(三甲基)甲基环戊二烯合铂(IV)(MeCpPtMe3,Strem Chemicals),利用加热套,把该金属前驱体源容器的温度加热到70℃,以获得足够的MeCpPtMe3前驱体蒸汽压。氧化剂为高纯O2(99.999%,南京特种气体),惰性气体为高纯N2(99.999%,南京特种气体)。在催化剂制备过程中,把700mg TiO2载体(50m2/g,Degussa)放入其反应腔内,(a)利用高纯N2把MeCpPtMe3的蒸气引入到反应腔内,时间为4分钟;(b)把MeCpPtMe3源停止后,用高纯N2气吹扫5分钟;(c)引高纯O2进入反应腔内,时间为2分钟;(d)然后再关掉O2源,并用高纯N2气吹扫5分钟。重复上述步骤(a-d)2次,即做2个原子层沉积周期。从反应腔内取出样品,获得Pt/SiO2催化剂前驱体。其中Pt的质量含量为3.7wt%,根据高分辨电镜结果,Pt颗粒尺寸约为3nm。
FeOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设备(Arradiance)的反应腔温度加热到120℃,使用的FeOx助剂的金属前驱体是二茂铁(FeCp2,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的二茂铁前驱体蒸汽压。将上述200mg Pt/TiO2催化剂前驱体样品放置到原子层沉积反应腔内。打开二茂铁源容器和原子层沉积反应腔之间的隔离阀门,二茂铁蒸汽混入高纯N2(99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。 二茂铁并在Pt/TiO2催化剂前驱体中的Pt颗粒表面发生解离吸附,继而实现Fe在Pt表面的成核生成,引入时间为2.5分钟。关闭二茂铁源后,引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为3分钟,以将在Pt表面解离吸附的二茂铁的有机配体部分通过氧化燃烧掉,并转化为FeOx,从而实现FeOx在催化剂表面的沉积。从反应腔内取出样品,获得Pt-1cFeOx/TiO2催化剂。所获催化剂中Pt的质量含量为3.7wt%,几乎保持不变,Fe的质量含量是0.17wt%。
富氢气氛中CO优先氧化反应活性测试:反应气中的CO∶O2∶H2的体积比为1∶1∶48。催化剂:上述Pt-1cFeOx/TiO2催化剂100mg与1g石英砂研磨均匀混合;反应器:U-型石英管;催化剂预处理:首先在10%O2/He气氛中在200℃处理1小时,随后切换为10%H2/He,继续处理2小时,最后用1%CO+1%O2+48%H2+50%He的反应气体再处理20分钟。反应气体的组成:1%CO+1%O2+48%H2+50%He,反应气流速为60mL/min。在-80~200℃温度区间内对催化剂进行活性测试,测试结果如图6所示,利用本发明制备的宽温催化剂,能够在-70~100℃温度区间实现CO的完全转化。
实施例11:Pt-1cFeOx/Al2O3催化剂制备以及富氢气氛中CO优先氧化反应活性
Pt/Al2O3催化剂前驱体的制备:利用原子层沉积的办法获取的。使用粘滞流动型原子层沉积反应器(Arradiance),原子层沉积的温度为250℃,实验的Pt前驱体为(三甲基)甲基环戊二烯合铂(IV)(MeCpPtMe3,Strem Chemicals),利用加热套,把该金属前驱体源容器的温度加热到70℃,以获得足够的MeCpPtMe3前驱体蒸汽压。氧化剂为高纯O2(99.999%,南京特种气体),惰性气体为高纯N2(99.999%,南京特种气体)。在催化剂制备过程中,把400mg Al2O3载体(50m2/g,Alfa Aesar)放入其反应腔内,(a)利用高纯N2把MeCpPtMe3的蒸气引入到反应腔内,时间为3分钟;(b)把MeCpPtMe3源停止后,用高纯N2气吹扫5分钟;(c)引高纯O2进入反应腔内,时间为2分钟;(d)然后再关掉O2源,并用高纯N2气吹 扫5分钟。重复上述步骤(a-d)2次,即做2个原子层沉积周期。从反应腔内取出样品,获得Pt/SiO2催化剂前驱体。其中Pt的质量含量为~3.7wt%,根据高分辨电镜结果,Pt颗粒尺寸为~3nm。
FeOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设备(Arradiance)的反应腔温度加热到120℃,使用的FeOx助剂的金属前驱体是二茂铁(FeCp2,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的二茂铁前驱体蒸汽压。将上述200mg Pt/Al2O3催化剂前驱体样品放置到原子层沉积反应腔内。打开二茂铁源容器和原子层沉积反应腔之间的隔离阀门,二茂铁蒸汽混入高纯N2(99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。二茂铁并在Pt/Al2O3催化剂前驱体中的Pt颗粒表面发生解离吸附,继而实现Fe在Pt表面的成核生成,引入时间为2.5分钟。关闭二茂铁源后,引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为3分钟,以将在Pt表面解离吸附的二茂铁的有机配体部分通过氧化燃烧掉,并转化为FeOx,从而实现FeOx在催化剂表面的沉积。从反应腔内取出样品,获得Pt-1cFeOx/Al2O3催化剂。所获催化剂中Pt的质量含量为~3.7wt%,几乎保持不变,Fe的质量含量是0.15wt%。
富氢气氛中CO优先氧化反应活性测试:反应气中的CO∶O2∶H2的体积比为1∶1∶48。催化剂:上述Pt-1cFeOx/Al2O3催化剂100mg与1g石英砂研磨均匀混合;反应器:U-型石英管;催化剂预处理:首先在10%O2/He气氛中在200℃处理1小时,随后切换为10%H2/He,继续处理2小时,最后用1%CO+0.5%O2+48%H2+50.5%He的反应气体再处理20分钟。反应气体的组成:1%CO+1%O2+48%H2+50.5%He,反应气流速为60mL/min。在-80~200℃温度区间内对催化剂进行活性测试,测试结果如图7所示,利用本发明制备的宽温催化剂,能够在50-200℃温度区间实现CO的完全转化。
实施例12:Pt-1cCoOx/SiO2催化剂制备以及富氢气氛中CO优先氧化反应活性
Pt/SiO2催化剂前驱体制备:首先以硅酸四乙酯(TEOS)为原料,通过碱性水解的方法合成单分散二氧化硅小球(SiO2)。其次将合成的二氧化硅小球进行300℃的高温煅烧处理。此后,用3-氨基丙基-三乙氧基硅烷(ATPES)对煅烧后的二氧化硅小球表面进行修饰(ATPES-SiO2)。将1.4g的ATPES-SiO2和7.9mL的氯铂酸加入30mL乙醇中,室温下搅拌24小时,离心烘干,得Pt/SiO2。其中催化剂中Pt的质量含量是3.2wt%,Pt颗粒尺寸小于1.5nm。
CoOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设备(Arradiance)的反应腔温度加热到150℃,使用的CoOx助剂的金属前驱体是二茂钴(CoCp2,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的二茂钴前驱体蒸汽压。将上述200mg Pt/SiO2催化剂前驱体样品放置到原子层沉积反应腔内。打开二茂钴源容器和原子层沉积反应腔之间的隔离阀门,二茂钴蒸汽混入高纯N2(99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。二茂钴并在Pt/SiO2催化剂前驱体中的氯铂酸根离子表面发生化学吸附,继而实现Co在Pt离子上的成核生成,引入时间为3分钟。关闭二茂钴源后,引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为3分钟,以将在Pt表面解离吸附的二茂钴的有机配体部分通过氧化燃烧掉,并转化为CoOx,从而实现CoOx在催化剂表面的沉积。最后,从反应腔内取出样品,获得Pt-1cCoOx/SiO2催化剂。所获催化剂中Pt的质量含量是3.2wt%,几乎保持不变,CoOx助剂以Co元素计的质量含量是0.9wt%。
富氢气氛CO优先氧化活性测试:反应气中的CO∶O2∶H2的体积比为1∶0.5∶48。催化剂:[080]中所述Pt-1cFeOx/SiO2(WI-U)催化剂100mg与1g石英砂研磨均匀混合;反应器:U-型石英管;催化剂预处理:首先在10%O2/He气氛中在250℃处理2小时,随后切换为10%H2/He,继续处理1小时,最后用1%CO+0.5%O2+48%H2+50.5%He的反应气体再处理20分钟。反应气体的组成:1%CO+0.5%O2+48%H2+50.5%He,反应气流速为60mL/min。在30~200℃温度区间内对催化剂进行活性测试, 测试结果如图8所示,利用本发明制备的宽温催化剂,能够在30~140℃温度区间实现CO的完全转化。
实施例13-18:Pt-1cCoOx/SiO2催化剂制备以及富氢气氛中CO优先氧化反应活性
按照实施例12的相同程序,只是分别利用乙酰丙酮钴、双(N,N′-二异丙基乙脒基)钴、二羰基环戊二烯钴、叔丁基三羰基钴、(2,2,6,6-四甲基-3,5-庚二酮酸)钴和2-甲氧基乙醇钴(均购自SigmaAldrich)代替二茂钴(CoCp2,Sigma Aldrich)作为CoOx助剂的金属前驱体,并且沉积周期为1个,获得相应的六个Pt-1cCoOx/SiO2催化剂样品。在所获得的这六个催化剂样品中,Pt的质量含量为3.2wt%,CoOx助剂以钴元素计的质量含量分别为0.8wt%、0.7wt%、0.7wt%、0.8wt%、08wt%和0.9wt%。
将以上获得的各个催化剂,在实施例12中的相同程序和条件下,在富氢气氛中CO优先氧化反应活性测试中均表现出了与实施例12类似的在宽温度范围内实现富氢气氛中CO的高转化率转化。
实施例19:Pt-1cNiOx/SiO2催化剂制备以及富氢气氛CO优先氧化活性
Pt/SiO2催化剂前驱体的制备:利用原子层沉积的办法获取的。使用粘滞流动型原子层沉积反应器(Arradiance),原子层沉积的温度为250℃,实验的Pt前驱体为(三甲基)甲基环戊二烯合铂(IV)(MeCpPtMe3,Strem Chemicals),利用加热套,把该金属前驱体源容器的温度加热到70℃,以获得足够的MeCpPtMe3前驱体蒸汽压。氧化剂为高纯O2(99.999%,南京特种气体),惰性气体为高纯N2(99.999%,南京特种气体)。在催化剂制备过程中,把700mg SiO2载体(300m2/g,Alfa Aesar)放入其反应腔内,(a)利用高纯N2把MeCpPtMe3的蒸气引入到反应腔内,时间为5分钟;(b)把MeCpPtMe3源停止后,用高纯N2气吹扫10分钟;(c)引高纯O2进入反应腔内,时间为3分钟;(d)然后再关掉O2源,并用高纯N2气吹扫5分钟。重复上述步骤(a-d)2次,即做2个原子层沉积周期。从反应腔内取出样品,获得Pt/SiO2催化剂前驱体。其中Pt的质量含量为3.6wt%,根据高分辨电镜结果,Pt颗粒尺寸为2.7±0.4nm。
NiOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设 备(Arradiance)的反应腔温度加热到120℃,使用的NiOx助剂的金属前驱体是二茂镍(NiCp2,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的二茂镍前驱体蒸汽压。将上述150mg Pt/SiO2催化剂前驱体样品放置到原子层沉积反应腔内。打开二茂镍源容器和原子层沉积反应腔之间的隔离阀门,二茂镍蒸汽混入高纯N2(99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。二茂镍在Pt/SiO2催化剂前驱体中的Pt纳米颗粒表面发生解离吸附,继而实现Ni在Pt颗粒上的成核生成,引入时间为2.5分钟。关闭二茂镍源后,引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为2分钟,以将在Pt表面解离吸附的二茂镍的有机配体部分通过氧化燃烧掉,并转化为NiOx,从而实现NiOx在催化剂表面的沉积。最后,从反应腔内取出样品,获得Pt-1cNiOx/SiO2催化剂。所获催化剂中Pt的质量含量是3.6wt%,几乎保持不变,NiOx助剂以Ni元素计的质量含量是1.23wt%。
富氢气氛中CO优先氧化反应活性测试:反应气中的CO∶O2∶H2的体积比为1∶0.5∶48。催化剂:上述Pt-1cNiOx/SiO2催化剂100mg与1g石英砂研磨均匀混合;反应器:U-型石英管;催化剂预处理:首先在10%O2/He气氛中在200℃处理2小时,随后切换为10%H2/He,继续处理1小时,1%CO+0.5%O2+48%H2+50.5%He,反应气流速为60mL/min。在-80~200℃温度区间内对催化剂进行活性测试,测试结果如图9所示利用本发明制备的宽温催化剂,能够在35~60℃温度区间实现CO的完全转化。
实施例20-24:Pt-1cNiOx/SiO2催化剂制备以及富氢气氛中CO优先氧化反应活性
按照实施例19的相同程序,只是分别利用乙酰丙酮镍、双(N,N′-二异丙基乙脒基)镍、(2,2,6,6-四甲基-3,5-庚二酮酸)镍(II)、二丁基二硫代氨基甲酸镍(II)和2-甲氧基乙醇镍(均购自SigmaAldrich)代替二茂镍(NiCp2,Sigma Aldrich)作为NiOx助剂的金属前驱体,并且沉积周期为1个,获 得相应的六个Pt-3cNiOx/SiO2催化剂样品。在所获得的这五个催化剂样品中,Pt元素的质量含量为3.6wt%,NiOx助剂以镍元素计的质量含量分别为1.0wt%、0.8wt%、0.7wt%、0.7wt%、0.7wt%和0.7wt%。
将以上获得的各个催化剂,在实施例19中的相同程序和条件下,在富氢气氛中CO优先氧化反应活性测试中均表现出了与实施例19类似的在宽温度范围内实现富氢气氛中CO的高转化率转化。
实施例25:Ir-2cFeOx/SiO2催化剂制备以及富氢气氛中CO优先氧化反应活性
Ir/SiO2催化剂前驱体制备:Ir/SiO2催化剂前驱体是用浸渍法合成获得的。把480mg SiO2加入含有2.12mL氯铱酸(2.46×10-3M)的水溶液中,搅拌24小时。再在80℃的温度下蒸干水溶液,然后放入70℃烘箱烘干,得到Ir/SiO2催化剂。催化剂中Ir的质量含量是3.7wt%,Ir颗粒尺寸为1.50±0.6nm。
FeOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设备(Arradiance)的反应腔温度加热到200℃,使用的FeOx助剂的金属前驱体是二茂铁(FeCp2,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的二茂铁前驱体蒸汽压。将上述200mg Ir/SiO2催化剂前驱体样品放置到原子层沉积反应腔内。(a)打开二茂铁容器和原子层沉积反应腔之间的隔离阀门,二茂铁蒸汽混入高纯N2(99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。二茂铁并在Ir/SiO2催化剂前驱体中的Ir颗粒表面发生解离吸附,继而实现Fe在Ir表面的成核生成,引入时间为2.5分钟。(b)关闭二茂铁源后,并用高纯N2气继续吹扫5分钟,(c)引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为2.5分钟,以将在Ir表面解离吸附的二茂铁的有机配体部分通过氧化燃烧掉,并转化为FeOx,从而实现FeOx在催化剂表面的沉积;(d)并用高纯N2气继续吹扫5分钟重复上述步骤(a-d)2次,即做2个原子层沉积周期。从反应腔内取出样品,获得Ir-2cFeOx/SiO2催化剂。所获催化剂中Ir的质量含量是3.7wt%,几乎保持不变,FeOx助剂中Fe元素的质量含量是0.12wt%。
富氢气氛中CO优先氧化反应活性测试:反应气中的CO∶O2∶H2的体积比为1∶1∶48。催化剂:[087]中所述Ir-1cFeOx/SiO2催化剂100mg与1g石英砂研磨均匀混合;反应器:U-型石英管;催化剂预处理:首先在10%O2/Ar气氛中在200℃处理1小时,随后切换为10%H2/Ar,继续处理2小时。反应气体的组成:1%CO+1%O2+48%H2+50%Ar,反应气流速为60mL/min。在室温~200℃温度区间内对催化剂进行活性测试,测试结果如图10所示,利用本发明制备的宽温催化剂,能够在60~180℃温度区间实现CO的完全转化。
稳定性测试:在上述Ir-1cFeOx/SiO2催化剂的富氢气氛中CO优先氧化反应的稳定性测试,反应气中的CO∶O2∶H2的体积比为1∶1∶48。催化剂的用量、预处理以及反应条件如上所述。把反应温度保持在80℃维持不变,对样品连续测试20小时。把反应温度为80℃。稳定性测试时间为20小时。如图11所示,该催化剂能够在80℃保持20小时而无任何催化剂失活现象。
实施例26:Ir-1cCoOx/SiO2催化剂制备以及富氢气氛中CO优先氧化反应活性
Ir/SiO2催化剂前驱体制备:首先以硅酸四乙酯(TEOS)为原料,通过碱性水解的方法合成单分散二氧化硅小球(SiO2)。其次将合成的二氧化硅小球进行300℃的高温煅烧处理。此后,用3-氨基丙基-三乙氧基硅烷(ATPES)对煅烧后的二氧化硅小球表面进行修饰(ATPES-SiO2)。将480mg ATPES-SiO2和2.12mL氯铱酸加入50mL水溶液中,室温下搅拌24小时,再在80℃的温度下蒸干水溶液,烘干,得到Ir/SiO2
CoOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设备(Arradiance)的反应腔温度加热到150℃,使用的CoOx助剂的金属前驱体是二茂钴(CoCp2,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的二茂钴前驱体蒸汽压。将上述200mg Ir/SiO2催化剂前驱体样品放置到原子层沉积反应腔内。打开二茂钴源容器和原子层沉积反应腔之间的隔离阀门,二茂钴蒸汽混入高纯N2 (99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。二茂钴并在Ir/SiO2催化剂前驱体中的氯铱酸根离子表面发生化学吸附,继而实现Co在Pt离子上的成核生成,引入时间为3分钟。关闭二茂钴源后,引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为3分钟,以将在Ir表面解离吸附的二茂钴的有机配体部分通过氧化燃烧掉,并转化为CoOx,从而实现CoOx在催化剂表面的沉积。最后,从反应腔内取出样品,获得Ir-1cCoOx/SiO2催化剂。所获催化剂中Co的质量含量是1.23wt%。
富氢气氛中CO优先氧化反应活性测试:反应气中的CO∶O2∶H2的体积比为1∶1∶48。催化剂:上述Ir-1cCoOx/SiO2催化剂100mg与1g石英砂研磨均匀混合;反应器:U-型石英管;催化剂预处理:首先在10%O2/Ar气氛中在500℃处理1小时,随后降温到250℃,并切换为10%H2/He继续处理1小时。反应气体的组成:1%CO+1%O2+48%H2+50%Ar,反应气流速为30mL/min。在20~200℃温度区间内对催化剂进行活性测试,测试结果如图12所示,利用本发明制备的宽温催化剂,能够在80~120℃温度区间实现CO的完全转化。
实施例27:Pt-1cFeOx/SiO2(Fe(acac)3)催化剂制备以及富氢气氛中CO优先氧化反应活性
Pt/SiO2催化剂前驱体的制备:利用原子层沉积的办法获取的。使用粘滞流动型原子层沉积反应器(Arradiance),原子层沉积的温度为250℃,实验的Pt前驱体为(三甲基)甲基环戊二烯合铂(IV)(MeCpPtMe3,Strem Chemicals),利用加热套,把该金属前驱体源容器的温度加热到70℃,以获得足够的MeCpPtMe3前驱体蒸汽压。氧化剂为高纯O2(99.999%,南京特种气体),惰性气体为高纯N2(99.999%,南京特种气体)。在催化剂制备过程中,把700mg SiO2载体(300m2/g,Alfa Aesar)放入其反应腔内,(a)利用高纯N2把MeCpPtMe3的蒸气引入到反应腔内,时间为10分钟;(b)把MeCpPtMe3源停止后,用高纯N2气吹扫5分钟;(c)引高纯O2进入反应腔内,时间为3分钟;(d)然后再关掉O2源,并用高纯N2气吹 扫5分钟。重复上述步骤(a-d)2次,即做2个原子层沉积周期。从反应腔内取出样品,获得Pt/SiO2催化剂前驱体。其中Pt的质量含量为3.6wt%,根据高分辨电镜结果,Pt颗粒尺寸为2.7±0.4nm。
FeOx助剂的沉积:通过电阻加热,把粘滞流动型原子层沉积反应设备(Arradiance)的反应腔温度加热到120℃,使用的FeOx助剂的金属前驱体是乙酰丙酮铁(Fe(acac)3,Sigma Aldrich),利用加热套,把该金属前驱体源容器的温度加热到90℃,以获得足够的乙酰丙酮铁前驱体蒸汽压。将上述200mg Pt/SiO2催化剂前驱体样品放置到原子层沉积反应腔内。打开乙酰丙酮铁源容器和原子层沉积反应腔之间的隔离阀门,乙酰丙酮铁蒸汽混入高纯N2(99.999%,南京特种气体),并被高纯N2引入到原子层沉积反应腔内。乙酰丙酮铁并在Pt/SiO2催化剂前驱体中的Pt颗粒表面发生解离吸附,继而实现Fe在Pt表面的成核生成,引入时间为2.5分钟。关闭二茂铁源后,引入作为氧化剂的高纯O2(99.999%,南京特种气体)至反应腔内,时间为3分钟,以将在Pt表面解离吸附的乙酰丙酮铁的有机配体部分通过氧化燃烧掉,并转化为FeOx,从而实现FeOx在催化剂表面的沉积。最后,从反应腔内取出样品,获得Pt-1cFeOx/SiO2(Fe(acac)3)催化剂。所获催化剂中Pt的质量含量是3.6wt%,几乎保持不变,FeOx助剂的Fe元素的质量含量是0.9%。
富氢气氛中CO优先氧化反应活性测试:反应气中的CO∶O2∶H2的体积比为1∶0.5∶48。催化剂:把[095]中所述Pt-1cFeOx/SiO2(Fe(acac)3)催化剂100mg与1g石英砂研磨均匀混合;反应器:U-型石英管;催化剂预处理:首先在10%O2/He气氛中在200℃处理1小时,随后切换为10%H2/He,继续处理2小时,最后用1%CO+0.5%O2+48%H2+50.5%He的反应气体再处理20分钟。反应气体的组成:1%CO+0.5%O2+48%H2+50.5%He,反应气流速为60mL/min。在-80~200℃温度区间内对催化剂进行活性测试,测试结果如图13所示,利用本发明制备的宽温催化剂,能够在-30~42℃温度区间实现CO的完全转化。
尽管本发明的具体实施方式已经得到详细的描述,本领域技术人员将 会理解。根据已经公开的所有教导,可以对那些细节进行各种修改和替换,这些改变均在本发明的保护范围之内。本发明的全部范围由所附权利要求及其任何等同物给出。

Claims (14)

  1. 一种制备用于在富氢气氛中优先氧化CO的宽温催化剂的方法,其特征在于,所述催化剂包括载体、活性组分和助剂,其中所述载体是选自SiO2、Al2O3、TiO2、MgO、CeO2、ZrO2、活性炭、炭黑、石墨烯和碳纳米管中的一种或多种;所述活性组分是选自Pt、Ir、Ru、Rh和Pd中的一种或多种,其在所述宽温催化剂中的含量为0.1~10wt%;所述助剂是选自铁氧化物、钴氧化物和镍氧化物中的一种或多种,其以金属元素计在所述宽温催化剂中的含量为0.01~15wt%,
    所述方法包括:
    提供包括所述活性组分和所述载体的负载型催化剂前驱体;
    通过化学气相沉积法或原子层沉积法将所述助剂沉积到所述负载型催化剂前驱体的表面上,从而得到所述宽温催化剂。
  2. 根据权利要求1所述的方法,其特征在于,所述助剂的沉积包括以下步骤:
    (a)将所述负载型催化剂前驱体放置在处于20~500℃的反应器中,并引入作为助剂前驱体的铁前驱体、钴前驱体和/或镍前驱体的蒸汽以吸附到所述负载型催化剂前驱体的表面上;
    (b)引入氧化剂或还原剂以使吸附在所述负载型催化剂前驱体的表面上的所述助剂前驱体转化为所述助剂;
    (c)任选地相继或同时重复执行以上步骤(a)和(b)一次或多次以调控所述助剂的质量含量。
  3. 根据权利要求2所述的方法,其特征在于,所述铁前驱体是选自二茂铁、乙烯基二茂铁、乙基二茂铁、氨基二茂铁、二甲氨基二茂铁、乙酰丙酮铁、双(2,4-二甲基戊二烯基)铁、(2,2,6,6-四甲基-3,5-庚二酮酸)铁(III)、双(N,N′-二叔丁基乙脒基)铁、羰基铁、和叔丁醇铁中的一种或多种;
    所述钴前驱体是选自二茂钴、乙酰丙酮钴、双(N,N′-二异丙基乙脒基)钴、二羰基环戊二烯钴、叔丁基三羰基钴、(2,2,6,6-四甲基-3,5-庚二酮酸)钴和2-甲氧基乙醇钴中的一种或多种;
    所述镍前驱体是选自二茂镍、乙酰丙酮镍、双(N,N′-二异丙基乙脒基) 镍、(2,2,6,6-四甲基-3,5-庚二酮酸)镍(II)、二丁基二硫代氨基甲酸镍(II)和2-甲氧基乙醇镍中的一种或多种。
  4. 根据权利要求2所述的方法,其特征在于,所述氧化剂是选自O2、O3、H2O、H2O2、NO和NO2中的一种或多种;所述还原剂是选自H2、NH3和N2H4中的一种或多种。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括以下步骤:在所述步骤(a)和步骤(b)之间以及在所述步骤(b)之后,利用惰性气体吹扫所述反应器。
  6. 根据权利要求2所述的方法,其特征在于,所述步骤(a)和(b)相继重复执行1-10次。
  7. 根据权利要求1所述的方法,其特征在于,所述负载型催化剂前驱体通过商购获得,或者通过浸渍法将所需量的活性组分的可溶性盐负载到载体上然后经过干燥焙烧获得。
  8. 一种用于在富氢气氛中优先氧化CO的宽温催化剂,其特征在于,所述催化剂包括载体、活性组分和助剂,
    其中所述载体是选自SiO2、Al2O3、TiO2、MgO、CeO2、ZrO2、活性炭、炭黑、石墨烯和碳纳米管中的一种或多种;
    所述活性组分是选自Pt、Ir、Ru、Rh和Pd中的一种或多种,其在所述宽温催化剂中的含量为0.1~10wt%;
    所述助剂是选自铁氧化物、钴氧化物和镍氧化物中的一种或多种,其以金属元素计在所述宽温催化剂中的含量为0.01~15wt%,
    并且其中所述宽温催化剂是通过化学气相沉积法或原子层沉积法将助剂沉积到包括所述活性组分和所述载体的负载型催化剂前驱体的表面上获得的,并且所述宽温催化剂能够实现在富氢气氛中优先氧化CO。
  9. 根据权利要求8所述的宽温催化剂,其特征在于,所述活性组分是选自Pt,并且所述宽温催化剂能够在-80~200℃的宽温度范围实现在富氢气氛中优先氧化CO。
  10. 通过权利要求1-7中任一项所述的方法制备的宽温催化剂或根据权利要求8或9所述的宽温催化剂用于在富氢气氛中优先氧化CO的应用。
  11. 根据权利要求10所述的应用,其特征在于,所述宽温催化剂在使用之前进行预处理,其中所述预处理是在100~600℃温度下首先用氧气氧化0.5~5小时,然后用氢气还原0.5~5小时。
  12. 根据权利要求10所述的应用,其特征在于,所述宽温催化剂在使用之前进行预处理,其中所述预处理是在150~300℃温度下首先用氧气氧化0.5~2小时,然后用氢气还原0.5~2小时。
  13. 根据权利要求10所述的应用,其特征在于,所述富氢气氛中CO和O2的体积比为1∶0.5至1∶2。
  14. 根据权利要求10所述的应用,其特征在于,所述富氢气氛中CO和O2的体积比为1∶0.5至1∶1。
PCT/CN2016/080364 2016-04-27 2016-04-27 用于富氢气氛中优先氧化co的宽温催化剂的制备方法及其产品和应用 WO2017185260A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/089,012 US11491471B2 (en) 2016-04-27 2016-04-27 Method of preparing wide-temperature catalyst for preferential oxidation of carbon monoxide in hydrogen-enriched atmosphere, and product and use lthereof
PCT/CN2016/080364 WO2017185260A1 (zh) 2016-04-27 2016-04-27 用于富氢气氛中优先氧化co的宽温催化剂的制备方法及其产品和应用
EP16899773.2A EP3450013A4 (en) 2016-04-27 2016-04-27 METHOD FOR PRODUCING A BREATHING TEMPERATURE CATALYST FOR THE PREFERRED OXIDATION OF CO IN A HYDROGENIC ATMOSPHERE, AND PRODUCT AND APPLICATIONS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/080364 WO2017185260A1 (zh) 2016-04-27 2016-04-27 用于富氢气氛中优先氧化co的宽温催化剂的制备方法及其产品和应用

Publications (1)

Publication Number Publication Date
WO2017185260A1 true WO2017185260A1 (zh) 2017-11-02

Family

ID=60161763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080364 WO2017185260A1 (zh) 2016-04-27 2016-04-27 用于富氢气氛中优先氧化co的宽温催化剂的制备方法及其产品和应用

Country Status (3)

Country Link
US (1) US11491471B2 (zh)
EP (1) EP3450013A4 (zh)
WO (1) WO2017185260A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346665A (zh) * 2019-07-15 2019-10-18 上海交通大学 一种宽温域低温环境试验装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107051461B (zh) * 2017-05-02 2020-05-08 江南大学 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用
US10879538B2 (en) * 2018-02-07 2020-12-29 Kabushiki Kaisha Toyota Chuo Kenkyusho Oxygen evolution catalyst
CN111086360A (zh) * 2019-12-25 2020-05-01 北京新能源汽车技术创新中心有限公司 一种燃料电池汽车用胎压控制系统及方法
KR20220014120A (ko) * 2020-07-28 2022-02-04 현대자동차주식회사 합성가스 제조용 촉매, 이의 제조 방법 및 이를 이용한 합성가스의 제조 방법
CN113275033A (zh) * 2021-04-21 2021-08-20 山东省科学院能源研究所 一种多级孔分子筛负载金属催化剂及其调控方法和应用
CN114192136B (zh) * 2021-12-16 2023-07-04 江南大学 一种La2O3/TiO2催化剂及其气相吸附化学反应制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061080A1 (es) * 2003-12-23 2005-07-07 Consejo Superior De Investigaciones Científicas Método de oxidación selectiva de monóxido de carbono
JP2010137131A (ja) * 2008-12-10 2010-06-24 National Institute For Materials Science Co酸化触媒
CN103861591A (zh) * 2012-12-18 2014-06-18 中国科学院大连化学物理研究所 选择氧化脱除co的负载型纳米金催化剂及其制备和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697614B2 (ja) * 1988-08-26 1994-11-30 エヌ・イーケムキャット株式会社 担持白金合金電極触媒
US5017357A (en) * 1989-06-14 1991-05-21 Phillips Petroleum Company Catalytic process for oxidation of carbon monoxide
US20030012700A1 (en) * 2001-07-11 2003-01-16 Carnahan James Claude Systems and methods for parallel testing of catalyst performance
US7029640B2 (en) * 2003-06-17 2006-04-18 Conocophillips Company Process for selective oxidation of carbon monoxide in a hydrogen containing stream
JP5538761B2 (ja) * 2009-07-03 2014-07-02 清蔵 宮田 酸化触媒、吸着材及び有害物質浄化材
WO2013163493A1 (en) * 2012-04-26 2013-10-31 University Of Cincinnati Catalyst composition and method for growing spinable carbon nanotube arrays
JP5991430B2 (ja) * 2013-05-13 2016-09-14 トヨタ自動車株式会社 触媒微粒子の製造方法、及び当該製造方法により製造される触媒微粒子を含む燃料電池
EP3077110B1 (en) * 2013-12-06 2019-05-15 Danmarks Tekniske Universitet Catalyst for ammonia oxidation
CN105032385B (zh) * 2015-07-08 2017-09-12 华中科技大学 一种金属氧化物/铂纳米颗粒复合催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061080A1 (es) * 2003-12-23 2005-07-07 Consejo Superior De Investigaciones Científicas Método de oxidación selectiva de monóxido de carbono
JP2010137131A (ja) * 2008-12-10 2010-06-24 National Institute For Materials Science Co酸化触媒
CN103861591A (zh) * 2012-12-18 2014-06-18 中国科学院大连化学物理研究所 选择氧化脱除co的负载型纳米金催化剂及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JAIN, S.K. ET AL.: "Controlled modification of Pt/A1203 for the preferential oxidation of CO in hydrogen: A comparative study of modifying element", APPLIED CATALYSIS B: ENVIRONMENTAL, vol. 89, no. 34, 15 July 2009 (2009-07-15), pages 350 and 352, XP026130173, ISSN: 0926-3373 *
See also references of EP3450013A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110346665A (zh) * 2019-07-15 2019-10-18 上海交通大学 一种宽温域低温环境试验装置

Also Published As

Publication number Publication date
EP3450013A1 (en) 2019-03-06
US11491471B2 (en) 2022-11-08
EP3450013A4 (en) 2019-10-02
US20190105638A1 (en) 2019-04-11

Similar Documents

Publication Publication Date Title
CN107308951B (zh) 用于富氢气氛中优先氧化co的宽温催化剂的制备方法及其产品和应用
WO2017185260A1 (zh) 用于富氢气氛中优先氧化co的宽温催化剂的制备方法及其产品和应用
US9981845B2 (en) Catalyst for producing hydrogen and method for producing hydrogen
CN109304178B (zh) 一种烷烃类化合物的合成方法
Triantafyllopoulos et al. Dissociative adsorption of CH4 on NiAu/YSZ: the nature of adsorbed carbonaceous species and the inhibition of graphitic C formation
Grisel et al. Selective oxidation of CO, over supported Au catalysts
Gluhoi et al. Comparative studies of the N2O/H2, N2O/CO, H2/O2 and CO/O2 reactions on supported gold catalysts: effect of the addition of various oxides
Xiancai et al. Studies on nickel-based catalysts for carbon dioxide reforming of methane
JP5531212B2 (ja) 低温酸化触媒とその製造方法およびその触媒を用いた酸化方法
JP2007252989A (ja) 一酸化炭素メタネーション用触媒および該触媒を用いた一酸化炭素のメタネーション方法
Antoniassi et al. One-Step synthesis of PtFe/CeO2 catalyst for the Co-Preferential oxidation reaction at low temperatures
CN113209999B (zh) 一种用于甲烷干气重整反应的催化剂及其制备方法
CN113333016B (zh) 一种纳米级kl分子筛负载金属催化剂、制备方法和应用
CN107649125B (zh) 丙烷脱氢Ptx-Sny二元合金纳米催化剂及其制备方法
Kang et al. Synthesis of Ni-alkaline earth metals particles encapsulated by porous SiO2 (NiMO@ SiO2) and their catalytic performances on ethanol steam reforming
CN110732335B (zh) 一种用于甲烷干气重整反应的过渡金属@BOx核-壳结构纳米催化剂及其制备方法
CN114308063B (zh) 一种PtCo/Co3O4-x-Al2O3多界面结构催化剂及其制备方法与应用
CN116099549A (zh) 一种三元合金脱氢催化剂、制备方法及其用途
CN115920915B (zh) 用于乙酸自热重整制氢的烧绿石型镍基催化剂
JP2004275833A (ja) 水性ガスシフト反応用触媒、水素製造装置および燃料電池システム
Zhan et al. Citrate or hydrotalcite?: As the precursor of Pt or Ru-doped Ni/Mg (Al) O catalyst for propane oxidative reforming
Zhang et al. Redispersion of PdCu/AC sintered catalyst under CO-O2 atmosphere and mechanism study
Zhang Mo6S8-Based Single-Metal-Atom Catalysts for Methanol Synthesis from Steam Reforming of Methane
CN117482970A (zh) 一种负载型镍基碳化物乙炔选择性加氢催化剂及其制备方法和应用
CN117380199A (zh) 一种镍基催化剂在氨分解制氢反应中的应用

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016899773

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16899773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016899773

Country of ref document: EP

Effective date: 20181127