CN113649010B - 一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法及应用 - Google Patents

一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法及应用 Download PDF

Info

Publication number
CN113649010B
CN113649010B CN202111017100.1A CN202111017100A CN113649010B CN 113649010 B CN113649010 B CN 113649010B CN 202111017100 A CN202111017100 A CN 202111017100A CN 113649010 B CN113649010 B CN 113649010B
Authority
CN
China
Prior art keywords
based catalyst
carbon dioxide
nitrate
supported iron
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111017100.1A
Other languages
English (en)
Other versions
CN113649010A (zh
Inventor
郭立升
孙松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN202111017100.1A priority Critical patent/CN113649010B/zh
Publication of CN113649010A publication Critical patent/CN113649010A/zh
Application granted granted Critical
Publication of CN113649010B publication Critical patent/CN113649010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明公开了一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法。本发明设计以多维材料为载体,负载金属铁物种,通过引入电子型助剂实现对铁基催化剂的有效调控。通过微波加热快速处理,得到电子型助剂改性处理的负载型铁基催化剂。本发明通过采用新颖的干化学及微波加热方式,避免了溶剂及加热方式的使用,能够快速合成分散均匀的负载型铁基催化剂。电子型助剂的存在能够有效地促进活性相的生成,改善催化表面反应分子的吸附能力,为二氧化碳加氢制备高值液态燃料提供了新的思路。

Description

一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制 备合成方法及应用
技术领域
本发明设计一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂,不同于传统的湿化学方法,采用干化学方法混合助剂、活性金属盐、载体并通过新颖的微波加热进行热处理,得到助剂修饰调控的负载型铁基催化剂,并将其用于二氧化碳加氢反应过程导向合成液态燃料。
背景技术
近百年来,碳基资源广泛使用快速推动了经济社会的发展,随之而来导致了大量的含碳温室气体的排放。二氧化碳的大量排放引起了一系列的生态环境问题,如海洋酸化、全球变暖、生态系统破坏等,已经逐渐威胁到人类生态文明的持续发展。寻求绿色可持续路径对二氧化碳进行转化利用已经成为重要的国家战略性课题。结合我国的能源结构,大力发展二氧化碳制油产业,对于加快绿色低碳发展、持续改善环境质量同时实现洁净能源生产具有非常重要的实际意义。目前,以二氧化碳为原料制取的轻质发动机燃料,虽在经济上不能与石油产品相竞争,但是能在进一步弥补我国能源战略储备的同时推进生态环境治理体系和治理能力现代化。
二氧化碳加氢制备液态油品主要通过两条路径得以实现,一条是以甲醇为中间产物的反应过程,另外一条途径是采用改性的费托合成过程。它们是以二氧化碳和氢气为原料在催化剂和适当反应条件下合成液体燃料的工艺过程。改性费托合成过程作为重要的催化途径得到了科学界和工业界的广发关注。实现二氧化碳的有效转化利用的前提就是设计合成高效的金属催化剂。其中,金属铁由于廉价易得、操作范围宽泛被广泛用于二氧化碳加氢过程。但是单纯的铁基催化并不能表现出良好的催化性能(活性、选择性),通过对铁基催化剂进行修饰改性有助于提升其催化性能。有效的方式之一就是通过引入电子型助剂对铁基催化剂进行改性修饰,常见的电子型助剂包括过渡金属、碱土金属、碱金属。此外,载体作为影响催化剂效能关键因素,能够有效的固定活性金属位点、分散活性位点等显著提升催化剂的催化行为。通常活性金属和助剂是通过湿化学方法引入到载体助剂中,随后进行煅烧处理,周期流程较长,不利用工业生产。此外湿化学方法以及长时间的高温煅烧不利于金属成分的均匀分散,导致较差的催化效率。开设设计新的合成方法避免湿化学方法以及长时间高温煅烧带来的不利影响,能够有效提升催化性能。
发明内容
本发明的目的在于提出一种简单的、快速的铁基催化剂制备路线,通过干化学方式以及微波处理,能够有效地缩短催化剂合成周期、减少催化剂聚集烧结对催化性能的影响。
为实现上述目的,本发明采用以下技术方案:
一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂,包括以下步骤:
(1)将铁盐、助剂金属盐与载体助剂混合,研磨均匀,金属负载量介于0.5-45%,助剂负载量介于0.1%-20%,随后抽真空干燥处理,得到催化剂前驱体;
(2)在惰性气体保护下,采用微波快速加热处理上述催化剂前驱体,得到助剂修饰改性的负载型铁基催化剂,微波功率介于500-1000W,处理时间介于1-20s。
所述的铁盐为硝酸铁、醋酸铁、氯化铁、硫酸铁、氯化亚铁、硫酸亚铁中的一种或两种;并且金属的负载量介于0.5-45%。
所述的助剂金属盐为氯化钠、硝酸钠、氢氧化钠、碳酸氢钠、碳酸钠、氯化钾、硝酸钾、氢氧化钾、碳酸氢钾、碳酸钾、硝酸锌、氯化锌、硫酸锌、醋酸锌、硝酸锰、硝酸镁、硝酸铜、氯化锰中的一种或两种以上;并且助剂的负载量介于0.1%-20%。
所述的载体助剂为石墨烯、氮化硼、MXene、碳球、介孔碳材料、碳纳米管、碳纤维、活性炭、炭黑中的一种或两种以上。
所述惰性气体为氮气、氩气、氦气、二氧化碳中的一种或两种以上。
所述加热方式为微波处理,微波功率介于500-1000W,处理时间介于1-20s。
一种铁基催化剂,所述铁基催化剂是通过上述制备方法制备。
所述负载型铁基催化剂应用于二氧化碳加氢中。
本发明的优点:
本发明设计通过干化学方法在载体助剂中引入活性金属以及电子型助剂,通过助剂实现对催化剂活性位点电子环境、表面吸附特性的调控,结合微波加热快速处理,能够得到大量的助剂改性的负载型铁基催化剂。该过程避免了液态溶剂的使用,能够有效的降低催化剂合成成本,同时采用微波快速加热处理,能够极大地缩短催化剂的合成制备周期,并且能够有效的避免催化剂在制备过程的烧结、聚集,对于潜在的工业应用具有重要意义,这种合成策略为负载型铁基催化剂的制备提供了新的思路。
附图说明:
图1为本发明催化剂制备以及工艺过程。
具体实施方式
本发明的原理示意图如图1所示。
下面结合具体实施方式,对本发明作进一步描述,本发明的保护范围不受下列实施例限制。
称量一定量铁盐、助剂以及载体助剂,研磨均匀,随后抽真空干燥,得到的催化剂前驱体移入到微波炉中,在惰性气体保护下,700W加热处理6s,温度降为室温后取出待用。
所述的铁盐为硝酸铁、醋酸铁、氯化铁、硫酸铁、氯化亚铁、硫酸亚铁中的一种或两种;并且金属的负载量介于0.5-45%。
所述的助剂金属盐为氯化钠、硝酸钠、氢氧化钠、碳酸氢钠、碳酸钠、氯化钾、硝酸钾、氢氧化钾、碳酸氢钾、碳酸钾、硝酸锌、氯化锌、硫酸锌、醋酸锌、硝酸锰、硝酸镁、硝酸铜、氯化锰中的一种或两种以上;并且助剂的负载量介于0.1%-20%。
所述的载体助剂为石墨烯、氮化硼、MXene、碳球、介孔碳材料、碳纳米管、碳纤维、活性炭、炭黑中的一种或两种以上。
所述惰性气体为氮气、氩气、氦气、二氧化碳中的一种或两种以上。
与现有催化剂的创新之处:1.通过干化学方法引入活性金属以及助剂,能够避免液体试剂的使用;2.不同于传统的加热处理模式,得到的催化剂前驱体通过微波快速加热处理,极大地缩短催化剂的合成周期,降低金属物种的烧结和聚集。
本发明所采用的催化剂评价过程如下:
二氧化碳加氢反应测评之前,制备的催化剂首先在400℃氢气或合成气条件下原位活化10小时。还原后将温度降至体系反应温度280-320℃。催化反应在固定床反应器中进行,原料合成气的配比为CO2/H2=1:1-1:4。W/F值定义为催化剂重量和流速的比值,实验中控制在3-20gcat·h·mol-1。冷阱中加入辛烷做溶剂,用来收集重质烃组分。气相产物中的CO,CO2及CH4组分由装有TCD检测器的在线气相色谱进行含量分析,轻质烃组分(C1-C7) 的含量可由另一台装有FID检测器的在线气相色谱分析。反应结束后,收集辛烷冷阱中的重质烃组分,并加入正十二烷作为内标。得到的液体组分由离线的装有FID检测器的气相色谱进行分析。将气相产物和液相产物分析后的结果进行归一化处理,得到各种组分选择性及CO2转化率。
实施例1
负载型金属催化剂制备过程如下:
具体为:称量5g石墨烯、0.23g碳酸钠、3.6g九水合硝酸铁物理混合,随后研磨1小时使三者混合均匀,随后在80℃条件下抽真空干燥6小时,将干燥后的前驱体移入到微波炉中,氮气气体保护下,700W加热处理6s,得到的产品标记为Na-Fe/AG-W。
为对比考察该催化剂的优势,采用传统方式制备了相同的催化剂过程如下:
0.23g碳酸钠、3.6g九水合硝酸铁溶于去离子水溶液中,随后将配置好的溶液浸渍到 5g石墨烯载体助剂上,室温条件下老化1小时,随后在80℃条件下抽真空干燥6小时,将干燥后的前驱体移入到管式炉中,氮气气体保护下,2℃/min升温至550℃,在550℃条件下煅烧处理4小时,得到的产品标记为Na-Fe/AG-C。
上述两种催化剂的催化性能列于表1。
二氧化碳加氢实验表明,相比于传统方法制备合成的Na-Fe/AG-C,Na-Fe/AG-W表现出良好的催化活性以及高碳产物选择性,与此同时一氧化碳的选择性也受到抑制,更重要的是通过本发明设计的催化剂制备过程,能够明显的缩短催化剂的生产周期,并且通过便捷的微波加热方式能够快速大量的合成高效能的铁基催化剂。
实施例2
负载型金属催化剂制备过程如下:
具体为:称量5g石墨烯、0.18g碳酸钾、3.6g九水合硝酸铁物理混合,随后研磨1小时使三者混合均匀,随后在80℃条件下抽真空干燥6小时,将干燥后的前驱体移入到微波炉中,氮气气体保护下,700W加热处理6s,得到的产品标记为K-Fe/AG-W。
上述催化剂的催化性能列于表1。
二氧化碳加氢实验表明,相比于实施例1中的Na-Fe/AG-W,调控催化剂的助剂类型,能够进一步的促进反应性能提升,催化活性以及高碳烃产物的选择性具有所增加。
实施例3
负载型金属催化剂制备过程如下:
具体为:称量5g氮化硼、0.18g碳酸钾、3.6g九水合硝酸铁物理混合,随后研磨1小时使三者混合均匀,随后在80℃条件下抽真空干燥6小时,将干燥后的前驱体移入到微波炉中,氮气气体保护下,700W加热处理6s,得到的产品标记为K-Fe/BN-W。
上述催化剂的催化性能列于表1。
二氧化碳加氢实验表明,相比于实施例2中的K-Fe/AG-W,调控载体的类型能够影响催化性能。
实施例4
负载型金属催化剂制备过程如下:
具体为:称量5g石墨烯、0.18g碳酸钾、1.14g四水合硝酸锰、3.6g九水合硝酸铁物理混合,随后研磨1小时使三者混合均匀,随后在80℃条件下抽真空干燥6小时,将干燥后的前驱体移入到微波炉中,氮气气体保护下,700W加热处理6s,得到的产品标记为 KMn-Fe/AG-W。
上述催化剂的催化性能列于表1。
二氧化碳加氢实验表明,相比于实施例2中的K-Fe/AG-W,调控催化剂助剂的组合类型有助于进一步提升催化活性、提高高碳产物的选择性。
表1不同催化剂上二氧化碳加氢催化性能
反应条件:H2/CO2=2.5,300℃,3.0MPa,10gcat·h·mol-1.
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (4)

1.一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂的制备方法,其特征在于:包括以下步骤:
(1)将铁盐、助剂金属盐与载体助剂混合,研磨均匀,金属负载量介于0.5%-45%,助剂负载量介于0.1%-20%,随后抽真空干燥处理,得到催化剂前驱体;
(2)在惰性气体保护下,采用微波快速加热处理上述催化剂前驱体,得到负载型铁基催化剂;
所述的铁盐为硝酸铁、醋酸铁、氯化铁、硫酸铁、氯化亚铁、硫酸亚铁中的一种或两种;
所述的助剂金属盐为氯化钠、硝酸钠、氢氧化钠、碳酸氢钠、碳酸钠、氯化钾、硝酸钾、氢氧化钾、碳酸氢钾、碳酸钾、硝酸锌、氯化锌、硫酸锌、醋酸锌、硝酸锰、硝酸镁、硝酸铜、氯化锰中的一种或两种以上;
所述的载体助剂为石墨烯、氮化硼、碳球、碳纳米管、碳纤维、活性炭、炭黑中的一种或两种以上;
所述微波快速加热处理中,微波功率为500-1000W,处理时长为1-20s。
2.根据权利要求1所述的一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂的制备方法,其特征在于:所述惰性气体为氮气、氩气、氦气、二氧化碳中的一种或两种以上。
3.一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂,其特征在于,所述负载型铁基催化剂是通过权利要求1-2中任一项所述的制备方法制备。
4.一种权利要求3所述负载型铁基催化剂在二氧化碳加氢制备液态烃燃料中的应用。
CN202111017100.1A 2021-08-31 2021-08-31 一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法及应用 Active CN113649010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111017100.1A CN113649010B (zh) 2021-08-31 2021-08-31 一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111017100.1A CN113649010B (zh) 2021-08-31 2021-08-31 一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法及应用

Publications (2)

Publication Number Publication Date
CN113649010A CN113649010A (zh) 2021-11-16
CN113649010B true CN113649010B (zh) 2023-12-19

Family

ID=78482615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111017100.1A Active CN113649010B (zh) 2021-08-31 2021-08-31 一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法及应用

Country Status (1)

Country Link
CN (1) CN113649010B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115569660B (zh) * 2022-10-25 2024-02-06 安徽大学 一种以CuFeO2@GO为前驱体的高分散二氧化碳加氢催化剂及其制备方法和应用
CN116273119B (zh) * 2023-03-01 2024-09-24 嘉兴学院 一种用于二氧化碳加氢还原的光热催化剂及其制备方法
CN117427672B (zh) * 2023-10-20 2024-06-25 中南民族大学 一种用于co2加氢催化转化为长链烃的催化剂的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101703949A (zh) * 2009-09-11 2010-05-12 广东工业大学 一种微波固相法制备固体酸催化剂的方法及其应用
CN102267810A (zh) * 2011-08-09 2011-12-07 中国科学院宁波材料技术与工程研究所 一种高致密度铁氧体-碳纳米管复合块体材料的制备方法
CN111185180A (zh) * 2020-02-27 2020-05-22 复旦大学 二氧化碳加氢制高碳烯烃的催化剂及其制备方法和应用
CN112916020A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 用于二氧化碳加氢制高碳烃的铁基催化剂及其制备和应用
CN112973702A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种二氧化碳和氢气混合气生产高碳烯烃的催化剂及制备和应用方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0214383D0 (en) * 2002-06-21 2002-07-31 Isis Innovation Catalyst
CN107051461B (zh) * 2017-05-02 2020-05-08 江南大学 一种石墨烯修饰的铁基催化剂及其制备与在费托反应中的应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101703949A (zh) * 2009-09-11 2010-05-12 广东工业大学 一种微波固相法制备固体酸催化剂的方法及其应用
CN102267810A (zh) * 2011-08-09 2011-12-07 中国科学院宁波材料技术与工程研究所 一种高致密度铁氧体-碳纳米管复合块体材料的制备方法
CN112916020A (zh) * 2019-12-06 2021-06-08 中国科学院大连化学物理研究所 用于二氧化碳加氢制高碳烃的铁基催化剂及其制备和应用
CN112973702A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种二氧化碳和氢气混合气生产高碳烯烃的催化剂及制备和应用方法
CN111185180A (zh) * 2020-02-27 2020-05-22 复旦大学 二氧化碳加氢制高碳烯烃的催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN113649010A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
CN113649010B (zh) 一种用于二氧化碳加氢制备液态燃料的负载型铁基催化剂制备合成方法及应用
Chen et al. Enhanced ambient ammonia photosynthesis by Mo-doped Bi5O7Br nanosheets with light-switchable oxygen vacancies
CN110711582B (zh) 一种调控甲烷和一氧化碳选择性的催化剂制备方法及其应用
CN112973773B (zh) 一种二氧化碳加氢制液态燃料复合催化剂制备及应用
CN114011413A (zh) 一种制备铁钴双金属单原子锚定氮杂石墨烯助催化剂的方法及其应用
CN110756203B (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法及应用
CN111215127B (zh) 铁单原子催化剂及其制备和应用
CN106311260B (zh) 一种合成气制低碳醇催化剂的低温热等离子体制法和应用
CN115646546B (zh) 用于二氧化碳加氢产甲酸的碳基双金属位点催化材料的制备方法
CN111036260B (zh) 一种氮碳掺杂改性的Fe基催化剂及其制备方法与应用
CN114887625A (zh) 一种Fe基金属有机骨架材料衍生催化剂及其制备方法和应用
CN102806106A (zh) 一种碳载金属聚吡咯类氧还原催化剂的制备方法
CN107952442B (zh) 一种生物质与煤制甲烷的催化剂及其制备方法和应用
CN112604691B (zh) 一种逆水煤气变换催化剂及其制备方法和应用
CN112246273B (zh) 一种用于二氧化碳转化制备低碳醇的催化剂、制备方法及应用
CN104694206A (zh) 一种铁基复合载氧体及其制备方法
Cai et al. Formation and performance of monolithic catalysts for selective catalytic reduction of nitrogen oxides: a critical review
CN109675563B (zh) 一种用作合成氨催化剂的高效自负载型铁基纳米复合材料及其制备方法
Guan et al. A perspective on nitrogen-doped carbon in 5-hydroxymethylfurfural oxidation
CN115155590A (zh) 一种适用于二氧化碳加氢制液态烃催化剂的制备方法及其应用
CN116328774A (zh) 一种甲烷催化裂解制氢用催化剂及其制备方法
CN110975883B (zh) 一种用于二氧化碳加氢制航空煤油的双功能核-壳催化剂的制备方法
CN115228491B (zh) 一种高分散铑基催化剂及其制备方法和在二氧化碳制乙醇中的应用
CN114250079B (zh) 一种催化油酸甲酯选择性加氢脱氧生产生物柴油的方法
CN118218001B (zh) 一种用于CO2高选择性加氢制乙醇的PdCu负载型合金催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant