WO2018201702A1 - 一种稀土钨合金坩埚及其制造方法 - Google Patents

一种稀土钨合金坩埚及其制造方法 Download PDF

Info

Publication number
WO2018201702A1
WO2018201702A1 PCT/CN2017/112281 CN2017112281W WO2018201702A1 WO 2018201702 A1 WO2018201702 A1 WO 2018201702A1 CN 2017112281 W CN2017112281 W CN 2017112281W WO 2018201702 A1 WO2018201702 A1 WO 2018201702A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
tungsten alloy
earth tungsten
high temperature
crucible according
Prior art date
Application number
PCT/CN2017/112281
Other languages
English (en)
French (fr)
Inventor
缪国锋
Original Assignee
鹤山市沃得钨钼实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹤山市沃得钨钼实业有限公司 filed Critical 鹤山市沃得钨钼实业有限公司
Publication of WO2018201702A1 publication Critical patent/WO2018201702A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof

Definitions

  • the present invention relates to a crucible, and in particular to a rare earth tungsten alloy crucible and a method of manufacturing the same.
  • Tungsten-rhenium has excellent high temperature resistance, high electrical conductivity and low thermal expansion coefficient, and is widely used in the production of LED wafers.
  • the prior art tungsten germanium is generally made of pure tungsten. Pure tungsten is easily oxidized at high temperature to form oxides, enriched at grain boundaries to lower grain boundary strength, lower high temperature resistance, creep strength and Tensile strength results in poor toughness and reduces the service life of tungsten crucibles. Therefore, in order to avoid the disadvantages existing in the prior art, it is necessary to make improvements to the prior art.
  • the object of the present invention is to overcome the shortcomings and deficiencies in the prior art and to provide a rare earth tungsten alloy crucible having high durability and low cost of use.
  • Another object of the present invention is to provide a method for producing a rare earth tungsten alloy tantalum.
  • a rare earth tungsten alloy bismuth comprises 1.3% to 2.5% yttrium oxide and 97.5% to 98.7% tungsten in a mass ratio.
  • the content of the cerium oxide is from 1.5% to 2.2%.
  • the content of the cerium oxide is 2%.
  • a method for manufacturing a rare earth tungsten alloy crucible comprising the steps of:
  • Step (1) preparing a rare earth tungsten alloy, weighing 94.6% to 96.8% of ammonium paratungstate and 3.2% to 5.4% of rare earth by mass percentage, adding ammonium paratungstate to the reaction vessel and heating to 70 ° C to 90 ° C, and then reacting Adding rare earth to the kettle, heating and stirring until it becomes a dry composite powder, and then reducing at high temperature under the protection of hydrogen to obtain a rare earth tungsten alloy powder containing 1.3% to 2.5% of cerium oxide;
  • Step (2) preparing a rare earth tungsten alloy tantalum billet, loading the rare earth tungsten alloy powder obtained in the step (1) into a rubber mold, and then loading it into an isostatic press for high pressure pressing to obtain a rare earth tungsten alloy billet blank;
  • the rare earth tungsten alloy bristles are pre-sintered, the pre-sintering temperature is 1100 ° C ⁇ 1250 ° C, the pre-sintering time is 30 min - 45 min, and the rare earth tungsten alloy ⁇ is obtained.
  • Step (3) preparing a finished product, and sintering the rare earth tungsten alloy tantalum blank of step (2) in a medium frequency induction furnace at a high temperature, a high temperature sintering temperature of 2350 ° C to 2420 ° C, and a high temperature sintering time of 12 h to obtain a rare earth tungsten alloy. ⁇ semi-finished products; surface finish and precision processing of rare earth tungsten alloy bismuth semi-finished products to obtain rare earth tungsten alloy bismuth finished products.
  • the rare earth in the step (1) contains 99% or more of cerium nitrate.
  • the rare earth tungsten alloy powder in the step (1) contains 2% cerium oxide.
  • the high temperature reduction temperature in the step (1) is 900 °C.
  • step (1) weighs 95% of ammonium paratungstate and 5% of rare earth.
  • step (2) pre-sintering temperature is 1200 ° C, and the pre-sintering time is 40 min.
  • step (3) high temperature sintering temperature is 2400 °C.
  • the present invention generates a tungsten alloy by reacting a bismuth metal element in rare earth with tungsten, and the cerium oxide in the tungsten alloy can be uniformly dispersed, refining the grain of the material, and the mechanical properties of the tungsten alloy can be remarkably improved. Thereby enhancing the plasticity and fission resistance of the tungsten alloy.
  • a rare earth tungsten alloy bismuth comprises 1.3% to 2.5% yttrium oxide and 97.5% to 98.7% tungsten in a mass ratio.
  • the content of cerium oxide is preferably from 1.5% to 2.2%. As a specific embodiment, the content of cerium oxide is 2%.
  • a method for manufacturing a rare earth tungsten alloy crucible comprising the steps of:
  • Step (1) preparing a rare earth tungsten alloy, weighing 94.6% to 96.8% of ammonium paratungstate and 3.2% to 5.4% of rare earth by mass percentage, adding ammonium paratungstate to the reaction vessel and heating to 70 ° C to 90 ° C, and then reacting The rare earth is added to the kettle, heating is continued and stirred until it becomes a dry composite powder, and then reduced under high temperature to obtain a rare earth tungsten alloy powder, and the rare earth tungsten alloy powder contains 1.3% to 2.5% of cerium oxide; as a specific implementation In the manner, 95% of ammonium paratungstate and 5% of rare earth are weighed, the rare earth contains 99% or more of cerium nitrate, the rare earth tungsten alloy powder contains 2% of cerium oxide, and the high temperature reduction temperature is 900 °C.
  • Step (2) preparing a rare earth tungsten alloy tantalum billet, loading the rare earth tungsten alloy powder obtained in the step (1) into a rubber mold, and then loading it into an isostatic press for high pressure pressing to obtain a rare earth tungsten alloy billet blank;
  • the rare earth tungsten alloy bristles are pre-sintered, the pre-sintering temperature is 1100 ° C ⁇ 1250 ° C, the pre-sintering time is 30 min - 45 min, and the rare earth tungsten alloy ⁇ is obtained.
  • Step (3) preparing a finished product, and sintering the rare earth tungsten alloy tantalum blank of step (2) in a medium frequency induction furnace at a high temperature, a high temperature sintering temperature of 2350 ° C to 2420 ° C, and a high temperature sintering time of 12 h to obtain a rare earth tungsten alloy. ⁇ semi-finished products; surface finish and precision processing of rare earth tungsten alloy bismuth semi-finished products to obtain rare earth tungsten alloy bismuth finished products.
  • the high temperature sintering temperature is 2400 °C.
  • the rare earth tungsten alloy of the invention hinders the growth of crystal grains when used at high temperature, enhances the oxidation resistance and high temperature resistance of the tungsten crucible, thereby improving the tensile strength of the tungsten crucible, improving the plasticity and toughness, and improving the comprehensive mechanical properties.
  • the durability performance is increased by more than 30%, which reduces the cost of use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种稀土钨合金坩埚及其制造方法,按质量百份比包括1.3%~2.5%的氧化镧和97.5%~98.7%的钨,制造方法包括以下步骤:步骤(1):制备稀土钨合金,步骤(2):制备稀土钨合金坩埚坯料,步骤(3):制备成品。该稀土钨合金坩埚高温力学性能优异,抗蠕变强度高,抗拉强度和韧性好,耐用性强,降低使用成本。

Description

一种稀土钨合金坩埚及其制造方法 技术领域
本发明涉及一种坩埚,具体涉及一种稀土钨合金坩埚及其制造方法。
背景技术
钨坩埚具有优异的耐高温性能和导电性能高,热膨胀系数低,广泛应用于LED晶片的生产。现有技术中的钨坩埚一般是纯钨制作而成,纯钨在高温状态下容易氧化而生成氧化物,在晶界上富集而降低晶界强度,降低耐高温性能,抗蠕变强度及抗拉强度,导致韧性差,降低了钨坩埚的使用寿命。因此,为了避免现有技术中存在的缺点,有必要对现有技术做出改进。
发明内容
本发明的目的在于克服现有技术中的缺点与不足,提供一种耐用性能高、使用成本低的稀土钨合金坩埚。
本发明的另一个目的在于提供一种稀土钨合金坩埚的制造方法。
本发明是通过以下的技术方案实现的:
一种稀土钨合金坩埚,按质量百份比包括1.3%~2.5%的氧化镧和97.5%~98.7%的钨。
进一步,所述氧化镧的含量为1.5%~2.2%。
进一步,所述氧化镧的含量为2%。
一种稀土钨合金坩埚的制造方法,包括以下步骤:
步骤(1):制备稀土钨合金,按质量百份比称取94.6%~96.8%的仲钨酸铵和3.2%~5.4%的稀土,把仲钨酸铵加入反应釜并加热至70℃~90℃,然后在反应釜中加入稀土,继续加热并搅拌直至变成干燥的复合粉末,然后在氢气的保护下高温还原得到稀土钨合金粉末,所述稀土钨合金粉末含有1.3%~2.5%的氧化镧;
步骤(2):制备稀土钨合金坩埚坯料,把步骤(1)制得的稀土钨合金粉末装入胶模中,再装入等静压机内进行高压压制得到稀土钨合金坩埚毛坯料;对稀土钨合金坩埚毛坯料进行预烧结,预烧结温度为1100℃~1250℃,预烧结时间为30min~45min,制得稀土钨合金坩埚 精坯料;
步骤(3):制备成品,在中频感应炉中对步骤(2)的稀土钨合金坩埚精坯料进行高温烧结,高温烧结温度为2350℃~2420℃,高温烧结时间为12h,制得稀土钨合金坩埚半成品;对稀土钨合金坩埚半成品进行表面光洁度和精度加工处理得到稀土钨合金坩埚成品。
进一步,所述步骤(1)所述稀土含有99%以上的硝酸镧。
进一步,所述步骤(1)所述稀土钨合金粉末含有2%的氧化镧。
进一步,所述步骤(1)中的高温还原温度为900℃。
进一步,所述步骤(1)称取95%的仲钨酸铵和5%的稀土。
进一步,所述步骤(2)预烧结温度为1200℃,预烧结时间为40min。
进一步,所述步骤(3)高温烧结温度为2400℃。
相对于现有技术,本发明通过稀土中的镧金属元素与钨反应产生钨合金,由于钨合金中的氧化镧能均匀弥散分布,细化了材料的晶粒,能显著提高钨合金的力学性能,从而增强钨合金的可塑性和抗裂变抗拉强度。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种稀土钨合金坩埚,按质量百份比包括1.3%~2.5%的氧化镧和97.5%~98.7%的钨。氧化镧的含量为1.5%~2.2%较佳。作为一种具体实施方式,氧化镧的含量为2%。
一种稀土钨合金坩埚的制造方法,包括以下步骤:
步骤(1):制备稀土钨合金,按质量百份比称取94.6%~96.8%的仲钨酸铵和3.2%~5.4%的稀土,把仲钨酸铵加入反应釜并加热至70℃~90℃,然后在反应釜中加入稀土,继续加热并搅拌直至变成干燥的复合粉末,然后在氢气的保护下高温还原得到稀土钨合金粉末,稀土钨合金粉末含有1.3%~2.5%的氧化镧;作为一种具体实施方式,称取95%的仲钨酸铵和5%的稀土,稀土含有99%以上的硝酸镧,稀土钨合金粉末含有2%的氧化镧,高温还原温度为900℃。
步骤(2):制备稀土钨合金坩埚坯料,把步骤(1)制得的稀土钨合金粉末装入胶模中,再装入等静压机内进行高压压制得到稀土钨合金坩埚毛坯料;对稀土钨合金坩埚毛坯料进行预烧结,预烧结温度为1100℃~1250℃,预烧结时间为30min~45min,制得稀土钨合金坩埚 精坯料;预烧结温度为1200℃,预烧结时间为40min。
步骤(3):制备成品,在中频感应炉中对步骤(2)的稀土钨合金坩埚精坯料进行高温烧结,高温烧结温度为2350℃~2420℃,高温烧结时间为12h,制得稀土钨合金坩埚半成品;对稀土钨合金坩埚半成品进行表面光洁度和精度加工处理得到稀土钨合金坩埚成品。高温烧结温度为2400℃。
本发明的稀土钨合金坩埚在高温使用时会阻碍晶粒的生长,增强了钨坩埚的抗氧化、耐高温性能,从而提高了钨坩埚抗拉强度,提高了塑性及韧性,综合力学性能得到提高,耐用性能提高30%以上,降低了使用成本。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种稀土钨合金坩埚,其特征在于:按质量百份比包括1.3%~2.5%的氧化镧和97.5%~98.7%的钨。
  2. 根据权利要求1所述的稀土钨合金坩埚,其特征在于:所述氧化镧的含量为1.5%~2.2%。
  3. 根据权利要求1所述的稀土钨合金坩埚,其特征在于:所述氧化镧的含量为2%。
  4. 一种稀土钨合金坩埚的制造方法,其特征在于:包括以下步骤:
    步骤(1):制备稀土钨合金,按质量百份比称取94.6%~96.8%的仲钨酸铵和3.2%~5.4%的稀土,把仲钨酸铵加入反应釜并加热至70℃~90℃,然后在反应釜中加入稀土,继续加热并搅拌直至变成干燥的复合粉末,然后在氢气的保护下高温还原得到稀土钨合金粉末,所述稀土钨合金粉末含有1.3%~2.5%的氧化镧;
    步骤(2):制备稀土钨合金坩埚坯料,把步骤(1)制得的稀土钨合金粉末装入胶模中,再装入等静压机内进行高压压制得到稀土钨合金坩埚毛坯料;对稀土钨合金坩埚毛坯料进行预烧结,预烧结温度为1100℃~1250℃,预烧结时间为30min~45min,制得稀土钨合金坩埚精坯料;
    步骤(3):制备成品,在中频感应炉中对步骤(2)的稀土钨合金坩埚精坯料进行高温烧结,高温烧结温度为2350℃~2420℃,高温烧结时间为12h,制得稀土钨合金坩埚半成品;对稀土钨合金坩埚半成品进行表面光洁度和精度加工处理得到稀土钨合金坩埚成品。
  5. 根据权利要求4所述的稀土钨合金坩埚的制造方法,其特征在于:所述步骤(1)所述稀土含有99%以上的硝酸镧。
  6. 根据权利要求4所述的稀土钨合金坩埚的制造方法,其特征在于:所述步骤(1)所述稀土钨合金粉末含有2%的氧化镧。
  7. 根据权利要求4所述的稀土钨合金坩埚的制造方法,其特征在于:所述步骤(1)中的高温还原温度为900℃。
  8. 根据权利要求4所述的稀土钨合金坩埚的制造方法,其特征在于:所述步骤(1)称取95%的仲钨酸铵和5%的稀土。
  9. 根据权利要求4所述的稀土钨合金坩埚的制造方法,其特征在于:所述步骤(2)预烧结温度为1200℃,预烧结时间为40min。
  10. 根据权利要求4所述的稀土钨合金坩埚的制造方法,其特征在于:所述步骤(3)高温烧结温度为2400℃。
PCT/CN2017/112281 2017-05-04 2017-11-22 一种稀土钨合金坩埚及其制造方法 WO2018201702A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710323888.6A CN107190195A (zh) 2017-05-04 2017-05-04 一种稀土钨合金坩埚及其制造方法
CN201710323888.6 2017-05-04

Publications (1)

Publication Number Publication Date
WO2018201702A1 true WO2018201702A1 (zh) 2018-11-08

Family

ID=59872674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/112281 WO2018201702A1 (zh) 2017-05-04 2017-11-22 一种稀土钨合金坩埚及其制造方法

Country Status (2)

Country Link
CN (1) CN107190195A (zh)
WO (1) WO2018201702A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107190195A (zh) * 2017-05-04 2017-09-22 鹤山市沃得钨钼实业有限公司 一种稀土钨合金坩埚及其制造方法
CN108772558A (zh) * 2018-06-15 2018-11-09 赣州有色冶金研究所 一种多元稀土复合钨坩埚及其制备方法和应用
CN111960648A (zh) * 2020-06-24 2020-11-20 江苏太平洋石英股份有限公司 一种多功能电熔炉
CN113913665A (zh) * 2021-09-30 2022-01-11 中国科学院重庆绿色智能技术研究院 纳米氧化镧增强钨基复合材料及其制备方法
CN115029597A (zh) * 2022-06-02 2022-09-09 安泰天龙钨钼科技有限公司 一种制备钨及钨合金薄片的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590386A (en) * 1995-07-26 1996-12-31 Osram Sylvania Inc. Method of making an alloy of tungsten and lanthana
CN1442259A (zh) * 2003-04-09 2003-09-17 北京工业大学 一种纳米稀土钨粉体及其制备方法
JP2011127839A (ja) * 2009-12-17 2011-06-30 Toshiba Corp タングステン製ルツボとその製造方法、およびサファイア単結晶の製造方法
CN103350227A (zh) * 2013-05-23 2013-10-16 安泰科技股份有限公司 一种大尺寸高密度钨坩埚及其制备方法
CN104289714A (zh) * 2014-09-30 2015-01-21 苏州普京真空技术有限公司 一种稀土用钨坩埚的制备方法
CN104439763A (zh) * 2014-11-06 2015-03-25 北矿新材科技有限公司 一种多元复合稀土掺杂钨粉的制备方法
CN104789844A (zh) * 2015-04-23 2015-07-22 江苏峰峰钨钼制品股份有限公司 一种钨坩埚及其制备方法
CN105518169A (zh) * 2014-10-20 2016-04-20 中南大学 一种稀土氧化物弥散强化细晶钨材料的制备方法
CN105618768A (zh) * 2015-12-28 2016-06-01 天龙钨钼(天津)有限公司 一种高致密度纯钨、纯钼及其合金材料的制备方法
CN107190195A (zh) * 2017-05-04 2017-09-22 鹤山市沃得钨钼实业有限公司 一种稀土钨合金坩埚及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224495A (ja) * 1986-03-24 1987-10-02 Toho Kinzoku Kk タングステン電極材料
JPH06297189A (ja) * 1993-04-14 1994-10-25 Toho Kinzoku Kk タングステン電極材料
US5604321A (en) * 1995-07-26 1997-02-18 Osram Sylvania Inc. Tungsten-lanthana alloy wire for a vibration resistant lamp filament
JP3882093B2 (ja) * 1995-10-12 2007-02-14 東邦金属株式会社 タングステン電極材及びその熱処理法
JPH11152534A (ja) * 1997-11-17 1999-06-08 Tokyo Tungsten Co Ltd タングステン板及びその製造方法
CN1057569C (zh) * 1998-07-14 2000-10-18 北京矿冶研究总院 一种稀土钨电极材料
US6830637B2 (en) * 2002-05-31 2004-12-14 Osram Sylvania Inc. Large diameter tungsten-lanthana rod
CN103740994B (zh) * 2014-02-10 2015-09-02 中国科学院合肥物质科学研究院 纳米结构钨合金及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590386A (en) * 1995-07-26 1996-12-31 Osram Sylvania Inc. Method of making an alloy of tungsten and lanthana
CN1442259A (zh) * 2003-04-09 2003-09-17 北京工业大学 一种纳米稀土钨粉体及其制备方法
JP2011127839A (ja) * 2009-12-17 2011-06-30 Toshiba Corp タングステン製ルツボとその製造方法、およびサファイア単結晶の製造方法
CN103350227A (zh) * 2013-05-23 2013-10-16 安泰科技股份有限公司 一种大尺寸高密度钨坩埚及其制备方法
CN104289714A (zh) * 2014-09-30 2015-01-21 苏州普京真空技术有限公司 一种稀土用钨坩埚的制备方法
CN105518169A (zh) * 2014-10-20 2016-04-20 中南大学 一种稀土氧化物弥散强化细晶钨材料的制备方法
CN104439763A (zh) * 2014-11-06 2015-03-25 北矿新材科技有限公司 一种多元复合稀土掺杂钨粉的制备方法
CN104789844A (zh) * 2015-04-23 2015-07-22 江苏峰峰钨钼制品股份有限公司 一种钨坩埚及其制备方法
CN105618768A (zh) * 2015-12-28 2016-06-01 天龙钨钼(天津)有限公司 一种高致密度纯钨、纯钼及其合金材料的制备方法
CN107190195A (zh) * 2017-05-04 2017-09-22 鹤山市沃得钨钼实业有限公司 一种稀土钨合金坩埚及其制造方法

Also Published As

Publication number Publication date
CN107190195A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
WO2018201702A1 (zh) 一种稀土钨合金坩埚及其制造方法
CN109516812B (zh) 一种超细高熵固熔体粉末及其制备方法和应用
CN109136615B (zh) 一种高强高塑弥散强化铜基复合材料的制备方法
CN110156475B (zh) 一种碳氮化铀锆粉末的微波合成方法
CN110157934B (zh) 一种钨或钼基二氧化铀燃料芯块的制造方法
CN110845237A (zh) 高熵陶瓷粉体及其制备方法和高熵陶瓷块体
CN104480336B (zh) 一种耐高温高强WC-Co-Ti3SiC2硬质合金材料的制备方法
CN113399662B (zh) 一种钼镧合金烧结坯的制备方法及其产品
CN109136710B (zh) 一种硬质合金及其制备方法
CN109796209A (zh) 一种(Ti, Zr, Hf, Ta, Nb)B2高熵陶瓷粉体及其制备方法
CN110204341A (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
CN110106418A (zh) 一种用于切割丝的稀土钼钨合金及其制备方法
CN101798216A (zh) 添加硼化钛的氧化锆基纳米陶瓷工模具材料及其制备方法
CN110499442B (zh) 一种高强度抗腐蚀Cr3C2基轻质金属陶瓷合金及其制备方法
CN104942291B (zh) 一种Ti‑6Al‑4V合金的热压烧结方法
CN107385367B (zh) 一种细晶低氧型多相Mo-Si-B合金的制备方法
WO2017070806A1 (zh) 一种高强度碳化钛颗粒增强铜基复合材料及其制备方法
CN113443919A (zh) 一种非晶态合金喷嘴材料及其制备方法
CN102990054B (zh) 稀土钼坩埚坯料及利用该坯料制造稀土钼坩埚的方法
CN108947493A (zh) 一种高致密度纳米氧化镁基陶瓷的制备方法
CN105950952B (zh) 一种原位生成钛锆硼化物强化高模量高硬度钢的制备方法
CN104677100A (zh) 用于生产铝基合金的坩埚
CN107058841B (zh) 一种高机械强度钨合金材料及其制备方法
CN110511034A (zh) 一种高产率陶瓷及其制备方法和应用
CN113173789B (zh) 一种无粘结相耐腐蚀硬质合金及其生产工艺和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17908626

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17908626

Country of ref document: EP

Kind code of ref document: A1