CN110156475B - 一种碳氮化铀锆粉末的微波合成方法 - Google Patents

一种碳氮化铀锆粉末的微波合成方法 Download PDF

Info

Publication number
CN110156475B
CN110156475B CN201910589152.2A CN201910589152A CN110156475B CN 110156475 B CN110156475 B CN 110156475B CN 201910589152 A CN201910589152 A CN 201910589152A CN 110156475 B CN110156475 B CN 110156475B
Authority
CN
China
Prior art keywords
powder
microwave
ball
synthesis method
ball milling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910589152.2A
Other languages
English (en)
Other versions
CN110156475A (zh
Inventor
屈哲昊
尹邦跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201910589152.2A priority Critical patent/CN110156475B/zh
Publication of CN110156475A publication Critical patent/CN110156475A/zh
Application granted granted Critical
Publication of CN110156475B publication Critical patent/CN110156475B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0828Carbonitrides or oxycarbonitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

本发明属于核燃料制备技术领域,涉及一种碳氮化铀锆粉末的微波合成方法。所述的微波合成方法依次包括如下步骤:(1)球磨:称量UO2粉末、ZrO2粉末、碳粉后混合均匀,倒入球磨罐,添加磨球进行球磨;(2)压制:将球磨后的物料倒出,球料分离并过筛,在液压机上将球磨后原料粉末压制成生坯;(3)微波煅烧:将生坯放入微波高温炉内,抽真空后通入气氛气体,微波加热升温至1300‑1600℃后保温煅烧,得到碳氮化铀锆粉末。利用本发明的碳氮化铀锆粉末的微波合成方法,可在较低的反应温度直接获得(U,Zr)(C,N)单一固溶体相,且合成得到的(U,Zr)(C,N)粉末活性高,可直接用于后续芯块烧结工序。

Description

一种碳氮化铀锆粉末的微波合成方法
技术领域
本发明属于核燃料制备技术领域,涉及一种碳氮化铀锆粉末的微波合成方法。
背景技术
碳氮化物核燃料一般指(U,X)(C,N)形式的燃料,其可能添加金属元素X(例如Zr)提高燃料熔点及分解温度,其燃料性能(图1、图2)也类似于碳化物燃料、氮化物燃料的结合体:燃料蒸汽压大于碳化物燃料,低于氮化物燃料;燃料辐照肿胀低于碳化物燃料,大于氮化物燃料;热导率同样远高于氧化物燃料;同时其具备类似氧化物燃料的高温稳定性。这种新型高性能燃料一般用于特种核动力系统。
目前世界各国中,俄罗斯(前苏联)对(U,Zr)(C,N)的研究最为广泛,虽然其用于特种核动力系统,但目前俄罗斯方面已有计划将其应用于商用快堆领域。其他西方国家对此燃料研究较少,仅见德国方面20世纪70年代有相关报道。
德国Koushen等合成(U,Zr)(C,N)粉末的方法为:直接将UO2、ZrO2、C粉末按比例(3:1、1:1、1:3)混合,在1800℃、1975℃下保温4-16小时,得到(U,Zr)(C,N)粉末。实验结果表明:1800℃下U(C,N)与Zr(C,N)为独立双峰,无法得到(U,Zr)(C,N)单相粉末;1975℃下保温4小时后开始形成(U,Zr)(C,N)固溶体;1975℃保温16小时以上(U,Zr)(C,N)固溶体才能完全形成。
俄罗斯合成(U,Zr)(C,N)粉末的方法为:将UO2、ZrO2、C粉末混合均匀,压成40-50%相对密度的压坯,反应温度为1700-2000℃,升温速率为15-25℃/min,反应时间为3-5小时,炉内通以10.1KPa的流动氮气。过高的氮气压力将导致U-C-N-O固溶体的产生,而过低氮气压力不足以完成反应。俄罗斯研究表明:较高的合成温度将导致坯体的烧结,增加后期破碎制粉工序的难度。
从俄罗斯、德国等国研究经验来看,将UO2、ZrO2、C粉末混合,在1700-2000℃下进行碳热还原氮化反应,是制备(U,Zr)(C,N)粉末的主流工艺路线,但该工艺路线存在反应温度较低难以形成固溶体,过高坯体易烧结结块的缺点,因此需开发新的工艺方法克服这些缺点。
发明内容
本发明的目的是提供一种碳氮化铀锆粉末的微波合成方法,以可在较低的反应温度直接获得(U,Zr)(C,N)单一固溶体相,且合成得到的(U,Zr)(C,N)粉末活性高,可直接用于后续芯块烧结工序。
为实现此目的,在基础的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,所述的微波合成方法依次包括如下步骤:
(1)球磨:称量UO2粉末、ZrO2粉末、碳粉后混合均匀,倒入球磨罐,添加磨球进行球磨;
(2)压制:将球磨后的物料倒出,球料分离并过筛,在液压机上将球磨后原料粉末压制成生坯;
(3)微波煅烧:将生坯放入微波高温炉内,抽真空后通入气氛气体,微波加热升温至1300-1600℃后保温煅烧,得到碳氮化铀锆粉末。
在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(1)中,碳粉的摩尔量值与UO2粉末、ZrO2粉末的摩尔量值的和的比值为2.6-2.9。
在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(1)中,球磨条件为:球料体积比为3:1-5:1,球磨转速为300-500转/分,球磨时间为4-16小时。
在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(2)中,压制压力为50-100Mpa,压制时间为10-30s。
在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(3)中,抽真空至10-3Pa以下。
在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(3)中,所述的气氛气体为高纯N2,通入后保持微波高温炉内N2压力为0.11-0.13MPa。
在一种优选的实施方案中,本发明提供一种碳氮化铀锆粉末的微波合成方法,其中步骤(3)中,保温煅烧时间为1-4小时。
本发明的有益效果在于,利用本发明的碳氮化铀锆粉末的微波合成方法,可在较低的反应温度直接获得(U,Zr)(C,N)单一固溶体相,且合成得到的(U,Zr)(C,N)粉末活性高,可直接用于后续芯块烧结工序。
本发明可以显著降低(U,Zr)(C,N)粉末的合成反应温度,由常规方法的1700-2000℃降低至1300-1600℃。由于合成反应温度较低,因此也避免合成得到的(U,Zr)(C,N)粉末在高温下自发烧结,无需对其进行破碎即可进行芯块制备等后续工序,降低了(U,Zr)(C,N)燃料生产总体成本。
附图说明
图1为不同核燃料辐照肿胀对比图。
图2为不同核燃料蠕变速率对比图。
图3为实施例中本发明的碳氮化铀锆粉末的微波合成方法的流程图。
图4为实施例1制备的(U,Zr)(C,N)粉末的XRD衍射图谱。
图5为实施例2制备的(U,Zr)(C,N)粉末的XRD衍射图谱。
图6为实施例3制备的(U,Zr)(C,N)粉末的XRD衍射图谱。
具体实施方式
以下通过实施例对本发明的具体实施方式作出进一步的说明。
实施例1:碳氮化铀锆粉末的微波合成(一)
称量UO2粉17.75g、ZrO2粉24.10g、碳粉8.15g,混合后放入高能球磨机球磨,条件为:球料体积比为3:1,球磨转速为300转/分,球磨时间为16小时。
将球磨后的物料倒出,球料分离并过筛后得到混合粉末,在液压机上使用硬质合金模具将混合粉末压制成生坯,压制压力为50MPa,保压时间30s。
将压制得到的生坯放入微波高温炉内,抽真空至10-3Pa,持续通入高纯N2,保持炉内N2压力为0.13MPa,开启微波加热,升温至1600℃,保温1小时,得到(U,Zr)(C,N)粉末,为(U,Zr)(C,N)单一固溶体相,松装密度2.3g/cm3,可直接用于后续烧结工序。
实施例2:碳氮化铀锆粉末的微波合成(二)
称量UO2粉29.57g、ZrO2粉13.38g、碳粉7.05g,混合后放入高能球磨机球磨,条件为:球料体积比为4:1,球磨转速为400转/分,球磨时间为8小时。
将球磨后的物料倒出,球料分离并过筛后得到混合粉末,在液压机上使用硬质合金模具将混合粉末压制成生坯,压制压力为80MPa,保压时间20s。
将压制得到的生坯放入微波高温炉内,抽真空至10-3Pa,持续通入高纯N2,保持炉内N2压力为0.12MPa,开启微波加热,升温至1400℃,保温2小时,得到(U,Zr)(C,N)粉末,为(U,Zr)(C,N)单一固溶体相,松装密度2.7g/cm3,可直接用于后续烧结工序。
实施例3:碳氮化铀锆粉末的微波合成(三)
称量UO2粉38.00g、ZrO2粉5.73g、碳粉6.27g,混合后放入高能球磨机球磨,条件为:球料体积比为5:1,球磨转速为500转/分,球磨时间为4小时。
将球磨后的物料倒出,球料分离并过筛后得到混合粉末,在液压机上使用硬质合金模具将混合粉末压制成生坯,压制压力为100MPa,保压时间10s。
将压制得到的生坯放入微波高温炉内,抽真空至10-3Pa,持续通入高纯N2,保持炉内N2压力为0.11MPa,开启微波加热,升温至1300℃,保温4小时,得到(U,Zr)(C,N)粉末,为(U,Zr)(C,N)单一固溶体相,松装密度3.0g/cm3,可直接用于后续烧结工序。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若对本发明的这些修改和变型属于本发明权利要求及其同等技术的范围之内,则本发明也意图包含这些改动和变型在内。上述实施例或实施方式只是对本发明的举例说明,本发明也可以以其它的特定方式或其它的特定形式实施,而不偏离本发明的要旨或本质特征。因此,描述的实施方式从任何方面来看均应视为说明性而非限定性的。本发明的范围应由附加的权利要求说明,任何与权利要求的意图和范围等效的变化也应包含在本发明的范围内。

Claims (4)

1.一种碳氮化铀锆粉末的微波合成方法,其特征在于,所述的微波合成方法依次包括如下步骤:
(1)球磨:称量UO2粉末、ZrO2粉末、碳粉后混合均匀,倒入球磨罐,添加磨球进行球磨;
(2)压制:将球磨后的物料倒出,球料分离并过筛,在液压机上将球磨后原料粉末压制成生坯;
(3)微波煅烧:将生坯放入微波高温炉内,抽真空后通入气氛气体,微波加热升温至1300-1600℃后保温煅烧,得到碳氮化铀锆粉末,
其中:
步骤(1)中,碳粉的摩尔量值与UO2粉末、ZrO2粉末的摩尔量值的和的比值为2.6-2.9;
步骤(3)中,所述的气氛气体为高纯N2,通入后保持微波高温炉内N2压力为0.11-0.13MPa,保温煅烧时间为1-4小时。
2.根据权利要求1所述的微波合成方法,其特征在于,步骤(1)中,球磨条件为:球料体积比为3:1-5:1,球磨转速为300-500转/分,球磨时间为4-16小时。
3.根据权利要求1所述的微波合成方法,其特征在于:步骤(2)中,压制压力为50-100Mpa,压制时间为10-30s。
4.根据权利要求1所述的微波合成方法,其特征在于:步骤(3)中,抽真空至10-3Pa以下。
CN201910589152.2A 2019-07-02 2019-07-02 一种碳氮化铀锆粉末的微波合成方法 Active CN110156475B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910589152.2A CN110156475B (zh) 2019-07-02 2019-07-02 一种碳氮化铀锆粉末的微波合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910589152.2A CN110156475B (zh) 2019-07-02 2019-07-02 一种碳氮化铀锆粉末的微波合成方法

Publications (2)

Publication Number Publication Date
CN110156475A CN110156475A (zh) 2019-08-23
CN110156475B true CN110156475B (zh) 2020-11-10

Family

ID=67637373

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910589152.2A Active CN110156475B (zh) 2019-07-02 2019-07-02 一种碳氮化铀锆粉末的微波合成方法

Country Status (1)

Country Link
CN (1) CN110156475B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113012834A (zh) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 一种氮化铀复合铀三硅二燃料芯块的制备方法
CN113012833A (zh) * 2019-12-20 2021-06-22 中核北方核燃料元件有限公司 一种氮化铀复合二氧化铀燃料芯块的制备方法
CN112820431A (zh) * 2020-12-31 2021-05-18 中核北方核燃料元件有限公司 一种添加氧化物的金属壁微囊核燃料芯块及其制备方法
CN113968739A (zh) * 2021-10-12 2022-01-25 中国原子能科学研究院 一种混合氮化物粉末的制备方法
CN115740463B (zh) * 2022-11-07 2023-10-27 中国原子能科学研究院 燃料芯块的制备方法
CN116283298B (zh) * 2023-03-03 2024-02-20 中国原子能科学研究院 一种放射性核束装置碳化铀靶材的制备方法
CN116217236B (zh) * 2023-03-14 2024-02-20 中国原子能科学研究院 铀-铌-碳-氮燃料芯块的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206174A1 (en) * 2010-02-22 2011-08-25 Westinghouse Electric Sweden Ab Nuclear fuel, a fuel element, a fuel assembly and a method of manufacturing a nuclear fuel
CN106829886B (zh) * 2017-01-05 2018-10-09 中国原子能科学研究院 一氮化铀粉末的低温合成法
CN107342110B (zh) * 2017-07-27 2019-10-15 中国原子能科学研究院 一种uo2-石墨烯复合燃料压制粉末的制备工艺
CN108424148A (zh) * 2018-02-12 2018-08-21 吉林长玉特陶新材料技术股份有限公司 一种快速氮化生产碳氮化锆、氮化锆粉的方法
CN109659051B (zh) * 2019-01-02 2020-10-09 中国原子能科学研究院 一种U-Zr-C燃料的制备方法

Also Published As

Publication number Publication date
CN110156475A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
CN110156475B (zh) 一种碳氮化铀锆粉末的微波合成方法
CN109252081B (zh) 一种高熵合金粘结相超细碳化钨硬质合金及其制备方法
CN109796209B (zh) 一种(Ti, Zr, Hf, Ta, Nb)B2高熵陶瓷粉体及其制备方法
CN110204341B (zh) 一种(Hf,Ta,Nb,Ti)B2高熵陶瓷粉体及其制备方法
CN110257684B (zh) 一种FeCrCoMnNi高熵合金基复合材料的制备工艺
CN109576545B (zh) 一种具有混晶结构的Ti(C,N)基金属陶瓷及其制备方法
CN109903868A (zh) 一种uc燃料芯块的制备方法
US3953556A (en) Method of preparing uranium nitride or uranium carbonitride bodies
CN102225764B (zh) 碳化钽粉体的制备方法
CN114507074B (zh) 一种高熵过渡-稀土金属二硼化物陶瓷材料及其制备方法
WO2019037688A1 (zh) 碳化铀芯块及其制备方法、燃料棒
CN104150908A (zh) 碳化钛钼陶瓷粉及其制备方法
CN103205589B (zh) 一种以Ni-Al金属间化合物为粘结相的硬质合金及其制备方法
CN102583380B (zh) 钼的碳化物的高温高压制备方法
CN108417278B (zh) 一种高辐照稳定性的金属型燃料芯块的制备方法
CN111434792A (zh) 基于碳化钨碳化钛碳化钽固溶体制备硬质合金的方法
CN107973608A (zh) 一种常压烧结碳化硼陶瓷用的增韧烧结助剂及其制备方法
CN105986139A (zh) 一种新型碳化钛金属陶瓷及其制备方法
CN104388817A (zh) 一种高强韧烧结铁镍合金及其制备方法
CN102925728B (zh) 一种无粘结相纳米碳化钨硬质合金的制备方法
CN109266895B (zh) 一种由高熵合金锆镓钒钕锑粘结的碳化钨材料及其制备方法和应用
CN110343932B (zh) 一种具有高强度的WVTaZrSc难熔高熵合金及其制备方法
CN110370176B (zh) 一种复合结合剂及其制备方法、聚晶立方氮化硼复合片及其制备方法和应用
CN106866152A (zh) 一种yb4块体的制备方法
KR101500657B1 (ko) 니켈-알루미늄 합금 분말 저온 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant