WO2018199265A1 - リチウムイオン電池用負極活物質 - Google Patents

リチウムイオン電池用負極活物質 Download PDF

Info

Publication number
WO2018199265A1
WO2018199265A1 PCT/JP2018/017085 JP2018017085W WO2018199265A1 WO 2018199265 A1 WO2018199265 A1 WO 2018199265A1 JP 2018017085 W JP2018017085 W JP 2018017085W WO 2018199265 A1 WO2018199265 A1 WO 2018199265A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
lithium ion
ion battery
Prior art date
Application number
PCT/JP2018/017085
Other languages
English (en)
French (fr)
Inventor
孫 仁徳
省二 野里
中壽賀 章
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2018528362A priority Critical patent/JP7150600B2/ja
Priority to KR1020197005542A priority patent/KR102556592B1/ko
Priority to US16/607,190 priority patent/US11404686B2/en
Priority to CN201880004019.XA priority patent/CN109997256A/zh
Priority to EP18791639.0A priority patent/EP3618151A4/en
Publication of WO2018199265A1 publication Critical patent/WO2018199265A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention has high adhesion and followability to the negative electrode active material against volume expansion and contraction during charge and discharge, and is excellent in contact and adhesion with the conductive assistant, binder and current collector, and decomposition of the electrolytic solution
  • the present invention relates to a negative electrode active material for a lithium ion battery capable of realizing high coulomb efficiency in addition to excellent cycle characteristics and rate characteristics because of its high suppression effect. Moreover, it is related with the manufacturing method of the negative electrode for lithium ion secondary batteries using the said negative electrode active material for lithium ion batteries, a lithium ion secondary battery, and the negative electrode active material for lithium ion batteries.
  • Lithium ion secondary batteries are used in various electronic and electrical devices including portable electronic devices.
  • a lithium ion secondary battery has a basic structure of positive electrode current collector / positive electrode / separator / negative electrode / negative electrode current collector, and a material capable of intercalating lithium is used for the positive electrode and the negative electrode.
  • a carbon material particularly graphite (theoretical capacity: 372 mAh / g) is generally used.
  • a negative electrode material having a higher theoretical capacity is required.
  • Non-Patent Document 1 reports that the collapse of silicon can be avoided by using nanoparticles of 150 nm or less in place of conventional silicon particles having a large micrometer order. Volume expansion and contraction still exist and have not led to a fundamental solution. Since the volume expansion and contraction during charging / discharging is inelastic deformation, even if silicon nanoparticles are used, contact between silicon particles and contact with the conductive additive become poor due to repeated charge / discharge, resulting in cycle characteristics. Deteriorate. As one of the measures for improving the cycle characteristics of the silicon negative electrode, it has been reported that carbon coating on silicon particles is effective. For example, Patent Document 1 discloses carbon-coated silicon particles in which a silicon carbide layer is formed at least partially on the interface between a carbon coating and silicon particles.
  • the carbon-coated silicon particles having a silicon carbide intermediate layer disclosed in Patent Document 1 are hard and brittle, the silicon carbide is insulative in addition to the possibility of causing a decrease in the adhesion of the surface-coated carbon layer. Therefore, there is a problem that the internal resistance is increased. As a result, the effect of improving battery characteristics was limited. Furthermore, in the lithium ion battery, when charging / discharging (especially, initial charging / discharging), the electrolyte solution is decomposed near the surface of the active material, and insoluble salts such as Li 2 O, Li 2 CO 3 and LiF are activated. Deposits on the surface of the material.
  • a solid electrolyte interface (SEI) film may be formed on the surface of the active material. Since such an SEI film is electrically insulating, the active site on the negative electrode surface is inactivated (passivation), and further decomposition of the electrolyte is suppressed. In a lithium ion battery, formation of an appropriate SEI film plays an important role in securing stable battery characteristics, but there is a problem that non-uniform deposition and excessive deposition cause deterioration of battery characteristics. In particular, since the negative electrode has a problem that the potential is lower than that of the positive electrode and the electrolytic solution is more easily decomposed, a negative electrode active material capable of solving such a problem has been demanded.
  • SEI solid electrolyte interface
  • the present invention has high adhesion and followability to the negative electrode active material against volume expansion and contraction during charge and discharge, and excellent contact and adhesion with the conductive assistant, binder and current collector,
  • An object of the present invention is to provide a negative electrode active material for a lithium ion battery capable of realizing high coulombic efficiency in addition to excellent cycle characteristics and rate characteristics since the effect of suppressing the decomposition of the electrolytic solution is high. Moreover, it aims at providing the manufacturing method of the negative electrode for lithium ion secondary batteries using the said negative electrode active material for lithium ion batteries, a lithium ion secondary battery, and the negative electrode active material for lithium ion batteries.
  • the present invention is a negative electrode active material for a lithium ion battery having a coating layer containing amorphous carbon on the surface of the negative electrode active material, and the amorphous carbon constituting the coating layer is a sp2 component measured by 13 C solid state NMR.
  • the ratio between the peak derived from the peak derived from the sp3 component is 1 or more, and the ratio between the peak derived from the aromatic carbon having a hydroxyl group and a bond and the peak derived from the sp2 component is 0.2 or less.
  • It is a negative electrode active material for lithium ion batteries. The present invention is described in detail below.
  • the present inventor formed a coating layer having a predetermined physical property on the surface of the negative electrode active material, and formed a coating layer having a predetermined physical property, whereby the negative electrode active material against volume expansion and contraction during charge and discharge
  • the negative electrode active material for a lithium ion battery has high adhesiveness and followability to the surface, and is excellent in contactability and adhesiveness with the conductive additive, binder and current collector.
  • the present invention has found that a negative electrode active material for a lithium ion battery capable of realizing high coulomb efficiency in addition to excellent cycle characteristics and rate characteristics can be obtained because the effect of suppressing the decomposition of the electrolytic solution is high. It came to complete.
  • the negative electrode active material for a lithium ion battery of the present invention has a coating layer containing amorphous carbon on the surface of the negative electrode active material.
  • the negative electrode active material is not particularly limited as long as it can insert and desorb lithium ions.
  • metallic lithium, lithium alloy, silicon, silicon-containing compound, silicon-containing alloy, tin And carbon-based materials such as tin-containing alloys, metal oxides, metal sulfides, metal nitrides, and graphite.
  • the negative electrode active material preferably has a lithium ion insertion / extraction reaction at 0.0 V or more and less than 2.0 V with respect to Li + / Li.
  • the lithium ion desorption reaction proceeds at 0.0 V (vs. Li + / Li) or more and less than 2.0 V (vs. Li + / Li)” means that lithium ions from the negative electrode active material It means that desorption starts at 0.0 V (vs. Li + / Li) or more and ends at less than 2.0 V (vs. Li + / Li).
  • Examples of the negative electrode active material in which the insertion / extraction reaction of lithium ions proceeds at 0.0 V (vs. Li + / Li) or more and less than 2.0 V (vs. Li + / Li) include, for example, metals and metal compounds And organic substances.
  • the metal is not limited as long as it reacts with lithium ions and can be alloyed.
  • Li, Mg, Ca, Al, Si, Ge, Sn, Pb, As, Sb, Bi, Ag, Au, Zn, Cd, Hg, Ti, etc. are mentioned.
  • Li, Al, Si, Ge, Sn, Ti, and Pb are preferable from the viewpoint of volume energy density and weight energy density, and Li, Si, Sn, and Ti are more preferable.
  • Si or Sn is more preferable because of its higher reactivity with lithium ions.
  • the said metal may be used independently and the alloy in which the said metal is contained 2 or more types may be sufficient. Moreover, what mixed 2 or more types of metals may be used. Moreover, in order to improve stability further, the alloy containing metals other than the said metal, and the thing doped with nonmetallic elements, such as P and B, may be used.
  • the metal compound examples include metal oxides, metal nitrides, and metal sulfides. From the viewpoint of further improving the stability, a metal oxide is preferable.
  • the metal oxide silicon oxide, tin oxide, titanium oxide, tungsten oxide, niobium oxide, or molybdenum oxide is preferable because of its higher reactivity with lithium ions.
  • the metal oxide may be used alone or may be an oxide of an alloy composed of two or more metals. Two or more kinds of metal oxides may be mixed.
  • a different metal or a nonmetallic element such as P or B may be doped.
  • the titanium oxide lithium titanate and H 2 Ti 12 O 25 are also included.
  • a silicon-containing compound is preferable. Examples of the silicon-containing compound include Si, a silicon-containing alloy, and silicon oxide.
  • Examples of the shape of the negative electrode active material include a particulate shape, a flake shape, a fiber shape, a tubular shape, a plate shape, and a porous shape, and a particulate shape and a flake shape are preferable.
  • a preferable minimum is 0.001 micrometer (1 nm), a more preferable minimum is 0.005 micrometer (5 nm), Furthermore, a preferable minimum is 0.01 micrometer (10 nm), A preferred upper limit is 40 ⁇ m, a more preferred upper limit is 10 ⁇ m, a still more preferred upper limit is 1 ⁇ m, and a particularly preferred upper limit is 0.2 ⁇ m (200 nm).
  • the negative electrode active material for a lithium ion battery of the present invention has a coating layer containing amorphous carbon.
  • a coating layer containing amorphous carbon By having such a coating layer, the adhesion and followability to the negative electrode active material with respect to volume expansion and contraction during charge and discharge are high. It becomes excellent in adhesiveness and adhesiveness with the agent and binder. As a result, cracks and peeling are unlikely to occur between the current collector and the charge / discharge cycle, and good charge / discharge cycle stability can be realized.
  • the coating layer does not require a high-temperature firing process, and can be manufactured by a simple process.
  • the said coating layer may be formed in at least one part of the surface of a negative electrode active material, and may be formed so that the whole surface of a negative electrode active material may be coat
  • the covering layer is preferably formed so as to continuously and uniformly cover the entire surface of the negative electrode active material.
  • the coating layer is more preferably dense.
  • by forming a highly dense coating layer it is possible to efficiently inactivate surface active sites that cause decomposition of the electrolyte during charge and discharge.
  • dense coating layer when each nanoparticle is observed using a high-resolution transmission electron microscope, as shown in FIG. “Dense” means that the coating layer on the surface is clearly observed and the coating layer is continuously formed.
  • the coating layer is preferably formed continuously and uniformly on the entire surface of the negative electrode active material, and at the same time, has a molecular level pore (pore diameter of 1 nm or less) in the coating film. By having such molecular pores, lithium ions can freely pass through the coating film during charging and discharging.
  • the amorphous carbon constituting the coating layer is a ratio of the peak derived from the sp2 component measured by 13 C solid state NMR to the peak derived from the sp3 component (peak derived from the sp2 component / peak derived from the sp3 component). Is 1 or more.
  • a peak derived from the sp2 component 100 to 140 ppm
  • a peak derived from the sp3 component (0 to 100 ppm)
  • a peak derived from an aromatic carbon having a bond with a hydroxyl group 140-160 ppm
  • the ratio of the peak derived from the sp2 component to the peak derived from the sp3 component is 1 or more, so that the coating layer has an appropriate flexibility, and adheres to and follows the negative electrode active material.
  • the properties will be excellent.
  • the peak ratio is preferably 1.2 or more, more preferably 100 or less.
  • the aromatic carbon means “carbon constituting an aromatic ring”.
  • the amorphous carbon constituting the coating layer is a ratio of a peak derived from carbon having a hydroxyl group and a bond measured by 13 C solid state NMR to a peak derived from sp2 component (an aromatic carbon having a hydroxyl group and a bond).
  • the peak derived from (a peak derived from the sp2 component) is 0.2 or less.
  • a coating layer having a high carbonization rate can be obtained because the ratio of the peak derived from aromatic carbon having a hydroxyl group and a bond to the peak derived from the sp2 component is 0.2 or less.
  • the peak ratio is preferably 0.15 or less.
  • the lower limit of the peak ratio is not particularly limited, but is 0.0001.
  • the amorphous carbon constituting the coating layer has an amorphous structure in which sp2 bonds and sp3 bonds are mixed, and is composed of carbon.
  • the peak intensity ratio between the G band and the D band is 1. 0.0 or more is preferable.
  • the amorphous carbon is measured by Raman spectroscopy, two peaks of a G band corresponding to sp2 bond (near 1580 cm ⁇ 1 ) and a D band corresponding to sp3 bond (near 1360 cm ⁇ 1 ) are clearly observed. Note that, when the carbon material is crystalline, one of the two bands is minimized. For example, in the case of single crystal diamond, the G band near 1580 cm ⁇ 1 is hardly observed.
  • the flexibility of the formed amorphous carbon film is particularly excellent when the peak intensity ratio between the G band and the D band (peak intensity in the G band / peak intensity in the D band) is 1.0 or more. It will be.
  • peak intensity ratio is less than 1.0, not only the flexibility of the film is insufficient, but also the film adhesion and the film strength are lowered.
  • the peak intensity ratio is more preferably 1.2 or more, and is preferably 10 or less.
  • the coating layer may contain an element other than carbon. Examples of elements other than carbon include nitrogen, hydrogen, and oxygen. The content of such an element is preferably 10 atomic% or less with respect to the total of carbon and elements other than carbon.
  • the negative electrode active material for a lithium ion battery of the present invention preferably has a zeta potential (surface potential) of 0 to ⁇ 60 mV.
  • a zeta potential surface potential
  • the zeta potential can be measured using, for example, a commercially available microscope electrophoresis type zeta potentiometer (manufactured by Nippon Lucas Co., Ltd., M502).
  • the amorphous carbon constituting the coating layer is preferably derived from carbon contained in the oxazine resin. Since the oxazine resin can be carbonized at a low temperature, the cost can be reduced.
  • the oxazine resin is a resin generally classified as a phenol resin, but is a thermosetting resin obtained by adding and reacting amines in addition to phenols and formaldehyde.
  • phenol when a type in which the phenol ring further has an amino group, for example, phenol such as paraaminophenol, is used, it is not necessary to add amines in the above reaction, and carbonization tends to be easily performed. In terms of easiness of carbonization, the use of a naphthalene ring instead of a benzene ring makes carbonization easier.
  • the oxazine resin examples include a benzoxazine resin and a naphthoxazine resin, and among these, the naphthoxazine resin is preferable because it is easily carbonized at the lowest temperature.
  • the partial structure of the benzoxazine resin is shown in Formula (1)
  • the partial structure of the naphthoxazine resin is shown in Formula (2).
  • the oxazine resin refers to a resin having a 6-membered ring added to a benzene ring or naphthalene ring, and the 6-membered ring contains oxygen and nitrogen, which is the origin of the name. Yes.
  • the oxazine resin By using the oxazine resin, it is possible to obtain an amorphous carbon film at a considerably lower temperature than other resins such as epoxy resins. Specifically, carbonization is possible at a temperature of 200 ° C. or lower. In particular, carbonization can be performed at a lower temperature by using a naphthoxazine resin. Thus, by carbonizing at a lower temperature using an oxazine resin, it is possible to form a coating layer having amorphous carbon and high density.
  • the amorphous carbon has a dense coating layer, for example, when a naphthoxazine resin is used as the oxazine resin, the naphthalene structure in the resin is locally connected by low-temperature heating, This is probably because a layered structure is formed at the molecular level. Since the above layered structure is not treated at a high temperature, it does not progress to a long-distance periodic structure such as graphite, and thus does not exhibit crystallinity. Whether the obtained carbon is a graphite-like structure or an amorphous structure is confirmed by whether or not a peak is detected at a position where 2 ⁇ is 26.4 ° by an X-ray diffraction method to be described later. be able to.
  • Dihydroxynaphthalene which is a phenol, formaldehyde, and amines are used as raw materials for the naphthoxazine resin. These will be described in detail later.
  • the amorphous carbon is preferably obtained by heat-treating the oxazine resin at a temperature of 150 to 350 ° C.
  • amorphous carbon can be obtained at a relatively low temperature. By being obtained at such a low temperature, there is an advantage that it can be manufactured by a simpler process at a lower cost than before.
  • the temperature of the heat treatment is more preferably 170 to 300 ° C.
  • the heat treatment temperature may be further set at 350 to 800 ° C. depending on the purpose.
  • the coating layer preferably has a nitrogen content of 0 to 5% by weight. By setting the nitrogen content within the above range, a coating layer having physical properties superior to those of a pure carbon film can be obtained.
  • the coating layer preferably has an average film thickness of 0.5 nm to 1.0 ⁇ m. 1.0 nm to 100 nm is more preferable, and 2.0 nm to 50 nm is particularly preferable.
  • the average film thickness of the coating layer is within the above range, active points on the surface of the negative electrode active material can be efficiently suppressed. As a result, the decomposition of the electrolyte during charging and discharging is also efficiently suppressed, and good initial Coulomb efficiency and long-term cycle characteristics can be obtained.
  • the coefficient of variation (CV value) of the film thickness of the coating layer is preferably 10% or less. If the CV value of the coating layer thickness is 10% or less, the coating layer thickness is uniform and has little variation, so that a desired function (ion elution and crystallinity retention) can be imparted even with a thin film. it can.
  • the upper limit with preferable CV value of the film thickness of the said coating layer is 8.0%. In addition, although it does not specifically limit about a minimum, 0.5% is preferable.
  • the coating layer preferably has good adhesion to the negative electrode active material. Although there is no clear definition regarding adhesiveness, it is preferable that the coating layer does not peel even when a mixture containing a negative electrode active material for a lithium ion battery, a resin, a plasticizer and a dispersant is treated with a bead mill.
  • the coating layer is measured by time-of-flight secondary ion mass spectrometry (TOF-SIMS)
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • at least one of a mass spectrum derived from a benzene ring and a mass spectrum derived from a naphthalene ring is detected. It is preferable.
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • a mass spectrum derived from a benzene ring refers to a mass spectrum near 77.12
  • a mass spectrum derived from a naphthalene ring refers to a mass spectrum near 127.27.
  • the above measurement can be performed using, for example, a TOF-SIMS device (manufactured by ION-TOF).
  • the coating layer when the coating layer is measured by the X-ray diffraction method, it is preferable that no peak is detected at a position where 2 ⁇ is 26.4 °.
  • the peak at the position where 2 ⁇ is 26.4 ° is a crystal peak of graphite, and since the peak is not detected at such a position, it can be said that the carbon forming the coating layer has an amorphous structure.
  • the peak at the position where 2 ⁇ is 36 ° is a peak derived from SiC.
  • the above measurement can be performed using, for example, an X-ray diffractometer (SmartLab Multipurpose, manufactured by Rigaku Corporation).
  • a step of preparing a mixed solution containing formaldehyde, an aliphatic amine and dihydroxynaphthalene, a negative electrode active material is added to the mixed solution,
  • a method having a step of reacting at a predetermined temperature and a step of heat-treating the negative electrode active material after the reaction can be used.
  • the process of preparing the mixed solution containing formaldehyde, an aliphatic amine, and dihydroxy naphthalene is performed. Since the formaldehyde is unstable, it is preferable to use formalin which is a formaldehyde solution. Formalin usually contains a small amount of methanol as a stabilizer in addition to formaldehyde and water.
  • the formaldehyde used in the present invention may be formalin as long as the formaldehyde content is clear.
  • formaldehyde has paraformaldehyde as its polymerization form, and this form can also be used as a raw material. However, since the reactivity is poor, the above-described formalin is preferably used.
  • the aliphatic amine is represented by the general formula R—NH 2 , and R is preferably an alkyl group having 5 or less carbon atoms.
  • R is preferably an alkyl group having 5 or less carbon atoms. Examples of alkyl groups having 5 or less carbon atoms include, but are not limited to, methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, isobutyl group, s-butyl group, and t-butyl group.
  • the substituent R is preferably a methyl group, an ethyl group, a propyl group or the like, and methylamine, ethylamine, propylamine or the like can be preferably used as the actual compound name. Most preferred is methylamine with the lowest molecular weight.
  • the dihydroxynaphthalene has many isomers. For example, 1,3-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene Is mentioned. Of these, 1,5-dihydroxynaphthalene and 2,6-dihydroxynaphthalene are preferred because of their high reactivity. Further, 1,5-dihydroxynaphthalene is preferred because it has the highest reactivity.
  • the ratio of the three components of dihydroxynaphthalene, aliphatic amine, and formaldehyde in the above mixed solution it is most preferable to mix 1 mol of aliphatic amine and 2 mol of formaldehyde with respect to 1 mol of dihydroxynaphthalene.
  • the raw materials are lost due to volatilization during the reaction, so the optimum blending ratio is not necessarily exactly the above ratio, but the aliphatic amine is 0.8 to 1.2 per mole of dihydroxynaphthalene.
  • Mole and formaldehyde are preferably blended in the range of 1.6 to 2.4 moles.
  • an oxazine ring By setting the aliphatic amine to 0.8 mol or more, an oxazine ring can be sufficiently formed, and polymerization can be favorably proceeded. Moreover, since the formaldehyde required for reaction is not consumed excessively by setting it as 1.2 mol or less, reaction advances smoothly and a desired naphthoxazine can be obtained. Similarly, when the formaldehyde is 1.6 mol or more, the oxazine ring can be sufficiently formed, and the polymerization can proceed suitably. Moreover, since it can reduce generation
  • the mixed solution preferably contains a solvent for dissolving and reacting the three raw materials.
  • the solvent include alcohols such as methanol, ethanol and isopropanol, and solvents usually used for dissolving a resin such as tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, dimethylsulfoxide and N-methylpyrrolidone.
  • the addition amount of the solvent in the mixed solution is not particularly limited, but when the raw material containing dihydroxynaphthalene, aliphatic amine, and formaldehyde is 100 parts by mass, it is usually preferably blended at 300 to 20000 parts by mass. Since the solute can be sufficiently dissolved by setting it to 300 parts by mass or more, a uniform film can be formed when the film is formed, and it is necessary for forming the coating layer by setting it to 20000 parts by mass or less. A high concentration can be ensured.
  • the process which adds a negative electrode active material to the said mixed solution and makes it react is performed.
  • a layer made of naphthoxazine resin can be formed on the surface of the negative electrode active material.
  • the above reaction proceeds even at room temperature, it is preferable to warm to 40 ° C. or higher because the reaction time can be shortened.
  • the produced oxazine ring opens, and when polymerization occurs, the molecular weight increases and a so-called polynaphthoxazine resin is obtained. If the reaction is too advanced, the viscosity of the solution increases and it is not suitable for coating.
  • a method of reacting a mixed solution of formaldehyde, aliphatic amine, and dihydroxynaphthalene for a certain time and adding the negative electrode active material later may be used.
  • the particles are dispersed during the coating reaction.
  • known methods such as stirring, ultrasonic waves, and rotation can be used.
  • an appropriate dispersant may be added.
  • the resin may be uniformly coated on the surface of the negative electrode active material by drying and removing the solvent with hot air or the like. There is no restriction
  • a heat treatment step is performed.
  • the resin coated in the previous step is carbonized to form a coating layer containing amorphous carbon.
  • the heat treatment is preferably performed at a temperature of 150 to 350 ° C. Further, heat treatment may be performed at a temperature of 350 to 800 ° C.
  • the heat treatment method is not particularly limited, and examples thereof include a method using a heating oven or an electric furnace.
  • the temperature in the heat treatment is 150 to 350 ° C.
  • a naphthoxazine resin that can be carbonized at a low temperature is used, amorphous carbon can be obtained at a lower temperature.
  • a preferable upper limit of the heating temperature in this case is 250 ° C.
  • the heat treatment may be performed in air or in an inert gas such as nitrogen or argon. When the heat treatment temperature is 250 ° C. or higher, an inert gas atmosphere is more preferable.
  • a mixed solution containing triazine can be used as a reaction solution instead of the formaldehyde and the aliphatic amine.
  • it can be produced by a method including a step of preparing a mixed solution containing triazine and dihydroxynaphthalene, a step of adding and reacting a negative electrode active material to the mixed solution, and a step of heat treatment.
  • R represents an aliphatic alkyl group or an organic group containing an aromatic group.
  • R is an aliphatic alkyl group, it is preferably an alkyl group having 1 to 20 carbon atoms.
  • the triazine it is more preferable to use 1,3,5-trimethylhexahydro-1,3,5-triazine in which R is a methyl group from the viewpoint of carbonization rate and film density.
  • the time for simultaneously applying the ultrasonic wave and stirring as described above is preferably 1 to 10 hours.
  • the heating temperature during the reaction is preferably 30 ° C. to 150 ° C.
  • the temperature for drying the washed particles after the reaction is preferably 50 to 150 ° C.
  • the negative electrode active material for lithium ion batteries of the present invention is useful for applications such as industrial, consumer, and automobile lithium ion batteries.
  • the negative electrode for lithium ion secondary batteries containing the negative electrode active material for lithium ion batteries of this invention, a carbon material, a conductive support agent, and a binder is also one of this invention.
  • the binder is preferably at least one selected from the group consisting of styrene butadiene rubber, carboxymethyl cellulose, polyvinylidene fluoride, polyimide, acrylic resin, and butyral resin.
  • the lithium ion secondary battery provided with the negative electrode for lithium ion secondary batteries of this invention is also one of this invention.
  • the adhesion and followability to the negative electrode active material with respect to volume expansion and contraction during charge and discharge are high, and the contact and adhesion with the conductive assistant, the binder and the current collector are excellent, and the electrolyte solution Since the decomposition suppressing effect is high, it is possible to provide a negative electrode active material for a lithium ion battery capable of realizing high coulomb efficiency in addition to excellent cycle characteristics and rate characteristics.
  • the manufacturing method of the negative electrode for lithium ion secondary batteries using the said negative electrode active material for lithium ion batteries, a lithium ion secondary battery, and the negative electrode active material for lithium ion batteries can be provided.
  • Example 1 (Formation of coating layer) 1,5-dihydroxynaphthalene (hereinafter abbreviated as 1,5-DHN, manufactured by Tokyo Chemical Industry Co., Ltd.), 40% methylamine aqueous solution (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd.), 37% formaldehyde aqueous solution (FUJIFILM Wako Pure Chemical Industries, Ltd.) Were used as starting materials, and 400 ml of the mixed ethanol solution of the three was prepared in a flask. The molar ratio of 1,5-DHN, methylamine and formaldehyde was 1: 1: 2, and the concentration of 1,5-DHN was 0.02 mol / L.
  • silicon raw material particles Si particles, manufactured by Sigma-Aldrich, average particle size of 100 nm
  • Si particles manufactured by Sigma-Aldrich, average particle size of 100 nm
  • the washed particles were vacuum dried at 110 ° C. overnight to obtain silicon particles coated with naphthooxane resin.
  • the coated silicon particles were vacuum-heated at 200 ° C. for 20 hours, whereby the naphthoxazine resin on the particle surface was carbonized to obtain carbon-coated silicon particles.
  • the obtained carbon-coated silicon particles were observed with a transmission electron microscope with an energy dispersive (EDS) detector, and a photograph taken is shown in FIG. From FIG. 1, it was confirmed that a carbon coating layer was formed around the silicon particles.
  • EDS energy dispersive
  • 13 C solid state NMR measurement As for “ 13 C solid state NMR measurement”, “ 13 C solid state NMR measurement” can be performed using the carbon-coated silicon particles obtained in the above examples. In this example, since the amorphous carbon coating layer on the surface of the amorphous carbon-coated silicon particles is thin, an amorphous carbon powder is prepared using the same reaction solution as the conditions used for the coating reaction. After carbon single-piece powder was heat-treated at 200 ° C., “measurement of 13 C solid state NMR” was performed. Note that the results of 13 C solid-state NMR measurement are not different between the case where carbon-coated silicon particles are used and the case where amorphous carbon simple substance powder is used.
  • an amorphous carbon simple substance powder was filled in an 8 mm rotor for solid NMR, and measurement was performed at a MAS rotational speed of 7 kHz using a single pulse (DD MAS) method (apparatus: JNM-ECX400, Jeol Resonance). Made).
  • the pulse width when Single Pulse (DD MAS) was used was 6.32 ⁇ sec, and the number of scans was 8025.
  • the ratio [sp2 / sp3] of the peak derived from the sp2 component (100 to 140 ppm) to the peak derived from the sp3 component (0 to 100 ppm) is 3.3, which is bonded to the hydroxyl group. It was found that the ratio [OH bond C / sp2] between the peak (140 to 160 ppm) derived from the aromatic carbon having s and the sp2 component was 0.1.
  • Example 2 A 500 ml flask to which a silicon particle-containing solution containing 6 g of silicon raw material particles (manufactured by Sigma-Aldrich, average particle size 100 nm) and 160 g of ethanol was added was set in an ultrasonic bath kept constant at 50 ° C. While simultaneously applying ultrasonic waves and stirring to the silicon particle-containing solution, a concentration of 0.225 mol / L of 1,3,5-trimethylhexahydro-1,3,5-triazine (manufactured by Tokyo Chemical Industry Co., Ltd.) in ethanol and 40 g 40 g of an ethanol solution of 0.225 mol / L 1,5-DHN was simultaneously added to the flask at a rate of 5 g for 1 minute.
  • the mixed solution was further reacted for 4 hours.
  • the solution was filtered and the particles were washed 3 times with ethanol.
  • the washed particles were vacuum-dried at 110 ° C. overnight to obtain silicon particles coated with naphthooxane resin.
  • the coated silicon particles were vacuum heated at 400 ° C. for 10 hours to obtain carbon-coated silicon particles in which the naphthoxazine resin on the particle surface was carbonized.
  • the obtained carbon-coated silicon particles were subjected to Raman spectrum measurement, it was determined that the naphthoxazine resin was changed to amorphous carbon. Moreover, it turned out that the peak intensity ratio of G band and D band is 1.5.
  • Example 3 A 500 ml flask to which a silicon particle-containing solution containing 3 g of silicon raw material particles (manufactured by Sigma-Aldrich, average particle size 100 nm) and 160 g of ethanol was added was set in an ultrasonic bath maintained at 70 ° C. While simultaneously applying ultrasonic waves and stirring to the silicon particle-containing solution, 40 g of ethanol solution of 0.09 mol / L 1,3,5-trimethylhexahydro-1,3,5-triazine (manufactured by Tokyo Chemical Industry Co., Ltd.) was added. And stirred for 30 minutes.
  • Example 1 The “silicon raw material particles (manufactured by Sigma-Aldrich)” used in Example 1 were used as they were without performing “(formation of coating layer)”.
  • the average film thickness and CV value of the coating layer were evaluated using a transmission microscope (FE-TEM). Specifically, after taking a cross-sectional photograph of the coating layer for any 20 particles by FE-TEM, the film thickness at 10 different locations of each particle was randomly measured from the obtained cross-sectional photograph, and the average film Thickness and standard deviation were calculated. The coefficient of variation in film thickness was calculated from the obtained numerical values. Since the difference in atomic weight between the surface-coated carbon and the negative electrode active material (silicon or the like) in the surface is large, the film thickness of the coating layer (carbon layer) can be estimated from the difference in the contrast of the TEM image.
  • FE-TEM transmission microscope
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • TOF-SIMS Time-of-Flight Secondary Ion Mass Spectrometry
  • the TOF-SIMS measurement was performed using a TOF-SIMS type 5 device (manufactured by ION-TOF) under the following conditions. Further, in order to avoid contamination derived from the air or a storage case as much as possible, the sample was stored in a clean case for storing silicon wafers.
  • Ion current 1 pA
  • Mass range 1 to 300 mass Analysis area: 500 ⁇ 500 ⁇ m
  • Charge prevention electron irradiation neutralization random raster scan
  • zeta potential was measured using the microscope electrophoresis type
  • KCl 0.01 mol / L potassium chloride
  • the nitrogen content of the negative electrode active material after the coating treatment was measured by the following method.
  • the element composition of the negative electrode active material was analyzed by X-ray photoelectron spectroscopy (apparatus: Multi-functional scanning X-ray photoelectron spectrometer (XPS), PHI 5000 VersaProbe III) manufactured by ULVAC-PHI, Inc.
  • the total amount was taken as 100%, and the occupancy ratio (%) of nitrogen in all elements was taken as the nitrogen content.
  • the prepared paste was applied to the surface of a copper foil having a thickness of 20 ⁇ m with an applicator (PI-1210, manufactured by Tester Sangyo Co., Ltd.) so that the film thickness was 60 ⁇ m.
  • the applied film was vacuum-dried at 100 ° C. for 1 hour, and further heat-treated at 250 ° C. for 15 hours.
  • a coin type cell (HS cell) having a structure as shown in FIG. 2 was used.
  • a metal lithium piece 3 ( ⁇ 10 mm, 0.2 mm thick Li foil), a separator 4 (Esfino (25 ⁇ m) manufactured by Sekisui Chemical Co., Ltd.), a negative electrode sheet 5 ( ⁇ 10 mm, heat-treated at 250 ° C.), a fixing jig 6 made of resin, a collector electrode 7 and a spring 8 were laminated.
  • the positive electrode is the metal lithium piece 3.
  • a 1 mol / L LiPF 6 / EC: DMC (1: 2 v / v%) solution (manufactured by Kishida Chemical Co., Ltd.) was used.
  • FIG. 3 shows the charge / discharge test results of the battery prepared using the particles obtained in Example 1 as the negative electrode active material.
  • the horizontal axis represents the number of charge / discharge cycles
  • the vertical axis represents the capacity (mAh / g), that is, the charge / discharge characteristics.
  • grains obtained by the comparative example 1 as a negative electrode active material is shown in FIG. From FIG. 3 and FIG. 9, the battery obtained using the particles obtained in Example 1 shows charge / discharge characteristics even when charging / discharging is repeated as compared with uncoated silicon particles (Comparative Example 1). It is clear that there is little deterioration.
  • FIG. 4 shows the Coulomb efficiency when the charge / discharge cycle is repeated in the battery prepared using the particles obtained in Example 1 as the negative electrode active material.
  • grains obtained by the comparative example 1 as a negative electrode active material is shown in FIG. From FIG. 4 and FIG. 10, the battery obtained using the particles obtained in Example 1 was not only the first charge / discharge compared to the uncoated silicon particles (Comparative Example 1). It can be seen that the coulomb efficiency is also high.
  • FIG. 5 is a cross-sectional photograph of the negative electrode after repeated charging and discharging 30 times.
  • FIG. 5B is a negative electrode produced using the particles obtained in Example 1 as a negative electrode active material
  • FIG. 5A is a negative electrode produced using the particles obtained in Comparative Example 1 as a negative electrode active material.
  • the white particulate precipitates are Li 2 O, Li 2 CO 3 and LiF, which are products resulting from the decomposition of the electrolyte during charging and discharging. It was suggested that there is a high possibility. From this, it was found that the coating layer formed on the particles obtained in Example 1 has an effect of suppressing decomposition of the electrolytic solution, which is one of the causes of deterioration of the cycle characteristics of the battery.
  • FIG. 6 is a charge / discharge curve obtained by measuring the discharge capacity at different charge / discharge rates for the battery prepared using the particles obtained in Example 1 as the negative electrode active material. As can be seen from FIG. 6, even when the charge / discharge rate was increased from the conventional 0.2C to 1.0C, high cycle stability was exhibited. In the case of uncoated silicon particles, the cycle characteristics suddenly deteriorated when the charge / discharge rate was increased, so it was found that the effect of improving the rate characteristics by the amorphous carbon coating was very high.
  • FIG. 7 is a charge / discharge curve obtained by measuring the Coulomb efficiency at different charge / discharge rates for the battery prepared using the particles obtained in Example 1 as a negative electrode active material. As can be seen from FIG. 7, even when the charge / discharge rate was increased from 0.2 C to 1.0 C, no decrease in coulomb efficiency was observed.
  • FIG. 8 shows the cycle characteristics of a battery prepared using the particles obtained in Example 2 as the negative electrode active material.
  • the ratio of the oxygen content after 30 charge / discharge cycles to the initial oxygen content ratio was measured before and after charge / discharge.
  • the oxygen content ratio was About Example 1 and Comparative Example 1, when the oxygen content ratio of the electrode film cross section before and after charging / discharging was compared, the oxygen content ratio of Comparative Example 1 was 20, whereas the oxygen content ratio of Example 1 was about a quarter of 5.6. This means that, compared with Comparative Example 1 (uncoated silicon particles), the electrode film of Example 1 (silicon particles coated with amorphous carbon) has less increase in oxygen after charging and discharging.
  • the increase in oxygen content on the surface of the electrode film after the charge / discharge test is mainly derived from Li 2 O, Li 2 CO 3 and the like, which are decomposition products of the electrolytic solution. It is suggested that the amorphous carbon coating layer formed on the particles obtained in 1 has an effect of suppressing decomposition of the electrolytic solution during charge and discharge.
  • FIG. 11 shows the results of impedance measurement after 1 and 30 times of charge / discharge of the cells prepared from the electrode films obtained in Example 1 (FIG. 11 (b)) and Comparative Example 1 (FIG. 11 (a)).
  • Cole-Cole Plot The semicircular arc in Cole-Cole Plot corresponds to the internal resistance of the battery, and the diameter of the semicircular arc corresponds to the resistance value.
  • a negative electrode active material for a lithium ion battery that can achieve high coulomb efficiency in addition to excellent cycle characteristics and rate characteristics, and a lithium ion battery using the negative electrode active material for the lithium ion battery.
  • the manufacturing method of the negative electrode for secondary batteries, a lithium ion secondary battery, and the negative electrode active material for lithium ion batteries can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本発明は、負極活物質の表面に、アモルファスカーボンを含む被覆層を有するリチウムイオン電池用負極活物質であり、前記被覆層を構成するアモルファスカーボンは、13C固体NMRで測定されるsp2成分に由来するピークと、sp3成分に由来するピークとの比が1以上であり、水酸基と結合を有する芳香族炭素に由来するピークと、sp2成分に由来するピークとの比が0.2以下であるリチウムイオン電池用負極活物質である。

Description

リチウムイオン電池用負極活物質
本発明は、充放電時の体積膨張や収縮に対する負極活物質への密着性及び追随性が高く、導電助剤、バインダー及び集電体との接触性及び密着性に優れるとともに、電解液の分解抑制効果が高いことから、優れたサイクル特性及びレート特性に加えて高いクーロン効率を実現することが可能なリチウムイオン電池用負極活物質に関する。また、当該リチウムイオン電池用負極活物質を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、並びに、リチウムイオン電池用負極活物質の製造方法に関する。
リチウムイオン二次電池は、携帯型電子機器をはじめ様々な電子・電気機器に利用されている。リチウムイオン二次電池は、正極集電体/正極/セパレータ/負極/負極集電体の基本構造を有し、正極と負極はリチウムをインターカレーションし得る材料が使用されている。
負極材料の活物質としては、炭素材料、特に黒鉛(理論容量:372mAh/g)が一般的に利用されている。しかし、電子機器の更なる小型化や電気自動車およびエネルギー貯蔵システムへ応用するためには、理論容量のより高い負極材料が必要になる。
黒鉛より理論容量の高い負極活物質としては、Al、Sn、Sb、Si等のLiと合金化可能な金属及びその合金系の材料が知られている。この中でも、Siが、リチウム貯蔵容量が特に大きく、その理論容量が4200mAh/gに達することが報告されている。
しかし、シリコンを負極活物質として用いる場合に、リチウムの挿入と脱離に伴う体積膨張及び収縮が大きいため(>300%)、充放電の繰返しにより活物質が崩壊し、電池のサイクル安定性が非常に悪いことが知られている。
また、非特許文献1には、上記シリコンの崩壊は、従来のマイクロメートルオーダーの大きいシリコン粒子の代りに、150nm以下のナノ粒子を用いることにより回避できると報告されているが、充放電時の体積膨張および収縮は依然として存在するため、根本的な解決に至っていない。充放電時の体積膨張および収縮は非弾性変形であるため、シリコンナノ粒子を用いても、充放電の繰返しによって、シリコン粒子同士の接触や導電助剤との接触が不良になり、サイクル特性が悪くなる。
シリコン負極のサイクル特性を高める対策の一つとして、シリコン粒子への炭素被覆が有効であることが報告されている。例えば、特許文献1には、炭素被膜とシリコン粒子との界面に少なくとも一部に炭化シリコン層を形成された炭素被覆シリコン粒子が開示されている。
特開2014-75325号公報
Xiao Hua Liuら、"Size-Dependent Fracture of Silicon Nanoparticles During Lithiation"、VOL. 6 、NO. 2 、1522-1531 (2012)
しかしながら、特許文献1に開示した炭化シリコン中間層を有する炭素被覆シリコン粒子は、炭化シリコンが硬くて脆いため、表面被覆炭素層の密着性の低下を引き起こす恐れがあることに加え、炭化シリコンが絶縁性であるため、内部抵抗の増加にもつながるという課題があった。その結果、電池特性の改善効果は限定的であった。
更に、リチウムイオン電池では、充放電(特に初期の充放電)する際に、活物質の表面付近で電解液が分解して、LiO、LiCO及びLiF等の不溶性の塩が活物質の表面に析出する。その結果、活物質の表面にSolid Electrolyte Interphase(SEI)膜が形成されることがあった。
このようなSEI膜は電気的に絶縁性であるため、負極表面の活性サイトが不活性化(パシベーション、Passivation)され、電解液の更なる分解が抑制される。リチウムイオン電池では、適度なSEI膜の形成は安定な電池特性の確保に重要な役割を働いているが、不均一な析出や過度な析出は電池特性の低下を引き起こすという問題があった。
特に、負極は正極に比べて電位が低く、電解液の分解が更に起こりやすいという課題があるため、このような課題を解決可能な負極活物質が求められていた。
本発明は、上記現状に鑑み、充放電時の体積膨張や収縮に対する負極活物質への密着性及び追随性が高く、導電助剤、バインダー及び集電体との接触性及び密着性に優れ、電解液の分解抑制効果が高いことから、優れたサイクル特性及びレート特性に加えて高いクーロン効率を実現可能なリチウムイオン電池用負極活物質を提供することを目的とする。また、当該リチウムイオン電池用負極活物質を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、並びに、リチウムイオン電池用負極活物質の製造方法を提供することを目的とする。
本発明は、負極活物質の表面に、アモルファスカーボンを含む被覆層を有するリチウムイオン電池用負極活物質であり、前記被覆層を構成するアモルファスカーボンは、13C固体NMRで測定されるsp2成分に由来するピークと、sp3成分に由来するピークとの比が1以上であり、水酸基と結合を有する芳香族炭素に由来するピークと、sp2成分に由来するピークとの比が0.2以下であるリチウムイオン電池用負極活物質である。
以下、本発明を詳述する。
本発明者は、鋭意検討した結果、負極活物質の表面に所定の樹脂由来のカーボンからなり、所定の物性を有する被覆層を形成することで、充放電時の体積膨張や収縮に対する負極活物質への密着性及び追随性が高く、導電助剤、バインダー及び集電体との接触性及び密着性に優れたリチウムイオン電池用負極活物質となることを見出した。更に、電解液の分解抑制効果が高いことから、優れたサイクル特性及びレート特性に加えて高いクーロン効率を実現することが可能なリチウムイオン電池用負極活物質とすることができることを見出し、本発明を完成させるに至った。
本発明のリチウムイオン電池用負極活物質は、負極活物質の表面に、アモルファスカーボンを含む被覆層を有する。
上記負極活物質としては、リチウムイオンを挿入・脱離することができるものであれば特に限定されるものではないが、例えば、金属リチウム、リチウム合金、ケイ素、ケイ素含有化合物、ケイ素含有合金、スズ、スズ含有合金、金属酸化物、金属硫化物、金属窒化物、グラファイト等の炭素系材料を挙げることができる。
上記負極活物質は、Li/Liに対して、0.0V以上、2.0V未満でリチウムイオンの挿入・脱離反応が進行するものであることが好ましい。
上記「リチウムイオンの挿入反応が0.0V(vs.Li/Li)以上、2.0V(vs.Li/Li)未満で進行する」とは、負極活物質へのリチウムイオン挿入が2.0V(vs.Li/Li)未満で開始し、0.0V(vs.Li/Li)以上で終了することを意味する。
また、「リチウムイオンの脱離反応が、0.0V(vs.Li/Li)以上、2.0V(vs.Li/Li)未満で進行する」とは、負極活物質からのリチウムイオン脱離が0.0V(vs.Li/Li)以上で開始し、2.0V(vs.Li/Li)未満で終了することを意味する。
リチウムイオンの挿入・脱離反応が、0.0V(vs.Li/Li)以上、2.0V(vs.Li/Li)未満で進行する負極活物質としては、例えば、金属、金属化合物、有機物が挙げられる。
上記金属としては、リチウムイオンと反応し、合金化できるものであれば限定されず、Li、Mg、Ca、Al、Si、Ge、Sn、Pb、As、Sb、Bi、Ag、Au、Zn、Cd、Hg、Ti等が挙げられる。なかでも、体積エネルギー密度及び重量エネルギー密度の観点から、Li、Al、Si、Ge、Sn、Ti、Pbが好ましく、Li、Si、Sn、Tiがより好ましい。また、リチウムイオンとの反応性がより一層高いことから、Si又はSnがさらに好ましい。上記金属は、単独で用いてもよいし、上記金属が2種類以上含まれる合金でもよい。また、2種類以上の金属を混合したものでもよい。また、安定性をより一層向上させるために、上記金属以外の金属を含む合金や、PやBなどの非金属元素がドープされたものでもよい。
上記金属化合物としては、金属酸化物、金属窒化物又は金属硫化物が例示される。安定性をより一層高める観点から、金属酸化物が好ましい。金属酸化物としては、リチウムイオンとの反応性がより一層高いことから、シリコン酸化物、スズ酸化物、チタン酸化物、タングステン酸化物、ニオブ酸化物、又はモリブデン酸化物が好ましい。
上記金属酸化物は、単独で用いてもよいし、2種類以上の金属で構成される合金の酸化物であってもよい。2種類以上の金属酸化物を混合したものであってもよい。さらに、安定性をより一層向上させるために、異種金属や、PやBなどの非金属元素がドープされていてもよい。
上記チタン酸化物の場合は、チタン酸リチウム、HTi1225も含まれる。
また、上記負極活物質としては、ケイ素含有化合物が好ましい。上記ケイ素含有化合物としては、Si、シリコン含有合金、シリコン酸化物等が挙げられる。
上記負極活物質の形状としては、例えば、粒子状、薄片状、繊維状、管状、板状、多孔質状等が挙げられるが、粒子状、薄片状であることが好ましい。
また、上記負極活物質が粒子状である場合、その平均粒子径は好ましい下限が0.001μm(1nm)、より好ましい下限が0.005μm(5nm)、更に好ましい下限が0.01μm(10nm)、好ましい上限が40μm、より好ましい上限が10μm、更に好ましい上限が1μm、特に好ましい上限が0.2μm(200nm)である。
本発明のリチウムイオン電池用負極活物質は、アモルファスカーボンを含む被覆層を有する。このような被覆層を有することで、充放電時の体積膨張や収縮に対する負極活物質への密着性及び追随性が高いことから、負極活物質の形状変化に対する安定化効果を発揮し、導電助剤やバインダーとの接着性及び密着性に優れたものとなる。その結果、充放電時に集電体との間にクラックや剥離が生じにくく、良好な充放電サイクル安定性を実現することができる。
また、負極活物質表面の活性サイトが被覆によって不活性化されることで、電解液の分解が抑えられるため、リチウムイオン電池用負極活物質の表面における不溶性塩の析出量を大幅に低減し、過度なSEI膜の形成に伴う電池特性の低下を防止することができる。
加えて、上記被覆層は、高温焼成プロセスを必要とせず、簡易なプロセスで作製することができる。 
上記被覆層は、負極活物質の表面の少なくとも一部に形成されていてもよく、負極活物質の表面全体を被覆するように形成されていてもよい。被覆効果をより一層発揮するためには、上記被覆層は、負極活物質の表面全体を連続で、均一に被覆するように形成されていることが好ましい。
上記被覆層は、緻密性が高いことがより好ましい。本発明では、緻密性の高い被覆層が形成されることで、充放電時に電解液の分解を引き起こす表面活性サイトを効率よく不活性化させることができる。
なお、緻密な被覆層としての“緻密性”の厳密な定義はないが、本発明では、高解像度の透過電子顕微鏡を用いて一個一個のナノ粒子を観察した時に、図1のように、粒子表面の被覆層がはっきり観察され、かつ、被覆層が連続に形成されていることを“緻密”と定義する。
上記被覆層は、負極活物質の表面全体を連続で、均一に形成されると同時に、被覆膜中に分子レベルの細孔(細孔径が1nm以下)を有することが好ましい。このような分子レベルの細孔を有することにより、充放電時にリチウムイオンが被覆膜を自由に通すことができる。
上記被覆層を構成するアモルファスカーボンは、13C固体NMRで測定されるsp2成分に由来するピークと、sp3成分に由来するピークとの比(sp2成分に由来するピーク/sp3成分に由来するピーク)が1以上である。
上記アモルファスカーボンを13C固体NMRで測定した場合、sp2成分に由来するピーク(100~140ppm)、sp3成分に由来するピーク(0~100ppm)、水酸基と結合を有する芳香族炭素に由来するピーク(140~160ppm)が明確に観察される。本発明では、特にsp2成分に由来するピークと、sp3成分に由来するピークとの比が1以上であることで、被覆層が適度な柔軟性を有し、負極活物質への密着性と追従性が優れることとなる。
上記ピークの比は1.2以上であることが好ましく、100以下であることが好ましい。
なお、上記芳香族炭素とは、「芳香環を構成する炭素」であることを意味する。
また、上記被覆層を構成するアモルファスカーボンは、13C固体NMRで測定される水酸基と結合を有する炭素に由来するピークと、sp2成分に由来するピークとの比(水酸基と結合を有する芳香族炭素に由来するピーク/sp2成分に由来するピーク)が0.2以下である。
本発明では、特に水酸基と結合を有する芳香族炭素に由来するピークと、sp2成分に由来するピークとの比が0.2以下であることで、高い炭化率を有する被覆層が得られることとなる。
上記ピークの比は0.15以下であることが好ましい。上記ピークの比の下限は特に限定されないが0.0001である。
上記被覆層を構成するアモルファスカーボンは、sp2結合とsp3結合が混在したアモルファス構造を有し、炭素からなるものであるが、ラマンスペクトルを測定した場合のGバンドとDバンドのピーク強度比が1.0以上であることが好ましい。
上記アモルファスカーボンをラマン分光で測定した場合、sp2結合に対応したGバンド(1580cm-1付近)及びsp3結合に対応したDバンド(1360cm-1付近)の2つのピークが明確に観察される。なお、炭素材料が結晶性の場合には、上記の2バンドのうち、何れかのバンドが極小化してゆく。例えば、単結晶ダイヤモンドの場合は1580cm-1付近のGバンドが殆ど観察されない。一方、高純度グラファイト構造の場合は、1360cm-1付近のDバンドが殆ど現れない。
本発明では、特にGバンドとDバンドのピーク強度比(Gバンドでのピーク強度/Dバンドでのピーク強度)が1.0以上であることで、形成されたアモルファスカーボン膜の柔軟性が優れることとなる。
上記ピーク強度比が1.0未満であると、膜の柔軟性が不十分であることだけではなく、膜の密着性及び膜強度も低下することとなる。
上記ピーク強度比は1.2以上であることがより好ましく、10以下であることが好ましい。
上記被覆層は、カーボン以外の元素を含有しても良い。カーボン以外の元素としては、例えば、窒素、水素、酸素等が挙げられる。このような元素の含有量は、カーボンとカーボン以外の元素との合計に対して、10原子%以下であることが好ましい。
本発明のリチウムイオン電池用負極活物質は、ゼータ電位(表面電位)が0~-60mVであることが好ましい。
上記範囲内とすることで、電極作製時の分散性が優れることに加え、導電助剤、バインダー及び集電体との密着性をより一層向上させることが可能となる。
なお、上記ゼータ電位は、例えば、市販の顕微鏡電気泳動式ゼータ電位計(日本ルフト社製、M502)を用いて測定することができる。
上記被覆層を構成するアモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものであることが好ましい。上記オキサジン樹脂は低温で炭化が可能であることから、コストを低減することが可能となる。
上記オキサジン樹脂は、一般にフェノール樹脂に分類される樹脂であるが、フェノール類とホルムアルデヒドに加えて、さらにアミン類を加えて反応させることで得られる熱硬化樹脂である。なお、フェノール類において、フェノール環にさらにアミノ基があるようなタイプ、例えば、パラアミノフェノールのようなフェノールを用いる場合には、上記反応でアミン類を加える必要はなく、炭化もしやすい傾向にある。炭化のしやすさでは、ベンゼン環ではなく、ナフタレン環を用いることで、さらに炭化がしやすくなる。
上記オキサジン樹脂としては、ベンゾオキサジン樹脂、ナフトオキサジン樹脂があり、このうち、ナフトオキサジン樹脂は、最も低温で炭化しやすいため好適である。以下にオキサジン樹脂の構造の一部として、ベンゾオキサジン樹脂の部分構造を式(1)に、ナフトオキサジン樹脂の部分構造を式(2)に示す。
このように、オキサジン樹脂とは、ベンゼン環又はナフタレン環に付加した6員環をもつ樹脂のことをさし、その6員環には、酸素と窒素が含まれ、これが名前の由来となっている。
Figure JPOXMLDOC01-appb-C000001
上記オキサジン樹脂を用いることにより、エポキシ樹脂等の他の樹脂に比べてかなり低温でアモルファスカーボンの皮膜を得ることが可能となる。具体的には200℃以下の温度で炭化が可能である。特に、ナフトオキサジン樹脂を用いることで、より低温で炭化させることができる。
このように、オキサジン樹脂を用いて、より低温で炭化させることにより、アモルファスカーボンを有し、緻密性の高い被覆層を形成することができる。
アモルファスカーボンを有し、緻密性の高い被覆層を形成できる理由については明らかではないが、例えば、オキサジン樹脂としてナフトオキサジン樹脂を使用した場合、樹脂中のナフタレン構造が低温加熱によって局部的に繋がり、分子レベルで層状構造が形成されるためであると考えられる。上記層状構造は、高温処理されていないため、グラファイトのような長距離の周期構造までは進展しないため、結晶性は示さない。
得られたカーボンが、グラファイトのような構造であるか、アモルファス構造であるかは、後述するX線回折法によって、2θが26.4°の位置にピークが検出されるか否かにより確認することができる。
上記ナフトオキサジン樹脂の原料として用いられるのは、フェノール類であるジヒドロキシナフタレンと、ホルムアルデヒドと、アミン類とである。なお、これらについては後に詳述する。
上記アモルファスカーボンは、上記オキサジン樹脂を150~350℃の温度で熱処理することにより得られるものであることが好ましい。本発明では、低温で炭化が可能なナフトオキサジン樹脂を用いていることで、比較的低温でアモルファスカーボンとすることが可能となる。
このように低温で得られることで、従来より低コスト、且つ簡便なプロセスで作製できるという利点がある。
上記熱処理の温度は170~300℃であることがより好ましい。
なお、上記熱処理温度は、目的によって、更に、350~800℃の温度で処理しても良い。
上記被覆層は、窒素含有量が0~5重量%であることが好ましい。窒素含有量を上記範囲内とすることで、純粋なカーボン膜よりも優れる物性を有する被覆層を得ることができる。
上記被覆層は、平均膜厚が0.5nm~1.0μmであることが好ましい。1.0nm~100nmがより好ましく、2.0nm~50nmが特に好ましい。上記被覆層の平均膜厚が上記範囲内であることで、負極活物質表面の活性点を効率よく抑えることができる。その結果、充放電時の電解液の分解も効率よく抑制され、良好な初期クーロン効率と長期的なサイクル特性を得ることができる。
上記被覆層の膜厚の変動係数(CV値)は、10%以下であることが好ましい。上記被覆層の膜厚のCV値が10%以下であると、被覆層の膜厚が均一でバラツキが少ないことから、薄い膜でも所望の機能(イオン溶出と結晶性保持)を付与することができる。上記被覆層の膜厚のCV値の好ましい上限は8.0%である。なお、下限については特に限定されないが0.5%が好ましい。
膜厚のCV値(%)とは、標準偏差を平均膜厚で割った値を百分率で表したものであり、下記式により求められる数値のことである。CV値が小さいほど膜厚のばらつきが小さいことを意味する。
 膜厚のCV値(%)=(膜厚の標準偏差/平均膜厚)×100
平均膜厚及び標準偏差は、例えば、FE-TEMを用いて測定することができる。
上記被覆層は、負極活物質との間に良好な密着性を有することが好ましい。密着性に関する明確な定義はないが、リチウムイオン電池用負極活物質と、樹脂と、可塑剤と分散剤とを含有した混合物をビーズミルで処理しても、被覆層が剥離しないことが好ましい。
本発明では、飛行時間型二次イオン質量分析法(TOF-SIMS)によって被覆層を測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出されることが好ましい。
このようなベンゼン環、ナフタレン環に由来する質量スペクトルが検出されることで、オキサジン樹脂が含有するカーボンに由来するものであることを確認できる。
本願発明において、ベンゼン環に由来する質量スペクトルとは、77.12付近の質量スペクトルをいい、ナフタレン環に由来する質量スペクトルとは、127.27付近の質量スペクトルをいう。
なお、上記測定は、例えば、TOF-SIMS装置(ION-TOF社製)等を用いて行うことができる。
本発明では、X線回折法によって被覆層を測定した場合、2θが26.4°の位置にピークが検出されないことが好ましい。
上記2θが26.4°の位置のピークは、グラファイトの結晶ピークであり、このような位置にピークが検出されないことで、被覆層を形成するカーボンがアモルファス構造であるということができる。また、2θが36°の位置にピークが検出されないことが好ましい。上記2θが36°の位置のピークは、SiC由来のピークである。
なお、上記測定は、例えば、X線回折装置(SmartLab Multipurpose、リガク社製)等を用いて行うことができる。
本発明のリチウムイオン電池用負極活物質を製造する方法の一形態としては、ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンを含有する混合溶液を調製する工程と、負極活物質を前記混合溶液に添加し、所定温度で反応させる工程と、反応後の負極活物質を熱処理する工程を有する方法を用いることができる。
本発明のリチウムイオン電池用負極活物質の製造方法では、ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンを含有する混合溶液を調製する工程を行う。
上記ホルムアルデヒドは不安定であるので、ホルムアルデヒド溶液であるホルマリンを用いることが好ましい。ホルマリンは、通常、ホルムアルデヒド及び水に加えて、安定剤として少量のメタノールが含有されている。本発明で用いられるホルムアルデヒドは、ホルムアルデヒド含量が明確なものであれば、ホルマリンであっても構わない。
また、ホルムアルデヒドには、その重合形態としてパラホルムアルデヒドがあり、こちらの方も原料として使用可能であるが、反応性が劣るため、好ましくは上記したホルマリンが用いられる。
上記脂肪族アミンは一般式R-NHで表され、Rは炭素数5以下のアルキル基であることが好ましい。炭素数5以下のアルキル基としては制限されないが、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、シクロブチル基、シクロプロピルメチル基、n-ペンチル基、シクロペンチル基、シクロプロピルエチル基、シクロブチルメチル基等が挙げられる。
分子量を小さくする方が好ましいので、置換基Rは、メチル基、エチル基、プロピル基などが好ましく、実際の化合物名としては、メチルアミン、エチルアミン、プロピルアミン等が好ましく使用できる。最も好ましいものは、分子量が一番小さなメチルアミンである。
上記ジヒドロキシナフタレンとしては、多くの異性体がある。例えば、1,3-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンが挙げられる。
このうち、反応性の高さから、1,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレンが好ましい。さらに1,5-ジヒドロキシナフタレンが最も反応性が高いので好ましい。
上記混合溶液中におけるジヒドロキシナフタレン、脂肪族アミン、ホルムアルデヒドの3成分の比率については、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを1モル、ホルムアルデヒドを2モル配合することが最も好ましい。
反応条件によっては、反応中に揮発などにより原料を失うので、最適な配合比は正確に上記比率とは限らないが、ジヒドロキシナフタレン1モルに対して、脂肪族アミンを0.8~1.2モル、ホルムアルデヒドを1.6~2.4モルの配合比の範囲で配合することが好ましい。
上記脂肪族アミンを0.8モル以上とすることにより、オキサジン環を十分に形成することができ、重合を好適に進めることができる。また1.2モル以下とすることにより、反応に必要なホルムアルデヒドを余計に消費することがないため、反応が順調に進み、所望のナフトオキサジンを得ることができる。同様に、ホルムアルデヒドを1.6モル以上とすることで、オキサジン環を充分に形成することができ、重合を好適に進めることができる。
また2.4モル以下とすることで、副反応の発生を低減できるため好ましい。
上記混合溶液は、上記3原料を溶解し、反応させるための溶媒を含有することが好ましい。
上記溶媒としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール類、テトラヒドロフラン、ジオキサン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン等の通常樹脂を溶解するために用いられる溶媒が挙げられる。
上記混合溶液中の溶媒の添加量は特に限定されないが、ジヒドロキシナフタレン、脂肪族アミン及びホルムアルデヒドを含む原料を100質量部とした場合は、通常300~20000質量部で配合することが好ましい。300質量部以上とすることで、溶質を充分に溶解することができるため、皮膜を形成した際に均一な皮膜とすることができ、20000質量部以下とすることで、被覆層の形成に必要な濃度を確保することができる。
本発明のリチウムイオン電池用負極活物質の製造方法では、負極活物質を上記混合溶液に添加し、反応させる工程を行う。反応を進行させることにより、上記負極活物質の表面にナフトオキサジン樹脂からなる層を形成することができる。
上記反応は常温でも進行するが、反応時間を短縮することができるため、40℃以上に加温することが好ましい。加温を続けることで、作製されたオキサジン環が開き、重合が起こると分子量が増加し、いわゆるポリナフトオキサジン樹脂となる。反応が進みすぎると溶液の粘度が増し被覆に適さないため注意を要する。
また、例えば、ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンの混合液を一定時間反応させて後に負極活物質を添加する方法を用いてもよい。
また、粒子への被覆を均一に行うためには、被覆反応時に粒子が分散された状態が好ましい。分散方法としては、撹拌、超音波、回転など公知の方法が利用できる。また、分散状態を改善するために、適当な分散剤を添加しても良い。
更に、反応工程を行った後に、熱風等により溶媒を乾燥除去することにより、樹脂を負極活物質表面に均一に被覆してもよい。加熱乾燥方法についても特に制限はない。 
本発明のリチウムイオン電池用負極活物質の製造方法では、次いで、熱処理する工程を行う。これにより、前工程で被覆した樹脂が炭化されてアモルファスカーボンを含む被覆層とすることができる。上記熱処理は、150~350℃の温度で行うことが好ましい。更に、350~800℃の温度で熱処理しても良い。
上記熱処理の方法としては、特に限定されず、加熱オーブンや電気炉等を用いる方法等が挙げられる。
上記熱処理における温度は、150~350℃である。本発明では、低温で炭化が可能なナフトオキサジン樹脂を用いていることから、更に低温でアモルファスカーボンとすることが可能となる。この場合の加熱温度の好ましい上限は250℃である。
上記加熱処理は、空気中で行っても良いし、窒素、アルゴンなどの不活性ガス中で行っても良い。熱処理温度が250℃以上の場合は、不活性ガス雰囲気の方がより好ましい。
また、本発明のリチウムイオン電池用負極活物質を製造する方法のもう一つの形態としては、前記ホルムアルデヒドと脂肪族アミンの代りに、トリアジンを含有する混合溶液を反応液として用いることもできる。具体的には、トリアジンとジヒドロキシナフタレンを含有する混合液を調製する工程と、負極活物質を前記混合溶液に添加し、反応させる工程と、熱処理する工程を含む方法で作製することができる。
上記トリアジンとしては、下記式(3)に示すものを用いることが好ましい。
下記式(3)中、Rは脂肪族アルキル基、又は、芳香族を含む有機基を表す。
上記Rが、脂肪族アルキル基の場合、カーボンの数が1~20のアルキル基であることが好ましい。
上記トリアジンとしては、炭化率と膜の緻密性の観点から、Rがメチル基である1,3,5-トリメチルヘキサヒドロ-1、3、5-トリアジンを用いることがより好ましい。
Figure JPOXMLDOC01-appb-C000002
特に、本発明のリチウムイオン電池用負極活物質を製造する際には、反応時に超音波を印加しながら同時に撹拌を行うことが好ましい。また、このように超音波の印加と撹拌との同時に行う時間については1~10時間であることが好ましい。更に、反応時の加熱温度は30℃~150℃が好ましい。更に、反応後に洗浄した粒子を乾燥させる温度については、50~150℃が好ましい。
本発明のリチウムイオン電池用負極活物質は、産業用、民生用、自動車等のリチウムイオン電池等の用途に有用である。
本発明のリチウムイオン電池用負極活物質と、炭素材料と、導電助剤と、バインダーとを含むリチウムイオン二次電池用負極も本発明の1つである。
上記バインダーとしては、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリイミド、アクリル樹脂及びブチラール樹脂からなる群から選択された少なくとも1種であることが好ましい。
更に、本発明のリチウムイオン二次電池用負極を備えるリチウムイオン二次電池もまた本発明の1つである。
本発明によれば、充放電時の体積膨張や収縮に対する負極活物質への密着性及び追随性が高く、導電助剤、バインダー及び集電体との接触性及び密着性に優れ、電解液の分解抑制効果が高いことから、優れたサイクル特性及びレート特性に加えて高いクーロン効率を実現することが可能なリチウムイオン電池用負極活物質を提供することができる。また、当該リチウムイオン電池用負極活物質を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、並びに、リチウムイオン電池用負極活物質の製造方法を提供することができる。
透過電子顕微鏡(TEM)を用いて、実施例1で得られたカーボン被覆シリコン粒子を撮影した写真である。 後述する「(6)充放電特性」で作製したリチウムイオン電池の分解模式図である。 実施例1で得られた粒子を負極活物質として作製した電池の充放電試験結果である。 実施例1で得られた粒子を負極活物質として作製した電池で、充放電サイクルを繰り返す時のクーロン効率を示したものである。 充放電を繰返し30回行った後の負極の断面写真である。 実施例1で得られた粒子を負極活物質として作製した電池について、異なる充放電レートで放電容量を測定した充放電曲線である。 実施例1で得られた粒子を負極活物質として作製した電池について、異なる充放電レートでクーロン効率を測定した充放電曲線である。 実施例2で得られた粒子を負極活物質として作製した電池のサイクル特性である。 比較例1で得られた粒子を負極活物質として作製した電池の充放電試験結果である。 比較例1で得られた粒子を負極活物質として作製した電池のクーロン効率を示したものである。 充放電1回後と30回後のセルのインピーダンス測定結果(Cole-Cole Plot)である。
以下に実施例を掲げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
(被覆層の形成)
1,5-ジヒドロキシナフタレン(以降1,5-DHNと略す、東京化成社製)、40%メチルアミン水溶液(富士フイルム和光純薬株式会社製)、37%ホルムアルデヒド水溶液(富士フイルム和光純薬株式会社製)の三者を出発原料として用い、三者の混合エタノール溶液400mlをフラスコに調製した。なお、1,5-DHNとメチルアミンとホルムアルデヒドのモル比は1:1:2とし、1,5-DHNの濃度は0.02mol/Lとした。
次に、得られた混合エタノール溶液に、シリコン原料粒子(Si粒子、シグマ・アルドリッチ社製、平均粒径100nm)6gを添加した。その後、溶液の温度を50℃に保持しながら、超音波と撹拌を同時に印加しながら5時間反応させた。反応後に、溶液を濾過し、粒子をエタノールで3回洗浄した。洗浄した粒子を110で℃一晩真空乾燥することにより、ナフトオキサン樹脂で被覆処理したシリコン粒子を得た。
続いて、上記被覆処理したシリコン粒子を200℃で20時間真空加熱することにより、粒子表面のナフトオキサジン樹脂が炭化し、カーボン被覆シリコン粒子を得た。なお、得られたカーボン被覆シリコン粒子をエネルギー分散型(EDS)検出器付き透過電子顕微鏡で観察し、撮影した写真を図1に示す。図1から、シリコン粒子の周りにカーボン被覆層が形成されていることが確認された。
(ラマン分光測定)
得られたカーボン被覆シリコン粒子を顕微レーザラマン Nicolet Almega XR(Thermo Fisher Scientific社製)を用いてラマン分光で測定したところ、GバンドとDバンドで共にピークが観察され、ナフトオキサジン樹脂はアモルファスカーボンへと変化していると判断できた。
また、GバンドとDバンドのピーク強度比は1.2であった。なお、レーザー光は530nmとした。
13C固体NMRの測定)
13C固体NMRの測定」については、上記実施例で得られたカーボン被覆シリコン粒子を用いて「13C固体NMRの測定」を行うことができる。
本実施例では、アモルファスカーボン被覆シリコン粒子表面でのアモルファスカーボン被覆層の膜厚が薄いため、被覆反応に用いた条件と同じの反応液を用いて、アモルファスカーボン単体の粉末を作製し、そのアモルファスカーボン単体粉末を200℃で熱処理した後に、「13C固体NMRの測定」を行った。なお、カーボン被覆シリコン粒子を用いた場合と、アモルファスカーボン単体粉末を用いた場合とで、13C固体NMRの測定の結果は異なるものではない。
具体的には、アモルファスカーボン単体粉末を固体NMR用8mm ローターに充填し、single Pulse(DD MAS)法を用いて、7kHzのMAS回転数で測定を行った(装置:JNM-ECX400、Jeol Resonounce社製)。Single Pulse(DD MAS)を用いた際のパルス幅が6.32μ秒であり、スキャン回数が8025回であった。
測定した13C固体NMRのスペクトルから、sp2成分に由来するピーク(100~140ppm)とsp3成分に由来するピーク(0~100ppm)の比[sp2/sp3]が3.3であり、水酸基と結合を有する芳香族炭素に由来するピーク(140~160ppm)とsp2成分との比[OH結合C/sp2]が0.1であることが分かった。
(実施例2)
シリコン原料粒子(シグマ・アルドリッチ社製、平均粒径100nm)6gとエタノール160gを含有するシリコン粒子含有溶液を添加した500mlのフラスコを50℃で恒温した超音波槽にセットした。シリコン粒子含有溶液に超音波と撹拌を同時に印加しながら、0.225mol/Lの1,3,5-トリメチルヘキサヒドロ-1、3、5-トリアジン(東京化成社製)のエタノール溶液40gと濃度0.225mol/Lの1,5-DHNのエタノール溶液40gを1分間5gの速度で同時に上記フラスコに添加した。添加終了後に、混合液を更に4時間反応させた。
反応後に、溶液を濾過し、粒子をエタノールで3回洗浄した。洗浄した粒子を110℃で一晩真空乾燥することにより、ナフトオキサン樹脂で被覆処理したシリコン粒子を得た。
続いて、上記被覆処理したシリコン粒子を400℃で10時間真空加熱することにより、粒子表面のナフトオキサジン樹脂が炭化したカーボン被覆シリコン粒子を得た。
なお、得られたカーボン被覆シリコン粒子をラマンスペクトル測定したところ、ナフトオキサジン樹脂はアモルファスカーボンへと変化していると判断できた。
また、GバンドとDバンドのピーク強度比は1.5であることが分かった。
(実施例3)
シリコン原料粒子(シグマ・アルドリッチ社製、平均粒径100nm)3gとエタノール160gを含有するシリコン粒子含有溶液を添加した500mlのフラスコを70℃で恒温した超音波槽にセットした。シリコン粒子含有溶液に超音波と撹拌を同時に印加しながら、0.09mol/Lの1,3,5-トリメチルヘキサヒドロ-1、3、5-トリアジン(東京化成社製)のエタノール溶液40gを添加し、30分間攪拌した。その後、0.09mol/Lの1,5-DHNのエタノール溶液40gを1分間10gの速度でフラスコに添加した。添加終了後に、混合液を更に7時間反応させた。
反応後に、溶液を濾過し、粒子をエタノールで3回洗浄した。洗浄した粒子を110℃で一晩真空乾燥することにより、ナフトオキサン樹脂で被覆処理したシリコン粒子を得た。続いて、上記被覆処理したシリコン粒子を窒素雰囲気で200℃で10時間加熱した後に、更に600℃で2時間加熱した。これにより、粒子表面のナフトオキサジン樹脂が炭化したカーボン被覆シリコン粒子を得た。
なお、得られたカーボン被覆シリコン粒子をラマンスペクトル測定したところ、ナフトオキサジン樹脂はアモルファスカーボンへと変化していると判断できた。
また、GバンドとDバンドのピーク強度比は2.1であることが分かった。
(比較例1)
実施例1で使用した「シリコン原料粒子(シグマ・アルドリッチ社製」について、「(被覆層の形成)」を行わずにそのまま使用した。
(比較例2)
1.0gのグルコースを溶解した300mlの水に、シリコン粒子(シグマ・アルドリッチ社製、平均粒径100nm)1.5gを添加し、超音波と撹拌を同時に印加しながら1時間反応させた。その後、分散液をテフロン(登録商標)内筒付のステンレス耐圧容器に移し、170℃で10時間熱処理した。反応後、室温まで冷却し、遠心分離、洗浄工程を経て、カーボン被覆シリコン粒子を得た。
(評価方法)
(1)被覆層膜厚測定(平均膜厚及びCV値)
被覆層の平均膜厚及びCV値を、透過顕微鏡(FE-TEM)を用いて評価した。
具体的には、FE-TEMにより任意の20個の粒子について被覆層の断面写真を撮影した後、得られた断面写真から、各粒子の異なる10箇所の膜厚をランダムに測定し、平均膜厚、標準偏差を算出した。得られた数値から膜厚の変動係数を算出した。
なお、表面被覆したカーボンと中の負極活物質(シリコン等)とは原子量の差が大きいため、TEM像のコントラストの差から被覆層(カーボン層)の膜厚を見積もることができる。
(2)TOF-SIMS測定
得られた粒子の被覆層について、飛行時間型二次イオン質量分析法(Time-of-Flight Secondary Ion Mass Spectrometry,TOF-SIMS)によるベンゼン環に由来する質量スペクトル(77.12付近)、及び、ナフタレン環に由来する質量スペクトル(127.27付近)の確認を行った。
なお、TOF-SIMS測定は、TOF-SIMS 5型装置(ION-TOF社製)を用い、下記のような条件で行った。また、空気中や保管ケースに由来するコンタミをできるだけ避けるために、サンプル作製後に、シリコンウェハー保管用クリーンケースにて保管した。
一次イオン:209Bi+1
イオン電圧:25kV
イオン電流:1pA
質量範囲:1~300mass
分析エリア:500×500μm
チャージ防止:電子照射中和
ランダムラスタスキャン
(3)X線回折
X線回折装置(SmartLab Multipurpose、リガク社製)を用い、以下の測定条件で回折データを得た。X線波長:CuKα1.54A、測定範囲:2θ=10~70°、スキャン速度:4°/min、ステップ:0.02°
得られた回折データについて、グラファイト由来のピーク(2θ=26.5°付近)が検出されるか否かを確認した。
また、得られた回折データについて、SiC由来のピーク(2θ=36°付近)が検出されるか否かをも確認した。
なお、一連の解析は、解析ソフト(PDXL2)を用いて行った。
(4)ゼータ電位      
実施例及び比較例の粒子について、顕微鏡電気泳動式ゼータ電位計(日本ルフト社製、M502)を用いてゼータ電位を測定した。具体的には、リチウムイオン電池用負極活物質を0.01mol/Lの塩化カリウム(KCl)の水溶液に超音波で分散し、その溶液を測定用セルに注入した。その後、顕微鏡で粒子の動きを観察しながら電圧をかけ、粒子が泳動しなくなった(静止した)時の電位を測定することによって、ゼータ電位を求めた。
(5)窒素含有量測定
被覆処理後の負極活物質の窒素含有量は下記の方法により測定した。負極活物質の元素組成をX線光電子分光法(装置:アルバック・ファイ社製、多機能走査型X線光電子分光分析装置(XPS)、PHI 5000 VersaProbe III)によって分析し、検出された全元素の総量を100%とし、全元素中における窒素の占有率(%)を窒素含有量とした。
(6)充放電特性
(負極の作製)
実施例、比較例で得られた粒子と、黒鉛(大阪ガスケミカル社製、OMAC-R)とアセチレンブラック(デンカ社製、Li-400)と、ポリアミック酸(宇部興産社製、U-ワニス-A)を重量比12.75:72.25:5:10の比で混合した。その後、適量の溶媒(N-メチルピロリドン(NMP))を添加し、錬太郎(AR-100)で均一なペーストまで混練した。粘度は必要に応じて溶媒の加減により調整した。
次に、上記調製したペーストをアプリケータ(PI-1210、テスター産業社製)で膜厚が60μmになるように、厚み20μmの銅箔の表面に塗布した。塗布した膜は、100℃で1時間真空乾燥した後に、更に250℃で15時間熱処理した。
(リチウムイオン電池の作製)
電池セルの組み立てプロセスはすべてアルゴンガス置換の真空グローブボックス中で行った。セルとしては、図2のような構造を有するコイン型セル(HSセル)を用いた。作用極1と対極2との間に、対極2側から順に、金属リチウム片3(Φ10mm、厚み0.2mmのLi箔)、セパレータ4(積水化学社製エスフィノ(25μm))、負極シート5(Φ10mm、上記250℃で熱処理したもの)、樹脂からなる固定治具6、集電極7及びばね8を積層した。正極は、上記金属リチウム片3である。電解液は、1モル/LのLiPF/EC:DMC(1:2v/v%)溶液(キシダ化学社製)を用いた。
(充放電試験)
上記のようにして組み立てたコイン型電池において、電圧が1.5-0.02Vの範囲で、レートが0.2Cの条件で充放電テストを行った。具体的には、まずは1.5Vから0.02VまでCCCVのモードで充電(シリコンへリチウムを挿入過程)した。充電後は1分間休止した。次に、CCのモードで0.02Vから1.5Vまで放電した。次に1分間休止した。
上記充電及び放電からなるサイクルを繰り返した。実施例1で得られた粒子を負極活物質として作製した電池の充放電試験結果を図3に示す。図3では、横軸は充放電のサイクル数を示し、縦軸は容量(mAh/g)すなわち充放電特性を示す。なお、比較例1で得られた粒子を負極活物質として作製した電池の充放電試験結果を図9に示す。
図3と図9から、実施例1で得られた粒子を用いて得られた電池は、未被覆のシリコン粒子(比較例1)と比較して、充放電を繰り返しても、充放電特性の劣化が少ないことが明らかである。
また、図4は、実施例1で得られた粒子を負極活物質として作製した電池で、充放電サイクルを繰り返す時のクーロン効率を示したものである。なお、比較例1で得られた粒子を負極活物質として作製した電池のクーロン効率を図10に示す。
図4と図10から、実施例1で得られた粒子を用いて得られた電池は、未被覆のシリコン粒子(比較例1)と比較して、初回充放電だけではなく、2回目以降の場合もクーロン効率が高いことがわかる。
図5は、充放電を繰返し30回行った後の負極の断面写真である。図5(b)は実施例1で得られた粒子を負極活物質として作製した負極であり、図5(a)は比較例1で得られた粒子を負極活物質として作製した負極である。
図5(a)では、電極の表面から、多数の白い粒子状析出物が観察されるが、図5(b)では、このような粒子状物が殆ど観察されなかった。
また、EDSによる元素組成分析およびXPSによる元素の化学結合状態分析から、上記白い粒子状析出物は、充放電時に電解液の分解に起因する生成物であるLiO、LiCOおよびLiFの可能性が高いこと示唆された。このことから、実施例1で得られた粒子に形成された被覆層は、電池のサイクル特性の低下の原因の一つである電解液の分解を抑制する効果があることが分かった。
図6は、実施例1で得られた粒子を負極活物質として作製した電池について、異なる充放電レートで放電容量を測定した充放電曲線である。図6から分かるように、充放電レートを従来の0.2Cから1.0Cまで上げても高いサイクル安定性を示した。未被覆シリコン粒子の場合は、充放電レートを上げるとサイクル特性が急劇に悪くなるので、アモルファスカーボン被覆によるレート特性の改善効果が非常に高いことが分かった。
図7は、実施例1で得られた粒子を負極活物質として作製した電池について、異なる充放電レートでクーロン効率を測定した充放電曲線である。図7から分かるように、充放電レートを0.2Cから1.0Cまで上げても、クーロン効率の低下が見られなかった。
また、図8は、実施例2で得られた粒子を負極活物質として作製した電池のサイクル特性である。
なお、表1には、充放電レートを0.2Cとした場合における、初期放電容量比[(第2回サイクル後の放電容量/第1回サイクル後の放電容量)×100]を算出し、記載した。
また、第1回サイクル後の放電容量と第15回サイクル後の放電容量とから、放電容量維持率(%)を算出し、記載した。
更に、充放電レートを0.2Cとした場合における、初期クーロン効率[(1回目サイクルの放電容量/1回サイクルの充電容量)×100]を算出し、記載した。
加えて、充放電レートを0.2Cとした場合の放電容量維持率(%)と、1.0Cとした場合の放電容量維持率(%)の比[(1.0Cでの放電容量維持率/0.2Cでの放電容量維持率)×100]を算出し、記載した。
(7)充放電前後の電極膜断面の酸素含有量比の測定
充放電試験前(初期)の電極膜と充放電30回後の電極膜の断面(充放電レート:0.2C)を、電界放出型走査電子顕微鏡S-4300SE(株式会社日立ハイテクノロジーズ製)を用いて観察し、その断面の元素組成を装置に付属したエネルギー分散型X線分析装置(EDS)を用いて分析した。電極膜断面の酸素含有量は、検出された全元素(C、O、Si、F、P)の量の合計を100とし、その酸素の比率を酸素含有量(重量%)とした。
また、同一の電極膜において、充放電30回後の酸素含有量と初期の酸素含有量の比(充放電30回後の酸素含有量/初期の酸素含有量)を充放電前後の電極膜断面の酸素含有量比とした。
実施例1と比較例1について、充放電前後の電極膜断面の酸素含有量比を比較したところ、比較例1の酸素含有量比が20であるのに対し、実施例1の酸素含有量比は約四分の一の5.6であった。これは、比較例1(未被覆シリコン粒子)に比べ、実施例1(アモルファスカーボン被覆したシリコン粒子)の電極膜が充放電後に酸素の増加が少ないことを意味する。前述したように、充放電試験後の電極膜表面の酸素含有量の増加は主に電解液の分解生成物であるLiOやLiCOなどに由来するため、上記結果は、実施例1で得られた粒子に形成されたアモルファスカーボン被覆層は、充放電時の電解液の分解を抑制する効果があることを示唆している。
(8)インピーダンス測定
実施例および比較例で作製したコイン型電池について、VMP3 マルチチャンネル電気化学測定システム(フランスBio-Logic社製)を用いて、周波数10mHz~100kHzの範囲内でインピーダンス測定を行った。
図11は、実施例1(図11(b))と比較例1(図11(a))で得られた電極膜から作製したセルが充放電1回後および30回後のインピーダンス測定の結果(Cole-Cole Plot)である。
Cole-Cole Plotでの半円弧は電池の内部抵抗に対応しており、半円弧の直径が抵抗値に相当する。つまり、半円弧が大きいほど抵抗が高く、電池としては好ましくない。図11から、実施例1(図11(b))の場合は、充放電1回後と30回後に半円弧の大きさがそれほど大きく変わっていないのに対し、比較例1(図11(a))の場合は、30回充放電後の半円弧、特に右側の半円弧が著しく大きくなっていた(詳しくは述べないが、この半円弧は界面の電荷移動抵抗に相当する)。
また、インピーダンス測定装置に内蔵されている解析ソフトを用いて、各スペクトルの右側の半円弧の直径を測定し、サイクル30回後の値と1回後の値の比を求めたところ、比較例1(図11(a))が8倍であるのに対して、実施例1(図11(b))は1.2倍であった。これにより、実施例1のように、負極活物質に所定のアモルファスカーボン被覆層を形成した場合、30回充放電後の抵抗の増加倍率が8倍から1.2倍まで低減できることが分かる。
Figure JPOXMLDOC01-appb-T000003
本発明によれば、優れたサイクル特性及びレート特性に加えて高いクーロン効率を実現することが可能なリチウムイオン電池用負極活物質、及び、当該リチウムイオン電池用負極活物質を用いたリチウムイオン二次電池用負極、リチウムイオン二次電池、並びに、リチウムイオン電池用負極活物質の製造方法を提供することができる。
1 作用極
2 対極
3 金属リチウム片
4 セパレータ
5 負極シート
6 固定治具
7 集電極
8 ばね
 
 

Claims (17)

  1. 負極活物質の表面に、アモルファスカーボンを含む被覆層を有するリチウムイオン電池用負極活物質であり、
    前記被覆層を構成するアモルファスカーボンは、13C固体NMRで測定されるsp2成分に由来するピークと、sp3成分に由来するピークとの比が1以上であり、
    水酸基と結合を有する芳香族炭素に由来するピークと、sp2成分に由来するピークとの比が0.2以下である
    ことを特徴とするリチウムイオン電池用負極活物質。
  2. ゼータ電位が0~-60mVであることを特徴する請求項1記載のリチウムイオン電池用負極活物質。
  3. 被覆層を構成するアモルファスカーボンは、オキサジン樹脂が含有するカーボンに由来するものであることを特徴する請求項1又は2記載のリチウムイオン電池用負極活物質。
  4. オキサジン樹脂は、ナフトオキサジン樹脂であることを特徴とする請求項3記載のリチウムイオン電池用負極活物質。
  5. 被覆層を構成するアモルファスカーボンは、ラマン分光で測定した場合のGバンドとDバンドのピーク強度比が1.0以上であることを特徴とする請求項1、2、3又は4記載のリチウムイオン電池用負極活物質。
  6. 被覆層は、窒素含有量が0~5重量%であることを特徴する請求項1、2、3、4又は5記載のリチウムイオン電池用負極活物質。
  7. 被覆層は、平均膜厚が0.5nm~1.0μmであることを特徴とする請求項1、2、3、4、5又は6記載のリチウムイオン電池用負極活物質。
  8. 飛行時間型二次イオン質量分析法(TOF-SIMS)によって被覆層を測定した場合、ベンゼン環に由来する質量スペクトル、及び、ナフタレン環に由来する質量スペクトルのうち少なくとも1つが検出されることを特徴とする請求項1、2、3、4、5、6又は7記載のリチウムイオン電池用負極活物質。
  9. X線回折法によって被覆層を測定した場合、2θが26.4°の位置にピークが検出されないことを特徴とする請求項1、2、3、4、5、6、7又は8記載のリチウムイオン電池用負極活物質。
  10. X線回折法によって被覆層を測定した場合、2θが36°の位置にピークが検出されないことを特徴とする請求項1、2、3、4、5、6、7、8又は9記載のリチウムイオン電池用負極活物質。
  11. 負極活物質は、ケイ素含有化合物であることを特徴とする請求項1、2、3、4、5、6、7、8、9又は10記載のリチウムイオン電池用負極活物質。
  12. 負極活物質は、平均粒子径が10~200nmの粒子形状であることを特徴とする請求項1、2、3、4、5、6、7、8、9、10又は11記載のリチウムイオン電池用負極活物質。
  13. 請求項1、2、3、4、5、6、7、8、9、10、11又は12記載のリチウムイオン電池用負極活物質と、炭素材料と、導電助剤と、バインダーとを含むことを特徴とするリチウムイオン二次電池用負極。
  14. バインダーは、スチレンブタジエンゴム、カルボキシメチルセルロース、ポリフッ化ビニリデン、ポリイミド、アクリル樹脂及びブチラール樹脂からなる群から選択された少なくとも1種であることを特徴とする請求項13記載のリチウムイオン二次電池用負極。
  15. 請求項13又は14記載のリチウムイオン二次電池用負極を備えることを特徴とするリチウムイオン二次電池。
  16. 請求項1、2、3、4、5、6、7、8、9、10、11又は12記載のリチウムイオン電池用負極活物質を製造する方法であって、
    ホルムアルデヒド、脂肪族アミン及びジヒドロキシナフタレンを含有する混合溶液を調製する工程と、負極活物質を前記混合溶液に添加し、反応させる工程と、熱処理する工程とを有することを特徴とするリチウムイオン電池用負極活物質の製造方法。
  17. 請求項1、2、3、4、5、6、7、8、9、10、11又は12記載のリチウムイオン電池用負極活物質を製造する方法であって、
    トリアジン及びジヒドロキシナフタレンを含有する混合溶液を調製する工程と、負極活物質を前記混合溶液に添加し、反応させる工程と、熱処理する工程とを有することを特徴とするリチウムイオン電池用負極活物質の製造方法。
     
     
PCT/JP2018/017085 2017-04-28 2018-04-26 リチウムイオン電池用負極活物質 WO2018199265A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018528362A JP7150600B2 (ja) 2017-04-28 2018-04-26 リチウムイオン電池用負極活物質
KR1020197005542A KR102556592B1 (ko) 2017-04-28 2018-04-26 리튬 이온 전지용 부극 활물질
US16/607,190 US11404686B2 (en) 2017-04-28 2018-04-26 Negative electrode active material for lithium ion battery
CN201880004019.XA CN109997256A (zh) 2017-04-28 2018-04-26 锂离子电池用负极活性物质
EP18791639.0A EP3618151A4 (en) 2017-04-28 2018-04-26 NEGATIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM-ION BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017090769 2017-04-28
JP2017-090769 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199265A1 true WO2018199265A1 (ja) 2018-11-01

Family

ID=63918447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017085 WO2018199265A1 (ja) 2017-04-28 2018-04-26 リチウムイオン電池用負極活物質

Country Status (7)

Country Link
US (1) US11404686B2 (ja)
EP (1) EP3618151A4 (ja)
JP (1) JP7150600B2 (ja)
KR (1) KR102556592B1 (ja)
CN (1) CN109997256A (ja)
TW (1) TWI763836B (ja)
WO (1) WO2018199265A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019702A (ja) * 2018-07-31 2020-02-06 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. ポリマー変性ケイ素−炭素複合材料及びその使用
JP2021128918A (ja) * 2020-02-17 2021-09-02 トヨタ自動車株式会社 リチウムイオン二次電池の負極およびその製造方法
EP3872903A4 (en) * 2019-12-03 2021-12-01 Contemporary Amperex Technology Co., Limited COMPOSITE GRAPHITE MATERIAL, SECONDARY BATTERY, DEVICE AND PREPARATION PROCESS
CN115249803A (zh) * 2021-04-26 2022-10-28 华南理工大学 一种具有高可逆容量的低温储锂负极材料及其制备方法
JP2023508760A (ja) * 2020-03-23 2023-03-03 テクトロニック コードレス ジーピー リチウムイオンバッテリ

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4037028A1 (en) * 2019-09-26 2022-08-03 Sekisui Chemical Co., Ltd. Negative electrode material for secondary batteries, negative electrode for secondary batteries, and secondary battery
WO2021189407A1 (zh) * 2020-03-27 2021-09-30 宁德新能源科技有限公司 负极活性材料及使用其的电化学装置和电子装置
CN113258051B (zh) * 2021-05-13 2022-07-29 溧阳天目先导电池材料科技有限公司 一种均匀改性的氧化亚硅负极材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131324A (ja) * 2011-12-20 2013-07-04 Sony Corp 二次電池用活物質、二次電池および電子機器
JP2014075325A (ja) 2012-10-05 2014-04-24 Teijin Ltd 炭素被覆シリコン粒子、リチウムイオン二次電池用負極、及びリチウムイオン二次電池、及び負極形成用組成物
JP2014183043A (ja) * 2013-03-19 2014-09-29 Wacker Chemie Ag リチウムイオン電池用の負極材料としてのSi/C複合体
WO2016052407A1 (ja) * 2014-09-29 2016-04-07 積水化学工業株式会社 リチウムイオン電池用正極活物質
JP2017059398A (ja) * 2015-09-16 2017-03-23 株式会社東芝 電池用活物質、非水電解質電池、及び電池パック

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI278429B (en) * 2002-05-17 2007-04-11 Shinetsu Chemical Co Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2005025991A (ja) * 2003-06-30 2005-01-27 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2006221830A (ja) * 2005-02-08 2006-08-24 Matsushita Electric Ind Co Ltd 負極活物質およびその製造方法、ならびに非水電解液二次電池
DE102009020832A1 (de) * 2009-05-11 2010-11-25 Süd-Chemie AG Verbundmaterial enthaltend ein gemischtes Lithium-Metalloxid
JP5390336B2 (ja) * 2009-10-22 2014-01-15 信越化学工業株式会社 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
US9203077B2 (en) * 2010-09-09 2015-12-01 Sk Innovation Co., Ltd. Positive electrode active material for a lithium secondary battery, method for producing same, and lithium secondary battery comprising same
JP2012254899A (ja) * 2011-06-09 2012-12-27 Masstech:Kk シリコン二次粒子及びその製造方法
IN2014MN00954A (ja) * 2011-10-24 2015-04-24 Lg Chemical Ltd
JP2013219023A (ja) * 2012-03-16 2013-10-24 Sumitomo Bakelite Co Ltd リチウムイオン二次電池用炭素材、リチウムイオン二次電池用負極材およびリチウムイオン二次電池
WO2014065417A1 (ja) 2012-10-26 2014-05-01 日立化成株式会社 リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN104347857B (zh) * 2013-07-29 2017-07-07 华为技术有限公司 锂离子二次电池负极活性材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
CN105960724B (zh) * 2014-02-04 2019-02-15 三井化学株式会社 锂离子二次电池用负极及其制造方法
KR102192087B1 (ko) * 2014-02-26 2020-12-16 삼성전자주식회사 음극 활물질, 이를 포함하는 리튬 전지, 및 이의 제조방법
CN106660822B (zh) 2014-09-22 2019-05-03 积水化学工业株式会社 碳被覆二氧化钒粒子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013131324A (ja) * 2011-12-20 2013-07-04 Sony Corp 二次電池用活物質、二次電池および電子機器
JP2014075325A (ja) 2012-10-05 2014-04-24 Teijin Ltd 炭素被覆シリコン粒子、リチウムイオン二次電池用負極、及びリチウムイオン二次電池、及び負極形成用組成物
JP2014183043A (ja) * 2013-03-19 2014-09-29 Wacker Chemie Ag リチウムイオン電池用の負極材料としてのSi/C複合体
WO2016052407A1 (ja) * 2014-09-29 2016-04-07 積水化学工業株式会社 リチウムイオン電池用正極活物質
JP2017059398A (ja) * 2015-09-16 2017-03-23 株式会社東芝 電池用活物質、非水電解質電池、及び電池パック

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3618151A4
XIAO HUA LIU ET AL., SIZE-DEPENDENT FRACTURE OF SILICON NANOPARTICLES DURING LITHIATION, vol. 6, no. 2, 2012, pages 1522 - 1531

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020019702A (ja) * 2018-07-31 2020-02-06 長興材料工業股▲ふん▼有限公司Eternal Materials Co.,Ltd. ポリマー変性ケイ素−炭素複合材料及びその使用
US11539049B2 (en) 2018-07-31 2022-12-27 Eternal Materials Co., Ltd. Polymer-modified silicon-carbon composite and use thereof
EP3872903A4 (en) * 2019-12-03 2021-12-01 Contemporary Amperex Technology Co., Limited COMPOSITE GRAPHITE MATERIAL, SECONDARY BATTERY, DEVICE AND PREPARATION PROCESS
US11710822B2 (en) 2019-12-03 2023-07-25 Contemporary Amperex Technology Co., Limited Composite graphite material, secondary battery, apparatus and preparation method thereof
JP2021128918A (ja) * 2020-02-17 2021-09-02 トヨタ自動車株式会社 リチウムイオン二次電池の負極およびその製造方法
JP7240615B2 (ja) 2020-02-17 2023-03-16 トヨタ自動車株式会社 リチウムイオン二次電池の負極およびその製造方法
JP2023508760A (ja) * 2020-03-23 2023-03-03 テクトロニック コードレス ジーピー リチウムイオンバッテリ
CN115249803A (zh) * 2021-04-26 2022-10-28 华南理工大学 一种具有高可逆容量的低温储锂负极材料及其制备方法

Also Published As

Publication number Publication date
KR102556592B1 (ko) 2023-07-18
JPWO2018199265A1 (ja) 2020-04-09
EP3618151A4 (en) 2021-01-06
US20200388826A1 (en) 2020-12-10
CN109997256A (zh) 2019-07-09
KR20190138302A (ko) 2019-12-12
TW201842701A (zh) 2018-12-01
JP7150600B2 (ja) 2022-10-11
EP3618151A1 (en) 2020-03-04
US11404686B2 (en) 2022-08-02
TWI763836B (zh) 2022-05-11

Similar Documents

Publication Publication Date Title
WO2018199265A1 (ja) リチウムイオン電池用負極活物質
EP3457474B1 (en) Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
JP5966093B1 (ja) リチウムイオン電池用正極活物質
US20100009261A1 (en) Negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
US20090311606A1 (en) Negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
US20090202911A1 (en) Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
WO2010050507A1 (ja) 非水二次電池
JP2009538513A (ja) 電極組成物、その製造方法、及びそれを含むリチウムイオン電池
US20140234536A1 (en) Metal Fluoride Electrode Protection Layer and Method of Making Same
US10347910B2 (en) Nano silicon material, method for producing same, and negative electrode of secondary battery
KR102383273B1 (ko) 탄소 코팅층을 포함하는 다공성 실리콘 복합체, 이의 제조방법 및 이를 포함하는 리튬이차전지
US10164255B2 (en) Silicon material and negative electrode of secondary battery
EP3150554B1 (en) Negative electrode of a secondary battery composed of a silicon material
JPWO2020136975A1 (ja) 電池材料、電池及び電池材料の製造方法
TWI672856B (zh) 鋰離子電池用正極活性物質
EP4290608A1 (en) Active material particle, electrochemical element and electrochemical device
JP2018032602A (ja) 負極材料の製造方法
TW202319348A (zh) 負極活性物質及其製造方法
Lim et al. Enhancing Nanostructured Nickel-Rich Lithium-Ion Battery Cathodes via Surface Stabilization
Sathiyaraj et al. Polyvinylpyrrolidone assisted sol-gel route

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018528362

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005542

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018791639

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018791639

Country of ref document: EP

Effective date: 20191128