WO2018199201A1 - 経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システム - Google Patents

経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システム Download PDF

Info

Publication number
WO2018199201A1
WO2018199201A1 PCT/JP2018/016894 JP2018016894W WO2018199201A1 WO 2018199201 A1 WO2018199201 A1 WO 2018199201A1 JP 2018016894 W JP2018016894 W JP 2018016894W WO 2018199201 A1 WO2018199201 A1 WO 2018199201A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
oral administration
irradiated
mark
marked
Prior art date
Application number
PCT/JP2018/016894
Other languages
English (en)
French (fr)
Inventor
青木 茂
田村 和彦
純平 内山
Original Assignee
エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーザイ・アール・アンド・ディー・マネジメント株式会社 filed Critical エーザイ・アール・アンド・ディー・マネジメント株式会社
Priority to EP18792151.5A priority Critical patent/EP3616685A4/en
Priority to CN201880023711.7A priority patent/CN110494127A/zh
Priority to JP2019514594A priority patent/JPWO2018199201A1/ja
Priority to US16/604,272 priority patent/US20200151413A1/en
Publication of WO2018199201A1 publication Critical patent/WO2018199201A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/143Sensing or illuminating at different wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/06Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of pills, lozenges or dragees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/12Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using a selected wavelength, e.g. to sense red marks and ignore blue marks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/22Image preprocessing by selection of a specific region containing or referencing a pattern; Locating or processing of specific regions to guide the detection or recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/66Trinkets, e.g. shirt buttons or jewellery items

Definitions

  • the present invention relates to a pharmaceutical, and relates to a method for determining authenticity of a pharmaceutical composition for oral administration, a pharmaceutical composition for oral administration, and a system for determining authenticity of a pharmaceutical composition for oral administration.
  • Patent Documents 1 to 7 Forgery prevention technology for preventing counterfeiting of banknotes, cash vouchers, and merchandise has been proposed (see, for example, Patent Documents 1 to 7).
  • Patent Document 8 discloses a forgery-preventing ink that appears black when irradiated with visible light, but emits fluorescence and is visible when irradiated with ultraviolet light.
  • Patent Document 9 discloses an anti-counterfeit ink that changes color due to a temperature change.
  • Counterfeit drugs are also called counterfit drugs. Counterfeit medicines may include, for example, no active ingredients or harmful substances. Therefore, taking counterfeit medicines can lead to lost treatment opportunities and health problems.
  • the anti-counterfeit inks disclosed in Patent Documents 8 and 9 are not edible. Therefore, it is impossible to print a mark on the medicine itself using the anti-counterfeit ink as disclosed in Patent Documents 8 and 9.
  • a method has been proposed in which a hologram is attached to a packaging material for pharmaceuticals, or an identification code that can be identified only by an actual manufacturer is printed on the packaging material so that authenticity can be determined.
  • a counterfeit medicine manufacturer or the like may exchange the medicine in the packaging material from a genuine one to a fake one.
  • a method has been proposed in which the presence or absence of tampering can be identified by sealing a packaging material.
  • compositions for oral administration have been marked with edible ink or marked with ultraviolet (UV) laser light for product identification.
  • UV ultraviolet
  • mark printing transfer printing using ink and a rubber roller or multi-color ink jet printing is used.
  • the mark for product identification includes, for example, a manufacturing company name, a manufacturing company logo, a product name, and a product number.
  • a mark for identifying a pharmaceutical composition for oral administration has never been used to determine the authenticity of the pharmaceutical composition for oral administration.
  • an edible dye or ink that can be used to determine the authenticity of a pharmaceutical composition product for oral administration has not been known.
  • the present invention relates to a method for determining the authenticity of a pharmaceutical composition for oral administration capable of determining the authenticity of a pharmaceutical composition for oral administration, a pharmaceutical composition for oral administration, and a system for determining the authenticity of a pharmaceutical composition for oral administration.
  • the purpose is to provide.
  • a mark containing an edible substance that is visible when irradiated with white light and visible when irradiated with infrared light, and visible when irradiated with white light, the infrared light is emitted.
  • a mark containing an edible substance that is invisible when irradiated, and irradiating infrared rays to the marked pharmaceutical composition for oral administration, and visible on the pharmaceutical composition for oral administration irradiated with infrared rays There is provided a method for determining the authenticity of a pharmaceutical composition for oral administration, which comprises determining whether or not a visual recognition mark and a reference mark prepared in advance match.
  • the infrared wavelength band may include at least a part of 700 nm to 900 nm.
  • the infrared wavelength band may be 900 nm or more.
  • the pharmaceutical composition for oral administration contains titanium oxide (TiO 2 ), and a mark containing an edible substance that is visible when irradiated with infrared rays, It may be marked with a laser beam.
  • a mark containing an edible substance that can be visually recognized when irradiated with infrared rays may be laser-printed using a pigment containing yellow ferric oxide.
  • the mark containing an edible substance that can be visually recognized when irradiated with infrared rays is at least one of edible charcoal and black iron trioxide (Fe 3 O 4 ). It may be printed using a pigment containing.
  • the infrared wavelength band includes at least a part of 700 nm to 900 nm, a mark including an edible substance that can be visually recognized when irradiated with infrared rays And a pigment containing at least one selected from the group consisting of red iron oxide (Fe 2 O 3 ), copper chlorophyllin sodium, indigo carmine, and black titanium oxide.
  • red iron oxide Fe 2 O 3
  • copper chlorophyllin sodium indigo carmine
  • black titanium oxide black titanium oxide
  • a mark containing an edible substance that cannot be visually recognized when irradiated with infrared rays may be printed using a dye.
  • the dye may contain a tar dye.
  • the tar dye includes at least one selected from the group consisting of erythrosine, neucoccin, tartrazine, brilliant blue FCF, and sunset yellow FCF. Also good.
  • a mark containing an edible substance that cannot be visually recognized when irradiated with infrared rays may be printed using a pigment containing an aluminum lake of a tar dye.
  • a mark containing an edible substance that is invisible when irradiated with infrared rays is red iron oxide (Fe It may be printed using a pigment containing 2 O 3 ).
  • the reference mark may correspond to the identification number or identification code of the pharmaceutical composition for oral administration.
  • the identification number or the identification code may be marked on the pharmaceutical composition for oral administration.
  • the pharmaceutical composition for oral administration may be a tablet or a capsule.
  • the pharmaceutical composition for oral administration may be a tablet.
  • a pharmaceutical composition for oral administration capable of determining authenticity by determining whether or not a mark and a reference mark prepared in advance match.
  • the infrared wavelength band may contain at least part of 700 nm or more and 900 nm or less.
  • the infrared wavelength band may be 900 nm or more.
  • the above-mentioned pharmaceutical composition for oral administration contains titanium oxide (TiO 2 ), and a mark containing an edible substance that can be visually recognized when irradiated with infrared rays may be marked with a laser beam.
  • TiO 2 titanium oxide
  • a mark containing an edible substance that can be visually recognized when irradiated with infrared rays may be laser-printed using a pigment containing yellow ferric oxide.
  • the mark containing an edible substance that can be visually recognized when irradiated with infrared rays uses a pigment containing at least one of edible charcoal and black iron trioxide (Fe 3 O 4 ). May be printed.
  • the infrared wavelength band includes at least a part of 700 nm to 900 nm
  • a mark containing an edible substance that can be visually recognized when irradiated with infrared rays is red iron oxide ( It may be printed using a pigment containing at least one selected from the group consisting of Fe 2 O 3 ), copper chlorophyllin sodium, and indigo carmine.
  • a mark containing an edible substance that cannot be visually recognized when irradiated with infrared rays may be printed using a dye.
  • the dye may contain a tar dye.
  • the tar dye may contain at least one selected from the group consisting of erythrosin, neucoccin, tartrazine, brilliant blue FCF, and sunset yellow FCF.
  • a mark containing an edible substance that is not visible when irradiated with infrared rays may be printed using a pigment containing an aluminum lake of tar dye.
  • the mark containing an edible substance that is invisible when irradiated with infrared rays is red iron oxide (Fe 2 O 3 ). You may print using the pigment containing.
  • the reference mark may correspond to the identification number or identification code of the pharmaceutical composition for oral administration.
  • an identification number or an identification code may be marked.
  • the above-mentioned pharmaceutical composition for oral administration may be a tablet or a capsule.
  • the above-mentioned pharmaceutical composition for oral administration may be a tablet.
  • an authenticity determination system for a pharmaceutical composition for oral administration comprising: a determination unit that determines whether or not a visually recognized visual mark and a reference mark prepared in advance match.
  • the infrared wavelength band may include at least a part of 700 nm to 900 nm.
  • the infrared wavelength band may be 900 nm or more.
  • the pharmaceutical composition for oral administration contains titanium oxide (TiO 2 ), and a mark containing an edible substance that can be visually recognized when irradiated with infrared rays, It may be marked with a laser beam.
  • TiO 2 titanium oxide
  • the mark containing an edible substance that can be visually recognized when irradiated with infrared rays may be laser-printed using a pigment containing yellow ferric oxide.
  • the mark containing an edible substance that can be visually recognized when irradiated with infrared rays is at least one of edible charcoal and black iron trioxide (Fe 3 O 4 ). It may be printed using a pigment containing.
  • the infrared wavelength band includes at least a part of 700 nm to 900 nm, a mark containing an edible substance that can be visually recognized when irradiated with infrared light And a pigment containing at least one selected from the group consisting of red iron oxide (Fe 2 O 3 ), copper chlorophyllin sodium, and indigo carmine.
  • a mark containing an edible substance that cannot be visually recognized when irradiated with infrared rays may be printed using a dye.
  • the dye may contain a tar dye.
  • the tar dye includes at least one selected from the group consisting of erythrosine, neucoccin, tartrazine, brilliant blue FCF, and sunset yellow FCF. Also good.
  • a mark containing an edible substance that cannot be visually recognized when irradiated with infrared rays may be printed using a pigment containing an aluminum lake of a tar dye.
  • a mark containing an edible substance that is not visible when irradiated with infrared rays is red iron oxide (Fe It may be printed using a pigment containing 2 O 3 ).
  • the reference mark may correspond to the identification number or the identification code of the oral administration pharmaceutical composition.
  • an identification number or an identification code may be marked on the pharmaceutical composition for oral administration.
  • the oral administration pharmaceutical composition may be a tablet or a capsule.
  • the oral administration pharmaceutical composition may be a tablet.
  • the authenticity determination method of the pharmaceutical composition for oral administration which can authenticate the authenticity of the pharmaceutical composition for oral administration, the pharmaceutical composition for oral administration, and the authenticity determination system of the pharmaceutical composition for oral administration Can be provided.
  • FIG. 1 (a) is a schematic diagram of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 1 (b) is a schematic diagram of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm or more and 1700 nm or less.
  • FIG. 2 (a) is a schematic view of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 2 (b) is a schematic view of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 900 nm or more and 1700 nm or less.
  • FIG. 3 (a) is a schematic view of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 3B is a schematic diagram of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm to 1700 nm.
  • FIG. 4 (a) is a schematic diagram of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 4B is a schematic view of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm to 1700 nm.
  • FIG. 5 (a) is a schematic view of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 5 (b) is a schematic diagram of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm or more and 1700 nm or less.
  • FIG. 6 (a) is a schematic view of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 6 (b) is a schematic diagram of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm to 1700 nm.
  • FIG. 7 (a) is a schematic view of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 7 (b) is a schematic diagram of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm or more and 1700 nm or less.
  • FIG. 8 (a) is a schematic diagram of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 8B is a schematic view of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm to 900 nm.
  • FIG. 9 (a) is a schematic view of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 9B is a schematic view of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm to 900 nm.
  • FIG. 10 (a) is a schematic diagram of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 10 (b) is a schematic view of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm to 900 nm.
  • FIG. 11 (a) is a schematic diagram of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 11 (b) is a schematic view of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm to 900 nm.
  • FIG. 12 (a) is a schematic diagram of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 12 (b) is a schematic view of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm to 1700 nm.
  • FIG. 13 (a) is a schematic view of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 13 (b) is a schematic view of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm to 1700 nm. It is a schematic diagram of the pharmaceutical composition for oral administration marked with the mark which concerns on embodiment.
  • FIG. 14 (a) is a schematic diagram of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 14 (b) is a schematic view of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm or more and 1700 nm or less.
  • FIG. 15 (a) is a schematic diagram of a pharmaceutical composition for oral administration observed with white light.
  • FIG. 15B is a schematic diagram of a pharmaceutical composition for oral administration observed with infrared rays having a wavelength of 700 nm or more and 1700 nm or less. It is a schematic diagram which shows an example of the procedure of the authenticity determination method of the pharmaceutical composition for oral administration which concerns on embodiment. It is a schematic diagram which shows an example of the procedure of the authenticity determination method of the pharmaceutical composition for oral administration which concerns on embodiment.
  • FIG. FIG. 18A shows imaging data of a tablet imaged with a digital camera, and FIG.
  • FIG. 18B shows imaging data of a tablet imaged with a near-infrared camera under sunlight. It is the imaging data of the tablet which marked the mark which concerns on Example 1 and was imaged with the near-infrared camera when the tablet was irradiated with the near infrared rays whose wavelength band is 800 nm or more and 1000 nm or less. It is the imaging data of the tablet marked with the mark which concerns on Example 2.
  • FIG. FIG. 20A shows imaging data of a tablet imaged with a digital camera
  • FIG. 20B shows imaging data of a tablet imaged with a near-infrared camera under sunlight.
  • FIG. 22A shows the imaging data of the tablet imaged by the digital camera
  • FIG. 22B shows the imaging data of the tablet imaged by the near-infrared camera under sunlight.
  • FIG. 24A shows the imaging data of the tablet imaged by the digital camera
  • FIG. 24B shows the imaging data of the tablet imaged by the near-infrared camera under sunlight.
  • FIG. 27 (a) is image data of a tablet imaged by a digital camera
  • FIG. 27 (b) is image data of a tablet imaged by a near-infrared camera under sunlight. It is the imaging data of the tablet marked with the mark which concerns on Example 5.
  • FIG. FIG. 27 (a) is image data of a tablet imaged by a digital camera
  • FIG. 27 (b) is image data of a tablet imaged by a near-infrared camera under sunlight. It is the imaging data of the tablet marked with the mark which concerns on Example 5.
  • FIG. 28A shows imaging data of a tablet imaged by a near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm or more and 950 nm or less.
  • FIG. 28 (b) is image data of a tablet imaged by a near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 800 nm to 1000 nm. It is the imaging data of the tablet marked with the mark which concerns on Example 6 imaged with the digital camera. It is an imaging data of the tablet marked with the mark which concerns on Example 6.
  • FIG. Fig. 30 (a) is image data of a tablet imaged by a digital camera, and Fig.
  • FIG. 30 (b) is image data of a tablet imaged by a near-infrared camera under sunlight. It is the imaging data of the tablet which marked the mark which concerns on Example 6 and was imaged with the near-infrared camera, when the near-infrared rays whose wavelength band is 900 nm or more and 1000 nm or less were irradiated to the tablet. It is imaging data of the tablet marked with the mark which concerns on a reference example.
  • FIG. 32A shows imaging data of a tablet imaged with a digital camera.
  • FIG. 32B shows imaging data of a tablet imaged by a near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm or more and 950 nm or less. It is an imaging data of the tablet marked with the mark which concerns on Example 7.
  • FIG. FIG. 33 (a) shows the imaging data of a tablet imaged with a digital camera
  • FIG. 33 (b) shows the imaging with a near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm to 950 nm. It is the imaging data of the obtained tablet. It is an imaging data of the tablet marked with the mark which concerns on Example 7.
  • FIG. 34 (a) shows the image data of the tablet imaged by the digital camera
  • FIG. 34 (b) shows the image taken by the near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm or more and 950 nm or less. It is the imaging data of the obtained tablet. It is an imaging data of the tablet marked with the mark which concerns on Example 7.
  • FIG. FIG. 35 (a) shows the image data of the tablet imaged by the digital camera
  • FIG. 35 (b) shows the image taken by the near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm to 950 nm. It is the imaging data of the obtained tablet.
  • FIG. 36 (a) shows the imaging data of the tablet imaged with the digital camera
  • FIG. 36 (b) shows the imaging with the near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm or more and 950 nm or less. It is the imaging data of the obtained tablet. It is an imaging data of the tablet marked with the mark which concerns on Example 8.
  • FIG. 37 (a) shows the imaging data of the tablet imaged with the digital camera, and FIG.
  • FIG. 37 (b) shows the imaging with the near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm or more and 950 nm or less. It is the imaging data of the obtained tablet. It is the imaging data of the tablet marked with the mark which concerns on Example 9.
  • FIG. FIG. 38 (a) shows the image data of the tablet imaged by the digital camera
  • FIG. 38 (b) shows the image imaged by the near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm to 950 nm. It is the imaging data of the obtained tablet. It is the imaging data of the tablet marked with the mark which concerns on Example 10.
  • FIG. 39 (a) shows the imaging data of a tablet imaged with a digital camera
  • FIG. 39 (b) shows the imaging with a near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm to 950 nm. It is the imaging data of the obtained tablet. It is the imaging data of the tablet marked with the mark which concerns on Example 10.
  • FIG. FIG. 40 (a) is the image data of the tablet imaged by the digital camera
  • FIG. 40 (b) is the image imaged by the near-infrared camera when the tablet is irradiated with near-infrared rays having a wavelength band of 750 nm or more and 950 nm or less.
  • FIG. 41 (a) is image data of a tablet imaged by a digital camera
  • FIG. 41 (b) is an image imaged by a near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm to 950 nm.
  • FIG. 41 (a) is image data of a tablet imaged by a digital camera
  • FIG. 41 (b) is an image imaged by a near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm to 950 nm.
  • FIG. 41 (b) is image data of a near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm to 950 nm.
  • FIG.42 (a) is the imaging data of the tablet imaged with the digital camera
  • FIG.42 (b) is imaging with a near-infrared camera, when near infrared rays with a wavelength range of 750 nm or more and 950 nm or less are irradiated to a tablet. It is the imaging data of the obtained tablet. It is the imaging data of the tablet marked with the mark which concerns on Example 11.
  • FIG. FIG. 43 (a) is the image data of the tablet imaged by the digital camera
  • FIG. 43 (b) is the image imaged by the near-infrared camera when the tablet is irradiated with near-infrared light having a wavelength band of 750 nm to 950 nm. It is the imaging data of the obtained tablet.
  • the authenticity determination method of the pharmaceutical composition for oral administration includes a mark containing an edible substance that is visible when irradiated with white light and visible when irradiated with infrared light, and irradiates with white light.
  • a mark containing an edible substance that is visible when irradiated with infrared rays, and irradiating the marked pharmaceutical composition for oral administration with infrared rays; and oral administration irradiated with infrared rays Determining whether the visual recognition mark visually recognized on the medicinal pharmaceutical composition matches the reference mark prepared in advance.
  • edible means that it does not cause serious harm when ingested into the human body.
  • the edible substance is preferably, for example, a pharmaceutically acceptable substance or a hygienic acceptable substance.
  • Pharmaceutically acceptable substances are listed, for example, in the pharmaceutical additive standards.
  • Hygienically acceptable substances are listed, for example, in food additive standards.
  • White light is light in which light of each wavelength of visible light is mixed like sunlight. Light emitted from ordinary lighting equipment is also included in white light.
  • Infrared rays are near infrared rays, for example.
  • the infrared wavelength band is, for example, 700 nm or more, or 800 nm or more.
  • the wavelength band of infrared rays is, for example, 2500 nm or less, 1700 nm or less, or 1000 nm or less.
  • the infrared wavelength band includes at least part of 700 nm to 800 nm, or at least part of 700 nm to 900 nm.
  • the mark marked on the surface of the pharmaceutical composition for oral administration includes letters, numbers, symbols, figures, patterns, and the like, and also includes parts such as letters, numbers, symbols, figures, patterns, and the like.
  • the pharmaceutical composition for oral administration contains, for example, titanium oxide (TiO 2 ) near the surface.
  • TiO 2 titanium oxide
  • Such a mark contains a titanium oxide laser irradiation object as an edible substance that can be visually recognized when irradiated with infrared rays.
  • the mark marked with laser light is irradiated with infrared light with a wavelength band of 700 nm or more, irradiated with infrared light with a wavelength band of 800 nm or more, and irradiated with infrared light with a wavelength band of 900 nm or more. It can be visually recognized.
  • the laser beam for marking the mark is not particularly limited, and the laser medium may be laser oscillated in any state of solid, liquid and gas.
  • solid lasers include YLF laser, YAG laser, YVO 4 laser, and fiber laser.
  • fundamental, second, third, fourth, and fifth harmonic YVO 4 laser oscillators that emit UV laser light are preferable, but are not particularly limited.
  • being able to visually recognize the mark means that the mark can be seen by a normal person or an imaging device.
  • Marks containing an edible substance marked on the surface of a pharmaceutical composition for oral administration are edible charcoal and black iron trioxide
  • the mark may be printed using an edible pigment containing at least one of (Fe 4 O 3 ). Therefore, the mark printed using these pigments contains at least one of edible charcoal and black iron trioxide (Fe 4 O 3 ) as an edible substance that can be visually recognized when irradiated with infrared rays.
  • a mark printed using a pigment containing at least one of edible charcoal and black iron trioxide (Fe 4 O 3 ) irradiates infrared rays having a wavelength band of 800 nm or more when irradiated with infrared rays having a wavelength band of 700 nm or more. In this case, it can be visually recognized both in the case of irradiating infrared rays having a wavelength band of 900 nm or more.
  • a pigment means a white or colored powder that is insoluble in water, oil, or the like.
  • the pigment ink refers to an ink in which a pigment is dispersed in a solvent such as water or oil. In pigment inks, the pigment is usually not completely dissolved in the solvent.
  • the pigment one kind of pigment may be used, or a mixture of arbitrary plural kinds of pigments may be used.
  • the mixing ratio of each pigment is arbitrary.
  • the mark containing an edible substance marked on the surface of a pharmaceutical composition for oral administration which can be seen when irradiated with white light and visible when irradiated with infrared rays, is red iron oxide (Fe 2 O 3
  • the mark may be printed using an edible pigment containing).
  • the mark printed using the pigment contains red iron oxide (Fe 2 O 3 ) as an edible substance that can be visually recognized when irradiated with infrared rays.
  • a mark printed using a pigment containing red iron oxide (Fe 2 O 3 ) can be visually recognized when irradiated with infrared rays including at least part of a wavelength band of 700 nm to 900 nm.
  • the mark may be laser-printed using an edible pigment containing 3 ⁇ H 2 O).
  • the mark laser-printed using the pigment contains a yellow ferric oxide (Fe 2 O 3 .H 2 O) laser irradiation object as an edible substance that is visible when irradiated with infrared rays.
  • the mark laser-printed using a pigment containing yellow ferric oxide is an infrared ray including at least a part of a wavelength band of 700 nm to 900 nm, or a wavelength band of 700 nm to 800 nm. It can be visually recognized when infrared rays including at least a part of are irradiated.
  • yellow iron sesquioxide (Fe 2 O 3 .H 2 O) can be visually recognized when irradiated with infrared rays when laser-printed.
  • yellow iron sesquioxide Fe 2 O 3 .H 2 O
  • the mark containing an edible substance marked on the surface of a pharmaceutical composition for oral administration which is visible when irradiated with white light and visible when irradiated with infrared light, is an edible substance containing copper chlorophyllin sodium.
  • the mark may be printed using a pigment.
  • the mark printed using the pigment contains copper chlorophyllin sodium as an edible substance that is visible when irradiated with infrared rays.
  • a mark printed using a pigment containing copper chlorophyllin sodium is irradiated with infrared rays including at least part of a wavelength band of 700 nm or more and 900 nm or less, or infrared rays including at least part of a wavelength band of 700 nm or more and 800 nm or less. It can be visually recognized.
  • the mark containing the edible substance marked on the surface of the pharmaceutical composition for oral administration which is visible when irradiated with white light and visible when irradiated with infrared rays, is an edible pigment containing indigo carmine
  • the mark may be printed using.
  • the mark printed using the pigment contains indigo carmine as an edible substance that is visible when irradiated with infrared rays.
  • a mark printed using a pigment containing indigo carmine is visible when irradiated with infrared rays including at least part of a wavelength band of 700 nm to 900 nm, or infrared rays including at least part of a wavelength band of 700 nm to 800 nm. can do.
  • the mark containing an edible substance marked on the surface of a pharmaceutical composition for oral administration which is visible when irradiated with white light and visible when irradiated with infrared light, is an edible substance containing black titanium oxide.
  • the mark may be printed using a pigment.
  • the mark printed using the pigment contains black titanium oxide as an edible substance that is visible when irradiated with infrared rays.
  • a mark printed using a pigment containing black titanium oxide is irradiated with an infrared ray including at least a part of a wavelength band of 700 nm to 900 nm or an infrared ray including at least a part of a wavelength band of 700 nm to 800 nm. It can be visually recognized.
  • the black titanium oxide is, for example, low-order titanium oxide or titanium oxynitride obtained by reducing titanium oxide.
  • the black titanium oxide may be a black powder obtained by mixing a part of an oxynitride powder of a group 5A element, a group 6A element, or a group 7A element with a titanium oxynitride powder.
  • a mark containing a mark marked with a laser beam and a pigment containing at least one of edible charcoal and black iron trioxide (Fe 4 O 3 ) is used.
  • Printed with a printed mark a mark printed with a pigment containing red iron oxide (Fe 2 O 3 ), and a pigment containing yellow ferric oxide (Fe 2 O 3 .H 2 O) Mark, mark printed with a pigment containing yellow ferric oxide (Fe 2 O 3 .H 2 O), mark printed with a pigment containing copper chlorophyllin sodium, and a pigment containing indigo carmine
  • a mark marked with a laser beam and a mark printed using a pigment containing at least one of edible charcoal and black iron trioxide (Fe 4 O 3 ) Arbitrary combinations may be marked on the surface of the pharmaceutical composition for oral administration as a mark containing an edible substance that can be visually recognized when irradiated with infrared rays.
  • Marks containing edible substances marked on the surface of a pharmaceutical composition for oral administration that are visible when irradiated with white light but not visible when irradiated with infrared light are printed using an edible dye. It is a marked mark.
  • the mark printed using the dye contains the dye as an edible substance that cannot be visually recognized when irradiated with infrared rays.
  • the mark printed using a dye is irradiated with infrared light having a wavelength band of 700 nm or more, irradiated with infrared light having a wavelength band of 800 nm or more, and irradiated with infrared light having a wavelength band of 900 nm or more. , Can not be seen.
  • the dye generally refers to an organic dye that is dyed on a fiber.
  • the dye ink refers to an ink obtained by dissolving a dye in a solvent such as water or oil. However, undissolved dye may remain in the dye ink.
  • the dye includes, for example, a tar dye.
  • tar dyes are dyes that use coal tar as the main raw material, but now it is well known that synthetic dyes that do not use coal tar as the main raw material are also called tar dyes. is there.
  • erythrosine red No. 3
  • new coccin red No. 102
  • tartrazine yellow No. 4
  • brilliant blue FCF blue No. 1
  • sunset yellow FCF yellow No. 5
  • the dye one kind of dye may be used, or a mixture of arbitrary plural kinds of dyes may be used.
  • the mixing ratio of each dye is arbitrary.
  • a mark containing an edible substance marked on the surface of a pharmaceutical composition for oral administration that is visible when irradiated with white light but not visible when irradiated with infrared rays is a pigment containing an aluminum lake of a tar dye
  • the mark may be printed using.
  • the mark printed using the pigment contains tar dye aluminum lake as an edible substance that is not visible when irradiated with infrared rays.
  • a mark printed using a pigment containing an aluminum lake of a tar dye is irradiated with infrared light having a wavelength band of 700 nm or more, irradiated with infrared light having a wavelength band of 800 nm or more, and infrared light having a wavelength band of 900 nm or more. It cannot be visually recognized in any case of irradiation.
  • Tar dye aluminum lakes include erythrosin (red No. 3) aluminum lake, new coxin (red No. 102) aluminum lake, tartrazine (yellow No. 4) aluminum lake, brilliant blue FCF (blue No. 1) aluminum lake, and sun It is possible to use at least one of set yellow FCF (yellow No. 5) aluminum lake.
  • a pigment containing an aluminum lake of a tar dye a pigment containing an aluminum lake of one kind of tar dye may be used, or a mixture of pigments containing an aluminum lake of any plural kinds of tar dyes may be used. Good.
  • the mixing ratio of the pigment containing the aluminum lake of each tar dye is arbitrary.
  • a mark containing an edible substance marked on the surface of a pharmaceutical composition for oral administration that is visible when irradiated with white light but not visible when irradiated with infrared light uses a pigment containing red iron oxide. It may be a mark printed in this way.
  • the mark printed using the pigment contains red iron oxide as an edible substance that cannot be visually recognized when irradiated with infrared rays.
  • a mark printed using a pigment containing red iron oxide can be visually recognized when irradiated with infrared rays including at least a part of a wavelength band of 700 nm to 900 nm, but the wavelength band is 900 nm. It cannot be visually recognized when the above infrared rays are irradiated.
  • any combination of a mark printed with a dye and a mark printed with a pigment containing red iron oxide may not be visible when irradiated with infrared rays. It may be marked on the surface of the pharmaceutical composition for oral administration as a mark containing an edible substance.
  • an offset printing machine and an inkjet printing machine can be used, but the printing machine that can be used is not limited to these.
  • an arbitrary dot of one mark may be formed of an edible substance that is visible when irradiated with infrared rays, and another dot may be formed of an edible substance that is not visible when irradiated with infrared rays.
  • the mark is the letter O
  • the right half of O may be formed of an edible material that can be seen when irradiated with infrared rays, and the left half of O may not be visible when irradiated with infrared rays. You may form with an edible substance.
  • the identification number or identification code of the pharmaceutical composition for oral administration may be marked on at least one of the pharmaceutical composition for oral administration and the packaging container of the pharmaceutical composition for oral administration.
  • the identification number or the identification code is a mark which is stamped or marked on at least one of the pharmaceutical composition for oral administration and the packaging container for the pharmaceutical composition for oral administration for the purpose of identification.
  • the manufacturer of the pharmaceutical composition for oral administration may be identified by the identification number or the identification code. Examples of identification numbers or identification codes for identifying a manufacturing company include marks, abbreviations, symbols, alphabets, kana characters, kanji, and marks that represent the manufacturing company.
  • the product of the pharmaceutical composition for oral administration may be identified by the identification number or the identification code. Examples of identification numbers or identification codes for identifying products include numbers and symbols.
  • the identification number or identification code of the pharmaceutical composition for oral administration may correspond to the production lot or lot number of the pharmaceutical composition for oral administration.
  • the identification number or identification code may be marked using printing using any edible ink, or the identification number or identification using laser light. The code may be marked.
  • the combination of a mark containing an edible substance that can be visually recognized when irradiated with infrared rays and a mark containing an edible substance that cannot be visually recognized when irradiated with infrared rays is marked on the pharmaceutical composition for oral administration. It may be changed according to the identification number or identification code of the pharmaceutical composition for oral administration. Alternatively, a combination of a mark containing an edible substance that can be visually recognized when irradiated with infrared rays and a mark containing an edible substance that cannot be visually recognized when irradiated with infrared rays is used to produce a pharmaceutical composition for oral administration. You may change according to a lot or a lot number.
  • the true manufacturer prepares in advance, as a reference mark, a visual mark that is visible when irradiated with infrared rays, corresponding to the identification number or identification code of the pharmaceutical composition for oral administration. Or a true manufacturer prepares the visual recognition mark which can be visually recognized when irradiated with infrared rays corresponding to the production lot or lot number of the pharmaceutical composition for oral administration in advance as a reference mark.
  • the visual recognition mark that is visible when the pharmaceutical composition for oral administration is irradiated with infrared rays matches the reference mark, it is possible to determine that the pharmaceutical composition for oral administration is genuine.
  • the visual recognition mark which was visible when the pharmaceutical composition for oral administration was irradiated with infrared rays does not coincide with the reference mark, it is possible to determine that the pharmaceutical composition for oral administration is a fake.
  • the reference mark corresponding to a specific identification number or identification code Only the true manufacturer can know the reference mark corresponding to a specific identification number or identification code. Many combinations of identification numbers or identification codes and reference marks can be generated. Alternatively, the reference mark corresponding to a particular production lot or lot number can only be known by the true manufacturer. Many combinations of production lots or lot numbers and reference marks can be generated. Therefore, a visual recognition mark that can be visually recognized when irradiated with infrared rays can be used as a cipher, and forgery of a pharmaceutical composition for oral administration by a third party can be prevented.
  • the numerals in the rectangles marked 1 are marked with a dye ink containing neucoccin (red No. 102).
  • the non-rectangular alphabets marked are marked with laser light.
  • the pharmaceutical composition for oral administration shown in FIG. 1 (a) is irradiated with infrared rays having a wavelength of 700 nm or more and 1700 nm or less, the numbers in the rectangles labeled 1 are visible as shown in FIG. 1 (b).
  • the alphabet outside the rectangle marked with reference numeral 1 can be visually recognized.
  • the numbers in the rectangles marked 2 are marked with a pigment ink containing red iron oxide, and the numbers outside the rectangles marked 2
  • the alphabet is marked using laser light.
  • the pharmaceutical composition for oral administration shown in FIG. 2 (a) is irradiated with infrared rays having a wavelength of 900 nm or more and 1700 nm or less, as shown in FIG.
  • the alphabet outside the rectangle marked with 2 is visible.
  • the numbers in the rectangles marked with 3 are marked with pigment ink containing edible charcoal, and the non-rectangular alphabets marked with 3 Are marked with laser light.
  • the pharmaceutical composition for oral administration shown in FIG. 3A is irradiated with infrared rays having a wavelength of 700 nm or more and 1700 nm or less, as shown in FIG.
  • the alphabet outside the rectangle marked with 3 can be visually recognized.
  • the letter E of the alphabet E is finely marked using a laser beam, and further from there, a dye ink containing New Coxin (Red No. 102) The letter of the alphabet E is marked thickly.
  • a dye ink containing neucoxin red No. 102 is used. The marked thick mark cannot be visually recognized, and the thin mark marked using the laser beam can be visually recognized.
  • the numbers in the rectangles with reference numeral 4 are marked with a dye ink containing neucoccin (red No. 102).
  • the numbers outside the rectangle marked with reference numeral 4 are marked with pigment ink containing at least one of edible charcoal and black iron trioxide (Fe 4 O 3 ).
  • the pharmaceutical composition for oral administration shown in FIG. 5 (a) and FIG. 6 (a) is irradiated with infrared rays having a wavelength of 700 nm or more and 1700 nm or less, as shown in FIG. 5 (b) and FIG.
  • the numbers in the rectangles marked with 4 are not visible, but the numbers outside the rectangles marked with 4 are visible.
  • the part in the rectangle marked with reference numeral 5 among the marks of alphabet E is marked with a dye ink containing neucoccin (red No. 102).
  • the portion outside the rectangle denoted by reference numeral 5 is marked with pigment ink containing at least one of edible charcoal and black iron trioxide (Fe 4 O 3 ).
  • the pharmaceutical composition for oral administration shown in FIG. 7 (a) was irradiated with infrared rays having a wavelength of 700 nm or more and 1700 nm or less, as shown in FIG.
  • the portion inside the rectangle cannot be visually recognized, but the portion outside the rectangle denoted by reference numeral 5 can be visually recognized.
  • the part in the rectangle marked with reference numeral 6 among the marks of alphabet E is marked with a dye ink containing neucoccin (red No. 102).
  • the portion outside the rectangle labeled 6 is marked with a pigment ink containing red iron oxide.
  • the numerals in the rectangles marked with 7 are marked with a dye ink containing neucoccin (red No. 102).
  • the numbers outside the rectangle are marked with pigment ink containing red iron oxide.
  • the part in the rectangle marked with reference numeral 8 among the marks of alphabet E is dye ink containing neucoccin (red 102) and red oxidation. It is marked with a mixed ink of pigment ink containing iron, and the portion outside the rectangle marked with reference numeral 8 is marked with laser light.
  • the pharmaceutical composition for oral administration shown in FIG. 10A was irradiated with infrared rays having a wavelength of 700 nm or more and 900 nm or less, as shown in FIG. Although the portion in the rectangle can be visually recognized, it becomes thin, but the portion outside the rectangle denoted by reference numeral 8 can be visually recognized without change.
  • the numeral in the rectangle labeled 8 is a mixture of a dye ink containing neucoccin (red No. 102) and a pigment ink containing red iron oxide.
  • the number outside the rectangle marked with 8 is marked with ink and is marked with laser light.
  • the pharmaceutical composition for oral administration shown in FIG. 11 (a) is irradiated with infrared rays having a wavelength of 700 nm or more and 900 nm or less, as shown in FIG. Although it becomes thinner, the numbers outside the rectangle marked 8 can be seen without change.
  • the letter E is thinned with a pigment ink containing black iron trioxide (Fe 4 O 3 ).
  • the letters of the alphabet E are marked with a thick ink.
  • the pharmaceutical composition for oral administration shown in FIG. 12 (a) is irradiated with infrared rays having a wavelength of 700 nm or more and 1700 nm or less, as shown in FIG. 12 (b), a thick mark marked with black dyeing ink is visible.
  • a thin mark marked with pigment ink containing black iron trioxide (Fe 4 O 3 ) is visible.
  • the numerals are thinned with a pigment ink containing black iron trioxide (Fe 4 O 3 ). And the numbers are marked thick.
  • a thick mark marked with black dyeing ink is visible.
  • a thin mark marked with pigment ink containing black iron trioxide (Fe 4 O 3 ) is visible.
  • the letters of the alphabet E are intermittently marked with a pigment ink containing black iron trioxide (Fe 4 O 3 ) and black dyeing. And the portions intermittently marked with ink.
  • the pharmaceutical composition for oral administration shown in FIG. 14 (a) is irradiated with infrared rays having a wavelength of 700 nm or more and 1700 nm or less, as shown in FIG. 14 (b), the part intermittently marked with black dyeing ink is A portion marked intermittently with a pigment ink containing black iron trioxide (Fe 4 O 3 ) cannot be visually recognized.
  • the numbers are intermittently marked with a pigment ink containing black iron trioxide (Fe 4 O 3 ) and black dyed ink. Alternately marked portions.
  • the pharmaceutical composition for oral administration shown in FIG. 15 (a) is irradiated with infrared rays having a wavelength of 700 nm or more and 1700 nm or less, as shown in FIG. 15 (b), the part intermittently marked with black dyeing ink is A portion marked intermittently with a pigment ink containing black iron trioxide (Fe 4 O 3 ) cannot be visually recognized.
  • FIG. 16 is a schematic diagram showing an example of the procedure of the authenticity determination method of the pharmaceutical composition for oral administration according to the embodiment.
  • the mark “E” contains an edible substance that can be visually recognized when irradiated with infrared rays. It is out.
  • the mark “4” includes an edible substance that can be visually recognized when irradiated with infrared rays
  • “2” and “ The mark “3” includes an edible substance that cannot be visually recognized when irradiated with infrared rays.
  • the form of the pharmaceutical composition for oral administration is not particularly limited as long as it is not in a powder form that is difficult to mark and has a certain shape that allows marking.
  • Examples of the form of the pharmaceutical composition for oral administration include tablets such as naked tablets, intraoral quick disintegrating tablets, dry-coated tablets, pills, troches, chewables and capsules. However, it is not limited to these. More preferably, it is a tablet or a capsule.
  • a pharmaceutical composition for oral administration as a tablet is produced by molding a mixture containing a drug, a corrigent, an additive, and a colorant and marking a mark on the surface.
  • the pharmaceutical composition for oral administration as a tablet includes, for example, a V-type mixer (for example, manufactured by Tokuju Kakujo Co., Ltd., Fuji Paudal Co., Ltd., or Dalton Co., Ltd.), a tumbler mixer (for example, Dalton Co., Ltd., or Daiko Seiki Co., Ltd.), or a high-speed stirring mixer (for example, Okada Seiko Co., Ltd., Nara Machinery Co., Ltd., or Paulek Co., Ltd.) etc. It is manufactured by molding and molding the obtained powdery or granular mixture. Examples of molding include compression molding and molding.
  • a tableting machine such as a single tableting machine, a rotary tableting machine, and a dry tableting machine is used.
  • a mold molding machine is used. In mold molding, a molded product is manufactured by filling a mold with a suspension or slurry dispersed in a solvent such as water and drying the solvent.
  • the pharmaceutical composition for oral administration may be provided with a coating layer.
  • the coating layer include a film coating layer and a sugar coating layer.
  • the mark may be marked on the coating layer.
  • the coating layer is preferably transparent.
  • the pharmaceutical composition for oral administration provided with a coating layer include film-coated tablets, dragees, dry-coated tablets and pills.
  • the film coating layer and the sugar coating layer can be manufactured by, for example, a coating granulation method, a film coating method, a sugar coating method, and a compression coating method, but the manufacturing method is not limited thereto.
  • the pharmaceutical composition for oral administration may be a capsule.
  • a pharmaceutical composition for oral administration as a capsule is manufactured by filling a capsule film layer with contents including drugs, edible oils and fats, fragrances, and additives and marking the surface of the capsule film layer. Is done.
  • the capsule may be either a soft capsule or a hard capsule.
  • the content may be in the form of powder, granules, liquid, slurry, or the like.
  • capsule film layers include, but are not limited to, gelatin capsules, agar capsules, hypromellose (HPMC) capsules, pullulan capsules, and starch capsules.
  • HPMC hypromellose
  • When filling capsules with contents a rotary die type capsule filling machine, a seamless capsule filling machine, a hard capsule filling machine (Qualicaps Co., Ltd.), or the like can be used.
  • the marked pharmaceutical composition for oral administration is, for example, discharged to a transport drum or filled into a packaging container through inspection by a character inspection machine, a metal inspection machine, or the like.
  • the timing for marking the mark on the pharmaceutical composition for oral administration is not particularly limited, and can be freely incorporated in the production process of the pharmaceutical composition for oral administration.
  • a mark can be marked on a pharmaceutical composition for oral administration that is moving on a transport line before packing and filling, it can be applied to so-called continuous production.
  • the pharmaceutical composition for oral administration is automatically laid in a flat bread in which a certain amount of the pharmaceutical composition for oral administration is accommodated, and then the transportation line is stopped and the pharmaceutical composition for oral administration is placed.
  • a mark may be marked on an object.
  • the mark may be marked on the pharmaceutical composition for oral administration by batch processing using an automatic marking device having a laser oscillator.
  • the pharmaceutical composition for oral administration loaded in the hopper of the marking device is sequentially supplied from the hopper to the inspection unit, and then, in the inspection unit, the pharmaceutical composition for oral administration is used using a video inspection machine. After confirming whether the front and back surfaces are dirty, chipped, cracked, etc., move one or more pharmaceutical compositions for oral administration to the location where marking is to be performed, and mark the surface of the oral pharmaceutical composition. It can be performed.
  • the step of marking a mark on the surface of a pharmaceutical composition for oral administration may be performed a plurality of times depending on the number of colors.
  • marking may be performed at once using a laser transfer film including a plurality of different transfer layers corresponding to a plurality of colors of marking.
  • the authenticity determination method of the pharmaceutical composition for oral administration may be implemented by the authenticity determination system of the oral pharmaceutical composition.
  • the authenticity determination system for a pharmaceutical composition for oral administration is a mark containing an edible substance that is visible when irradiated with white light and visible when irradiated with infrared light, and when irradiated with white light.
  • a mark containing an edible substance that is visible and not visible when irradiated with infrared rays, an irradiator that irradiates infrared rays to the marked pharmaceutical composition for oral administration, and a pharmaceutical composition for oral administration that is irradiated with infrared rays A determination unit configured to determine whether or not a visual recognition mark visually recognized on an object and a reference mark prepared in advance match each other;
  • the determination unit is realized by, for example, a central processing unit.
  • the authenticity determination system for a pharmaceutical composition for oral administration can further include an imaging device.
  • An imaging device images the pharmaceutical composition for oral administration irradiated with infrared rays.
  • the imaging device sends the captured image to the determination unit.
  • the determination unit determines whether the visual recognition mark visually recognized in the image received from the imaging apparatus matches the reference mark prepared in advance.
  • the authenticity determination system for a pharmaceutical composition for oral administration may further include an output unit that outputs a determination result of the determination unit, and a storage device that stores the determination result of the determination unit.
  • Example 1 As a tablet, 10 mg of a commercially available Pariet (registered trademark) tablet was prepared. Pariet tablets are enteric preparations. The surface of the Pariet tablet is covered with a film containing hypromellose phthalate, titanium oxide (TiO 2 ), and yellow ferric oxide. The tablet was marked with a UV laser beam. As a laser beam irradiation device, an irradiation device manufactured by Photonics Industries International was used. The irradiation conditions of the laser beam were as follows.
  • FIG. 18A shows imaging data of the tablet according to Example 1 captured by a digital camera capable of capturing a normal visible light image under sunlight.
  • FIG. 18B shows imaging data of the tablet according to Example 1 that was captured by a near-infrared camera under sunlight without irradiating the tablet with near-infrared light. Under sunlight, the marks marked with UV laser light could be seen.
  • FIG. 19 shows tablet image data captured by a near-infrared camera when the tablet according to Example 1 is irradiated with near-infrared rays having a wavelength band of 800 nm to 1000 nm in a dark room. Even when the near infrared ray was irradiated, the mark marked with the UV laser beam could be visually recognized.
  • Example 2 As a tablet, not a Pariet tablet 10 mg but a plain tablet composed of 58.5% lactose, 30% crystalline cellulose, 10% corn starch, 1% titanium oxide (TiO 2 ) and 0.5% magnesium stearate Were marked on the tablet under the same irradiation conditions as in Example 1.
  • FIG. 20A shows imaging data of a tablet according to Example 2 captured by a digital camera capable of capturing a normal visible light image under sunlight.
  • FIG. 20B shows imaging data of the tablet according to Example 2 that was captured with a near-infrared camera under sunlight without irradiating the tablet with near-infrared light. Under sunlight, the marks marked with UV laser light could be seen.
  • FIG. 21 shows tablet image data captured by a near-infrared camera when a tablet according to Example 2 is irradiated with near-infrared rays having a wavelength band of 800 nm to 1000 nm in a dark room. Even when the near infrared ray was irradiated, the mark marked with the UV laser beam could be visually recognized.
  • Example 3 As a tablet, 5 mg of a commercially available Aricept (registered trademark) orally disintegrating tablet (D tablet) was prepared. On the surface of Aricept D Tablet 5 mg, E248 for small characters and 5 for large characters are printed with pigment ink mainly composed of edible charcoal.
  • Aricept D Tablet 5 mg, E248 for small characters and 5 for large characters are printed with pigment ink mainly composed of edible charcoal.
  • a base material made of a low-density polyethylene film, and a colored film made of ethyl cellulose (40 parts by mass), red No. 3 (40 parts by mass), and triethyl citrate (20 parts by mass) disposed on the base material A laser transfer film provided with a transfer layer was prepared. The substrate side of the laser transfer film was irradiated with laser light, the transfer layer was transferred to the surface of the tablet, and the Iweo mark and the A8 mark were marked on the tablet surface.
  • a laser beam irradiation device an irradiation device manufactured by Photonics Industries International was used. The irradiation conditions of the laser beam were as follows.
  • FIG. 22 and FIG. FIG. 22A shows imaging data of a tablet according to Example 3 captured by a digital camera capable of capturing a normal visible light image under sunlight.
  • FIG.22 (b) is the imaging data of the tablet which concerns on Example 3 imaged with the near-infrared camera under sunlight, without irradiating a tablet with near-infrared light. Under sunlight, the mark marked with edible charcoal and the mark marked with red No. 3 were visible.
  • FIG. 23 shows tablet image data captured by a near-infrared camera when the tablet according to Example 3 is irradiated with near-infrared rays having a wavelength band of 800 nm to 1000 nm in a dark room. Even when irradiated with near-infrared rays, the marks marked with edible charcoal were visible. However, when the near infrared ray was irradiated, the mark marked with the red No. 3 could not be visually recognized.
  • Example 4 A mark was marked on the tablet under the same irradiation conditions as in Example 3 except that 10 mg of Aricept D tablet was used instead of 5 mg of Aricept D tablet.
  • FIG. 24A shows the imaging data of the tablet according to Example 4 captured by a digital camera capable of capturing a normal visible light image under sunlight.
  • FIG. 24B shows imaging data of the tablet according to Example 4 that was captured by a near-infrared camera under sunlight without irradiating the tablet with near-infrared light. Under sunlight, the mark marked with edible charcoal and the mark marked with red No. 3 were visible.
  • FIG. 25 is tablet image data captured by a near-infrared camera when the tablet according to Example 4 is irradiated with near-infrared rays having a wavelength band of 800 nm to 1000 nm in a dark room. Even when irradiated with near-infrared rays, the marks marked with edible charcoal were visible. However, when the near infrared ray was irradiated, the mark marked with the red No. 3 could not be visually recognized.
  • Film-coated tablets were prepared as tablets.
  • the uncoated tablet of the film-coated tablet was produced by blending 0.5% magnesium stearate with a mixture of lactose and crystalline cellulose and compressing the tablet at a mass of 125 mg.
  • the film coating layer was based on hydroxypropylcellulose and contained 1.5% of macrogol 6000 and titanium oxide (TiO 2 ).
  • the mark shown in FIG. 26 was marked on the tablet surface using a red dye ink, a red pigment ink, and a Qualicaps inkjet printer.
  • the red dye ink contained Red No. 102, Yellow No. 4, and Blue No. 1 as pigment components.
  • the red pigment ink contained red iron oxide as a pigment component.
  • marks surrounded by rectangles with reference numerals 101 and 102 were marked with red dye ink. Marks not enclosed by rectangles with reference numerals 101 and 102 were marked with red pigment ink.
  • FIG. 27A shows imaging data of a tablet according to Example 5 captured by a digital camera capable of capturing a normal visible light image under sunlight.
  • FIG. 27B shows imaging data of the tablet according to Example 5 that was captured with a near-infrared camera under sunlight without irradiating the tablet with near-infrared light. Under sunlight, the marks marked with the red dye ink and the marks marked with the red pigment ink were visible.
  • FIG. 28 (a) shows imaging data of a tablet imaged by a near-infrared camera when the tablet according to Example 5 is irradiated with near-infrared light including a wavelength band of 750 nm to 900 nm in a dark room.
  • near infrared rays including a wavelength band of 750 nm or more and 900 nm or less were irradiated, the mark marked with the red pigment ink could be visually recognized.
  • the mark marked with the red dye ink could not be visually recognized.
  • FIG. 28B is an image taken by a near-infrared camera when the tablet according to Example 5 is irradiated with near-infrared rays having a wavelength band of 900 nm to 1000 nm and not including a wavelength band of 900 nm or less in a dark room. It is the imaging data of a tablet.
  • near infrared rays having a wavelength band of 900 nm or more and 1000 nm or less were irradiated, the mark marked with the red pigment ink and the mark marked with the red dye ink could not be visually recognized.
  • Example 6 The same film-coated tablet as in Example 5 was prepared as a tablet.
  • a black pigment ink, a red pigment ink, and a Qualicaps inkjet printer were used to mark the marks shown in FIG. 29 on the tablet surface.
  • the black pigment ink used edible charcoal as a pigment component.
  • the red pigment ink contained red iron oxide as a pigment component.
  • a mark surrounded by a rectangle denoted by reference numeral 103 is marked with red pigment ink. Marks not enclosed by a rectangle denoted by reference numeral 103 were marked with black pigment ink.
  • FIG. 30A shows imaging data of a tablet according to Example 6 captured by a digital camera capable of capturing a normal visible light image under sunlight.
  • FIG. 30B shows imaging data of the tablet according to Example 6 that was captured by a near-infrared camera under sunlight without irradiating the tablet with near-infrared light. Under sunlight, a mark marked with black pigment ink and a mark marked with red pigment ink were visible.
  • FIG. 31 shows imaging of a tablet imaged by a near-infrared camera when a tablet according to Example 6 is irradiated with near-infrared rays having a wavelength band of 900 nm to 1000 nm and not including a wavelength band of 900 nm or less in a dark room. It is data.
  • near-infrared rays having a wavelength band of 900 nm or more and 1000 nm or less were irradiated, the marks marked with the black pigment ink could be visually recognized.
  • the mark marked with the red pigment ink could not be visually recognized.
  • 32B shows imaging data of a tablet imaged by a near-infrared camera when the tablet according to the reference example is irradiated with near-infrared light having a wavelength band of 750 nm or more and 950 m or less.
  • the mark marked with the yellow No. 5 aluminum lake could not be visually recognized.
  • Example 7 As tablets, naked tablets composed of 59.5% lactose, 30% crystalline cellulose, 10% corn starch, and 0.5% magnesium stearate were prepared. Also, a base material composed of a low density polyethylene film, and 50 parts by weight of Eudragit E-100 (registered trademark), 33.3 parts by weight of a dye, and 16.7 parts by weight of citric acid disposed on the base material A transfer layer made of triethyl and a laser transfer film made of were prepared. In the laser transfer film, the pigment was any one of red No. 3 aluminum lake, yellow iron sesquioxide, and copper chlorophyllin Na.
  • the transfer layer is transferred to the surface of the tablet and the surface of the bare tablet is called Iueo
  • the mark and the mark A8 were marked.
  • a laser beam irradiation device an irradiation device manufactured by Photonics Industries International was used. The irradiation conditions of the laser beam were as follows.
  • FIG. 33A shows imaging data of a tablet according to Example 7 captured by a digital camera capable of capturing a normal visible light image under sunlight when the pigment is Red No. 3 aluminum lake.
  • FIG. 33 (b) shows the image taken by the near-infrared camera when the tablet according to Example 7 is irradiated with near-infrared rays having a wavelength band of 750 nm or more and 950 nm or less in a dark room when the pigment is red No. 3 aluminum lake. It is imaging data of a tablet. When the near infrared ray was irradiated, the mark marked with the red No. 3 aluminum lake could not be visually recognized.
  • FIG. 34 (a) shows the imaging data of the tablet according to Example 7 captured by a digital camera capable of capturing a normal visible light image under sunlight when the pigment is yellow ferric oxide.
  • FIG. 34 (b) was captured by a near-infrared camera when the tablet according to Example 7 was irradiated with near-infrared rays having a wavelength band of 750 nm or more and 950 nm or less in a dark room when the pigment was yellow ferric oxide. It is the imaging data of a tablet. When irradiated with near-infrared rays, the marks marked with yellow ferric oxide were visible.
  • FIG. 35 (a) shows the imaging data of the tablet according to Example 7 captured by a digital camera capable of capturing a normal visible light image under sunlight when the pigment is copper chlorophyllin Na.
  • FIG. 35B shows a tablet imaged by a near-infrared camera when near infrared light having a wavelength band of 750 nm or more and 950 nm or less is irradiated in a dark room when the pigment is copper chlorophyllin Na. Imaging data. When near infrared rays were irradiated, the mark marked with copper chlorophyllin Na could be visually recognized.
  • Example 8 As tablets, naked tablets composed of 59.5% lactose, 30% crystalline cellulose, 10% corn starch, and 0.5% magnesium stearate were prepared. Moreover, the transfer which consists of a base material which consists of a low density polyethylene film, and 42.9 mass parts Eudragit RS100, 42.9 mass parts pigment
  • the transfer layer is transferred to the tablet surface, and the dye is applied to the surface of the bare tablet.
  • the mark “Indigo Carmine +” was marked. When the pigment was brilliant blue, the mark was marked.
  • a laser beam irradiation device an irradiation device manufactured by Photonics Industries International was used. The irradiation conditions of the laser beam were as follows.
  • FIG. 36 shows imaging data of a tablet according to Example 8 that was captured by a digital camera capable of capturing a normal visible light image under sunlight when the pigment was indigo carmine.
  • FIG. 36 (b) shows an example of a tablet imaged by a near-infrared camera when the tablet according to Example 8 is irradiated with near-infrared rays having a wavelength band of 750 nm or more and 950 nm or less in a dark room when the pigment is indigo carmine. Imaging data. When the near infrared ray was irradiated, the mark marked with indigo carmine could be visually recognized.
  • FIG. 37 (a) shows the imaging data of the tablet according to Example 8 captured by a digital camera capable of capturing a normal visible light image under sunlight when the pigment is brilliant blue.
  • FIG. 37 (b) shows an example of a tablet imaged by a near-infrared camera when the tablet according to Example 8 is irradiated with near-infrared rays having a wavelength band of 750 nm or more and 950 nm or less in a dark room when the pigment is brilliant blue. Imaging data. When the near infrared rays were irradiated, the mark marked with brilliant blue could not be visually recognized.
  • Example 9 As tablets, naked tablets composed of 59.5% lactose, 30% crystalline cellulose, 10% corn starch, and 0.5% magnesium stearate were prepared. Further, 42.9 parts by mass of Eudragit RS100, 42.9 parts by mass of indigo carmine, and 14.3 parts by mass of triethyl citrate were dissolved and dispersed in 100 parts by mass of ethanol to prepare an ink. The ink was printed on a bare tablet using a stamp and dried.
  • FIG. 38A shows imaging data of a tablet according to Example 9 that was captured by a digital camera capable of capturing a normal visible light image under sunlight.
  • FIG. 38B is image data of the tablet imaged by the near-infrared camera when the tablet according to Example 9 is irradiated with near-infrared light having a wavelength band of 750 nm to 950 nm in a dark room.
  • the mark marked with indigo carmine could be visually recognized.
  • White tablets were produced by blending 0.5% magnesium stearate into a mixture of lactose and crystalline cellulose and compressing the tablets at a mass of 125 mg.
  • the film coating layer was based on hydroxypropylcellulose and contained 1.5% of macrogol 6000 and titanium oxide (TiO 2 ).
  • Ficompa registered trademark
  • the surface of the Ficompa tablet was covered with a film containing hypromellose, titanium oxide (TiO 2 ), and red iron sesquioxide.
  • Each white tablet and colored tablet was marked with a mark by irradiating with green laser light.
  • a laser beam irradiation apparatus an irradiation apparatus manufactured by Keyence Corporation was used.
  • the irradiation conditions of the laser beam were as follows.
  • FIG. 39 and 40 show the imaging data of the marked tablet according to Example 10.
  • FIG. 39A shows imaging data of a tablet according to Example 10 captured by a digital camera capable of capturing a normal visible light image under sunlight when the tablet is a white tablet.
  • FIG. 39B shows a tablet imaged by a near-infrared camera when a tablet according to Example 10 is irradiated with near infrared light having a wavelength band of 750 nm or more and 950 nm or less in a dark room when the tablet is a white tablet. Imaging data. When the near infrared ray was irradiated, the mark marked with the laser beam could be visually recognized.
  • FIG. 40 (a) shows the imaging data of the tablet according to Example 10 captured by a digital camera capable of capturing a normal visible light image under sunlight when the tablet is a colored tablet.
  • FIG. 40 (b) was taken with a near-infrared camera when the tablet according to Example 10 was irradiated with near infrared light having a wavelength band of 750 nm or more and 950 nm or less in a dark room when the tablet was a colored tablet. It is the imaging data of a tablet. When the near infrared ray was irradiated, the mark marked with the laser beam could be visually recognized.
  • Example 11 A mixture containing 0.5% magnesium stearate in a mixture of lactose and crystalline cellulose was tableted to obtain a tablet having a mass of 125 mg.
  • the tablet was provided with a film coating layer containing hydroxypropylcellulose as a base material and containing 1.5% each of macrogol 6000 and titanium oxide (TiO 2 ).
  • a mark was printed on the film coating layer of the tablet with a UV marking device manufactured by Qualicaps, and the mark was printed on the printed mark using a blue dye ink with a Qualicaps inkjet printer.
  • the irradiation conditions of the laser beam were as follows.
  • FIGS. FIG. 41 (a) shows a case where E235 is printed with UV laser light and then E235 is printed with the blue dye ink in the same place, and is taken with a digital camera capable of taking a normal visible light image under sunlight. It is the imaging data of the tablet which concerns on Example 11.
  • FIG. 41 (b) shows that after printing E235 with UV laser light and printing with E235 with blue dye ink, the tablet according to Example 11 was irradiated with near infrared rays having a wavelength band of 750 nm or more and 950 nm or less in a dark room. Sometimes it is imaging data of a tablet imaged by a near-infrared camera. When the near infrared ray was irradiated, the mark marked with the UV laser beam could be visually recognized.
  • FIG. 42A shows a digital camera that can capture normal visible light images under sunlight when E35 is printed with UV laser light and then E235 is printed with blue dye ink at the same location. It is the imaging data of the tablet concerning Example 11 performed.
  • FIG. 42 (b) shows a case in which near-infrared light having a wavelength band of 750 nm or more and 950 nm or less in a dark room is printed in the dark place after printing E35 with UV laser light and E235 with blue dye ink in the same place. It is the imaging data of the tablet imaged with the near-infrared camera when the tablet was irradiated. When the near infrared ray was irradiated, the mark marked with the UV laser beam could be visually recognized. The mark marked with the blue dye ink could not be visually recognized.
  • FIG. 43 (a) is taken with a digital camera that can take a normal visible light image under sunlight when printing E23 with UV laser light and then printing E235 with blue dye ink in the same place. It is the imaging data of the tablet which concerns on Example 11.
  • FIG. 43 (b) shows a tablet according to Example 11 in which near-infrared rays having a wavelength band of 750 nm or more and 950 nm or less in a dark room are printed in the same place after printing E23 with UV laser light and blue dye ink in the same place. It is the imaging data of the tablet imaged with the near-infrared camera when it was irradiated. When the near infrared ray was irradiated, the mark marked with the UV laser beam could be visually recognized. The mark marked with the blue dye ink could not be visually recognized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Epidemiology (AREA)
  • Medicinal Preparation (AREA)
  • Medical Preparation Storing Or Oral Administration Devices (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークと、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できない可食性の物質を含むマークと、がマーキングされた経口投与用医薬組成物に赤外線を照射することと、赤外線を照射された経口投与用医薬組成物上で視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断することと、を含む、経口投与用医薬組成物の真偽判別方法。

Description

経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システム
 本発明は医薬品に関し、経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システムに関する。
 紙幣、金券、及び商品等の偽造を防止するための偽造防止技術が提案されている(例えば、特許文献1から7参照。)。特許文献8は、可視光を照射した場合、黒く見えるが、紫外線を照射した場合、蛍光を発し、視認可能な偽造防止インクを開示している。特許文献9は、温度変化によって変色する偽造防止インクを開示している。
 また、近年、偽造医薬品の流通が問題になっている(例えば、特許文献10参照。)。偽造医薬品は、カウンターフィット薬とも呼ばれる。偽造医薬品は、例えば、有効成分を含んでいない場合や、あるいは有害物質を含んでいる場合がある。したがって、偽造医薬品を摂取することは、治療機会の損失や、健康被害につながるおそれがある。しかし、特許文献8、9に開示されたような偽造防止インクは、可食性ではない。そのため、医薬品そのものに、特許文献8、9に開示されたような偽造防止インクを用いてマークを印刷することは不可能である。
 そのため、医薬品の包装材にホログラムを貼り付けたり、包装材に、実際の製造者のみが識別可能な識別コードを印字して真偽を判別可能にしたりする方法が提案されている。しかし、偽造医薬品の製造者などにより、包装材の中の医薬品を本物から偽物に交換されるおそれがある。これに対し、包装材を封かんすることで改ざんの有無を識別可能にする方法が提案されている。
特開昭58-134782号公報 特開昭63-92486号公報 特開平2-167771号公報 特開平3-154187号公報 特開2004-348539号公報 特開2006-205500号公報 特開2011-178009号公報 特開2010-6938号公報 特開2008-189879号公報 特開2006-89741号公報
 経口投与用医薬組成物、特に錠剤やカプセル剤には、製品の識別のために、可食性インクを用いたマークの印刷や、紫外(UV)レーザー光を用いたマークのマーキングが施されている。マークの印刷には、インクとゴムローラー等とを用いた転写印刷や、多色のインクジェット印刷が用いられている。
 製品の識別のためのマークとは、例えば、製造会社名、製造会社のロゴ、製品名、及び製品番号等である。従来、経口投与用医薬組成物の識別のためのマークを、経口投与用医薬組成物の真偽を判別するために用いられたことはなかった。また、経口投与用医薬組成物製品の真偽を判別するために使用可能な、可食性の色素又はインクも不明であった。
 そこで、本発明は、経口投与用医薬組成物の真偽判別が可能な経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システムを提供することを目的とする。
 本発明の態様によれば、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークと、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できない可食性の物質を含むマークと、がマーキングされた経口投与用医薬組成物に赤外線を照射することと、赤外線を照射された経口投与用医薬組成物上で視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断することと、を含む、経口投与用医薬組成物の真偽判別方法が提供される。
 上記の経口投与用医薬組成物の真偽判別方法において、赤外線の波長帯域が、700nm以上900nm以下の少なくとも一部を含んでいてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、赤外線の波長帯域が、900nm以上であってもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、経口投与用医薬組成物が酸化チタン(TiO2)を含有し、赤外線を照射されたときに視認できる可食性の物質を含むマークが、レーザー光でマーキングされていてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、赤外線を照射されたときに視認できる可食性の物質を含むマークが、黄色三二酸化鉄を含む顔料を用いてレーザー印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、赤外線を照射されたときに視認できる可食性の物質を含むマークが、食用炭及び黒色四三酸化鉄(Fe34)の少なくとも一方を含む顔料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、赤外線の波長帯域が、700nm以上900nm以下の少なくとも一部を含む場合、赤外線を照射されたときに視認できる可食性の物質を含むマークが、赤色酸化鉄(Fe23)、銅クロロフィリンナトリウム、インジゴカルミン、及び黒色酸化チタンからなる群から選択される少なくとも一つを含む顔料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、赤外線を照射されたときに視認できない可食性の物質を含むマークが、染料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、染料が、タール染料を含んでいてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、タール染料が、エリスロシン、ニューコクシン、タートラジン、ブリリアントブルーFCF、及びサンセットイエローFCFからなる群から選択される少なくとも1つを含んでいてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、赤外線を照射されたときに視認できない可食性の物質を含むマークが、タール染料のアルミニウムレーキを含む顔料を用いて印刷されてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、赤外線の波長帯域が、900nm以上である場合、赤外線を照射されたときに視認できない可食性の物質を含むマークが、赤色酸化鉄(Fe23)を含む顔料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別方法の判断することにおいて、参照マークが、経口投与用医薬組成物の識別番号又は識別コードに対応していてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、識別番号又は識別コードが、経口投与用医薬組成物にマーキングされていてもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、経口投与用医薬組成物が、錠剤又はカプセル剤であってもよい。
 上記の経口投与用医薬組成物の真偽判別方法において、経口投与用医薬組成物が、錠剤であってもよい。
 また、本発明の態様によれば、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークと、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できない可食性の物質を含むマークと、がマーキングされた経口投与用医薬組成物であって、赤外線を照射された当該経口投与用医薬組成物上で視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断することにより真偽判別が可能な経口投与用医薬組成物が提供される。
 上記の経口投与用医薬組成物において、赤外線の波長帯域が、700nm以上900nm以下の少なくとも一部を含んでいてもよい。
 上記の経口投与用医薬組成物において、赤外線の波長帯域が、900nm以上であってもよい。
 上記の経口投与用医薬組成物が酸化チタン(TiO2)を含有し、赤外線を照射されたときに視認できる可食性の物質を含むマークが、レーザー光でマーキングされていてもよい。
 上記の経口投与用医薬組成物において、赤外線を照射されたときに視認できる可食性の物質を含むマークが、黄色三二酸化鉄を含む顔料を用いてレーザー印刷されていてもよい。
 上記の経口投与用医薬組成物において、赤外線を照射されたときに視認できる可食性の物質を含むマークが、食用炭及び黒色四三酸化鉄(Fe34)の少なくとも一方を含む顔料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物において、赤外線の波長帯域が、700nm以上900nm以下の少なくとも一部を含む場合、赤外線を照射されたときに視認できる可食性の物質を含むマークが、赤色酸化鉄(Fe23)、銅クロロフィリンナトリウム、及びインジゴカルミンからなる群から選択される少なくとも一つを含む顔料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物において、赤外線を照射されたときに視認できない可食性の物質を含むマークが、染料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物において、染料が、タール染料を含んでいてもよい。
 上記の経口投与用医薬組成物において、タール染料が、エリスロシン、ニューコクシン、タートラジン、ブリリアントブルーFCF、及びサンセットイエローFCFからなる群から選択される少なくとも1つを含んでいてもよい。
 上記の経口投与用医薬組成物において、赤外線を照射されたときに視認できない可食性の物質を含むマークが、タール染料のアルミニウムレーキを含む顔料を用いて印刷されてもよい。
 上記の経口投与用医薬組成物において、赤外線の波長帯域が、900nm以上である場合、赤外線を照射されたときに視認できない可食性の物質を含むマークが、赤色酸化鉄(Fe23)を含む顔料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物の判断することにおいて、参照マークが、経口投与用医薬組成物の識別番号又は識別コードに対応していてもよい。
 上記の経口投与用医薬組成物において、識別番号又は識別コードがマーキングされていてもよい。
 上記の経口投与用医薬組成物が、錠剤又はカプセル剤であってもよい。
 上記の経口投与用医薬組成物が、錠剤であってもよい。
 また、本発明の態様によれば、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークと、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できない可食性の物質を含むマークと、がマーキングされた経口投与用医薬組成物に赤外線を照射する照射器と、赤外線を照射された経口投与用医薬組成物上で視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断する判断部と、を備える、経口投与用医薬組成物の真偽判別システムが提供される。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、赤外線の波長帯域が、700nm以上900nm以下の少なくとも一部を含んでいてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、赤外線の波長帯域が、900nm以上であってもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、経口投与用医薬組成物が酸化チタン(TiO2)を含有し、赤外線を照射されたときに視認できる可食性の物質を含むマークが、レーザー光でマーキングされていてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、赤外線を照射されたときに視認できる可食性の物質を含むマークが、黄色三二酸化鉄を含む顔料を用いてレーザー印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、赤外線を照射されたときに視認できる可食性の物質を含むマークが、食用炭及び黒色四三酸化鉄(Fe34)の少なくとも一方を含む顔料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、赤外線の波長帯域が、700nm以上900nm以下の少なくとも一部を含む場合、赤外線を照射されたときに視認できる可食性の物質を含むマークが、赤色酸化鉄(Fe23)、銅クロロフィリンナトリウム、及びインジゴカルミンからなる群から選択される少なくとも一つを含む顔料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、赤外線を照射されたときに視認できない可食性の物質を含むマークが、染料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、染料が、タール染料を含んでいてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、タール染料が、エリスロシン、ニューコクシン、タートラジン、ブリリアントブルーFCF、及びサンセットイエローFCFからなる群から選択される少なくとも1つを含んでいてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、赤外線を照射されたときに視認できない可食性の物質を含むマークが、タール染料のアルミニウムレーキを含む顔料を用いて印刷されてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、赤外線の波長帯域が、900nm以上である場合、赤外線を照射されたときに視認できない可食性の物質を含むマークが、赤色酸化鉄(Fe23)を含む顔料を用いて印刷されていてもよい。
 上記の経口投与用医薬組成物の真偽判別システムの判断することにおいて、参照マークが、経口投与用医薬組成物の識別番号又は識別コードに対応していてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、識別番号又は識別コードが、経口投与用医薬組成物にマーキングされていてもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、経口投与用医薬組成物が、錠剤又はカプセル剤であってもよい。
 上記の経口投与用医薬組成物の真偽判別システムにおいて、経口投与用医薬組成物が、錠剤であってもよい。
 本発明によれば、経口投与用医薬組成物の真偽判別が可能な経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システムを提供可能である。
実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図1(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図1(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図2(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図2(b)は、波長が900nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 参考例に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図3(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図3(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図4(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図4(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図5(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図5(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図6(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図6(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図7(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図7(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図8(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図8(b)は、波長が700nm以上900nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図9(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図9(b)は、波長が700nm以上900nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図10(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図10(b)は、波長が700nm以上900nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図11(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図11(b)は、波長が700nm以上900nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図12(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図12(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図13(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図13(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図14(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図14(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係るマークをマーキングされた経口投与用医薬組成物の模式図である。図15(a)は、白色光で観察された経口投与用医薬組成物の模式図である。図15(b)は、波長が700nm以上1700nm以下の赤外線で観察された経口投与用医薬組成物の模式図である。 実施形態に係る経口投与用医薬組成物の真偽判別方法の手順の一例を示す模式図である。 実施形態に係る経口投与用医薬組成物の真偽判別方法の手順の一例を示す模式図である。 実施例1に係るマークをマーキングされた錠剤の撮像データである。図18(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図18(b)は、太陽光下で、近赤外線カメラで撮像された錠剤の撮像データである。 波長帯域が800nm以上1000nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された、実施例1に係るマークをマーキングされた錠剤の撮像データである。 実施例2に係るマークをマーキングされた錠剤の撮像データである。図20(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図20(b)は、太陽光下で、近赤外線カメラで撮像された錠剤の撮像データである。 波長帯域が800nm以上1000nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された、実施例2に係るマークをマーキングされた錠剤の撮像データである。 実施例3に係るマークをマーキングされた錠剤の撮像データである。図22(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図22(b)は、太陽光下で、近赤外線カメラで撮像された錠剤の撮像データである。 波長帯域が800nm以上1000nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された、実施例3に係るマークをマーキングされた錠剤の撮像データである。 実施例4に係るマークをマーキングされた錠剤の撮像データである。図24(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図24(b)は、太陽光下で、近赤外線カメラで撮像された錠剤の撮像データである。 波長帯域が800nm以上1000nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された、実施例4に係るマークをマーキングされた錠剤の撮像データである。 デジタルカメラで撮像された、実施例5に係るマークをマーキングされた錠剤の撮像データである。 実施例5に係るマークをマーキングされた錠剤の撮像データである。図27(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図27(b)は、太陽光下で、近赤外線カメラで撮像された錠剤の撮像データである。 実施例5に係るマークをマーキングされた錠剤の撮像データである。図28(a)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。図28(b)は、波長帯域が800nm以上1000nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 デジタルカメラで撮像された、実施例6に係るマークをマーキングされた錠剤の撮像データである。 実施例6に係るマークをマーキングされた錠剤の撮像データである。図30(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図30(b)は、太陽光下で、近赤外線カメラで撮像された錠剤の撮像データである。 波長帯域が900nm以上1000nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された、実施例6に係るマークをマーキングされた錠剤の撮像データである。 参考例に係るマークをマーキングされた錠剤の撮像データである。図32(a)は、デジタルカメラで撮像された錠剤の撮像データである。図32(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例7に係るマークをマーキングされた錠剤の撮像データである。図33(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図33(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例7に係るマークをマーキングされた錠剤の撮像データである。図34(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図34(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例7に係るマークをマーキングされた錠剤の撮像データである。図35(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図35(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例8に係るマークをマーキングされた錠剤の撮像データである。図36(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図36(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例8に係るマークをマーキングされた錠剤の撮像データである。図37(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図37(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例9に係るマークをマーキングされた錠剤の撮像データである。図38(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図38(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例10に係るマークをマーキングされた錠剤の撮像データである。図39(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図39(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例10に係るマークをマーキングされた錠剤の撮像データである。図40(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図40(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例11に係るマークをマーキングされた錠剤の撮像データである。図41(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図41(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例11に係るマークをマーキングされた錠剤の撮像データである。図42(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図42(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。 実施例11に係るマークをマーキングされた錠剤の撮像データである。図43(a)は、デジタルカメラで撮像された錠剤の撮像データであり、図43(b)は、波長帯域が750nm以上950nm以下の近赤外線を錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。
 以下、本発明の実施形態について具体的に説明する。ただし、以下の実施の形態が本発明を限定するものであると理解するべきではない。本開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかになるはずである。本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
 実施形態に係る経口投与用医薬組成物の真偽判別方法は、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークと、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できない可食性の物質を含むマークと、がマーキングされた経口投与用医薬組成物に赤外線を照射することと、赤外線を照射された経口投与用医薬組成物上で視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断することと、を含む。
 ここで、可食性とは、人の体内に摂取した場合に人に重大な害を及ぼさないことを意味する。可食性の物質とは、例えば、薬剤学上許容し得る物質、あるいは衛生学上許容し得る物質であることが好ましい。薬剤学上許容し得る物質は、例えば、医薬品添加物規格に掲載されている。衛生上許容し得る物質は、例えば、食品添加物規格に掲載されている。
 白色光とは、太陽光のように可視光線の各波長の光が混合している光である。通常の照明器具から発せられる光も、白色光に含まれる。赤外線は、例えば近赤外線である。赤外線の波長帯域は、例えば700nm以上、又は800nm以上である。また、赤外線の波長帯域は、例えば2500nm以下、1700nm以下、又は1000nm以下である。あるいは、赤外線の波長帯域は、700nm以上800nm以下の少なくとも一部、又は700nm以上900nm以下の少なくとも一部を含む。
 経口投与用医薬組成物の表面にマーキングされたマークとは、文字、数字、記号、図形、及び模様等を含み、文字、数字、記号、図形、及び模様等の一部分も含む。
 経口投与用医薬組成物は、例えば、表面近傍において、酸化チタン(TiO2)を含有する。経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークは、例えば、レーザー照射器でレーザー光を経口投与用医薬組成物に照射することによりマーキングされたマークである。このようなマークは、酸化チタンのレーザー光照射物を、赤外線を照射されたときに視認できる可食性の物質として含む。レーザー光でマーキングされたマークは、波長帯域が700nm以上の赤外線を照射した場合、波長帯域が800nm以上の赤外線を照射した場合、及び波長帯域が900nm以上の赤外線を照射した場合のいずれにおいても、視認することができる。
 マークをマーキングするためのレーザー光は特に限定されず、レーザー媒質が固体、液体及び気体のいずれの状態でレーザー発振されたものでもよい。固体レーザーの例としては、YLFレーザー、YAGレーザー、YVO4レーザー、及びファイバーレーザー等が挙げられる。これらの中でも、例えば、UVレーザー光を発する、基本、第2、第3、第4、及び第5高調波YVO4レーザー発振器が好ましいが、特に限定されない。
 ここで、マークが視認できるとは、通常の人や、撮像装置によって、マークが見えることをいう。
 経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークは、食用炭及び黒色四三酸化鉄(Fe43)の少なくとも一方を含む可食性の顔料を用いて印刷されたマークであってもよい。したがって、これらの顔料を用いて印刷されたマークは、食用炭及び黒色四三酸化鉄(Fe43)の少なくとも一方を、赤外線を照射されたときに視認できる可食性の物質として含む。食用炭及び黒色四三酸化鉄(Fe43)の少なくとも一方を含む顔料を用いて印刷されたマークは、波長帯域が700nm以上の赤外線を照射した場合、波長帯域が800nm以上の赤外線を照射した場合、及び波長帯域が900nm以上の赤外線を照射した場合のいずれにおいても、視認することができる。
 顔料とは、水、油等に不溶の白色又は有色の粉体をいう。顔料インクとは、顔料を水、油等の溶媒に分散させたインクをいう。顔料インクにおいては、通常、顔料は、溶媒に完全に溶解しない。
 顔料としては、1種類の顔料を使用してもよいし、任意の複数種類の顔料の混合物を使用してもよい。混合顔料において、各顔料の配合比は任意である。
 経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークは、赤色酸化鉄(Fe23)を含む可食性の顔料を用いて印刷されたマークであってもよい。当該顔料を用いて印刷されたマークは、赤色酸化鉄(Fe23)を、赤外線を照射されたときに視認できる可食性の物質として含む。赤色酸化鉄(Fe23)を含む顔料を用いて印刷されたマークは、波長帯域が700nm以上900nm以下の少なくとも一部を含む赤外線を照射した場合に視認することができる。
 経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークは、黄色三二酸化鉄(Fe・HO)を含む可食性の顔料を用いてレーザー印刷されたマークであってもよい。当該顔料を用いてレーザー印刷されたマークは、黄色三二酸化鉄(Fe・HO)のレーザー光照射物を、赤外線を照射されたときに視認できる可食性の物質として含む。黄色三二酸化鉄(Fe・HO)を含む顔料を用いてレーザー印刷されたマークは、波長帯域が700nm以上900nm以下の少なくとも一部を含む赤外線、あるいは波長帯域が700nm以上800nm以下の少なくとも一部を含む赤外線を照射した場合に視認することができる。なお、黄色三二酸化鉄(Fe・HO)は、レーザー印刷された場合に、赤外線を照射した場合に視認することができる。しかし、黄色三二酸化鉄(Fe・HO)は、レーザーを用いずに印刷された場合、赤外線を照射しても視認することができない。
 経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークは、銅クロロフィリンナトリウムを含む可食性の顔料を用いて印刷されたマークであってもよい。当該顔料を用いて印刷されたマークは、銅クロロフィリンナトリウムを、赤外線を照射されたときに視認できる可食性の物質として含む。銅クロロフィリンナトリウムを含む顔料を用いて印刷されたマークは、波長帯域が700nm以上900nm以下の少なくとも一部を含む赤外線、あるいは波長帯域が700nm以上800nm以下の少なくとも一部を含む赤外線を照射した場合に視認することができる。
 経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークは、インジゴカルミンを含む可食性の顔料を用いて印刷されたマークであってもよい。当該顔料を用いて印刷されたマークは、インジゴカルミンを、赤外線を照射されたときに視認できる可食性の物質として含む。インジゴカルミンを含む顔料を用いて印刷されたマークは、波長帯域が700nm以上900nm以下の少なくとも一部を含む赤外線、あるいは波長帯域が700nm以上800nm以下の少なくとも一部を含む赤外線を照射した場合に視認することができる。
 経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークは、黒色酸化チタンを含む可食性の顔料を用いて印刷されたマークであってもよい。当該顔料を用いて印刷されたマークは、黒色酸化チタンを、赤外線を照射されたときに視認できる可食性の物質として含む。黒色酸化チタンを含む顔料を用いて印刷されたマークは、波長帯域が700nm以上900nm以下の少なくとも一部を含む赤外線、あるいは波長帯域が700nm以上800nm以下の少なくとも一部を含む赤外線を照射した場合に視認することができる。なお、黒色酸化チタンは、例えば、酸化チタンを還元処理した低次酸化チタンや酸窒素化チタンである。あるいは、黒色酸化チタンは、酸窒化チタン粉末に5A族元素、6A族元素、又は7A族元素の一部の酸窒化物粉末を混合した黒色粉末であってもよい。
 波長帯域が700nm以上900nm以下の少なくとも一部を含む赤外線を用いる場合、レーザー光でマーキングされたマークと、食用炭及び黒色四三酸化鉄(Fe43)の少なくとも一方を含む顔料を用いて印刷されたマークと、赤色酸化鉄(Fe23)を含む顔料を用いて印刷されたマークと、黄色三二酸化鉄(Fe・HO)を含む顔料を用いて印刷されたマークと、黄色三二酸化鉄(Fe・HO)を含む顔料を用いてレーザー印刷されたマークと、銅クロロフィリンナトリウムを含む顔料を用いて印刷されたマークと、インジゴカルミンを含む顔料を用いて印刷されたマークと、の任意の組み合わせが、赤外線を照射されたときに視認できる可食性の物質を含むマークとして、経口投与用医薬組成物の表面にマーキングされていてもよい。
 波長帯域が900nm以上の赤外線を用いる場合、レーザー光でマーキングされたマークと、食用炭及び黒色四三酸化鉄(Fe43)の少なくとも一方を含む顔料を用いて印刷されたマークと、の任意の組み合わせが、赤外線を照射されたときに視認できる可食性の物質を含むマークとして、経口投与用医薬組成物の表面にマーキングされていてもよい。
 経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できない可食性の物質を含むマークは、可食性の染料を用いて印刷されたマークである。当該染料を用いて印刷されたマークは、染料を、赤外線を照射されたときに視認できない可食性の物質として含む。染料を用いて印刷されたマークは、波長帯域が700nm以上の赤外線を照射した場合、波長帯域が800nm以上の赤外線を照射した場合、及び波長帯域が900nm以上の赤外線を照射した場合のいずれにおいても、視認することができない。
 ここで、マークが視認できないとは、通常の人や、撮像装置によって、マークが見えないことをいう。また、染料とは、一般的に、繊維に染着する有機色素をいう。染料インクとは、染料を水、油等の溶媒に溶解させたインクをいう。ただし、染料インクにおいて、未溶解の染料が残存している場合もある。
 染料は、例えば、タール染料を含む。なお、タール染料とは、歴史的には、コールタールを主原料とした染料であるが、現在においては、コールタールを主原料としない合成染料も、タール染料と呼ばれることは、周知のとおりである。
 タール染料としては、エリスロシン(赤色3号)、ニューコクシン(赤色102号)、タートラジン(黄色4号)、ブリリアントブルーFCF(青色1号)、及びサンセットイエローFCF(黄色5号)の少なくともいずれかを使用可能である。
 染料としては、1種類の染料を使用してもよいし、任意の複数種類の染料の混合物を使用してもよい。混合染料において、各染料の配合比は任意である。
 経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できない可食性の物質を含むマークは、タール染料のアルミニウムレーキを含む顔料を用いて印刷されたマークであってもよい。当該顔料を用いて印刷されたマークは、タール染料のアルミニウムレーキを、赤外線を照射されたときに視認できない可食性の物質として含む。タール染料のアルミニウムレーキを含む顔料を用いて印刷されたマークは、波長帯域が700nm以上の赤外線を照射した場合、波長帯域が800nm以上の赤外線を照射した場合、及び波長帯域が900nm以上の赤外線を照射した場合のいずれにおいても、視認することができない。
 タール染料のアルミニウムレーキとしては、エリスロシン(赤色3号)アルミニウムレーキ、ニューコクシン(赤色102号)アルミニウムレーキ、タートラジン(黄色4号)アルミニウムレーキ、ブリリアントブルーFCF(青色1号)アルミニウムレーキ、及びサンセットイエローFCF(黄色5号)アルミニウムレーキの少なくともいずれかを使用可能である。
 タール染料のアルミニウムレーキを含む顔料としては、1種類のタール染料のアルミニウムレーキを含む顔料を使用してもよいし、任意の複数種類のタール染料のアルミニウムレーキを含む顔料の混合物を使用してもよい。混合顔料において、各タール染料のアルミニウムレーキを含む顔料の配合比は任意である。
 経口投与用医薬組成物の表面にマーキングされた、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できない可食性の物質を含むマークは、赤色酸化鉄を含む顔料を用いて印刷されたマークであってもよい。当該顔料を用いて印刷されたマークは、赤色酸化鉄を、赤外線を照射されたときに視認できない可食性の物質として含む。赤色酸化鉄を含む顔料を用いて印刷されたマークは、上述したように、波長帯域が700nm以上900nm以下の少なくとも一部を含む赤外線を照射した場合に視認することができるが、波長帯域が900nm以上の赤外線を照射した場合に視認することができない。
 波長帯域が900nm以上の赤外線を用いる場合、染料を用いて印刷されたマーク、及び赤色酸化鉄を含む顔料を用いて印刷されたマークの任意の組み合わせが、赤外線を照射されたときに視認できない可食性の物質を含むマークとして、経口投与用医薬組成物の表面にマーキングされていてもよい。
 経口投与用医薬組成物の表面に顔料又は染料を用いて印刷する際には、例えばオフセット印刷機及びインクジェット印刷機等が使用可能であるが、使用可能な印刷機はこれらに限定されない。
 経口投与用医薬組成物の表面において、赤外線を照射されたときに視認できる可食性の物質を含むマークと、赤外線を照射されたときに視認できない可食性の物質を含むマークと、は、重なっていてもよい。あるいは、経口投与用医薬組成物の表面において、赤外線を照射されたときに視認できる可食性の物質を含むマークと、赤外線を照射されたときに視認できない可食性の物質を含むマークと、は、一体となって、一つのマークを形成していてもよい。例えば、一つのマークの任意のドットを、赤外線を照射されたときに視認できる可食性の物質で形成し、他のドットを赤外線を照射されたときに視認できない可食性の物質で形成してもよい。また、例えば、マークがアルファベットのOである場合、Oの右半分を赤外線を照射されたときに視認できる可食性の物質で形成し、Oの左半分を赤外線を照射されたときに視認できない可食性の物質で形成してもよい。
 経口投与用医薬組成物及び経口投与用医薬組成物の包装容器の少なくともいずれかには、経口投与用医薬組成物の識別番号又は識別コードがマーキングされていてもよい。
 識別番号又は識別コードは、識別を目的として経口投与用医薬組成物及び経口投与用医薬組成物の包装容器の少なくともいずれかに刻印又はマーキングされるマークである。識別番号又は識別コードによって、経口投与用医薬組成物の製造会社が識別できてもよい。製造会社を識別するための識別番号又は識別コードの例としては、製造会社を表す標章、略称、記号、アルファベット、かな文字、漢字、及びマーク等が挙げられる。識別番号又は識別コードによって、経口投与用医薬組成物の製品が識別できてもよい。製品を識別するための識別番号又は識別コードの例としては、数字及び記号等が挙げられる。
 経口投与用医薬組成物の識別番号又は識別コードは、経口投与用医薬組成物の製造ロット又はロット番号に対応していてもよい。経口投与用医薬組成物に識別番号又は識別コードをマーキングする場合、任意の可食性インクを用いる印刷を用いて識別番号又は識別コードをマーキングしてもよいし、レーザー光を用いて識別番号又は識別コードをマーキングしてもよい。
 経口投与用医薬組成物にマーキングされる、赤外線を照射されたときに視認できる可食性の物質を含むマークと、赤外線を照射されたときに視認できない可食性の物質を含むマークと、の組み合わせは、経口投与用医薬組成物の識別番号又は識別コードにあわせて変化させてもよい。あるいは、赤外線を照射されたときに視認できる可食性の物質を含むマークと、赤外線を照射されたときに視認できない可食性の物質を含むマークと、の組み合わせは、経口投与用医薬組成物の製造ロット又はロット番号にあわせて変化させてもよい。
 真の製造者は、経口投与用医薬組成物の識別番号又は識別コードに対応する、赤外線を照射されたときに視認できる視認マークを、参照マークとして、予め用意する。あるいは、真の製造者は、経口投与用医薬組成物の製造ロット又はロット番号に対応する、赤外線を照射されたときに視認できる視認マークを、参照マークとして、予め用意する。経口投与用医薬組成物に赤外線を照射されたときに視認できた視認マークが、参照マークと一致している場合、経口投与用医薬組成物が本物であると判別することが可能である。また、経口投与用医薬組成物に赤外線を照射されたときに視認できた視認マークが、参照マークと一致しない場合、経口投与用医薬組成物が偽物であると判別することが可能である。
 特定の識別番号又は識別コードに対応する参照マークは、真の製造者のみが知り得る。識別番号又は識別コードと、参照マークと、の組み合わせは、多数発生させることが可能である。あるいは、特定の製造ロット又はロット番号に対応する参照マークは、真の製造者のみが知り得る。製造ロット又はロット番号と、参照マークと、の組み合わせは、多数発生させることが可能である。そのため、赤外線を照射されたときに視認できる視認マークを、暗号として利用することが可能であり、第三者による経口投与用医薬組成物の偽造を防止することが可能となる。
 図1(a)に示す経口投与用医薬組成物においては、符号1を付された矩形中の数字は、ニューコクシン(赤色102号)を含む染料インクでマーキングされており、符号1を付された矩形外のアルファベットは、レーザー光を用いてマーキングされている。図1(a)に示す経口投与用医薬組成物に、波長が700nm以上1700nm以下の赤外線を照射すると、図1(b)に示すように、符号1を付された矩形中の数字は視認できなくなるが、符号1を付された矩形外のアルファベットは視認することができる。
 図2(a)に示す経口投与用医薬組成物においては、符号2を付された矩形中の数字は、赤色酸化鉄を含む顔料インクでマーキングされており、符号2を付された矩形外のアルファベットは、レーザー光を用いてマーキングされている。図2(a)に示す経口投与用医薬組成物に、波長が900nm以上1700nm以下の赤外線を照射すると、図2(b)に示すように、符号2を付された矩形中の数字は視認できなくなるが、符号2を付された矩形外のアルファベットは視認することができる。
 図3(a)に示す経口投与用医薬組成物においては、符号3を付された矩形中の数字は、食用炭を含む顔料インクでマーキングされており、符号3を付された矩形外のアルファベットは、レーザー光を用いてマーキングされている。図3(a)に示す経口投与用医薬組成物に、波長が700nm以上1700nm以下の赤外線を照射すると、図3(b)に示すように、符号3を付された矩形中の数字、及び符号3を付された矩形外のアルファベットは視認することができる。
 図4(a)に示す経口投与用医薬組成物においては、レーザー光を用いてアルファベットEの文字が細くマーキングされており、さらに、その上から、ニューコクシン(赤色102号)を含む染料インクでアルファベットEの文字が太くマーキングされている。図4(a)に示す経口投与用医薬組成物に、波長が700nm以上1700nm以下の赤外線を照射すると、図4(b)に示すように、ニューコクシン(赤色102号)を含む染料インクでマーキングされた太いマークは視認できず、レーザー光を用いてマーキングされた細いマークが視認できる。
 図5(a)及び図6(a)に示す経口投与用医薬組成物においては、符号4を付された矩形中の数字は、ニューコクシン(赤色102号)を含む染料インクでマーキングされており、符号4を付された矩形外の数字は、食用炭及び黒色四三酸化鉄(Fe43)の少なくとも一方を含む顔料インクでマーキングされている。図5(a)及び図6(a)に示す経口投与用医薬組成物に、波長が700nm以上1700nm以下の赤外線を照射すると、図5(b)及び図6(b)に示すように、符号4を付された矩形中の数字は視認できなくなるが、符号4を付された矩形外の数字は視認することができる。
 図7(a)に示す経口投与用医薬組成物においては、アルファベットEのマークのうち、符号5を付された矩形中の部分は、ニューコクシン(赤色102号)を含む染料インクでマーキングされており、符号5を付された矩形外の部分は、食用炭及び黒色四三酸化鉄(Fe43)の少なくとも一方を含む顔料インクでマーキングされている。図7(a)に示す経口投与用医薬組成物に、波長が700nm以上1700nm以下の赤外線を照射すると、図7(b)に示すように、アルファベットEのマークのうち、符号5を付された矩形中の部分は視認できなくなるが、符号5を付された矩形外の部分は視認することができる。
 図8(a)に示す経口投与用医薬組成物においては、アルファベットEのマークのうち、符号6を付された矩形中の部分は、ニューコクシン(赤色102号)を含む染料インクでマーキングされており、符号6を付された矩形外の部分は、赤色酸化鉄を含む顔料インクでマーキングされている。図8(a)に示す経口投与用医薬組成物に、波長が700nm以上900nm以下の赤外線を照射すると、図8(b)に示すように、アルファベットEのマークのうち、符号6を付された矩形中の部分は視認できなくなるが、符号6を付された矩形外の部分は視認することができる。
 図9(a)に示す経口投与用医薬組成物においては、符号7を付された矩形中の数字は、ニューコクシン(赤色102号)を含む染料インクでマーキングされており、符号7を付された矩形外の数字は、赤色酸化鉄を含む顔料インクでマーキングされている。図9(a)に示す経口投与用医薬組成物に、波長が700nm以上900nm以下の赤外線を照射すると、図9(b)に示すように、符号7を付された矩形中の数字は視認できなくなるが、符号7を付された矩形外の数字は視認することができる。
 図10(a)に示す経口投与用医薬組成物においては、アルファベットEのマークのうち、符号8を付された矩形中の部分は、ニューコクシン(赤色102号)を含む染料インクと赤色酸化鉄を含む顔料インクの混合インクでマーキングされており、符号8を付された矩形外の部分は、レーザー光を用いてマーキングされている。図10(a)に示す経口投与用医薬組成物に、波長が700nm以上900nm以下の赤外線を照射すると、図10(b)に示すように、アルファベットEのマークのうち、符号8を付された矩形中の部分は視認できるものの薄くなるが、符号8を付された矩形外の部分は変化無く視認することができる。
 図11(a)に示す経口投与用医薬組成物においては、符号8を付された矩形中の数字は、ニューコクシン(赤色102号)を含む染料インクと赤色酸化鉄を含む顔料インクの混合インクでマーキングされており、符号8を付された矩形外の数字は、レーザー光を用いてマーキングされている。図11(a)に示す経口投与用医薬組成物に、波長が700nm以上900nm以下の赤外線を照射すると、図11(b)に示すように、符号8を付された矩形中の数字は視認できるものの薄くなるが、符号8を付された矩形外の数字は変化無く視認することができる。
 図12(a)に示す経口投与用医薬組成物においては、アルファベットEの文字が、黒色四三酸化鉄(Fe43)を含む顔料インクで細くされており、さらに、その上から、黒の染色インクで、アルファベットEの文字が太くマーキングされている。図12(a)に示す経口投与用医薬組成物に、波長が700nm以上1700nm以下の赤外線を照射すると、図12(b)に示すように、黒の染色インクでマーキングされた太いマークは視認できず、黒色四三酸化鉄(Fe43)を含む顔料インクでマーキングされた細いマークが視認できる。
 図13(a)に示す経口投与用医薬組成物においては、数字が、黒色四三酸化鉄(Fe43)を含む顔料インクで細くされており、さらに、その上から、黒の染色インクで、数字が太くマーキングされている。図13(a)に示す経口投与用医薬組成物に、波長が700nm以上1700nm以下の赤外線を照射すると、図13(b)に示すように、黒の染色インクでマーキングされた太いマークは視認できず、黒色四三酸化鉄(Fe43)を含む顔料インクでマーキングされた細いマークが視認できる。
 図14(a)に示す経口投与用医薬組成物においては、アルファベットEの文字が、黒色四三酸化鉄(Fe43)を含む顔料インクで断続的にマーキングされた部分と、黒の染色インクで断続的にマーキングされた部分と、を、交互に含む。図14(a)に示す経口投与用医薬組成物に、波長が700nm以上1700nm以下の赤外線を照射すると、図14(b)に示すように、黒の染色インクで断続的にマーキングされた部分は視認できず、黒色四三酸化鉄(Fe43)を含む顔料インクで断続的にマーキングされた部分が視認できる。
 図15(a)に示す経口投与用医薬組成物においては、数字が、黒色四三酸化鉄(Fe43)を含む顔料インクで断続的にマーキングされた部分と、黒の染色インクで断続的にマーキングされた部分と、を、交互に含む。図15(a)に示す経口投与用医薬組成物に、波長が700nm以上1700nm以下の赤外線を照射すると、図15(b)に示すように、黒の染色インクで断続的にマーキングされた部分は視認できず、黒色四三酸化鉄(Fe43)を含む顔料インクで断続的にマーキングされた部分が視認できる。
 図16は、実施形態に係る経口投与用医薬組成物の真偽判別方法の手順の一例を示す模式図である。例えば、図16(a)に示す、ロット番号が「12345」である経口投与用医薬組成物の本物において、「E」のマークは、赤外線を照射されたときに視認できる可食性の物質を含んでいる。また、ロット番号「12345」に対応する識別番号「243」のマークのうち、「4」のマークは、赤外線を照射されたときに視認できる可食性の物質を含んでおり、「2」と「3」のマークは、赤外線を照射されたときに視認できない可食性の物質を含んでいる。
 したがって、図16(a)に示す経口投与用医薬組成物の本物に赤外線を照射すると、図16(b)に示すように、「E」のマークと、「4」のマークと、が視認され、「2」と「3」のマークは、視認されない。これを、図16(c)に示すロット番号が「12345」の経口投与用医薬組成物の参照マークと比較し、視認されたマークが、参照マークが一致することから、図16(a)に示す経口投与用医薬組成物は本物である、と判断することが可能である。
 これに対し、図17(a)に示すロット番号が「12345」である経口投与用医薬組成物の偽物においては、全てのマークが、赤外線を照射されたときに視認できるマークを含んでいるとする。この場合、図17(a)に示す経口投与用医薬組成物の偽物に赤外線を照射しても、「2」と「3」のマークが、視認される。これを、図17(c)に示すロット番号が「12345」の経口投与用医薬組成物の参照マークと比較し、視認されたマークが、参照マークが一致しないことから、図17(a)に示す経口投与用医薬組成物は偽物である、と判断することが可能である。
 経口投与用医薬組成物の形態は、マーキングが困難な粉末状ではなく、マーキングが可能な一定の形状を有していれば、特に限定されない。経口用医薬組成物経口投与用医薬組成物の形態の例としては、裸錠、口腔内速崩壊性錠剤、有核錠等の錠剤、丸剤、トローチ剤、チュアブル剤及びカプセル剤等が挙げられるが、これらに限定されない。より好ましくは、錠剤又はカプセル剤である。
 例えば、薬物、矯味剤、添加剤、及び着色剤を含む混合物を成型し、表面にマークをマーキングすることにより、錠剤としての経口投与用医薬組成物が製造される。
 錠剤としての経口投与用医薬組成物は、例えば、V型混合機(例えば、株式会社徳寿工作所、不二パウダル株式会社、又は株式会社ダルトン製)、タンブラー混合機(例えば、株式会社ダルトン、又はダイコー精機株式会社製)、又は高速攪拌混合機(例えば、岡田精工株式会社、株式会社奈良機械、又は株式会社パウレック製)等を用いて薬物、矯味剤、添加剤、及び着色剤を含む混合物を製造し、得られた粉末状又は顆粒状の混合物を成型することにより、製造される。成型の例としては、圧縮成型及びモールド成型が挙げられる。圧縮成型には、例えば、単発打錠機、ロータリー式打錠機、及び有核打錠機等の打錠機が用いられる。モールド成型には、例えば、モールド成型機が用いられる。モールド成型においては、水等の溶媒に分散させた懸濁液やスラリーをモールドに充填し、その溶媒を乾燥させることによって、成型物が製造される。
 経口投与用医薬組成物は、被覆層を備えていてもよい。被覆層の例としては、フィルムコーティング層及び糖衣層等が挙げられる。経口投与用医薬組成物において、マークは、被覆層上にマーキングされてもよい。あるいは、経口投与用医薬組成物において、マークを保護するために、マーク上に、被覆層を設けてもよい。この場合、被覆層は、透明であることが好ましい。被覆層を備える経口投与用医薬組成物の例としては、フィルムコーティング錠、糖衣錠、有核錠及び丸剤等が挙げられる。フィルムコーティング層及び糖衣層は、例えば、被覆造粒法、フィルムコーティング法、糖衣コーティング法、及び圧縮コーティング法等で製造可能であるが、製造方法はこれらに限定されない。
 経口投与用医薬組成物は、カプセル剤であってもよい。例えば、薬物、食用油脂、香料、及び添加物等を含む内容物をカプセル皮膜層に充填し、カプセル皮膜層の表面にマークをマーキングすることにより、カプセル剤としての経口投与用医薬組成物が製造される。カプセル剤は、軟カプセル剤及び硬カプセル剤のいずれであってもよい。内容物は、粉末状、顆粒状、液状、及びスラリー状等であってもよい。カプセル皮膜層の例としては、ゼラチンカプセル、寒天カプセル、ヒプロメロース(HPMC)カプセル、プルランカプセル、及びスターチカプセル等が挙げられるが、これらに限定されない。カプセルに内容物を充填する際には、ロータリーダイ式カプセル充填機、シームレスカプセル充填機、及びハードカプセル充填機(クオリカプス株式会社)等を使用可能である。
 マーキングされた経口投与用医薬組成物は、例えば、文字検査機、及び金属検査機等による検査を経て、搬送用ドラムに排出されるか、又は包装容器に充填される。経口投与用医薬組成物にマークをマーキングするタイミングは、特に限定されず、経口投与用医薬組成物の製造工程に自由に組み込むことができる。
 例えば、包装充填前の搬送ライン上を移動中の経口投与用医薬組成物に対してマークをマーキングできるため、いわゆる連続生産にも適用できる。また、搬送ラインの途中で、一定数量の経口投与用医薬組成物が納まる平型パン内に経口投与用医薬組成物を自動的に敷き詰めた後、搬送ラインを静止させて、経口投与用医薬組成物上にマークをマーキングしてもよい。
 あるいは、レーザー発振器を有する自動マーキング装置を用いて、バッチ処理により経口投与用医薬組成物に対してマークをマーキングしてもよい。具体的には、マーキング装置のホッパーに装填された経口投与用医薬組成物を、ホッパーから順次、検査部に供給し、次いで、検査部において、ビデオ検査機を用いて経口投与用医薬組成物の表裏面について汚れ、欠け、割れ等の有無を確認した後、マークのマーキングを行う場所に一又は二以上の経口投与用医薬組成物を移動させて、経口投与用医薬組成物表面にマークのマーキングを行うことができる。
 経口投与用医薬組成物表面にマークをマーキングする工程は、色数に応じて複数回行ってもよい。あるいは、複数色のマーキングに対応した複数の異なる転写層等を備えるレーザー転写フィルムを用いて、一度でマーキングしてもよい。
 実施形態に係る経口投与用医薬組成物の真偽判別方法は、経口投与用医薬組成物の真偽判別システムによって実施されてもよい。経口投与用医薬組成物の真偽判別システムは、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークと、白色光を照射されたときに視認でき、赤外線を照射されたときに視認できない可食性の物質を含むマークと、がマーキングされた経口投与用医薬組成物に赤外線を照射する照射器と、赤外線を照射された経口投与用医薬組成物上で視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断する判断部と、を備える。
 判断部は、例えば、中央演算処理装置によって実現される。経口投与用医薬組成物の真偽判別システムは、さらに、撮像装置を備えうる。撮像装置は、赤外線を照射された経口投与用医薬組成物を撮像する。撮像装置は、撮像した画像を、判断部に送る。判断部は、撮像装置から受信した画像において視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断する。経口投与用医薬組成物の真偽判別システムは、判断部の判断結果を出力する出力部、及び判断部の判断結果を記憶する記憶装置をさらに備えていてもよい。
 以下、実施例により、本発明の実施形態についてさらに詳しく説明する。ただし、本発明の実施形態は、以下に示す実施例に何ら限定されるものではない。
 [実施例1]
 錠剤として、市販のパリエット(登録商標)錠10mgを用意した。パリエット錠は腸溶性製剤である。パリエット錠の表面は、ヒプロメロースフタレート、酸化チタン(TiO2)、及び黄色三二酸化鉄を含有したフィルムで覆われている。錠剤にUVレーザー光を照射してマークをマーキングした。レーザー光の照射装置としては、Photonics Industries International社製の照射装置を用いた。レーザー光の照射条件は、以下のとおりであった。
 レーザー名称:YVO4レーザー
 型式:DS20H-355
 波長:355nm
 ピークパワー:6kW
 20kHzでの平均パワー:3W
 20kHzでのパルス幅:25ns
 20kHzでのパルスエネルギー:0.15mJ
 ビームモード:TEM00-M2<1.1
 偏光消光比(Polarization Ratio):100:1 Horizontal
 ビーム径:0.9mm
 ビーム拡がり角(全角):1.3mrad
 パルス間安定性:3%rms
 Long-Term Instability:+/-3%
 Pointing Stability:<50μrad
 Pulse Repetition Rate:Single Shot to 100kHz
 マーキングされた実施例1に係る錠剤の撮像データを図18及び図19に示す。図18(a)は、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例1に係る錠剤の撮像データである。図18(b)は、近赤外光を錠剤に照射しないで、太陽光の下、近赤外線カメラで撮像された実施例1に係る錠剤の撮像データである。太陽光の下では、UVレーザー光でマーキングされたマークは、視認することができた。
 図19は、暗室で波長帯域が800nm以上1000nm以下の近赤外線を実施例1に係る錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合も、UVレーザー光でマーキングされたマークは、視認することができた。
 [実施例2]
 錠剤として、パリエット錠10mgではなく、乳糖58.5%、結晶セルロース30%、とうもろこしでんぷん10%、酸化チタン(TiO2)1%、及びステアリン酸マグネシウム0.5%からなる裸錠を用いた以外は、実施例1と同様の照射条件で、錠剤にマークをマーキングした。
 マーキングされた実施例2に係る錠剤の撮像データを図20及び図21に示す。図20(a)は、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例2に係る錠剤の撮像データである。図20(b)は、近赤外光を錠剤に照射しないで、太陽光の下、近赤外線カメラで撮像された実施例2に係る錠剤の撮像データである。太陽光の下では、UVレーザー光でマーキングされたマークは、視認することができた。
 図21は、暗室で波長帯域が800nm以上1000nm以下の近赤外線を実施例2に係る錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合も、UVレーザー光でマーキングされたマークは、視認することができた。
 [実施例3]
 錠剤として、市販のアリセプト(登録商標)口腔内崩壊錠(D錠)5mgを用意した。アリセプトD錠5mgの表面には、食用炭を主成分とする顔料インクによって、小さな文字でE248、大きな文字で5と印字されている。
 次に、低密度ポリエチレンフィルムからなる基材と、基材上に配置された、エチルセルロース(40質量部)、赤色3号(40質量部)、及びクエン酸トリエチル(20質量部)からなる着色フィルムである転写層と、を備えるレーザー転写フィルムを用意した。レーザー転写フィルムの基材側にレーザー光を照射して、錠剤の表面に転写層を転写して、錠剤の表面に、アイウエオというマークと、A8というマークをマーキングした。レーザー光の照射装置としては、Photonics Industries International社製の照射装置を用いた。レーザー光の照射条件は、以下のとおりであった。
 レーザー名称:YVO4レーザー
 型式:DS20H-355
 波長:355nm
 ピークパワー:6kW
 20kHzでの平均パワー:3W
 20kHzでのパルス幅:25ns
 20kHzでのパルスエネルギー:0.15mJ
 ビームモード:TEM00-M2<1.1
 偏光消光比(Polarization Ratio):100:1 Horizontal
 ビーム径:0.9mm
 ビーム拡がり角(全角):1.3mrad
 パルス間安定性:3%rms
 Long-Term Instability:+/-3%
 Pointing Stability:<50μrad
 Pulse Repetition Rate:Single Shot to 100kHz
 マーキングされた実施例3に係る錠剤の撮像データを図22及び図23に示す。図22(a)は、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例3に係る錠剤の撮像データである。図22(b)は、近赤外光を錠剤に照射しないで、太陽光の下、近赤外線カメラで撮像された実施例3に係る錠剤の撮像データである。太陽光の下では、食用炭を用いてマーキングされたマークと、赤色3号を用いてマーキングされたマークと、は、視認することができた。
 図23は、暗室で波長帯域が800nm以上1000nm以下の近赤外線を実施例3に係る錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合も、食用炭を用いてマーキングされたマークは、視認することができた。しかし、近赤外線を照射した場合、赤色3号を用いてマーキングされたマークは、視認することができなかった。
 [実施例4]
 錠剤として、アリセプトD錠5mgではなく、アリセプトD錠10mgを用いた以外は、実施例3と同様の照射条件で、錠剤にマークをマーキングした。
 マーキングされた実施例4に係る錠剤の撮像データを図24及び図25に示す。図24(a)は、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例4に係る錠剤の撮像データである。図24(b)は、近赤外光を錠剤に照射しないで、太陽光の下、近赤外線カメラで撮像された実施例4に係る錠剤の撮像データである。太陽光の下では、食用炭を用いてマーキングされたマークと、赤色3号を用いてマーキングされたマークと、は、視認することができた。
 図25は、暗室で波長帯域が800nm以上1000nm以下の近赤外線を実施例4に係る錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合も、食用炭を用いてマーキングされたマークは、視認することができた。しかし、近赤外線を照射した場合、赤色3号を用いてマーキングされたマークは、視認することができなかった。
 [実施例5]
 錠剤として、フィルムコーティング錠を用意した。フィルムコーティング錠の素錠は、乳糖及び結晶セルロースからなる混合物に0.5%ステアリン酸マグネシウムを配合して、質量125mgで打錠した製造された。フィルムコーティング層は、ヒドロキシプロピルセルロースを基材とし、マクロゴール6000及び酸化チタン(TiO2)をそれぞれ1.5%含有していた。
 赤色染料インク、赤色顔料インク、及びクオリカプス製インクジェットプリンターを用いて、錠剤表面に、図26に示すマークをマーキングした。赤色染料インクは、色素成分として、赤色102号、黄色4号、及び青色1号を含んでいた。赤色顔料インクは、色素成分として、赤色酸化鉄を含んでいた。図26において、符号101、102が付された矩形で囲まれたマークは、赤色染料インクを用いてマーキングされた。符号101、102が付された矩形で囲まれていないマークは、赤色顔料インクを用いてマーキングされた。
 マーキングされた実施例5に係る錠剤の撮像データを図27及び図28に示す。図27(a)は、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例5に係る錠剤の撮像データである。図27(b)は、近赤外光を錠剤に照射しないで、太陽光の下、近赤外線カメラで撮像された実施例5に係る錠剤の撮像データである。太陽光の下では、赤色染料インクを用いてマーキングされたマークと、赤色顔料インクを用いてマーキングされたマークと、は、視認することができた。
 図28(a)は、暗室で波長帯域が750nm以上900nm以下の波長帯域を含む近赤外線を実施例5に係る錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。波長帯域が750nm以上900nm以下の波長帯域を含む近赤外線を照射した場合、赤色顔料インクを用いてマーキングされたマークは、視認することができた。しかし、波長帯域が750nm以上900nm以下の波長帯域を含む近赤外線を照射した場合、赤色染料インクを用いてマーキングされたマークは、視認することができなかった。
 図28(b)は、暗室で波長帯域が900nm以上1000nm以下であって、900nm以下の波長帯域を含まない近赤外線を実施例5に係る錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。波長帯域が900nm以上1000nm以下の近赤外線を照射した場合、赤色顔料インクを用いてマーキングされたマーク、及び赤色染料インクを用いてマーキングされたマークは、視認することができなかった。
 [実施例6]
 錠剤として、実施例5と同じフィルムコーティング錠を用意した。黒色顔料インク、赤色顔料インク、及びクオリカプス製インクジェットプリンターを用いて、錠剤表面に、図29に示すマークをマーキングした。黒色顔料インクは、色素成分として、食用炭を用いていた。赤色顔料インクは、色素成分として、赤色酸化鉄を含んでいた。図29において、符号103が付された矩形で囲まれたマークは、赤色顔料インクを用いてマーキングされた。符号103が付された矩形で囲まれていないマークは、黒色顔料インクを用いてマーキングされた。
 マーキングされた実施例6に係る錠剤の撮像データを図30及び図31に示す。図30(a)は、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例6に係る錠剤の撮像データである。図30(b)は、近赤外光を錠剤に照射しないで、太陽光の下、近赤外線カメラで撮像された実施例6に係る錠剤の撮像データである。太陽光の下では、黒色顔料インクを用いてマーキングされたマークと、赤色顔料インクを用いてマーキングされたマークと、は、視認することができた。
 図31は、暗室で波長帯域が900nm以上1000nm以下であって、900nm以下の波長帯域を含まない近赤外線を実施例6に係る錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。波長帯域が900nm以上1000nm以下の近赤外線を照射した場合、黒色顔料インクを用いてマーキングされたマークは、視認することができた。しかし、波長帯域が900nm以上1000nm以下の近赤外線を照射した場合、赤色顔料インクを用いてマーキングされたマークは、視認することができなかった。
 [参考例]
 錠剤として、乳糖59.5%、結晶セルロース30%、とうもろこしでんぷん10%、及びステアリン酸マグネシウム0.5%からなる裸錠を用意した。低密度ポリエチレンフィルムからなる基材と、基材上に配置された、オイドラギットE100(30質量部)、黄色5号アルミニウムレーキ(15質量部)、及びクエン酸トリエチル(5質量部)からなる着色フィルムである転写層と、を備えるレーザー転写フィルムを用意した。レーザー転写フィルムの基材側にレーザー光を照射して、錠剤の表面に転写層を転写した。錠剤表面に、図32(a)に示すマークをマーキングした。図32(b)は、波長帯域が750nm以上950m以下の近赤外線を参考例に係る錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。この場合、黄色5号アルミニウムレーキを用いてマーキングされたマークは、視認することができなかった。
 [実施例7]
 錠剤として、乳糖59.5%、結晶セルロース30%、とうもろこしでんぷん10%、及びステアリン酸マグネシウム0.5%からなる裸錠を用意した。また、低密度ポリエチレンフィルムからなる基材と、基材上に配置された、50質量部のオイドラギットE-100(登録商標)、33.3質量部の色素、及び16.7質量部のクエン酸トリエチルからなる転写層と、からなるレーザー転写フィルムを用意した。当該レーザー転写フィルムにおいて、色素とは、赤色3号アルミレーキ、黄色三二酸化鉄、及び銅クロロフィリンNaのいずれかであった。
 レーザー転写フィルムの基材側(基材の低密度ポリエチレンフィルム側)から下記条件でレーザー光をレーザー転写フィルムに照射することにより、錠剤表面に転写層を転写して裸錠の表面に、アイウエオというマークと、A8というマークをマーキングした。レーザー光の照射装置としては、Photonics Industries International社製の照射装置を用いた。レーザー光の照射条件は、以下のとおりであった。
 レーザー名称:YVOレーザー
 型式:DS20H-355
 波長:355nm 
 ピークパワー:6kW
 20kHzでの平均パワー:3W
 20kHzでのパルス幅:25ns
 20kHzでのパルスエネルギー:0.15mJ
 ビームモード:TEM00-M<1.1
 偏光消光比(Polarization Ratio):100:1 Horizontal
 ビーム径:0.9mm
 ビーム拡がり角(全角):1.3mrad
 パルス間安定性:3%rms
 Long-Term Instability:+/-3%
 Pointing Stability:<50μrad
 Pulse Repetition Rate:Single Shot to 100kHz 
 マーキングされた実施例7に係る錠剤の撮像データを図33から図35に示す。図33(a)は、色素が赤色3号アルミレーキである場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例7に係る錠剤の撮像データである。図33(b)は、色素が赤色3号アルミレーキである場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例7に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、赤色3号アルミレーキを用いてマーキングされたマークは、視認することができなかった。
 図34(a)は、色素が黄色三二酸化鉄である場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例7に係る錠剤の撮像データである。図34(b)は、色素が黄色三二酸化鉄である場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例7に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、黄色三二酸化鉄を用いてマーキングされたマークは、視認することができた。
 図35(a)は、色素が銅クロロフィリンNaである場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例7に係る錠剤の撮像データである。図35(b)は、色素が銅クロロフィリンNaである場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例7に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、銅クロロフィリンNaを用いてマーキングされたマークは、視認することができた。
 [実施例8]
 錠剤として、乳糖59.5%、結晶セルロース30%、とうもろこしでんぷん10%、及びステアリン酸マグネシウム0.5%からなる裸錠を用意した。また、低密度ポリエチレンフィルムからなる基材と、基材上に配置された、42.9質量部のオイドラギットRS100、42.9質量部の色素、及び14.3質量部のクエン酸トリエチルからなる転写層と、からなる着色フィルムをレーザー転写フィルムを用意した。当該レーザー転写フィルムにおいて、色素とは、インジゴカルミン及びブリリアントブルーのいずれかであった。
 レーザー転写フィルムの基材側(基材の低密度ポリエチレンフィルム側)から下記条件でレーザー光をレーザー転写フィルムに照射することにより、錠剤表面に転写層を転写して裸錠の表面に、色素がインジゴカルミン+というマークをマーキングし、色素がブリリアントブルーの場合は文字のマークをマーキングした。レーザー光の照射装置としては、Photonics Industries International社製の照射装置を用いた。レーザー光の照射条件は、以下のとおりであった。
 レーザー名称:YVOレーザー
 型式:DS20H-355
 波長:355nm 
 ピークパワー:6kW
 20kHzでの平均パワー:3W
 20kHzでのパルス幅:25ns
 20kHzでのパルスエネルギー:0.15mJ
 ビームモード:TEM00-M<1.1
 偏光消光比(Polarization Ratio):100:1 Horizontal
 ビーム径:0.9mm
 ビーム拡がり角(全角):1.3mrad
 パルス間安定性:3%rms
 Long-Term Instability:+/-3%
 Pointing Stability:<50μrad
 Pulse Repetition Rate:Single Shot to 100kHz 
 マーキングされた実施例8に係る錠剤の撮像データを図36及び図37に示す。図36(a)は、色素がインジゴカルミンである場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例8に係る錠剤の撮像データである。図36(b)は、色素がインジゴカルミンである場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例8に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、インジゴカルミンを用いてマーキングされたマークは、視認することができた。
 図37(a)は、色素がブリリアントブルーである場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例8に係る錠剤の撮像データである。図37(b)は、色素がブリリアントブルーである場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例8に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、ブリリアントブルーを用いてマーキングされたマークは、視認することができなかった。
 [実施例9]
 錠剤として、乳糖59.5%、結晶セルロース30%、とうもろこしでんぷん10%、及びステアリン酸マグネシウム0.5%からなる裸錠を用意した。また、42.9質量部のオイドラギットRS100、42.9質量部のインジゴカルミン、14.3質量部のクエン酸トリエチルを100質量部のエタノールに溶解及び分散させてインクを作製した。当該インクをスタンプを用いて裸錠に捺印し、乾燥させた。
 マーキングされた実施例9に係る錠剤の撮像データを図38に示す。図38(a)は、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例9に係る錠剤の撮像データである。図38(b)は、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例9に係る錠剤に照射した場合に、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、インジゴカルミンを用いてマーキングされたマークは、視認することができた。
 [実施例10]
 白色の錠剤と着色された錠剤を準備した。
 白色の錠剤は、乳糖及び結晶セルロースからなる混合物に0.5%ステアリン酸マグネシウムを配合して、質量125mgで打錠して製造された。フィルムコーティング層は、ヒドロキシプロピルセルロースを基材とし、マクロゴール6000及び酸化チタン(TiO)をそれぞれ1.5%含有していた。
 着色された錠剤は市販のフィコンパ(登録商標)錠10mgを用意した。フィコンパ錠の表面は、ヒプロメロース、酸化チタン(TiO)、及び赤色三二酸化鉄を含有したフィルムで覆われていた。
 白色の錠剤及び着色された錠剤のそれぞれに、グリーンレーザー光を照射してマークをマーキングした。レーザー光の照射装置としては、キーエンス社製の照射装置を用いた。レーザー光の照射条件は、以下のとおりであった。
 レーザー名称:YVOレーザー
 型式:MD-S9910A
 コンソール:MC-P1
 印字方式: XYZ3軸同時スチャニング方式
 波長:532nm 
 平均出力:6W
 Qスイッチ周波数: 1kHzから400kHz
 マーキングされた実施例10に係る錠剤の撮像データを図39及び図40に示す。図39(a)は、錠剤が白色の錠剤である場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例10に係る錠剤の撮像データである。図39(b)は、錠剤が白色の錠剤である場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例10に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、レーザー光を用いてマーキングされたマークは、視認することができた。
 図40(a)は、錠剤が着色された錠剤である場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例10に係る錠剤の撮像データである。図40(b)は、錠剤が着色された錠剤である場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例10に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、レーザー光を用いてマーキングされたマークは、視認することができた。
 [実施例11]
 乳糖及び結晶セルロースからなる混合物に0.5%ステアリン酸マグネシウムを配合した混合物を打錠して、質量125mgの錠剤を得た。当該錠剤に、ヒドロキシプロピルセルロースを基材とし、マクロゴール6000及び酸化チタン(TiO)をそれぞれ1.5%含有するフィルムコーティング層を設けた。
 錠剤のフィルムコーティング層にクオリカプス社製のUVマーキング装置でマークを印字後、印字されたマークの上に、クオリカプス製インクジェットプリンターで青色染料インクを用いてマークを印字した。レーザー光の照射条件は、以下のとおりであった。
 レーザー名称:YVOレーザー
 型式:Talon 355-15
 波長:355nm 
 周波数: 30kHz
 平均出力:1.25W
 スキャナースピード: 3000 mm/sec
 エキスパンダ: 13.0 mm
 マーキングされた実施例11に係る錠剤の撮像データを図41から図43に示す。図41(a)は、UVレーザー光でE235と印字した後に、同じ所に青色染料インクでE235と印字した場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例11に係る錠剤の撮像データである。図41(b)は、UVレーザー光でE235と印字した後に、青色染料インクでE235と印字した場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例11に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、UVレーザー光を用いてマーキングされたマークは、視認することができた。
 図42(a)は、UVレーザー光でE 35と印字した後に、同じ所に青色染料インクでE235と印字した場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例11に係る錠剤の撮像データである。図42(b)は、UVレーザー光でE 35と印字した後に、同じ所に青色染料インクでE235と印字した場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例11に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、UVレーザー光を用いてマーキングされたマークは、視認することができた。青色染料インクでマーキングされたマークは、視認することができなかった。
 図43(a)は、UVレーザー光でE23 と印字した後に、同じ所に青色染料インクでE235と印字した場合に、太陽光の下、通常の可視光画像を撮像可能なデジタルカメラで撮像された実施例11に係る錠剤の撮像データである。図43(b)は、UVレーザー光でE23 と印字した後に、同じ所に青色染料インクでE235と印字した場合に、暗室で波長帯域が750nm以上950nm以下の近赤外線を実施例11に係る錠剤に照射したときに、近赤外線カメラで撮像された錠剤の撮像データである。近赤外線を照射した場合、UVレーザー光を用いてマーキングされたマークは、視認することができた。青色染料インクでマーキングされたマークは、視認することができなかった。

Claims (18)

  1.  白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークと、前記白色光を照射されたときに視認でき、前記赤外線を照射されたときに視認できない可食性の物質を含むマークと、がマーキングされた経口投与用医薬組成物に前記赤外線を照射することと、
     前記赤外線を照射された前記経口投与用医薬組成物上で視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断することと、
     を含む、経口投与用医薬組成物の真偽判別方法。
  2.  前記赤外線の波長帯域が、700nm以上900nm以下の少なくとも一部を含む、請求項1に記載の経口投与用医薬組成物の真偽判別方法。
  3.  前記赤外線の波長帯域が、900nm以上である、請求項1に記載の経口投与用医薬組成物の真偽判別方法。
  4.  前記経口投与用医薬組成物が酸化チタンを含有し、前記赤外線を照射されたときに視認できる可食性の物質を含むマークが、レーザー光でマーキングされた、請求項1から3のいずれか1項に記載の経口投与用医薬組成物の真偽判別方法。
  5.  前記赤外線を照射されたときに視認できる可食性の物質を含むマークが、黄色三二酸化鉄を含む顔料を用いてレーザー印刷された、請求項1から3のいずれか1項に記載の経口投与用医薬組成物の真偽判別方法。
  6.  前記赤外線を照射されたときに視認できる可食性の物質を含むマークが、食用炭及び黒色四三酸化鉄の少なくとも一方を含む顔料を用いて印刷された、請求項1から3のいずれか1項に記載の経口投与用医薬組成物の真偽判別方法。
  7.  前記赤外線を照射されたときに視認できる可食性の物質を含むマークが、赤色酸化鉄、銅クロロフィリンナトリウム、インジゴカルミン、及び黒色酸化チタンからなる群から選択される少なくとも一つを含む顔料を用いて印刷された、請求項2に記載の経口投与用医薬組成物の真偽判別方法。
  8.  前記赤外線を照射されたときに視認できない可食性の物質を含むマークが、染料を用いて印刷された、請求項1から7のいずれか1項に記載の経口投与用医薬組成物の真偽判別方法。
  9.  前記染料が、タール染料を含む、請求項8に記載の経口投与用医薬組成物の真偽判別方法。
  10.  前記タール染料が、エリスロシン、ニューコクシン、タートラジン、ブリリアントブルーFCF、及びサンセットイエローFCFからなる群から選択される少なくとも1つを含む、請求項9に記載の経口投与用医薬組成物の真偽判別方法。
  11.  前記赤外線を照射されたときに視認できない可食性の物質を含むマークが、タール染料のアルミニウムレーキを含む顔料を用いて印刷された、請求項1から7のいずれか1項に記載の経口投与用医薬組成物の真偽判別方法。
  12.  前記赤外線を照射されたときに視認できない可食性の物質を含むマークが、赤色酸化鉄を含む顔料を用いて印刷された、請求項3に記載の経口投与用医薬組成物の真偽判別方法。
  13.  前記判断することにおいて、前記参照マークが、前記経口投与用医薬組成物の識別番号又は識別コードに対応する、請求項1から12のいずれか1項に記載の経口投与用医薬組成物の真偽判別方法。
  14.  前記識別番号又は識別コードが、前記経口投与用医薬組成物にマーキングされている、請求項13に記載の経口投与用医薬組成物の真偽判別方法。
  15.  前記経口投与用医薬組成物が、錠剤又はカプセル剤である、請求項1から14のいずれか1項に記載の経口投与用医薬組成物の真偽判別方法。
  16.  前記経口投与用医薬組成物が、錠剤である、請求項15に記載の経口投与用医薬組成物の真偽判別方法。
  17.  白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークと、前記白色光を照射されたときに視認でき、前記赤外線を照射されたときに視認できない可食性の物質を含むマークと、がマーキングされた経口投与用医薬組成物であって、前記赤外線を照射された当該経口投与用医薬組成物上で視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断することにより真偽判別が可能な経口投与用医薬組成物。
  18.  白色光を照射されたときに視認でき、赤外線を照射されたときに視認できる可食性の物質を含むマークと、前記白色光を照射されたときに視認でき、前記赤外線を照射されたときに視認できない可食性の物質を含むマークと、がマーキングされた経口投与用医薬組成物に前記赤外線を照射する照射器と、
     前記赤外線を照射された前記経口投与用医薬組成物上で視認された視認マークと、予め用意された参照マークと、が、一致するか否かを判断する判断部と、
     を備える、経口投与用医薬組成物の真偽判別システム。
     
PCT/JP2018/016894 2017-04-28 2018-04-26 経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システム WO2018199201A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18792151.5A EP3616685A4 (en) 2017-04-28 2018-04-26 PROCESS FOR DETERMINING THE AUTHENTICITY OF A PHARMACEUTICAL COMPOSITION FOR ORAL ADMINISTRATION, PHARMACEUTICAL COMPOSITION FOR ORAL ADMINISTRATION, AND SYSTEM FOR DETERMINING THE AUTHENTICITY OF A PHARMACEUTICAL COMPOSITION FOR ORAL ADMINISTRATION
CN201880023711.7A CN110494127A (zh) 2017-04-28 2018-04-26 经口施用药物组合物的真假判别方法、经口施用药物组合物、及经口施用药物组合物的真假判别系统
JP2019514594A JPWO2018199201A1 (ja) 2017-04-28 2018-04-26 経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システム
US16/604,272 US20200151413A1 (en) 2017-04-28 2018-04-26 Method for determining the genuineness or spuriousness of pharmaceutical composition for oral administration, pharmaceutical composition for oral administration, and system for determining the genuineness or spuriousness of pharmaceutical composition for oral administration

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089190 2017-04-28
JP2017-089190 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199201A1 true WO2018199201A1 (ja) 2018-11-01

Family

ID=63918488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016894 WO2018199201A1 (ja) 2017-04-28 2018-04-26 経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システム

Country Status (6)

Country Link
US (1) US20200151413A1 (ja)
EP (1) EP3616685A4 (ja)
JP (1) JPWO2018199201A1 (ja)
CN (1) CN110494127A (ja)
TW (1) TW201843059A (ja)
WO (1) WO2018199201A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709020C1 (ru) * 2019-02-27 2019-12-13 Федеральное государственное бюджетное учреждение "Научный центр экспертизы средств медицинского применения" Министерства здравоохранения Российской Федерации (ФГБУ "НЦЭСМП" Минздрава России) Способ идентификации и количественного определения содержания олигопептидов в фармацевтической субстанции "Пептофорс" методом спектроскопии ЯМР
JP2020200366A (ja) * 2019-06-06 2020-12-17 信越化学工業株式会社 インクジェット印刷を行う製剤向けのコーティング用組成物、これを用いた水性インクによる印字を有する製剤及びその製造方法
WO2022044876A1 (ja) * 2020-08-24 2022-03-03 クオリカプス株式会社 可食体のマーキング装置、レーザマーキングされた可食体、および可食体のマーキング情報読取システム
WO2022097363A1 (ja) * 2020-11-09 2022-05-12 クオリカプス株式会社 印刷された可食体の製造方法および製造装置
JP7545869B2 (ja) 2020-11-09 2024-09-05 クオリカプス株式会社 印刷された可食体の製造方法および製造装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134782A (ja) 1982-02-05 1983-08-11 Kyodo Printing Co Ltd 照合用印刷物
JPS6392486A (ja) 1986-10-07 1988-04-22 Dainichi Color & Chem Mfg Co Ltd 印刷物およびその製造方法
JPS63144075A (ja) * 1986-12-05 1988-06-16 Toppan Moore Co Ltd 真贋判定可能な印刷物
JPH02167771A (ja) 1988-12-22 1990-06-28 Sanyo Electric Works Ltd 真偽判定可能な積層紙
JPH03154187A (ja) 1989-11-10 1991-07-02 Toyo Ink Mfg Co Ltd 近赤外線による識別ができる記録物
US5992742A (en) * 1994-08-05 1999-11-30 Sullivan; Scott L. Pill printing and identification
JP2004348539A (ja) 2003-05-23 2004-12-09 Casio Comput Co Ltd 証券処理システムおよびプログラム
JP2006089741A (ja) 2004-09-22 2006-04-06 Hewlett-Packard Development Co Lp 食用になる光学的に不可視な画像を作成するためのシステム及び方法
JP2006205500A (ja) 2005-01-27 2006-08-10 Toppan Printing Co Ltd 偽造防止策が施された番号印刷媒体
US20070026064A1 (en) * 2005-07-29 2007-02-01 Yoder Steven L Pharmaceutical dosage forms having watermark-type identification and authentication inditia
JP2008189879A (ja) 2007-02-07 2008-08-21 Ochanomizu Univ 偽造防止印刷用インキ及び偽造防止印刷物
JP2010006938A (ja) 2008-06-26 2010-01-14 Marvel Kikaku:Kk 黒色インクおよびそれを用いた印刷物
JP2011178009A (ja) 2010-03-01 2011-09-15 National Printing Bureau 偽造防止印刷物及び真偽判別方法
WO2016117518A1 (ja) * 2015-01-21 2016-07-28 クオリカプス株式会社 インク及びこれを用いた可食体の製造方法並びに可食体の印刷方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106352A (ja) * 2002-09-18 2004-04-08 Dainippon Printing Co Ltd 画像形成シート、及びその識別方法、画像形成装置
US8420400B2 (en) * 2003-04-16 2013-04-16 APDN (B.V.I.), Inc. System and method for authenticating tablets
US20060222704A1 (en) * 2005-03-31 2006-10-05 Barreto Marcos A System and a method for labeling a substrate
TW200639223A (en) * 2005-03-31 2006-11-16 Hewlett Packard Development Co A system and a method for labeling a substrate
US20090121472A1 (en) * 2005-04-21 2009-05-14 Laser Energetics, Inc. UV-Visible-IR Multi-Wave Length Laser Marking Process
US8345989B1 (en) * 2009-02-16 2013-01-01 Parata Systems, Llc Illumination station for use in pharmaceutical identification system and methods therefor
US8888005B2 (en) * 2013-04-12 2014-11-18 David Prokop Uniquely identifiable drug dosage form units
JP6264190B2 (ja) * 2014-05-19 2018-01-24 凸版印刷株式会社 インクジェット印刷用インクおよび錠剤

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58134782A (ja) 1982-02-05 1983-08-11 Kyodo Printing Co Ltd 照合用印刷物
JPS6392486A (ja) 1986-10-07 1988-04-22 Dainichi Color & Chem Mfg Co Ltd 印刷物およびその製造方法
JPS63144075A (ja) * 1986-12-05 1988-06-16 Toppan Moore Co Ltd 真贋判定可能な印刷物
JPH02167771A (ja) 1988-12-22 1990-06-28 Sanyo Electric Works Ltd 真偽判定可能な積層紙
JPH03154187A (ja) 1989-11-10 1991-07-02 Toyo Ink Mfg Co Ltd 近赤外線による識別ができる記録物
US5992742A (en) * 1994-08-05 1999-11-30 Sullivan; Scott L. Pill printing and identification
JP2004348539A (ja) 2003-05-23 2004-12-09 Casio Comput Co Ltd 証券処理システムおよびプログラム
JP2006089741A (ja) 2004-09-22 2006-04-06 Hewlett-Packard Development Co Lp 食用になる光学的に不可視な画像を作成するためのシステム及び方法
JP2006205500A (ja) 2005-01-27 2006-08-10 Toppan Printing Co Ltd 偽造防止策が施された番号印刷媒体
US20070026064A1 (en) * 2005-07-29 2007-02-01 Yoder Steven L Pharmaceutical dosage forms having watermark-type identification and authentication inditia
JP2008189879A (ja) 2007-02-07 2008-08-21 Ochanomizu Univ 偽造防止印刷用インキ及び偽造防止印刷物
JP2010006938A (ja) 2008-06-26 2010-01-14 Marvel Kikaku:Kk 黒色インクおよびそれを用いた印刷物
JP2011178009A (ja) 2010-03-01 2011-09-15 National Printing Bureau 偽造防止印刷物及び真偽判別方法
WO2016117518A1 (ja) * 2015-01-21 2016-07-28 クオリカプス株式会社 インク及びこれを用いた可食体の製造方法並びに可食体の印刷方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3616685A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709020C1 (ru) * 2019-02-27 2019-12-13 Федеральное государственное бюджетное учреждение "Научный центр экспертизы средств медицинского применения" Министерства здравоохранения Российской Федерации (ФГБУ "НЦЭСМП" Минздрава России) Способ идентификации и количественного определения содержания олигопептидов в фармацевтической субстанции "Пептофорс" методом спектроскопии ЯМР
JP2020200366A (ja) * 2019-06-06 2020-12-17 信越化学工業株式会社 インクジェット印刷を行う製剤向けのコーティング用組成物、これを用いた水性インクによる印字を有する製剤及びその製造方法
JP7165626B2 (ja) 2019-06-06 2022-11-04 信越化学工業株式会社 インクジェット印刷を行う錠剤向けのコーティング用組成物、これを用いた水性インクによる印字を有する錠剤及びその製造方法
WO2022044876A1 (ja) * 2020-08-24 2022-03-03 クオリカプス株式会社 可食体のマーキング装置、レーザマーキングされた可食体、および可食体のマーキング情報読取システム
WO2022097363A1 (ja) * 2020-11-09 2022-05-12 クオリカプス株式会社 印刷された可食体の製造方法および製造装置
JP7545869B2 (ja) 2020-11-09 2024-09-05 クオリカプス株式会社 印刷された可食体の製造方法および製造装置

Also Published As

Publication number Publication date
EP3616685A1 (en) 2020-03-04
JPWO2018199201A1 (ja) 2020-04-09
US20200151413A1 (en) 2020-05-14
TW201843059A (zh) 2018-12-16
EP3616685A4 (en) 2021-01-06
CN110494127A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
WO2018199201A1 (ja) 経口投与用医薬組成物の真偽判別方法、経口投与用医薬組成物、及び経口投与用医薬組成物の真偽判別システム
RU2406481C2 (ru) Способ маркировки композиции для применения при пероральном введении
EP1692235B1 (en) A system and a method for an edible, optically invisible ink
EP1827391B1 (en) Three dimensionally printed dosage forms
US20070026064A1 (en) Pharmaceutical dosage forms having watermark-type identification and authentication inditia
US20050099476A1 (en) System and a method for the creation of edible, optically invisible images
US8953008B2 (en) Method and device for producing color images on substrates containing color bodies and products produced thereby
JP2010536432A (ja) 種々の色を有する医薬品を形成するための方法及び装置
CN116096359A (zh) 可食用性喷墨油墨以及片剂
JP5904719B2 (ja) マーキングが施されたカプセル、カプセルの製造方法、およびカプセル剤
EP1149572B1 (en) Solid preparation coated with a film coating layer having two or more different colors
JP2019147822A (ja) レーザー印刷用複層フィルムコーティング錠剤の製造方法
JP6027800B2 (ja) 素錠のマーキング方法
WO2022044876A1 (ja) 可食体のマーキング装置、レーザマーキングされた可食体、および可食体のマーキング情報読取システム
JP4700833B2 (ja) フィルムコーティング層で被覆された固形製剤の製造方法及び固形製剤処理装置
Ludasi et al. Comparison of conventionally and naturally coloured coatings marked by laser technology for unique 2D coding of pharmaceuticals
JP2024014760A (ja) 経口投与製品の皮膜形成用組成物、上記組成物による皮膜層を含む経口投与製品、及びレーザーマーキング方法
JPH04122688A (ja) 錠剤及びカプセルのマーキング方法
MX2007014796A (es) Un metodo para marcar una composicion para el uso en administracion oral.
JP2016160250A (ja) 医薬品錠剤の識別性のための印刷方法
BRPI0610001A2 (pt) método de marcação de uma composiçao para uso na administração oral

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18792151

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514594

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018792151

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018792151

Country of ref document: EP

Effective date: 20191128