WO2018199153A1 - フィラー用炭酸マグネシウム及びこの炭酸マグネシウムを含む樹脂組成物 - Google Patents

フィラー用炭酸マグネシウム及びこの炭酸マグネシウムを含む樹脂組成物 Download PDF

Info

Publication number
WO2018199153A1
WO2018199153A1 PCT/JP2018/016775 JP2018016775W WO2018199153A1 WO 2018199153 A1 WO2018199153 A1 WO 2018199153A1 JP 2018016775 W JP2018016775 W JP 2018016775W WO 2018199153 A1 WO2018199153 A1 WO 2018199153A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium carbonate
mass
resin
parts
slurry
Prior art date
Application number
PCT/JP2018/016775
Other languages
English (en)
French (fr)
Inventor
将志 中村
Original Assignee
神島化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神島化学工業株式会社 filed Critical 神島化学工業株式会社
Publication of WO2018199153A1 publication Critical patent/WO2018199153A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to magnesium carbonate useful as a resin additive and the like, and a resin composition containing this magnesium carbonate.
  • Magnesium carbonate is widely used in various industrial fields such as pharmaceuticals, cosmetics, foods, and building materials, and examples of use as fillers have also been reported.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-272752 describes that anhydrous magnesium carbonate having a BET specific surface area of 1 to 15 m 2 / g and an average particle diameter of 1 to 10 ⁇ m can be used as a filler for engineering plastics. Has been.
  • An object of the present invention is to provide magnesium carbonate useful as a resin additive and a composition containing this magnesium carbonate.
  • Patent Document 1 it is known to use magnesium carbonate as a filler for engineering plastics.
  • the present inventor has studied magnesium carbonate as such a filler. Depending on the type of magnesium carbonate, the present invention impairs transparency and cannot be applied to applications requiring transparency, or transparency is required. It has been found that even if it is not present, the appearance (look) may be impaired, and the colorability may be adversely affected.
  • the magnesium carbonate of the present invention has a zeta potential of 5 mV or more.
  • Such magnesium carbonate may be for resin additives (for fillers, fillers, reinforcing agents, etc.).
  • the present invention includes a resin additive containing (comprising) magnesium carbonate having a zeta potential of 5 mV or more.
  • Such magnesium carbonate may further have a BET specific surface area of 10 m 2 / g or more.
  • the magnesium carbonate of the present invention may have a mercury intrusion amount of about 1 to 8 cc / g and an average particle size of about 1 to 20 ⁇ m.
  • Typical magnesium carbonate has a zeta potential of 6 to 25 mV, a BET specific surface area of 15 m 2 / g or more (for example, 15 to 70 m 2 / g), a mercury intrusion amount of 1.5 to 5 cc / g, and an average particle size. And magnesium carbonate having a particle size of 2 to 15 ⁇ m.
  • the magnesium carbonate of the present invention may be in the form of a plate, and in particular, an aggregate having a card house structure [a shape of an aggregate having a card house structure (or a card house shape)].
  • the magnesium carbonate of the present invention can be suitably used as a resin additive. Therefore, the present invention includes a composition containing a resin and the magnesium carbonate.
  • the resin may contain at least one selected from, for example, an olefin resin, a halogen-containing resin, and rubber.
  • the composition of the present invention may contain a vinyl chloride resin as a resin, or may contain rubber.
  • the proportion of magnesium carbonate may be, for example, 0.1 parts by mass or more with respect to 100 parts by mass of the resin.
  • magnesium carbonate (or a resin additive containing specific magnesium carbonate) useful as a resin additive can be provided.
  • Such magnesium carbonate is particularly useful as a filler for resins.
  • Magnesium carbonate of the present invention can maintain transparency at a high level even when added to a resin (or a decrease in transparency is often small), and it is easy to achieve both transparency and a function as a filler. Highly practical and practical.
  • the magnesium carbonate of the present invention satisfies specific physical properties and characteristics.
  • the magnesium carbonate of the present invention often satisfies a specific range of zeta potential, and further has another physical property of the specific range (for example, at least one selected from specific surface area, mercury intrusion amount, and average particle size).
  • the specific surface area in a specific range may be satisfied.
  • the zeta potential of magnesium carbonate can be selected from a range of 3 mV or more, for example, 5 mV or more (eg, 5.5 to 30 mV), preferably 6 mV or more (eg, 6 to 25 mV), more preferably 6.5 mV or more (eg, 6.5 to 22 mV), particularly 7 mV or more (for example, 7 to 20 mV), 7.5 mV or more ⁇ for example, 8 mV or more (for example, 8.3 to 25 mV), 8.5 mV or more (for example, 8.8 to 20 mV), 9 mV or more (for example, 9 to 18 mV) ⁇ .
  • the upper limit value of the zeta potential of magnesium carbonate is not particularly limited, but may be, for example, 30 mV, 25 mV, 22 mV, 20 mV, 18 mV, 16 mV, 15 mV, 14 mV, 13 mV, or the like. Note that the range can be set by appropriately combining the upper limit value and the lower limit value of the range (for example, 8 to 18 mV, etc. The same applies hereinafter).
  • Such a zeta range makes it easy to obtain a well-balanced magnesium carbonate excellent in transparency and the like. If the zeta potential is too low, the repulsive force between the fine particles is weakened, the particles are aggregated, the dispersibility in the resin is deteriorated, and the transparency may be deteriorated. Further, when the zeta potential is too high, dispersibility with respect to the resin or the like may be improved, but on the other hand, there is a possibility that the physical properties of the component to be added (resin or the like) may be lowered due to easy absorption of moisture.
  • the measuring method of zeta potential is not specifically limited, For example, it can measure with the below-mentioned method.
  • the BET specific surface area of magnesium carbonate is not particularly limited, but may be selected from the range of 1 m 2 / g or more (for example, 5 m 2 / g or more), for example, 10 m 2 / g or more, preferably 15 m 2 / g.
  • m 2 / g or more more preferably 20 m 2 / g or more (e.g., 22m 2 / g or more), more preferably 25 m 2 / g or more (e.g., 28 m 2 / g or more, 29m 2 / g or more), particularly preferably 30 m 2 / g or more (eg, 32 m 2 / g or more), 35 m 2 / g or more (eg, 38 m 2 / g or more), or 40 m 2 / g or more.
  • 20 m 2 / g or more e.g., 22m 2 / g or more
  • 25 m 2 / g or more e.g., 28 m 2 / g or more, 29m 2 / g or more
  • 30 m 2 / g or more eg, 32 m 2 / g or more
  • 35 m 2 / g or more eg, 38 m 2
  • the upper limit of the BET specific surface area of the magnesium carbonate is not particularly limited, for example, 100m 2 / g, 90m 2 / g, 80m 2 / g, 70m 2 / g, 65m 2 / g, 60m 2 / g, 55m 2 / G, 50 m 2 / g, 45 m 2 / g, etc.
  • the measuring method of a BET specific surface area is not specifically limited, For example, according to JIS8830 (The specific surface area measuring method of the powder (solid) by gas adsorption
  • the mercury intrusion amount of magnesium carbonate is not particularly limited, but may be 0.1 cc / g or more, for example, 0.5 cc / g or more (for example, 0.8 to 20 cc / g), preferably 1 cc / g.
  • cc / g (For example, 1.2 to 15 cc), more preferably 1.5 cc / g or more (for example, 1.6 to 10 cc), and usually 1 to 8 cc / g (for example, 1.2 to 7 cc / g) g, 1.3 to 6 cc / g, 1.5 to 5 cc / g, etc.) or 4 cc / g or less (for example, 4 cc / g or less, 3.5 cc / g or less, 3 cc / g or less, 2 .5cc or less).
  • the measuring method of mercury intrusion amount is not specifically limited, For example, it can measure with the below-mentioned method.
  • Magnesium carbonate may be in the form of particles (powder, powder).
  • the shape of the particles is not particularly limited, and may be spherical (substantially spherical) or plate-like. Further, the particles may be primary particles or secondary particles (or aggregates).
  • the magnesium carbonate particles may be plate-like particles, more preferably aggregates of plate-like particles (aggregates having a card house shape, a card house structure, or a card house structure).
  • the average particle diameter (or secondary particle diameter) of the particulate magnesium carbonate (magnesium carbonate particles) is not particularly limited, but may be selected from a range of about 100 ⁇ m or less (for example, 70 ⁇ m or less), and 50 ⁇ m or less (for example, 40 ⁇ m or less), preferably 30 ⁇ m or less (eg, 25 ⁇ m or less), more preferably 20 ⁇ m or less (eg, 18 ⁇ m or less), and usually 1-20 ⁇ m (eg, 1.5-18 ⁇ m, 2-15 ⁇ m, 3-12 ⁇ m, 3.5-10 ⁇ m, 4-9 ⁇ m, 4.5-8 ⁇ m), or 12 ⁇ m or less (for example, 10 ⁇ m or less, 8 ⁇ m or less).
  • Such an average particle size (especially the average particle size in combination with a zeta potential) is likely to make magnesium carbonate advantageous in terms of transparency.
  • the measuring method of an average particle diameter is not specifically limited, For example, it can measure with the below-mentioned method.
  • the magnesium carbonate of the present invention is not particularly limited as long as it contains MgCO 3 , but may generally be basic magnesium carbonate.
  • Magnesium carbonate (basic magnesium carbonate) may be a hydrate or a hydrate (eg, dihydrate, trihydrate, pentahydrate, etc.).
  • the apparent specific gravity (apparent specific gravity) of magnesium carbonate may be, for example, about 0.10 to 0.50, preferably about 0.15 to 0.45, and more preferably about 0.20 to 0.40.
  • Magnesium carbonate may or may not contain other elements (or compounds) as long as it contains MgCO 3 (further, Mg (OH) 2 , H 2 O).
  • other elements include, but are not limited to, nonmetallic elements [for example, C (carbon), S (sulfur), halogen (for example, Cl (chlorine), etc.)], metal elements or metalloid elements [for example, typical Metal elements (for example, alkali or alkaline earth metals such as Na (sodium) and Ca (calcium); periodic table group 13 elements such as B (boron) and Al (aluminum), Si (silicon) and the like), transition metals Elements (for example, Fe (iron), Zn (zinc), etc.)) and the like. These elements may be contained in magnesium carbonate alone or in combination of two or more.
  • the content (content ratio) of S is, for example, 0.6% by mass or less (eg, 0.01 to 0.6% by mass), preferably 0.5% by mass or less (eg, 0.01 to 0.3% by mass), more preferably 0.2% by mass or less (for example, 0.01 to 0.2% by mass).
  • the content (content ratio) of Na is, for example, 1.0% by mass or less (eg, 0.01 to 1% by mass), preferably 0.5% by mass or less (eg, 0% 0.01% to 0.5% by mass), more preferably 0.3% by mass or less (eg, 0.01% to 0.3% by mass).
  • the content (content ratio) of Ca is, for example, 1.0% by mass or less (eg, 0.01 to 1.0% by mass), preferably 0.7% by mass or less (eg, 0.01-0.7 mass%), more preferably 0.5 mass% or less (for example, 0.01-0.5 mass%).
  • magnesium carbonate is not particularly limited, for example, it may be manufactured by blowing carbon dioxide gas into a magnesium hydroxide slurry or a magnesium oxide slurry.
  • the slurry can be prepared, for example, by dispersing powdered magnesium hydroxide or magnesium oxide in water.
  • the completion of the reaction may be performed by, for example, confirming that the reaction solution has reached a predetermined pH (for example, about 10 or less).
  • the pH may be confirmed using an indicator (such as a phenolphthalein solution).
  • the produced magnesium carbonate can be separated (purified) by a conventional method. For example, you may refine
  • the obtained magnesium carbonate may be pulverized.
  • the type and degree of the pulverization treatment can be appropriately selected according to the average particle size and the like.
  • the zeta potential of magnesium carbonate may be adjusted by the drying temperature or the like. For example, the zeta potential tends to increase as the temperature is higher. Moreover, you may adjust a specific surface area and an average particle diameter with the grade etc. of the curing of a magnesium carbonate slurry. For example, as the temperature increases during curing, the specific surface area tends to decrease and the average particle size tends to decrease. Furthermore, the amount of mercury intrusion may be adjusted by the pressure during dehydration (for example, the pressing pressure of a filter press). When the pressure is low, the mercury intrusion tends to be high. The average particle size may be adjusted depending on the degree of pulverization or the like.
  • the magnesium carbonate of the present invention can be suitably used as an additive for resins.
  • the magnesium carbonate of the present invention (or the resin additive containing magnesium carbonate) may constitute a composition (resin composition).
  • Various physical properties and functions are improved by using as a resin additive [for example, filler (filler, reinforcing agent, reinforcing agent, reinforcing agent)] ( Improvement) or may be imparted. Further, it can be used to increase the amount of resin, and depending on the type of resin, it is possible to reduce the cost by mixing.
  • a resin additive for example, filler (filler, reinforcing agent, reinforcing agent, reinforcing agent)
  • Improvement can be used to increase the amount of resin, and depending on the type of resin, it is possible to reduce the cost by mixing.
  • the present invention includes a composition containing a resin and the magnesium carbonate.
  • the resin is not particularly limited, and may be a thermoplastic resin or a curable resin (for example, a heat or photocurable resin) or an elastomer (a thermoplastic elastomer, rubber, or the like).
  • Resins may be used alone or in combination of two or more.
  • Specific resins include, for example, olefin resins (for example, polyethylene, polypropylene, ethylene-propylene copolymers, etc.), halogen-containing resins (for example, chlorine-containing resins [for example, vinyl chloride-based resins (for example, For example, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, ethylene-vinyl chloride copolymer, ethylene-vinyl acetate copolymer), vinylidene chloride resin (polyvinylidene chloride, etc.) )
  • Acrylic resin for example, polymethyl methacrylate, methyl methacrylate-styrene copolymer
  • styrene resin for example, polystyrene, styrene copolymer or styrene-containing resin (acrylonitrile-styrene copolymer, styrene-methacrylate) Acid methyl copolymer,
  • the rubber examples include diene rubbers (for example, natural rubber (NR), isoprene rubber (IR), butyl rubber (IIR), butadiene rubber (BR), chloroprene rubber (CR), nitrile-containing rubber [for example, nitrile rubber ( NBR), nitrile chloroprene rubber (NCR), nitrile isoprene rubber (NIR)], styrene-containing rubber [for example, styrene butadiene rubber (SBR), styrene chloroprene rubber (SCR), styrene isoprene rubber (SIR), etc.], hydrogenated rubber [For example, hydrogenated nitrile rubber (HNBR)] ⁇ , olefin rubber [for example, ethylene propylene rubber (EPM), ethylene propylene diene rubber (EPDM), etc.], acrylic rubber (ethylene acrylic rubber, etc.), fluorine rubber, urethane Rubber, acid-modified rubber (eg , Car
  • olefin resins olefin resins, halogen-containing resins, rubbers and the like are preferable, and vinyl chloride resins and rubbers are particularly preferable.
  • magnesium carbonate is usually added to such a resin (rubber), there is little decrease in transparency. Therefore, it can be suitably used not only for applications that require transparency, but also for applications that require appearance and design, and coloring applications because it has little effect on appearance and coloring.
  • the proportion of magnesium carbonate can be appropriately selected according to the function to be imparted and the degree thereof, and is not particularly limited.
  • 0.1 parts by mass or more with respect to 100 parts by mass of the resin (For example, 0.3 to 1000 parts by mass), preferably 0.5 parts by mass or more (for example, 1 to 500 parts by mass), more preferably 2 parts by mass or more (for example, about 3 to 300 parts by mass). Also good.
  • the proportion of magnesium carbonate is, for example, 100 parts by mass of the resin (such as an olefin resin or a halogen-containing resin).
  • 0.1 to 100 parts by weight preferably 0.5 to 80 parts by weight, more preferably 1 to 50 parts by weight (eg 2 to 30 parts by weight), particularly 3 to 25 parts by weight (eg 3.5 to 20 parts by weight). 4 parts or more (for example, 5 parts or more, 6 parts or more, 7 parts or more, 8 parts or more, etc.) It can also be.
  • the proportion of magnesium carbonate is, for example, 1 part by mass or more (for example, 1 to 1000 parts by mass), preferably 5 parts by mass or more (for example, 100 parts by mass of resin (rubber)) 6 to 500 parts by mass), more preferably 8 parts by mass or more (for example, 10 to 300 parts by mass), particularly 15 parts by mass or more (for example, 20 to 200 parts by mass), or 30 parts by mass or more (for example, 40 parts by mass or more, 50 parts by mass or more, 60 parts by mass or more, 80 parts by mass or more.
  • the composition is a conventional additive such as a plasticizer, a flame retardant, a softener, a stabilizer, an antistatic agent, an anti-aging agent, an antioxidant, depending on the type of resin (rubber) and the application of the composition. , UV absorbers, tackifiers, lubricants, colorants, foaming agents, dispersants, fillers (other fillers not belonging to the category of magnesium carbonate), and the like. You may use an additive individually or in combination of 2 or more types.
  • composition can be manufactured by mixing each component.
  • the mixing method can be appropriately selected according to the type of the resin and is not particularly limited.
  • Zeta potential Add pure water to 10 g of magnesium carbonate in a beaker to make up to 200 mL, stir about 20 times with a stir bar so that the liquid is uniform, and then keep the contents of the beaker at 25 ° C. While stirring, a slurry solution was prepared. Slurry concentration: 0.05 g / cm 3 Measuring method: Colloidal oscillating current method measuring device: DT-1200 (manufactured by Dispersion Technology) was measured three times, and the average value was calculated to obtain the zeta potential value.
  • the BET specific surface area was determined by a one-point method in accordance with JIS 8830 (Method for measuring specific surface area of powder (solid) by gas adsorption).
  • Mercury intrusion amount PoreMaster-60 manufactured by Quantachrome was used as a measuring device. 0.1 g of magnesium carbonate was weighed and filled into a 0.5 mL cell stem. After measurement in a low pressure chamber, the sample was taken out and measured in a high pressure chamber. From these measurement results, the value calculated by the software attached to the measuring device was used as the mercury intrusion value.
  • Average particle size 0.05 g of the sample powder was added to 50 mL of ethanol, and after ultrasonic dispersion for 3 minutes, measurement was performed by laser diffraction (apparatus: Microtrac HRA, Nikkiso Co., Ltd.).
  • L * value (brightness): A sheet prepared on a black standard plate (SCI L * value was 25.9 when measured alone) was leaked, and the light emitted from the spectrophotometer leaked The LCI value of the SCI method was measured by pressing the sheet and the black standard plate so that there was not. At this time, the sheet was pressed so as to be on the apparatus side.
  • a spectrophotometer “CM-3610d” manufactured by Konica Minolta was used as the spectrophotometer “CM-3610d” manufactured by Konica Minolta was used. In this method, since the black plate is placed under the sheet, the higher the transparency of the sheet, the lower the L * value is measured by the sensor picking up the black plate.
  • JIS No. 3 dumbbell was used as the test piece.
  • the tensile test was performed based on JIS K 7161.
  • the tensile speed was 200 mm / min.
  • the tensile stress at 100% elongation was taken as 100% modulus.
  • Sheet transparency Visually evaluated according to the following criteria. ⁇ : Paper characters laid under the sheet can be clearly identified ⁇ : Paper characters laid under the sheet can be identified ⁇ : Paper characters laid under the sheet cannot be identified
  • Hardness 2 mm thick sheets were stacked on 3 sheets and measured according to JISK6253 using a durometer (type A).
  • Example 1 Carbon dioxide gas was blown and reacted at a gas flow rate of 2 L / min with stirring into 3 L of slurry adjusted to 60 ° C. by mixing magnesium oxide powder with pure water so that the MgO concentration was 40 g / L.
  • the end point of the reaction was set, and when the end point was reached, blowing of carbon dioxide gas was stopped to obtain a basic magnesium carbonate slurry.
  • the obtained basic magnesium carbonate slurry was adjusted to a liquid temperature of 80 ° C. and kept for 6 hours while stirring.
  • the obtained basic magnesium carbonate slurry was dehydrated with a filter press at a pressure of 2.0 MPa for 3 minutes, and then left to dry for 12 hours with a dryer set at 135 ° C., and the dried product was bantam mill (AP Basic magnesium carbonate powder was obtained by pulverizing with -B type).
  • the zeta potential of the obtained magnesium carbonate was 12.4 mV.
  • the obtained magnesium carbonate had a BET specific surface area of 42 m 2 / g, a mercury intrusion amount of 2.3 cc / g, and an average particle size of 6.7 ⁇ m.
  • the shape of the magnesium carbonate powder was an aggregate having a card house structure.
  • Example 2 In Example 1, various measurements and evaluations were performed in the same manner as Example 1 except that magnesium carbonate was changed to 4.7 parts by mass instead of 3.5 parts by mass.
  • Example 3 In Example 1, various measurements and evaluations were performed in the same manner as in Example 1 except that magnesium carbonate was changed to 9.3 parts by mass instead of 3.5 parts by mass.
  • Example 4 In Example 1, various measurements and evaluations were performed in the same manner as in Example 1 except that magnesium carbonate was replaced with 3.5 parts by mass and changed to 14.0 parts by mass.
  • Example 5 Carbon dioxide gas was blown and reacted at a gas flow rate of 2 L / min while stirring 3 L of magnesium hydroxide slurry (water slurry) having an MgO concentration of 40 g / L adjusted to 60 ° C.
  • magnesium hydroxide slurry water slurry
  • MgO concentration 40 g / L adjusted to 60 ° C.
  • the obtained basic magnesium carbonate slurry was dehydrated with a filter press at a pressure of 2.5 MPa for 3 minutes, and then allowed to stand still for 12 hours with a dryer set at 120 ° C., and the dried product was bantam mill (AP Basic magnesium carbonate powder was obtained by pulverizing with -B type).
  • the obtained magnesium carbonate had a zeta potential of 9.2 mV.
  • the obtained magnesium carbonate had a BET specific surface area of 44 m 2 / g, a mercury intrusion amount of 1.9 cc / g, and an average particle size of 7.4 ⁇ m.
  • the shape of the magnesium carbonate powder was an aggregate having a card house structure.
  • Example 6 Carbon dioxide gas was blown and reacted at 3 L of magnesium hydroxide slurry (water slurry) having a MgO concentration of 40 g / L and a liquid temperature of 65 ° C. at a gas flow rate of 2 L / min.
  • magnesium hydroxide slurry water slurry
  • the end point of the reaction was set, and when the end point was reached, blowing of carbon dioxide gas was stopped to obtain a basic magnesium carbonate slurry.
  • the obtained basic magnesium carbonate slurry was adjusted to a liquid temperature of 95 ° C.
  • the slurry was dehydrated with a filter press at a pressure of 1.5 MPa for 3 minutes, and then set to 105 ° C.
  • the mixture was left to dry for 12 hours in a drier, and the dried product was pulverized with a bantam mill (AP-B type) manufactured by Hosokawa Micron to obtain basic magnesium carbonate powder.
  • the obtained magnesium carbonate had a zeta potential of 6.8 mV and a BET specific surface area of 16 m 2 / g.
  • the obtained magnesium carbonate had a mercury intrusion amount of 4.9 cc / g and an average particle size of 2.7 ⁇ m.
  • the shape of the magnesium carbonate powder was an aggregate having a card house structure.
  • Example 7 Carbon dioxide gas was blown and reacted at a gas flow rate of 2 L / min while stirring 3 L of magnesium hydroxide slurry (water slurry) having an MgO concentration of 40 g / L adjusted to 55 ° C.
  • magnesium hydroxide slurry water slurry
  • MgO concentration 40 g / L adjusted to 55 ° C.
  • the end point of the reaction was set, and when the end point was reached, blowing of carbon dioxide gas was stopped to obtain a basic magnesium carbonate slurry.
  • the obtained basic magnesium carbonate slurry was adjusted to a liquid temperature of 70 ° C. and kept for 6 hours while stirring, and then the slurry was dehydrated with a filter press at a pressure of 2.0 MPa for 3 minutes, and then set to 120 ° C.
  • the mixture was left to dry for 12 hours in a drier, and the dried product was pulverized with a bantam mill (AP-B type) manufactured by Hosokawa Micron to obtain basic magnesium carbonate powder.
  • the resulting magnesium carbonate had a zeta potential of 11.2 mV.
  • the obtained magnesium carbonate had a BET specific surface area of 57 m 2 / g, a mercury intrusion amount of 3.0 cc / g, and an average particle size of 6.8 ⁇ m.
  • the shape of the magnesium carbonate powder was an aggregate having a card house structure.
  • Example 8 Carbon dioxide gas was blown and reacted at a gas flow rate of 2 L / min while stirring 3 L of magnesium hydroxide slurry (water slurry) having an MgO concentration of 30 g / L adjusted to 65 ° C.
  • magnesium hydroxide slurry water slurry
  • MgO concentration 30 g / L adjusted to 65 ° C.
  • the end point of the reaction was set, and when the end point was reached, blowing of carbon dioxide gas was stopped to obtain a basic magnesium carbonate slurry.
  • the obtained basic magnesium carbonate slurry was adjusted to a liquid temperature of 70 ° C. and kept for 9 hours while stirring, and then the slurry was dehydrated with a filter press at a pressure of 2.5 MPa for 3 minutes, and then set to 135 ° C.
  • the mixture was left to dry for 12 hours in a drier, and the dried product was pulverized with a bantam mill (AP-B type) manufactured by Hosokawa Micron to obtain basic magnesium carbonate powder.
  • the obtained magnesium carbonate had a zeta potential of 18.7 mV.
  • the obtained magnesium carbonate had a BET specific surface area of 41 m 2 / g, a mercury intrusion amount of 2.1 cc / g, and an average particle size of 6.2 ⁇ m.
  • the shape of the magnesium carbonate powder was an aggregate having a card house structure.
  • Example 9 Carbon dioxide gas was blown and reacted at a gas flow rate of 2 L / min with stirring into 3 L of slurry adjusted to 60 ° C. by mixing magnesium oxide powder with pure water so that the MgO concentration was 30 g / L.
  • the end point of the reaction was set, and when the end point was reached, blowing of carbon dioxide gas was stopped to obtain a basic magnesium carbonate slurry.
  • the obtained basic magnesium carbonate slurry was adjusted to a liquid temperature of 75 ° C. and kept for 6 hours while stirring.
  • the obtained basic magnesium carbonate slurry was dehydrated with a filter press at a pressure of 1.5 MPa for 3 minutes, and then left to dry for 12 hours with a dryer set at 120 ° C., and the dried product was bantam mill (AP Basic magnesium carbonate powder was obtained by pulverizing with -B type).
  • the resulting magnesium carbonate had a zeta potential of 7.2 mV.
  • the obtained magnesium carbonate had a BET specific surface area of 48 m 2 / g, a mercury intrusion amount of 3.0 cc / g, and an average particle size of 9.9 ⁇ m.
  • the shape of the magnesium carbonate powder was an aggregate having a card house structure.
  • Example 10 Carbon dioxide gas was blown and reacted at a gas flow rate of 3 L / min while stirring 3 L of magnesium hydroxide slurry (water slurry) having an MgO concentration of 25 g / L adjusted to 70 ° C.
  • magnesium hydroxide slurry water slurry
  • MgO concentration 25 g / L adjusted to 70 ° C.
  • the obtained basic magnesium carbonate slurry was dehydrated with a filter press at a pressure of 2.5 MPa for 3 minutes and then allowed to stand and dried for 12 hours with a dryer set at 110 ° C.
  • Basic magnesium carbonate powder was obtained by pulverizing with -B type).
  • the zeta potential of the obtained magnesium carbonate was 10.8 mV.
  • the obtained magnesium carbonate had a BET specific surface area of 35 m 2 / g, a mercury intrusion amount of 1.9 cc / g, and an average particle size of 8.2 ⁇ m.
  • the shape of the magnesium carbonate powder was an aggregate having a card house structure.
  • Example 11 Carbon dioxide gas was blown and reacted at a gas flow rate of 3 L / min while stirring 3 L of magnesium hydroxide slurry (water slurry) having an MgO concentration of 40 g / L adjusted to 55 ° C.
  • magnesium hydroxide slurry water slurry
  • MgO concentration 40 g / L adjusted to 55 ° C.
  • the end point of the reaction was set, and when the end point was reached, blowing of carbon dioxide gas was stopped to obtain a basic magnesium carbonate slurry.
  • the obtained basic magnesium carbonate slurry was adjusted to a liquid temperature of 75 ° C. and kept for 6 hours while stirring.
  • the obtained basic magnesium carbonate slurry was dehydrated with a filter press at a pressure of 2.5 MPa for 3 minutes, and then left to dry for 24 hours with a dryer set at 120 ° C., and the dried product was bantam mill (AP Basic magnesium carbonate powder was obtained by pulverizing with -B type).
  • the zeta potential of the obtained magnesium carbonate was 11.9 mV.
  • the obtained magnesium carbonate had a BET specific surface area of 59 m 2 / g, a mercury intrusion amount of 2.2 cc / g, and an average particle size of 3.8 ⁇ m.
  • the shape of the magnesium carbonate powder was an aggregate having a card house structure.
  • Example 1 In Example 1, various measurements and evaluations were performed in the same manner as in Example 1 except that magnesium carbonate was not used.
  • the magnesium carbonate of the example can improve strength and rigidity while maintaining transparency at a high level even when added.
  • Example 12 120.0 parts by mass of magnesium carbonate obtained in Example 1, 100 parts by mass of natural rubber (pale crepe), 1.0 part by mass of stearic acid, 2.0 parts by mass of sulfur, 1.5 parts by mass of zinc carbonate, vulcanization
  • a sheet containing 1.2 parts by weight of an accelerator breakdown: 0.2 parts by weight of Noxeller TS, 0.5 parts by weight of Noxeller H, 0.5 parts by weight of Noxeller P, all manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • a thickness of 2 mm was prepared as follows. After kneading natural rubber for 5 minutes at 30 ° C.
  • Example 13 In Example 12, various measurements and evaluations were performed in the same manner as in Example 12 except that the magnesium carbonate obtained in Example 5 was used instead of the magnesium carbonate obtained in Example 1.
  • Example 14 In Example 12, various measurements and evaluations were performed in the same manner as in Example 12 except that the magnesium carbonate obtained in Example 6 was used instead of the magnesium carbonate obtained in Example 1.
  • Example 15 In Example 12, various measurements and evaluations were performed in the same manner as in Example 12 except that the magnesium carbonate obtained in Example 7 was used instead of the magnesium carbonate obtained in Example 1.
  • Example 16 In Example 12, various measurements and evaluations were performed in the same manner as in Example 12 except that the magnesium carbonate obtained in Example 8 was used instead of the magnesium carbonate obtained in Example 1.
  • Example 17 In Example 12, various measurements and evaluations were performed in the same manner as in Example 12 except that the magnesium carbonate obtained in Example 9 was used instead of the magnesium carbonate obtained in Example 1.
  • Example 18 In Example 12, various measurements and evaluations were performed in the same manner as in Example 12 except that the magnesium carbonate obtained in Example 10 was used instead of the magnesium carbonate obtained in Example 1.
  • Example 19 In Example 12, various measurements and evaluations were performed in the same manner as in Example 12 except that the magnesium carbonate obtained in Example 11 was used instead of the magnesium carbonate obtained in Example 1.
  • Example 12 In Example 12, various measurements and evaluations were performed in the same manner as in Example 12 except that magnesium carbonate was not used.
  • the magnesium carbonate of the example it was found that even when added to rubber, the strength and rigidity can be improved while maintaining the transparency at a high level as described above. . Therefore, it turns out that the magnesium carbonate of an Example can make high transparency and high intensity
  • magnesium carbonate useful as an additive for resin eg, filler (filler, reinforcing agent)
  • filler filler, reinforcing agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

樹脂添加剤用などとして好適な炭酸マグネシウムを提供する。炭酸マグネシウムのゼータ電位を5mV以上とする。

Description

フィラー用炭酸マグネシウム及びこの炭酸マグネシウムを含む樹脂組成物
 本発明は、樹脂添加剤などとして有用な炭酸マグネシウム、及びこの炭酸マグネシウムを含む樹脂組成物に関する。
 炭酸マグネシウムは、医薬品、化粧品、食品、建材など、様々な産業分野において広く使用されており、フィラーとしての使用例も報告されている。
 例えば、特許文献1(特開2005-272752号公報)には、BET比表面積が1~15m/gで平均粒子径が1~10μmの無水炭酸マグネシウムを、エンジニアリングプラスチックのフィラーとして使用できることが記載されている。
特開2005-272752号公報(特許請求の範囲、実施例)
 本発明の目的は、樹脂添加剤用などとして有用な炭酸マグネシウム及びこの炭酸マグネシウムを含む組成物を提供することにある。
 前記特許文献1のように、炭酸マグネシウムを、エンジニアリングプラスチックなどのフィラーとして用いることが知られている。
 本発明者は、このようなフィラーとしての炭酸マグネシウムの検討を進めたところ、炭酸マグネシウムの種類によっては、透明性を損ない、透明性が要求される用途に適用できなかったり、透明性が要求されなくても外観(見栄え)を損ねたり、着色性に悪影響を与える場合があることがわかった。
 このような中、本発明者は、鋭意検討した結果、炭酸マグネシウムの特定の物性が、フィラーとして使用された際の透明性に関係することを突き止め、さらなる検討を重ねて本発明を完成した。
 すなわち、本発明の炭酸マグネシウムは、ゼータ電位が5mV以上である。このような炭酸マグネシウムは、樹脂添加剤用(フィラー用又は充填剤又は補強剤用など)であってもよい。換言すれば、本発明には、ゼータ電位が5mV以上である炭酸マグネシウムを含む(で構成された)樹脂添加剤が含まれる。
 このような炭酸マグネシウムは、さらに、BET比表面積が10m/g以上であってもよい。
 本発明の炭酸マグネシウムは、水銀圧入量が1~8cc/g程度であってもよく、平均粒子径が1~20μm程度であってもよい。
 代表的な炭酸マグネシウムには、ゼータ電位が6~25mV、BET比表面積が15m/g以上(例えば、15~70m/g)、水銀圧入量が1.5~5cc/g、平均粒子径が2~15μmである炭酸マグネシウムなどが含まれる。
 本発明の炭酸マグネシウムは、板状であってもよく、特に、カードハウス構造を有する凝集体[カードハウス構造を有する凝集体の形状(又はカードハウス状)]であってもよい。
 前記のように、本発明の炭酸マグネシウムは、樹脂添加剤として好適に使用できる。そのため、本発明には、樹脂と、前記炭酸マグネシウムとを含む組成物が含まれる。
 このような組成物において、樹脂は、例えば、オレフィン系樹脂、ハロゲン含有樹脂及びゴムから選択された少なくとも1種を含んでいてもよい。代表的には、本発明の組成物は、樹脂として、塩化ビニル系樹脂を含んでいてもよく、ゴムを含んでいてもよい。
 本発明の組成物において、炭酸マグネシウムの割合は、例えば、樹脂100質量部に対して0.1質量部以上であってもよい。
 本発明では、樹脂添加剤などとして有用な炭酸マグネシウム(又は特定の炭酸マグネシウムを含む樹脂添加剤)を提供できる。
 このような炭酸マグネシウムは、特に、樹脂用フィラーとして有用である。
 本発明の炭酸マグネシウムは、樹脂に添加しても、透明性を高いレベルで維持できる((又は透明性の低下が小さい)場合が多く、透明性とフィラーとしての機能とを両立しやすく、有用性・実用性が高い。
 [炭酸マグネシウム]
 本発明の炭酸マグネシウムは、特定の物性・特性を充足する。通常、本発明の炭酸マグネシウムは、特定範囲のゼータ電位を充足する場合が多く、さらに、特定範囲の別の物性(例えば、比表面積、水銀圧入量、及び平均粒子径から選択された少なくとも1種、特に、少なくとも特定範囲の比表面積)を充足してもよい。
 炭酸マグネシウムのゼータ電位は、例えば、3mV以上の範囲から選択でき、5mV以上(例えば、5.5~30mV)、好ましくは6mV以上(例えば、6~25mV)、さらに好ましくは6.5mV以上(例えば、6.5~22mV)、特に7mV以上(例えば、7~20mV)であってもよく、7.5mV以上{例えば、8mV以上(例えば、8.3~25mV)、8.5mV以上(例えば、8.8~20mV)、9mV以上(例えば、9~18mV)}程度であってもよい。
 炭酸マグネシウムのゼータ電位の上限値は、特に限定されないが、例えば、30mV、25mV、22mV、20mV、18mV、16mV、15mV、14mV、13mVなどであってもよい。なお、範囲の上限値と下限値とは適宜組み合わせて範囲を設定できる(例えば、8~18mVなど。以下同じ)。
 このようなゼータ範囲とすることで、透明性などに優れたバランスよい炭酸マグネシウムとしやすいようである。なお、ゼータ電位が低すぎると、微粒子の相互の反発力が弱まり、粒子の凝集が生じ、樹脂内の分散性が悪くなり透明性が悪化する虞がある。また、ゼータ電位が高すぎる場合、樹脂等に対する分散性は良くなる可能性があるが、一方で、吸湿しやすくなるなどにより、被添加成分(樹脂など)の物性を低下させる虞がある。
 なお、ゼータ電位の測定方法は特に限定されないが、例えば、後述の方法により測定できる。
 炭酸マグネシウムのBET比表面積は、特に限定されないが、1m/g以上(例えば、5m/g以上)の範囲から選択してもよく、例えば、10m/g以上、好ましくは15m/g以上、さらに好ましくは20m/g以上(例えば、22m/g以上)、より好ましくは25m/g以上(例えば、28m/g以上、29m/g以上)、特に好ましくは30m/g以上(例えば、32m/g以上)であってもよく、35m/g以上(例えば、38m/g以上)であってもよく、40m/g以上とすることもできる。
 炭酸マグネシウムのBET比表面積の上限値は、特に限定されないが、例えば、100m/g、90m/g、80m/g、70m/g、65m/g、60m/g、55m/g、50m/g、45m/gなどであってもよい。
 このような比表面積とすること(特にゼータ電位との組み合わせにおいて上記比表面積とすること)で、透明性や強度の点で有利な炭酸マグネシウムとしやすいようである。
 なお、比表面積が小さすぎたり大きすぎると、粒子そのものが大きすぎたり、粒子の凝集(再凝集)などにより、透明性が損なわれる虞がある。
 なお、BET比表面積の測定方法は特に限定されないが、例えば、JIS8830(ガス吸着による粉体(固体)の比表面積測定方法)に準じ、1点法で求めることができる。
 炭酸マグネシウムの水銀圧入量は、特に限定されないが、0.1cc/g以上であってもよく、例えば、0.5cc/g以上(例えば、0.8~20cc/g)、好ましくは1cc/g以上(例えば、1.2~15cc)、さらに好ましくは1.5cc/g以上(例えば、1.6~10cc)であってもよく、通常1~8cc/g(例えば、1.2~7cc/g、1.3~6cc/g、1.5~5cc/gなど)であってもよく、4cc/g以下(例えば、4cc/g以下、3.5cc/g以下、3cc/g以下、2.5cc以下)であってもよい。
 このような水銀圧入量とすること(特にゼータ電位や比表面積との組み合わせにおいて上記水銀圧入量とすること)で、樹脂等に対する分散性を高いものとでき、透明性や強度の点で有利な炭酸マグネシウムとしやすいようである。また、適度な嵩高さを有するためか、樹脂等に対する混合時等におけるハンドリング性の点でも有利である。
 なお、水銀圧入量の測定方法は特に限定されないが、例えば、後述の方法により測定できる。
 炭酸マグネシウムは、粒子状(粉粒状、粉体)であってもよい。なお、粒子の形状は、特に限定されず、球状(略球状)、板状などであってもよい。また、粒子は、一次粒子であってもよく、二次粒子(又は凝集体)であってもよい。特に、炭酸マグネシウム粒子は、板状粒子であってもよく、より好ましくは板状粒子の凝集体(カードハウス状、カードハウス構造、カードハウス構造を有する凝集体)であってもよい。
 粒子状の炭酸マグネシウム(炭酸マグネシウム粒子)の平均粒子径(又は二次粒子径)は、特に限定されないが、100μm以下(例えば、70μm以下)程度の範囲から選択してもよく、50μm以下(例えば、40μm以下)、好ましくは30μm以下(例えば、25μm以下)、さらに好ましくは20μm以下(例えば、18μm以下)であってもよく、通常1~20μm(例えば、1.5~18μm、2~15μm、3~12μm、3.5~10μm、4~9μm、4.5~8μm)であってもよく、12μm以下(例えば、10μm以下、8μm以下)であってもよい。
 このような平均粒子径とすること(特にゼータ電位などとの組み合わせにおいて上記平均粒子径とすること)で、透明性などの点で有利な炭酸マグネシウムとしやすいようである。
 なお、平均粒子径の測定方法は特に限定されないが、例えば、後述の方法により測定できる。
 本発明の炭酸マグネシウムは、MgCOを含んでいる限り特に限定されないが、通常、塩基性炭酸マグネシウムであってもよい。また、炭酸マグネシウム(塩基性炭酸マグネシウム)は、水和物又は含水物(例えば、二水和物、三水和物、五水和物など)であってもよい。
 なお、塩基性炭酸マグネシウムは、ハイドロマグネサイト、例えば、下記式で表される化合物であってもよい。
 nMgCO・Mg(OH)・mH
[式中、m及びnは整数(例えば、それぞれ3~8、m=n=4、n=4及びm=5など)を示す。]
 なお、炭酸基が多いとゼータ電位は低く、水酸基が多いとプラスに帯電する傾向がある。
 炭酸マグネシウムの見かけ比重(見掛比重)は、例えば、0.10~0.50、好ましくは0.15~0.45、さらに好ましくは0.20~0.40程度であってもよい。
 炭酸マグネシウムは、MgCO(さらには、Mg(OH)、HO)を含んでいる限り、他の元素(又は化合物)を含んでいてもよく、含んでいなくてもよい。他の元素としては、特に限定されないが、非金属元素[例えば、C(炭素)、S(硫黄)、ハロゲン(例えば、Cl(塩素)など)など]、金属元素又は半金属元素[例えば、典型金属元素(例えば、Na(ナトリウム)、Ca(カルシウム)などのアルカリ又はアルカリ土類金属;B(ホウ素)、Al(アルミニウム)などの周期表第13族元素、Si(ケイ素)など)、遷移金属元素(例えば、Fe(鉄)、Zn(亜鉛)など)など]などが挙げられる。これらの元素は、単独で又は2種以上組み合わせて炭酸マグネシウムに含有されていてもよい。
 炭酸マグネシウムがSを含む場合、Sの含有量(含有割合)は、例えば、0.6質量%以下(例えば、0.01~0.6質量%)、好ましくは0.5質量%以下(例えば、0.01~0.3質量%)、さらに好ましくは0.2質量%以下(例えば、0.01~0.2質量%)であってもよい。
 炭酸マグネシウムがNaを含む場合、Naの含有量(含有割合)は、例えば、1.0質量%以下(例えば、0.01~1質量%)、好ましくは0.5質量%以下(例えば、0.01~0.5質量%)、さらに好ましくは0.3質量%以下(例えば、0.01~0.3質量%)であってもよい。
 炭酸マグネシウムがCaを含む場合、Caの含有量(含有割合)は、例えば、1.0質量%以下(例えば、0.01~1.0質量%)、好ましくは0.7質量%以下(例えば、0.01~0.7質量%)、さらに好ましくは0.5質量%以下(例えば、0.01~0.5質量%)であってもよい。
 炭酸マグネシウムの製造方法は、特に限定されないが、例えば、水酸化マグネシウムスラリーまたは酸化マグネシウムスラリーに炭酸ガスを吹き込むことで製造してもよい。
 スラリーは、例えば、粉末状の水酸化マグネシウム又は酸化マグシウムを水に分散させることで調製できる。
 なお、反応の完了(炭酸マグネシウムの生成)は、例えば、反応液が所定のpH(例えば、約10以下)になったことを確認することにより行ってもよい。pHの確認は、指示薬(フェノールフタレイン液など)により行ってもよい。
 生成した炭酸マグネシウムは、慣用の方法により分離(精製)できる。例えば、炭酸ガスの吹き込み後、反応が完了したスラリーをろ過、脱水、乾燥することにより精製してもよい。
 また、得られた炭酸マグネシウムには、粉砕処理を施してもよい。粉砕処理の種類や程度は、平均粒子径などに応じて適宜選択できる。
 なお、炭酸マグネシウムのゼータ電位は、乾燥温度等により調整してもよい。例えば、高温で乾燥させるほど、ゼータ電位が高くなる傾向がある。
 また、比表面積や平均粒子径は、炭酸マグネシウムスラリーの養生の程度等により調整してもよい。例えば、養生する際の温度上昇とともに、比表面積は小さくなり、平均粒子径は小さくなる傾向がある。
 さらに、水銀圧入量は、脱水時の圧力(例えば、フィルタープレスの圧搾圧)により調整してもよい。圧力が低いと水銀圧入量が高くなる傾向にある。
 平均粒子径は、粉砕の度合い等によって調整してもよい。
[炭酸マグネシウムの用途]
 本発明の炭酸マグネシウムは、特に、樹脂用の添加剤として好適に使用できる。換言すれば、本発明の炭酸マグネシウム(又は前記炭酸マグネシウムを含む樹脂用添加剤)は、組成物(樹脂組成物)を構成してもよい。
 樹脂の添加剤[例えば、フィラー(充填剤、補強剤、強化剤、増強剤)]として使用することで、種々の物性・機能[例えば、強度、剛性(モジュラス)、耐熱性]を、向上(改善)又は付与しうる。また、樹脂の増量に使用でき、樹脂の種類によっては、混合により低コスト化を実現できる。
 そのため、本発明には、樹脂と、前記炭酸マグネシウムとを含む組成物も含まれる。
 樹脂としては、特に限定されず、熱可塑性樹脂又は硬化性樹脂(例えば、熱又は光硬化性樹脂)であってもよく、エラストマー(熱可塑性エラストマー、ゴムなど)であってもよい。
 樹脂は、単独で又は2種以上組み合わせてもよい。
 具体的な樹脂(ゴムを含む)としては、例えば、オレフィン系樹脂(例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体など)、ハロゲン含有樹脂{例えば、塩素含有樹脂[例えば、塩化ビニル系樹脂(例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、エチレン-塩化ビニル共重合体、エチレン-酢酸ビニル共重合体など)、塩化ビニリデン系樹脂(ポリ塩化ビニリデンなど)など]など}、(メタ)アクリル系樹脂(例えば、ポリメタクリル酸メチル、メタクリル酸メチル-スチレン共重合体など)、スチレン系樹脂[例えば、ポリスチレン、スチレン共重合体又はスチレン含有樹脂(アクリロニトリル-スチレン共重合体、スチレン-メタクリル酸メチル共重合体、ABS樹脂など)など]、ポリエステル系樹脂[例えば、ポリアルキレンテレフタレート(ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレートなど)、ポリエチレンナフタレートなどのポリアルキレンアリレート系樹脂、ポリアリレート系樹脂など]、ポリカーボネート系樹脂(例えば、ビスフェノールA型ポリカーボネート)、ポリチオカーボネート系樹脂、ポリアセタール系樹脂、ポリアミド系樹脂(例えば、ポリアミド6、ポリアミド66など)、ポリフェニレンエーテル系樹脂、ポリエーテルケトン系樹脂、ポリスルホン系樹脂、ポリフェニレンスルフィド系樹脂、ポリイミド系樹脂、熱可塑性エラストマー(オレフィン系エラストマー、スチレン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、ポリウレタン系エラストマーなど)、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、フラン樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、ビニルエステル樹脂、シリコーン系樹脂、ゴムなどが挙げられる。
 ゴムとしては、例えば、ジエン系ゴム{例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブチルゴム(IIR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、ニトリル含有ゴム[例えば、ニトリルゴム(NBR)、ニトリルクロロプレンゴム(NCR)、ニトリルイソプレンゴム(NIR)]、スチレン含有ゴム[例えば、スチレンブタジエンゴム(SBR)、スチレンクロロプレンゴム(SCR)、スチレンイソプレンゴム(SIR)など]、水添ゴム[例えば、水添ニトリルゴム(HNBR)]など}、オレフィン系ゴム[例えば、エチレンプロピレンゴム(EPM)、エチレンプロピレンジエンゴム(EPDM)など]、アクリルゴム(エチレンアクリルゴムなど)、フッ素ゴム、ウレタンゴム、酸変性ゴム(例えば、カルボキシル化ニトリルゴム(X-NBR)、カルボキシル化スチレンブタジエンゴム(X-SBR)、カルボキシル化エチレンプロピレンゴム(X-EP(D)M)など)などが例示できる。
 これらの樹脂の中でも、オレフィン系樹脂、ハロゲン含有樹脂、ゴムなどが好ましく、特に、塩化ビニル系樹脂及びゴムが好ましい。
 前記炭酸マグネシウムは、通常、このような樹脂(ゴム)に添加しても、透明性の低下が少ない。そのため、透明性が要求される用途はもちろんのこと、外観や着色に与える影響が少ないため、外観・意匠性が要求される用途、着色用途などにも好適に使用できる。
 樹脂に添加(混合)する場合、炭酸マグネシウムの割合は、付与する機能やその程度などに応じて適宜選択でき、特に限定されないが、例えば、樹脂100質量部に対して、0.1質量部以上(例えば、0.3~1000質量部)、好ましくは0.5質量部以上(例えば、1~500質量部)、さらに好ましくは2質量部以上(例えば、3~300質量部程度)であってもよい。
 特に、オレフィン系樹脂、ハロゲン含有樹脂(塩化ビニル系樹脂など)などの樹脂に添加する場合、炭酸マグネシウムの割合は、例えば、樹脂(オレフィン系樹脂、ハロゲン含有樹脂など)100質量部に対して、0.1~100質量部、好ましくは0.5~80質量部、さらに好ましくは1~50質量部(例えば、2~30質量部)、特に3~25質量部(例えば、3.5~20質量部、4~15質量部、5~10質量部など)であってもよく、4質量部以上(例えば、5質量部以上、6質量部以上、7質量部以上、8質量部以上など)とすることもできる。
 特に、ゴムに添加する場合、炭酸マグネシウムの割合は、例えば、樹脂(ゴム)100質量部に対して、1質量部以上(例えば、1~1000質量部)、好ましくは5質量部以上(例えば、6~500質量部)、さらに好ましくは8質量部以上(例えば、10~300質量部)、特に15質量部以上(例えば、20~200質量部)であってもよく、30質量部以上(例えば、40質量部以上、50質量部以上、60質量部以上、80質量部以上など)とすることもできる。
 組成物は、樹脂(ゴム)の種類や組成物の用途等に応じて、慣用の添加剤、例えば、可塑剤、難燃剤、軟化剤、安定剤、帯電防止剤、老化防止剤、酸化防止剤、紫外線吸収剤、粘着付与剤、滑剤、着色剤、発泡剤、分散剤、フィラー(前記炭酸マグネシウムの範疇に属さない他のフィラー)などを含んでいてもよい。添加剤は、単独で又は2種以上組み合わせて使用してもよい。
 なお、組成物は、各成分を混合することで製造できる。混合方法は、樹脂の種類などに応じて適宜選択でき、特に限定されない。
 次に、実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではなく、多くの変形が本発明の技術的思想内で当分野において通常の知識を有する者により可能である。
 なお、各種物性・特性は以下のように測定又は評価した。
 ゼータ電位:ビーカーに入れた炭酸マグネシウム10gに純水を加えて200mLにメスアップし、撹拌棒を用いて液が均一となるように20回程度かき混ぜ、その後、ビーカーの内容物を25℃に保ちながら撹拌し、スラリー溶液を調製した。スラリー濃度:0.05g/cm測定方法:コロイド振動電流法測定装置:DT-1200(Dispersion Technology社製)3回測定し、平均値を算出し、ゼータ電位の値とした。
 BET比表面積:JIS8830(ガス吸着による粉体(固体)の比表面積測定方法)に準じ、1点法でBET比表面積を求めた。
 水銀圧入量:測定装置には、Quantachrome社製 PoreMaster-60を用いた。
 炭酸マグネシウム0.1gをはかりとり、0.5mLセルステムに充填した。
 低圧のチャンバーにて測定後、取り出して高圧のチャンバーで測定した。これらの測定結果から、測定装置に付属されたソフトウェアによって算出された値を、水銀圧入量の値とした。
測定範囲 φ1069~0.0036μm
水銀接触角 140度
水銀表面張力 480dynes/cm
水銀密度 13.5g/cc
温度 20℃
 (高圧測定条件)
Penetrometer Constant   1520 [mV/cc]
Auto-Oil Fill Time    5 [sec]
Run Mode         Fixed Speed
Motor Speed        4
 (低圧測定条件)
Penetrometer Constant   1760 [mV/cc]
Evacuation Rate      1
Fine Evac. Until     500.0000 [mm Hg]
Coarse Evac. Until    5.0000 [min.]
 平均粒子径:試料粉末0.05gをエタノール50mLに添加し、超音波で3分間分散処理した後に、レーザー回折法(装置:Microtrac HRA、日機装株式会社製)により測定した。
 L*値(明度):黒色標準板(単独で測定した場合にSCI方式のL*値が25.9であった)の上に作製したシートを乗せ、分光光度計から照射された光が漏れないよう、シートと黒色標準板を押さえつけ、SCI方式のL*値を測定した。このときシートが装置側となるように押さえつけた。
 分光光度計には、コニカミノルタ社製分光測色計「CM-3610d」を用いた。
 なお、この方法では、シートの下に黒色の板を置いているため、シートの透明性が高いほど、センサーが板の黒色を拾ってL*値が低く測定される。
 100%モジュラス:試験片はJIS 3号ダンベルを使用した。引張試験はJIS K 7161に基づき行った。引張速度200mm/分で行った。100%伸長時の引張応力を100%モジュラスとした。
 シート外観:以下の基準で目視により評価した。
 ◎:まだら模様が全くない
 〇:若干、まだら模様が見られる
 ×:まだら模様が多い
 シート透明性:以下の基準で目視により評価した。
 ◎:シートの下に敷いた紙の文字がはっきりと判別できる
 〇:シートの下に敷いた紙の文字が判別できる
 ×:シートの下に敷いた紙の文字が判別できない
 硬さ:2mm厚のシートを3枚に重ね、デュロメーター(タイプA)を用いて、JISK6253に従って測定した。
(実施例1)
 MgO濃度40g/Lとなるよう酸化マグネシウム粉末を純水に混和して60℃に調整したスラリー3Lに、攪拌しながらガス流速2L/minで炭酸ガスを吹き込み反応させた。スラリーにフェノールフタレインを加えてピンク色から無色になるときを反応の終点とし、終点に達した時点で炭酸ガスの吹き込みを停止し、塩基性炭酸マグネシウムスラリーを得た。得られた塩基性炭酸マグネシウムスラリーを液温80℃に調整して攪拌しながら6時間キープした。
 得られた塩基性炭酸マグネシウムスラリーを圧力2.0MPaにて3分間フィルタープレス機で脱水し、その後135℃に設定された乾燥機で12時間静置乾燥させ、乾燥物をホソカワミクロン社製バンタムミル(AP-B型)で粉砕することで塩基性炭酸マグネシウム粉末を得た。
 得られた炭酸マグネシウムのゼータ電位は12.4mVであった。また、得られた炭酸マグネシウムのBET比表面積は42m/g、水銀圧入量は2.3cc/g、平均粒子径は6.7μmであった。なお、炭酸マグネシウム粉末の形状は、カードハウス構造を有する凝集体であった。
 そして、得られた炭酸マグネシウムを3.5質量部、ポリ塩化ビニル(新第一塩ビ(株)製、ZEST1000)を62.5質量部、ジオクチルフタレートを37.5質量部、ステアリン酸鉛を1.0質量部の割合で含むシート(厚み1mm)を作製した。
 シートは、ラボプラストミル(東洋精機社製)を使用し、各成分を、160℃、30rpm、150秒混練後、混練物を取り出し、170℃で1分間プレス成型することで作製した。
 得られたシートについて、各種測定・評価を行った。
(実施例2)
 実施例1において、炭酸マグネシウムを3.5質量部に代えて4.7質量部としたこと以外は、実施例1と同様にして、各種測定・評価を行った。
(実施例3)
 実施例1において、炭酸マグネシウムを3.5質量部に代えて9.3質量部としたこと以外は、実施例1と同様にして、各種測定・評価を行った。
(実施例4)
 実施例1において、炭酸マグネシウムを3.5質量部に代えて14.0質量部としたこと以外は、実施例1と同様にして、各種測定・評価を行った。
(実施例5)
 60℃に調整したMgO濃度40g/Lの水酸化マグネシウムスラリー(水スラリー)3Lを、攪拌しながらガス流速2L/minで炭酸ガスを吹き込み反応させた。スラリーにフェノールフタレインを加えてピンク色から無色になるときを反応の終点とし、終点に達した時点で炭酸ガスの吹き込みを停止し、塩基性炭酸マグネシウムスラリーを得た。得られた塩基性炭酸マグネシウムスラリーを液温70℃に調整して攪拌しながら6時間キープした。
 得られた塩基性炭酸マグネシウムスラリーを圧力2.5MPaにて3分間フィルタープレス機で脱水し、その後120℃に設定された乾燥機で12時間静置乾燥させ、乾燥物をホソカワミクロン社製バンタムミル(AP-B型)で粉砕することで塩基性炭酸マグネシウム粉末を得た。
 得られた炭酸マグネシウムのゼータ電位は9.2mVであった。また、得られた炭酸マグネシウムのBET比表面積は44m/g、水銀圧入量は1.9cc/g、平均粒子径は7.4μmであった。なお、炭酸マグネシウム粉末の形状は、カードハウス構造を有する凝集体であった。
 そして、得られた炭酸マグネシウムを4.7質量部、ポリ塩化ビニル(新第一塩ビ(株)製、ZEST1000)を62.5質量部、ジオクチルフタレートを37.5質量部、ステアリン酸鉛を1.0質量部の割合で含むシート(厚み1mm)を、実施例1と同様にして作製した。
 得られたシートについて、各種測定・評価を行った。
(実施例6)
 MgO濃度40g/L、液温65℃の水酸化マグネシウムスラリー(水スラリー)3Lにガス流速2L/minで炭酸ガスを吹き込み反応させた。スラリーにフェノールフタレインを加えてピンク色から無色になるときを反応の終点とし、終点に達した時点で炭酸ガスの吹き込みを停止し、塩基性炭酸マグネシウムスラリーを得た。
 得られた塩基性炭酸マグネシウムスラリーを液温95℃に調整して攪拌しながら6時間キープした後、スラリーを圧力1.5MPaにて3分間フィルタープレス機で脱水し、その後105℃に設定された乾燥機で12時間静置乾燥させ、乾燥物をホソカワミクロン社製バンタムミル(AP-B型)で粉砕することで塩基性炭酸マグネシウム粉末を得た。
 得られた炭酸マグネシウムのゼータ電位は6.8mV、BET比表面積は16m/gであった。また、得られた炭酸マグネシウムの水銀圧入量は4.9cc/g、平均粒子径は2.7μmであった。なお、炭酸マグネシウム粉末の形状は、カードハウス構造を有する凝集体であった。
 そして、得られた炭酸マグネシウムを4.7質量部、ポリ塩化ビニル(新第一塩ビ(株)製、ZEST1000)を62.5質量部、ジオクチルフタレートを37.5質量部、ステアリン酸鉛を1.0質量部の割合で含むシート(厚み1mm)を、実施例1と同様にして作製した。
 得られたシートについて、各種測定・評価を行った。
(実施例7)
 55℃に調整したMgO濃度40g/Lの水酸化マグネシウムスラリー(水スラリー)3Lを、攪拌しながらガス流速2L/minで炭酸ガスを吹き込み反応させた。スラリーにフェノールフタレインを加えてピンク色から無色になるときを反応の終点とし、終点に達した時点で炭酸ガスの吹き込みを停止し、塩基性炭酸マグネシウムスラリーを得た。
 得られた塩基性炭酸マグネシウムスラリーを液温70℃に調整して攪拌しながら6時間キープした後、スラリーを圧力2.0MPaにて3分間フィルタープレス機で脱水し、その後120℃に設定された乾燥機で12時間静置乾燥させ、乾燥物をホソカワミクロン社製バンタムミル(AP-B型)で粉砕することで塩基性炭酸マグネシウム粉末を得た。
 得られた炭酸マグネシウムのゼータ電位は11.2mVであった。また、得られた炭酸マグネシウムのBET比表面積は57m/g、水銀圧入量は3.0cc/g、平均粒子径は6.8μmであった。なお、炭酸マグネシウム粉末の形状は、カードハウス構造を有する凝集体であった。
 そして、得られた炭酸マグネシウムを4.7質量部、ポリ塩化ビニル(新第一塩ビ(株)製、ZEST1000)を62.5質量部、ジオクチルフタレートを37.5質量部、ステアリン酸鉛を1.0質量部の割合で含むシート(厚み1mm)を、実施例1と同様にして作製した。
 得られたシートについて、各種測定・評価を行った。
(実施例8)
 65℃に調整したMgO濃度30g/Lの水酸化マグネシウムスラリー(水スラリー)3Lを、攪拌しながらガス流速2L/minで炭酸ガスを吹き込み反応させた。スラリーにフェノールフタレインを加えてピンク色から無色になるときを反応の終点とし、終点に達した時点で炭酸ガスの吹き込みを停止し、塩基性炭酸マグネシウムスラリーを得た。
 得られた塩基性炭酸マグネシウムスラリーを液温70℃に調整して攪拌しながら9時間キープした後、スラリーを圧力2.5MPaにて3分間フィルタープレス機で脱水し、その後135℃に設定された乾燥機で12時間静置乾燥させ、乾燥物をホソカワミクロン社製バンタムミル(AP-B型)で粉砕することで塩基性炭酸マグネシウム粉末を得た。
 得られた炭酸マグネシウムのゼータ電位は18.7mVであった。また、得られた炭酸マグネシウムのBET比表面積は41m/g、水銀圧入量は2.1cc/g、平均粒子径は6.2μmであった。なお、炭酸マグネシウム粉末の形状は、カードハウス構造を有する凝集体であった。
 そして、得られた炭酸マグネシウムを4.7質量部、ポリ塩化ビニル(新第一塩ビ(株)製、ZEST1000)を62.5質量部、ジオクチルフタレートを37.5質量部、ステアリン酸鉛を1.0質量部の割合で含むシート(厚み1mm)を、実施例1と同様にして作製した。
 得られたシートについて、各種測定・評価を行った。
(実施例9)
 MgO濃度30g/Lとなるよう酸化マグネシウム粉末を純水に混和して60℃に調整したスラリー3Lに、攪拌しながらガス流速2L/minで炭酸ガスを吹き込み反応させた。スラリーにフェノールフタレインを加えてピンク色から無色になるときを反応の終点とし、終点に達した時点で炭酸ガスの吹き込みを停止し、塩基性炭酸マグネシウムスラリーを得た。得られた塩基性炭酸マグネシウムスラリーを液温75℃に調整して攪拌しながら6時間キープした。
 得られた塩基性炭酸マグネシウムスラリーを圧力1.5MPaにて3分間フィルタープレス機で脱水し、その後120℃に設定された乾燥機で12時間静置乾燥させ、乾燥物をホソカワミクロン社製バンタムミル(AP-B型)で粉砕することで塩基性炭酸マグネシウム粉末を得た。
 得られた炭酸マグネシウムのゼータ電位は7.2mVであった。また、得られた炭酸マグネシウムのBET比表面積は48m/g、水銀圧入量は3.0cc/g、平均粒子径は9.9μmであった。なお、炭酸マグネシウム粉末の形状は、カードハウス構造を有する凝集体であった。
 そして、得られた炭酸マグネシウムを4.7質量部、ポリ塩化ビニル(新第一塩ビ(株)製、ZEST1000)を62.5質量部、ジオクチルフタレートを37.5質量部、ステアリン酸鉛を1.0質量部の割合で含むシート(厚み1mm)を作製した。
 シートは、ラボプラストミル(東洋精機社製)を使用し、各成分を、160℃、30rpm、150秒混練後、混練物を取り出し、170℃で1分間プレス成型することで作製した。
 得られたシートについて、各種測定・評価を行った。
(実施例10)
 70℃に調整したMgO濃度25g/Lの水酸化マグネシウムスラリー(水スラリー)3Lを、攪拌しながらガス流速3L/minで炭酸ガスを吹き込み反応させた。スラリーにフェノールフタレインを加えてピンク色から無色になるときを反応の終点とし、終点に達した時点で炭酸ガスの吹き込みを停止し、塩基性炭酸マグネシウムスラリーを得た。得られた塩基性炭酸マグネシウムスラリーを液温80℃に調整して攪拌しながら6時間キープした。
 得られた塩基性炭酸マグネシウムスラリーを圧力2.5MPaにて3分間フィルタープレス機で脱水し、その後110℃に設定された乾燥機で12時間静置乾燥させ、乾燥物をホソカワミクロン社製バンタムミル(AP-B型)で粉砕することで塩基性炭酸マグネシウム粉末を得た。
 得られた炭酸マグネシウムのゼータ電位は10.8mVであった。また、得られた炭酸マグネシウムのBET比表面積は35m/g、水銀圧入量は1.9cc/g、平均粒子径は8.2μmであった。なお、炭酸マグネシウム粉末の形状は、カードハウス構造を有する凝集体であった。
 そして、得られた炭酸マグネシウムを4.7質量部、ポリ塩化ビニル(新第一塩ビ(株)製、ZEST1000)を62.5質量部、ジオクチルフタレートを37.5質量部、ステアリン酸鉛を1.0質量部の割合で含むシート(厚み1mm)を、実施例1と同様にして作製した。
 得られたシートについて、各種測定・評価を行った。
(実施例11)
 55℃に調整したMgO濃度40g/Lの水酸化マグネシウムスラリー(水スラリー)3Lを、攪拌しながらガス流速3L/minで炭酸ガスを吹き込み反応させた。スラリーにフェノールフタレインを加えてピンク色から無色になるときを反応の終点とし、終点に達した時点で炭酸ガスの吹き込みを停止し、塩基性炭酸マグネシウムスラリーを得た。得られた塩基性炭酸マグネシウムスラリーを液温75℃に調整して攪拌しながら6時間キープした。
 得られた塩基性炭酸マグネシウムスラリーを圧力2.5MPaにて3分間フィルタープレス機で脱水し、その後120℃に設定された乾燥機で24時間静置乾燥させ、乾燥物をホソカワミクロン社製バンタムミル(AP-B型)で粉砕することで塩基性炭酸マグネシウム粉末を得た。
 得られた炭酸マグネシウムのゼータ電位は11.9mVであった。また、得られた炭酸マグネシウムのBET比表面積は59m/g、水銀圧入量は2.2cc/g、平均粒子径は3.8μmであった。なお、炭酸マグネシウム粉末の形状は、カードハウス構造を有する凝集体であった。
 そして、得られた炭酸マグネシウムを4.7質量部、ポリ塩化ビニル(新第一塩ビ(株)製、ZEST1000)を62.5質量部、ジオクチルフタレートを37.5質量部、ステアリン酸鉛を1.0質量部の割合で含むシート(厚み1mm)を、実施例1と同様にして作製した。
 得られたシートについて、各種測定・評価を行った。
(比較例1)
 実施例1において、炭酸マグネシウムを使用しなかったこと以外は、実施例1と同様にして、各種測定・評価を行った。
 これらの結果をまとめたものを下記表に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表の結果から明らかなように、実施例の炭酸マグネシウムによれば、添加によっても、透明性を高いレベルで維持しつつ、強度や剛性を向上できることがわかった。
(実施例12)
 実施例1で得られた炭酸マグネシウム120.0質量部、天然ゴム(ペールクレープ)100質量部、ステアリン酸1.0質量部、硫黄2.0質量部、炭酸亜鉛1.5質量部、加硫促進剤1.2質量部(内訳:ノクセラーTS 0.2重量部、ノクセラーH 0.5重量部、ノクセラーP 0.5重量部、いずれも大内新興化学工業(株)製)を含むシート(厚み2mm)を、以下のようにして調製した。
 30℃、ロール回転速度10rpmで天然ゴムを5分間素練りした後、ステアリン酸、炭酸マグネシウム、硫黄、炭酸亜鉛を加えて30分間混練した後、加硫促進剤を添加して混練した後、ロール間隔を調整し、約3mm厚のゴム組成物を得た。その後12時間冷暗所で18時間静置した後、155℃で10分間プレス成型して厚み2mmのシートを作製した。
 得られたシートについて、各種測定・評価を行った。
(実施例13)
 実施例12において、実施例1で得られた炭酸マグネシウムに代えて、実施例5で得られた炭酸マグネシウムを使用したこと以外は、実施例12と同様にして各種測定・評価を行った。
(実施例14)
 実施例12において、実施例1で得られた炭酸マグネシウムに代えて、実施例6で得られた炭酸マグネシウムを使用したこと以外は、実施例12と同様にして各種測定・評価を行った。
(実施例15)
 実施例12において、実施例1で得られた炭酸マグネシウムに代えて、実施例7で得られた炭酸マグネシウムを使用したこと以外は、実施例12と同様にして各種測定・評価を行った。
(実施例16)
 実施例12において、実施例1で得られた炭酸マグネシウムに代えて、実施例8で得られた炭酸マグネシウムを使用したこと以外は、実施例12と同様にして各種測定・評価を行った。
(実施例17)
 実施例12において、実施例1で得られた炭酸マグネシウムに代えて、実施例9で得られた炭酸マグネシウムを使用したこと以外は、実施例12と同様にして各種測定・評価を行った。
(実施例18)
 実施例12において、実施例1で得られた炭酸マグネシウムに代えて、実施例10で得られた炭酸マグネシウムを使用したこと以外は、実施例12と同様にして各種測定・評価を行った。
(実施例19)
 実施例12において、実施例1で得られた炭酸マグネシウムに代えて、実施例11で得られた炭酸マグネシウムを使用したこと以外は、実施例12と同様にして各種測定・評価を行った。
(比較例2)
 実施例12において、炭酸マグネシウムを使用しなかったこと以外は、実施例12と同様にして各種測定・評価を行った。
 これらの結果をまとめたものを下記表に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表の結果から明らかなように、実施例の炭酸マグネシウムによれば、ゴムに添加しても、前記と同様に、透明性を高いレベルで維持しつつ、強度や剛性を向上できることがわかった。そのため、実施例の炭酸マグネシウムは、幅広い樹脂に対して、高透明性と高強度・剛性とを両立できることがわかる。
 本発明によれば、樹脂用添加剤[例えば、フィラー(充填剤、補強剤)]などとして有用な炭酸マグネシウムを提供できる。

Claims (11)

  1.  ゼータ電位が5mV以上である樹脂添加剤用の炭酸マグネシウム。
  2.  樹脂添加剤がフィラーである請求項1記載の炭酸マグネシウム。
  3.  BET比表面積が10m/g以上である請求項1又は2記載の炭酸マグネシウム。
  4.  水銀圧入量が1~8cc/gである請求項1~3のいずれかに記載の炭酸マグネシウム。
  5.  平均粒子径が1~20μmである請求項1~4のいずれかに記載の炭酸マグネシウム。
  6.  ゼータ電位が6~25mV、BET比表面積が15~70m/g、水銀圧入量が1.5~5cc/g、平均粒子径が2~15μmである請求項1~5のいずれかに記載の炭酸マグネシウム。
  7.  カードハウス構造を有する凝集体である請求項1~6のいずれかに記載の炭酸マグネシウム。
  8.  樹脂と、請求項1~7のいずれかに記載の炭酸マグネシウムとを含む組成物。
  9.  樹脂が、塩化ビニル系樹脂を含む請求項8記載の組成物。
  10.  樹脂が、ゴムを含む請求項8記載の組成物。
  11.  炭酸マグネシウムの割合が、樹脂100質量部に対して0.1質量部以上である請求項8~10のいずれかに記載の組成物。
PCT/JP2018/016775 2017-04-28 2018-04-25 フィラー用炭酸マグネシウム及びこの炭酸マグネシウムを含む樹脂組成物 WO2018199153A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017089938A JP6853103B2 (ja) 2017-04-28 2017-04-28 フィラー用炭酸マグネシウム及びこの炭酸マグネシウムを含む樹脂組成物
JP2017-089938 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018199153A1 true WO2018199153A1 (ja) 2018-11-01

Family

ID=63919847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016775 WO2018199153A1 (ja) 2017-04-28 2018-04-25 フィラー用炭酸マグネシウム及びこの炭酸マグネシウムを含む樹脂組成物

Country Status (2)

Country Link
JP (1) JP6853103B2 (ja)
WO (1) WO2018199153A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115698181A (zh) * 2020-06-02 2023-02-03 Dic株式会社 聚芳硫醚树脂组合物、成形品和它们的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4741238B1 (ja) * 1970-10-08 1972-10-18
JP2003113533A (ja) * 2001-10-04 2003-04-18 Toyobo Co Ltd ポリウレタン弾性繊維
JP2004059378A (ja) * 2002-07-30 2004-02-26 Nittetsu Mining Co Ltd 塩基性炭酸マグネシウムの製造方法及び該塩基性炭酸マグネシウムを含有する組成物又は構造体
JP2007254193A (ja) * 2006-03-22 2007-10-04 Ube Material Industries Ltd 無水炭酸マグネシウム粉末及びその製造方法
JP2011073903A (ja) * 2009-09-29 2011-04-14 Aisin Seiki Co Ltd 炭酸ガス処理装置及び炭酸ガスの処理方法
WO2017043588A1 (ja) * 2015-09-08 2017-03-16 日本製紙株式会社 炭酸マグネシウム微粒子の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4741238B1 (ja) * 1970-10-08 1972-10-18
JP2003113533A (ja) * 2001-10-04 2003-04-18 Toyobo Co Ltd ポリウレタン弾性繊維
JP2004059378A (ja) * 2002-07-30 2004-02-26 Nittetsu Mining Co Ltd 塩基性炭酸マグネシウムの製造方法及び該塩基性炭酸マグネシウムを含有する組成物又は構造体
JP2007254193A (ja) * 2006-03-22 2007-10-04 Ube Material Industries Ltd 無水炭酸マグネシウム粉末及びその製造方法
JP2011073903A (ja) * 2009-09-29 2011-04-14 Aisin Seiki Co Ltd 炭酸ガス処理装置及び炭酸ガスの処理方法
WO2017043588A1 (ja) * 2015-09-08 2017-03-16 日本製紙株式会社 炭酸マグネシウム微粒子の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115698181A (zh) * 2020-06-02 2023-02-03 Dic株式会社 聚芳硫醚树脂组合物、成形品和它们的制造方法

Also Published As

Publication number Publication date
JP6853103B2 (ja) 2021-03-31
JP2018188506A (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
CZ301325B6 (cs) Použití uhlicitanu vápenatého jako regulátoru reologie v plastisolech
RU2358991C2 (ru) Порошкообразная белая композиция промотора вулканизации и композиции каучука
Intiya et al. Possible use of sludge ash as filler in natural rubber
JP2008503618A (ja) 乾燥液状改質剤で製造したシリカ強化エラストマーコンパウンド
US4507439A (en) Elastomeric compositions containing treated PTFE
KR101426104B1 (ko) 가황 활성 성분 처리 탄산칼슘
WO2018199153A1 (ja) フィラー用炭酸マグネシウム及びこの炭酸マグネシウムを含む樹脂組成物
Sae-Oui et al. Utilization of limestone dust waste as filler in natural rubber
JP6423481B1 (ja) 炭酸マグネシウム
Rattanasupa et al. The development of rubber compound based on natural rubber (NR) and ethylene-propylene-diene-monomer (EPDM) rubber for playground rubber mat
JP2007002177A (ja) ゴム組成物
JP2006219593A (ja) 複数の充填材を含有するマスターバッチ及びその製造方法、並びにこれを用いたゴム組成物及びタイヤ
JPWO2018047841A1 (ja) 微粒子複合金属水酸化物、その焼成物、その製造方法及びその樹脂組成物
JPS63301245A (ja) ゴム組成物
JP4082088B2 (ja) Nbr組成物及びその製造方法
JP2007002179A (ja) ハイブリッドフィラーと、それを用いたゴム組成物および樹脂組成物
JP4491592B2 (ja) ゴム組成物の製造方法
JP4782487B2 (ja) ハイブリッドフィラーと、それを用いたゴム組成物および樹脂組成物
JP2005008650A (ja) クリアラバー用充填材
JP4373386B2 (ja) 塩素含有重合体用無機充填材
JP2019052214A (ja) ベルト用ゴム組成物、ベルト及びベルトコンベア装置
Wan et al. Cure characteristics and mechanical properties of NR/SBR blends filled with nano-sized CaCO3
JP2023535318A (ja) エラストマー組成物のガス透過性を低減するための多孔質フィラーの使用
EP3594281A1 (en) Alkaline earth metals for retarding polymer degradation
Gite et al. Abdul Ahamad1, Chetan B Patil2

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790535

Country of ref document: EP

Kind code of ref document: A1