WO2018199128A1 - フレキシブル配線回路基板および撮像装置 - Google Patents

フレキシブル配線回路基板および撮像装置 Download PDF

Info

Publication number
WO2018199128A1
WO2018199128A1 PCT/JP2018/016716 JP2018016716W WO2018199128A1 WO 2018199128 A1 WO2018199128 A1 WO 2018199128A1 JP 2018016716 W JP2018016716 W JP 2018016716W WO 2018199128 A1 WO2018199128 A1 WO 2018199128A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
insulating layer
wiring
thickness direction
shield
Prior art date
Application number
PCT/JP2018/016716
Other languages
English (en)
French (fr)
Inventor
隼人 高倉
良広 河邨
秀一 若木
周作 柴田
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018083301A external-priority patent/JP7390779B2/ja
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US16/607,580 priority Critical patent/US11122676B2/en
Priority to KR1020197031452A priority patent/KR20200002850A/ko
Priority to CN201880027884.6A priority patent/CN110720258B/zh
Publication of WO2018199128A1 publication Critical patent/WO2018199128A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a flexible printed circuit board and an imaging apparatus.
  • a shield layer for example, an adhesion film formed of SuS on a resin substrate, a conductive film formed of Cu on the adhesion film, and a protective film formed of SuS on the conductive film.
  • a shield film provided has been proposed (see, for example, Patent Document 1).
  • the shield layer is required to have both excellent adhesion that does not peel from the board even when the flexible printed circuit board is deformed and excellent shielding properties against electromagnetic waves.
  • the present invention provides a flexible printed circuit board and an imaging device capable of achieving both excellent adhesion of a shield layer and excellent shielding properties against electromagnetic waves.
  • the present invention [1] includes a first insulating layer, a wiring arranged on one side in the thickness direction of the first insulating layer, a second insulating layer arranged on one side in the thickness direction of the wiring, and the second A shield layer disposed on one side in the thickness direction of the insulating layer, and a third insulating layer disposed on one side in the thickness direction of the shield layer, the shield layer including the conductive layer and the conductive layer
  • a flexible printed circuit board selected from metals belonging to Group 10 and belonging to Period 4 to Period 6 is included.
  • each of the two barrier layers sandwiching the conductive layer is selected from metals belonging to Periodic Group 4 to Group 10 and Period 4 to Period 6. Therefore, compared with the case where the material of the barrier layer is stainless steel (SUS), it is possible to improve the adhesion and shielding characteristics of the shield layer, and to achieve both excellent adhesion and excellent shielding characteristics. be able to.
  • SUS stainless steel
  • the present invention [2] includes the flexible printed circuit board according to the above [1], wherein each material of the second insulating layer and the third insulating layer is polyimide.
  • the metal that is the material of the shield layer tends to diffuse (migrate) into the polyimide.
  • the barrier layer sandwiching the conductive layer is selected from metals belonging to Groups 4 to 10 and Periods 4 to 6 of the periodic table. Therefore, it is possible to suppress diffusion (migration) of the metal, which is the material of the shield layer, into the second insulating layer and the third insulating layer made of polyimide.
  • the present invention [3] includes the flexible printed circuit board according to the above [2], wherein the barrier layer is one metal selected from the group consisting of titanium, chromium, nickel, palladium and tantalum. .
  • the barrier layer is a metal selected from the above group.
  • Metals belonging to the above group are diffusion (migration), especially in polyimide, in the metals (metals belonging to Periodic Tables 4 to 10 and Periods 4 to 6) which are the materials of the barrier layer described above. Hard to do.
  • the wiring includes a ground wiring
  • the shield layer is electrically connected to the ground wiring when the barrier layer is in contact with the ground wiring.
  • the flexible printed circuit board can be thinned.
  • metals belonging to Periodic Tables Group 4 to Group 10 and Periods 4 to 6 which are materials of the barrier layer have a lower volume resistivity than stainless steel, so the barrier layer is grounded.
  • the shield layer can be grounded efficiently in the structure in contact with the shield.
  • the wiring is in direct contact with the first insulating layer, and the second insulating layer is in direct contact with the wiring and is located on the other side in the thickness direction with respect to the conductive layer.
  • the barrier layer is in direct contact with the second insulating layer, and the conductive layer is in direct contact with the barrier layer located on the other side of the thickness direction with respect to the conductive layer, and in the thickness direction with respect to the conductive layer.
  • the barrier layer located on one side of the electrode is in direct contact with the conductive layer, and the third insulating layer is in direct contact with the barrier layer located on one side of the thickness direction with respect to the conductive layer.
  • layers adjacent to each other in the thickness direction among the plurality of layers are in direct contact with each other. is doing.
  • the layers adjacent to each other in the thickness direction are bonded to each other without an adhesive therebetween. Therefore, it is possible to reduce the thickness of the flexible printed circuit board as compared with a case where layers adjacent to each other in the thickness direction are bonded with an adhesive.
  • the barrier layer is selected from the above metals, excellent adhesion of the shield layer can be secured, and the shield layer is securely bonded to the second insulating layer and the third insulating layer without using an adhesive. And an adhesiveless flexible printed circuit board can be realized.
  • the present invention [6] further includes a fourth insulating layer and a second wiring disposed between the wiring and the second insulating layer in the thickness direction, wherein the fourth insulating layer
  • the flexible printed circuit board according to any one of [1] to [4], wherein the flexible printed circuit board is arranged on one side in a thickness direction, and the second wiring is arranged on one side in the thickness direction of the fourth insulating layer. Is included.
  • the flexible printed circuit board since the flexible printed circuit board includes the wiring and the second wiring, the number of wirings can be increased, and the degree of freedom in design can be improved.
  • the present invention includes the flexible printed circuit board according to any one of [1] to [6], which is an image sensor mounting substrate for mounting an image sensor.
  • the flexible printed circuit board can achieve both excellent adhesion of the shield layer and excellent shielding characteristics against electromagnetic waves, it can be suitably used as an imaging element mounting substrate.
  • the present invention [8] includes an imaging apparatus comprising the flexible printed circuit board according to any one of [1] to [6] above and an imaging element mounted on the flexible printed circuit board. .
  • the imaging apparatus since the imaging apparatus includes the flexible printed circuit board described above, it is possible to achieve both excellent adhesion of the shield layer and excellent shielding characteristics against electromagnetic waves.
  • the flexible printed circuit board and the imaging device of the present invention it is possible to achieve both excellent adhesion of the shield layer and excellent shielding properties against electromagnetic waves.
  • FIG. 1 is a bottom view of an image sensor mounting substrate which is an embodiment of a flexible printed circuit board according to the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA of the image sensor mounting substrate shown in FIG. 3A to 3D show manufacturing process diagrams of the image sensor mounting substrate shown in FIG. 2.
  • FIG. 3A shows a metal support preparation process and a base insulating layer formation process
  • FIG. 3B shows a conductor pattern formation process
  • FIG. The 1st insulating cover layer formation process is shown.
  • 4D to 4F show manufacturing process diagrams of the image sensor mounting substrate subsequent to FIG. 3C, where FIG. 4D is a shield layer forming process, FIG. 4E is a second cover insulating layer forming process, and FIG.
  • FIG. 4F is a metal support. A removal process is shown.
  • FIG. 5 shows an imaging apparatus including the imaging element mounting substrate shown in FIG.
  • FIG. 6 shows a cross-sectional view of another embodiment (an aspect including a third cover insulating layer and a second conductor pattern) of the flexible printed circuit board of the present invention.
  • the vertical direction of the paper is the front-back direction (first direction)
  • the upper side of the paper is the front side (one side in the first direction)
  • the lower side of the paper surface is the rear side (the other side in the first direction).
  • the left and right direction on the paper surface is the left and right direction (second direction orthogonal to the first direction), the left side on the paper surface is the left side (second side in the second direction), and the right side on the paper surface is the right side (the other side in the second direction). is there.
  • the paper thickness direction is the vertical direction (an example of the thickness direction, a third direction orthogonal to the first direction and the second direction), and the back side of the paper is the upper side (an example of one side in the thickness direction, third One side in the direction) and the front side in the drawing are the lower side (an example of the other side in the thickness direction, the other side in the third direction).
  • Imaging Element Mounting Board An imaging element mounting board 1 (hereinafter also simply referred to as a mounting board 1) that is an embodiment of the flexible printed circuit board of the present invention will be described.
  • the mounting substrate 1 is a flexible printed circuit board (FPC) for mounting an image sensor 21 (see FIG. 5 described later), and does not include the image sensor 21 yet.
  • the mounting substrate 1 has a substantially rectangular (rectangular) flat plate shape (sheet shape) in plan view extending in the front-rear direction and the left-right direction (plane direction).
  • the mounting substrate 1 includes a housing arrangement portion 2 and an external component connection portion 3.
  • the housing arrangement portion 2 is a portion where the housing 22 (see FIG. 5 described later) and the image sensor 21 are arranged. Specifically, the housing arrangement portion 2 is a portion that overlaps the housing 22 when projected in the thickness direction when the housing 22 is arranged on the mounting substrate 1. A plurality of image sensor connection terminals 10 (described later) for electrical connection with the image sensor 21 are arranged at a substantially central portion of the housing arrangement portion 2.
  • the external component connecting portion 3 is an area other than the housing arrangement portion 2 and is a portion for connecting to an external component.
  • the external component connection portion 3 is arranged on the rear side of the housing arrangement portion 2 such that the front end edge of the external component connection portion 3 is continuous with the rear end edge of the housing arrangement portion 2.
  • a plurality of external component connection terminals 11 (described later) for electrical connection with external components are arranged at the rear end edge of the external component connection portion 3.
  • the mounting substrate 1 includes a base insulating layer 4 as an example of a first insulating layer, a conductor pattern 5, a first cover insulating layer 6 as an example of a second insulating layer, and a shield layer 40.
  • the 2nd cover insulating layer 31 as an example of a 3rd insulating layer is equipped in order toward an upper side (an example of the thickness direction one side).
  • the base insulating layer 4 forms the outer shape of the mounting substrate 1 and is formed in a substantially rectangular shape when viewed from the bottom.
  • the base insulating layer 4 is located in the lowermost layer of the mounting substrate 1.
  • the lower surface (an example of the other surface in the thickness direction) of the insulating base layer 4 is formed to be flat. Further, the entire lower surface of the base insulating layer 4 is exposed downward.
  • the lower surface of the base insulating layer 4 is not supported by a metal support (see reference numeral 19 in FIGS. 3A to 4E). (Support layer) is not provided.
  • the base insulating layer 4 has a plurality of imaging element openings 7 and a plurality of external component openings 8.
  • the plurality of image sensor openings 7 are openings for exposing the image sensor connection terminal 10 from the lower surface.
  • the plurality of image sensor opening portions 7 are arranged at intervals in the center of the housing arrangement portion 2 so as to form a rectangular frame. As shown in FIG. 2, each of the plurality of imaging element openings 7 penetrates the base insulating layer 4 in the vertical direction and has a substantially circular shape when viewed from the bottom.
  • the imaging element opening 7 has a tapered shape in which the opening cross-sectional area decreases toward the lower side.
  • the plurality of external component openings 8 are openings for exposing the external component connection terminals 11 from the lower surface, as shown in FIG.
  • the external component openings 8 are aligned and arranged at the rear end edge of the external component connection portion 3 at intervals in the left-right direction.
  • Each of the plurality of external component openings 8 penetrates the base insulating layer 4 in the vertical direction and has a substantially rectangular shape (rectangular shape) when viewed from the bottom.
  • the external component opening 8 is formed so as to extend from the rear end edge of the external component connection portion 3 toward the front side in a bottom view.
  • Examples of the material of the base insulating layer 4 include an insulating material.
  • Examples of the insulating material include synthetic resins such as polyimide, polyamideimide, acrylic, polyether nitrile, polyether sulfone, polyethylene terephthalate, polyethylene naphthalate, and polyvinyl chloride.
  • a polyimide is mentioned from a viewpoint of insulation, heat resistance, and chemical resistance.
  • polyimide examples include materials described in JP-A-07-179604, JP-A 2010-276775, JP-A 2013-100441, and the like.
  • the thickness of the base insulating layer 4 is, for example, 30 ⁇ m or less, preferably 12 ⁇ m or less, more preferably 8 ⁇ m or less, and for example, 1 ⁇ m or more, preferably 3 ⁇ m or more.
  • the conductor pattern 5 is arranged on the upper side (one side in the thickness direction) of the base insulating layer 4 so as to be in contact with the upper surface of the base insulating layer 4.
  • the conductor pattern 5 includes a plurality of image sensor connection terminals 10, a plurality of external component connection terminals 11 (see FIG. 1), and a plurality of wirings 9.
  • the plurality of image sensor connection terminals 10 are arranged at intervals in the center of the housing arrangement portion 2 so as to form a rectangular frame. That is, the plurality of image sensor connection terminals 10 are provided so as to correspond to the plurality of terminals 25 (see FIG. 5) of the image sensor 21 to be mounted. In addition, the plurality of image sensor connection terminals 10 are provided corresponding to the plurality of image sensor openings 7.
  • the image sensor connection terminal 10 has a substantially circular shape in bottom view.
  • the image sensor connection terminal 10 is disposed in the image sensor opening 7 and is formed so as to protrude downward in a sectional view (a side sectional view and a normal sectional view). The lower surface of the image sensor connection terminal 10 is exposed from the image sensor opening 7.
  • the plurality of external component connection terminals 11 are arranged at the rear end edge of the external component connection portion 3 so as to be spaced apart from each other in the left-right direction. That is, it is provided so as to correspond to a plurality of terminals (not shown) of the external component.
  • the plurality of external component connection terminals 11 are provided corresponding to the plurality of external component openings 8.
  • the external component connection terminal 11 has a substantially rectangular shape (rectangular shape) in plan view.
  • the external component connection terminal 11 is disposed in the external component opening 8 and its lower surface is exposed from the external component opening 8.
  • the plurality of wirings 9 are arranged on the upper side (one side in the thickness direction) of the base insulating layer 4 and are in direct contact with the upper surface of the base insulating layer 4.
  • the plurality of wirings 9 include a plurality of connection wirings 14 and a plurality of ground wirings 15.
  • connection wiring 14 are provided so as to correspond to the plurality of image sensor connection terminals 10 and the plurality of external component connection terminals 11.
  • the connection wiring 14 is integrally formed with the imaging element connection terminal 10 and the external component connection terminal 11 so as to connect them. That is, one end of the connection wiring 14 is continuous with the image sensor connection terminal 10, and the other end of the connection wiring 14 is continuous with the external component connection terminal 11 to electrically connect them.
  • the plurality of ground wirings 15 are provided outside the plurality of connection wirings 14 along these.
  • a ground terminal (not shown) is integrally connected to one end of the ground wiring 15.
  • Examples of the material for the conductor pattern 5 include metal materials such as copper, silver, gold, nickel, alloys containing them, and solder, and preferably copper.
  • the thickness of the conductor pattern 5 is, for example, 1 ⁇ m or more, preferably 3 ⁇ m or more, and for example, 15 ⁇ m or less, preferably 10 ⁇ m or less.
  • the width of the wiring 9 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, and for example, 100 ⁇ m or less, preferably 50 ⁇ m or less.
  • the first insulating cover layer 6 is arranged above the insulating base layer 4 and the conductive pattern 5 so as to cover the conductive pattern 5. That is, the first insulating cover layer 6 is disposed so as to come into contact with the upper and side surfaces of the conductor pattern 5 and the upper surface of the insulating base layer 4 exposed from the conductive pattern 5. That is, at least a portion of the first cover insulating layer 6 is disposed on the upper side (one side in the thickness direction) of the conductor pattern 5 (the plurality of imaging element connection terminals 10, the plurality of external component connection terminals 11, and the plurality of wirings 9).
  • the outer shape of the first insulating cover layer 6 is formed to be the same as the outer shape of the insulating base layer 4.
  • a ground opening 16 is formed in the first cover insulating layer 6.
  • the ground opening 16 is an opening for exposing the upper surface of the ground wiring 15.
  • the ground opening 16 is formed corresponding to the ground wiring 15.
  • the ground opening 16 penetrates the first cover insulating layer 6 in the vertical direction and exposes the upper surface of the ground wiring 15.
  • the ground opening 16 has a tapered shape in which the opening cross-sectional area becomes smaller toward the lower side.
  • the material of the first cover insulating layer 6 for example, an insulating material similar to the insulating material described above for the base insulating layer 4 can be used, and preferably, polyimide is used.
  • the thickness of the first cover insulating layer 6 is, for example, 30 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and for example, 1 ⁇ m or more, preferably 2 ⁇ m or more.
  • the shield layer 40 is a shield for shielding electromagnetic waves, and is disposed on the upper side (one side in the thickness direction) of the first cover insulating layer 6 so as to be in contact with the upper surface of the first cover insulating layer 6.
  • the shield layer 40 is formed in a sheet shape extending in the surface direction (front-rear direction and left-right direction).
  • the outer shape of the shield layer 40 is formed to be the same as the outer shape of the first cover insulating layer 6. That is, the shield layer 40 is provided so as to collectively contact the entire top surface of the first cover insulating layer 6 and the entire top surface of the ground wiring 15 exposed from the ground opening 16.
  • the shield layer 40 includes a conductive layer 41 and two barrier layers 42 sandwiching the conductive layer 41 in the vertical direction (thickness direction), and preferably includes the conductive layer 41 and the two barrier layers 42.
  • the barrier layer 42 located on the lower side (the other side in the thickness direction) with respect to the conductive layer 41 is referred to as a first barrier layer 42A.
  • the barrier layer 42 located on the upper side (one side in the thickness direction) is defined as a second barrier layer 42B.
  • the conductive layer 41 is a layer for shielding electromagnetic waves, and is disposed between the first barrier layer 42A and the second barrier layer 42B in the vertical direction. Specifically, the conductive layer 41 is in direct contact with the upper surface of the first barrier layer 42A and is in direct contact with the lower surface of the second barrier layer 42B.
  • the conductive layer 41 is formed in a sheet shape extending in the surface direction (front-rear direction and left-right direction).
  • the conductive layer 41 is preferably a sputtered film formed by sputtering.
  • the conductive layer 41 is selected from metals belonging to Group 11 of the periodic table, and the fourth and fifth periods. That is, the conductive layer 41 is formed of at least one of metals (copper and silver) belonging to Group 11 of the periodic table and belonging to the fourth period and the fifth period.
  • the periodic table follows IUPAC Periodic Table of the Elements (version dated 28 November 2016).
  • the metal that is the material of the conductive layer 41 is preferably a pure metal such as copper or silver, and more preferably copper.
  • the conductive layer 41 has higher conductivity than the barrier layer 42. That is, the volume resistivity of the conductive layer 41 is lower than the volume resistivity of the barrier layer 42.
  • the volume resistivity (at 0 ° C.) of the conductive layer 41 is, for example, 1.6 ⁇ ⁇ cm or less, and for example, 1.0 ⁇ ⁇ cm or more. The volume resistivity is measured by the four probe method.
  • the shield characteristics of the shield layer 40 can be reliably improved.
  • the thickness of the conductive layer 41 is, for example, 1.0 ⁇ m or less, preferably 0.3 ⁇ m or less, and, for example, 0.05 ⁇ m or more.
  • the mounting substrate 1 can be reliably reduced in thickness, and if the thickness of the conductive layer 41 is equal to or greater than the lower limit, the shield characteristics of the shield layer 40 can be reliably improved. Can be aimed at.
  • the two barrier layers 42 are layers for suppressing the metal that is the material of the conductive layer 41 from diffusing (migration) into the insulating layer. More specifically, the first barrier layer 42A is a layer for suppressing the metal that is the material of the conductive layer 41 from diffusing (migration) into the first cover insulating layer 6, and the second barrier layer 42B is This is a layer for suppressing the metal that is the material of the conductive layer 41 from diffusing (migration) into the second cover insulating layer 31.
  • the first barrier layer 42A is arranged between the first cover insulating layer 6 and the conductive layer 41 and between the ground wiring 15 exposed from the ground opening 16 and the conductive layer 41 in the vertical direction.
  • the first barrier layer 42 ⁇ / b> A is arranged on the upper side (one side in the thickness direction) of the first cover insulating layer 6 so as to be in direct contact with the upper surface of the first cover insulating layer 6, and is exposed from the ground opening 16. It is arranged on the upper side of the ground wiring 15 so as to be in direct contact with the upper surface.
  • the second barrier layer 42B is disposed between the conductive layer 41 and the second cover insulating layer 31 in the vertical direction.
  • the second barrier layer 42B is disposed on the upper side (one side in the thickness direction) of the conductive layer 41 so as to be in direct contact with the upper surface of the conductive layer 41.
  • Each barrier layer 42 (each of the first barrier layer 42A and the second barrier layer 42B) is formed in a sheet shape extending in the surface direction (front-rear direction and left-right direction).
  • the barrier layer 42 is preferably a sputtered film formed by sputtering.
  • Each barrier layer 42 (each of the first barrier layer 42A and the second barrier layer 42B) is selected from metals belonging to Groups 4 to 10 and 4 to 6 of the periodic table. That is, the barrier layer 42 is composed of metals (titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zirconium, niobium, molybdenum, and the like belonging to Groups 4 to 10 of the periodic table and Periods 4 to 6. It is formed from one kind of pure metal selected from the group consisting of technetium, ruthenium, rhodium, palladium, hafnium, tantalum, tungsten, rhenium, osmium, iridium and platinum.
  • the metal that is the material of these barrier layers 42 is preferably one metal (pure metal) selected from the group consisting of titanium, chromium, nickel, palladium, and tantalum, and more preferably titanium and chromium. A pure metal is mentioned.
  • the metal which is the material of the barrier layer 42 is a metal selected from the above group, even if the material of the first cover insulating layer 6 and the second cover insulating layer 31 is polyimide, the metal is The diffusion (migration) into the first cover insulating layer 6 and the second cover insulating layer 31 can be reliably suppressed.
  • the metal that is the material of the first barrier layer 42A and the metal that is the material of the second barrier layer 42B may be different from each other, or may be the same as each other.
  • a combination of the metal that is the material of the conductive layer 41 and the metal that is the material of the barrier layer 42 a combination of copper or silver (conductive layer 41) and titanium (barrier layer 42), or copper or silver ( Combination of conductive layer 41) and chromium (barrier layer 42), combination of copper or silver (conductive layer 41) and nickel (barrier layer 42), copper or silver (conductive layer 41) and palladium (barrier layer 42)
  • the combination of the metal that is the material of the conductive layer 41 and the metal that is the material of the barrier layer 42 is the above combination, it is possible to ensure both excellent adhesion of the shield layer 40 and excellent shielding characteristics against electromagnetic waves. Can be planned.
  • the metal that is the material of the first barrier layer 42A and the metal that is the material of the second barrier layer 42B are different from each other, the metal that is the material of the first barrier layer 42A and the metal that is the material of the conductive layer 41 are As a combination with a metal that is a material of the second barrier layer 42B, preferably, a combination of chromium (first barrier layer 42A) and copper or silver (conductive layer 41) and nickel (second barrier layer 42B), titanium A combination of (first barrier layer 42A), copper or silver (conductive layer 41) and nickel (second barrier layer 42B), chromium (first barrier layer 42A), copper or silver (conductive layer 41) and palladium (first 2 barrier layer 42B), and more preferably a combination of chromium (first barrier layer 42A), copper or silver (conductive layer 41) and nickel (second barrier layer 42B). Align, and the like.
  • the volume resistivity (at 0 ° C.) of the barrier layer 42 is, for example, 50 ⁇ ⁇ cm or less, preferably 20 ⁇ ⁇ cm or less, more preferably 15 ⁇ ⁇ cm or less, and for example, 1.8 ⁇ ⁇ cm or more. It is.
  • the volume resistivity of the barrier layer 42 is not more than the above upper limit, the conductivity of the barrier layer 42 can be ensured, and the shield characteristics of the shield layer 40 can be further improved.
  • the thickness of the barrier layer 42 is, for example, 10 or more, preferably 20 or more when the thickness of the conductive layer 41 is 100.
  • the thickness of the barrier layer 42 is, for example, 1.0 ⁇ m or less, preferably 0.09 ⁇ m or less, more preferably 0.08 ⁇ m or less, particularly preferably 0.05 ⁇ m or less, and for example, 0.01 ⁇ m or more. Preferably, it is 0.02 ⁇ m or more.
  • the mounting substrate 1 can be reliably reduced in thickness. If the thickness of the barrier layer 42 is greater than or equal to the lower limit, the metal that is the material of the conductive layer 41 is insulated. Diffusion (migration) into the layer can be reliably suppressed, and the adhesion of the shield layer 40 can be reliably improved.
  • the shield layer 40 is electrically connected to the ground wiring 15 when the barrier layer 42 (first barrier layer 42A) is in contact with the ground wiring 15 as described above. That is, the shield layer 40 is continuous with the ground wiring 15. Specifically, the shield layer 40 protrudes downward so as to come into contact with the upper surface of the ground wiring 15 through the ground opening 16 at a portion facing the ground wiring 15. Thereby, the shield layer 40 is grounded via the ground wiring 15.
  • the second cover insulating layer 31 is disposed on the upper side (one side in the thickness direction) of the shield layer 40 so as to cover the shield layer 40.
  • the lower surface of the second cover insulating layer 31 is in direct contact with the upper surface of the second barrier layer 42B.
  • the second cover insulating layer 31 is located on the uppermost layer of the mounting substrate 1, and the upper surface of the second cover insulating layer 31 is exposed upward.
  • the outer shape of the second cover insulating layer 31 is formed to be the same as the outer shape of the shield layer 40.
  • Examples of the material of the second cover insulating layer 31 include the same insulating materials as those described above for the first cover insulating layer 6, and preferably polyimide. That is, each material of the first cover insulating layer 6 and the second cover insulating layer 31 is preferably polyimide.
  • the thickness range of the second insulating cover layer 31 is, for example, the same as the thickness range of the first insulating cover layer 6.
  • the mounting substrate 1 is adjacent to each other in the thickness direction among a plurality of layers (the base insulating layer 4, the conductor pattern 5, the first cover insulating layer 6, the shield layer 40, and the second cover insulating layer 31).
  • the layers are in direct contact and are adhered to each other without an adhesive between them. That is, the mounting substrate 1 is an adhesiveless FPC in which no adhesive is used. Therefore, the mounting substrate 1 can be thinned.
  • the total sum of the thickness of the shield layer 40 and the thickness of the second cover insulating layer 31 is, for example, 15.0 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less. For example, it is 1 ⁇ m or more.
  • the thickness of the mounting substrate 1 (the total thickness of the base insulating layer 4, the conductor pattern 5, the first cover insulating layer 6, the shield layer 40, and the second cover insulating layer 31) is, for example, 50 ⁇ m or less, preferably 25 ⁇ m or less. More preferably, it is 20 ⁇ m or less, and for example, 3 ⁇ m or more.
  • the mounting board 1 includes, for example, a metal support preparing process, a base insulating layer forming process, a conductor pattern forming process, a first cover insulating layer forming process, a shield, It is obtained by sequentially performing a layer forming step, a second cover insulating layer forming step, and a metal support removing step.
  • a metal support 19 is prepared in the metal support preparation step.
  • the metal support 19 has a flat plate shape (sheet shape) having a substantially rectangular shape (rectangular shape) in plan view extending in the surface direction.
  • the upper surface of the metal support 19 is formed to be flat (smooth).
  • Examples of the material of the metal support 19 include metal materials such as stainless steel, 42 alloy, and aluminum, and preferably stainless steel.
  • the thickness of the metal support 19 is, for example, 5 ⁇ m or more, preferably 10 ⁇ m or more, for example, 50 ⁇ m or less, preferably 30 ⁇ m or less.
  • the base insulating layer 4 is formed on the upper surface of the metal support 19. That is, the base insulating layer 4 having the image sensor opening 7 and the external component opening 8 is formed on the upper surface of the metal support 19.
  • a varnish of a photosensitive insulating material for example, polyimide
  • a base film base insulating layer
  • the base film is exposed through a photomask having a pattern corresponding to the openings (image sensor opening 7 and external component opening 8).
  • the base film is developed and preferably cured by heating.
  • the conductor pattern 5 is a metal support exposed from the upper surface of the base insulating layer 4, the imaging element opening 7, and the external component opening 8 in the pattern described above. It is formed on the upper surface of the body 19 by, for example, an additive method.
  • the first cover insulating layer 6 is formed on the upper surface of the base insulating layer 4 so as to cover the conductor pattern 5. That is, the first cover insulating layer 6 having the ground opening 16 is formed on the upper surface of the base insulating layer 4.
  • the first cover insulating layer forming step is performed in the same manner as the base insulating layer forming step.
  • the shield layer 40 is formed on the entire top surface of the first cover insulating layer 6 and the entire top surface of the ground wiring 15 exposed from the ground opening 16. .
  • the shield layer forming step includes a first barrier layer forming step, a conductive layer forming step, and a second barrier layer forming step in this order.
  • the first barrier layer 42A is collectively formed on the entire upper surface of the first cover insulating layer 6 and the entire upper surface of the ground wiring 15 exposed from the ground opening 16.
  • Examples of the method of forming the first barrier layer 42A include known thin film forming methods such as sputtering, vapor deposition, and plating, and preferably sputtering.
  • the conductive layer 41 is formed on the entire top surface of the first barrier layer 42A.
  • a method for forming the conductive layer 41 for example, a method similar to the method for forming the first barrier layer 42A may be used, and preferably, sputtering may be used.
  • the second barrier layer 42B is formed on the entire upper surface of the conductive layer 41.
  • a formation method of the second barrier layer 42B for example, a formation method similar to that of the first barrier layer 42A can be mentioned, and preferably, sputtering is mentioned.
  • the shield layer 40 including the first barrier layer 42A, the conductive layer 41, and the second barrier layer 42B is formed.
  • the second cover insulating layer 31 is formed on the entire upper surface of the shield layer 40 (second barrier layer 42B).
  • the second cover insulating layer forming step is performed in the same manner as the base insulating layer forming step.
  • the metal that is the material of the conductive layer 41 diffuses into the first cover insulating layer 6 and the second cover insulating layer 31 ( Migration).
  • the first barrier layer 42 ⁇ / b> A is positioned between the first cover insulating layer 6 and the conductive layer 41
  • the second barrier layer 42 ⁇ / b> B is interposed between the conductive layer 41 and the second cover insulating layer 31. Therefore, the metal of the conductive layer 41 is prevented from diffusing (migrating) into the first cover insulating layer 6 and the second cover insulating layer 31.
  • the mounting substrate 1 including the base insulating layer 4, the conductor pattern 5, the first cover insulating layer 6, the shield layer 40, and the second cover insulating layer 31 is supported by the metal support 19. Get in.
  • the mounting substrate 1 includes a metal support 19 and has not been removed yet. Therefore, the mounting substrate 1 is not included in the flexible printed circuit board of the present invention.
  • the metal support 19 is removed.
  • the metal support 19 is externally exposed from the lower surface of the base insulating layer 4, the lower surface of the image sensor connection terminal 10 exposed from the image sensor opening 7, and the external component opening 8.
  • a method of peeling from the lower surface of the component connection terminal 11, for example, a method of performing etching such as dry etching or wet etching on the metal support 19 is exemplified.
  • the method for removing the metal support 19 is preferably etching, more preferably wet etching.
  • the mounting substrate 1 does not include the metal support 19 and preferably includes only the base insulating layer 4, the conductor pattern 5, the first cover insulating layer 6, the shield layer 40, and the second cover insulating layer 31. .
  • Such a mounting substrate 1 is used, for example, as an image sensor mounting substrate for mounting an image sensor. That is, the mounting substrate 1 is provided in an imaging device such as a camera module.
  • the mounting substrate 1 is not an imaging device described below, but is a component of the imaging device, that is, a component for manufacturing the imaging device, does not include an imaging element, and specifically, the component alone is distributed. However, it is an industrially available device.
  • Imaging Device 20 including the mounting substrate 1 will be described with reference to FIG.
  • the imaging device 20 includes a mounting substrate 1, an imaging element 21, a housing 22, an optical lens 23, and a filter 24.
  • the mounting substrate 1 is provided in the imaging device 20 by turning the mounting substrate 1 shown in FIG. 2 upside down. That is, the mounting substrate 1 is disposed so that the insulating base layer 4 is on the upper side (the other side in the thickness direction) and the second insulating cover layer 31 is on the lower side (the one side in the thickness direction).
  • the imaging element 21 is a semiconductor element that converts light into an electrical signal, and examples thereof include solid-state imaging elements such as a CMOS sensor and a CCD sensor.
  • the imaging element 21 is formed in a substantially rectangular flat plate shape in plan view, and includes a silicon such as a Si substrate, a photodiode (photoelectric conversion element), and a color filter arranged on the silicon substrate (not shown).
  • a plurality of terminals 25 corresponding to the image sensor connection terminals 10 of the mounting substrate 1 are provided on the lower surface of the image sensor 21.
  • the thickness of the imaging element 21 is, for example, 10 ⁇ m or more, preferably 50 ⁇ m or more, and for example, 1000 ⁇ m or less, preferably 500 ⁇ m or less.
  • the image sensor 21 is mounted on the mounting substrate 1. Specifically, the terminals 25 of the image sensor 21 are flip-chip mounted via the corresponding image sensor connection terminals 10 of the mounting substrate 1 and solder bumps 26. As a result, the image sensor 21 is arranged at the center of the housing arrangement part 2 of the mounting substrate 1 and is electrically connected to the image sensor connection terminal 10 and the external component connection terminal 11 of the mounting substrate 1.
  • the imaging element 21 constitutes an imaging unit 27 by being mounted on the mounting substrate 1. That is, the imaging unit 27 includes the mounting substrate 1 and the imaging element 21 mounted thereon.
  • the housing 22 is arranged in the housing arrangement portion 2 of the image pickup device 21 so as to surround the image pickup device 21 with an interval.
  • the housing 22 has a substantially rectangular tube shape in plan view.
  • a fixing portion for fixing the optical lens 23 is provided at the upper end of the housing 22.
  • the optical lens 23 is disposed on the upper side of the mounting substrate 1 with a distance from the mounting substrate 1 and the imaging element 21.
  • the optical lens 23 is formed in a substantially circular shape in plan view, and is fixed by a fixing portion so that light from the outside reaches the image sensor 21.
  • the filter 24 is disposed at the center of the imaging element 21 and the optical lens 23 in the vertical direction with a space therebetween and is fixed to the housing 22.
  • the shield layer 40 of the mounting substrate 1 includes a conductive layer 41 and two barrier layers 42 that sandwich the conductive layer 41 in the vertical direction.
  • the barrier layer 42 is selected from metals belonging to Groups 4 to 10 of the periodic table and Groups 4 to 6. Therefore, compared with the case where the material of the barrier layer 42 is stainless steel (SUS), the adhesion and shielding characteristics of the shield layer 40 can be improved, and both excellent adhesion and excellent shielding characteristics can be achieved. Can be achieved.
  • Each material of the first cover insulating layer 6 and the second cover insulating layer 31 is preferably polyimide.
  • the metal of the shield layer 40 tends to diffuse (migrate) into the polyimide.
  • the barrier layer 42 sandwiching the conductive layer 41 is selected from metals belonging to Groups 4 to 10 of the periodic table and Groups 4 to 6. Therefore, it is possible to suppress diffusion (migration) of the metal of the shield layer 40 to the first cover insulating layer 6 and the second cover insulating layer 31 made of polyimide.
  • the barrier layer 42 is preferably one metal selected from the group consisting of titanium, chromium, nickel, palladium and tantalum. Therefore, it is possible to suppress diffusion (migration) of the metal of the barrier layer 42 into the first cover insulating layer 6 and the second cover insulating layer 31 made of polyimide. As a result, it is possible to reliably achieve both the adhesion of the shield layer 40 and the shield characteristics.
  • the plurality of wirings 9 include a ground wiring 15, and the ground wiring 15 is arranged on the upper surface (one side in the thickness direction) of the base insulating layer 4. Therefore, it is not necessary to separately provide a layer for the ground wiring 15. As a result, the mounting substrate 1 can be thinned.
  • the shield layer 40 is efficiently used in the structure in which the barrier layer 42 (first barrier layer 42A) is in contact with the ground wiring 15. Can be grounded.
  • the mounting substrate 1 has a plurality of layers (the base insulating layer 4, the conductor pattern 5, the first cover insulating layer 6, the shield layer 40, and the second cover insulating layer 31) that are adjacent to each other in the vertical direction without an adhesive. This is an adhesive-less FPC that is adhered to the substrate. Therefore, the mounting substrate 1 can be thinned.
  • the shield layer 40 can be used as the first cover insulating layer 6 and the second cover insulating layer without using an adhesive. Thus, it is possible to realize the adhesive-less mounting substrate 1.
  • the mounting substrate 1 achieves both excellent adhesion of the shield layer 40 and excellent shielding properties against electromagnetic waves, it can be suitably used as an imaging device mounting substrate.
  • the imaging device 20 includes a mounting substrate 1. Therefore, it is possible to achieve both excellent adhesion of the shield layer 40 and excellent shielding properties against electromagnetic waves.
  • the flexible wiring circuit board of the present invention is described as the imaging element mounting board 1 (mounting board 1) for mounting the imaging element 21, but the use of the flexible wiring circuit board is limited to this. Not. For example, it is suitably used for various applications that require both the adhesion of the shield layer and excellent shielding properties against electromagnetic waves, for example, FPCs used in smartphones, personal computers, game machines and the like.
  • the wiring 9 includes the ground wiring 15, but the present invention is not limited thereto, and the ground wiring 15 may not be included. That is, the wiring 9 can also be configured only from the connection wiring 14.
  • the shield layer 40 is electrically connected to the ground wiring 15, but is not limited thereto, and may not be electrically connected to the ground wiring 15. On the other hand, from the viewpoint of shield characteristics, it is preferable that the shield layer 40 is electrically connected to the ground wiring 15 as in the above embodiment.
  • the outer shape of the shield layer 40 is the same as the outer shape of the first cover insulating layer 6, and the shield layer 40 is exposed to the entire upper surface of the first cover insulating layer 6 and the ground exposed from the ground opening 16. Although it contacts the whole upper surface of the wiring 15 collectively, the shape of the shield layer 40 is not particularly limited as long as the shield characteristics can be secured.
  • the shield layer 40 may be patterned within a range that does not impair the effects of the present invention in consideration of electrical characteristics of the mounting substrate 1 (for example, adjustment of wiring impedance).
  • the area of the shield layer 40 is, for example, 60% or more, preferably 80% with respect to 100% of the projected surface area when the mounting substrate 1 is projected in the thickness direction. For example, it is 99% or less.
  • the above-described metal support preparing step, base insulating layer forming step, conductor pattern forming step, first cover The sheet-like shield layer 40 is formed on the entire upper surface of the first cover insulating layer 6 in the same manner as in the insulating layer forming step and the shield layer forming step.
  • the shield layer 40 is patterned by a known etching method.
  • a known photosensitive dry film resist (not shown) is disposed on the entire upper surface of the second barrier layer 42B, and then exposed and developed through a photomask (not shown).
  • a photosensitive dry film resist (not shown) is opened so that unnecessary portions (locations to be removed) are exposed.
  • the portion of the shield layer 40 exposed from the opening of the photosensitive dry film resist (not shown) is removed with an etching solution suitable for etching each metal of the shield layer 40, and the shield layer 40 is patterned.
  • the mounting substrate having such a patterned shield layer 40 can improve the electrical characteristics of the mounting substrate 1 while being able to achieve both the adhesion of the shield layer 40 and the shield characteristics.
  • the outer shape of the shield layer 40 is the same as the outer shape of the first cover insulating layer 6, and the shield layer 40 is exposed from the entire upper surface of the first cover insulating layer 6 and the ground opening 16.
  • a mode in which the ground wiring 15 is collectively formed on the entire top surface that is, a mode in which the area of the shield layer 40 is 100% with respect to 100% of the area of the projection surface in the thickness direction of the mounting substrate 1) More preferable from the viewpoint of characteristics.
  • the layers adjacent to each other in the vertical direction are adhesive-less FPCs bonded without an adhesive, but are not limited thereto.
  • An adhesive layer can also be provided between layers adjacent to each other in the vertical direction.
  • the mounting substrate 1 is preferably an adhesive-less FPC as in the above embodiment.
  • the conductor pattern 5 (the plurality of wirings 9) and the first cover insulating layer 6 are in direct contact with each other, but the present invention is not limited to this.
  • another layer may be disposed between the conductor pattern 5 and the first cover insulating layer 6.
  • a mounting substrate 50 which is another embodiment of the flexible printed circuit board, is disposed between the conductor pattern 5 and the first cover insulating layer 6 in the vertical direction (thickness direction).
  • a third cover insulating layer 51 (an example of a fourth insulating layer) and a second conductor pattern 52 are provided.
  • the mounting substrate 50 includes the base insulating layer 4, the conductor pattern 5, the third cover insulating layer 51, the second conductor pattern 52, the first cover insulating layer 6, the shield layer 40, and the second cover insulation.
  • the layer 31 is provided in order toward the upper side (an example of one side in the thickness direction).
  • the conductor pattern 5 is referred to as the first conductor pattern 5
  • the wiring 9 is referred to as the first wiring 9
  • the connection wiring 14 is referred to as the first wiring.
  • the connection wiring 14 is used, and the ground wiring 15 is used as the first ground wiring 15.
  • the third cover insulating layer 51 is disposed above the base insulating layer 4 and the first conductor pattern 5 so as to cover the first conductor pattern 5. At least a part of the third cover insulating layer 51 is on the upper side (one side in the thickness direction) of the first conductor pattern 5 (the plurality of image sensor connection terminals 10, the plurality of external component connection terminals 11, and the plurality of first wirings 9).
  • the first conductor pattern 5 (the plurality of image sensor connection terminals 10, the plurality of external component connection terminals 11, and the plurality of first wirings 9) is in direct contact.
  • a ground opening 53 is formed in the third cover insulating layer 51.
  • the ground opening 53 is formed corresponding to the first ground wiring 15.
  • the ground opening 53 penetrates the third cover insulating layer 51 in the vertical direction and exposes the upper surface of the first ground wiring 15.
  • the material of the third cover insulating layer 51 for example, an insulating material similar to the insulating material described above for the base insulating layer 4 can be used, and preferably, polyimide is used.
  • the thickness range of the third insulating cover layer 51 is, for example, the same as the thickness range of the first insulating cover layer 6 described above.
  • the second conductor pattern 52 is disposed on the upper side (one side in the thickness direction) of the third cover insulating layer 51 so as to be in contact with the upper surface of the third cover insulating layer 51.
  • the second conductor pattern 52 includes a plurality of image sensor connection terminals (not shown), a plurality of external component connection terminals (not shown), and a plurality of second wirings 54.
  • a plurality of image sensor connection terminals (not shown) and a plurality of external component connection terminals (not shown) are opened from a plurality of openings (not shown) formed in the base insulating layer 4 and the third cover insulating layer 51. It is formed so as to be exposed.
  • the plurality of second wirings 54 include a plurality of second connection wirings 55 and a plurality of second ground wirings 56.
  • the plurality of second connection wirings 55 are provided corresponding to the plurality of image sensor connection terminals and the plurality of external component connection terminals so as to connect them.
  • the plurality of second ground wirings 56 are provided corresponding to the plurality of first ground wirings 15. The second ground wiring 56 is in contact with the first ground wiring 15 through the ground opening 53 and is electrically connected to the first ground wiring 15.
  • Examples of the material of the second conductor pattern 52 include the same metal materials as those described above for the first conductor pattern 5, and preferably copper.
  • the range of the thickness of the second conductor pattern 52 is, for example, the same as the range of the thickness of the first conductor pattern 5 described above.
  • the first cover insulating layer 6 is disposed above the third cover insulating layer 51 and the second conductor pattern 52 so as to cover the second conductor pattern 52.
  • the ground opening 16 exposes a part of the upper surface of the second ground wiring 56.
  • the shield layer 40 is in contact with the second ground wiring 56 through the ground opening 16 and is electrically connected to the second ground wiring 56. That is, the shield layer 40 is electrically connected to the first ground wiring 15 through the second ground wiring 56.
  • the mounting substrate 50 includes the plurality of first wirings 9 and the plurality of second wirings 54, the number of wirings can be increased and the degree of freedom in designing the mounting substrate 50 can be improved.
  • the number of insulating layers and wirings arranged between the conductor pattern 5 and the first cover insulating layer 6 is not particularly limited, and in addition to the third cover insulating layer 51 and the second wiring 54, Further, an insulating layer and wiring may be provided.
  • the mounting substrate 1 is preferable from the viewpoint of thinning.
  • the imaging device 21 is flip-chip mounted on the mounting substrate 1.
  • the imaging device 21 is mounted on the mounting substrate 1. It can also be mounted by wire bonding.
  • this invention is not limited to a manufacture example, a comparative manufacture example, an Example, and a comparative example.
  • specific numerical values such as a blending ratio (content ratio), physical property values, and parameters used in the following description are described in the above-mentioned “Mode for Carrying Out the Invention”, and a blending ratio corresponding to them ( It may be replaced with the upper limit (numerical values defined as “less than” or “less than”) or lower limit (numerical values defined as “greater than” or “exceeded”) such as content ratio), physical property values, parameters, etc. it can.
  • Example 1 As shown in FIG. 3A, a metal support 19 made of stainless steel having a thickness of 18 ⁇ m was prepared.
  • the polyimide precursor solution was applied to the upper surface of the metal support 19 and then dried at 80 ° C. for 10 minutes to form a base film (polyimide precursor film). Subsequently, the base film was exposed through a photomask and subsequently developed. Thereafter, the base film is heated (cured) at 360 ° C. for 1 hour in a nitrogen atmosphere, thereby having an imaging element opening 7 and an external part opening 8, and a base insulating layer 4 having a thickness of 5 ⁇ m made of polyimide. Formed.
  • the conductor pattern 5 having a thickness of 3 ⁇ m made of copper is formed on the upper surface of the base insulating layer 4 and the upper surface of the metal support 19 exposed from the imaging element opening 7 and the external component opening 8. In addition, it was formed by the additive method.
  • a polyimide precursor solution was then applied to the upper surfaces of the base insulating layer 4 and the conductor pattern 5, and then dried at 80 ° C. for 10 minutes to form a cover film (polyimide precursor film). . Subsequently, the cover film was exposed through a photomask and subsequently developed. Thereafter, the cover film was heated in a nitrogen atmosphere at 360 ° C. for 1 hour to obtain a first cover insulating layer 6 having a ground opening 16 and having a thickness of 3 ⁇ m made of polyimide.
  • a 0.02 ⁇ m thick first barrier layer 42A made of chromium is then applied to the upper surface of the first cover insulating layer 6 and the upper surface of the ground wiring 15 exposed from the ground opening 16. And formed by sputtering.
  • a conductive layer 41 made of copper and having a thickness of 0.1 ⁇ m was formed on the upper surface of the first barrier layer 42A by sputtering.
  • a second barrier layer 42B having a thickness of 0.02 ⁇ m made of chromium was formed on the upper surface of the conductive layer 41 by sputtering. Thereby, the shield layer 40 was formed.
  • a polyimide precursor solution was applied to the upper surface of the second barrier layer 42B, and then dried at 80 ° C. for 10 minutes to form a cover film (polyimide precursor film). Subsequently, the cover film was exposed and subsequently developed. Thereafter, the cover film was heated (cured) at 360 ° C. for 1 hour in a nitrogen atmosphere to form a second cover insulating layer 31 having a thickness of 3.0 ⁇ m made of polyimide.
  • the metal support 19 was removed by a chemical etching method in which an etching solution comprising a ferric chloride aqueous solution was sprayed from below. As a result, the entire lower surface of the base insulating layer 4 was exposed.
  • the mounting substrate 1 including the base insulating layer 4, the conductor pattern 5, the first cover insulating layer 6, the shield layer 40, and the second cover insulating layer 31 was obtained.
  • Example 2 A mounting substrate 1 was obtained in the same manner as in Example 1 except that each of the first barrier layer 42A and the second barrier layer 42B was changed to a thin film (sputtered film) having a thickness of 0.03 ⁇ m made of titanium. .
  • Example 3 A mounting substrate 1 was obtained in the same manner as in Example 1 except that the second barrier layer 42B was changed to a thin film (sputtered film) having a thickness of 0.08 ⁇ m made of nickel.
  • Comparative Example 1 A mounting substrate in the same manner as in Example 1, except that each of the first barrier layer 42A and the second barrier layer 42B is changed to a thin film (sputtered film) having a thickness of 0.05 ⁇ m made of stainless steel (SUS). 1 was obtained.
  • Comparative Example 2 A mounting substrate 1 was obtained in the same manner as in Example 1 except that each of the first barrier layer 42A and the second barrier layer 42B was not formed. That is, the conductive layer 41 is formed on the upper surface of the first cover insulating layer 6 and the upper surface of the ground wiring 15 exposed from the ground opening 16, and the second cover insulating layer 31 is formed on the upper surface of the conductive layer 41. .
  • Table 1 shows the layer configuration and thickness of each example and each comparative example.
  • the flexible printed circuit board of the present invention can be applied to various industrial products, and is suitably used for, for example, an imaging device, a smartphone, a personal computer, a game machine, and the like.
  • Mounting substrate (Imaging device mounting substrate) 4 Base insulating layer 6 First cover insulating layer 9 Wiring 20 Imaging device 21 Imaging element 31 Second cover insulating layer 40 Shield layer 41 Conductive layer 42 Barrier layer 50 Mounting substrate 51 Third cover insulating layer 54 Second wiring

Abstract

フレキシブル配線回路基板は、第1絶縁層と、第1絶縁層の厚み方向一方側に配置される配線と、配線の厚み方向一方側に配置される第2絶縁層と、第2絶縁層の厚み方向一方側に配置されるシールド層と、シールド層の厚み方向一方側に配置される第3絶縁層と、を備える。シールド層は、導電層と、導電層を厚み方向に挟む2つのバリア層と、を備える。導電層は、周期表第11族、かつ、第4周期および第5周期に属する金属から選択され、バリア層は、周期表第4族~第10族、かつ、第4周期~第6周期に属する金属から選択される。

Description

フレキシブル配線回路基板および撮像装置
 本発明は、フレキシブル配線回路基板および撮像装置に関する。
 従来より、電子部品が実装される回路基板では、外部からの電磁波の影響により、電子部品の誤作動やノイズが生じることが知られている。そのため、回路基板に電磁波のシールド層を設けて、外部からの電磁波を遮蔽することが望まれる。
 そのようなシールド層として、例えば、樹脂基板にSuSで成膜された密着膜と、密着膜にCuで成膜された通電性膜と、通電性膜にSuSで成膜された保護膜とを備えるシールド膜が提案されている(例えば、特許文献1参照。)。
特開2007-243122号公報
 しかるに、回路基板がフレキシブル配線回路基板である場合、シールド層には、フレキシブル配線回路基板が変形しても基板から剥離しない優れた密着性と、電磁波に対する優れたシールド特性との両立が求められる。
 しかし、特許文献1のシールド膜では、フレキシブル配線回路基板において要求される密着性およびシールド特性を十分に両立できない。
 本発明は、シールド層の優れた密着性と、電磁波に対する優れたシールド特性との両立を図ることができるフレキシブル配線回路基板および撮像装置を提供する。
 本発明[1]は、第1絶縁層と、前記第1絶縁層の厚み方向一方側に配置される配線と、前記配線の厚み方向一方側に配置される第2絶縁層と、前記第2絶縁層の厚み方向一方側に配置されるシールド層と、前記シールド層の厚み方向一方側に配置される第3絶縁層と、を備え、前記シールド層は、導電層と、前記導電層を前記厚み方向に挟む2つのバリア層と、を備え、前記導電層は、周期表第11族、かつ、第4周期および第5周期に属する金属から選択され、前記バリア層は、周期表第4族~第10族、かつ、第4周期~第6周期に属する金属から選択されるフレキシブル配線回路基板を含んでいる。
 このような構成によれば、導電層を挟む2つのバリア層のそれぞれが、周期表第4族~第10族、かつ、第4周期~第6周期に属する金属から選択される。そのため、バリア層の材料がステンレス鋼(SUS)である場合と比較して、シールド層の密着性およびシールド特性の向上を図ることができ、優れた密着性と優れたシールド特性との両立を図ることができる。
 本発明[2]は、前記第2絶縁層および前記第3絶縁層のそれぞれの材料は、ポリイミドである、上記[1]に記載のフレキシブル配線回路基板を含んでいる。
 しかるに、第2絶縁層および第3絶縁層の材料がポリイミドであると、シールド層の材料である金属がポリイミドに拡散(マイグレーション)しやすい傾向にある。
 一方、上記の構成によれば、導電層を挟むバリア層が、周期表第4族~第10族、かつ、第4周期~第6周期に属する金属から選択される。そのため、シールド層の材料である金属がポリイミドを材料とする第2絶縁層および第3絶縁層に拡散(マイグレーション)することを抑制することができる。
 本発明[3]は、前記バリア層は、チタン、クロム、ニッケル、パラジウムおよびタンタルからなる群から選択される1種の金属である、上記[2]に記載のフレキシブル配線回路基板を含んでいる。
 このような構成によれば、バリア層が、上記の群から選択される金属である。上記の群に属する金属は、上記したバリア層の材料である金属(周期表第4族~第10族、かつ、第4周期~第6周期に属する金属)において、とりわけポリイミドに拡散(マイグレーション)しにくい。
 そのため、バリア層の材料である金属がポリイミドを材料とする第2絶縁層および第3絶縁層に拡散(マイグレーション)することを抑制できる。
 本発明[4]は、前記配線は、グランド配線を含み、前記シールド層は、前記バリア層が前記グランド配線と接触することにより、前記グランド配線と電気的に接続されている、上記[1]~[3]のいずれか一項に記載のフレキシブル配線回路基板を含んでいる。
 このような構成によれば、第1絶縁層の厚み方向一方側に、グランド配線が配置されているので、別途、グランド配線のための層を設ける必要がない。そのため、フレキシブル配線回路基板の薄型化を図ることができる。
 また、バリア層の材料である周期表第4族~第10族、かつ、第4周期~第6周期に属する金属は、ステンレス鋼と比較して体積抵抗率が低いので、バリア層をグランド配線に接触させる構造において、シールド層を効率的に接地することができる。
 本発明[5]は、前記配線は、前記第1絶縁層と直接接触し、前記第2絶縁層は、前記配線と直接接触し、前記導電層に対して前記厚み方向の他方側に位置するバリア層は、前記第2絶縁層と直接接触し、前記導電層は、前記導電層に対して前記厚み方向の他方側に位置するバリア層と直接接触し、前記導電層に対して前記厚み方向の一方側に位置するバリア層は、前記導電層と直接接触し、前記第3絶縁層は、前記導電層に対して前記厚み方向の一方側に位置するバリア層と直接接触する、上記[1]~[4]のいずれか一項に記載のフレキシブル配線回路基板を含んでいる。
 このような構成によれば、複数の層(第1絶縁層、配線、第2絶縁層、導電層、2つバリア層および第3絶縁層)のうち、厚み方向に互いに隣り合う層が直接接触している。
 つまり、厚み方向に互いに隣り合う層は、それらの間に接着剤を介することなく互いに接着されている。そのため、厚み方向に互いに隣り合う層が接着剤により接着される場合と比較して、フレキシブル配線回路基板の薄型化を図ることができる。
 とりわけ、バリア層が上記の金属から選択されるので、シールド層の優れた密着性を確保することができ、接着剤を用いることなくシールド層を第2絶縁層および第3絶縁層に確実に接着でき、接着剤レスのフレキシブル配線回路基板を実現することができる。
 本発明[6]は、前記厚み方向において、前記配線と前記第2絶縁層との間に配置される第4絶縁層および第2配線をさらに備え、前記第4絶縁層は、前記配線の前記厚み方向一方側に配置され、前記第2配線は、前記第4絶縁層の前記厚み方向一方側に配置される、上記[1]~[4]のいずれか一項に記載のフレキシブル配線回路基板を含んでいる。
 このような構成によれば、フレキシブル配線回路基板が、配線および第2配線を備えているので、配線の数を増加させることができ、設計の自由度の向上を図ることができる。
 本発明[7]は、撮像素子を実装するための撮像素子実装基板である、上記[1]~[6]のいずれか一項に記載のフレキシブル配線回路基板を含んでいる。
 このような構成によれば、フレキシブル配線回路基板が、シールド層の優れた密着性と電磁波に対する優れたシールド特性との両立を図ることができるので、撮像素子実装基板として好適に利用できる。
 本発明[8]は、上記[1]~[6]のいずれか一項に記載のフレキシブル配線回路基板と、前記フレキシブル配線回路基板に実装される撮像素子とを備える、撮像装置を含んでいる。
 このような構成によれば、撮像装置が、上記のフレキシブル配線回路基板を備えるので、シールド層の優れた密着性と電磁波に対する優れたシールド特性との両立を図ることができる。
 本発明のフレキシブル配線回路基板および撮像装置によれば、シールド層の優れた密着性と、電磁波に対する優れたシールド特性との両立を図ることができる。
図1は、本発明のフレキシブル配線回路基板の一実施形態である撮像素子実装基板の底面図を示す。 図2は、図1に示す撮像素子実装基板におけるA-A断面図を示す。 図3A~図3Dは、図2に示す撮像素子実装基板の製造工程図を示し、図3Aが、金属支持体用意工程およびベース絶縁層形成工程、図3Bが、導体パターン形成工程、図3Cが、第1カバー絶縁層形成工程を示す。 図4D~図4Fは、図3Cに続く撮像素子実装基板の製造工程図を示し、図4Dが、シールド層形成工程、図4Eが、第2カバー絶縁層形成工程、図4Fが、金属支持体除去工程を示す。 図5は、図2に示す撮像素子実装基板を備える撮像装置を示す。 図6は、本発明のフレキシブル配線回路基板の他の実施形態(第3カバー絶縁層および第2導体パターンを備える態様)の断面図を示す。
 図1において、紙面上下方向は、前後方向(第1方向)であって、紙面上側が前側(第1方向一方側)、紙面下側が後側(第1方向他方側)である。
 図1において、紙面左右方向は、左右方向(第1方向と直交する第2方向)であって、紙面左側が左側(第2方向一方側)、紙面右側が右側(第2方向他方側)である。
 図1において、紙面紙厚方向は、上下方向(厚み方向の一例、第1方向および第2方向と直交する第3方向)であって、紙面奥側が上側(厚み方向一方側の一例、第3方向一方側)、紙面手前側が下側(厚み方向他方側の一例、第3方向他方側)である。
 具体的には、各図の方向矢印に準拠する。
  <一実施形態>
 1.撮像素子実装基板
 本発明のフレキシブル配線回路基板の一実施形態である撮像素子実装基板1(以下、単に実装基板1とも略する。)を説明する。
 図1に示すように、実装基板1は、撮像素子21(後述、図5参照)を実装するためのフレキシブル配線回路基板(FPC)であって、撮像素子21を未だ備えていない。実装基板1は、前後方向および左右方向(面方向)に延びる平面視略矩形(長方形状)の平板形状(シート形状)を有している。
 実装基板1は、ハウジング配置部2、および、外部部品接続部3を備える。
 ハウジング配置部2は、ハウジング22(後述、図5参照)や撮像素子21が配置される部分である。具体的には、ハウジング配置部2は、ハウジング22が実装基板1に配置された場合において、厚み方向に投影したときに、ハウジング22と重複する部分である。ハウジング配置部2の略中央部には、撮像素子21と電気的に接続するための撮像素子接続端子10(後述)が複数配置されている。
 外部部品接続部3は、ハウジング配置部2以外の領域であって、外部部品と接続するための部分である。外部部品接続部3は、外部部品接続部3の前端縁がハウジング配置部2の後端縁と連続するように、ハウジング配置部2の後側に配置されている。外部部品接続部3の後端縁には、外部部品と電気的に接続するための外部部品接続端子11(後述)が複数配置されている。
 実装基板1は、図2に示すように、第1絶縁層の一例としてのベース絶縁層4と、導体パターン5と、第2絶縁層の一例としての第1カバー絶縁層6と、シールド層40と、第3絶縁層の一例としての第2カバー絶縁層31とを、上側(厚み方向一方側の一例)に向かって順に備える。
 ベース絶縁層4は、図1および図2に示すように、実装基板1の外形をなし、底面視略矩形状に形成されている。ベース絶縁層4は、実装基板1の最下層に位置する。ベース絶縁層4の下面(厚み方向他方面の一例)は、平坦となるように形成されている。また、ベース絶縁層4の下面の全ては、下方に向かって露出している。詳しくは、ベース絶縁層4は、ベース絶縁層4の下面は金属支持体(図3A~図4Eの符号19参照)に支持されておらず、従って、実装基板1は、金属支持体19(金属支持層)を備えない。
 ベース絶縁層4には、図1に示すように、複数の撮像素子開口部7、および、複数の外部部品開口部8が形成されている。
 複数の撮像素子開口部7は、撮像素子接続端子10を下面から露出するための開口部である。複数の撮像素子開口部7は、ハウジング配置部2の中央部に、矩形枠状となるように、互いに間隔を隔てて整列配置されている。複数の撮像素子開口部7のそれぞれは、図2に示すように、ベース絶縁層4を上下方向に貫通し、底面視略円形状を有している。撮像素子開口部7は、下側に向かうに従って開口断面積が小さくなるテーパ形状を有している。
 複数の外部部品開口部8は、図1に示すように、外部部品接続端子11を下面から露出するための開口部である。外部部品開口部8は、外部部品接続部3の後端縁に、左右方向に互いに間隔を隔てて整列配置されている。複数の外部部品開口部8のそれぞれは、ベース絶縁層4を上下方向に貫通し、底面視略矩形状(長方形状)を有している。外部部品開口部8は、底面視において、外部部品接続部3の後端縁から前側に向かって延びるように、形成されている。
 ベース絶縁層4の材料として、例えば、絶縁材料が挙げられる。絶縁材料として、例えば、ポリイミド、ポリアミドイミド、アクリル、ポリエーテルニトリル、ポリエーテルスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリ塩化ビニルなどの合成樹脂などが挙げられる。絶縁材料として、好ましくは、絶縁性、耐熱性および耐薬品性の観点から、ポリイミドが挙げられる。
 ポリイミドとして、具体的には、特開平07-179604号公報、特開2010-276775号公報、特開2013-100441号公報などに記載の材料などが挙げられる。
 ベース絶縁層4の厚みは、例えば、30μm以下、好ましくは、12μm以下、より好ましくは、8μm以下であり、また、例えば、1μm以上、好ましくは、3μm以上である。
 導体パターン5は、図2に示すように、ベース絶縁層4の上面と接触するように、ベース絶縁層4の上側(厚み方向一方側)に配置されている。導体パターン5は、複数の撮像素子接続端子10、複数の外部部品接続端子11(図1参照)、および、複数の配線9を備える。
 複数の撮像素子接続端子10は、図1に示すように、ハウジング配置部2の中央部に、矩形枠状となるように、互いに間隔を隔てて整列配置されている。すなわち、複数の撮像素子接続端子10は、実装される撮像素子21の複数の端子25(図5参照)に対応するように、設けられている。また、複数の撮像素子接続端子10は、複数の撮像素子開口部7に対応して設けられている。撮像素子接続端子10は、底面視略円形状を有している。撮像素子接続端子10は、撮像素子開口部7内に配置され、断面視(側断面視および正断面視)において、下側に凸となるように形成されている。撮像素子接続端子10の下面は、撮像素子開口部7から露出している。
 複数の外部部品接続端子11は、図1に示すように、外部部品接続部3の後端縁に、左右方向に互いに間隔を隔てて整列配置されている。すなわち、外部部品の複数の端子(図示せず)と対応するように設けられている。また、複数の外部部品接続端子11は、複数の外部部品開口部8に対応して設けられている。外部部品接続端子11は、平面視略矩形状(長方形状)を有している。外部部品接続端子11は、外部部品開口部8内に配置され、その下面は、外部部品開口部8から露出している。
 複数の配線9は、図2に示すように、ベース絶縁層4の上側(厚み方向一方側)に配置され、ベース絶縁層4の上面と直接接触している。複数の配線9は、複数の接続配線14および複数のグランド配線15を含む。
 複数の接続配線14は、複数の撮像素子接続端子10および複数の外部部品接続端子11に対応するように設けられている。具体的には、接続配線14は、図示しないが、撮像素子接続端子10と外部部品接続端子11とを接続するように、これらと一体的に形成されている。すなわち、接続配線14の一端は、撮像素子接続端子10と連続し、接続配線14の他端は、外部部品接続端子11と連続して、これらを電気的に接続している。
 複数のグランド配線15は、複数の接続配線14の外側に、これらに沿うように設けられている。グランド配線15の一端には、図示しないグランド端子が一体的に接続されている。
 導体パターン5の材料として、例えば、銅、銀、金、ニッケルまたはそれらを含む合金、半田などの金属材料が挙げられ、好ましくは、銅が挙げられる。
 導体パターン5の厚みは、例えば、1μm以上、好ましくは、3μm以上であり、また、例えば、15μm以下、好ましくは、10μm以下である。配線9の幅は、例えば、5μm以上、好ましくは、10μm以上であり、また、例えば、100μm以下、好ましくは、50μm以下である。
 第1カバー絶縁層6は、導体パターン5を被覆するように、ベース絶縁層4および導体パターン5の上側に配置されている。すなわち、第1カバー絶縁層6は、導体パターン5の上面および側面、および、導体パターン5から露出するベース絶縁層4の上面と接触するように、配置されている。つまり、第1カバー絶縁層6の少なくとも一部は、導体パターン5(複数の撮像素子接続端子10、複数の外部部品接続端子11および複数の配線9)の上側(厚み方向一方側)に配置されており、導体パターン5(複数の撮像素子接続端子10、複数の外部部品接続端子11および複数の配線9)と直接接触している。第1カバー絶縁層6の外形は、ベース絶縁層4の外形と同一となるように形成されている。
 また、第1カバー絶縁層6には、グランド開口部16が形成されている。グランド開口部16は、グランド配線15の上面を露出するための開口部である。グランド開口部16は、グランド配線15に対応して形成されている。グランド開口部16は、第1カバー絶縁層6を上下方向に貫通し、グランド配線15の上面を露出している。グランド開口部16は、下側に向かうに従って開口断面積が小さくなるテーパ形状を有している。
 第1カバー絶縁層6の材料として、例えば、ベース絶縁層4で上記した絶縁材料と同様の絶縁材料が挙げられ、好ましくは、ポリイミドが挙げられる。
 第1カバー絶縁層6の厚みは、例えば、30μm以下、好ましくは、10μm以下、より好ましくは、5μm以下であり、また、例えば、1μm以上、好ましくは、2μm以上である。
 シールド層40は、電磁波を遮蔽するためのシールドであって、第1カバー絶縁層6の上面と接触するように、第1カバー絶縁層6の上側(厚み方向一方側)に配置されている。本実施形態において、シールド層40は、面方向(前後方向および左右方向)に延びるシート状に形成されている。シールド層40の外形は、第1カバー絶縁層6の外形と同一となるように形成されている。つまり、シールド層40は、第1カバー絶縁層6の上面全体と、グランド開口部16から露出するグランド配線15の上面全体とに、一括して接触するように設けられている。
 シールド層40は、導電層41と、導電層41を上下方向(厚み方向)に挟む2つのバリア層42とを備え、好ましくは、導電層41と、2つのバリア層42とからなる。なお、以下において、2つのバリア層42を互いに区別する場合、導電層41に対して下側(厚み方向他方側)に位置するバリア層42を第1バリア層42Aとし、導電層41に対して上側(厚み方向一方側)に位置するバリア層42を第2バリア層42Bとする。
 導電層41は、電磁波を遮蔽するための層であり、上下方向において第1バリア層42Aと第2バリア層42Bとの間に配置されている。詳しくは、導電層41は、第1バリア層42Aの上面と直接接触するとともに、第2バリア層42Bの下面と直接接触している。導電層41は、面方向(前後方向および左右方向)に延びるシート状に形成されている。導電層41は、好ましくは、スパッタリングにより形成されるスパッタ膜である。
 導電層41は、周期表第11族、かつ、第4周期および第5周期に属する金属から選択される。つまり、導電層41は、周期表第11族、かつ、第4周期および第5周期に属する金属(銅および銀)の少なくとも1種から形成される。なお、周期表は、IUPAC Periodic Table of the Elements(version dated 28 November 2016)に従う。これら導電層41の材料である金属として、好ましくは、銅または銀の純金属が挙げられ、より好ましくは、銅が挙げられる。
 導電層41は、バリア層42よりも高い導電性を有する。つまり、導電層41の体積抵抗率は、バリア層42の体積抵抗率よりも低い。導電層41の体積抵抗率(at 0℃)は、例えば、1.6μΩ・cm以下であり、また、例えば、1.0μΩ・cm以上である。なお、体積抵抗率は、四探針法により測定される。
 導電層41の体積抵抗率が上記上限以下であれば、シールド層40のシールド特性の向上を確実に図ることができる。
 導電層41の厚みは、例えば、1.0μm以下、好ましくは、0.3μm以下、また、例えば、0.05μm以上である。
 導電層41の厚みが上記上限以下であれば、実装基板1の薄型化を確実に図ることができ、導電層41の厚みが上記下限以上であれば、シールド層40のシールド特性の向上を確実に図ることができる。
 2つのバリア層42は、導電層41の材料である金属が、絶縁層に拡散(マイグレーション)することを抑制するための層である。より詳しくは、第1バリア層42Aが、導電層41の材料である金属が、第1カバー絶縁層6に拡散(マイグレーション)することを抑制するための層であり、第2バリア層42Bが、導電層41の材料である金属が、第2カバー絶縁層31に拡散(マイグレーション)することを抑制するための層である。
 第1バリア層42Aは、上下方向において、第1カバー絶縁層6と導電層41との間と、グランド開口部16から露出するグランド配線15と導電層41との間とに配置されている。第1バリア層42Aは、第1カバー絶縁層6の上面と直接接触するように、第1カバー絶縁層6の上側(厚み方向一方側)に配置され、グランド開口部16から露出するグランド配線15の上面と直接接触するように、グランド配線15の上側に配置される。
 第2バリア層42Bは、上下方向において導電層41と第2カバー絶縁層31との間に配置されている。第2バリア層42Bは、導電層41の上面と直接接触するように、導電層41の上側(厚み方向一方側)に配置されている。
 各バリア層42(第1バリア層42Aおよび第2バリア層42Bのそれぞれ)は、面方向(前後方向および左右方向)に延びるシート状に形成されている。バリア層42は、好ましくは、スパッタリングにより形成されるスパッタ膜である。
 各バリア層42(第1バリア層42Aおよび第2バリア層42Bのそれぞれ)は、周期表第4族~第10族、かつ、第4周期~第6周期に属する金属から選択される。つまり、バリア層42は、周期表第4族~第10族、かつ、第4周期~第6周期に属する金属(チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、ジルコニウム、ニオブ、モリブデン、テクネチウム、ルテニウム、ロジウム、パラジウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウムおよび白金)からなる群より選択される1種の純金属から形成される。
 これらバリア層42の材料である金属として、好ましくは、チタン、クロム、ニッケル、パラジウムおよびタンタルからなる群から選択される1種の金属(純金属)が挙げられ、より好ましくは、チタンおよびクロムの純金属が挙げられる。
 バリア層42の材料である金属が、上記の群から選択される金属であれば、第1カバー絶縁層6および第2カバー絶縁層31の材料がポリイミドである場合であっても、それら金属が、第1カバー絶縁層6および第2カバー絶縁層31に拡散(マイグレーション)することを確実に抑制できる。
 また、第1バリア層42Aの材料である金属と第2バリア層42Bの材料である金属とは、互いに異なってもよく、互いに同じであってもよい。
 また、導電層41の材料である金属とバリア層42の材料である金属との組み合わせとして、好ましくは、銅または銀(導電層41)とチタン(バリア層42)との組み合わせ、銅または銀(導電層41)とクロム(バリア層42)との組み合わせ、銅または銀(導電層41)とニッケル(バリア層42)との組み合わせ、銅または銀(導電層41)とパラジウム(バリア層42)との組み合わせ、銅または銀(導電層41)とタンタル(バリア層42)との組み合わせが挙げられ、より好ましくは、銅とチタンとの組み合わせ、銅とクロムとの組み合わせが挙げられる。
 導電層41の材料である金属とバリア層42の材料である金属との組み合わせが上記の組み合わせであれば、シールド層40の優れた密着性と、電磁波に対する優れたシールド特性との両立を確実に図ることができる。
 また、第1バリア層42Aの材料である金属と第2バリア層42Bの材料である金属とが互いに異なる場合、第1バリア層42Aの材料である金属と、導電層41の材料である金属と、第2バリア層42Bの材料である金属との組み合わせとして、好ましくは、クロム(第1バリア層42A)と銅または銀(導電層41)とニッケル(第2バリア層42B)との組み合わせ、チタン(第1バリア層42A)と銅または銀(導電層41)とニッケル(第2バリア層42B)との組み合わせ、クロム(第1バリア層42A)と銅または銀(導電層41)とパラジウム(第2バリア層42B)との組み合わせが挙げられ、さらに好ましくは、クロム(第1バリア層42A)と銅または銀(導電層41)とニッケル(第2バリア層42B)との組み合わせが挙げられる。
 バリア層42の体積抵抗率(at 0℃)は、例えば、50μΩ・cm以下、好ましくは、20μΩ・cm以下、より好ましくは、15μΩ・cm以下であり、また、例えば、1.8μΩ・cm以上である。
 バリア層42の体積抵抗率が上記上限以下であれば、バリア層42の導電性を確保することができ、シールド層40のシールド特性のさらなる向上を図ることができる。
 バリア層42の厚みは、導電層41の厚みを100としたときに、例えば、10以上、好ましくは、20以上である。バリア層42の厚みは、例えば、1.0μm以下、好ましくは、0.09μm以下、さらに好ましくは、0.08μm以下、とりわけ好ましくは、0.05μm以下であり、また、例えば、0.01μm以上、好ましくは、0.02μm以上である。
 バリア層42の厚みが上記上限以下であれば、実装基板1の薄型化を確実に図ることができ、バリア層42の厚みが上記下限以上であれば、導電層41の材料である金属が絶縁層に拡散(マイグレーション)することを確実に抑制でき、シールド層40の密着性の向上を確実に図ることができる。
 また、シールド層40は、上記のように、バリア層42(第1バリア層42A)がグランド配線15と接触することにより、グランド配線15と電気的に接続されている。すなわち、シールド層40は、グランド配線15と連続している。具体的には、シールド層40は、グランド配線15と対向する部分において、グランド開口部16を介して、グランド配線15の上面と接触するように下側に凸となっている。これにより、シールド層40は、グランド配線15を介して接地されている。
 第2カバー絶縁層31は、シールド層40を被覆するように、シールド層40の上側(厚み方向一方側)に配置されている。第2カバー絶縁層31の下面は、第2バリア層42Bの上面と直接接触している。第2カバー絶縁層31は、実装基板1の最上層に位置し、第2カバー絶縁層31の上面は、上方に向かって露出している。第2カバー絶縁層31の外形は、シールド層40の外形と同一となるように形成されている。
 第2カバー絶縁層31の材料として、例えば、第1カバー絶縁層6で上記した絶縁材料と同様の絶縁材料が挙げられ、好ましくは、ポリイミドが挙げられる。つまり、第1カバー絶縁層6および第2カバー絶縁層31のそれぞれの材料は、好ましくは、ポリイミドである。
 第2カバー絶縁層31の厚みの範囲は、例えば、第1カバー絶縁層6の厚みの範囲と同じである。
 本実施形態において、実装基板1は、複数の層(ベース絶縁層4、導体パターン5、第1カバー絶縁層6、シールド層40および第2カバー絶縁層31)のうち、厚み方向に互いに隣り合う層が直接接触しており、それら層の間に接着剤を介することなく互いに接着されている。つまり、実装基板1は、接着剤が使用されない接着剤レスのFPCである。そのため、実装基板1の薄型化を図ることができる。
 このような実装基板1において、シールド層40の厚みと第2カバー絶縁層31の厚みとの総和は、例えば、15.0μm以下、好ましくは、10μm以下、より好ましくは、5μm以下であり、また、例えば、1μm以上である。
 実装基板1の厚み(ベース絶縁層4、導体パターン5、第1カバー絶縁層6、シールド層40および第2カバー絶縁層31の厚みの総和)は、例えば、50μm以下、好ましくは、25μm以下、より好ましくは、20μm以下であり、また、例えば、3μm以上である。
 2.撮像素子実装基板の製造方法
 実装基板1は、図3A~図4Fに示すように、例えば、金属支持体用意工程、ベース絶縁層形成工程、導体パターン形成工程、第1カバー絶縁層形成工程、シールド層形成工程、第2カバー絶縁層形成工程、および、金属支持体除去工程を順に実施することにより得られる。
 図3Aに示すように、金属支持体用意工程では、金属支持体19を用意する。
 金属支持体19は、面方向に延びる平面視略矩形(長方形状)の平板形状(シート形状)を有する。金属支持体19の上面は、平坦(平滑)となるように形成されている。
 金属支持体19の材料として、例えば、ステンレス、42アロイ、アルミニウムなどの金属材料が挙げられ、好ましくは、ステンレスが挙げられる。
 金属支持体19の厚みは、例えば、5μm以上、好ましくは、10μm以上であり、例えば、50μm以下、好ましくは、30μm以下である。
 続いて、ベース絶縁層形成工程では、ベース絶縁層4を、金属支持体19の上面に形成する。すなわち、撮像素子開口部7および外部部品開口部8を有するベース絶縁層4を、金属支持体19の上面に形成する。
 具体的には、感光性の絶縁性材料(例えば、ポリイミド)のワニスを金属支持体19の上面全面に塗布して乾燥させて、ベース皮膜(ベース絶縁層)を形成する。その後、ベース皮膜を、開口部(撮像素子開口部7および外部部品開口部8)に対応するパターンを有するフォトマスクを介して露光する。その後、ベース皮膜を現像し、好ましくは加熱硬化させる。
 続いて、図3Bに示すように、導体パターン形成工程では、導体パターン5を、上記したパターンで、ベース絶縁層4の上面と、撮像素子開口部7および外部部品開口部8から露出する金属支持体19の上面とに、例えば、アディティブ法などによって、形成する。
 続いて、図3Cに示すように、第1カバー絶縁層形成工程では、第1カバー絶縁層6を、導体パターン5を被覆するように、ベース絶縁層4の上面に形成する。すなわち、グランド開口部16を有する第1カバー絶縁層6を、ベース絶縁層4の上面に形成する。第1カバー絶縁層形成工程は、ベース絶縁層形成工程と同様に実施する。
 続いて、図4Dに示すように、シールド層形成工程では、シールド層40を、第1カバー絶縁層6の上面全体と、グランド開口部16から露出するグランド配線15の上面全体とに、形成する。
 詳しくは、シールド層形成工程は、第1バリア層形成工程と、導電層形成工程と、第2バリア層形成工程とを順に含んでいる。
 第1バリア層形成工程では、第1カバー絶縁層6の上面全体と、グランド開口部16から露出するグランド配線15の上面全体とに、第1バリア層42Aを一括して形成する。第1バリア層42Aの形成方法として、例えば、スパッタリング、蒸着、めっきなどの公知の薄膜形成方法が挙げられ、好ましくは、スパッタリングが挙げられる。
 導電層形成工程では、第1バリア層42Aの上面全体に導電層41を形成する。導電層41の形成方法として、例えば、第1バリア層42Aと同様の形成方法が挙げられ、好ましくは、スパッタリングが挙げられる。
 第2バリア層形成工程では、導電層41の上面全体に第2バリア層42Bを形成する。第2バリア層42Bの形成方法として、例えば、第1バリア層42Aと同様の形成方法が挙げられ、好ましくは、スパッタリングが挙げられる。
 これにより、第1バリア層42Aと、導電層41と、第2バリア層42Bとを備えるシールド層40が形成される。
 続いて、図4Eに示すように、第2カバー絶縁層形成工程では、第2カバー絶縁層31を、シールド層40(第2バリア層42B)の上面全体に形成する。第2カバー絶縁層形成工程は、ベース絶縁層形成工程と同様に実施する。
 しかるに、第2カバー絶縁層形成工程において、第2カバー絶縁層31を加熱硬化させるときなどに、導電層41の材料である金属が第1カバー絶縁層6および第2カバー絶縁層31に拡散(マイグレーション)するおそれがある。一方、実装基板1では、第1バリア層42Aが第1カバー絶縁層6と導電層41との間に位置し、第2バリア層42Bが導電層41と第2カバー絶縁層31との間に位置するので、導電層41の金属が第1カバー絶縁層6および第2カバー絶縁層31に拡散(マイグレーション)することが抑制されている。
 以上により、ベース絶縁層4と、導体パターン5と、第1カバー絶縁層6と、シールド層40と、第2カバー絶縁層31とを備える実装基板1を、金属支持体19に支持された状態で得る。なお、この実装基板1は、金属支持体19を備え、未だ除去されていない。そのため、この実装基板1は、本発明のフレキシブル配線回路基板に包含されない。
 図4Fに示すように、金属支持体除去工程では、金属支持体19を除去する。
 金属支持体19の除去方法として、例えば、金属支持体19を、ベース絶縁層4の下面と、撮像素子開口部7から露出する撮像素子接続端子10の下面および外部部品開口部8から露出する外部部品接続端子11の下面とから剥離する方法、例えば、金属支持体19に対して、例えば、ドライエッチング、ウェットエッチングなどのエッチングを施す方法などが挙げられる。金属支持体19の除去方法として、好ましくは、エッチング、より好ましくは、ウエットエッチングが挙げられる。
 これにより、金属支持体19が除去され、ベース絶縁層4と、導体パターン5と、第1カバー絶縁層6と、シールド層40と、第2カバー絶縁層31とを備える実装基板1を得る。実装基板1は、金属支持体19を備えず、好ましくは、ベース絶縁層4と、導体パターン5と、第1カバー絶縁層6と、シールド層40と、第2カバー絶縁層31とのみからなる。
 このような実装基板1は、例えば、撮像素子を実装するための撮像素子実装基板に用いられる。すなわち、実装基板1は、カメラモジュールなどの撮像装置に備えられる。なお、実装基板1は、次に説明する撮像装置ではなく、撮像装置の一部品、すなわち、撮像装置を作製するための部品であり、撮像素子を含まず、具体的には、部品単独で流通し、産業上利用可能なデバイスである。
 3.撮像装置
 次に、図5を参照して、実装基板1を備える撮像装置20を説明する。
 撮像装置20は、実装基板1、撮像素子21、ハウジング22、光学レンズ23、および、フィルター24を備える。
 実装基板1は、図2に示される実装基板1を上下反転して撮像装置20に備えられる。すなわち、実装基板1は、ベース絶縁層4を上側(厚み方向他方側)とし、第2カバー絶縁層31を下側(厚み方向一方側)となるように、配置される。
 撮像素子21は、光を電気信号に変換する半導体素子であって、例えば、CMOSセンサ、CCDセンサなどの固体撮像素子が挙げられる。撮像素子21は、平面視略矩形の平板形状に形成されており、図示しないが、Si基板などのシリコンと、その上に配置されるフォトダイオード(光電変換素子)およびカラーフィルターとを備える。撮像素子21の下面には、実装基板1の撮像素子接続端子10と対応する端子25が複数設けられている。撮像素子21の厚みは、例えば、10μm以上、好ましくは、50μm以上であり、また、例えば、1000μm以下、好ましくは、500μm以下である。
 撮像素子21は、実装基板1に実装されている。具体的には、撮像素子21の端子25は、対応する実装基板1の撮像素子接続端子10と、ソルダーバンプ26などを介して、フリップチップ実装されている。これにより、撮像素子21は、実装基板1のハウジング配置部2の中央部に配置され、実装基板1の撮像素子接続端子10および外部部品接続端子11と電気的に接続されている。
 撮像素子21は、実装基板1に実装されることにより、撮像ユニット27を構成する。すなわち、撮像ユニット27は、実装基板1と、それに実装される撮像素子21とを備える。
 ハウジング22は、撮像素子21のハウジング配置部2に、撮像素子21と間隔を隔てて囲むように、配置されている。ハウジング22は、平面視略矩形状の筒状を有している。ハウジング22の上端には、光学レンズ23を固定するための固定部が設けられている。
 光学レンズ23は、実装基板1の上側に、実装基板1および撮像素子21と間隔を隔てて配置されている。光学レンズ23は、平面視略円形状に形成され、外部からの光が、撮像素子21に到達するように、固定部によって固定されている。
 フィルター24は、撮像素子21および光学レンズ23の上下方向中央に、これらと間隔を隔てて配置され、ハウジング22に固定されている。
 実装基板1のシールド層40は、図2に示すように、導電層41と、導電層41を上下方向に挟む2つのバリア層42と、を備える。そして、バリア層42は、周期表第4族~第10族、かつ、第4周期~第6周期に属する金属から選択される。そのため、バリア層42の材料がステンレス鋼(SUS)である場合と比較して、シールド層40の密着性およびシールド特性の向上を図ることができ、優れた密着性と優れたシールド特性との両立を図ることができる。
 第1カバー絶縁層6および第2カバー絶縁層31のそれぞれの材料は、好ましくは、ポリイミドである。第1カバー絶縁層6および第2カバー絶縁層31の材料がポリイミドであると、シールド層40の金属がポリイミドに拡散(マイグレーション)しやすい傾向にある。
 一方、実装基板1では、導電層41を挟むバリア層42が、周期表第4族~第10族、かつ、第4周期~第6周期に属する金属から選択される。そのため、シールド層40の金属がポリイミドを材料とする第1カバー絶縁層6および第2カバー絶縁層31に拡散(マイグレーション)することを抑制することができる。
 バリア層42は、好ましくは、チタン、クロム、ニッケル、パラジウムおよびタンタルからなる群から選択される1種の金属である。そのため、バリア層42の金属がポリイミドを材料とする第1カバー絶縁層6および第2カバー絶縁層31に拡散(マイグレーション)することを抑制できる。その結果、シールド層40の密着性とシールド特性との両立を確実に図ることができる。
 複数の配線9は、グランド配線15を含み、グランド配線15は、ベース絶縁層4の上面(厚み方向一方側)に配置にされている。そのため、別途、グランド配線15のための層を設ける必要がない。その結果、実装基板1の薄型化を図ることができる。
 また、バリア層42の材料である金属は、ステンレス鋼と比較して体積抵抗率が低いので、バリア層42(第1バリア層42A)をグランド配線15に接触させる構造において、シールド層40を効率的に接地することができる。
 実装基板1は、複数の層(ベース絶縁層4、導体パターン5、第1カバー絶縁層6、シールド層40および第2カバー絶縁層31)のうち、上下方向に互いに隣り合う層が接着剤なしに接着される接着剤レスのFPCである。そのため、実装基板1の薄型化を図ることができる。
 また、バリア層42が上記の金属から選択され、シールド層40の優れた密着性が確保されているので、接着剤を用いることなくシールド層40を第1カバー絶縁層6および第2カバー絶縁層31に確実に接着でき、接着剤レスの実装基板1を実現することができる。
 実装基板1は、シールド層40の優れた密着性と電磁波に対する優れたシールド特性との両立が図られているので、撮像素子実装基板として好適に利用できる。
 撮像装置20は、実装基板1を備える。そのため、シールド層40の優れた密着性と電磁波に対する優れたシールド特性との両立を図ることができる。
 <変形例>
 変形例において、一実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。
 一実施形態では、本発明のフレキシブル配線回路基板として、撮像素子21を実装するための撮像素子実装基板1(実装基板1)として説明しているが、フレキシブル配線回路基板の用途は、これに限定されない。例えば、シールド層の密着性および電磁波に対する優れたシールド特性の両立が要求される各種用途、例えば、スマートフォン、パソコン、ゲーム機などに用いられるFPCなどに好適に用いられる。
 また、実装基板1では、図2に示すように、配線9は、グランド配線15を含んでいるが、これに限定されず、グランド配線15を含まなくてもよい。すなわち、配線9を、接続配線14のみから構成することもできる。
 また、実装基板1では、シールド層40は、グランド配線15と電気的に接続されているが、これに限定されず、グランド配線15と電気的に接続されなくてもよい。一方、シールド特性の観点から、上記の実施形態のように、シールド層40は、グランド配線15と電気的に接続されることが好ましい。
 また、実装基板1では、シールド層40の外形が、第1カバー絶縁層6の外形と同一となり、シールド層40が、第1カバー絶縁層6の上面全体と、グランド開口部16から露出するグランド配線15の上面全体とに一括して接触するが、シールド層40の形状は、シールド特性を確保できれば特に制限されない。
 例えば、シールド層40は、実装基板1の電気特性(例えば、配線のインピーダンス調整など)を考慮して、本発明の効果を阻害しない範囲でパターニングされていてもよい。
 なお、シールド層40がパターニングされる場合、実装基板1を厚み方向に投影したときの投影面の面積100%に対して、シールド層40の面積は、例えば、60%以上、好ましくは、80%以上、例えば、99%以下である。
 このようなパターニングされたシールド層40を形成するには、まず、図3A~図4Dに示されるように、上記した金属支持体用意工程、ベース絶縁層形成工程、導体パターン形成工程、第1カバー絶縁層形成工程およびシールド層形成工程と同様にして、シート状のシールド層40を、第1カバー絶縁層6の上面全体に形成する。
 次いで、シールド層40を、公知のエッチング方法によりパターニングする。
 例えば、第2バリア層42Bの上面全体に、公知の感光性ドライフィルムレジスト(図示せず)を配置した後、フォトマスク(図示せず)を介して露光および現像して、シールド層40のうち不要な箇所(除去したい箇所)が露出するように、感光性ドライフィルムレジスト(図示せず)を開口させる。そして、シールド層40の各金属のエッチングに適したエッチング液により、感光性ドライフィルムレジスト(図示せず)の開口から露出するシールド層40の部分を除去して、シールド層40をパターニングする。
 このようなパターニングされたシールド層40を有する実装基板では、シールド層40の密着性およびシールド特性の両立を図ることができながら、実装基板1の電気特性の向上を図ることができる。
 一方、上記の実施形態のように、シールド層40の外形が第1カバー絶縁層6の外形と同一となり、シールド層40が、第1カバー絶縁層6の上面全体と、グランド開口部16から露出するグランド配線15の上面全体とに一括して形成される態様(つまり、実装基板1の厚み方向の投影面の面積100%に対してシールド層40の面積が100%である態様)が、シールド特性の観点からより好ましい。
 また、実装基板1では、上下方向に互いに隣り合う層が、接着剤なしに接着される接着剤レスのFPCであるが、これに限定されない。上下方向に互いに隣り合う層の間に接着剤層を設けることもできる。一方、薄型化の観点から、上記の実施形態のように、実装基板1は、接着剤レスのFPCであることが好ましい。
 また、実装基板1では、図2に示すように、導体パターン5(複数の配線9)と第1カバー絶縁層6とが互いに直接接触しているが、これに限定されない。例えば、導体パターン5と第1カバー絶縁層6との間に他の層が配置されてもよい。
 例えば、図6に示すように、フレキシブル配線回路基板の他の実施形態である実装基板50は、上下方向(厚み方向)において、導体パターン5と第1カバー絶縁層6との間に配置される第3カバー絶縁層51(第4絶縁層の一例)および第2導体パターン52を備える。
 つまり、実装基板50は、ベース絶縁層4と、導体パターン5と、第3カバー絶縁層51と、第2導体パターン52と、第1カバー絶縁層6と、シールド層40と、第2カバー絶縁層31とを、上側(厚み方向一方側の一例)に向かって順に備える。なお、導体パターン5と第2導体パターン52とを明確に区別するために、以下おいて、導体パターン5を第1導体パターン5とし、配線9を第1配線9とし、接続配線14を第1接続配線14とし、グランド配線15を第1グランド配線15とする。
 第3カバー絶縁層51は、第1導体パターン5を被覆するように、ベース絶縁層4および第1導体パターン5の上側に配置されている。第3カバー絶縁層51の少なくとも一部は、第1導体パターン5(複数の撮像素子接続端子10、複数の外部部品接続端子11および複数の第1配線9)の上側(厚み方向一方側)に配置されており、第1導体パターン5(複数の撮像素子接続端子10、複数の外部部品接続端子11および複数の第1配線9)と直接接触している。
 また、第3カバー絶縁層51には、グランド開口部53が形成されている。グランド開口部53は、第1グランド配線15に対応して形成されている。グランド開口部53は、第3カバー絶縁層51を上下方向に貫通し、第1グランド配線15の上面を露出している。
 第3カバー絶縁層51の材料として、例えば、ベース絶縁層4で上記した絶縁材料と同様の絶縁材料が挙げられ、好ましくは、ポリイミドが挙げられる。第3カバー絶縁層51の厚みの範囲は、例えば、上記した第1カバー絶縁層6の厚みの範囲と同じである。
 第2導体パターン52は、第3カバー絶縁層51の上面と接触するように、第3カバー絶縁層51の上側(厚み方向一方側)に配置されている。第2導体パターン52は、複数の撮像素子接続端子(図示せず)、複数の外部部品接続端子(図示せず)、複数の第2配線54を備える。
 複数の撮像素子接続端子(図示せず)および複数の外部部品接続端子(図示せず)は、ベース絶縁層4および第3カバー絶縁層51に形成された複数の開口部(図示せず)から露出するように、形成されている。
 複数の第2配線54は、複数の第2接続配線55および複数の第2グランド配線56を含む。
 複数の第2接続配線55は、複数の撮像素子接続端子および複数の外部部品接続端子に対応して、これらを接続するように設けられている。複数の第2グランド配線56は、複数の第1グランド配線15に対応して設けられる。第2グランド配線56は、グランド開口部53を介して第1グランド配線15と接触して、第1グランド配線15と電気的に接続されている。
 第2導体パターン52の材料として、例えば、第1導体パターン5で上記した金属材料と同様の金属材料が挙げられ、好ましくは、銅が挙げられる。第2導体パターン52の厚みの範囲は、例えば、上記した第1導体パターン5の厚みの範囲と同じである。
 第1カバー絶縁層6は、第2導体パターン52を被覆するように、第3カバー絶縁層51および第2導体パターン52の上側に配置されている。グランド開口部16は、第2グランド配線56の上面の一部を露出している。シールド層40は、グランド開口部16を介して第2グランド配線56と接触して、第2グランド配線56と電気的に接続されている。つまり、シールド層40は、第2グランド配線56を介して、第1グランド配線15と電気的に接続されている。
 このような実装基板50は、複数の第1配線9および複数の第2配線54を備えるので、配線の数を増加させることができ、実装基板50の設計の自由度の向上を図ることができる。なお、実装基板において、導体パターン5と第1カバー絶縁層6との間に配置される絶縁層および配線の個数は特に制限されず、第3カバー絶縁層51および第2配線54に加えて、さらに絶縁層および配線を備えていてもよい。一方、薄型化の観点からは、実装基板1が好ましい。
 また、一実施形態の撮像装置20では、図5に示すように、撮像素子21は、実装基板1にフリップチップ実装されているが、例えば、図示しないが、撮像素子21は、実装基板1にワイヤボンディングによって実装することもできる。
 上記した各変形例についても、一実施形態と同様の作用効果を奏する。
 以下に製造例、比較製造例、実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら製造例、比較製造例、実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限(「以下」、「未満」として定義されている数値)または下限(「以上」、「超過」として定義されている数値)に代替することができる。
  実施例1
 図3Aに示すように、厚み18μmのステンレスを材料とする金属支持体19を用意した。
 次いで、ポリイミド前駆体溶液を金属支持体19の上面に塗布し、次いで、80℃で10分乾燥させて、ベース皮膜(ポリイミド前駆体皮膜)を形成した。続いて、ベース皮膜を、フォトマスクを介して露光し、続いて、現像した。その後、窒素雰囲気下、360℃1時間、ベース皮膜を加熱する(硬化させる)ことにより、撮像素子開口部7および外部部品開口部8を有し、ポリイミドを材料とする厚み5μmのベース絶縁層4を形成した。
 図3Bに示すように、その後、銅を材料とする厚み3μmの導体パターン5を、ベース絶縁層4の上面と、撮像素子開口部7および外部部品開口部8から露出する金属支持体19の上面とに、アディティブ法で形成した。
 図3Cに示すように、その後、ポリイミド前駆体溶液をベース絶縁層4および導体パターン5の上面に塗布し、次いで、80℃で10分乾燥させて、カバー皮膜(ポリイミド前駆体皮膜)を形成した。続いて、カバー皮膜を、フォトマスクを介して露光し、続いて、現像した。その後、窒素雰囲気下、360℃1時間、カバー皮膜を加熱することにより、グランド開口部16を有し、ポリイミドを材料とする厚み3μmの第1カバー絶縁層6を得た。
 図4Dに示すように、その後、クロムを材料とする厚み0.02μmの第1バリア層42Aを、第1カバー絶縁層6の上面と、グランド開口部16から露出するグランド配線15の上面とに、スパッタリングにより形成した。次いで、銅を材料とする厚み0.1μmの導電層41を、第1バリア層42Aの上面に、スパッタリングにより形成した。次いで、クロムを材料とする厚み0.02μmの第2バリア層42Bを、導電層41の上面に、スパッタリングにより形成した。これにより、シールド層40を形成した。
 続いて、図4Eに示すように、ポリイミド前駆体溶液を第2バリア層42Bの上面に塗布し、次いで、80℃で10分乾燥させて、カバー皮膜(ポリイミド前駆体皮膜)を形成した。続いて、カバー皮膜を、露光し、続いて、現像した。その後、窒素雰囲気下、360℃1時間、カバー皮膜を加熱する(硬化させる)ことにより、ポリイミドを材料とする厚み3.0μmの第2カバー絶縁層31を形成した。
 図4Fに示すように、金属支持体19を、塩化第二鉄水溶液からなるエッチング液を下方からスプレーする化学エッチング法によって、除去した。これによって、ベース絶縁層4の下面の全てを露出させた。
 以上により、ベース絶縁層4と、導体パターン5と、第1カバー絶縁層6と、シールド層40と、第2カバー絶縁層31とを備える実装基板1を得た。
  実施例2
 第1バリア層42Aおよび第2バリア層42Bのそれぞれを、チタンを材料とする厚み0.03μmの薄膜(スパッタ膜)に変更した以外は、実施例1と同様にして、実装基板1を得た。
  実施例3
 第2バリア層42Bを、ニッケルを材料とする厚み0.08μmの薄膜(スパッタ膜)に変更した以外は、実施例1と同様にして、実装基板1を得た。
  比較例1
 第1バリア層42Aおよび第2バリア層42Bのそれぞれを、ステンレス鋼(SUS)を材料とする厚み0.05μmの薄膜(スパッタ膜)に変更した以外は、実施例1と同様にして、実装基板1を得た。
  比較例2
 第1バリア層42Aおよび第2バリア層42Bのそれぞれを形成しなかったこと以外は、実施例1と同様にして、実装基板1を得た。つまり、導電層41を、第1カバー絶縁層6の上面と、グランド開口部16から露出するグランド配線15の上面とに形成し、第2カバー絶縁層31を、導電層41の上面に形成した。
 各実施例および各比較例の層構成および厚みを表1に記載する。
 [評価]
 各実施例および各比較例の実装基板1について、以下の項目を評価した。その結果を表1に記載する。
 <シールド特性>
 各実施例および各比較例の実装基板1におけるシールド層40のシールド特性をKEC法により測定した。そして、シールド特性を下記の基準で評価した。
○:-40db以下(1GHz)
△:-40db超過-30db以下(1GHz)
×:-30db超過(1GHz)
 <密着性>
 各実施例および各比較例の実装基板1におけるシールド層40の密着性を、JIS K-5600-5-6(クロスカット法)に準拠して測定した。具体的には、所定の切り込み工具およびスペーサを用いて、第2カバー絶縁層31に格子パターンが形成されるように切り込み(縦6本×横6本)を設けた後、長さが約75mmの付着テープを、第2カバー絶縁層31における格子にカットした部分に貼り付けた。次いで、付着テープを通して第2カバー絶縁層31が透けて見えるように、付着テープを指でしっかりとこすり、付着テープと第2カバー絶縁層31とを正しく接触させた。その後、付着テープを付着して5分以内に、付着テープの折れ曲り角度が60°に近い角度(剥離角度約120°)で0.5秒から1.0秒で、付着テープを第2カバー絶縁層31から確実に引き離した。その後、試験部分を、JIS K-5600-5-6の8.3における表1に示される図例と比較して、6段階(0~5)に分類した。そして、密着性を下記の基準で評価した。
○:分類0(剥離なし)
△:分類1-2
×:分類3-5
Figure JPOXMLDOC01-appb-T000001
 なお、上記説明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は後記の請求の範囲に含まれる。
 本発明のフレキシブル配線回路基板は、各種産業製品に適用することができ、例えば、撮像装置、スマートフォン、パソコン、ゲーム機などに好適に用いられる。
1     実装基板(撮像素子実装基板)
4     ベース絶縁層
6     第1カバー絶縁層
9     配線
20   撮像装置
21   撮像素子
31   第2カバー絶縁層
40   シールド層
41   導電層
42   バリア層
50   実装基板
51   第3カバー絶縁層
54   第2配線

Claims (8)

  1.  第1絶縁層と、
     前記第1絶縁層の厚み方向一方側に配置される配線と、
     前記配線の厚み方向一方側に配置される第2絶縁層と、
     前記第2絶縁層の厚み方向一方側に配置されるシールド層と、
     前記シールド層の厚み方向一方側に配置される第3絶縁層と、を備え、
     前記シールド層は、
      導電層と、
      前記導電層を前記厚み方向に挟む2つのバリア層と、を備え、
     前記導電層は、周期表第11族、かつ、第4周期および第5周期に属する金属から選択され、
     前記バリア層は、周期表第4族~第10族、かつ、第4周期~第6周期に属する金属から選択されることを特徴とする、フレキシブル配線回路基板。
  2.  前記第2絶縁層および前記第3絶縁層のそれぞれの材料は、ポリイミドであることを特徴とする、請求項1に記載のフレキシブル配線回路基板。
  3.  前記バリア層は、チタン、クロム、ニッケル、パラジウムおよびタンタルからなる群から選択される1種の金属であることを特徴とする、請求項2に記載のフレキシブル配線回路基板。
  4.  前記配線は、グランド配線を含み、
     前記シールド層は、前記バリア層が前記グランド配線と接触することにより、前記グランド配線と電気的に接続されていることを特徴とする、請求項1に記載のフレキシブル配線回路基板。
  5.  前記配線は、前記第1絶縁層と直接接触し、
     前記第2絶縁層は、前記配線と直接接触し、
     前記導電層に対して前記厚み方向の他方側に位置するバリア層は、前記第2絶縁層と直接接触し、
     前記導電層は、前記導電層に対して前記厚み方向の他方側に位置するバリア層と直接接触し、
     前記導電層に対して前記厚み方向の一方側に位置するバリア層は、前記導電層と直接接触し、
     前記第3絶縁層は、前記導電層に対して前記厚み方向の一方側に位置するバリア層と直接接触することを特徴とする、請求項1に記載のフレキシブル配線回路基板。
  6.  前記厚み方向において、前記配線と前記第2絶縁層との間に配置される第4絶縁層および第2配線をさらに備え、
     前記第4絶縁層は、前記配線の前記厚み方向一方側に配置され、
     前記第2配線は、前記第4絶縁層の前記厚み方向一方側に配置されることを特徴とする、請求項1に記載のフレキシブル配線回路基板。
  7.  撮像素子を実装するための撮像素子実装基板であることを特徴とする、請求項1に記載のフレキシブル配線回路基板。
  8.  請求項1に記載のフレキシブル配線回路基板と、
     前記フレキシブル配線回路基板に実装される撮像素子と、を備えることを特徴とする、撮像装置。
PCT/JP2018/016716 2017-04-28 2018-04-25 フレキシブル配線回路基板および撮像装置 WO2018199128A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/607,580 US11122676B2 (en) 2017-04-28 2018-04-25 Flexible wiring circuit board and imaging device
KR1020197031452A KR20200002850A (ko) 2017-04-28 2018-04-25 플렉시블 배선 회로 기판 및 촬상 장치
CN201880027884.6A CN110720258B (zh) 2017-04-28 2018-04-25 柔性布线电路基板及成像装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-090167 2017-04-28
JP2017090167 2017-04-28
JP2018-083301 2018-04-24
JP2018083301A JP7390779B2 (ja) 2017-04-28 2018-04-24 フレキシブル配線回路基板および撮像装置

Publications (1)

Publication Number Publication Date
WO2018199128A1 true WO2018199128A1 (ja) 2018-11-01

Family

ID=63919114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016716 WO2018199128A1 (ja) 2017-04-28 2018-04-25 フレキシブル配線回路基板および撮像装置

Country Status (1)

Country Link
WO (1) WO2018199128A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034828A (ja) * 2001-02-15 2003-02-07 Kobe Steel Ltd 電磁波シールド用のAg合金膜、電磁波シールド用Ag合金膜形成体及び電磁波シールド用Ag合金スパッタリングターゲット
JP2004207642A (ja) * 2002-12-26 2004-07-22 Denso Corp 多層基板及びその製造方法
JP2005210628A (ja) * 2004-01-26 2005-08-04 Mitsui Chemicals Inc 撮像装置用半導体搭載用基板と撮像装置
JP2007294918A (ja) * 2006-03-29 2007-11-08 Tatsuta System Electronics Kk シールドフィルム及びシールドプリント配線板
WO2016204208A1 (ja) * 2015-06-19 2016-12-22 株式会社村田製作所 モジュールおよびその製造方法
JP2017059708A (ja) * 2015-09-17 2017-03-23 東洋インキScホールディングス株式会社 電磁波シールドシートおよびプリント配線板
WO2017047072A1 (ja) * 2015-09-14 2017-03-23 タツタ電線株式会社 シールドプリント配線板の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034828A (ja) * 2001-02-15 2003-02-07 Kobe Steel Ltd 電磁波シールド用のAg合金膜、電磁波シールド用Ag合金膜形成体及び電磁波シールド用Ag合金スパッタリングターゲット
JP2004207642A (ja) * 2002-12-26 2004-07-22 Denso Corp 多層基板及びその製造方法
JP2005210628A (ja) * 2004-01-26 2005-08-04 Mitsui Chemicals Inc 撮像装置用半導体搭載用基板と撮像装置
JP2007294918A (ja) * 2006-03-29 2007-11-08 Tatsuta System Electronics Kk シールドフィルム及びシールドプリント配線板
WO2016204208A1 (ja) * 2015-06-19 2016-12-22 株式会社村田製作所 モジュールおよびその製造方法
WO2017047072A1 (ja) * 2015-09-14 2017-03-23 タツタ電線株式会社 シールドプリント配線板の製造方法
JP2017059708A (ja) * 2015-09-17 2017-03-23 東洋インキScホールディングス株式会社 電磁波シールドシートおよびプリント配線板

Similar Documents

Publication Publication Date Title
KR102489612B1 (ko) 연성 회로기판, cof 모듈 및 이를 포함하는 전자 디바이스
US9379703B2 (en) Flexible touch panel
JP5247461B2 (ja) 立体的電子回路装置
JP2010520641A5 (ja)
JP7390779B2 (ja) フレキシブル配線回路基板および撮像装置
JP7173752B2 (ja) フレキシブル配線回路基板、その製造方法、および、撮像装置
KR102515701B1 (ko) 촬상 소자 실장 기판, 그 제조 방법 및 실장 기판 집합체
JP2023041968A (ja) 撮像素子実装基板、その製造方法、および、実装基板集合体
WO2018199128A1 (ja) フレキシブル配線回路基板および撮像装置
CN102131340A (zh) 挠性印刷配线板、挠性印刷配线板的制造方法、具有挠性印刷配线板的电子设备
US20110232946A1 (en) Flexible Printed Board
JP2011134613A (ja) ケーブル接続構造
KR102605794B1 (ko) 배선 회로 기판, 및 촬상 장치
WO2018199133A1 (ja) フレキシブル配線回路基板、その製造方法、および、撮像装置
KR20200144213A (ko) 연성 회로 기판과 이를 구비하는 전자 장치 및 연성 회로 기판의 제조 방법
WO2021125166A1 (ja) 配線回路基板
JP7461136B2 (ja) 配線回路基板
WO2018199017A1 (ja) 配線回路基板、および、撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197031452

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790449

Country of ref document: EP

Kind code of ref document: A1