WO2018198943A1 - 撮像レンズ - Google Patents

撮像レンズ Download PDF

Info

Publication number
WO2018198943A1
WO2018198943A1 PCT/JP2018/016188 JP2018016188W WO2018198943A1 WO 2018198943 A1 WO2018198943 A1 WO 2018198943A1 JP 2018016188 W JP2018016188 W JP 2018016188W WO 2018198943 A1 WO2018198943 A1 WO 2018198943A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
refractive index
temperature coefficient
imaging
negative
Prior art date
Application number
PCT/JP2018/016188
Other languages
English (en)
French (fr)
Inventor
政憲 小菅
Original Assignee
京セラオプテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラオプテック株式会社 filed Critical 京セラオプテック株式会社
Priority to EP18791144.1A priority Critical patent/EP3605180B1/en
Priority to JP2019514448A priority patent/JP6707714B2/ja
Priority to CN201880027311.3A priority patent/CN110603471B/zh
Publication of WO2018198943A1 publication Critical patent/WO2018198943A1/ja
Priority to US16/663,388 priority patent/US11249285B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only

Definitions

  • the present invention relates to an imaging lens having five elements in five groups.
  • Patent Documents 1 to 4 an imaging lens mounted on a surveillance camera or an in-vehicle camera
  • an imaging lens having a five-group five-element configuration is known (Patent Documents 1 to 4).
  • In-vehicle cameras and the like are used in harsh environments such as large temperature changes.
  • an imaging lens that can maintain optical performance hereinafter referred to as temperature compensation
  • temperature compensation an imaging lens that can maintain optical performance
  • imaging lenses described in Patent Documents 7 to 8 are known as imaging lenses having five groups and five elements to be used other than an in-vehicle camera or the like.
  • imaging lenses that perform temperature compensation other than on-vehicle cameras and the like imaging lenses described in Patent Documents 9 to 11 are known.
  • in-vehicle cameras and the like are used in a harsh environment, and therefore are required to have durability against environmental temperature changes (hereinafter referred to as environmental resistance).
  • environmental resistance environmental temperature changes
  • an in-vehicle camera that captures a blind spot of an automobile is often provided outside the vehicle body, and the environmental temperature may be a minus temperature on the low temperature side and may be 100 degrees or more on the high temperature side.
  • the imaging lens constituting the vehicle-mounted camera or the like is required to perform temperature compensation within a very large range.
  • the imaging lens is required to have a simple configuration with lower cost and excellent mass productivity.
  • the number of lenses to be configured is as small as possible.
  • errors including manufacturing errors
  • An object of the present invention is to provide an imaging lens suitable for a vehicle-mounted camera or the like having low cost and excellent mass productivity.
  • the imaging lens of the present invention includes a first lens, a second lens, a third lens, a fourth lens, a fifth lens, and an aperture in order from the object side.
  • the first lens has negative power.
  • the second lens has negative power.
  • the third lens has a positive power.
  • the fourth lens has negative power.
  • the fifth lens has positive power.
  • the stop is provided between the second lens and the third lens.
  • At least one of the third lens and the fifth lens is formed using glass having a negative temperature coefficient of refractive index, and the focal length of the entire system is f, and the refractive index of the third lens or the fifth lens is
  • the temperature coefficient of the refractive index of a lens formed using glass having a negative temperature coefficient is dn / dt, dn / dt ⁇ 0.5, and -2.90 ⁇ f / (dn / dt) ⁇ 0.65 Meet.
  • the focal length of the entire system is f
  • the refractive index temperature coefficient of the third lens is dn 3 / dt. , -2.90 ⁇ f / (dn 3 /dt) ⁇ 0.80 It is preferable to satisfy.
  • the third lens is formed using glass having a negative refractive index temperature coefficient, the focal length of the third lens is f 3 , and the refractive index temperature coefficient of the third lens is dn 3 / dt. In case, ⁇ 6.50 ⁇ f 3 / (dn 3 /dt) ⁇ 0.80 It is preferable to satisfy.
  • the third lens is formed using glass having a negative temperature coefficient of refractive index, the focal length of the third lens is f 3 , and the rear group is composed of the third lens, the fourth lens, and the fifth lens.
  • the focal length of the entire system is f
  • the temperature coefficient of the refractive index of the fifth lens is dn 5 / dt. , ⁇ 2.50 ⁇ f / (dn 5 /dt) ⁇ 0.65 It is preferable to satisfy.
  • the fifth lens is formed using glass having a negative refractive index temperature coefficient, the focal length of the fifth lens is f 5 , and the refractive index temperature coefficient of the fifth lens is dn 5 / dt. In case, ⁇ 8.50 ⁇ f 5 / (dn 5 /dt) ⁇ 0.85 It is preferable to satisfy.
  • the fifth lens is formed of glass having a negative temperature coefficient of refractive index, the focal length of the fifth lens is f 5 , and the rear group is composed of the third lens, the fourth lens, and the fifth lens.
  • the focal length of the rear group consisting of the third lens, the fourth lens and the fifth lens is f 35, and the distance from the object side surface of the third lens to the image side surface of the fifth lens is D 35 . If you want to 0.90 ⁇ D 35 / f 35 ⁇ 1.40 It is preferable to satisfy.
  • the focal length of the rear group consisting of the third lens, the fourth lens, and the fifth lens is f 35, and the distance from the object side surface of the first lens to the image side surface of the fifth lens is TT.
  • TT the distance from the object side surface of the first lens to the image side surface of the fifth lens.
  • the present invention includes, in order from the object side, a first lens having negative power, a second lens having negative power, a third lens having positive power, a fourth lens having negative power, and a positive lens.
  • a fifth lens having the following power at least one of the third lens and the fifth lens is formed using glass having a negative temperature coefficient of refractive index, and the focal length of the entire system is f,
  • the temperature coefficient of the refractive index of a lens formed using glass having a negative temperature coefficient of refractive index is dn / dt, ⁇ 2.90 ⁇ f / (dn /Dt) ⁇ 0.65
  • FIG. 2 is a side external view of the imaging lens of Example 1.
  • FIG. It is a graph which shows (A) astigmatism and (B) distortion of Example 1 in 20 degreeC. It is a graph which shows MTF of Example 1 in 20 degreeC. It is a graph which shows MTF of Example 1 in 110 degreeC.
  • 6 is a side external view of an imaging lens of Example 2.
  • FIG. It is a graph which shows the (A) astigmatism of Example 2 in 20 degreeC, and (B) distortion. It is a graph which shows MTF of Example 2 in 20 degreeC. It is a graph which shows MTF of Example 2 in 110 degreeC. 6 is a side external view of an imaging lens of Example 3.
  • FIG. It is a graph which shows (A) astigmatism and (B) distortion of Example 1 in 20 degreeC. It is a graph which shows MTF of Example 1 in 20 degreeC. It is a graph which shows MTF of Example 2 in 110 degreeC. 6 is a side external view of an imaging lens
  • FIG. 6 is a side external view of the imaging lens of Example 4. It is a graph which shows (A) astigmatism of Example 4 in 20 degrees C, and (B) distortion. 6 is a side external view of an imaging lens of Example 5.
  • FIG. It is a graph which shows (A) astigmatism and (B) distortion of Example 5 in 20 degreeC. 7 is a side external view of an imaging lens of Example 6.
  • FIG. It is a graph which shows the (A) astigmatism of Example 6 in 20 degreeC, and (B) distortion.
  • 10 is a side external view of the imaging lens of Example 7.
  • FIG. 6 is a side external view of the imaging lens of Example 4.
  • FIG. 10 is a side external view of an imaging lens of Example 8.
  • FIG. It is a graph which shows the (A) astigmatism of Example 8 in 20 degreeC, and (B) distortion.
  • 10 is a side external view of the imaging lens of Example 9.
  • FIG. It is a graph which shows the (A) astigmatism of Example 9 in 20 degreeC, and (B) distortion.
  • 14 is a side external view of an imaging lens of Example 10.
  • FIG. 14 is a graph which shows (A) astigmatism of Example 10 in 20 degreeC, and (B) distortion.
  • FIG. 14 is a side external view of the imaging lens of Example 11.
  • FIG. 14 It is a graph which shows (A) astigmatism of Example 11 in 20 degreeC, and (B) distortion.
  • 14 is a side external view of an imaging lens according to Example 12.
  • FIG. It is a graph which shows (A) astigmatism of Example 12 in 20 degreeC, and (B) distortion.
  • It is a graph which shows MTF of Example 12 in 20 degreeC.
  • It is a graph which shows MTF of Example 12 in 110 degreeC.
  • the imaging lens 10 is a lens that forms an image of a subject on the imaging surface S12 of the image sensor 11 and images the subject.
  • the imaging lens 10 includes a first lens L1 having negative power, a second lens L2 having negative power, and a third lens L3 having positive power in order from the object side along the optical axis Z1.
  • This is a 5-group 5-lens configuration including a fourth lens L4 having negative power and a fifth lens L5 having positive power.
  • the imaging lens 10 includes, for example, a diaphragm S5 between the second lens L2 and the third lens L3. Since the image sensor 11 protects the imaging surface S14 with the cover glass CG, the imaging lens 10 forms an image of the subject on the imaging surface S14 via the cover glass CG.
  • the first lens L1 is formed of a glass material having excellent durability so that it may be exposed to the installation environment.
  • the second lens L2 has reduced power compared to the other first lens L1, third lens L3, fourth lens L4, and fifth lens L5, but contributes to correction of distortion and chromatic aberration.
  • the third lens L3 mainly contributes to correction of spherical aberration.
  • the fourth lens L4 mainly contributes to correction of astigmatism and chromatic aberration by forming a so-called air lens formed of air between the fourth lens L4 and the fifth lens L5.
  • the fifth lens L5 mainly contributes to correction of astigmatism and field curvature.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 are all made of glass.
  • the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 are more resistant to the environment than the case where they are made of a resin that easily expands or contracts due to a temperature change. Have sex.
  • Any one or more of the first lens L1, the second lens L2, the third lens L3, the fourth lens L4, and the fifth lens L5 can be made of resin.
  • One or a plurality of lens frames, spacers, etc. (not shown) of the imaging lens 10 are made of resin, but these can be changed to a more environmentally resistant material (metal, etc.).
  • the first lens L1, the second lens L2, and the fourth lens L4 are spherical lenses in which both the object side and the image side are formed as spherical surfaces.
  • the first lens L1 has a meniscus shape that is convex toward the object side.
  • the second lens L2 has a meniscus shape that is convex on the image side.
  • the fourth lens L4 has a meniscus shape that is convex toward the object side.
  • the first lens L1, the second lens L2, and the fourth lens L4 are all so-called concave lenses having negative power. Note that the temperature coefficients of the refractive indexes of the first lens L1, the second lens L2, and the fourth lens L4 are all positive.
  • the second lens L2 is a lens with reduced power compared to the other first lens L1, third lens L3, fourth lens L4, and fifth lens.
  • the third lens L3 and the fifth lens L5 are both so-called convex lenses having positive power.
  • the third lens L3 and the fifth lens L5 may have a meniscus shape that is convex toward the object side or the image side, or a biconvex shape that is convex toward the object side and the image side.
  • Each of the third lens L3 and the fifth lens L5 is an aspheric lens in which at least one of the object side surface and the image side surface is formed as an aspheric surface.
  • At least one of the third lens L3 or the fifth lens L5 is formed using glass having a negative temperature coefficient of refractive index.
  • the focal length of the entire system of the imaging lens 10 (unit is mm, the same applies hereinafter) is f, and the third lens L3 or the fifth lens L5 having a negative refractive index temperature coefficient is used.
  • the temperature coefficient dn / dt is the temperature coefficient dn 3 / dt of the refractive index n 3 of the third lens L3 when the third lens L3 is made of glass having a negative refractive index temperature coefficient (formula ( 3)), when the fifth lens L5 is made of glass having a negative temperature coefficient of refractive index, the temperature coefficient dn 5 / dt of the refractive index n 5 of the fifth lens (see Expression (7)). ).
  • both the third lens L3 and the fifth lens L5 are formed of glass having a negative temperature coefficient of refractive index
  • the temperature coefficient dn 5 / dt of the refractive index n 5 satisfy the following expressions (1) and (2). dn / dt ⁇ 0.5 (1) -2.90 ⁇ f / (dn / dt) ⁇ 0.65
  • the imaging lens 10 is formed by forming the third lens L3 or the fifth lens L5 with glass having a negative temperature coefficient of refractive index, so that the imaging lens 10 or the like caused by a temperature change such as an environment where the imaging lens 10 is placed or The back focus BF of the imaging lens 10 is changed according to partial or total expansion of the unit including the imaging lens 10.
  • the imaging lens 10 maintains suitable imaging performance in a wide temperature range from a low temperature (eg, 0 ° C. or lower) to a high temperature (eg, 100 ° C. or higher).
  • Equation (1) represents that the temperature coefficient of refractive index is substantially negative. Therefore, strictly speaking, equation (1) excludes those in which dn / dt is ⁇ 0.5 or more and hardly contributes to the adjustment of the back focus BF even if the temperature coefficient of the refractive index is negative. Is the condition.
  • Expression (2) can maintain a favorable imaging performance in a wide temperature range from a low temperature to a high temperature with respect to a change in the back focus BF of the imaging lens 10 caused by a temperature change such as an environment in which the imaging lens 10 is placed. It is a condition to fit in the range. If the value of f / (dn / dt) is greater than or equal to the upper limit of equation (2), the back focus BF becomes too short at high temperatures, making it difficult to obtain suitable imaging performance. Conversely, if the value of f / (dn / dt) is less than or equal to the lower limit of equation (2), the back focus BF becomes too long at high temperatures, making it difficult to obtain suitable imaging performance.
  • the third lens L3 or the fifth lens L5 is formed of glass having a negative refractive index temperature coefficient because the third lens L3 and the fifth lens L5 have positive power. is there.
  • the back focus BF of the imaging lens 10 is the distance from the image side surface of the fifth lens L5 to the imaging surface S14.
  • “preferable imaging performance” means that an MTF (Modulation Transfer Function) (hereinafter simply referred to as MTF) of a line pair of 60 lines / mm (cycle / mm) is 0.4 or more (40% or more). ). From the viewpoint of human vision, it can be seen that the image is clearly blurred when the MTF is approximately 0.2 or less. If the MTF is approximately 0.3 or more, the imaging lens 10 can withstand practical use, and the MTF is approximately 0.4 or more. This is because the imaging lens 10 can be preferably used.
  • MTF Modulation Transfer Function
  • the third lens L3 is formed using glass having a negative temperature coefficient of refractive index, the focal length of the entire system is f, and the temperature coefficient of the refractive index n 3 of the third lens L3 is dn 3 / dt.
  • the imaging lens 10 satisfies at least the following formula (3), and more preferably satisfies the following formula (4). -2.90 ⁇ f / (dn 3 /dt) ⁇ 0.65 (3) -2.90 ⁇ f / (dn 3 /dt) ⁇ 0.80 (4)
  • the imaging lens 10 satisfies the following formula (5). ⁇ 6.50 ⁇ f 3 / (dn 3 /dt) ⁇ 0.80 (5)
  • the third lens L3, the temperature coefficient of the refractive index is formed by using glass is negative
  • the focal length of the third lens L3 is f 3
  • the rear group refers to a lens group included on the image plane side with respect to the stop S5 provided between the second lens L2 and the third lens.
  • the fifth lens L5 is formed using glass having a negative temperature coefficient of refractive index, the focal length of the entire system is f, and the temperature coefficient of the refractive index n 5 of the fifth lens L5 is dn 5.
  • the imaging lens 10 satisfies at least the following formula (7), and preferably satisfies the following formula (8). -2.90 ⁇ f / (dn 5 /dt) ⁇ 0.65 (7) ⁇ 2.50 ⁇ f / (dn 5 /dt) ⁇ 0.65 (8)
  • the imaging lens 10 satisfies the following formula (9). ⁇ 8.50 ⁇ f 5 / (dn 5 /dt) ⁇ 0.85 (9)
  • the fifth lens L5 the temperature coefficient of the refractive index is formed by using glass is negative
  • the third lens L3 and the fourth lens L4 fifth the focal length of the rear group consisting of lens L5 with the case where the f 35, the imaging lens 10 satisfies the following equation (10). 0.70 ⁇ f 5 / f 35 ⁇ 7.00 (10)
  • the imaging lens 10 is made of glass having a negative temperature coefficient of refractive index.
  • the imaging lens 10 is added to Formula (5), Formula (6), Formula (9) or the condition of formula (10) is satisfied.
  • the imaging lens 10 the focal length of the rear group and the third lens L3 and the fourth lens L4 composed of a fifth lens L5 with a f 35, and the fifth lens from the object side surface of the third lens L3 L5 the distance to the surface on the image side in the case of a D 35 of satisfies the following equation (11). 0.90 ⁇ D 35 / f 35 ⁇ 1.40 (11)
  • the imaging lens 10 the focal length of the rear group and the third lens L3 and the fourth lens L4 composed of a fifth lens L5 with a f 35, and the fifth lens from the object side surface of the first lens L1 L5
  • Expression (12) is a condition for making the imaging lens 10 compact, and when the value of TT / f 35 exceeds the upper limit of Expression (12), the imaging lens 10 becomes larger and the value of TT / f 35 becomes smaller.
  • the value is equal to or lower than the lower limit of Expression (12)
  • FIG. 2 is a side external view of the imaging lens 10 according to the first embodiment.
  • S5 is a stop
  • S12 is an object side surface of the cover glass CG
  • S13 is an image side surface of the cover glass CG
  • S14 is an imaging surface of the image sensor 11.
  • Table 1 and Table 2 below show the lens data of Example 1.
  • the temperature coefficient dn / dt of the refractive index n The “*” mark attached to the surface number “i” represents an aspherical surface.
  • a surface without the “*” mark on the surface number “i” is a spherical surface.
  • the temperature coefficient dn / dt of the refractive index is a value in the temperature range of 20 ° C. or more and 40 ° C. or less (the same applies to other examples described later).
  • the aspherical surface is expressed using the following aspherical surface expression.
  • Z is the depth (mm) of the aspheric surface
  • h is the distance from the optical axis to the lens surface (mm)
  • C is the paraxial curvature (ie, the paraxial radius of curvature).
  • K is the conic constant
  • Ai is the aspheric coefficient.
  • Table 2 shows “K” and “Ai” of each aspheric surface of Example 1 (see Table 1 *).
  • the third lens L3 is formed of glass having a negative temperature coefficient of refractive index. Then, as shown in Table 3 below, the imaging lens 10 of Example 1 includes the expressions (1) and (4) (expressions (2) to (4)), the expressions (5), (6), and The conditions of (11) and Expression (12) are satisfied.
  • FIG. 3A shows the astigmatism S in the sagittal (radial) direction and the astigmatism T in the tangential (meridional) direction of Example 1 at 20 ° C.
  • FIG. 3B shows the example at 20 ° C. 1 distortion.
  • FIG. 4 shows the MTF of Example 1 at 20 ° C.
  • FIG. 5 shows the MTF of Example 1 at 110 ° C. 4 and 5
  • the symbol F0 is the MTF at the theoretical limit (diffraction limit)
  • the symbol F1 is the MTF on the optical axis Z1.
  • Reference sign F2R is an MTF in the sagittal direction at a point 10 degrees from the optical axis Z1
  • reference sign F2T is an MTF in the tangential direction at a point 10 degrees from the optical axis Z1.
  • symbol F3R is an MTF in the sagittal direction at a point 20 degrees from the optical axis Z1
  • symbol F3T is an MTF in the tangential direction at a point 20 degrees from the optical axis Z1
  • symbol F4R is 30 to 30 from the optical axis Z1.
  • F4T is a tangential direction MTF at a point 30 degrees from the optical axis Z1
  • F5R is a sagittal direction MTF at a point 40 degrees from the optical axis Z1
  • the symbol F5T is an MTF in the tangential direction at a point 40 degrees from the optical axis Z1.
  • the imaging lens 10 of Example 1 has a low-cost and high-productivity configuration of 5 elements in 5 groups, and stably maintains good optical performance in a wide temperature environment. it can. Therefore, the imaging lens 10 of the first embodiment has a good temperature compensation function in a temperature environment where the in-vehicle camera or the like is placed.
  • Example 3 Example 4, Example 7, Example 8, and Example 12, as in Example 1, the imaging lens 10 in which the third lens L3 is formed of glass having a negative temperature coefficient of refractive index. It is. Therefore, Example 3, Example 4, Example 7, and Example 8 are the following expressions (1) to (4), expressions (5), (6), (11), and Satisfy the condition (12). However, in Example 12, the conditions of Formula (1), Formula (3) (Formula (2)), Formula (5), Formula (6), Formula (11), and Formula (12) are satisfied. This is an example that satisfies the condition of Equation (4), although it satisfies.
  • Example 2 Example 5, Example 6, Example 9, and Example 10 are imaging lenses 10 in which the fifth lens L5 is formed of anomalous dispersion glass. Therefore, Example 2, Example 5, Example 6, Example 9, and Example 10 are the same as the expression (1), the expression (2), the expression (5), the expression (8), and the expression ( 9), Expression (10), Expression (11), and Expression (12) are satisfied.
  • Example 11 is the imaging lens 10 which formed both the 3rd lens L3 and the 5th lens L5 with the anomalous dispersion
  • astigmatism and distortion are data at 20 ° C.
  • the MTF has a tendency similar to that of the first embodiment as shown in the second embodiment (see FIGS. 8 and 9) and the twelfth embodiment (see FIGS. 30 and 31).
  • the MTFs 3 to 11 are omitted.
  • an imaging lens having the same shape, arrangement, and imaging performance as the imaging lens 10 can be configured by changing the radius of curvature, refractive index, and other lens data. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

低コストかつ量産性に優れた車載カメラ等に好適な撮像レンズを提供する。 撮像レンズ(10)は、物体側から順に、負のパワーを有する第1レンズL1と、負のパワーを有する第2レンズL2と、正のパワーを有する第3レンズL3と、負のパワーを有する第4レンズL4と、正のパワーを有する第5レンズL5と、を備え、第3レンズL3または第5レンズL5の少なくとも一方を、屈折率の温度係数が負であるガラスを用いて形成し、かつ、全系の焦点距離をf、第3レンズL3または第5レンズL5のうち少なくとも一方の屈折率の温度係数をdn/dtとする場合に、dn/dt<-0.5 、及び、-2.90<f/(dn/dt)<-0.65を満たす。

Description

撮像レンズ
 本発明は、5群5枚構成の撮像レンズに関する。
 近年、監視カメラや車載カメラ等が普及している。監視カメラや車載カメラ(以下、車載カメラ等という)に搭載する撮像レンズとしては、例えば、5群5枚構成の撮像レンズが知られている(特許文献1~4)。また、車載カメラ等は、温度変化が大きい等の過酷な環境で使用するので、例えば、温度変化があっても光学性能を維持すること(以下、温度補償という)ができるようにした撮像レンズも知られている(特許文献5~6)。
 この他、車載カメラ等以外に使用する5群5枚構成の撮像レンズとしては、例えば、特許文献7~8に記載の撮像レンズが知られている。また、車載カメラ等以外に使用する温度補償をする撮像レンズとしては、特許文献9~11に記載の撮像レンズが知られている。
特開2003-307674号公報 特許第3943988号 特許第5065159号 特開2016-057563号公報 特許第5272614号 特開2014-197130号公報 特開平05-045583号公報 特開平09-090213号公報 特開2016-114648号公報 特開2016-126133号公報 特開2016-142767号公報
 前述の通り、車載カメラ等は過酷な環境で使用するので、環境温度の変化等に対する耐久性(以下、耐環境性という)を有することが求められる。例えば、自動車の死角を撮像する車載カメラの場合、車体の外部に設ける場合が多く、環境温度は、低温側ではマイナス温度になり、かつ、高温側では100度以上にもなる場合がある。このため、車載カメラ等を構成する撮像レンズは、非常に大きな範囲で温度補償することが求められる。
 一方、車載カメラ等の普及にともなって、その撮像レンズは、より低コストで量産性に優れたシンプルな構成であることが求められている。撮像レンズを低コストで量産性に優れたシンプルな構成とするためには、具体的には、構成するレンズの枚数ができる限り少ないことが望ましい。また、温度変化等に起因した肉厚または傾き等の設計値に対する誤差(製造誤差を含む)が、撮像レンズの光学性能、すなわち収差等に影響を与えにくい(以下、「誤差感度が低い」という)ことが望ましい。
 本発明は、低コストかつ量産性に優れた車載カメラ等に好適な撮像レンズを提供することを目的とする。
 本発明の撮像レンズは、物体側から順に、第1レンズと、第2レンズと、第3レンズと、第4レンズと、第5レンズと、絞りを備える。第1レンズは、負のパワーを有する。第2レンズは、負のパワーを有する。第3レンズは、正のパワーを有する。第4レンズは、負のパワーを有する。第5レンズは、正のパワーを有する。絞りは、第2レンズと第3レンズとの間に設けられる。第3レンズまたは第5レンズの少なくとも一方を、屈折率の温度係数が負であるガラスを用いて形成し、かつ、全系の焦点距離をf、第3レンズまたは第5レンズのうち、屈折率の温度係数が負であるガラスを用いて形成したレンズの屈折率の温度係数をdn/dtとする場合に、
  dn/dt<-0.5 、及び、
  -2.90<f/(dn/dt)<-0.65
を満たす。
 第3レンズを、屈折率の温度係数が負であるガラスを用いて形成し、全系の焦点距離をfとし、かつ、第3レンズの屈折率の温度係数をdn3/dtとする場合に、
  -2.90<f/(dn3/dt)<-0.80
を満たすことが好ましい。
 第3レンズを、屈折率の温度係数が負であるガラスを用いて形成し、第3レンズの焦点距離をf3とし、かつ、第3レンズの屈折率の温度係数をdn3/dtとする場合に、
  -6.50<f3/(dn3/dt)<-0.80
を満たすことが好ましい。
 第3レンズを、屈折率の温度係数が負であるガラスを用いて形成し、第3レンズの焦点距離をf3とし、かつ、第3レンズと第4レンズと第5レンズとからなる後群の焦点距離をf35とする場合に、
  0.60<f3/f35<2.05
を満たすことが好ましい。
 第5レンズを、屈折率の温度係数が負であるガラスを用いて形成し、全系の焦点距離をfとし、かつ、第5レンズの屈折率の温度係数をdn5/dtとする場合に、
  -2.50<f/(dn5/dt)<-0.65
を満たすことが好ましい。
 第5レンズを、屈折率の温度係数が負であるガラスを用いて形成し、第5レンズの焦点距離をf5とし、かつ、第5レンズの屈折率の温度係数をdn5/dtとする場合に、
  -8.50<f5/(dn5/dt)<-0.85
を満たすことが好ましい。
 第5レンズを、屈折率の温度係数が負であるガラスを用いて形成し、第5レンズの焦点距離をf5とし、かつ、第3レンズと第4レンズと第5レンズとからなる後群の焦点距離をf35とする場合に、
  0.70<f5/f35<7.00
を満たすことが好ましい。
 第3レンズと第4レンズと第5レンズとからなる後群の焦点距離をf35とし、かつ、第3レンズの物体側の面から第5レンズの像側の面までの距離をD35とする場合に、
  0.90<D35/f35<1.40
を満たすことが好ましい。
 第3レンズと第4レンズと第5レンズとからなる後群の焦点距離をf35とし、かつ、第1レンズの物体側の面から第5レンズの像側の面までの距離をTTとする場合に、
  2.50<TT/f35<4.50
を満たすことが好ましい。
 本発明は、物体側から順に、負のパワーを有する第1レンズと、負のパワーを有する第2レンズと、正のパワーを有する第3レンズと、負のパワーを有する第4レンズと、正のパワーを有する第5レンズと、を備え、第3レンズまたは第5レンズの少なくとも一方を、屈折率の温度係数が負であるガラスを用いて形成し、かつ、全系の焦点距離をf、第3レンズまたは第5レンズのうち、屈折率の温度係数が負であるガラスを用いて形成したレンズの屈折率の温度係数をdn/dtとする場合に、-2.90<f/(dn/dt)<-0.65を満たすので、低コストかつ量産性に優れた車載カメラ等に好適な撮像レンズを提供することができる。
撮像レンズの側面外観図である。 実施例1の撮像レンズの側面外観図である。 20℃における実施例1の(A)非点収差、及び、(B)ディストーションを示すグラフである。 20℃における実施例1のMTFを示すグラフである。 110℃における実施例1のMTFを示すグラフである。 実施例2の撮像レンズの側面外観図である。 20℃における実施例2の(A)非点収差、及び、(B)ディストーションを示すグラフである。 20℃における実施例2のMTFを示すグラフである。 110℃における実施例2のMTFを示すグラフである。 実施例3の撮像レンズの側面外観図である。 20℃における実施例3の(A)非点収差、及び、(B)ディストーションを示すグラフである。 実施例4の撮像レンズの側面外観図である。 20℃における実施例4の(A)非点収差、及び、(B)ディストーションを示すグラフである。 実施例5の撮像レンズの側面外観図である。 20℃における実施例5の(A)非点収差、及び、(B)ディストーションを示すグラフである。 実施例6の撮像レンズの側面外観図である。 20℃における実施例6の(A)非点収差、及び、(B)ディストーションを示すグラフである。 実施例7の撮像レンズの側面外観図である。 20℃における実施例7の(A)非点収差、及び、(B)ディストーションを示すグラフである。 実施例8の撮像レンズの側面外観図である。 20℃における実施例8の(A)非点収差、及び、(B)ディストーションを示すグラフである。 実施例9の撮像レンズの側面外観図である。 20℃における実施例9の(A)非点収差、及び、(B)ディストーションを示すグラフである。 実施例10の撮像レンズの側面外観図である。 20℃における実施例10の(A)非点収差、及び、(B)ディストーションを示すグラフである。 実施例11の撮像レンズの側面外観図である。 20℃における実施例11の(A)非点収差、及び、(B)ディストーションを示すグラフである。 実施例12の撮像レンズの側面外観図である。 20℃における実施例12の(A)非点収差、及び、(B)ディストーションを示すグラフである。 20℃における実施例12のMTFを示すグラフである。 110℃における実施例12のMTFを示すグラフである。
 図1に示すように、撮像レンズ10は、イメージセンサ11の撮像面S12に被写体の像を結像し、被写体を撮像するレンズである。撮像レンズ10は、光軸Z1に沿って、物体側から順に、負のパワーを有する第1レンズL1と、負のパワーを有する第2レンズL2と、正のパワーを有する第3レンズL3と、負のパワーを有する第4レンズL4と、正のパワーを有する第5レンズL5と、を備える5群5枚構成である。また、撮像レンズ10は、例えば、第2レンズL2と第3レンズL3の間に絞りS5を備える。イメージセンサ11は、カバーガラスCGによって撮像面S14を保護しているので、撮像レンズ10は、カバーガラスCGを介して撮像面S14に被写体の像を結像する。
 撮像レンズ10においては、第1レンズL1は、設置環境に露呈しても良いように、耐久性に優れた硝材で形成する。第2レンズL2は、他の第1レンズL1、第3レンズL3、第4レンズL4、第5レンズL5と比較してパワーが抑えられているが、ディストーション及び色収差の補正に寄与する。第3レンズL3は、主として球面収差の補正に寄与する。第4レンズL4は、第5レンズL5との間に、空気で形成するいわゆる空気レンズを形成することにより、主として非点収差及び色収差の補正に寄与する。第5レンズL5は、主として非点収差及び像面湾曲の補正に寄与する。
 本実施形態においては、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、及び、第5レンズL5はいずれもガラス製である。このため、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、及び、第5レンズL5は、これらを温度変化で膨張または収縮しやすい樹脂製にする場合よりも耐環境性を有する。なお、第1レンズL1、第2レンズL2、第3レンズL3、第4レンズL4、または、第5レンズL5のうちいずれか1または複数を樹脂製にすることができる。また、撮像レンズ10のレンズ鏡枠やスペーサ等(図示しない)の1または複数は樹脂製であるが、これらは、より耐環境性を有する材料(金属等)に変更することができる。
 第1レンズL1、第2レンズL2、及び、第4レンズL4は、物体側及び像側の両面を球面で形成した球面レンズである。第1レンズL1は、物体側に凸のメニスカス形状である。第2レンズL2は像側に凸のメニスカス形状である。第4レンズL4は、物体側に凸のメニスカス形状である。そして、第1レンズL1、第2レンズL2、及び、第4レンズL4は、いずれも負のパワーを有するいわゆる凹レンズである。なお、第1レンズL1、第2レンズL2、及び、第4レンズL4の屈折率の温度係数はいずれも正である。また、第2レンズL2は、他の第1レンズL1、第3レンズL3、第4レンズL4、第5レンズと比較して、パワーが抑えられたレンズとしている。
 第3レンズL3及び第5レンズL5は、いずれも正のパワーを有するいわゆる凸レンズである。第3レンズL3及び第5レンズL5は、物体側もしくは像側に凸のメニスカス形状であるか、または、物体側及び像側に凸の両凸形状に形成することができる。また、第3レンズL3及び第5レンズL5はいずれも、物体側または像側の面のうち少なくとも一方を非球面で形成した非球面レンズである。
 撮像レンズ10においては、第3レンズL3または第5レンズL5の少なくとも一方は、屈折率の温度係数が負であるガラスを用いて形成する。かつ、撮像レンズ10の全系の焦点距離(単位はmmである。以下同様。)をfとし、第3レンズL3または第5レンズL5のうち屈折率の温度係数が負であるガラスを用いて形成したレンズの屈折率の温度係数をdn/dtとする場合(すなわち、第3レンズL3または第5レンズL5のうち少なくとも一方の屈折率の温度係数をdn/dtとする場合)に、下記式(1)及び式(2)を満たす。温度係数dn/dtは、第3レンズL3を屈折率の温度係数が負であるガラスで形成する場合には、第3レンズL3の屈折率n3の温度係数dn3/dtであり(式(3)参照)、第5レンズL5を屈折率の温度係数が負であるガラスで形成する場合には、第5レンズの屈折率n5の温度係数dn5/dtである(式(7)参照)。第3レンズL3及び第5レンズL5の両方を屈折率の温度係数が負であるガラスで形成する場合には、第3レンズL3の屈折率n3の温度係数dn3/dtと、第5レンズの屈折率n5の温度係数dn5/dtと、がともに下記式(1)及び式(2)を満たす。
   dn/dt<-0.5   …(1)
   -2.90<f/(dn/dt)<-0.65   …(2)
 撮像レンズ10は、第3レンズL3または第5レンズL5を屈折率の温度係数が負であるガラスで形成することで、撮像レンズ10がおかれた環境等の温度変化に起因した撮像レンズ10または撮像レンズ10を含むユニットの部分的または全体的な膨張に応じて撮像レンズ10のバックフォーカスBFを変化させる。その結果、撮像レンズ10は、低温(例えば0℃以下)から高温(例えば100℃以上)の広い温度範囲において、好適な結像性能を維持する。式(1)は、実質的にみて屈折率の温度係数が負であることを表す。
したがって、式(1)は、厳密には屈折率の温度係数が負であったとしても、dn/dtが-0.5以上であって上記バックフォーカスBFの調整にほとんど寄与しないものを除くための条件である。
 式(2)は、撮像レンズ10がおかれた環境等の温度変化に起因した撮像レンズ10のバックフォーカスBFの変化を、低温から高温の広い温度範囲において、好適な結像性能を維持し得る範囲に収めるための条件である。f/(dn/dt)の値が式(2)の上限以上になると、高温時にバックフォーカスBFが短くなり過ぎて、好適な結像性能が得られにくくなる。逆に、f/(dn/dt)の値が式(2)の下限以下になると、高温時に、バックフォーカスBFが長くなりすぎて、好適な結像性能が得られにくくなる。また、f/(dn/dt)の値が式(2)の上限以上の場合、低温時にはバックフォーカスBFが短くなり過ぎて好適な結像性能が得られにくくなり、f/(dn/dt)の値が式(2)の下限以下の場合、低温時にはバックフォーカスが長くなりすぎて、好適な結像性能が得られにくくなる。
 なお、上記のように、バックフォーカスBFの調整による温度補償は、正のパワーを有するレンズを屈折率の温度係数が負であるガラスで形成した方が、効果を得やすく、あるいは、精度が良い。すなわち、撮像レンズ10において、第3レンズL3または第5レンズL5を屈折率の温度係数が負であるガラスで形成するのは、第3レンズL3及び第5レンズL5を正のパワーを有するからである。
 撮像レンズ10のバックフォーカスBFは、第5レンズL5の像側の面から撮像面S14までの距離である。本明細書等において「好適な結像性能」とは、60本/mm(cycle/mm)のラインペアのMTF(Modulation Transfer Function)(以下、単にMTFという)が0.4以上(40%以上)であることをいう。人間の視覚上は、MTFが概ね0.2以下になると像があきらかにボケていることが分かり、MTFが概ね0.3以上あれば撮像レンズ10は実用に耐え、MTFが概ね0.4以上であれば撮像レンズ10を好適に使用し得るからである。
 第3レンズL3を、屈折率の温度係数が負であるガラスを用いて形成し、全系の焦点距離をfとし、かつ、第3レンズL3の屈折率n3の温度係数をdn3/dtとする場合には、撮像レンズ10は、少なくとも下記式(3)を満たし、より好ましくは下記式(4)を満たす。
   -2.90<f/(dn3/dt)<-0.65   …(3)
   -2.90<f/(dn3/dt)<-0.80   …(4)
 また、第3レンズL3を、屈折率の温度係数が負であるガラスを用いて形成し、第3レンズL3の焦点距離をf3とし、かつ、第3レンズL3の屈折率n3の温度係数をdn3/dtとする場合に、撮像レンズ10は、下記式(5)を満たす。
   -6.50<f3/(dn3/dt)<-0.80   …(5)
 さらに、第3レンズL3を、屈折率の温度係数が負であるガラスを用いて形成し、第3レンズL3の焦点距離をf3とし、かつ、第3レンズL3と第4レンズL4と第5レンズL5とからなる後群の焦点距離をf35とする場合に、撮像レンズ10は、下記式(6)を満たす。
   0.60<f3/f35<2.05   …(6)
なお、本明細書において、後群とは、第2レンズL2と第3レンズとの間に設けられる絞りS5よりも像面側に含まれるレンズ群のことをいう。
 一方、第5レンズL5を、屈折率の温度係数が負であるガラスを用いて形成し、全系の焦点距離をfとし、かつ、第5レンズL5の屈折率n5の温度係数をdn5/dtとする場合に、撮像レンズ10は、少なくとも下記式(7)を満たし、好ましくは、下記式(8)を満たす。
   -2.90<f/(dn5/dt)<-0.65   …(7)
   -2.50<f/(dn5/dt)<-0.65   …(8)
 また、第5レンズL5を、屈折率の温度係数が負であるガラスを用いて形成し、第5レンズL5の焦点距離をf5とし、かつ、第5レンズL5の屈折率n5の温度係数をdn5/dtとする場合に、撮像レンズ10は下記式(9)を満たす。
   -8.50<f5/(dn5/dt)<-0.85   …(9)
 さらに、第5レンズL5を、屈折率の温度係数が負であるガラスを用いて形成し、第5レンズL5の焦点距離をf5とし、かつ、第3レンズL3と第4レンズL4と第5レンズL5とからなる後群の焦点距離をf35とする場合に、撮像レンズ10は、下記式(10)を満たす。
   0.70<f5/f35<7.00   …(10)
 第3レンズL3及び第5レンズL5の両方を屈折率の温度係数が負であるガラスで形成する場合には、撮像レンズ10は、第3レンズL3を屈折率の温度係数が負であるガラスで形成する場合に満たす式(3)または式(4)の条件と、第5レンズL5を屈折率の温度係数が負であるガラスで形成する場合に満たす式(7)または式(8)の条件と、を両方とも満たす。そして、第3レンズL3及び第5レンズL5の両方を屈折率の温度係数が負であるガラスで形成する場合、撮像レンズ10は、上記に加えて、式(5)、式(6)、式(9)、または、式(10)の条件を満たす。
 また、撮像レンズ10は、第3レンズL3と第4レンズL4と第5レンズL5とからなる後群の焦点距離をf35とし、かつ、第3レンズL3の物体側の面から第5レンズL5の像側の面までの距離をD35とする場合に、下記式(11)を満たす。
   0.90<D35/f35<1.40   …(11)
 また、撮像レンズ10は、第3レンズL3と第4レンズL4と第5レンズL5とからなる後群の焦点距離をf35とし、かつ、第1レンズL1の物体側の面から第5レンズL5の像側の面までの距離をTTとする場合に、下記式(12)を満たす。式(12)は、撮像レンズ10をコンパクトに構成するための条件であり、TT/f35の値が式(12)の上限以上になると撮像レンズ10が大型化し、TT/f35の値が式(12)の下限以下になると、良好な結像性能が得られ難くなる。
   2.50<TT/f35<4.50   …(12)
 [実施例]
 以下、撮像レンズ10の実施例を説明する。図2は、実施例1の撮像レンズ10の側面外観図である。面番号は第1レンズL1の物体側の面S1から順にSi(i=1~14)で示す。S5は絞りであり、S12はカバーガラスCGの物体側の面であり、S13はカバーガラスCGの像側の面であり、S14はイメージセンサ11の撮像面である。面間隔Di(i=1~13、単位mm)は、光軸Z1に沿った面Siから面Si+1の間隔である。第3レンズL3の物体側の面S6から第5レンズL5の像側の面S11までの距離D35は、D6からD10の合計である(D35=D6+D7+D8+D9+D10)。第1レンズL1の物体側の面S1から第5レンズL5の像側の面S11までの距離TTは、D1からD10の合計である(TT=D1+D2+D3+D4+D5+D6+D7+D8+D9+D10)。
 実施例1のレンズデータを下記表1及び表2に示す。表1は、実施例1の撮像レンズ10の各面Siの面番号「i」、各面Siの曲率半径Ri(i=1~12、単位mm)、面間隔Di、d線(波長587.6nm)に対する屈折率n、アッベ数νd(=(nd-1)/(nF-nC);nFはF線(波長486.1nm)に対する屈折率、nCはC線(波長656.3nm)に対する屈折率である)、屈折率nの温度係数dn/dtを示す。また、面番号「i」に付した「*」印は非球面であることを表す。面番号「i」に「*」印がない面は球面である。なお、屈折率の温度係数dn/dtは、温度が20℃以上40℃以下の範囲における値である(後述する他の実施例についても同じ)。
Figure JPOXMLDOC01-appb-T000001
 非球面は、下記数1の非球面式を用いて表す。数1の非球面式において、「Z」は非球面の深さ(mm)、「h」は光軸からレンズ面までの距離(mm)、「C」は近軸曲率(すなわち近軸曲率半径をR(mm)とする場合にC=1/Rである)、「K」は円錐定数、「Ai」は非球面係数である。表2には、実施例1の各非球面(表1*印参照)の「K」及び「Ai」を示す。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-T000003
 上記の通り、実施例1の撮像レンズ10は、第3レンズL3を屈折率の温度係数が負であるガラスで形成している。そして、下記表3に示す通り、実施例1の撮像レンズ10は、式(1)及び式(4)(式(2)~式(4))、式(5)、式(6)、式(11)、及び、式(12)の条件を満たす。
Figure JPOXMLDOC01-appb-T000004
 図3(A)は20℃における実施例1のサジタル(ラジアル)方向の非点収差Sと、タンジェンシャル(メリジオナル)方向の非点収差Tであり、図3(B)は20℃における実施例1のディストーションである。図4には、20℃における実施例1のMTFを示し、図5には、110℃における実施例1のMTFを示す。なお、図4及び図5において、符号F0は、理論限界(回折限界)におけるMTFであり、符号F1は、光軸Z1上におけるMTFである。符号F2Rは光軸Z1から10度の点におけるサジタル方向のMTFであり、かつ、符号F2Tは光軸Z1から10度の点におけるタンジェンシャル方向のMTFである。同様に、符号F3Rは光軸Z1から20度の点におけるサジタル方向のMTFであり、符号F3Tは光軸Z1から20度の点におけるタンジェンシャル方向のMTFであり、符号F4Rは光軸Z1から30度の点におけるサジタル方向のMTFであり、符号F4Tは光軸Z1から30度の点におけるタンジェンシャル方向のMTFであり、符号F5Rは光軸Z1から40度の点におけるサジタル方向のMTFであり、かつ、符号F5Tは光軸Z1から40度の点におけるタンジェンシャル方向のMTFである。ほぼ重なっているグラフについては括弧書きで示している。
 図3~図5から分かる通り、実施例1の撮像レンズ10は、5群5枚という低コストかつ量産性に優れた構成でありながら、幅広い温度環境下において安定して良好な光学性能を維持できる。したがって、実施例1の撮像レンズ10は、車載カメラ等がおかれる温度環境下において良好な温度補償機能を有する。
 以下、上記実施例1と同様に、実施例2~11の撮像レンズ10の側面外観図、各種レンズデータ、及び、各種収差を、図5~図31及び表4~表36に示す。実施例3、実施例4、実施例7、実施例8、及び実施例12は、実施例1と同様に、第3レンズL3を屈折率の温度係数が負であるガラスで形成した撮像レンズ10である。したがって、実施例3、実施例4、実施例7、及び、実施例8は、式(1)~式(4)と、式(5)、式(6)、式(11)、及び、式(12)の条件を満たす。但し、実施例12は、式(1)、並びに、式(3)(式(2))と、式(5)、式(6)、式(11)、及び、式(12)の条件を満たすが、式(4)の条件を満たさない例である。
 一方、実施例2、実施例5、実施例6、実施例9、及び、実施例10は、第5レンズL5を異常分散ガラスで形成した撮像レンズ10である。したがって、実施例2、実施例5、実施例6、実施例9、及び、実施例10は、式(1)並びに、式(2)、式(5)、及び式(8)と、式(9)、式(10)、式(11)、及び、式(12)の条件を満たす。
 そして、実施例11は、第3レンズL3及び第5レンズL5の両方を異常分散ガラスで形成した撮像レンズ10である。このため、実施例11は、第3レンズL3について式(1)~式(4)と、式(5)及び式(6)の条件を満たし、第5レンズL5について式(1)並びに、式(2)、式(7)、及び式(8)と、式(9)及び式(10)の条件を満たし、かつ、式(11)及び式(12)の条件を満たす。
 これらの実施例において、非点収差及びディストーションはいずれも20℃におけるデータである。また、MTFについては、実施例2(図8及び図9参照)及び実施例12(図30及び図31参照)に示す通り実施例1のものとほぼ同様の傾向のものとなるため、実施例3~11のMTFは省略する。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 なお、上記実施形態及び実施例は、種々の変更が可能である。例えば、上記実施例に挙げた撮像レンズ10以外にも、曲率半径や屈折率、その他レンズデータを変えて、形状や配置及び結像性能が撮像レンズ10と同等の撮像レンズを構成することができる。
 10 撮像レンズ
 L1 第1レンズ
 L2 第2レンズ
 L3 第3レンズ
 L4 第4レンズ
 L5 第5レンズ
 S5 絞り
 CG カバーガラス
 S14 撮像面

Claims (9)

  1.  物体側から順に、負のパワーを有する第1レンズと、負のパワーを有する第2レンズと、正のパワーを有する第3レンズと、負のパワーを有する第4レンズと、正のパワーを有する第5レンズと、前記第2レンズと前記第3レンズとの間に設けられる絞りとを備え、
     前記第3レンズまたは前記第5レンズの少なくとも一方を、屈折率の温度係数が負であるガラスを用いて形成し、かつ、
     全系の焦点距離をfとし、前記第3レンズまたは前記第5レンズのうち、屈折率の温度係数が負であるガラスを用いて形成したレンズの屈折率の温度係数をdn/dtとする場合に、
      dn/dt<-0.5 、及び、
      -2.90<f/(dn/dt)<-0.65
    を満たす撮像レンズ。
  2.  前記第3レンズを、屈折率の温度係数が負であるガラスを用いて形成し、全系の焦点距離をfとし、かつ、前記第3レンズの屈折率の温度係数をdn3/dtとする場合に、
      -2.90<f/(dn3/dt)<-0.80
    を満たす請求項1に記載の撮像レンズ。
  3.  前記第3レンズを、屈折率の温度係数が負であるガラスを用いて形成し、前記第3レンズの焦点距離をf3とし、かつ、前記第3レンズの屈折率の温度係数をdn3/dtとする場合に、
      -6.50<f3/(dn3/dt)<-0.80
    を満たす請求項1または2に記載の撮像レンズ。
  4.  前記第3レンズを、屈折率の温度係数が負であるガラスを用いて形成し、前記第3レンズの焦点距離をf3とし、かつ、前記第3レンズと前記第4レンズと前記第5レンズとからなる後群の焦点距離をf35とする場合に、
      0.60<f3/f35<2.05
    を満たす請求項1~3のいずれか1項に記載の撮像レンズ。
  5.  前記第5レンズを、屈折率の温度係数が負であるガラスを用いて形成し、全系の焦点距離をfとし、かつ、前記第5レンズの屈折率の温度係数をdn5/dtとする場合に、
      -2.50<f/(dn5/dt)<-0.65
    を満たす請求項1~4のいずれか1項に記載の撮像レンズ。
  6.  前記第5レンズを、屈折率の温度係数が負であるガラスを用いて形成し、前記第5レンズの焦点距離をf5とし、かつ、前記第5レンズの屈折率の温度係数をdn5/dtとする場合に、
      -8.50<f5/(dn5/dt)<-0.85
    を満たす請求項1~5のいずれか1項に記載の撮像レンズ。
  7.  前記第5レンズを、屈折率の温度係数が負であるガラスを用いて形成し、前記第5レンズの焦点距離をf5とし、かつ、前記第3レンズと前記第4レンズと前記第5レンズとからなる後群の焦点距離をf35とする場合に、
      0.70<f5/f35<7.00
    を満たす請求項1~6のいずれか1項に記載の撮像レンズ。
  8.  前記第3レンズと前記第4レンズと前記第5レンズとからなる後群の焦点距離をf35とし、かつ、前記第3レンズの物体側の面から前記第5レンズの像側の面までの距離をD35とする場合に、
      0.90<D35/f35<1.40
    を満たす請求項1~7のいずれか1項に記載の撮像レンズ。
  9.  前記第3レンズと前記第4レンズと前記第5レンズとからなる後群の焦点距離をf35とし、かつ、前記第1レンズの物体側の面から前記第5レンズの像側の面までの距離をTTとする場合に、
      2.50<TT/f35<4.50
    を満たす請求項1~8のいずれか1項に記載の撮像レンズ。
PCT/JP2018/016188 2017-04-26 2018-04-19 撮像レンズ WO2018198943A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18791144.1A EP3605180B1 (en) 2017-04-26 2018-04-19 Imaging lens
JP2019514448A JP6707714B2 (ja) 2017-04-26 2018-04-19 撮像レンズ
CN201880027311.3A CN110603471B (zh) 2017-04-26 2018-04-19 摄像镜头
US16/663,388 US11249285B2 (en) 2017-04-26 2019-10-25 Imaging lens with five lenses of --+-+ refractive powers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017087567 2017-04-26
JP2017-087567 2017-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/663,388 Continuation US11249285B2 (en) 2017-04-26 2019-10-25 Imaging lens with five lenses of --+-+ refractive powers

Publications (1)

Publication Number Publication Date
WO2018198943A1 true WO2018198943A1 (ja) 2018-11-01

Family

ID=63920416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/016188 WO2018198943A1 (ja) 2017-04-26 2018-04-19 撮像レンズ

Country Status (5)

Country Link
US (1) US11249285B2 (ja)
EP (1) EP3605180B1 (ja)
JP (2) JP6707714B2 (ja)
CN (1) CN110603471B (ja)
WO (1) WO2018198943A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124744A (ja) * 2018-01-12 2019-07-25 コニカミノルタ株式会社 撮像光学系及び撮像装置
WO2020262553A1 (ja) * 2019-06-26 2020-12-30 京セラ株式会社 撮像レンズ及び撮像装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360292B2 (en) * 2020-02-04 2022-06-14 United States Of America, As Represented By The Secretary Of The Army Compact objective lens with enhanced distortion for near-infrared imaging
CN114660762A (zh) * 2020-12-23 2022-06-24 宁波舜宇车载光学技术有限公司 光学镜头及电子设备
TWI787082B (zh) * 2022-02-14 2022-12-11 紘立光電股份有限公司 光學成像透鏡組、成像裝置及電子裝置
CN114895432B (zh) * 2022-04-13 2024-05-28 舜宇光学(中山)有限公司 玻塑混合定焦光学系统
WO2024062563A1 (ja) * 2022-09-21 2024-03-28 株式会社日立ハイテク 照明光学装置、および検査装置

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545583A (ja) 1991-08-08 1993-02-23 Ricoh Co Ltd 原稿読取用レンズ
JPH0990213A (ja) 1995-09-20 1997-04-04 Casio Comput Co Ltd 撮影レンズ
JPH09297264A (ja) * 1996-05-08 1997-11-18 Konica Corp レトロフォーカス型レンズ
JPH10260348A (ja) * 1997-03-19 1998-09-29 Fuji Photo Optical Co Ltd 内視鏡用対物レンズ
JP2003307674A (ja) 2002-04-18 2003-10-31 Kyocera Corp 超広角レンズ
JP3943988B2 (ja) 2002-05-15 2007-07-11 キヤノン株式会社 レンズ系及びそれを有する光学機器
JP2008158198A (ja) * 2006-12-22 2008-07-10 Olympus Imaging Corp 結像光学系及びそれを用いた撮像装置
US20120069140A1 (en) * 2010-09-20 2012-03-22 Largan Precision Co., Ltd. Wide-angle imaging lens assembly
JP5065159B2 (ja) 2007-07-05 2012-10-31 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5272614B2 (ja) 2008-09-26 2013-08-28 株式会社リコー 広角レンズ及びこの広角レンズを用いた撮像装置
JP2013174740A (ja) * 2012-02-24 2013-09-05 Hitachi Maxell Ltd 広角レンズおよび撮像装置
US20140063622A1 (en) * 2012-08-30 2014-03-06 Largan Precision Co., Ltd. Imaging lens assembly
US8699150B1 (en) * 2012-12-10 2014-04-15 Largan Precision Co., Ltd. Wide-angle image capturing lens assembly
JP2014197130A (ja) 2013-03-29 2014-10-16 キヤノン株式会社 撮像装置
JP2014228570A (ja) * 2013-05-20 2014-12-08 富士フイルム株式会社 広角撮像レンズおよび撮像装置
WO2015072094A1 (ja) * 2013-11-12 2015-05-21 パナソニックIpマネジメント株式会社 単焦点レンズ系、カメラ及び自動車
US20150185445A1 (en) * 2013-12-31 2015-07-02 Kolen Co., Ltd. Optical Lens System
WO2015107579A1 (ja) * 2014-01-20 2015-07-23 パナソニックIpマネジメント株式会社 単焦点レンズ系、カメラ及び自動車
JP2015143796A (ja) * 2014-01-31 2015-08-06 Hoya株式会社 広角レンズ
JP2016057563A (ja) 2014-09-12 2016-04-21 日本電産サンキョー株式会社 広角レンズ
US20160124183A1 (en) * 2014-10-30 2016-05-05 Largan Precision Co., Ltd. Photographing lens system, image capturing device and electronic terminal
JP2016114648A (ja) 2014-12-11 2016-06-23 株式会社タムロン 結像光学系
JP2016126133A (ja) 2014-12-26 2016-07-11 日本電産コパル株式会社 撮影レンズ及び光学機器
JP2016142767A (ja) 2015-01-29 2016-08-08 株式会社リコー 撮像光学系、ステレオカメラ装置、車載カメラ装置および各種装置
JP2018109667A (ja) * 2016-12-28 2018-07-12 株式会社タムロン 光学系及び撮像装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005111688A1 (ja) * 2004-05-17 2008-03-27 松下電器産業株式会社 投射レンズおよび背面投射型プロジェクション装置
JP2008134494A (ja) * 2006-11-29 2008-06-12 Topcon Corp 超広角光学系、撮像レンズ装置
US7684127B2 (en) 2007-07-05 2010-03-23 Fujinon Corporation Imaging lens and imaging device
JP5064154B2 (ja) * 2007-09-07 2012-10-31 日本電産ニッシン株式会社 超広角レンズ
JP5501022B2 (ja) * 2009-05-09 2014-05-21 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5283575B2 (ja) * 2009-06-25 2013-09-04 富士フイルム株式会社 画像読取レンズ及び画像読取装置
US8654242B2 (en) * 2009-09-02 2014-02-18 Konica Minolta Opto, Inc. Single-focus optical system, image pickup device, and digital apparatus
JP2012141464A (ja) * 2010-12-29 2012-07-26 Ricoh Co Ltd 画像読取レンズ、画像読取装置及び画像形成装置
JP5796466B2 (ja) * 2011-11-18 2015-10-21 株式会社ニコン 撮影レンズ及びこの撮影レンズを有する撮像装置
JP6128673B2 (ja) * 2012-10-29 2017-05-17 株式会社オプトロジック 撮像レンズ
JP6125796B2 (ja) * 2012-10-30 2017-05-10 日本電産サンキョー株式会社 広角レンズおよび広角レンズユニット
JP6364857B2 (ja) * 2013-03-29 2018-08-01 株式会社シグマ 防振機能を備えた変倍結像光学系
JP2015118152A (ja) * 2013-12-17 2015-06-25 富士フイルム株式会社 撮像レンズおよび撮像装置
JP2015190999A (ja) * 2014-03-27 2015-11-02 株式会社タムロン 結像光学系
WO2017173213A1 (en) * 2016-03-31 2017-10-05 Zoll Medical Corporation Systems and methods of tracking patient movement

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545583A (ja) 1991-08-08 1993-02-23 Ricoh Co Ltd 原稿読取用レンズ
JPH0990213A (ja) 1995-09-20 1997-04-04 Casio Comput Co Ltd 撮影レンズ
JPH09297264A (ja) * 1996-05-08 1997-11-18 Konica Corp レトロフォーカス型レンズ
JPH10260348A (ja) * 1997-03-19 1998-09-29 Fuji Photo Optical Co Ltd 内視鏡用対物レンズ
JP2003307674A (ja) 2002-04-18 2003-10-31 Kyocera Corp 超広角レンズ
JP3943988B2 (ja) 2002-05-15 2007-07-11 キヤノン株式会社 レンズ系及びそれを有する光学機器
JP2008158198A (ja) * 2006-12-22 2008-07-10 Olympus Imaging Corp 結像光学系及びそれを用いた撮像装置
JP5065159B2 (ja) 2007-07-05 2012-10-31 富士フイルム株式会社 撮像レンズおよび撮像装置
JP5272614B2 (ja) 2008-09-26 2013-08-28 株式会社リコー 広角レンズ及びこの広角レンズを用いた撮像装置
US20120069140A1 (en) * 2010-09-20 2012-03-22 Largan Precision Co., Ltd. Wide-angle imaging lens assembly
JP2013174740A (ja) * 2012-02-24 2013-09-05 Hitachi Maxell Ltd 広角レンズおよび撮像装置
US20140063622A1 (en) * 2012-08-30 2014-03-06 Largan Precision Co., Ltd. Imaging lens assembly
US8699150B1 (en) * 2012-12-10 2014-04-15 Largan Precision Co., Ltd. Wide-angle image capturing lens assembly
JP2014197130A (ja) 2013-03-29 2014-10-16 キヤノン株式会社 撮像装置
JP2014228570A (ja) * 2013-05-20 2014-12-08 富士フイルム株式会社 広角撮像レンズおよび撮像装置
WO2015072094A1 (ja) * 2013-11-12 2015-05-21 パナソニックIpマネジメント株式会社 単焦点レンズ系、カメラ及び自動車
US20150185445A1 (en) * 2013-12-31 2015-07-02 Kolen Co., Ltd. Optical Lens System
WO2015107579A1 (ja) * 2014-01-20 2015-07-23 パナソニックIpマネジメント株式会社 単焦点レンズ系、カメラ及び自動車
JP2015143796A (ja) * 2014-01-31 2015-08-06 Hoya株式会社 広角レンズ
JP2016057563A (ja) 2014-09-12 2016-04-21 日本電産サンキョー株式会社 広角レンズ
US20160124183A1 (en) * 2014-10-30 2016-05-05 Largan Precision Co., Ltd. Photographing lens system, image capturing device and electronic terminal
JP2016114648A (ja) 2014-12-11 2016-06-23 株式会社タムロン 結像光学系
JP2016126133A (ja) 2014-12-26 2016-07-11 日本電産コパル株式会社 撮影レンズ及び光学機器
JP2016142767A (ja) 2015-01-29 2016-08-08 株式会社リコー 撮像光学系、ステレオカメラ装置、車載カメラ装置および各種装置
JP2018109667A (ja) * 2016-12-28 2018-07-12 株式会社タムロン 光学系及び撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3605180A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019124744A (ja) * 2018-01-12 2019-07-25 コニカミノルタ株式会社 撮像光学系及び撮像装置
WO2020262553A1 (ja) * 2019-06-26 2020-12-30 京セラ株式会社 撮像レンズ及び撮像装置

Also Published As

Publication number Publication date
CN110603471A (zh) 2019-12-20
JPWO2018198943A1 (ja) 2019-12-26
US20200057280A1 (en) 2020-02-20
JP6707714B2 (ja) 2020-06-10
US11249285B2 (en) 2022-02-15
EP3605180A1 (en) 2020-02-05
JP7075441B2 (ja) 2022-05-25
CN110603471B (zh) 2022-05-31
EP3605180A4 (en) 2020-04-15
EP3605180B1 (en) 2021-11-17
JP2020122992A (ja) 2020-08-13

Similar Documents

Publication Publication Date Title
CN209606696U (zh) 摄像镜头
WO2018198943A1 (ja) 撮像レンズ
CN204302561U (zh) 摄像镜头以及摄像装置
JP5736924B2 (ja) 撮像レンズおよび撮像装置
CN113064258B (zh) 摄像镜头
CN108139569B (zh) 广角镜头
JP6827299B2 (ja) 撮像レンズ
CN111443458B (zh) 摄像镜头
CN105892013A (zh) 摄像镜头
WO2017086052A1 (ja) 撮像レンズ
CN113640945B (zh) 摄像镜头
JP2019184723A (ja) 撮像レンズ
JP2000019392A (ja) 撮影レンズ
CN105892017B (zh) 摄像镜头
JP6868424B2 (ja) 撮像レンズ
CN106707470B (zh) 摄像镜头
CN107450155B (zh) 光学镜头
CN114791660A (zh) 摄像镜头
WO2024210128A1 (ja) 撮像レンズ
CN219916061U (zh) 摄像镜头
JP2024128606A (ja) 撮像レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791144

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019514448

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018791144

Country of ref document: EP

Effective date: 20191022