WO2018198719A1 - 切削工具 - Google Patents

切削工具 Download PDF

Info

Publication number
WO2018198719A1
WO2018198719A1 PCT/JP2018/014693 JP2018014693W WO2018198719A1 WO 2018198719 A1 WO2018198719 A1 WO 2018198719A1 JP 2018014693 W JP2018014693 W JP 2018014693W WO 2018198719 A1 WO2018198719 A1 WO 2018198719A1
Authority
WO
WIPO (PCT)
Prior art keywords
sintered body
cutting tool
less
phase
tool according
Prior art date
Application number
PCT/JP2018/014693
Other languages
English (en)
French (fr)
Inventor
博香 青山
慶春 内海
裕明 後藤
津田 圭一
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2019514341A priority Critical patent/JP7143844B2/ja
Publication of WO2018198719A1 publication Critical patent/WO2018198719A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides

Definitions

  • the present invention relates to a cutting tool.
  • the present application claims priority based on Japanese Patent Application No. 2017-0868857 filed on April 26, 2017 and International Patent Application No. PCT / JP2017 / 042850 filed on November 29, 2017. The entire contents of the patent application are hereby incorporated by reference.
  • cutting tools are products that require high hardness.
  • hard materials sintered bodies
  • cemented carbide, cermet and the like are known.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-125229
  • Patent Document 2 Japanese Patent Laid-Open No. 2014-208889 discloses a sintered body including hard particles made of WC and a metal phase represented by (Co, Ni) 3 (Al, W, V, Ti). It is disclosed.
  • Cutting tool includes a sintered body containing the first hard phase, a binder phase and Al 2 O 3.
  • the first hard phase is made of WC.
  • the binder phase includes at least one first metal selected from Co and Ni as a main component, and further includes C and at least one second metal selected from Al and W.
  • Al 2 O 3 is dispersed in the sintered body.
  • FIG. 1 is a reference diagram related to the evaluation of a cutting tool.
  • an object of the present disclosure is to provide a cutting tool with improved wear resistance at high temperatures.
  • the notation in the form of “A to B” means the upper and lower limits of the range (that is, A or more and B or less), and the unit is not described in A but only the unit B is described The unit of A and the unit of B are the same.
  • a cutting tool includes a sintered body including a first hard phase, a binder phase, and Al 2 O 3 .
  • the first hard phase is made of WC.
  • the binder phase includes at least one first metal selected from Co and Ni as a main component, and further includes C and at least one second metal selected from Al and W.
  • Al 2 O 3 is dispersed in the sintered body.
  • the sintered body has improved wear resistance at high temperatures. By improving the wear resistance of the sintered body at a high temperature, it is possible to extend the life of the cutting tool.
  • the binder phase preferably includes a compound phase represented by the following formula. (Co, Ni) x (Al, W) y C z [Wherein (Co, Ni) is at least one selected from Co and Ni, (Al, W) is at least one selected from Al and W, and x, y, and z are atomic weight ratios. It is. This makes it possible for the sintered body to maintain high hardness, particularly at high temperatures.
  • x is 0.73 or more and 0.95 or less
  • y is 0.04 or more and 0.25 or less
  • z is 0.003 or more and 0.15 or less. This is because an improvement in wear resistance at high temperatures of the sintered body is expected.
  • x is preferably 0.75 or more and 0.93 or less
  • y is 0.05 or more and 0.2 or less
  • z is preferably 0.005 or more and 0.1 or less. This is because an improvement in wear resistance at high temperatures of the sintered body is expected.
  • x is preferably 0.8 or more and 0.9 or less
  • y is 0.06 or more and 0.15 or less
  • z is preferably 0.01 or more and 0.05 or less. This is because an improvement in wear resistance at high temperatures of the sintered body is expected.
  • the sintered body further includes a second hard phase.
  • the second hard phase is one or more metals selected from the group consisting of Ti, Zr, Hf, Nb, Ta, Cr, Mo and W, and one or more selected from the group consisting of nitrogen, carbon, boron and oxygen Or a solid solution of the compound (excluding WC).
  • the volume ratio of the first hard phase is larger than that of the second hard phase. This is because an improvement in wear resistance at high temperatures of the sintered body is expected.
  • Al 2 O 3 is preferably contained in the sintered body in an amount of 1% by volume to 15% by volume. In this case, the effect of improving the wear resistance at high temperatures can be obtained more reliably, and the effect of suppressing the decrease in the strength of the sintered body is expected.
  • Al 2 O 3 preferably has an average equivalent circle diameter of 0.1 ⁇ m to 2 ⁇ m, and a standard deviation of 0.05 ⁇ m to 0.25 ⁇ m. In this case, an effect of improving the hardness of the sintered body is expected. Moreover, the effect that the fall of the toughness of a sintered compact is suppressed is anticipated.
  • Al 2 O 3 preferably has an average equivalent circle diameter of 0.2 ⁇ m to 1 ⁇ m and a standard deviation of 0.05 ⁇ m to 0.15 ⁇ m. In this case, the effect of further improving the hardness of the sintered body is expected. Moreover, the effect that the fall of the toughness of a sintered compact is suppressed is anticipated.
  • Al 2 O 3 preferably has an average equivalent circle diameter of 0.3 ⁇ m or more and 0.5 ⁇ m or less and a standard deviation of 0.05 ⁇ m or more and 0.1 ⁇ m or less. In this case, the effect of further improving the hardness of the sintered body is expected. Moreover, the effect that the fall of the toughness of a sintered compact is suppressed is anticipated.
  • Al 2 O 3 preferably has an average interparticle distance of 1 ⁇ m to 3 ⁇ m, and a standard deviation of 0.5 ⁇ m to 1.5 ⁇ m. In this case, the effect of maintaining the hardness toughness balance is expected.
  • the ratio of the mass of O to the mass of C contained in the sintered body is preferably 0.015 or more and 0.061 or less. In this case, it is expected to satisfy [8] and [11].
  • the oxygen content in the sintered body is preferably 0.1% by mass or more and 0.4% by mass or less. In this case, an effect of improving the hardness of the sintered body and an effect of suppressing defects are expected.
  • the binder phase preferably has a lattice constant of 3.65 to 4.0 mm. In this case, an effect of maintaining the high hardness of the sintered body at a higher temperature and an effect of suppressing defects of the sintered body are expected.
  • [15] WC preferably has an average particle size of 0.1 ⁇ m or more and 3 ⁇ m or less. In this case, the effect which suppresses the defect
  • the binder phase content in the sintered body is preferably 2% by mass or more and less than 10% by mass. In this case, the effect which suppresses the defect
  • the present embodiment includes any conventionally known atomic ratio, and is not necessarily limited to a stoichiometric range.
  • the cutting tool according to the present embodiment includes the following sintered body.
  • Cutting tools include drills, end mills, drill tip changeable cutting tips, end mill tip replacement cutting tips, milling tip replacement cutting tips, turning tip replacement cutting tips, metal saws, and cutting tools. , Reamers, taps and the like.
  • a coating may be provided on the surface of the sintered body. Thereby, the characteristic of a film can be provided in a cutting tool.
  • a film having a thermal expansion coefficient of 7 ⁇ 10 ⁇ 6 / K or more and 9 ⁇ 10 ⁇ 6 / K or less is preferably used.
  • Ti, Al, Cr, Si, Hf, Zr, Mo, Nb, Ta More preferably, it is made of one or more metal nitrides or carbonitrides selected from the group consisting of V and W.
  • the coating preferably has oxidation resistance of 1000 ° C. or higher.
  • “having oxidation resistance of 1000 ° C. or higher” means that the coating layer is evaluated in the atmosphere using a thermal analysis-simultaneous differential thermal / thermogravimetric measurement (TG / DTA: Thermogravimetry / Differential Thermal Analysis) apparatus. This means that the temperature at which the weight increase occurs is 1000 ° C. or higher.
  • the composition constituting the coating layer having such oxidation resistance include AlTiSiN, AlCrN, TiZrSiN, CrTaN, HfWSiN, and CrAlN.
  • the film as described above can be formed by either PVD method or CVD method, but is preferably formed by PVD method. In this case, it is possible to form a denser film that does not easily crack.
  • the cathode arc ion plating method is preferably used in that the adhesion between the coating and the sintered body is remarkably improved.
  • the sintered body according to the present embodiment includes a first hard phase, a binder phase, and Al 2 O 3 .
  • the sintered body may contain components other than these as long as these are included.
  • the first hard phase is made of WC.
  • Al 2 O 3 is dispersed in the sintered body.
  • the binder phase contains at least one first metal selected from Co and Ni as a main component, and further contains at least one second metal selected from Al and W, and C.
  • the “main component” means a component having the largest blending ratio (mass%) among the components constituting the binder phase.
  • the sintered body contains C in the binder phase. For this reason, the high temperature hardness of the binder phase is improved by solid solution strengthening, so that the wear resistance of the sintered body at a high temperature is improved.
  • the binder phase is composed of a heat-resistant alloy (Co-base superalloy, Ni-base superalloy, etc.) instead of metallic Co.
  • a heat-resistant alloy is a material used for components used at high temperatures such as jet engines and gas turbines, and is excellent in heat resistance at high temperatures.
  • the sintered body contains Al 2 O 3 having a hardness higher than that of WC. As a result, the hardness of the sintered body itself is improved.
  • the first hard phase and the binder phase are preferably contained in a state dispersed in the sintered body. This improves the wear resistance of the sintered body at a high temperature.
  • the dispersed state means that the first hard phase and the binder phase are in contact with each other and the presence of the same kind of phases in the sintered body is relatively small.
  • the binder phase preferably contains a compound phase represented by the following formula. (Co, Ni) x (Al, W) y C z [Wherein (Co, Ni) is at least one selected from Co and Ni, (Al, W) is at least one selected from Al and W, and x, y, and z are atomic weight ratios. It is. ] Note that oxygen may be contained (solid solution) in the binder phase.
  • Such a sintered body contains (Co, Ni) x (Al, in the matrix phase ( ⁇ phase) composed of the first metal (Co, Ni) and the second metal (Al, W)) in the binder phase.
  • W by including a compound phase represented by y C z, the sintered body, it is possible to particularly maintaining high hardness at elevated temperatures.
  • X is preferably 0.73 or more and 0.95 or less
  • y is 0.04 or more and 0.25 or less
  • z is preferably 0.003 or more and 0.15 or less. This is because an improvement in wear resistance at high temperatures of the sintered body is expected.
  • X is preferably 0.75 or more and 0.93 or less
  • y is 0.05 or more and 0.2 or less
  • z is preferably 0.005 or more and 0.1 or less. This is because an improvement in wear resistance at high temperatures of the sintered body is expected.
  • X is preferably 0.8 or more and 0.9 or less
  • y is 0.06 or more and 0.15 or less
  • z is 0.01 or more and 0.05 or less. This is because an improvement in wear resistance at high temperatures of the sintered body is expected.
  • the sintered body preferably further includes a second hard phase.
  • the second hard phase is one or more metals selected from the group consisting of Ti, Zr, Hf, Nb, Ta, Cr, Mo and W, and one or more selected from the group consisting of nitrogen, carbon, boron and oxygen Or a solid solution of the compound (excluding WC).
  • the volume ratio of the first hard phase is larger than that of the second hard phase.
  • the binder phase Since the binder phase has a higher affinity for the first hard phase than the second hard phase, the volume ratio of the first hard phase is larger than that of the second hard phase. This is expected to improve the wear resistance of sintered bodies at high temperatures.
  • Al 2 O 3 is preferably contained in the sintered body in an amount of 1% by volume to 15% by volume. If the amount of Al 2 O 3 is too small, the effect of improving the wear resistance at high temperatures may not be obtained. On the other hand, if the amount of Al 2 O 3 is too large, the strength of the sintered body is likely to occur is reduced defects. For this reason, when the content ratio of Al 2 O 3 is in the above range, the effect of improving the wear resistance at high temperatures can be obtained more reliably, and the effect of suppressing the decrease in the strength of the sintered body is expected. .
  • Al 2 O 3 preferably has an average equivalent circle diameter of 0.1 ⁇ m to 2 ⁇ m and a standard deviation of 0.05 ⁇ m to 0.25 ⁇ m. Since Al 2 O 3 is fine, an effect of further improving the hardness of the sintered body is expected. On the other hand, if Al 2 O 3 is too fine, the toughness of the sintered body is lowered and defects are likely to occur, so that an effect of suppressing the toughness of the sintered body from being suppressed in the above range is expected.
  • Al 2 O 3 preferably has an average equivalent circle diameter of 0.2 ⁇ m or more and 1 ⁇ m or less, and a standard deviation of 0.05 ⁇ m or more and 0.15 ⁇ m or less. Since Al 2 O 3 is fine, an effect of further improving the hardness of the sintered body is expected. On the other hand, if Al 2 O 3 is too fine, the toughness of the sintered body is lowered and defects are likely to occur, so that an effect of suppressing the toughness of the sintered body from being suppressed in the above range is expected.
  • Al 2 O 3 preferably has an average equivalent circle diameter of 0.3 ⁇ m or more and 0.5 ⁇ m or less, and a standard deviation of 0.05 ⁇ m or more and 0.1 ⁇ m or less. Since Al 2 O 3 is fine, an effect of further improving the hardness of the sintered body is expected. On the other hand, if Al 2 O 3 is too fine, the toughness of the sintered body is lowered and defects are likely to occur, so that an effect of suppressing the toughness of the sintered body from being suppressed in the above range is expected.
  • Al 2 O 3 preferably has an average interparticle distance of 1 ⁇ m to 3 ⁇ m and a standard deviation of 0.5 ⁇ m to 1.5 ⁇ m. Since the binder phase is uniformly dispersed, an effect of maintaining the hardness-toughness balance is expected. When the distance between the particles deviates from 1 to 3 ⁇ m, the degree of dispersion of the binder phase is biased and defects are likely to occur.
  • the interparticle distance is set to one for each Al 2 O 3 particle. "Interparticle distance" in any one of Al 2 O 3 particles, the distance between the center of gravity of the Al 2 O 3 particles, and other Al 2 O 3 particles having a center of gravity to the position nearest the heavy center point It is.
  • the “average value of interparticle distance” is an average value of all “interparticle distances”.
  • the ratio of the mass of O to the mass of C contained in the sintered body is preferably 0.015 or more and 0.061 or less. Within this range, Al 2 O 3 is expected to uniformly disperse and precipitate to satisfy [8] and [11].
  • the oxygen content in the sintered body is preferably 0.1% by mass or more and 0.4% by mass or less. If the oxygen content is 0.1% by mass or less, Al 2 O 3 may not precipitate and the hardness may not be improved. If the oxygen content is 0.4% by mass or more, Al 2 O 3 aggregates and defects may easily occur. For this reason, when the oxygen content is in the above range, an effect of improving the hardness of the sintered body and an effect of suppressing defects are expected.
  • the binder phase preferably has a lattice constant of 3.65 to 4.0 mm.
  • the lattice constant of the binder phase is 3.65% or more, C dissolves and distortion occurs, so that high hardness can be maintained at higher temperatures.
  • the lattice constant of the binder phase is larger than 4.0%, the strain becomes large, and cracks may occur in the binder phase to cause defects. For this reason, when the lattice constant of the binder phase is in the above range, an effect of maintaining a high hardness of the sintered body at a higher temperature and an effect of suppressing defects of the sintered body are expected.
  • WC preferably has an average particle size of 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the average particle size is 0.1 ⁇ m or less, the toughness of the sintered body may be reduced and defects may occur.
  • the average particle diameter is 5 ⁇ m or more, the strength of the sintered body is lowered, and there is a possibility that defects are likely to occur. For this reason, when the average particle diameter of WC is said range, the effect which suppresses the defect
  • the binder phase content in the sintered body is preferably 2% by mass or more and less than 10% by mass.
  • the toughness of the sintered body may be reduced and defects may be easily generated.
  • the content of the binder phase is more than 10% by mass, the high temperature hardness of the sintered body may be easily lowered. For this reason, when the content rate of a binder phase exists in said range, the effect which suppresses the defect
  • the sintered body contains a hard phase (first hard phase and second hard phase), a binder phase (alloy powder) and Al 2 O 3 , and a hard phase (first hard phase and second hard phase). ),
  • a sample including an arbitrary cross section of the sintered body is prepared.
  • a focused ion beam device, a cross section polisher device, or the like can be used.
  • the processed cross section is imaged at a magnification of 10,000 with an SEM (Scanning Electron Microscope) to obtain an electronic image for 10 fields of view.
  • element mapping is performed on a predetermined region (12 ⁇ m ⁇ 9 ⁇ m) in each electronic image by using attached EPMA (Electron Probe Micro-Analysis) or EDX (Energy Dispersive X-ray spectroscopy).
  • the region containing WC is the first hard phase, the region does not contain WC, and includes the first metal (Ni, Co), the second metal (Al, W), and C.
  • a region is a binder phase, and a region containing Al and O is Al 2 O 3 .
  • the sintered body is hard phase (first hard phase and the second hard phase), it is confirmed that contains a binding phase and Al 2 O 3.
  • the composition of the binder phase and the ratio (volume%) of the binder phase in the sintered body are determined. Depending on the sintering conditions, pores may exist in addition to the hard phase and the binder phase.
  • the composition of the compound constituting the hard phase (the first hard phase and the second hard phase), and the WC (first hard phase) and each ratio (mass%) of the compound, the sintered body is pulverized, and the ICP emission It can be confirmed by obtaining the content ratio of each element in the pulverized product by spectroscopic analysis and estimating the composition ratio of each component based on this.
  • the content ratio of WC in the sintered body is relatively high, and for this reason, there are many regions where WCs are adjacent to each other. Adjacent WCs can be distinguished from each other by the result of element mapping and the reflected electron image obtained from the SEM image. This is because in the reflected electron image, a color difference (shading) due to a difference in crystal orientation of each WC is observed.
  • first, the first metal (Co, Ni) and the second metal (Al, W) are used as raw materials, and a bonded phase is produced by atomization, arc melting, plasma treatment, or the like.
  • V, Ti, Nb, Ta, B, C, etc. may be added in addition to the first metal (Co, Ni) and the second metal (Al, W). .
  • the obtained binder phase is pulverized by, for example, a bead mill, a ball mill, a jet mill or the like to become a binder phase powder.
  • the average particle size of the binder phase powder is preferably 0.3 to 3 ⁇ m.
  • the beads / balls used in the bead mill / ball mill include beads / balls made of alumina, silicon nitride, and cemented carbide having a particle diameter of 0.1 to 3 mm.
  • the dispersion medium include ethanol, acetone, and liquid nitrogen. Is mentioned.
  • the processing time by the bead mill / ball mill is, for example, 30 minutes to 200 hours.
  • the slurry obtained by the bead mill / ball mill is dried, for example, in the atmosphere.
  • a binder phase powder having oxygen adsorbed can be obtained by using air as a pulverization gas source and taking a long pulverization time.
  • a sintered body in which Al 2 O 3 is dispersed can also be obtained by directly adding Al 2 O 3 powder, but it is more preferable to deposit Al 2 O 3 as in this method.
  • the particle size of Al 2 O 3 can be reduced, which is preferable.
  • the obtained binder phase powder is mixed with the separately prepared WC powder and, if necessary, the second hard phase powder with an attritor, ball mill, mortar or the like. At this time, appropriate C is added in consideration of the amount of C contained in the binder phase.
  • the mixing time is preferably 6 to 20 hours so that oxygen is sufficiently and uniformly incorporated into the mixture.
  • Examples of the balls used in the ball mill include balls made of alumina, silicon nitride, or cemented carbide and having a diameter of 3 mm.
  • Examples of the dispersion medium include ethanol, acetone, and liquid nitrogen.
  • the processing time is, for example, 3 to 20 hours.
  • the mixed powder is obtained by drying the slurry obtained by mixing, for example, in the air. Upon mixing, the Al 2 O 3 dispersed in the sintered body Al 2 O 3 may be added to the powder (0.01 ⁇ 0.5 ⁇ m).
  • the obtained mixed powder is placed in, for example, a cemented carbide mold (Ta capsule or the like) and pressed to obtain a pressure-formed body.
  • the pressure of the press is preferably 10 MPa to 16 GPa, for example, 100 MPa.
  • the pressure-molded body is sintered in a vacuum.
  • the sintering temperature is preferably 1000 to 1800 ° C.
  • the sintering time is, for example, about 1 hour.
  • the keep time at 400 ° C. is set to 30 minutes to 5 hours to desorb C contained in the molded body, and finally the mass of C contained in the sintered body. Control is performed so that the ratio of the mass of O to (C / O ratio) becomes a desired value.
  • the first hard phase (WC) and the binder phase are densely sintered, and fine Al 2 O 3 is precipitated in the sintered body, so that the sintered body has improved wear resistance at high temperatures. Can be formed.
  • the cooling rate after sintering is set to 2 to 20 ° C./min, for example.
  • the compound phase represented by the following formula precipitates.
  • (Co, Ni) x (Al, W) y C z [Wherein (Co, Ni) is the first metal, (Al, W) is the second metal, and x, y and z are atomic weight ratios. ]
  • a hot isostatic pressing (HIP) process is performed at 1400 ° C. and 1000 atm for 1 hour to obtain a sintered body (alloy).
  • the average particle diameter of WC is preferably 0.1 to 10 ⁇ m, and the content of WC in the sintered body (hard material) is preferably 50 to 99% by volume. This is because the hardness of the obtained sintered body is expected to be higher when the particle size range and the composition range are in this range.
  • the average particle diameter of WC can be measured by the method using the above element mapping and image analysis software.
  • the sintered body of the present embodiment may contain inevitable impurities (B, N, O, etc.) within a range that does not impair the effects of the present disclosure.
  • the sintered body of the present embodiment may include an abnormal layer called free carbon or ⁇ phase in the structure.
  • Examples 1 to 50 Metal powder was mixed with a composition of 42.5Co-40Ni-10W-7.5Al (atomic%), and a binder phase was prepared by an atomizing method. (All metal powders used in Examples 1 to 50 are the same.) The obtained binder phase was pulverized by a bead mill using superhard balls having a particle diameter of 1 ⁇ m. The obtained slurry was dried in the air to obtain a binder phase powder.
  • the mixture was put into an open atmosphere attritor and mixed.
  • the mixing time of the attritor is as shown in Tables 1 and 2.
  • the obtained slurry was dried in the air to obtain a mixed powder.
  • the mixed powder was filled in a cemented carbide mold and pressed at a pressure of 100 MPa to obtain a pressure-formed body.
  • This press-molded body was sintered at 1450 ° C. for 1 hour under the sintering conditions described in Tables 1 and 2. At this time, by setting the keep time at 400 ° C. in a hydrogen atmosphere as shown in Table 1 and Table 2, C contained in the molded body is desorbed, and finally the C / O ratio contained in the sintered body is set. Control was performed as shown in Tables 3 and 4. Further, the cooling rate was adjusted as described in Tables 1 and 2. Thereby, (Co, Ni) x ( Al, W) y compound phase represented by C z precipitated.
  • a sintered body (hard material) was obtained by performing hot isostatic pressing (HIP) processing at 1400 ° C. under the condition of 1000 atm for 1 hour.
  • HIP hot isostatic pressing
  • the sintered body includes a hard phase (first hard phase and second hard phase), a binder phase (alloy powder) and Al 2 O 3 , and a hard phase (first hard phase and second hard phase);
  • the volume content of the binder phase or Al 2 O 3 , the composition of the binder phase, and the like were measured in the same manner as the method described in the above embodiment.
  • the amount of oxygen and the amount of C in the sintered body were measured by ICP emission spectroscopic analysis after pulverizing the sintered body.
  • the lattice constant of the binder phase was specified by EDS analysis and an electron beam diffraction image in a limited field of view of TEM observation.
  • JEM-2100F / Cs manufactured by JEOL Ltd.
  • Cs collector CESCOR (manufactured by CEOS) was used.
  • CEOS CEOS
  • EDS machine a JED2300 Series dry SD60GV detector (manufactured by JEOL Ltd.) was used.
  • the TEM observation conditions were acceleration voltage: 200 kV and probe size: 0.13 nm.
  • Boundary wear is a portion where wear increases due to strength reduction, chipping or particle dropout.
  • the binder phase is of the formula: (Co, Ni) x (Al, W) y C z [Wherein (Co, Ni) is the first metal, (Al, W) is the second metal, and x, y and z are atomic weight ratios. ] And x is 73 atom% or more and 95 atom% or less, y is 4 atom% or more and 25 atom% or less, and z is 0.3 atom% or more and 15 atom% or less. When it is below, it turns out that the abrasion resistance in high temperature is improving more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)

Abstract

切削工具は、第1硬質相、結合相およびAl2O3を含む焼結体を含む。第1硬質相はWCからなる。結合相は、主成分としてCoおよびNiから選択される少なくとも1種からなる第1金属を含み、さらに、AlおよびWから選択される少なくとも1種からなる第2金属と、Cと、を含む。Al2O3は、焼結体中に分散している。

Description

切削工具
 本発明は、切削工具に関する。本出願は、2017年4月26日に出願した日本特許出願である特願2017-086857号および2017年11月29日に出願した国際特許出願PCT/JP2017/042850に基づく優先権を主張する。当該特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
 高い硬度が要求される製品として、たとえば切削工具がある。このような製品に用いられる硬質材料(焼結体)としては、超硬合金、サーメットなどが知られている。
 ここで、切削工具等は高温に曝される場合が多く、高温では焼結体の摩耗が促進され、製品として所望される長さの寿命を達成できなくなる場合がある。このため、切削工具等に用いられる焼結体には、高温での耐摩耗性が求められる。
 超硬合金に高温での耐摩耗性を付与するために、たとえば、特許文献1(特開平9-125229号公報)には、超硬合金に高温での耐摩耗性に優れた被膜を形成する技術が開示されている。特許文献2(特開2014-208889号公報)には、WCからなる硬質粒子と、(Co,Ni)3(Al,W,V,Ti)で表される金属相とを含む焼結体が開示されている。
特開平9-125229号公報 特開2014-208889号公報
 本開示の一態様に係る切削工具は、第1硬質相、結合相およびAlを含む焼結体を含む。第1硬質相はWCからなる。結合相は、主成分としてCoおよびNiから選択される少なくとも1種からなる第1金属を含み、さらに、AlおよびWから選択される少なくとも1種からなる第2金属と、Cと、を含む。Alは、焼結体中に分散している。
図1は、切削工具の評価に関する参考図である。
 [本開示が解決しようとする課題]
 しかし、最近は、特に耐熱合金など、難削材への加工ニーズが高まっており、切削速度の向上も求められている。このため、切削工具には、より高温での耐摩耗性が求められる。特許文献1の技術では、被膜が剥がれてしまうと、たとえば焼結体中の結合相(金属コバルト等)の軟化等により急激に耐摩耗性が低下して、すぐに超硬合金が寿命に達してしまうため、特許文献1の技術はこのようなニーズに対して十分ではない。このため、焼結体の母材自体の高温での耐摩耗性を更に向上させることが望まれる。
 したがって、本開示の目的は、高温での耐摩耗性が向上した切削工具を提供することである。
 [本開示の効果]
 上記によれば、高温での耐摩耗性が向上した切削工具を提供することができる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様が列記して説明される。
 なお、本明細書において「A~B」という形式の表記は、範囲の上限下限(すなわちA以上B以下)を意味し、Aにおいて単位の記載がなく、Bにおいてのみ単位が記載されている場合、Aの単位とBの単位とは同じである。
 〔1〕本開示の一態様に係る切削工具は、第1硬質相、結合相およびAlを含む焼結体を含む。第1硬質相はWCからなる。結合相は、主成分としてCoおよびNiから選択される少なくとも1種からなる第1金属を含み、さらに、AlおよびWから選択される少なくとも1種からなる第2金属と、Cと、を含む。Alは、焼結体中に分散している。上記焼結体は、高温での耐摩耗性が向上している。焼結体の高温での耐摩耗性の向上により、切削工具の長寿命化が可能となる。
 〔2〕結合相は、下記式で表される化合物相を含んでいることが好ましい。
 (Co,Ni)(Al,W)
 〔式中、(Co,Ni)はCoおよびNiから選択される少なくとも1種であり、(Al,W)はAlおよびWから選択される少なくとも1種であり、x、yおよびzは原子量比率である。〕これにより、焼結体は、特に高温で高硬度を維持することが可能となる。
 〔3〕xは0.73以上0.95以下であり、yは0.04以上0.25以下であり、zは0.003以上0.15以下であることが好ましい。焼結体の高温での耐摩耗性の向上が期待されるためである。
 〔4〕xは0.75以上0.93以下であり、yは0.05以上0.2以下であり、zは0.005以上0.1以下であることが好ましい。焼結体の高温での耐摩耗性の向上が期待されるためである。
 〔5〕xは0.8以上0.9以下、yは0.06以上0.15以下、zは0.01以上0.05以下であることが好ましい。焼結体の高温での耐摩耗性の向上が期待されるためである。
 〔6〕焼結体は、さらに第2硬質相を含んでいることが好ましい。第2硬質相は、Ti、Zr、Hf、Nb、Ta、Cr、MoおよびWからなる群より選ばれる1種以上の金属と、窒素、炭素、硼素および酸素からなる群より選ばれる1種以上の元素と、からなる化合物、または、該化合物の固溶体(ただし、WCを除く)からなる。ここで、第1硬質相は、第2硬質相より体積比率が大きい。焼結体の高温での耐摩耗性の向上が期待されるためである。
 〔7〕Alは、焼結体中に1体積%以上15体積%以下含まれることが好ましい。この場合、高温での耐摩耗性の向上効果がより確実に得られ、焼結体の強度の低下を抑制する効果が期待される。
 〔8〕Alは、円相当径の平均値が0.1μm以上2μm以下であり、かつその標準偏差が0.05μm以上0.25μm以下であることが好ましい。この場合、焼結体の硬度が向上する効果が期待される。また、焼結体の靭性の低下が抑制される効果が期待される。
 〔9〕Alは、円相当径の平均値が0.2μm以上1μm以下であり、かつ、その標準偏差が0.05μm以上0.15μm以下であることが好ましい。この場合、更に焼結体の硬度が向上する効果が期待される。また、焼結体の靭性の低下が抑制される効果が期待される。
 〔10〕Alは円相当径の平均値が0.3μm以上0.5μm以下であり、かつ、その標準偏差が0.05μm以上0.1μm以下であることが好ましい。この場合、更に焼結体の硬度が向上する効果が期待される。また、焼結体の靭性の低下が抑制される効果が期待される。
 〔11〕Alは、粒子間距離の平均値が1μm以上3μm以下であり、かつ、その標準偏差が0.5μm以上1.5μm以下であることが好ましい。この場合、硬度靱性バランスが保たれる効果が期待される。
 〔12〕焼結体中に含まれるCの質量に対するOの質量の比(O/C比)が0.015以上0.061以下であることが好ましい。ここの場合、〔8〕と〔11〕を満たすことが期待される。
 〔13〕焼結体中の酸素の含有量が0.1質量%以上0.4質量%以下であることが好ましい。この場合、焼結体の硬度の向上効果と欠損の抑制効果が期待される。
 〔14〕結合相は、格子定数が3.65Å以上4.0Å以下であることが好ましい。この場合、より高温で焼結体の高い硬度を維持する効果と、焼結体の欠損を抑制する効果と、が期待される。
 〔15〕WCは、平均粒子径が0.1μm以上3μm以下であることが好ましい。この場合、焼結体の欠損を抑制する効果が期待される。
 〔16〕焼結体中の結合相の含有率が2質量%以上10質量%未満であることが好ましい。この場合、焼結体の欠損を抑制する効果と、焼結体の高温硬度の低下を抑制する効果が期待される。
 [本開示の実施形態の詳細]
 以下、本開示の実施形態(以下「本実施形態」と記される)が説明される。ただし、以下の説明は、本開示を限定するものではない。また、本明細書において化合物などを化学式で表す場合、原子比を特に限定しないときは従来公知のあらゆる原子比を含むものとし、必ずしも化学量論的範囲のものに限定されるものではない。
 <切削工具>
 本実施形態に係る切削工具は、下記の焼結体を含む。なお、切削工具としては、ドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップなどを例示することができる。
 また、焼結体の表面には被膜を備えてもよい。これにより、切削工具において被膜の特性を付与させることができる。
 被膜としては、7×10-6/K以上9×10-6/K以下の熱膨張係数を有する被膜を用いることが好ましく、Ti、Al、Cr、Si、Hf、Zr、Mo、Nb、Ta、VおよびWからなる群より選ばれた一種以上の金属の窒化物または炭窒化物からなることがより好ましい。
 さらに被膜は、1000℃以上の耐酸化性を有することが好ましい。ここで、「1000℃以上の耐酸化性を有する」とは、被覆層を熱分析-示差熱・熱重量同時測定(TG/DTA:Thermogravimetry/Differential Thermal Analysis)装置により、大気中で評価を行ない、重量増加が生じた温度が1000℃以上であることを意味する。このような耐酸化性を有する被覆層を構成する組成の好適な例としては、AlTiSiN、AlCrN、TiZrSiN、CrTaN、HfWSiN、CrAlN等を挙げることができる。
 上記のような被膜は、PVD法およびCVD法のいずれによっても形成することができるが、PVD法により形成されることが好ましい。この場合、より緻密で、亀裂が生じ難い被膜を形成することができる。特に、被膜と焼結体との密着性が格段に向上する点で、カソードアークイオンプレーティング法を用いることが好ましい。
 <焼結体>
 本実施形態に係る焼結体は、第1硬質相、結合相およびAlを含む。焼結体は、これらを含む限り、これら以外の成分を含んでいてもよい。第1硬質相はWCからなる。Alは、焼結体中に分散している。
 結合相は、主成分としてCoおよびNiから選択される少なくとも1種からなる第1金属を含み、さらに、AlおよびWから選択される少なくとも1種からなる第2金属と、Cと、を含む。なお、「主成分」とは、結合相を構成する成分のうち、最も配合割合(質量%)の大きな成分を意味する。このように、上記焼結体は、結合相中にCを含有する。このため、固溶強化によって結合相の高温硬度が向上することで、焼結体の高温での耐摩耗性が向上する。
 また、硬質相と結合相から成る超硬合金において、結合相が金属Coではなく耐熱合金(Co基超合金、Ni基超合金など)から構成される。耐熱合金はジェットエンジン、ガスタービン等、高温で使用される部品に用いられている材料であり高温での耐熱性に優れている。さらに、上記焼結体は、WCよりも硬度の高いAlを含んでいる。これらによって、焼結体そのものの硬度が向上している。
 第1硬質相と結合相とは、焼結体中に分散された状態で含まれることが好ましい。これにより焼結体の高温での耐摩耗性が向上する。ここで、分散された状態とは、第1硬質相と結合相とが接しており、同種の相同士の接触が比較的少ない状態で、焼結体中に存在することを言う。
 結合相は、下記式で表される化合物相を含んでいることが好ましい。
 (Co,Ni)(Al,W)
 〔式中、(Co,Ni)はCoおよびNiから選択される少なくとも1種であり、(Al,W)はAlおよびWから選択される少なくとも1種であり、x、yおよびzは原子量比率である。〕
 なお、結合相中には、酸素が含まれて(固溶して)いてもよい。
 このような焼結体は、結合相中〔第1金属(Co,Ni)および第2金属(Al,W)からなるマトリックス相(γ相)中〕に、(Co,Ni)(Al,W)で表される化合物相を含むことで、焼結体は、特に高温で高硬度を維持することが可能となる。
 xは0.73以上0.95以下であり、yは0.04以上0.25以下であり、zは0.003以上0.15以下であることが好ましい。焼結体の高温での耐摩耗性の向上が期待されるためである。
 xは0.75以上0.93以下であり、yは0.05以上0.2以下であり、zは0.005以上0.1以下であることが好ましい。焼結体の高温での耐摩耗性の向上が期待されるためである。
 xは0.8以上0.9以下、yは0.06以上0.15以下、zは0.01以上0.05以下であることが好ましい。焼結体の高温での耐摩耗性の向上が期待されるためである。
 焼結体は、さらに第2硬質相を含んでいることが好ましい。第2硬質相は、Ti、Zr、Hf、Nb、Ta、Cr、MoおよびWからなる群より選ばれる1種以上の金属と、窒素、炭素、硼素および酸素からなる群より選ばれる1種以上の元素と、からなる化合物、または、該化合物の固溶体(ただし、WCを除く)からなる。ここで、第1硬質相は、第2硬質相より体積比率が大きい。
 結合相は、第2硬質相よりも第1硬質相との方が親和性が高いため、第1硬質相の体積比率が第2硬質相より大きいことで、焼結体の耐摩耗性等が向上し、焼結体の高温での耐摩耗性の向上が期待される。
 Alは、焼結体中に1体積%以上15体積%以下含まれることが好ましい。Alの量が少なすぎると、高温での耐摩耗性の向上効果が得られない可能性がある。一方、Alの量が多すぎると、焼結体の強度が低下し欠損が生じやすくなる。このため、Alの含有率が上記の範囲である場合に、高温での耐摩耗性の向上効果がより確実に得られ、焼結体の強度の低下を抑制する効果が期待される。
 Alは、円相当径の平均値が0.1μm以上2μm以下であり、かつその標準偏差が0.05μm以上0.25μm以下であることが好ましい。Alが微細であることにより、更に焼結体の硬度が向上する効果が期待される。一方、Alが微細すぎると、焼結体の靱性が低下して、欠損が生じやすくなるため、上記の範囲において焼結体の靭性の低下が抑制される効果が期待される。
 Alは、円相当径の平均値が0.2μm以上1μm以下であり、かつ、その標準偏差が0.05μm以上0.15μm以下であることが好ましい。Alが微細であることにより、更に焼結体の硬度が向上する効果が期待される。一方、Alが微細すぎると、焼結体の靱性が低下して、欠損が生じやすくなるため、上記の範囲において焼結体の靭性の低下が抑制される効果が期待される。
 Alは円相当径の平均値が0.3μm以上0.5μm以下であり、かつ、その標準偏差が0.05μm以上0.1μm以下であることが好ましい。Alが微細であることにより、更に焼結体の硬度が向上する効果が期待される。一方、Alが微細すぎると、焼結体の靱性が低下して、欠損が生じやすくなるため、上記の範囲において焼結体の靭性の低下が抑制される効果が期待される。
 Alは、粒子間距離の平均値が1μm以上3μm以下であり、かつ、その標準偏差が0.5μm以上1.5μm以下であることが好ましい。結合相が均一に分散されていることで、硬度靱性バランスが保たれる効果が期待される。粒子間距離が1~3μmから外れると、結合相の分散度合が偏り、欠損が生じやすくなる。なお、粒子間距離とは、Al粒子のそれぞれに対して1つずつ設定されるものである。任意の一のAl粒子における「粒子間距離」は、該Al粒子の重心点と、該重心点から最も近い位置に重心点を有する他のAl粒子との距離である。そして「粒子間距離の平均値」とは、全ての「粒子間距離」の平均値である。
 焼結体中に含まれるCの質量に対するOの質量の比(O/C比)が0.015以上0.061以下であることが好ましい。この範囲においてAlが均一に分散析出し、〔8〕と〔11〕を満たすことが期待される。
 焼結体中の酸素の含有量が0.1質量%以上0.4質量%以下であることが好ましい。酸素の含有量が0.1質量%以下だとAlが析出せず硬度が向上しない可能性がある。酸素の含有量が0.4質量%以上だと、Alが凝集して、欠損が生じやすくなる可能性がある。このため、酸素の含有量が上記の範囲である場合に、焼結体の硬度の向上効果と欠損の抑制効果が期待される。
 結合相は、格子定数が3.65Å以上4.0Å以下であることが好ましい。結合相の格子定数が3.65Å以上である場合、Cが固溶し、歪が生じることで、より高温において高い硬度の維持が可能となる。結合相の格子定数が4.0Åより大きい場合、歪が大きくなり、結合相内に亀裂が生じて欠損が生じる可能性がある。このため、結合相の格子定数が上記の範囲である場合、より高温で焼結体の高い硬度を維持する効果と、焼結体の欠損を抑制する効果と、が期待される。
 WCは、平均粒子径が0.1μm以上3μm以下であることが好ましい。平均粒子径が0.1μm以下である場合、焼結体の靱性が低下して、欠損が生じる可能性がある。一方、平均粒子径が5μm以上である場合、焼結体の強度が低下して、欠損が生じやすくなる可能性がある。このため、WCの平均粒子径が上記の範囲である場合に、焼結体の欠損を抑制する効果が期待される。
 焼結体中の結合相の含有率が2質量%以上10質量%未満であることが好ましい。結合相の含有率が2質量%より少ない場合、焼結体の靱性が低下して、欠損が生じやすくなる可能性がある。結合相の含有率が10質量%より多い場合、焼結体の高温硬度が低下しやすくなる可能性がある。このため、結合相の含有率が上記の範囲にある場合、焼結体の欠損を抑制する効果と、焼結体の高温硬度の低下を抑制する効果が期待される。
 なお、焼結体が、硬質相(第1硬質相および第2硬質相)、結合相(合金粉末)およびAlを含むこと、並びに、硬質相(第1硬質相および第2硬質相)、結合相またはAlの体積含有率、WC(第1硬質相)の平均粒子径、Alの円相当径または粒子間距離、および、結合相の組成等は、次のようにして確認することができる。
 まず、焼結体の任意の断面を含む試料を作製する。断面の作製には、集束イオンビーム装置、クロスセクションポリッシャ装置等を用いることができる。次に、加工された断面をSEM(Scanning Electron Microscope)にて10000倍で撮像して、10視野分の電子画像を得る。次に、付属のEPMA(Electron Probe Micro-Analysis)またはEDX(Energy Dispersive X-ray spectrometry)を用いて、各電子画像中の所定領域(12μm×9μm)について、元素マッピングを行う。
 得られた元素マッピングに基づいて、WCを含む領域を第1硬質相とし、WCを含まない領域であり、かつ第1金属(Ni,Co)および第2金属(Al,W)およびCを含む領域を結合相とし、AlおよびOを含む領域をAlとする。これにより、焼結体が硬質相(第1硬質相および第2硬質相)、結合相およびAlを含むことが確認される。また元素マッピングから、結合相の組成および焼結体における結合相の割合(体積%)が決定される。なお、焼結条件によっては、硬質相および結合相以外に、空孔が存在する場合がある。
 さらに画像解析ソフト(「Mac-View I」、株式会社マウンテック製)により、焼結体中に点在するAlの円相当径(粒子の面積と同一の面積を持つ仮想円の直径)の平均値とその標準偏差、またWCの平均粒子径が算出される。なお各値は、10視野にて分析された結果の平均値である。
 また硬質相(第1硬質相および第2硬質相)を構成する化合物の組成、および、WC(第1硬質相)および化合物の各割合(質量%)は、焼結体を粉砕し、ICP発光分光分析法により、粉砕物における各元素の含有割合を求め、これに基づいて各成分の組成比を試算することにより確認することができる。
 なお、焼結体におけるWCの含有割合は比較的高く、このため、WC同士が隣接する領域が多く存在する。隣接するWC同士は、元素マッピングの結果とSEM画像から得られる反射電子像によって、区別することができる。反射電子像において、各WCの結晶方位の違いに起因した色の相違(濃淡)が観察されるためである。
 <焼結体の製造>
 本開示の一実施形態においては、まず、第1金属(Co,Ni)および第2金属(Al,W)を原料として使用し、アトマイズ、アーク溶解、プラズマ処理などにより、結合相を作製する。
 なお、結合相粉末を作製する際には、第1金属(Co,Ni)および第2金属(Al,W)以外に、V、Ti、Nb、Ta、B、Cなどを添加しても良い。
 得られた結合相は、例えばビーズミルやボールミル、ジェットミルなどによって粉砕されて、結合相粉末となる。結合相粉末の平均粒子径は、0.3~3μmであることが好ましい。ビーズミル/ボールミルに用いるビーズ/ボールとしては、例えば粒径0.1~3mmのアルミナ製、窒化ケイ素製、超硬合金製ビーズ/ボールが挙げられ、分散媒としては、例えばエタノールやアセトン、液体窒素が挙げられる。ビーズミル/ボールミルによる処理時間は、例えば30分~200時間である。ビーズミル/ボールミルにより得られたスラリーは、例えば大気中で乾燥させる。時間をかけて粉砕し、かつ大気中で乾燥させることにより空気中の酸素が吸着し焼結時、吸着酸素と結合相中のAlが反応し、Alを析出させることができる。また、他の方法として、ジェットミルで粉砕する場合、粉砕ガス源として空気を用い、粉砕時間を長くとることによっても酸素が吸着した結合相粉末を得ることができる。後述するように、Al粉末を直接添加することによってもAlが分散した焼結体を得ることができるが、本手法のようにAlを析出させる方が、よりAlの粒径を微細にすることができ好ましい。
 次に、得られた結合相粉末を、別途準備したWC粉末、および、必要に応じて第2硬質相粉末と、アトライター、ボールミル、乳鉢等によって混合する。この時、結合相中に含まれるC量を考慮して、適切なCを添加する。
 混合は、大気に開放した状態で行われる。これにより、混合物中に酸素が取り込まれる。焼結体(硬質材料)中にアルミナ(Al)を均一に分散させる目的で、酸素が十分かつ均一に混合物中に取り込まれるように、混合時間は、好ましくは6~20時間である。
 ボールミルに用いるボールとしては、例えばアルミナ製、窒化ケイ素製もしくは超硬合金製の直径3mmのボールが挙げられ、分散媒としては例えばエタノールやアセトン、液体窒素が挙げられる。処理時間は、例えば3~20時間である。混合により得られたスラリーを、例えば大気中で乾燥させることにより混合粉末が得られる。混合の際、焼結体中に分散したAlとしてAl微粉末(0.01~0.5μm)を添加しても良い。
 得られた混合粉末を、例えば、超硬合金製の金型(Taカプセルなど)に入れ、プレスすることにより加圧成形体を得る。プレスの圧力は好ましくは10MPa~16GPaであり、例えば、100MPaである。次に、加圧成形体を真空中で焼結する。焼結の温度は好ましくは1000~1800℃である。焼結時間は、例えば、1時間程度である。ここで、例えば、焼結時、400℃でのキープ時間を30分~5時間にすることで、成形体に含まれるCを脱離させ、最終的に焼結体中に含まれるCの質量に対するOの質量の比(C/O比)が所望の値になるように制御する。これにより、第1硬質相(WC)と結合相とが緻密に焼結され、且つ微細Alが焼結体中に析出することで、高温での耐摩耗性が向上した焼結体を形成することができる。
 更に、焼結後の冷却速度を、例えば、2~20℃/分にする。それにより、下式で表される化合物相が析出する。
(Co,Ni)(Al,W)
〔式中、(Co,Ni)は第1金属であり、(Al,W)は第2金属であり、x、yおよびzは原子量比率である。〕
 その後、例えば、1400℃で1000atmの条件で1時間の熱間静水圧成形(HIP:Hot Isostatic Pressing)処理を行なうことにより、焼結体(合金)を得ることができる。
 なお、WCの平均粒子径は0.1~10μmであることが好ましく、焼結体(硬質材料)中のWCの含有率は50~99体積%であることが好ましい。このような粒径範囲と組成範囲である場合、得られる焼結体の硬度がより高くなることが期待されるからである。なお、WCの平均粒子径は、上述の元素マッピングおよび画像解析ソフトを用いた方法により測定することができる。
 また、本実施形態の焼結体は、不可避不純物(B、N、O等)を本開示の効果を損なわない範囲で含んでいてもよい。また、本実施形態の焼結体は、その組織中に遊離炭素やη相と呼ばれる異常層を含んでいてもよい。
 以下、実施例を挙げて本開示をより詳細に説明するが、本開示はこれらに限定されるものではない。
 <実施例1~50>
 42.5Co-40Ni-10W-7.5Al(原子%)の組成で金属粉を混合し、アトマイズ法により、結合相を作製した。(実施例1~50で使用した金属粉は全て同じである。)
 得られた結合相を、粒径1μmの超硬ボールを用いてビーズミルにより粉砕した。得られたスラリーを大気中で乾燥させ、結合相粉末を得た。
 得られた結合相粉末と、表1および表2に記載された組成の硬質粒子(第1硬質相および第2硬質相)およびカーボン粉末とを、直径3.5mmの超硬合金製のボールとエタノールと共に、大気開放型のアトライターに投入し混合した。アトライターの混合時間は、表1および表2に記載のとおりである。得られたスラリーを大気中で乾燥させ、混合粉末を得た。
 混合粉末を超硬合金製の金型に充填して、100MPaの圧力でプレスすることにより、加圧成形体を得た。
 この加圧成形体を表1および表2に記載の焼結条件で、1450℃で1時間焼結した。この時、水素雰囲気で400℃のキープ時間を表1および表2のように設定することで、成形体に含まれるCを脱離させ、最終的に焼結体に含まれるC/O比を表3および表4になるようにコントロールした。更に、冷却速度を表1および表2に記載のように調整した。それにより、(Co、Ni)(Al、W)で表される化合物相が析出した。
 その後、1400℃で1000atmの条件で1時間の熱間静水圧成形(HIP:Hot Isostatic Pressing)処理を行なうことにより、焼結体(硬質材料)を得た。
 <比較例1>
 アトライターによる混合時に、密閉式のアトライターを用いることで、混合物の酸化を抑制させた。また、その混合後に得られたスラリーは、窒素雰囲気中で乾燥させた。また、焼結条件は、真空で、1450℃、1時間とした。また、結合相の配合比および作成の条件は、表2に示すとおりとした。それ以外の点は実施例と同様にして、焼結体を得た。
 <比較例2~3>
 焼結条件は真空で1450℃1時間焼結した。また、結合相の配合比および作成の条件は、表2に示すとおりとした。それ以外の点は実施例と同様にして、焼結体を得た。
 <比較例4>
 42.5Co-40Ni-10W-7.5Al(原子%)の金属粉の代わりに、粒子径が1.2μmの金属Co粉を用いた。また、結合相の配合比および作成の条件は、表2に示すとおりとした。それ以外の点は、比較例1と同様にして、焼結体を得た。
 (切削工具の作製)
 上記の各実施例および各比較例で得られた焼結体(硬質材料)を、ワイヤー放電加工により切断して仕上げ加工し、先端ノーズR0.8mmの切削工具を作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <切削工具の評価>
 上記で作製した各実施例および各比較例の切削工具のそれぞれについて、下記の切削条件でインコネル(登録商標)718(商品名、インコネル社製)を被削材としてNC旋盤で切削試験を行い、0.2km切削後の切削工具の逃げ面の摩耗量(μm)と境界摩耗量(μm)を測定した(図1参照)。
切削速度:50m/分
切り込み量:0.2mm
送り量:0.1mm/rev
切削油:あり
 <焼結体の物性評価>
 焼結体が、硬質相(第1硬質相および第2硬質相)、結合相(合金粉末)およびAlを含むこと、並びに、硬質相(第1硬質相および第2硬質相)、結合相またはAlの体積含有率、および、結合相の組成等は、上述の実施形態で説明した方法と同様にして測定された。
 焼結体中の酸素量およびC量は、焼結体を粉砕し、ICP発光分光分析法により測定された。
 結合相の格子定数は、TEM観察の制限視野におけるEDS分析および電子線回折像により特定した。なお、TEMとして、JEM-2100F/Cs(日本電子(株)製)を用いた。Csコレクタとして、CESCOR(CEOS社製)を用いた。EDS機として、JED2300 Series ドライSD60GV検出器(日本電子(株)製)を用いた。TEM観察条件は、加速電圧:200kV、プローブサイズ:0.13nmとした。
Figure JPOXMLDOC01-appb-T000003
 ※1 境界摩耗は、強度低下や欠損、粒子脱落により摩耗が大になる部分。
Figure JPOXMLDOC01-appb-T000004
 ※2 刃先が欠損していたため測定不可。
 ※3 刃先が欠損していたため測定不可。
 ※4 刃先が欠損していたため測定不可。
 ※5 0.1km切削した時点で刃先が欠損していたため、試験を中止した。
 表3および表4に示される結果から、本開示の切削工具である実施例1~50は、高温での耐摩耗性が向上していることが分かる。
 実施例1~10の結果から、結合相が、式:
 (Co,Ni)(Al,W)
 〔式中、(Co,Ni)は第1金属であり、(Al,W)は第2金属であり、x、yおよびzは原子量比率である。〕
で表される化合物相を含んでいる場合において、xは73原子%以上95原子%以下であり、yは4原子%以上25原子%以下であり、zは0.3原子%以上15原子%以下であるときに、高温での耐摩耗性がより向上していることが分かる。また、xは75原子%以上93原子%以下であり、yは5原子%以上20原子%以下であり、zは0.5原子%以上10原子%以下であるときに、高温での耐摩耗性がさらに向上していることが分かる。また、xは80原子%以上90原子%以下、yは6原子%以上15原子%以下、zは1原子%以上5原子%以下であるときに、高温での耐摩耗性が最も向上していることが分かる。
 実施例11および12の結果から、焼結体が、第2硬質相を含んでいる場合でも、第1硬質相が第2硬質相より体積比率が大きい場合は、高温での耐摩耗性が向上することが分かる。実施例50の結果から、第2硬質相を含んでいる方が、第2硬質相を含んでいない場合より高温での耐摩耗性が向上することが分かる。
 実施例13および14の結果から、焼結体中のAlの含有率が少なすぎると、高温での耐摩耗性の向上効果が得られない可能性があると考えられる。一方、実施例48および49の結果から、焼結体中のAlの含有率が多すぎると、焼結体の強度が低下して、欠損が生じやすくなると考えられる。
 実施例15~17の結果から、Alが微細であることにより、更に焼結体の硬度が向上する効果が期待されるが、一方で、Alが微細すぎると、焼結体の靱性が低下して、欠損が生じやすくなると考えられる。一方、実施例43~47の結果から、Alの径が大きすぎると、焼結体の強度が低下して欠損が生じやすくなると考えられる。
 実施例18および19の結果から、焼結体中に含まれるAlの粒子間距離が小さすぎると、結合相の分散度合が偏り、欠損が生じやすくなると考えられる。一方、実施例41および42の結果から、焼結体中に含まれるAlの粒子間距離が大きすぎると、焼結体の強度が低下し、欠損が生じやすくなると考えられる。
 実施例20および21の結果、並びに、実施例22および23の結果から、焼結体中に含まれるCの質量に対するOの質量の比(O/C比)が小さ過ぎる場合、焼結体中の酸素の含有量(合金酸素量)が少な過ぎる場合は、Alが少ないため、高温での耐摩耗性が低下すると考えられる。一方、実施例37および38の結果、並びに、実施例39および40の結果から、焼結体中の酸素の含有量(合金酸素量)が多すぎる場合、および、焼結体中に含まれるCの質量に対するOの質量の比(O/C比)が大きすぎる場合は、Alが凝集し、欠損が生じやすくなると考えられる。
 実施例24および25の結果から、結合相の格子定数が小さいと高温での耐摩耗性が低下すると考えられる。一方、実施例35および36の結果から、結合相の格子定数が大きすぎると、Cの固溶による歪が大きくなり、結合相内に亀裂が生じて欠損が生じやすくなると考えられる。
 実施例26および27の結果から、WCの平均粒子径が小さいと、焼結体の靱性が低下して、欠損が生じやすくなると考えられる。一方、実施例33および34の結果から、WCの平均粒子径が大きすぎると、焼結体の強度が低下して、欠損が生じやすくなると考えられる。
 実施例28~32の結果から、結合相の含有率が少なすぎると、焼結体の靱性が低下して、欠損が生じやすくなり、一方で、結合相の含有率が多すぎると、焼結体の高温硬度が低下しやすくなると考えられる。
 今回開示された実施形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本開示の範囲は上記した実施形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (16)

  1.  第1硬質相、結合相およびAlを含む焼結体を含む切削工具であって、
     前記第1硬質相はWCからなり、
     前記結合相は、主成分としてCoおよびNiから選択される少なくとも1種からなる第1金属を含み、さらに、AlおよびWから選択される少なくとも1種からなる第2金属と、Cと、を含み、
     前記Alは、前記焼結体中に分散している、切削工具。
  2.  前記結合相は、下記式で表される化合物相を含む、請求項1に記載の切削工具。
     (Co,Ni)(Al,W)
     〔式中、(Co,Ni)はCoおよびNiから選択される少なくとも1種であり、(Al,W)はAlおよびWから選択される少なくとも1種であり、x、yおよびzは原子量比率である。〕
  3.  前記xは0.73以上0.95以下であり、前記yは0.04以上0.25以下であり、前記zは0.003以上0.15以下である、請求項2に記載の切削工具。
  4.  前記xは0.75以上0.93以下であり、前記yは0.05以上0.2以下であり、前記zは0.005以上0.1以下である、請求項3に記載の切削工具。
  5.  前記xは0.8以上0.9以下、前記yは0.06以上0.15以下、前記zは0.01以上0.05以下である、請求項4に記載の切削工具。
  6.  前記焼結体は、さらに第2硬質相を含み、
     前記第2硬質相は、Ti、Zr、Hf、Nb、Ta、Cr、MoおよびWからなる群より選ばれる1種以上の金属と、窒素、炭素、硼素および酸素からなる群より選ばれる1種以上の元素と、からなる化合物、または、該化合物の固溶体(ただし、WCを除く)からなり、
     前記第1硬質相は、前記第2硬質相より体積比率が大きい、請求項1から請求項5のいずれか1項に記載の切削工具。
  7.  前記Alは、前記焼結体中に1体積%以上15体積%以下含まれる、請求項1から請求項6のいずれか1項に記載の切削工具。
  8.  前記Alは、円相当径の平均値が0.1μm以上2μm以下であり、かつその標準偏差が0.05μm以上0.25μm以下である、請求項1から請求項7のいずれか1項に記載の切削工具。
  9.  前記Alは、円相当径の平均値が0.2μm以上1μm以下であり、かつ、その標準偏差が0.05μm以上0.15μm以下である、請求項8に記載の切削工具。
  10.  前記Alは、円相当径の平均値が0.3μm以上0.5μm以下であり、かつ、その標準偏差が0.05μm以上0.1μm以下である、請求項9に記載の切削工具。
  11.  前記Alは、粒子間距離の平均値が1μm以上3μm以下であり、かつ、その標準偏差が0.5μm以上1.5μm以下である、請求項1から請求項10のいずれか1項に記載の切削工具。
  12.  前記焼結体中に含まれるCの質量に対するOの質量の比が0.015以上0.061以下である、請求項1から請求項11のいずれか1項に記載の切削工具。
  13.  前記焼結体中の酸素の含有量が0.1質量%以上0.4質量%以下である、請求項1から請求項12のいずれか1項に記載の切削工具。
  14.  前記結合相は、格子定数が3.65Å以上4.0Å以下である、請求項1から請求項13のいずれか1項に記載の切削工具。
  15.  前記WCは、平均粒子径が0.1μm以上3μm以下である、請求項1から請求項14のいずれか1項に記載の切削工具。
  16.  前記焼結体中の前記結合相の含有率が2質量%以上10質量%未満である、請求項1から請求項15のいずれか1項に記載の切削工具。
PCT/JP2018/014693 2017-04-26 2018-04-06 切削工具 WO2018198719A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019514341A JP7143844B2 (ja) 2017-04-26 2018-04-06 切削工具

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-086857 2017-04-26
JP2017086857 2017-04-26
PCT/JP2017/042850 WO2018198414A1 (ja) 2017-04-26 2017-11-29 切削工具
JPPCT/JP2017/042850 2017-11-29

Publications (1)

Publication Number Publication Date
WO2018198719A1 true WO2018198719A1 (ja) 2018-11-01

Family

ID=63918884

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/042850 WO2018198414A1 (ja) 2017-04-26 2017-11-29 切削工具
PCT/JP2018/014693 WO2018198719A1 (ja) 2017-04-26 2018-04-06 切削工具

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042850 WO2018198414A1 (ja) 2017-04-26 2017-11-29 切削工具

Country Status (3)

Country Link
JP (1) JP7143844B2 (ja)
TW (2) TW201839145A (ja)
WO (2) WO2018198414A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235533A (ja) * 1985-04-08 1986-10-20 Sumitomo Electric Ind Ltd 高耐熱性超硬合金
JPH11124650A (ja) * 1997-10-20 1999-05-11 Toshiba Tungaloy Co Ltd 酸化物により粒内分散強化されたwc含有超硬合金およびその製法
JP2000219931A (ja) * 1999-01-29 2000-08-08 Seco Tools Ab 超硬合金及びその製造方法
JP2005213525A (ja) * 2004-01-27 2005-08-11 Tungaloy Corp 複合酸化物分散焼結合金
JP2005336565A (ja) * 2004-05-27 2005-12-08 Kyocera Corp 超硬合金
JP2011098875A (ja) * 2009-11-09 2011-05-19 Sumitomo Electric Ind Ltd 立方晶窒化硼素焼結体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049378A (ja) 1999-06-03 2001-02-20 Ngk Spark Plug Co Ltd 耐摩耗性超硬合金焼結体及びその製造方法
JP5393004B2 (ja) 2007-06-27 2014-01-22 京セラ株式会社 超硬合金製小径棒状体および切削工具ならびにミニチュアドリル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235533A (ja) * 1985-04-08 1986-10-20 Sumitomo Electric Ind Ltd 高耐熱性超硬合金
JPH11124650A (ja) * 1997-10-20 1999-05-11 Toshiba Tungaloy Co Ltd 酸化物により粒内分散強化されたwc含有超硬合金およびその製法
JP2000219931A (ja) * 1999-01-29 2000-08-08 Seco Tools Ab 超硬合金及びその製造方法
JP2005213525A (ja) * 2004-01-27 2005-08-11 Tungaloy Corp 複合酸化物分散焼結合金
JP2005336565A (ja) * 2004-05-27 2005-12-08 Kyocera Corp 超硬合金
JP2011098875A (ja) * 2009-11-09 2011-05-19 Sumitomo Electric Ind Ltd 立方晶窒化硼素焼結体

Also Published As

Publication number Publication date
TW201839145A (zh) 2018-11-01
TW201843312A (zh) 2018-12-16
WO2018198414A1 (ja) 2018-11-01
JP7143844B2 (ja) 2022-09-29
JPWO2018198719A1 (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
CN111566241B (zh) 硬质合金和切削工具
EP3130685B1 (en) Cermet, method for producing cermet, and cutting tool
EP3130686B1 (en) Cermet and cutting tool
JP6292303B2 (ja) 被覆超硬合金
JP7272353B2 (ja) 超硬合金、切削工具および超硬合金の製造方法
JP2019031742A (ja) サーメット、切削工具、及びサーメットの製造方法
CN110168121B (zh) 硬质合金和切削工具
JP5559575B2 (ja) サーメットおよび被覆サーメット
JP7014340B1 (ja) 基材および切削工具
CN115243814A (zh) 切削工具
JP7013948B2 (ja) 基材および切削工具
CN113166862A (zh) 硬质合金以及包括其作为基材的切削工具
JP7035820B2 (ja) 基材および切削工具
JP7143844B2 (ja) 切削工具
JP7388431B2 (ja) 超硬合金及びそれを基材として含む切削工具
JP7087596B2 (ja) 切削工具
JP7473871B2 (ja) 耐摩耗性および耐欠損性にすぐれたwc基超硬合金製切削工具および表面被覆wc基超硬合金製切削工具
JP2019183201A (ja) 焼結体および回転ツール
JP2019090098A (ja) 焼結体および摩擦攪拌接合ツール
JP6459106B1 (ja) 超硬合金及び切削工具
WO2022172730A1 (ja) 超硬合金及びそれを基材として含む切削工具
JP2022133540A (ja) 切削工具
JP2022130147A (ja) 切削工具
WO2017199752A1 (ja) 工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18790740

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2019514341

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18790740

Country of ref document: EP

Kind code of ref document: A1