WO2018197432A1 - MONOLITHE POREUX CONTENANT DU TiO2 ET SON PROCEDE DE PREPARATION - Google Patents

MONOLITHE POREUX CONTENANT DU TiO2 ET SON PROCEDE DE PREPARATION Download PDF

Info

Publication number
WO2018197432A1
WO2018197432A1 PCT/EP2018/060376 EP2018060376W WO2018197432A1 WO 2018197432 A1 WO2018197432 A1 WO 2018197432A1 EP 2018060376 W EP2018060376 W EP 2018060376W WO 2018197432 A1 WO2018197432 A1 WO 2018197432A1
Authority
WO
WIPO (PCT)
Prior art keywords
monolith
porous monolith
porous
solution
weight
Prior art date
Application number
PCT/EP2018/060376
Other languages
English (en)
Inventor
Sophie BERNADET
Antoine Fecant
Denis Uzio
Rénal-Vasco BACKOV
Serge Ravaine
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to EP18724473.6A priority Critical patent/EP3615210A1/fr
Priority to AU2018258982A priority patent/AU2018258982A1/en
Priority to CN201880027993.8A priority patent/CN110545917A/zh
Priority to JP2019557592A priority patent/JP7203755B2/ja
Priority to US16/608,312 priority patent/US11077427B2/en
Publication of WO2018197432A1 publication Critical patent/WO2018197432A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/31Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/643Pore diameter less than 2 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/653500-1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/657Pore diameter larger than 1000 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0067Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the density of the end product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/007Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore distribution, e.g. inhomogeneous distribution of pores
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5041Titanium oxide or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • C04B2111/00827Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the field of the invention is that of materials with a hierarchical structure. More particularly, the present invention relates to a porous monolith containing TiO 2 and its method of preparation.
  • A. Araya et al. (US4888309) and A. Imhof et al. (Nature, vol 389, 30 October 1997, pp. 948-952) describe the implementation of sol-gel processes from alkoxides dissolved in an alcohol and hydrolysed by addition of a small amount of water, being recalled that most alkoxides are very reactive with water and do not give stable emulsions.
  • This document also describes the preparation of monodisperse macroporous materials of titanium oxide, zirconia or silica with pore diameters between 50 nm and several microns, from a monodisperse oil emulsion in formamide.
  • BP Binks (Advance Mater., 2002, 14, No. 24, p.1824-1827, December 17) discloses the preparation of porous silica from an emulsion stabilized by silica particles only, in the absence of surfactant .
  • J. S. Beck et al. describe the preparation of mesoporous solids constituted by a silicate or an aluminosilicate.
  • a patent application WO 2015/1 10772 describes the use of a material based on N-TiO 2 in the form of a porous monolith as a photocatalyst for the degradation of pollutants in air or in water under radiation in the visible spectrum or for the cracking of water in H 2 under radiation in the visible spectrum.
  • Another patent application FR 2975309 describes a mode of preparation of porous monolith containing TiO 2 and its use as a photocatalyst for the degradation of pollutants in air or in water under irradiation.
  • the monoliths claimed have apparent densities of the order of 1 g / mL.
  • porous monolithic material containing at least 20% by weight of TiO 2 and having an apparent density of less than 0.19 g / ml.
  • the combination of a high TiO 2 content and a low bulk density makes it possible to have monoliths with exposed TiO 2 surfaces increased compared to the prior art.
  • the invention describes a porous monolith containing from 20% to 70% by weight of TiO 2 relative to the total weight of the monolith, from 30% to 80% by weight of a refractory oxide selected from silica, alumina or silica-alumina with respect to the total weight of the monolith, and having an apparent density of less than 0.19 g / ml.
  • the apparent density is calculated by making the ratio between the mass of the porous monolith and its geometric volume.
  • said porous monolith has a mesoporous volume of 0.01 to 1 ml / g for a pore diameter between 0.2 and 50 nm, preferably between 0.05 and 0.5 ml / g.
  • said porous monolith has a macroporous volume of type I, ie whose pore diameter is greater than 50 nm and less than or equal to 1000 nm, between 0.1 and 3 ml / g, preferably between 0, 2 and 2.5 ml / g.
  • said porous monolith has a macroporous volume of type II, ie whose pore diameter is greater than 1 ⁇ and less than or equal to 10 ⁇ , of between 0.1 and 8 ml / g, preferably between 0 and 5 and 8 ml / g.
  • said photocatalyst in the form of a porous monolith has a mesoporosity and / or a macroporosity of type I and / or a macroporosity of type II as described above.
  • said porous monolith also has a macroporous volume of less than 0.5 mL / g for a pore diameter greater than 10 ⁇ .
  • the macroporous and mesoporous volumes are measured by mercury intrusion porosimetry according to ASTM D4284-83 at a maximum pressure of 4000 bar (400 MPa), using a surface tension of 484 dyne / cm and a contact angle of 140 °.
  • said photocatalyst in the form of a porous monolith has a specific surface area (measured according to the ASTM D 3663-78 standard established from the Brunauer method, Emmett, Teller, the BET method, as defined in S.Brunauer, PHEmmett , E.Teller, J. Am. Chem Soc., 1938, 60 (2), pp 309-319.) Between 150 and 700 m 2 / g, preferably between 200 and 600 m 2 / g.
  • the TiO 2 is in its anatase and rutile forms, the anatase: rutile ratio being preferably between 95: 5 and 50:50.
  • the invention also relates to a process for preparing said porous monolith, in which the Ti precursor is introduced at a step different from that of the silicon oxide and / or aluminum precursor.
  • the method comprises the following steps:
  • step a) mixing a solution containing a surfactant with an aqueous acidic solution to obtain an acidic aqueous solution comprising a surfactant; b) adding at least one precursor of silicon and / or aluminum to the solution obtained in step a); c) adding to the solution obtained in step b) at least one liquid organic compound, immiscible with the solution obtained in step b) to form an emulsion; d) the emulsion obtained in step c) is allowed to mature in the wet state to obtain a gel; e) washing the gel obtained in step d) with an organic solution; f) drying and calcining the gel obtained in step e) to obtain a porous monolith; g) impregnating a solution comprising at least one soluble precursor of titanium in the porosity of the porous monolith obtained in step f); h) optionally, the porous monolith obtained in step g) is allowed to mature in the wet state; i) drying and calcining the
  • group VIII according to the CAS classification corresponds to the metals of columns 8, 9 and 10 according to the new IUPAC classification.
  • micropores means pores whose diameter is less than 2 nm; mesopores pores whose diameter is greater than 2 nm and less than or equal to 50 nm and macropores pores whose diameter is greater than 50 nm, and more particularly macropores type I pores whose diameter is greater than 50 nm and less or equal to 1000 nm (1 ⁇ ), and type II macropores pores whose diameter is greater than 1 ⁇ and less than or equal to 10 ⁇ .
  • the porous monolith comprises between 20% and 70% by weight of TiO 2 relative to the total weight of the monolith, preferably between 20% and 60% by weight of TiO 2 .
  • the porous monolith according to the invention also comprises between 30% and 80% by weight of a refractory oxide chosen from silica, alumina or silica-alumina with respect to the total weight of the monolith, preferably between 40% and 80% by weight. % in weight.
  • the porous monolith according to the invention has a bulk density of less than 0.19 g / ml, preferably less than 0.16 g / ml.
  • the apparent density is calculated by making the ratio between the mass of the porous monolith and its geometric volume.
  • said porous monolith may contain at least one element M chosen from an element of groups IA, MA, VI 11 B, IB and NIA of the periodic table of elements in the metallic or oxidized state, alone or as a mixture.
  • the total content of element (s) M is between 0.001 and 20% by weight relative to the total weight of the porous monolith.
  • the porous monolith can be doped with one or more elements chosen from metal elements, such as for example elements V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb, La, Ce , Ta, Ti, non-metallic elements, such as for example C, N, S, F, P, or by a mixture of metallic and non-metallic elements.
  • metal elements such as for example elements V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb, La, Ce , Ta, Ti
  • non-metallic elements such as for example C, N, S, F, P, or by a mixture of metallic and non-metallic elements.
  • the content of doping element is between 0.001 and 5% by weight relative to the total weight of the porous monolith.
  • said porous monolith has a mesoporous volume of 0.01 to 1 ml / g, preferably between 0.05 and 0.5 ml / g, for a pore diameter of between 0.2 and 50 nm.
  • said porous monolith has a macroporous volume of type I, ie whose pore diameter is greater than 50 nm and less than or equal to 1000 nm (1 ⁇ ), of between 0.1 and 3 ml / g, of preferably between 0.2 and 2.5 mL / g, According to one variant, said porous monolith has a macroporous volume of type II, ie whose pore diameter is greater than 1 ⁇ and less than or equal to 10 ⁇ , of between 0.1 and 8 ml / g, preferably between 0 and 5 and 8 ml g.
  • said porous monolith has a mesoporosity and / or a macroporosity of type I and / or a macroporosity of type II.
  • said porous monolith also has a macroporous volume of less than 0.5 mL / g for a pore diameter greater than 10 ⁇ .
  • said porous monolith has a BET surface area of between 150 and 700 m 2 / g.
  • the invention also describes the method of preparation of said porous monolith, such that the precursor of Ti is introduced at a step different from that of the precursor of silicon oxide and / or aluminum:
  • step a) mixing a solution containing a surfactant with an aqueous acidic solution to obtain an acidic aqueous solution comprising a surfactant; b) adding at least one precursor of silicon and / or aluminum to the solution obtained in step a); c) adding to the solution obtained in step b) at least one liquid organic compound, immiscible with the solution obtained in step b) to form an emulsion; d) the emulsion obtained in step c) is allowed to mature in the wet state to obtain a gel; e) washing the gel obtained in step d) with an organic solution; f) drying and calcining the gel obtained in step e) to obtain a porous monolith; g) impregnating a solution comprising at least one soluble precursor of titanium in the porosity of the porous monolith obtained in step f); h) optionally, the porous monolith obtained in step g) is allowed to mature in the wet state; i) drying and calcining the
  • Step a) preparation of an acidic aqueous solution comprising a surfactant
  • a solution containing a surfactant is mixed with an acidic aqueous solution to obtain an acidic aqueous solution comprising a surfactant. This step is preferably carried out at room temperature.
  • the surfactant may be anionic, cationic, amphoteric or nonionic.
  • the surfactant is a cationic surfactant.
  • the surfactant is cetyl trimethylammonium bromide, or myristyltrimethylammonium bromide.
  • the acidic aqueous solution is preferably selected from aqueous solutions of inorganic acids such as nitric, sulfuric, phosphoric, hydrochloric or hydrobromic acid or of organic acids such as carboxylic or sulphonic acids, alone or as a mixture.
  • the acidic aqueous solution is chosen from an aqueous solution of hydrochloric acid or nitric acid.
  • the pH of the solution obtained in step a) is preferably less than 4.
  • Step b) (addition of at least one precursor of silicon and / or aluminum)
  • step b) of the process according to the invention at least one precursor of silicon and / or aluminum is added to the solution obtained in step a).
  • One or more precursors of aluminum and / or of alcoholate type silicon are preferably chosen.
  • one or more precursors of aluminum and / or silicon are chosen from aluminum isopropoxide, aluminum t-butylate, tetraethylorthosilicate or tetramethylorthosilicate.
  • the weight ratio "precursors / surfactant" is between 0.1 and 10, preferably between 0.2 and 5.
  • Step c) formation of an emulsion
  • step c) of the process according to the invention at least one liquid organic compound immiscible with the solution obtained in step b) is added to the solution obtained in step b) to form an emulsion.
  • This step is preferably carried out at room temperature.
  • the liquid organic compound is a hydrocarbon or a mixture of hydrocarbons having 5 to 15 carbon atoms, for example, dodecane may be mentioned.
  • the weight ratio "organic liquid compound / solution obtained in step b)" is between 0.2 and 5, preferably between 0.3 and 3.
  • Step d) formation of a gel
  • step d) of the process according to the invention the emulsion obtained in step c) is allowed to mature in the wet state in order to obtain a gel.
  • the maturation is carried out at a temperature between 5 and 80 ° C, preferably between 20 and 70 ° C.
  • the maturation is carried out for 1 to 30 days, preferably for 1 to 15 days.
  • step d) of the process according to the invention the gel obtained in step d) is washed with an organic solution. This step is preferably carried out at room temperature.
  • the organic solution is acetone, ethanol, methanol, isopropanol, tetrahydrofuran, ethyl acetate or methyl acetate, alone or as a mixture.
  • the washing step is repeated at least twice.
  • step f) of the process according to the invention the gel obtained in step e) is dried and calcined under air to obtain a porous monolith.
  • the drying is carried out at a temperature between 5 and 80 ° C, preferably between 20 and 75 ° C.
  • the drying is carried out for 1 to 30 days, preferably for 1 to 15 days.
  • the drying is generally carried out under air, preferably comprising between 0 and 80 grams of water per kilogram of air, an oxygen content of between 5% and 25% by volume and a carbon dioxide content of between 0% and 10% volume.
  • air is a combustion air of a hydrocarbon, preferably methane, or in heated air.
  • the calcination is carried out in air at a temperature between 300 and 1000 ° C, preferably between 350 and 900 ° C.
  • the calcination is carried out for 1 to 72 hours, preferably between 2 and 48 hours.
  • the calcination is carried out in two stages: a first temperature stage of between 120 and 250 ° C. for 1 to 10 hours, then a second temperature stage of between 300 and 950 ° C. for 2 to 24 hours. hours.
  • the calcination step is carried out under combustion air, preferably a methane combustion air comprising between 40 and 80 grams of water per kg of combustion air, an oxygen content of between 5% and 15%. % volume and a C0 2 content between 4% and 10% volume.
  • combustion air preferably a methane combustion air comprising between 40 and 80 grams of water per kg of combustion air, an oxygen content of between 5% and 15%. % volume and a C0 2 content between 4% and 10% volume.
  • a solution comprising at least one soluble precursor of titanium is impregnated into the porosity of the porous monolith obtained in step f).
  • the titanium precursor is chosen from a titanium alkoxide, very preferably the titanium precursor is chosen from titanium isopropoxide or tetraethylorthotitanate, alone or as a mixture.
  • titanium alkoxide precursor at least one other inorganic titanium precursor of ionic type or in the form of a colloidal sol.
  • Step h (optional step of maturation)
  • step h) of the process according to the invention the porous monolith obtained in step g) is allowed to mature in the wet state.
  • a maturation step is then carried out at a temperature between 5 and 80 ° C, preferably 20 to 75 ° C, and for 0.5 to 30 days, preferably for 1 to 15 days.
  • step h) of the process according to the invention the porous monolith obtained in step g) or h) is dried and calcined under air to obtain a porous monolith containing TiO 2 .
  • the drying is carried out at a temperature between 5 and 80 ° C, preferably between 20 and 75 ° C.
  • the drying is carried out for 1 to 30 days, preferably for 1 to 15 days.
  • the drying is generally carried out under combustion air of a hydrocarbon, preferably methane, or in heated air comprising between 0 and 80 grams of water per kilogram of combustion air, an oxygen content of between 5% and 25% volume and a carbon dioxide content between 0% and 10% volume.
  • a hydrocarbon preferably methane
  • heated air comprising between 0 and 80 grams of water per kilogram of combustion air, an oxygen content of between 5% and 25% volume and a carbon dioxide content between 0% and 10% volume.
  • the calcination is carried out under air at a temperature between 300 and 1000 ° C.
  • the calcination is carried out for 1 to 72 hours, preferably for 2 to 48 hours.
  • an air calcination step is carried out with a first temperature stage of between 80 and 150 ° C. for 1 to 10 hours, then a second temperature stage greater than 150 ° C. and less than or equal to 250 ° C. for a period of 1 to 10 hours. 1 to 10 hours, and finally a third temperature stage between 300 and 700 ° C for 0.5 to 24 hours.
  • the calcination step is carried out under combustion air, preferably a methane combustion air comprising between 40 and 80 grams of water per kg of combustion air, an oxygen content of between 5% and 15%. % volume and a C0 2 content between 4% and 10% volume.
  • the TiO 2 may be doped with one or more elements chosen from metal ions, such as, for example, elements V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb, La , Ce, Ta, Ti, non-metallic elements, such as for example C, N, S, F, P, or by a mixture of metallic and non-metallic elements, at any stage of said process and by any method known to those skilled in the art.
  • metal ions such as, for example, elements V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb, La , Ce, Ta, Ti
  • non-metallic elements such as for example C, N, S, F, P, or by a mixture of metallic and non-metallic elements, at any stage of said process and by any method known to those skilled in the art.
  • an element precursor M selected from an element of groups IA, MA, VIIIB, IB and NIA of the periodic table of elements in the metallic or oxidized state is added to steps a), b) and / or g), possibly after step i).
  • the precursor can be solubilized in solution, in the form of a solid powder or in the form of a colloidal sol.
  • step i) When it is desired to obtain the element M totally or partially in its metallic form, it will be possible, following step i), to carry out a reduction step under a flow of hydrogen at a temperature of between 100 and 600. ° C, during 0.5 to 24h.
  • the porous monolith containing TiO 2 according to the invention can advantageously be used in photocatalysis for the production of dihydrogen by dissociation of water.
  • Example 1 Solid A (not in accordance with the invention) Monolith TiO 2
  • the mixture is then poured into a petri dish of 5.5 cm internal diameter, which is installed in a saturator (the water vapor content is adjusted by saturator, according to the vapor pressure laws) for 7 days to gelation at room temperature.
  • the gel obtained is then washed with isopropanol (Aldrich TM, purity> 99.5%) twice in succession and then dried at room temperature for 2 days.
  • the gel is finally calcined in air in muffle furnace at 180 ° C for 2h, then at 350 ° C for 6h.
  • the solid A is then obtained in the form of a porous monolith based on TiO 2 .
  • the solid A has a mesoporous volume of 0.16 ml / g, a macroporous volume of type I of 0.19 ml / g and a macroporous volume of type II of 2.3 ml / g.
  • Solid A has a specific surface area of 94 m 2 / g.
  • the porous monolith A has a bulk density of 0.23 g / ml.
  • Example 2 Solid B (not in accordance with the invention) monolith TiO 2
  • the emulsion is then poured into a petri dish of 5.5 cm internal diameter, which is installed in a saturator for 7 days for gelling at room temperature.
  • the gel obtained is then washed a first time with anhydrous tetrahydrofuran (Aldrich TM, purity> 99%), then washed twice in succession with a mixture of anhydrous tetrahydrofuran / acetone (VWR TM, ACS grade) at 70/30 by volume.
  • Aldrich TM anhydrous tetrahydrofuran
  • VWR TM anhydrous tetrahydrofuran / acetone
  • the gel is then dried at room temperature for 7 days.
  • the gel is finally calcined in air in a muffle furnace at 200 ° C. for 2 hours and then at 450 ° C. for 6 hours.
  • the solid B is then obtained in the form of a porous monolith based on TiO 2 .
  • Solid B has a mesoporous volume of 0.29 ml / g, a marcoporous volume of type
  • Solid B has a specific surface area of 135 m 2 / g.
  • the porous monolith B has a bulk density of 1.1 g / ml.
  • Example 3 Solid C (in Accordance with the Invention) Monolith TiOp / SiOp
  • the emulsion is then poured into a petri dish of 5.5 cm internal diameter, which is installed in a saturator for 7 days for gelling at room temperature.
  • the gel obtained is then washed a first time with anhydrous tetrahydrofuran (Aldrich, purity> 99%), then washed twice in succession with a mixture of anhydrous tetrahydrofuran / acetone (VWR TM, ACS grade) at 70/30 by volume.
  • the gel is then dried at room temperature for 7 days.
  • the gel is finally calcined in air in a muffle furnace at 180 ° C. for 2 hours, then at 650 ° C. for 5 hours.
  • a porous SiO 2 -based monolith having a total pore volume of 10.5 ml / g is then obtained.
  • a solution containing 34 mL of distilled water, 44.75 mL of isopropanol (Aldrich TM, purity> 99.5%), 10.74 mL of hydrochloric acid (37% by weight, Aldrich TM, purity 97%) and 10.50 mL of titanium isopropoxide (Aldrich TM, 97% purity) is prepared with stirring. Part of this solution corresponding to the total pore volume is impregnated into the porosity of the monolith, then left to mature for 12 hours at room temperature. The monolith is then dried under ambient atmosphere for 24 hours. The step is repeated a second time.
  • the monolith is finally calcined in air in muffle furnace at 120 ° C for 2 hours, then at 180 ° C for 2 hours and finally at 400 ° C for 1 hour.
  • a porous monolith comprising TiO 2 in an SiO 2 matrix is then obtained.
  • Solid C has a mesoporous volume of 0.20 ml / g, a macroporous volume of type I of 1.15 ml / g and a macroporous volume of type II of 5.8 ml / g.
  • Solid C has a surface area of 212 m 2 / g.
  • the Ti element content measured by ICP-AES is 27.35% by weight, which is equivalent to 52.1% by weight of the semiconductor TiO 2 in the solid C.
  • the porous monolith C has a bulk density of 0.14 g / ml.
  • Example 4 Implementation of solids for the photocatalytic production of dihydrogen by dissociation of water in the gas phase
  • porous monoliths A, B and C are subjected to a photocatalytic production test of dihydrogen by dissociation of water in the gas phase in a continuous steel through-bed reactor equipped with a quartz optical window and a sintered glass frit. face of the optical window on which the solid is deposited.
  • the monoliths are placed on the sintered, their diameter being equal to the diameter of the reactor.
  • the irradiated surface for all photocatalysts is 8.042477.10 "04 m 2.
  • the tests were performed at room temperature under atmospheric pressure.
  • the production of dihydrogen gas produced from the photocatalytic reduction of the water entrained in the saturator is monitored by an analysis of the effluent every 4 minutes by gas chromatography
  • the UV-Visible irradiation source is supplied by a Xe-Hg lamp (Asahi TM, MAX302 TM)
  • the irradiation power is always maintained at 80 W / m 2 for a wavelength range between 315 and 400 nm.
  • the activity values show that the solid according to the invention has better performance when it is used in photocatalytic production of dihydrogen by dissociation of water.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Monolithe poreux comprenant entre 20% et 70% en poids de Ti02par rapport au poids total du monolithe, entre 30% et 80% en poids d'un oxyde réfractaire choisi parmi la silice, l'alumine ou la silice-alumine par rapport au poids total du monolithe, caractérisé en ce que ledit monolithe poreux comprend une densité apparente inférieure à 0,19 g/mL.

Description

MONOLITHE POREUX CONTENANT DU Ti02 ET SON PROCEDE DE PREPARATION Domaine technique
Le domaine de l'invention est celui des matériaux à structure hiérarchisée. Plus particulièrement la présente invention concerne un monolithe poreux contenant du Ti02 et son procédé de préparation.
Etat de la technique
Il est connu de préparer des monolithes à base d'oxydes inorganiques, notamment de silice, présentant des porosités multiples. La macroporosité étant obtenue par un procédé de mise en forme par émulsion directe.
A. Araya et al. (US4888309) et A. Imhof et al. (Nature, vol. 389, 30 October 1997, p. 948- 952) décrivent la mise en œuvre de procédés sol-gel à partir d'alcoxydes dissous dans un alcool et hydrolysés par addition d'une faible quantité d'eau, étant rappelé que la plupart des alcoxydes sont très réactifs avec l'eau et ne donnent pas d'émulsions stables. Ce document décrit en outre la préparation de matériaux macroporeux monodisperses d'oxyde de titane, de zircone ou de silice avec des diamètres de pore entre 50 nm et plusieurs micromètres, à partir d'une émulsion monodisperse d'huile dans le formamide.
B. P. Binks (Adv. Mater. 2002, 14, n° 24, p.1824-1827, December 17) décrit la préparation de silice poreuse à partir d'une émulsion stabilisée par des particules de silice uniquement, en l'absence de tensioactif. J. S. Beck et al. (J. Am. Chem. Soc. 1992, 1 14, 10834-10843) décrivent la préparation de solides mésoporeux constitutés par un silicate ou un aluminosilicate.
Une demande de brevet WO 2015/1 10772 décrit l'utilisation d'un matériau à base de N-Ti02 sous la forme d'un monolithe poreux en tant que photocatalyseur pour la dégradation de polluants dans l'air ou dans l'eau sous rayonnement dans le spectre visible ou pour le craquage de l'eau en H2 sous rayonnement dans le spectre visible.
Un autre dépôt de brevet FR 2975309 décrit un mode de préparation de monolithe poreux contenant du Ti02 et son utilisation en tant que photocatalyseur pour la dégradation de polluants dans l'air ou dans l'eau sous irradiation. Les monolithes revendiqués présentent des densités apparentes de l'ordre de 1 g/mL.
Il est également connu de M. Tahir et N. S. Amin (Appl. Catal. A : General 467 (2013) 483- 496 et Chem. Eng. J., 230 (2013) 314-327) d'utiliser un monolithe de type « nid d'abeille » contenant des canaux de taille millimétrique enduits d'un composé semiconducteur. Ce type d'objet présente également une forte densité par unité de volume (de l'ordre de 0,8 à 0,9 g/mL).
Cependant, aucun des documents de l'art antérieur ne décrit de matériau de type monolithe poreux contenant au moins 20% poids de Ti02 et présentant une densité apparente inférieure à 0,19 g/mL. Selon l'objet de l'invention, l'association d'une teneur élevée en Ti02 ainsi qu'une densité apparente faible permet de disposer de monolithes avec des surfaces exposées de Ti02 augmentées par rapport à l'art antérieur. Ces propriétés permettent au monolithe selon l'invention d'être avantageusement mis en œuvre dans des applications catalytiques ou photocatalytiques.
Plus particulièrement, l'invention décrit un monolithe poreux contenant de 20% à 70% en poids de Ti02 par rapport au poids total du monolithe, de 30% à 80% en poids d'un oxyde réfractaire choisi parmi la silice, l'alumine ou la silice-alumine par rapport au poids total du monolithe, et ayant une densité apparente inférieure à 0,19 g/mL. La densité apparente se calcule en faisant le ratio entre la masse du monolithe poreux et son volume géométrique.
Selon une variante, ledit monolithe poreux possède un volume mésoporeux de 0,01 à 1 mL/g pour un diamètre de pore entre 0,2 et 50 nm, de préférence entre 0,05 et 0,5 mL/g.
Selon une variante, ledit monolithe poreux possède un volume macroporeux de type I, i.e. dont le diamètre de pores est supérieur à 50 nm et inférieur ou égal à 1000 nm, compris entre 0,1 et 3 mL/g, de préférence entre 0,2 et 2,5 ml_/g.
Selon une variante, ledit monolithe poreux possède un volume macroporeux de type II, i.e. dont le diamètre de pores est supérieur à 1 μηη et inférieur ou égal à 10 μπι, compris entre 0,1 et 8 mL/g, de préférence entre 0,5 et 8 ml_/g.
Selon une variante préféré, ledit photocatalyseur sous forme de monolithe poreux possède une mésoporosité et/ou une macroporosité de type I et/ou une macroporosité de type II tels que décrits ci-avant.
Selon une variante, ledit monolithe poreux possède en outre un volume macroporeux inférieur à 0,5 mL/g pour un diamètre de pore supérieur à 10 μηη.
Les volumes macroporeux et mésoporeux sont mesurés par porosimétrie par intrusion de mercure selon la norme ASTM D4284-83 à une pression maximale de 4000 bar (400MPa), utilisant une tension de surface de 484 dyne/cm et un angle de contact de 140°. Selon une variante, ledit photocatalyseur sous forme de monolithe poreux possède une surface spécifique (mesurée selon la norme ASTM D 3663-78 établie à partir de la méthode Brunauer, Emmett, Teller, i.e. méthode BET, telle que définie dans S.Brunauer, P.H.Emmett, E.Teller, J. Am. Chem. Soc, 1938, 60 (2), pp 309-319.) comprise entre 150 et 700 m2/g, de manière préférée entre 200 et 600 m2/g.
De préférence, le Ti02 se présente sous ses formes anatase et rutile, le ratio anatase : rutile étant de préférence compris entre 95:5 et 50:50.
L'invention se rapporte également à une procédé de préparation dudit monolithe poreux, dans lequel le précurseur de Ti est introduit à une étape différente de celle du précurseur d'oxyde de silicium et/ou d'aluminium. Le procédé comprend les étapes suivantes :
a) on mélange une solution contenant un tensioactif avec une solution aqueuse acide pour obtenir une solution aqueuse acide comprenant un tensioactif ; b) on ajoute au moins un précurseur de silicium et/ou d'aluminium à la solution obtenue à l'étape a) ; c) on ajoute à la solution obtenue à l'étape b) au moins un composé organique liquide, non miscible à la solution obtenue à l'étape b) pour former une émulsion ; d) on laisse maturer à l'état humide l'émulsion obtenue à l'étape c) pour obtenir un gel ; e) on lave le gel obtenu à l'étape d) avec une solution organique ; f) on sèche et on calcine le gel obtenu à l'étape e) pour obtenir un monolithe poreux ; g) on imprègne une solution comprenant au moins un précurseur soluble de titane dans la porosité du monolithe poreux obtenu à l'étape f) ; h) éventuellement, on laisse maturer à l'état humide le monolithe poreux obtenu à l'étape g) ; i) on sèche et on calcine le monolithe poreux obtenu à l'étape g) ou h) pour obtenir un monolithe poreux contenant du Ti02. DESCRIPTION DETAILLEE DE L'INVENTION
Définitions
Dans la suite, les groupes d'éléments chimiques sont donnés selon la classification CAS (CRC Handbook of Chemistry and Physics, éditeur CRC press, rédacteur en chef D.R. Lide, 81 ème édition, 2000-2001 ). Par exemple, le groupe VIII selon la classification CAS correspond aux métaux des colonnes 8, 9 et 10 selon la nouvelle classification IUPAC. Dans la présente description, on entend, selon la convention IUPAC, par micropores les pores dont le diamètre est inférieur à 2 nm; mésopores les pores dont le diamètre est supérieur à 2 nm et inférieur ou égal à 50 nm et macropores les pores dont le diamètre est supérieur à 50 nm, et plus particulièrement macropores de type I les pores dont le diamètre est supérieur à 50 nm et inférieur ou égale à 1000 nm (1 μηη), et macropores de type II les pores dont le diamètre est supérieure à 1 μιτι et inférieur ou égal à 10 μηη.
Description
Selon l'invention, le monolithe poreux comprend entre 20% et 70% en poids de Ti02 par rapport au poids total du monolithe, de manière préférée entre 20% et 60% en poids de Ti02. Le monolithe poreux selon l'invention comprend également entre 30% et 80% en poids d'un oxyde réfractaire choisi parmi la silice, l'alumine ou la silice-alumine par rapport au poids total du monolithe, de préférence entre 40% et 80% en poids.
Le monolithe poreux selon l'invention présente une densité apparente inférieure à 0,19 g/mL, de préférence inférieure à 0,16 g/mL. La densité apparente se calcule en faisant le ratio entre la masse du monolithe poreux et son volume géométrique.
Avantageusement, ledit monolithe poreux peut contenir au moins un élément M choisi parmi un élément des groupes IA, MA, VI 11 B, IB et NIA de la classification périodique des éléments à l'état métallique ou oxydé, seul ou en mélange. De manière préférée, la teneur totale en élément(s) M est comprise entre 0,001 et 20% en poids par rapport au poids total du monolithe poreux.
Avantageusement, le monolithe poreux peut être dopé avec un ou plusieurs éléments choisis parmi des éléments métalliques, tels que par exemple des éléments V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb, La, Ce, Ta, Ti, des éléments non-métalliques, tels que par exemple C, N, S, F, P, ou par un mélange d'éléments métalliques et non-métalliques. La teneur en élément dopant est comprise entre 0,001 et 5% en poids par rapport au poids total du monolithe poreux.
Selon une variante, ledit monolithe poreux possède un volume mésoporeux de 0,01 à 1 mL/g, de préférence entre 0,05 et 0,5 mL/g, pour un diamètre de pore compris entre 0,2 et 50 nm.
Selon une variante, ledit monolithe poreux possède un volume macroporeux de type I, i.e. dont le diamètre de pores est supérieur à 50 nm et inférieur ou égal à 1000 nm (1 μιη), compris entre 0,1 et 3 mL/g, de préférence entre 0,2 et 2,5 mL/g, Selon une variante, ledit monolithe poreux possède un volume macroporeux de type II, i.e. dont le diamètre de pore est supérieur à 1 μιη et inférieur ou égal à 10 μιη, compris entre 0,1 et 8 ml_/g, de préférence entre 0,5 et 8 ml_ g.
Selon une variante préférée, ledit monolithe poreux possède une mésoporosité et/ou une macroporosité de type I et/ou une macroporosité de type II.
Selon une variante, ledit monolithe poreux possède en outre un volume macroporeux inférieur à 0,5 mL/g pour un diamètre de pore supérieur à 10 μιη.
Selon une variante, ledit monolithe poreux possède une surface BET comprise entre 150 et 700 m2/g.
L'invention décrit également le mode de préparation dudit monolithe poreux, de telle manière que le précurseur de Ti soit introduit à une étape différente de celle du précurseur d'oxyde de silicium et/ou d'aluminium :
a) on mélange une solution contenant un tensioactif avec une solution aqueuse acide pour obtenir une solution aqueuse acide comprenant un tensioactif ; b) on ajoute au moins un précurseur de silicium et/ou d'aluminium à la solution obtenue à l'étape a) ; c) on ajoute à la solution obtenue à l'étape b) au moins un composé organique liquide, non miscible à la solution obtenue à l'étape b) pour former une émulsion ; d) on laisse maturer à l'état humide l'émulsion obtenue à l'étape c) pour obtenir un gel ; e) on lave le gel obtenu à l'étape d) avec une solution organique ; f) on sèche et on calcine le gel obtenu à l'étape e) pour obtenir un monolithe poreux ; g) on imprègne une solution comprenant au moins un précurseur soluble de titane dans la porosité du monolithe poreux obtenu à l'étape f) ; h) éventuellement, on laisse maturer à l'état humide le monolithe poreux obtenu à l'étape g) ; i) on sèche et on calcine le monolithe poreux obtenu à l'étape g) ou h) pour obtenir un monolithe poreux contenant du Ti02.
Les étapes sont décrites en détail ci-après. Etape a) (préparation d'une solution aqueuse acide comprenant un tensioactif) Lors de l'étape a) du procédé selon l'invention, on mélange une solution contenant un tensioactif avec une solution aqueuse acide pour obtenir une solution aqueuse acide comprenant un tensioactif. Cette étape est réalisée de préférence à température ambiante.
Le tensioactif peut être anionique, cationique, amphotère ou non-ionique. De manière préférée le tensioactif est un tensioactif cationique. De manière très préférée, le tensioactif est le bromure de cetyl triméthylammonium, ou le bromure de myristyltriméthylammonium. La solution aqueuse acide est sélectionnée de préférence parmi les solutions aqueuses d'acides inorganiques tels que l'acide nitrique, sulfurique, phosphorique, chlorhydrique, bromhydrique ou d'acides organiques tels que des acides carboxyliques ou sulfoniques, seuls ou en mélange. De manière préférée la solution aqueuse acide est choisi parmi une solution aqueuse d'acide chlorhydrique ou d'acide nitrique. Le pH de la solution obtenue à l'étape a) est de préférence inférieur à 4.
Etape b) (ajout d'au moins un précurseur de silicium et/ou d'aluminium)
Lors de l'étape b) du procédé selon l'invention, on ajoute au moins un précurseur de silicium et/ou d'aluminium à la solution obtenue à l'étape a).
On choisit de préférence un ou plusieurs précurseurs d'aluminium et/ou de silicium de type alcoolate. De manière très préférée, on choisit un ou plusieurs précurseurs d'aluminium et/ou de silicium parmi l'isopropylate d'aluminium, le tertiobutylate d'aluminium, le tetraethylorthosilicate ou le tetraméthylorthosilicate. De préférence, le ratio en poids « précurseurs / tensioactif » est compris entre 0,1 et 10, de préférence entre 0,2 et 5.
Etape c) (formation d'une émulsion)
Lors de l'étape c) du procédé selon l'invention, on ajoute à la solution obtenue à l'étape b) au moins un composé organique liquide, non miscible à la solution obtenue à l'étape b) pour former une émulsion. Cette étape est réalisée de préférence à température ambiante.
De manière préférée, le composé organique liquide est un hydrocarbure, ou un mélange d'hydrocarbures, possédant 5 à 15 atomes de carbone, à titre d'exemple on peut citer le dodécane. De préférence, le ratio en poids « composé organique liquide / solution obtenue à l'étape b) » est compris entre 0,2 et 5, de préférence entre 0,3 et 3.
Etape d) (formation d'un gel)
Lors de l'étape d) du procédé selon l'invention, on laisse maturer à l'état humide l'émulsion obtenue à l'étape c) pour obtenir un gel. De manière préférée, la maturation est effectuée à une température comprise entre 5 et 80°C, de préférence entre 20 et 70°C. De manière préférée, la maturation est effectuée pendant 1 à 30 jours, de préférence pendant 1 à 15 jours.
Etape e) (lavage)
Lors de l'étape d) du procédé selon l'invention, on lave le gel obtenu à l'étape d) avec une solution organique. Cette étape est réalisée de préférence à température ambiante.
De manière préférée la solution organique est l'acétone, l'éthanol, le méthanol, l'isopropanol, le tetrahydrofurane, l'acétate d'éthyle, l'acétate de méthyle, seuls ou en mélange. De manière préférée, l'étape de lavage est répétée au moins 2 fois.
Etape f) (séchage et calcination)
Lors de l'étape f) du procédé selon l'invention, on sèche et on calcine sous air le gel obtenu à l'étape e) pour obtenir un monolithe poreux.
De manière préférée, le séchage est effectué à une température comprise entre 5 et 80°C, de préférence entre 20 et 75°C. De manière préférée, le séchage est effectué pendant 1 à 30 jours, de préférence pendant 1 à 15 jours.
Le séchage est généralement effectué sous air, comprenant de préférence entre 0 et 80 grammes d'eau par kilogramme d'air, un taux d'oxygène compris entre 5% et 25% volume et un taux de dioxyde de carbone compris entre 0% et 10% volume. Par exemple l'air est un air de combustion d'un hydrocarbure, de préférence du méthane, ou sous air chauffé.
De manière préférée, la calcination est effectuée sous air à une température comprise entre 300 et 1000°C, de préférence entre 350 et 900°C. De manière préférée, la calcination est effectuée pendant 1 à 72 heures, de préférence entre 2 et 48 heures.
De manière encore plus préférée, la calcination s'opère en deux étapes : un premier palier en température compris entre 120 et 250°C pendant 1 à 10 heures, puis un deuxième palier en température compris entre 300 et 950°C pendant 2 à 24 heures.
Généralement, l'étape de calcination est réalisée sous air de combustion, de préférence un air de combustion du méthane comprenant entre 40 et 80 gramme d'eau par kg d'air de combustion, un taux d'oxygène compris entre 5% et 15% volume et un taux de C02 compris entre 4% et 10% volume.
Etape g) (imprégnation du précurseur de Ti)
Lors de l'étape g) du procédé selon l'invention, on imprègne une solution comprenant au moins un précurseur soluble de titane dans la porosité du monolithe poreux obtenu à l'étape f)- De manière préférée, le précurseur de titane est choisi parmi un alcoolate de titane, de manière très préférée le précurseur de titane est choisi parmi l'isopropylate de titane ou le tetraethylorthotitanate, seuls ou en mélange.
Eventuellement, on peut utiliser seul ou en complément du précurseur alcoolate de titane, au moins un autre précurseur de titane inorganique de type ionique ou sous forme de sol colloïdal.
Etape h) (étape optionnelle de maturation)
Lors de l'étape h) du procédé selon l'invention, on laisse maturer à l'état humide le monolithe poreux obtenu à l'étape g). De manière préférée, on effectue ensuite une étape de maturation à une température comprise entre 5 et 80°C, de préférence 20 à 75°C, et pendant 0,5 à 30 jours, de préférence pendant 1 à 15 jours.
Etape i) (séchage et calcination)
Lors de l'étape h) du procédé selon l'invention, on sèche et on calcine sous air le monolithe poreux obtenu à l'étape g) ou h) pour obtenir un monolithe poreux contenant du Ti02.
De manière préférée, le séchage est effectué à une température comprise entre 5 et 80°C, de préférence entre 20 et 75°C. De manière préférée, le séchage est effectué pendant 1 à 30 jours, de préférence pendant 1 à 15 jours.
Le séchage est généralement effectué sous air de combustion d'un hydrocarbure, de préférence du méthane, ou sous air chauffé comprenant entre 0 et 80 grammes d'eau par kilogramme d'air de combustion, un taux d'oxygène compris entre 5% et 25% volume et un taux de dioxyde de carbone compris entre 0% et 10% volume.
De manière préférée, la calcination est effectuée sous air à une température comprise entre 300 et 1000°C. De manière préférée, la calcination est effectuée pendant 1 à 72 heures, de préférence pendant 2 à 48 heures.
De manière préférée, on effectue une étape de calcination sous air avec un premier palier en température compris entre 80 et 150°C pendant 1 à 10 heures, puis un deuxième palier en température supérieur à 150°C et inférieur ou égal 250°C pendant 1 à 10 heures, et enfin un troisième palier en température compris entre 300 et 700°C pendant 0,5 à 24 heures. Généralement, l'étape de calcination est réalisée sous air de combustion, de préférence un air de combustion du méthane comprenant entre 40 et 80 gramme d'eau par kg d'air de combustion, un taux d'oxygène compris entre 5% et 15% volume et un taux de C02 compris entre 4% et 10% volume. Selon une variante, le Ti02 peut être dopé avec un ou plusieurs éléments choisis parmi des ions métalliques, tels que par exemple des éléments V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb, La, Ce, Ta, Ti, des éléments non-métalliques, tels que par exemple C, N, S, F, P, ou par un mélange d'éléments métalliques et non-métalliques, à n'importe quelle étape dudit procédé et par toute méthode connue de l'homme du métier.
Selon une variante, un précurseur d'élément M choisi parmi un élément des groupes IA, MA, VIIIB, IB et NIA de la classification périodique des éléments à l'état métallique ou oxydé est ajouté aux étapes a), b) et/ou g), éventuellement après l'étape i). Le précurseur peut se trouver à l'état solubilisé en solution, sous la forme d'une poudre solide ou sous la forme d'un sol colloïdal.
Lorsque l'on cherche à obtenir l'élément M totalement ou partiellement sous sa forme métallique, , on pourra effectuer à la suite de l'étape i) une étape de réduction sous un flux d'hydrogène à une température comprise entre 100 et 600°C, pendant 0,5 à 24h.
Sans présenter un caractère limitant, le monolithe poreux contenant du Ti02 selon l'invention pourra avantageusement être mise en œuvre en photocatalyse pour la production de dihydrogène par dissociation de l'eau.
Les exemples suivants illustrent l'invention sans en limiter la portée. EXEMPLES
Exemple 1 : Solide A (non conforme à l'invention) Monolithe TiO?
1 g de polyethyleneglycol (Aldrich™, Mw = 20000) est ajouté dans 2 mL d'eau distillée puis mélangé avec 1 mL d'une solution d'acide chlorhydrique (37% en masse, Aldrich™, pureté 97%). 1 ,1 g d'isopropylate de titane (Aldrich ™, pureté 97%) est ajouté au mélange à température ambiante et l'ensemble est agité jusqu'à obtenir un mélange d'apparence monophasique.
Le mélange est ensuite coulé dans une boîte de Pétri de 5,5 cm de diamètre interne, laquelle est installée dans un saturateur (la teneur en vapeur d'eau est ajustée par saturateur, selon les lois de tension de vapeur) pendant 7 jours pour gélification à température ambiante. Le gel obtenu est alors lavé à l'isopropanol (Aldrich™, pureté > 99,5%) 2 fois de suite, puis séché à température ambiante pendant 2 jours. Le gel est enfin calciné sous air en four à moufle à 180°C pendant 2h, puis à 350°C pendant 6h.
On obtient alors le solide A sous forme d'un monolithe poreux à base de Ti02.
Le solide A présente un volume mésoporeux de 0,16 mL/g, un volume macroporeux de type I de 0,19 mL/g et un volume macroporeux de type II de 2,3 mL/g. Le solide A présente une surface spécifique de 94 m2/g. Le monolithe poreux A présente un densité apparente de 0,23 g/mL. Exemple 2 : Solide B (non conforme à l'invention) monolithe TiO?
1 ,12 g de bromure de myristyltriméthylammonium (Aldrich™, pureté > 99%) est ajouté dans 2 ml_ d'eau distillée puis mélangé avec 1 ml_ d'une solution d'acide chlorhydrique (37% en masse, Aldrich™, pureté 97%). 2,2 g d'isopropylate de titane (Aldrich™, pureté 97%) sont ajoutés au mélange à température ambiante et l'ensemble est agité jusqu'à obtenir un mélange d'apparence monophasique.
7g d'heptane (Aldrich™, pureté > 99%) sont introduits lentement au mélange sous agitation jusqu'à formation d'une émulsion.
0,4 ml_ d'une solution d'ammoniaque (Aldrich™, ACS reagent, 28.0-30.0% NH3 basis) sont ensuite ajoutés à l'émulsion.
L'émulsion est ensuite coulée dans une boîte de Pétri de 5,5 cm de diamètre interne, laquelle est installée dans un saturateur pendant 7 jours pour gélification à température ambiante.
Le gel obtenu est alors lavé une première fois au tetrahydrofurane anhydre (Aldrich ™, pureté > 99%), puis lavé 2 fois de suite avec un mélange tetrahydrofurane anhydre / acétone (VWR™, ACS grade) à 70/30 en volume.
Le gel est ensuite séché à température ambiante pendant 7 jours. Le gel est enfin calciné sous air en four à moufle à 200°C pendant 2h, puis à 450°C pendant 6h.
On obtient alors le solide B sous forme d'un monolithe poreux à base de Ti02.
Le solide B présente un volume mésoporeux de 0,29 mL/g, un volume marcoporeux de type
1 de 0,30 mL/g et un volume macroporeux de type II inférieur à 0,4 mL/g. Le solide B présente une surface spécifique de 135 m2/g.
Le monolithe poreux B présente une densité apparente de 1 ,1 g/mL.
Exemple 3 : Solide C (conforme à l'invention) monolithe TiOp/SiOp
1 ,12 g de bromure de myristyltriméthylammonium (Aldrich™, pureté > 99%) est ajouté dans
2 mL d'eau distillée puis mélangé avec 1 mL d'une solution d'acide chlorhydrique (37% en masse, Aldrich™, pureté 97%). 1 ,02 g de tetraethylorthosilicate (Aldrich™, pureté > 99%) est ajouté au mélange à température ambiante et l'ensemble est agité jusqu'à obtenir un mélange d'apparence monophasique.
7g de dodécane (Aldrich ™, pureté > 99%) sont introduits lentement au mélange sous agitation jusqu'à formation d'une émulsion.
L'émulsion est ensuite coulée dans une boîte de Pétri de 5,5 cm de diamètre interne, laquelle est installée dans un saturateur pendant 7 jours pour gélification à température ambiante. Le gel obtenu est alors lavé une première fois au tetrahydrofurane anhydre (Aldrich , pureté > 99%), puis lavé 2 fois de suite avec un mélange tetrahydrofurane anhydre / acétone (VWR™, ACS grade) à 70/30 en volume.
Le gel est ensuite séché à température ambiante pendant 7 jours. Le gel est enfin calciné sous air en four à moufle à 180°C pendant 2h, puis à 650°C pendant 5h. On obtient alors un monolithe poreux à base Si02 dont le volume poreux total est de 10,5 ml_/g.
Une solution contenant 34 mL d'eau distillée, 44,75 mL d'isopropanol (Aldrich™, pureté > 99,5%), 10,74 mL d'acide chlorhydrique (37% en masse, Aldrich™, pureté 97%) et 10,50 mL d'isopropylate de titane (Aldrich™, pureté 97%) est préparée sous agitation. Une partie de cette solution correspondant au volume poreux total est imprégnée dans la porosité du monolithe, puis laissée à maturation pendant 12h à température ambiante. Le monolithe est ensuite séché sous atmosphère ambiante pendant 24h. L'étape est répétée une seconde fois. Le monolithe est enfin calciné sous air en four à moufle à 120°C pendant 2h, puis à 180°C pendant 2h et enfin à 400°C pendant 1 h. On obtient alors un monolithe poreux comprenant du Ti02 dans une matrice Si02.
Le solide C présente un volume mésoporeux de 0,20 ml_/g, un volume macroporeux de type I de 1 ,15 ml_/g et un volume macroporeux de type II de 5,8 ml_/g. Le solide C présente une surface spécifique de 212 m2/g. La teneur en élément Ti mesurée par ICP-AES est de 27,35% poids ce qui fait un équivalent de 52,1 % poids du semiconducteur Ti02 dans le solide C.
Le monolithe poreux C présente une densité apparente de 0,14 g/mL.
Exemple 4 : Mise en œuyre des solides pour la production photocatalytique de dihydrogène par dissociation de l'eau en phase gazeuse
Les monolithe poreux A, B et C sont soumis à un test de production photocatalytique de dihydrogène par dissociation de l'eau en phase gazeuse dans un réacteur continu à lit traversé en acier muni d'une fenêtre optique en quartz et d'un fritté en face de la fenêtre optique sur lequel est déposé le solide.
Les monolithes sont posés sur le fritté, leur diamètre étant égal au diamètre du réacteur. La surface irradiée pour tous les photocatalyseurs est de 8.042477.10"04 m2. Les tests sont réalisés à température ambiante sous pression atmosphérique. Un débit d'argon de 3 ml/min traverse un saturateur d'eau avant d'être distribué dans le réacteur. On suit la production de gaz dihydrogène produit issu de la réduction photocatalytique de l'eau entraînée dans le saturateur par une analyse de l'effluent toutes les 4 minutes par micro chromatographie en phase gazeuse. La source d'irradiation UV-Visible est fournie par une lampe Xe-Hg (Asahi™, MAX302™ ). La puissance d'irradiation est toujours maintenue à 80 W/m2 pour une gamme de longueur d'onde comprise entre 315 et 400 nm. La durée du test est de 20 heures. Les activités photocatalytiques sont exprimées en μιηοΙ de dihydrogène produits par heure et par gramme de Ti02 II s'agit d'activités moyennes sur l'ensemble de la durée des tests. Les résultats sont reportés dans le tableau 1 ci-après. Tableau 1 : Performances des photocataivseurs en activité moyenne pour la production de dihydrogène à partir d'un mélange argon et H?0 en phase gazeuse
Figure imgf000013_0001
Les valeurs d'activité montrent que le solide selon l'invention présente de meilleures performances lorsqu'il est utilisé en production photocatalytique de dihydrogène par dissociation de l'eau.

Claims

REVENDICATIONS
1. Monolithe poreux comprenant entre 20% et 70% en poids de Ti02 par rapport au poids total du monolithe, entre 30% et 80% en poids d'un oxyde réfractaire choisi parmi la silice, l'alumine ou la silice-alumine par rapport au poids total du monolithe, caractérisé en ce que ledit monolithe poreux comprend une densité apparente inférieure à 0,19 g/mL.
2. Monolithe selon la revendication 1 , caractérisé en ce que ledit monolithe poreux comprend une densité apparente inférieure à 0,16 g/mL
3. Monolithe selon les revendications 1 ou 2, caractérisé en ce qu'il comprend un volume mésoporeux de 0,01 à 1 mL/g pour un diamètre de pore entre 0,2 et 50 nm.
4. Monolithe selon les revendications 1 ou 2, caractérisé en ce qu'il comprend un volume macroporeux de type I, dont le diamètre de pores est supérieur à 50 nm et inférieur ou égal à 1000 nm, compris entre 0,1 à 3 ml_/g.
5. Monolithe selon les revendications 1 ou 2, caractérisé en ce qu'il comprend un volume macroporeux de type II, dont le diamètre de pores est supérieur à 1 μιτι et inférieur ou égal à 10 μηι, est compris entre 0,1 et 8 mL/g.
6. Monolithe selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend une mésoporosité et/ou une macroporosité de type I et/ou une macroporosité de type II.
7. Monolithe selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend en outre un volume macroporeux inférieur à 0,5 mL/g pour un diamètre de pore supérieur à 10 μηη.
8. Monolithe selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend une surface spécifique BET comprise entre 150 et 700 m2/g.
9. Monolithe selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend en outre au moins un élément M choisi parmi un élément des groupes IA, IIA, VIIIB, IB et NIA de la classification périodique des éléments à l'état métallique ou oxydé, seul ou en mélange.
10. Monolithe selon la revendication 9, dans lequel la teneur en élément(s) M est comprise entre 0,001 et 20% en poids par rapport au poids total du monolithe poreux.
1 1 . Monolithe selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend en outre un ou plusieurs éléments dopant choisis parmi des éléments métalliques, tels que par exemple des éléments V, Ni, Cr, Mo, Fe, Sn, Mn, Co, Re, Nb, Sb, La, Ce, Ta, Ti, des éléments non-métalliques, tels que par exemple C, N, S, F, P, ou par un mélange d'éléments métalliques et non-métalliques.
12. Monolithe selon la revendication 1 1 , dans lequel la teneur en élément dopant est comprise entre 0,001 et 5% en poids par rapport au poids total du monolithe poreux.
13. Procédé de préparation d'un monolithe poreux selon l'une quelconque des revendications 1 à 12, comprenant les étape suivantes :
a) on mélange une solution contenant un tensioactif avec une solution aqueuse acide pour obtenir une solution aqueuse acide comprenant un tensioactif ; b) on ajoute au moins un précurseur de silicium et/ou d'aluminium à la solution obtenue à l'étape a) ; c) on ajoute à la solution obtenue à l'étape b) au moins un composé organique liquide, non miscible à la solution obtenue à l'étape b) pour former une émulsion ; d) on laisse maturer à l'état humide l'émulsion obtenue à l'étape c) pour obtenir un gel ; e) on lave le gel obtenu à l'étape d) avec une solution organique ; f) on sèche et on calcine le gel obtenu à l'étape e) pour obtenir un monolithe poreux ; g) on imprègne une solution comprenant au moins un précurseur soluble de titane dans la porosité du monolithe poreux obtenu à l'étape f) ; h) éventuellement, on laisse maturer à l'état humide le monolithe poreux obtenu à l'étape g) ; i) on sèche et on calcine le monolithe poreux obtenu à l'étape g) ou h) pour obtenir un monolithe poreux contenant du Ti02.
14. Procédé selon la revendication 13 dans lequel on réalise à l'étape i) un séchage à une température comprise entre 5 et 80°C et une calcination à une température comprise entre 300 et 1000°C.
15. Procédé selon les revendications 13 ou 14 dans lequel on réalise à l'étape i) une calcination en deux étapes consécutives : un premier palier en température compris entre 120 et 250°C pendant 1 à 10 heures, puis un deuxième palier en température compris entre 300 et 950°C pendant 2 à 24 heures.
PCT/EP2018/060376 2017-04-28 2018-04-23 MONOLITHE POREUX CONTENANT DU TiO2 ET SON PROCEDE DE PREPARATION WO2018197432A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18724473.6A EP3615210A1 (fr) 2017-04-28 2018-04-23 Monolithe poreux contenant du tio2 et son procédé de preparation
AU2018258982A AU2018258982A1 (en) 2017-04-28 2018-04-23 Porous monolith containing TiO2 and method for the production thereof
CN201880027993.8A CN110545917A (zh) 2017-04-28 2018-04-23 含有TiO2的多孔整料及其生产方法
JP2019557592A JP7203755B2 (ja) 2017-04-28 2018-04-23 TiO2を含有している細孔性モノリスおよびその製造方法
US16/608,312 US11077427B2 (en) 2017-04-28 2018-04-23 Porous monolith containing TiO2 and method for the production thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1753757A FR3065649B1 (fr) 2017-04-28 2017-04-28 Monolithe poreux contenant du tio2 et son procede de preparation
FR1753757 2017-04-28

Publications (1)

Publication Number Publication Date
WO2018197432A1 true WO2018197432A1 (fr) 2018-11-01

Family

ID=59381453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/060376 WO2018197432A1 (fr) 2017-04-28 2018-04-23 MONOLITHE POREUX CONTENANT DU TiO2 ET SON PROCEDE DE PREPARATION

Country Status (7)

Country Link
US (1) US11077427B2 (fr)
EP (1) EP3615210A1 (fr)
JP (1) JP7203755B2 (fr)
CN (1) CN110545917A (fr)
AU (1) AU2018258982A1 (fr)
FR (1) FR3065649B1 (fr)
WO (1) WO2018197432A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038595A (zh) * 2019-03-28 2019-07-23 昆明理工大学 一种Cr、S共掺杂TiO2纳米粉体的制备方法
WO2022078856A1 (fr) 2020-10-15 2022-04-21 IFP Energies Nouvelles Lit catalytique comprenant un catalyseur photocatalytique particulaire

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888309A (en) 1986-10-16 1989-12-19 Unilever Patent Holdings Bv Hydrophobic, highly porous, three-dimensional inorganic structures
US5322821A (en) * 1993-08-23 1994-06-21 W. R. Grace & Co.-Conn. Porous ceramic beads
JP2009007219A (ja) * 2007-06-29 2009-01-15 Shinetsu Quartz Prod Co Ltd 多孔質光触媒体の製造方法及び多孔質光触媒体並びに浄化装置
WO2010049649A2 (fr) * 2008-10-30 2010-05-06 Universite Pierre Et Marie Curie Paris Vi Procede de stockage de l'hydrogene dans un materiau monolithique poreux, materiau composite obtenu et applications
FR2975309A1 (fr) 2011-05-19 2012-11-23 Centre Nat Rech Scient Monolithe macrocellulaire de dioxyde de titane, procede de preparation, utilisation a titre de photocatalyseur et procede de decontamination
WO2015110772A1 (fr) 2014-01-27 2015-07-30 Total Sa Matériau à base de tio2 absorbant dans le visible et procédé pour sa fabrication
US20160236177A1 (en) * 2013-10-03 2016-08-18 Centre National De La Recherche Scientifique Cellular solid composite material comprising metal nanoparticles, preparation process and uses for the reversible storage of hydrogen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1030601C (zh) * 1992-08-17 1996-01-03 中国石油化工总公司 低密度、大孔容、高强度氧化铝载体的制备方法
JP2008105905A (ja) * 2006-10-26 2008-05-08 Matsushita Electric Ind Co Ltd 水の光分解装置
FR2919811B1 (fr) * 2007-08-08 2010-10-15 Saint Gobain Quartz Sas Media pour filtre photocatalytique
CN101722052A (zh) * 2008-10-15 2010-06-09 赢创德固赛有限责任公司 催化剂载体
KR20110130450A (ko) * 2009-03-16 2011-12-05 바스프 에스이 실리카 겔 기반의 촉매 담체
CN101974314B (zh) * 2010-09-29 2013-03-27 北京航空航天大学 隔热材料用二氧化硅基多孔块材及其包覆-干压成型的制备方法
CN103861574B (zh) * 2014-02-28 2015-11-04 中国海洋石油总公司 一种钛硅复合氧化物的制备方法
CN104150525B (zh) * 2014-08-21 2016-05-18 安徽理工大学 氧化物多孔材料及其普适性制备方法
JP2016143742A (ja) * 2015-01-30 2016-08-08 シャープ株式会社 波長変換部材、発光装置、および波長変換部材の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888309A (en) 1986-10-16 1989-12-19 Unilever Patent Holdings Bv Hydrophobic, highly porous, three-dimensional inorganic structures
US5322821A (en) * 1993-08-23 1994-06-21 W. R. Grace & Co.-Conn. Porous ceramic beads
JP2009007219A (ja) * 2007-06-29 2009-01-15 Shinetsu Quartz Prod Co Ltd 多孔質光触媒体の製造方法及び多孔質光触媒体並びに浄化装置
WO2010049649A2 (fr) * 2008-10-30 2010-05-06 Universite Pierre Et Marie Curie Paris Vi Procede de stockage de l'hydrogene dans un materiau monolithique poreux, materiau composite obtenu et applications
FR2975309A1 (fr) 2011-05-19 2012-11-23 Centre Nat Rech Scient Monolithe macrocellulaire de dioxyde de titane, procede de preparation, utilisation a titre de photocatalyseur et procede de decontamination
US20160236177A1 (en) * 2013-10-03 2016-08-18 Centre National De La Recherche Scientifique Cellular solid composite material comprising metal nanoparticles, preparation process and uses for the reversible storage of hydrogen
WO2015110772A1 (fr) 2014-01-27 2015-07-30 Total Sa Matériau à base de tio2 absorbant dans le visible et procédé pour sa fabrication

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. IMHOF ET AL., NATURE, vol. 389, 30 October 1997 (1997-10-30), pages 948 - 952
B. P. BINKS, ADV. MATER., vol. 14, no. 24, 17 December 2002 (2002-12-17), pages 1824 - 1827
CHEM. ENG. J., vol. 230, 2013, pages 314 - 327
J. S. BECK ET AL., J. AM. CHEM. SOC., vol. 114, 1992, pages 10834 - 10843
M. TAHIR; N. S. AMIN, APPL. CATAL. A : GENERAL, vol. 467, 2013, pages 483 - 496
S.BRUNAUER; P.H.EMMETT; E.TELLER, J. AM. CHEM. SOC., vol. 60, no. 2, 1938, pages 309 - 319

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110038595A (zh) * 2019-03-28 2019-07-23 昆明理工大学 一种Cr、S共掺杂TiO2纳米粉体的制备方法
WO2022078856A1 (fr) 2020-10-15 2022-04-21 IFP Energies Nouvelles Lit catalytique comprenant un catalyseur photocatalytique particulaire
FR3115219A1 (fr) 2020-10-15 2022-04-22 IFP Energies Nouvelles Lit catalytique comprenant un catalyseur photocatalytique particulaire

Also Published As

Publication number Publication date
CN110545917A (zh) 2019-12-06
EP3615210A1 (fr) 2020-03-04
US20210101133A1 (en) 2021-04-08
JP7203755B2 (ja) 2023-01-13
FR3065649A1 (fr) 2018-11-02
US11077427B2 (en) 2021-08-03
FR3065649B1 (fr) 2020-05-29
AU2018258982A1 (en) 2019-10-17
JP2020517443A (ja) 2020-06-18

Similar Documents

Publication Publication Date Title
JPH09502129A (ja) エポキシ化触媒及び方法
KR20080096678A (ko) 올레핀 산화 촉매용 담체, 그 제조 방법 및 적용
JP7158462B2 (ja) 精製2,5-フランジカルボン酸経路生成物
Yuan et al. Effects of SBA-15 physicochemical properties on performance of Pd/SBA-15 catalysts in 2-ethyl-anthraquinone hydrogenation
JP2020529310A (ja) 凝集したodh触媒
WO2018197432A1 (fr) MONOLITHE POREUX CONTENANT DU TiO2 ET SON PROCEDE DE PREPARATION
US20200156049A1 (en) Process for Producing a Fischer-Tropsch Synthesis Catalyst
EP3265226B1 (fr) Catalyseur comprenant de l'or disperse et du palladium et son application en hydrogenation selective
CN114558571A (zh) 用于异丁酸与乙酸反应生成甲基异丙基酮的球形复合催化剂及制备方法
EP3326713A1 (fr) Catalyseur d'hydrogenation selective d'une coupe d'hydrocarbures c3
EP2714848A1 (fr) Procédé catalytique pour la conversion d'un gaz de synthèse en hydrocarbures
JP2012187565A (ja) コアシェル型触媒およびその製造方法
FR2677347A1 (fr) Composition a base d'oxyde cerique, sa preparation et ses utilisations.
JPWO2016136471A1 (ja) 1,3−ブタジエン合成用触媒、1,3−ブタジエン合成用触媒の製造方法、1,3−ブタジエンの製造装置及び1,3−ブタジエンの製造方法
JP3886594B2 (ja) 酸化チタンを担持したシリカ三次元網状構造光触媒の製造方法
CN104437665B (zh) 一种银催化剂的α‑氧化铝载体的制备方法
JP2021522145A (ja) シュウ酸を用いて調整された改善した細孔構造を有する多孔質体
CN108367272B (zh) 包含季铵化合物和/或使用季铵化合物制备的挤出的二氧化钛基材料
EP4082661A1 (fr) Tamis moléculaire dlm-1, son procédé de fabrication et son utilisation
KR102246434B1 (ko) 자동차 배기가스 처리용 촉매입자, 이의 제조방법 및 이를 이용하여 자동차 배기가스를 처리하는 방법
Brodzik et al. The influence of preparation method on the physicochemical properties of titania–silica aerogels
WO2018197434A1 (fr) Procede de preparation d'un monolithe a porosite multimodale
KR102489863B1 (ko) 자동차 배기가스 처리용 촉매입자, 이의 제조방법 및 이를 이용하여 자동차 배기가스를 처리하는 방법
CN114100595A (zh) 乙烯环氧化用银催化剂载体及其制备方法和银催化剂及乙烯环氧化生产环氧乙烷的方法
WO2022058449A1 (fr) Metallo-oxydes nanoparticulaires monolithiques a porosite multi-echelles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18724473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018258982

Country of ref document: AU

Date of ref document: 20180423

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019557592

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018724473

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018724473

Country of ref document: EP

Effective date: 20191128