WO2018193995A1 - モータユニット、コンデンサ実装構造、インバータの封止構造、インバータの組立方法、及びインバータ - Google Patents
モータユニット、コンデンサ実装構造、インバータの封止構造、インバータの組立方法、及びインバータ Download PDFInfo
- Publication number
- WO2018193995A1 WO2018193995A1 PCT/JP2018/015585 JP2018015585W WO2018193995A1 WO 2018193995 A1 WO2018193995 A1 WO 2018193995A1 JP 2018015585 W JP2018015585 W JP 2018015585W WO 2018193995 A1 WO2018193995 A1 WO 2018193995A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inverter
- substrate
- motor
- capacitor
- case
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K11/00—Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
- H02K11/30—Structural association with control circuits or drive circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K5/00—Casings; Enclosures; Supports
- H02K5/04—Casings or enclosures characterised by the shape, form or construction thereof
- H02K5/22—Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
Definitions
- the present invention relates to a motor unit, a capacitor mounting structure, an inverter sealing structure, an inverter assembly method, and an inverter.
- the motor unit described in Patent Document 1 includes a rotating electrical machine and a control unit that is integrated with the rotating electrical machine and controls driving of the rotating electrical machine.
- the control unit includes a power converter that converts a DC current supplied from a DC power source into an AC current, a capacitor connected in parallel with the power converter, and an electronic control unit that controls the power converter.
- the power converter has a plurality of power elements and a plurality of free-wheeling diodes.
- the power element is mounted on the frame.
- First radiating fins are formed on the first surface of the frame opposite to the surface to which the power elements are connected.
- the electronic control device is mounted on a substrate housed in the housing.
- a second radiating fin is formed on the second surface of the housing opposite to the surface to which the electronic control device is connected.
- the first and second radiating fins are formed radially about the rotation axis. For this reason, a 1st radiation fin and a 2nd radiation fin will be arrange
- the arrangement of the capacitor is not particularly taken into consideration. However, for example, when the capacitor is mounted on the frame together with the power element, the size of the control unit is increased with respect to the axial direction of the rotating electrical machine. I must. As a result, the control unit (inverter) is increased in size.
- An object of one embodiment of the present invention is to provide a motor unit that can reduce the size of an inverter.
- One embodiment of the present invention is a motor unit including a motor and an inverter that is integrated with the motor and controls the motor.
- the inverter is disposed in the case, and a semiconductor substrate on which the semiconductor element is mounted.
- a capacitor board that is disposed in the case and on which the capacitor is mounted, and a heat sink that is attached to the motor-side surface of the semiconductor board and cools the semiconductor board.
- the capacitor is arranged in the arrangement direction of the motor and the inverter.
- the capacitor board is mounted on the surface on the motor side so as to face the heat sink in the vertical direction.
- the inverter can be downsized.
- FIG. 6 is a cross-sectional view taken along line VI- VI in FIG. 5. It is sectional drawing along the VII-VII line of FIG. It is sectional drawing which shows the capacitor
- FIG. 12 is a side view of the inverter shown in FIG. 11.
- FIG. 13 is a sectional view taken along line XIII-XIII in FIG. 12. It is the XIV-XIV sectional view taken on the line of FIG.
- FIG. 12 is a top enlarged cross-sectional view of the inverter shown in FIG. 11.
- FIG. 12 is a flowchart showing a process of assembling the inverter shown in FIG. 11.
- FIG. 18 is a perspective view of the inverter shown in FIG. 17.
- FIG. 19 is a rear view of the inverter shown in FIG. 18.
- FIG. 20 is a sectional view taken along line XX-XX in FIG. 19.
- FIG. 20 is a sectional view taken along line XXI-XXI in FIG. 19.
- It is a disassembled perspective view which shows the inverter which concerns on other embodiment.
- FIG. 24 is a sectional view taken along line XXIV-XXIV in FIG.
- FIG. 25 is a sectional view taken along line XXV-XXV in FIG. 24.
- One embodiment of the present invention is a motor unit including a motor and an inverter that is integrated with the motor and controls the motor.
- the inverter is disposed in the case, and a semiconductor substrate on which the semiconductor element is mounted.
- a capacitor board that is disposed in the case and on which the capacitor is mounted, and a heat sink that is attached to the motor-side surface of the semiconductor board and cools the semiconductor board.
- the capacitor is arranged in the arrangement direction of the motor and the inverter.
- the capacitor board is mounted on the surface on the motor side so as to face the heat sink in the vertical direction.
- the semiconductor element is mounted on a semiconductor substrate, and the capacitor is mounted on a capacitor substrate.
- the semiconductor element here generates heat more easily than the capacitor. Therefore, a heat sink for cooling the semiconductor substrate is attached to the surface of the semiconductor substrate on the motor side. At this time, since the heat sink only needs to cool the semiconductor substrate, it is not necessary to increase the size of the heat sink more than necessary.
- the capacitor is mounted on the surface of the capacitor substrate on the motor side so as to face the heat sink in a direction perpendicular to the arrangement direction of the motor and the inverter. Therefore, the dimension of the inverter is prevented from increasing in the arrangement direction of the motor and the inverter. As described above, the inverter can be reduced in size.
- a heat dissipating member may be disposed between the capacitor and the case. In such a configuration, heat generated from the capacitor is radiated to the case by the heat radiating member.
- the motor may be equipped with a fan that cools the inverter.
- the inverter since the inverter is cooled by the fan, the heat sink is cooled.
- the external dimensions of the mounting surfaces of the heat sink and the semiconductor substrate facing each other may be the same. In such a configuration, since the outer dimension of the mounting surface of the heat sink can be minimized, the size of the heat sink can be reduced.
- FIG. 1 is an exploded perspective view showing a motor unit according to an embodiment of the present invention.
- the motor unit 1 of this embodiment includes a motor 2 and an inverter 4 that is integrated with the motor 2 and a duct 3 and controls the motor 2.
- the motor 2 is a three-phase AC motor.
- the motor 2 has a motor main body 32 (see FIG. 4) having a rotor and a stator, a motor case 5 that accommodates the motor main body 32, and three motor terminals 6 drawn from coils wound around the stator. is doing.
- a fan 7 that cools the inverter 4 is attached to the motor 2.
- the fan 7 is attached to the rotating shaft 32a of the motor main body 32 by a nut 33 on the inverter 4 side of the motor case 5 (see FIG. 4).
- a screw that engages with the nut 33 is cut on the outer peripheral surface of the tip of the rotating shaft 32a. Therefore, when the motor main body 32 rotates, the fan 7 rotates.
- the duct 3 covers a portion of the motor case 5 on the inverter 4 side together with the fan 7.
- the inverter 4 is fixed to the motor 2 via a duct 3 with a plurality of bolts (not shown).
- the inverter 4 converts a direct current from a battery (not shown) into an alternating current and controls the rotation operation of the motor body 32 of the motor 2.
- FIG. 2 is a schematic sectional view showing the entire structure of the inverter 4.
- the inverter 4 includes a case 8 made of aluminum.
- the case 8 is formed by aluminum die casting.
- a cover 9 that covers the inside of the case 8 is attached to the opposite side of the case 8 from the motor 2. Further, a battery cable attachment portion 10 to which a battery cable (not shown) electrically connected to a battery (not shown) is attached is fixed to one end portion of the case 8.
- a motor terminal accommodating portion 11 that accommodates each motor terminal 6 of the motor 2
- a substrate accommodating a MOS (MetalMOSOxide Semiconductor) substrate 12 that is a semiconductor substrate, a capacitor substrate 13, and a control substrate 14.
- a portion 15, a heat sink accommodating portion 17 in which the heat sink 16 is accommodated, and a capacitor accommodating portion 19 in which the capacitor 18 is accommodated are provided.
- the motor terminal accommodating portion 11 is disposed on the other end side of the case 8 (the side opposite to the battery cable attaching portion 10).
- the board housing part 15 is disposed closer to the battery cable mounting part 10 than the motor terminal housing part 11 and closer to the cover 9.
- the heat sink accommodating portion 17 is disposed on the battery cable attachment portion 10 side and on the motor 2 side (the side opposite to the cover 9).
- the capacitor housing portion 19 is disposed between the motor terminal housing portion 11 and the heat sink housing portion 17.
- a MOS element 20 which is a semiconductor element is mounted on the MOS substrate 12.
- the MOS element 20 includes a switching element and the like.
- the capacitor 18 is mounted on the capacitor substrate 13.
- An electronic control component 21 is mounted on the control board 14.
- the MOS substrate 12 is fixed to the case 8 with a plurality of bolts 22.
- the MOS element 20 is mounted on the upper surface 12a (the surface on the cover 9 side) of the MOS substrate 12.
- a bus bar 24 is attached to the upper surface 12 a of the MOS substrate 12 via a terminal 23.
- the terminal 23 is electrically connected to a battery terminal (not shown).
- the bus bar 24 is fixed to the heat sink 16 via the terminal 23 and the MOS substrate 12 by a plurality of bolts 25.
- the bus bar 24 extends through the wall portion 26 that defines the motor terminal housing portion 11 and the substrate housing portion 15 to the motor terminal housing portion 11 and is connected to the motor terminal 6.
- the capacitor substrate 13 is disposed closer to the cover 9 than the MOS substrate 12. That is, the capacitor substrate 13 is arranged on the opposite side of the motor 2 with respect to the MOS substrate 12. Further, the capacitor substrate 13 is arranged so as to be shifted toward the motor terminal accommodating portion 11 with respect to the MOS substrate 12. Thereby, the MOS substrate 12 and the capacitor substrate 13 can be arranged in the case 8 with high space efficiency.
- the capacitor substrate 13 is fixed to the case 8 with a plurality of bolts 27.
- the capacitor 18 is mounted on the lower surface 13 b (the surface on the motor 2 side) of the capacitor substrate 13.
- the control board 14 is disposed closer to the cover 9 than the capacitor board 13.
- the control board 14 is fixed to the case 8 with a plurality of bolts 28.
- the electronic control component 21 is mounted on the upper surface 14 a (the surface on the cover 9 side) and the lower surface 14 b (the surface on the capacitor substrate 13 side) of the control board 14. In FIG. 2, only the electronic control component 21 mounted on the lower surface 14b of the control board 14 is shown.
- the heat sink 16 is attached so as to be in contact with the lower surface 12b (the surface on the motor 2 side) of the MOS substrate 12, and cools the MOS substrate 12.
- the heat sink 16 is fitted into a part of the case 8.
- the material of the heat sink 16 is aluminum like the case 8. As shown in FIG. 3, the heat sink 16 has a plurality of heat radiation fins 29.
- the outer dimension of the upper surface 16a (the surface opposite to the motor 2) of the heat sink 16 is equal to the outer dimension of the lower surface 12b of the MOS substrate 12.
- the term “equivalent” is a concept that includes not only the case of being completely equal but also the case of being substantially equal.
- the upper surface 16 a of the heat sink 16 and the lower surface 12 b of the MOS substrate 12 constitute mounting surfaces of the heat sink 16 and the MOS substrate 12 that face each other.
- the heat sink 16 is formed by extrusion molding. Thereby, compared with the case where the heat sink 16 is formed by die casting, the pitch of the radiation fins 29 can be narrowed or the height of the radiation fins 29 can be increased. As a result, the heat dissipation performance of the heat sink 16 can be improved.
- the heat sink 16 is fixed to the case 8 with a plurality of bolts 22. At this time, the heat sink 16 is fastened to the case 8 together with the MOS substrate 12 by bolts 22. The heat sink 16 and the MOS substrate 12 may not be fastened together with the bolts 22. By using the bolts 22 in this way, the fixing structure between the heat sink 16 and the case 8 can be realized at low cost.
- a seal portion 30 is interposed between the heat sink 16 and the case 8.
- the seal part 30 is formed of a seal rubber or a liquid sealant. Thereby, the heat sink 16 and the case 8 are sealed.
- the capacitor 18 is mounted on the lower surface 13b of the capacitor substrate 13 as described above. For this reason, the capacitor 18 extends to the motor 2 side, that is, the same side as the heat sink 16. At this time, the capacitor 18 is disposed so as to face the heat sink 16 with the case 8 interposed therebetween in a direction perpendicular to the arrangement direction (X direction) of the motor 2 and the inverter 4.
- a heat radiating member 31 that dissipates heat from the capacitor 18 is disposed between the front end surface of the capacitor 18 and the case 8.
- the heat generated from the MOS element 20 is dissipated by the heat sink 16 through the MOS substrate 12, so that the MOS substrate 12 is not easily heated. Further, since the heat generated from the capacitor 18 is radiated to the case 8 by the heat radiating member 31, the capacitor 18 is not easily heated.
- the inverter 4 is cooled by the flow of cooling air generated by the rotation of the fan 7.
- a part of the inverter 4 is omitted for convenience.
- the heat sink 16 is cooled by the cooling air, the MOS substrate 12 becomes more difficult to become hot.
- condenser 18 in the case 8 and the heat radiating member 31 are cooled with cooling air, the capacitor
- the MOS element 20 is mounted on the MOS substrate 12 and the capacitor 18 is mounted on the capacitor substrate 13.
- the MOS element 20 is more likely to generate heat than the capacitor 18. Therefore, a heat sink 16 for cooling the MOS substrate 12 is attached to the lower surface 12 b of the MOS substrate 12. At this time, since the heat sink 16 only needs to cool the MOS substrate 12, the size of the heat sink 16 need not be increased more than necessary.
- the capacitor 18 is mounted on the lower surface 13 b of the capacitor substrate 13 so as to face the heat sink 16 in a direction perpendicular to the arrangement direction of the motor 2 and the inverter 4. Therefore, the dimension of the inverter 4 is prevented from increasing in the arrangement direction of the motor 2 and the inverter 4. As described above, the size of the inverter 4 can be reduced.
- the case 8 is formed by die casting. For this reason, the freedom degree of the shape and internal layout of case 8 improves. Therefore, the inverter 4 can be further downsized.
- a heat radiating member 31 is disposed between the capacitor 18 and the case 8. Therefore, the heat generated from the capacitor 18 is radiated to the case 8 by the heat radiating member 31. Thereby, the capacitor
- the motor 2 is provided with a fan 7 that cools the inverter 4. Therefore, since the inverter 4 is cooled by the fan 7, the heat sink 16 and the heat radiating member 31 are cooled. Thereby, the MOS substrate 12 and the capacitor 18 can be further cooled.
- the outer dimensions of the upper surface 16a of the heat sink 16 and the lower surface 12b of the MOS substrate 12 are the same. Accordingly, since the outer dimension of the upper surface 16a of the heat sink 16 is minimized, the size of the heat sink 16 can be reduced.
- the heat sink 16 is fixed to the case 8 with the bolts 22, but the shape is not particularly limited, and chemical bonding using an adhesive or the like, or material bonding such as welding or solid phase bonding is performed. It may be used to fix the heat sink 16 to the case 8. In this case, the sealing property between the heat sink 16 and the case 8 can be ensured simultaneously with the joining of the heat sink 16 and the case 8. Further, since the bolt 22 and the seal portion 30 are not required, the inverter 4 can be simplified.
- the outer dimension of the upper surface 16a of the heat sink 16 is equivalent to the outer dimension of the lower surface 12b of the MOS substrate 12.
- the outer dimension of the upper surface 16a of the heat sink 16 is not limited to this form.
- the outer dimensions of the lower surface 12b of the substrate 12 may be different. Even in this case, since the heat sink 16 only needs to cool the MOS substrate 12, the size of the heat sink 16 can be reduced as compared with the conventional case.
- the heat sink 16 is attached so that it may contact the lower surface 12b of the MOS substrate 12, it is not restricted to the form in particular,
- the heat sink 16 has a heat-transfer member on the lower surface 12b of the MOS substrate 12. It may be attached via.
- the capacitor substrate 13 is disposed on the opposite side of the motor 2 with respect to the MOS substrate 12, but is not particularly limited to this configuration, and the capacitor substrate 13 is closer to the motor 2 than the MOS substrate 12. May be arranged.
- the capacitor mounting structure described in Japanese Patent Laid-Open No. 2016-197684 includes a substrate, a plurality of capacitors, a heat sink, a cover, a plurality of nuts, and a plurality of screws. The heat generated by the capacitor is radiated to the heat sink and nut via screws or the like.
- the present inventors have studied a configuration in which a heat radiating member is provided between the capacitor and the heat sink, and the heat of the capacitor is conducted to the heat sink by the heat radiating member.
- a heat radiating member is provided between the capacitor and the heat sink, and the heat of the capacitor is conducted to the heat sink by the heat radiating member.
- both end portions of the capacitor substrate are fixed to the heat sink by screws, the center portion of the capacitor substrate may be bent by the repulsive force of the heat dissipation member.
- the contact between the capacitor and the heat dissipating member becomes insufficient, and the heat dissipation of the capacitor may be reduced.
- An object of one embodiment of the present invention is to provide a capacitor mounting structure capable of suppressing a capacitor substrate from being bent by a repulsive force of a heat radiating member.
- a capacitor mounting structure includes a capacitor substrate having a mounting surface, at least one capacitor mounted on the mounting surface of the capacitor substrate, and a mounting surface side of the capacitor substrate.
- an insulating member having electrical insulation and a pressing member that presses the insulating member against the capacitor substrate are disposed on the side opposite to the mounting surface of the capacitor substrate on which the capacitor is mounted.
- a plurality of capacitors are mounted on the mounting surface from one end side of the capacitor substrate along the other end side of the capacitor substrate, and the insulating member extends from one end side of the capacitor substrate along the other end side of the capacitor substrate.
- it may be fixed to the heat sink together with the capacitor substrate by a plurality of fixing members.
- fixing members there is no need to newly add a fixing member in order to fix the insulating member to the capacitor substrate. Therefore, it is not necessary to enlarge the area of the capacitor substrate in order to secure a portion for fixing the insulating member to the capacitor substrate. Further, it is not necessary to reduce the number of capacitors mounted on the capacitor substrate in order to secure a place for fixing the insulating member to the capacitor substrate. Therefore, it is possible to suppress the capacitor substrate from being bent by the repulsive force of the heat dissipation member while maintaining the size and capacitance of the capacitor substrate.
- the holding member of the capacitor substrate may be a metal battery terminal fixed to the heat sink. According to this configuration, since the pressing member is made of metal, the pressing member has high rigidity. Therefore, it is possible to effectively suppress the capacitor substrate from being bent by the repulsive force of the heat radiating member. In addition, since the existing battery terminal is used as the pressing member, it is not necessary to prepare a pressing member separately, which is advantageous in terms of cost.
- a capacitor mounting structure capable of suppressing the capacitor substrate from being bent by the repulsive force of the heat dissipation member.
- FIG. 5 is a plan view showing a capacitor mounting structure according to an embodiment of the present invention.
- 6 is a cross-sectional view taken along line VI-VI in FIG.
- FIG. 7 is a cross-sectional view taken along line VII- VII- of FIG.
- a capacitor mounting structure 101 shown in FIGS. 5 to 7 is a structure for mounting a capacitor in, for example, an inverter for controlling an AC motor or the like.
- the capacitor mounting structure 101 includes a capacitor substrate 110, a plurality of capacitors 120, a heat sink 130, a heat radiating member 140, a plurality of fixing members 150, an insulating member 160, a battery.
- the capacitor substrate 110 is, for example, a rectangular substrate.
- the capacitor substrate 110 has a mounting surface 110a on which the capacitor 120 is mounted and a non-mounting surface 110b opposite to the mounting surface 110a.
- the plurality of capacitors 120 are mounted on the mounting surface 110a of the capacitor substrate 110 from the one end side of the capacitor substrate 110 in the longitudinal direction (X-axis direction) of the capacitor substrate 110 along the other end side of the capacitor substrate 110.
- Each capacitor 120 has a terminal 121, and the terminal 121 passes through the capacitor substrate 110.
- a total of 15 capacitors 120 are mounted on the capacitor substrate 110.
- the plurality of capacitors 120 are arranged in two rows along the Y-axis direction on one end side in the Y-axis direction orthogonal to the X-axis direction.
- the heat sink 130 is disposed on the mounting surface 110 a side of the capacitor substrate 110.
- the heat sink 130 releases the heat of the capacitor 120.
- the heat sink 130 includes a heat radiating portion 131 that covers the plurality of capacitors 120 and a fixing portion 132 that is integrated with the heat radiating portion 131 and to which the battery terminal 170 is fixed.
- the heat sink 130 is fixed to the capacitor substrate 110 by a plurality of fixing members 150.
- the heat sink 130 is made of a metal such as aluminum.
- the heat dissipating part 131 of the heat sink 130 is configured in a dome shape that covers the plurality of capacitors 120. Similarly to the direction in which the plurality of capacitors 120 are arranged, the heat dissipating part 131 extends from one end side of the capacitor substrate 110 to the other end side along the X-axis direction.
- the fixing portion 132 of the heat sink 130 has a flat plate shape that extends along the capacitor substrate 110.
- the heat sink 130 may have a heat radiating fin for improving heat dissipation.
- the heat radiation member 140 is disposed between the plurality of capacitors 120 and the heat radiation part 131 of the heat sink 130.
- the heat radiating member 140 is in contact with the plurality of capacitors 120 and the heat sink 130, and conducts heat generated in the capacitor 120 to the heat sink 130.
- the heat conducted to the heat sink 130 is released to the outside.
- the heat radiating member 140 is made of, for example, a gel material having a high thermal conductivity.
- the plurality of capacitors 120 are pressed against the heat radiating member 140, and a part of the capacitor 120 is buried in the heat radiating member 140.
- the material which comprises the heat radiating member 140 should just have high heat conductivity, and does not need to be a gel form.
- the plurality of fixing members 150 are provided on both ends of the capacitor substrate 110 in the X-axis direction, respectively, and fix the heat radiation part 131 of the heat sink 130 and the capacitor substrate 110.
- the fixing member 150 for example, a screw or a bolt can be used.
- the insulating member 160 is disposed on the side opposite to the mounting surface 110 a of the capacitor 120 (on the non-mounting surface 110 b side), and is interposed between the capacitor substrate 110 and the battery terminal 170.
- the insulating member 160 extends along the other end side of the capacitor substrate 110 from one end side of the capacitor substrate 110 in the X-axis direction.
- the insulating member 160 extends along the X-axis direction, and a main body 161 that contacts the battery terminal 170, and a Z that is orthogonal to the X-axis direction and the Y-axis direction from the main body 161 toward the non-mounting surface 110b of the capacitor substrate 110. It has protrusions 162 and 163 that protrude in the axial direction.
- the protruding portion 162 is provided on one end side of the main body portion 161 in the Y-axis direction, and the protruding portion 162 is provided on the other end side of the main body portion 161 in the Y-axis direction. Both the protrusions 162 and 163 extend along the X-axis direction. The ends of the protrusions 162 and 163 opposite to the main body 161 are in contact with the non-mounting surface 110 b of the capacitor substrate 110. With such a structure, the insulating member 160 covers the terminals 121 of the plurality of capacitors 120 on the non-mounting surface 110 b side of the capacitor substrate 110.
- the insulating member 160 is made of, for example, a resin material having electrical insulation.
- a plurality of through holes for fixing the insulating member 160 to the capacitor substrate 110 are provided on both ends of the main body 161 in the X-axis direction. Each through-hole corresponds to a position where the fixing member 150 is disposed.
- the insulating member 160 is fixed to the heat sink 130 together with the capacitor substrate 110 by a plurality of fixing members 150.
- the battery terminal 170 presses the insulating member 160 against the capacitor substrate 110.
- the battery terminal 170 is disposed on the side opposite to the mounting surface 110a of the capacitor substrate 110 (on the non-mounting surface 110b side).
- the battery terminal 170 includes a positive battery terminal 170A and a negative battery terminal 170B.
- the positive battery terminal 170A and the negative battery terminal 170B extend along the Y-axis direction. Further, the positive battery terminal 170A and the negative battery terminal 170B are disposed apart from each other in the X-axis direction.
- Each of the positive battery terminal 170 ⁇ / b> A and the negative battery terminal 170 ⁇ / b> B has a connection part 171 connected to an external cable and the like, and a fixing part 172 integrated with the connection part 171 and fixed to the heat sink 130.
- the connecting portion 171 has a cylindrical shape and has an opening 171a.
- An external cable or the like is electrically connected to the battery terminal 170 (the positive battery terminal 170A or the negative battery terminal 170B) by being inserted into the opening 171a of the connection part 171.
- the connecting portion 171 is in contact with the insulating member 160.
- the fixing portion 172 is continuous with the connecting portion 171 on the side opposite to the opening 171a of the connecting portion 171.
- the fixing part 172 has a flat plate shape, for example.
- the fixing portion 172 is provided with a through hole for fixing the battery terminal 170 to the heat sink 130.
- a spacer 180 is disposed between the fixing portion 172 and the capacitor substrate 110.
- a spacer 181 is disposed between the capacitor substrate 110 and the fixing portion 132 of the heat sink 130.
- Each of the positive battery terminal 170 ⁇ / b> A and the negative battery terminal 170 ⁇ / b> B is fixed by a fixing member 173 that penetrates the fixing portion 172, the spacer 180, the capacitor substrate 110, the spacer 181, and the fixing portion 132 of the heat sink 130.
- the positive battery terminal 170A and the negative battery terminal 170B are fixed by two fixing members 173, respectively.
- the fixing member 173, for example, a screw or a bolt can be used.
- the insulating member 160 is pressed against the capacitor substrate 110 by the positive battery terminal 170A and the negative battery terminal 170B.
- FIG. 8 is a cross-sectional view showing a capacitor mounting structure according to a comparative example.
- 9 and 10 are plan views showing a capacitor mounting structure according to a comparative example.
- the capacitor mounting structure 200 includes a capacitor substrate 260, a plurality of capacitors 270, a heat sink 230, a heat radiating member 240, and a fixing member 250.
- the capacitor mounting structure 200 does not include the insulating member 160 and the battery terminal 170 that holds the insulating member 160 against the capacitor substrate 110.
- the capacitor substrate 260 is fixed to the heat sink 230 by fixing members 250 on both ends of the capacitor substrate 110. For this reason, the center part of the capacitor substrate 260 may be bent by the repulsive force of the heat radiating member 240 (see the two-dot chain line). As a result, the contact between the capacitor 270 and the heat dissipation member 240 becomes insufficient, and the heat dissipation of the capacitor 270 is reduced.
- the capacitor substrate 260 is secured in order to secure a place where the capacitor substrate 260 is fixed to the heat sink 230 by the fixing member 280 as shown in FIG. 10. There is a need to reduce the number of capacitors 270 mounted above. In this case, it is difficult to maintain the capacitance of the capacitor substrate 260.
- the insulating member 160 having electrical insulation and the insulating member 160 are provided on the side opposite to the mounting surface 110a of the capacitor substrate 110 on which the capacitor 120 is mounted.
- a battery terminal 170 that holds against the substrate 110 is disposed.
- a plurality of capacitors 120 are mounted on the mounting surface 110 a from one end side of the capacitor substrate 110 to the other end side of the capacitor substrate 110, and the insulating member 160 is connected to the capacitor substrate 110 from one end side of the capacitor substrate 110. It extends along the other end side and is fixed to the heat sink 130 together with the capacitor substrate 110 by a plurality of fixing members 150. For this reason, it is not necessary to newly add a fixing member in order to fix the insulating member 160 to the capacitor substrate 110. Therefore, it is not necessary to enlarge the area of the capacitor substrate 110 in order to secure a portion for fixing the insulating member 160 to the capacitor substrate 110.
- the capacitor substrate 110 can be prevented from being bent by the repulsive force of the heat dissipation member 140 while maintaining the size and capacitance of the capacitor substrate 110.
- the insulating member 160 is pressed against the capacitor substrate 110 by a metal battery terminal 170 fixed to the heat sink 130.
- the battery terminal 170 is made of metal, the rigidity of the battery terminal 170 is high. Therefore, it is possible to effectively suppress the capacitor substrate 110 from being bent by the repulsive force of the heat dissipation member 140.
- the existing battery terminal 170 is used as a pressing member, it is not necessary to prepare a pressing member separately, which is advantageous in terms of cost.
- the shape of the insulating member 160 is not particularly limited, and can be changed as appropriate, such as an arch shape.
- the example in which the insulating member 160 extends from one end side of the capacitor substrate 110 in the X-axis direction along the other end side of the capacitor substrate 110 has been described. It may be a columnar member or the like arranged corresponding to the position.
- the number of capacitors 120 mounted on the capacitor substrate 110 may be one.
- the insulating member 160 is fixed to the heat sink 130 together with the capacitor substrate 110 by the plurality of fixing members 150.
- the insulating member 160 is fixed to the capacitor substrate 110 by the plurality of fixing members 150. Together with the heat sink.
- the example in which the pressing member that presses the insulating member 160 against the capacitor substrate 110 is the plurality of battery terminals 170 (the positive battery terminal 170A and the negative battery terminal 170B) has been described.
- the terminal 170 may not be used.
- the pressing member may not be plural.
- Japanese Patent Application Laid-Open No. 2013-201878 describes a power converter case integrated with an electric motor.
- the power converter case includes an outer cylinder wall and a heat radiating wall connected to the outer cylinder wall.
- a sealing material such as an O-ring is attached to the outer peripheral end surface of the outer cylinder wall.
- the hole through which the signal line passes through the heat radiating wall is sealed with a sealing material such as packing.
- a cable attachment portion for pulling out the DC cable is formed on the outer peripheral side of the heat radiating wall. The space formed by the cable attachment portion is sealed with a sealing material.
- An object of one aspect of the present invention is to provide an inverter sealing structure and an inverter assembling method that can reduce the number of parts of the inverter.
- One aspect of the present invention is an inverter sealing structure including an inverter case in which a main circuit board and terminals are accommodated, and an inverter cover fixed to an opening surface of the inverter case so as to cover the inside of the inverter case.
- a seal member disposed between the inverter case and the inverter cover, and a side wall of the inverter case is provided with a notch that opens to the opening surface and allows the terminal to pass therethrough.
- a first seal portion that seals between the inverter cover and the inverter cover, and is integrated with the first seal portion so as to be fitted to the notch and the terminal, and the terminal, the inverter case, and the inverter cover are sealed. It has the 2nd seal part which stops.
- the gap between the inverter case opening and the inverter cover is sealed by the first seal portion of the seal member.
- the second seal portion is fitted to the notch portion provided on the side wall of the inverter case in a state where the second seal portion of the seal member is assembled to the terminal, so that the terminal, the inverter case, and the inverter are fitted by the second seal portion.
- the space between the cover and the cover is sealed.
- the second seal portion is integrated with the first seal portion, only one seal member is required. Thereby, the number of parts of an inverter is reduced.
- the second seal portion may have a U-shaped cross section that sandwiches the side wall from the inside and outside of the side wall. In such a configuration, since the second seal portion is constrained in the direction in which the terminal passes through the notch portion, the second seal portion sufficiently seals between the terminal and the inverter case.
- the plurality of terminals is an input terminal for supplying power to the main circuit board.
- the other terminal is an output terminal for outputting a signal from the main circuit board, and at least one notch of the plurality of notches is provided on one side wall of the inverter case and passes through the input terminal.
- the other cut-out portion of the plurality of cut-out portions is provided on the other side wall of the inverter case and passes through the output terminal, and at least one second seal portion of the plurality of second seal portions is the input terminal.
- the input terminal and the inverter case and the inverter cover are sealed, and the other second seal portion of the plurality of second seal portions is assembled to the output terminal, and the output terminal and the inverter case Between the fine inverter cover may be sealed.
- the external connection member when the external connection member is connected to the input terminal, the external connection member is prevented from interfering with the output terminal, and when the external connection member is connected to the output terminal, the external connection member is Interference with the input terminal is prevented. Thereby, it becomes easy to connect the external connection member.
- Another aspect of the present invention is an inverter assembly method including an inverter case in which a main circuit board and terminals are accommodated, and an inverter cover fixed to an opening surface of the inverter case so as to cover the inside of the inverter case.
- a first preparation step of preparing an inverter case and an inverter cover in which the main circuit board is accommodated a second preparation step of preparing a seal member and a terminal disposed between the inverter case and the inverter cover, and a terminal
- a sub-assembly process in which a sub-assembly is formed by assembling a seal member, a sub-assembly assembly process in which the sub-assembly is assembled to the inverter case, and a cover assembly process in which the inverter cover is assembled to the inverter case in which the sub-assembly is assembled
- a notch for opening the opening and passing the terminal is provided.
- An inverter case having a side wall is prepared, and in the second preparation step, a first seal portion that seals between the opening surface of the inverter case and the inverter cover, and the first seal portion are integrated, and the terminal and the inverter
- a seal member having a second seal portion that seals between the case and the inverter cover is prepared.
- the terminal and the second seal portion are assembled.
- the first seal is assembled.
- the sub-assembly is assembled to the inverter case so that the portion is placed on the opening surface of the inverter case and the second seal portion is fitted to the notch portion.
- the terminal and the second seal portion of the seal member are assembled to form a sub-assembly, and the first seal portion is placed on the opening surface of the inverter case and the second seal portion.
- the second seal portion of the seal member seals between the terminal and the inverter case and the inverter cover. At this time, since the second seal portion is integrated with the first seal portion, only one seal member is required. Thereby, the number of parts of an inverter is reduced.
- the number of parts of the inverter can be reduced.
- FIG. 11 is an exploded perspective view showing an inverter provided with an inverter sealing structure according to another embodiment.
- FIG. 12 is a side view of the inverter shown in FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. 14 is a cross-sectional view taken along line XIV-XIV in FIG.
- the inverter 201 is integrated with a motor (not shown).
- the motor is a three-phase AC motor.
- Such an inverter 201 with a motor is mounted on an industrial vehicle such as a battery-type forklift.
- the inverter 201 converts a direct current from a battery (not shown) into an alternating current to control the motor.
- the inverter 201 includes an inverter case 202 opened on one side, and an inverter cover 203 fixed to the upper surface 202a (opening surface) of the inverter case 202 so as to cover the inside of the inverter case 202.
- the motor is arranged on the bottom side of the inverter case 202.
- the inverter case 202 and the inverter cover 203 have a substantially rectangular shape in plan view.
- the inverter case 202 has outer walls 204 to 207 and an inner wall 208.
- the outer side walls 204 and 205 are opposed to each other.
- the area of the outer wall 204 is larger than the area of the outer wall 205.
- the outer side wall 206 includes a large area region 206a connected to the outer wall 204, a small area region 206b connected to the outer wall 205, and a bent region 206c disposed between the large area region 206a and the small area region 206b.
- the outer side wall 207 has a large area region 207a connected to the outer wall 204, a small area region 207b connected to the outer wall 205, and a bent region 207c arranged between the large area region 207a and the small area region 207b.
- the large area regions 206a and 207a of the outer side walls 206 and 207 face each other in a direction perpendicular to the facing direction of the outer side walls 204 and 205.
- the small area regions 206b and 207b of the outer side walls 206 and 207 face each other in a direction perpendicular to the facing direction of the outer side walls 204 and 205.
- the inner wall 208 is disposed in the inverter case 202.
- the inner wall 208 connects the connecting portion between the small area region 206b and the bent region 206c in the outer wall 206 and the connecting portion between the small area region 207b and the bent region 207c in the outer wall 207.
- the inner wall 208 is opposed to the outer walls 204 and 205.
- the internal space defined by the large area 206a and the bent area 206c of the outer wall 204 and the outer wall 206, the large area 207a and the bent area 207c of the outer wall 207, and the inner wall 208 forms a substrate housing portion 209. ing.
- An internal space defined by the outer wall 205, the small area 206 b of the outer wall 206, the small area 207 b of the outer wall 207, and the inner wall 208 forms a motor terminal accommodating portion 210.
- the main circuit board 211 and the control board 212 are housed.
- the main circuit board 211 is fixed to the inverter case 202 with a plurality of bolts 213.
- the control board 212 is fixed to the inverter case 202 with a plurality of bolts 214.
- the main circuit board 211 has a structure in which a MOS (Metal Oxide Semiconductor) substrate 215 which is a semiconductor substrate and a capacitor substrate 216 are laminated.
- a MOS element 217 (not shown in FIG. 11), which is a plurality of semiconductor elements, is mounted on the MOS substrate 215.
- the MOS element includes a switching element and the like.
- a plurality of capacitors 218 are mounted on the capacitor substrate 216.
- the control board 212 is disposed closer to the inverter cover 203 than the main circuit board 211.
- a plurality of electronic control components 219 are mounted on the control board 212.
- a heat sink 220 that dissipates heat from the main circuit board 211 is disposed on the motor (described above) side of the main circuit board 211.
- the heat sink 220 is attached to the inverter case 202 so as to contact the lower surface of the MOS substrate 215 of the main circuit board 211.
- the heat sink 220 has a plurality of heat radiation fins 220a. Heat generated from the MOS element 217 is radiated by the heat sink 220 through the MOS substrate 215.
- the board accommodating portion 209 accommodates input terminals 221A and 221B having a bus bar structure.
- the input terminals 221A and 221B are terminals for supplying power from a battery (not shown) to the main circuit board 211 and the control board 212.
- the input terminals 221 ⁇ / b> A and 221 ⁇ / b> B are arranged in parallel with each other between the main circuit board 211 and the control board 212.
- the input terminals 221 ⁇ / b> A and 221 ⁇ / b> B extend in the opposing direction of the outer wall 204 and the inner wall 208.
- Proximal end portions of the input terminals 221A and 221B are fixed to the heat sink 220 via the relay terminals 223A and 223B and the main circuit board 211 with a plurality of bolts 222, respectively.
- the input terminal 221A is a positive terminal.
- the input terminal 221B is a negative terminal.
- the input terminal 221A is electrically connected to the positive electrode patterns of the main circuit board 211 and the control board 212.
- the input terminal 221B is electrically connected to the negative pattern of the main circuit board 211 and the control board 212.
- the outer wall 204 of the inverter case 202 is provided with notches 224A and 224B that open to the upper surface 202a of the inverter case 202 and pass through the input terminals 221A and 221B, respectively.
- the front ends of the input terminals 221A and 221B protrude to the outside of the outer wall 204.
- Insertion holes 225A and 225B into which an external battery cable (not shown), which is an external connection member, is inserted are provided at the distal end portions of the input terminals 221A and 221B, respectively.
- the motor terminal accommodating portion 210 accommodates tip portions of motor terminals 226A to 226C drawn from a motor (not shown).
- Motor terminals 226A to 226C are external connection members connected to output terminals 227A to 227C having a bus bar structure, respectively.
- the inner wall 208 of the inverter case 202 is provided with notches 228A to 228C that open to the upper surface 202a of the inverter case 202 and pass the output terminals 27A to 27C, respectively. Accordingly, the output terminals 227A to 227C are accommodated across the substrate accommodating portion 209 and the motor terminal accommodating portion 210.
- the output terminals 227A to 227C are terminals for outputting a control signal from the main circuit board 211 to the motor.
- the output terminals 227A to 227C are arranged in parallel with each other between the main circuit board 211 and the control board 212.
- the output terminals 227A to 227C extend in the opposing direction of the outer walls 204 and 205.
- the input terminals 221A and 221B and the output terminals 27A to 27C are alternately arranged.
- the base end side portions of the output terminals 227A to 227C are fixed to the heat sink 220 via the relay terminals 230A to 230C and the main circuit board 211 by a plurality of bolts 229, respectively.
- a signal line connector 231 to which an external connector (not shown) is attached and detached is provided on the outer wall surface of the outer wall 207 of the inverter case 202 via a support portion 232.
- the signal line connector 231 is electrically connected to the signal pattern on the control board 212.
- the signal line connector 231 opens on the motor side in the axial direction of the motor (not shown).
- a seal rubber 233 (seal member) is disposed between the inverter case 202 and the inverter cover 203.
- the seal rubber 233 includes a seal portion 234 (first seal portion) that seals between the upper surface 202a of the inverter case 202 and the inverter cover 203, and between the input terminals 221A and 221B, the inverter case 202, and the inverter cover 203, respectively.
- Seal portions 235A and 235B second seal portions to be sealed, and seal portions 36A to 36C (second seal portions) for sealing between the output terminals 27A to 27C and the inverter case 202 and the inverter cover 203, respectively.
- the seal portion 234 is interposed between the outer walls 204 to 207 and the inner wall 208 of the inverter case 202 and the inverter cover 203.
- a plurality of protrusions 234a are provided on the upper surface of the seal portion 234 (the surface on the inverter cover 203 side), and the lower surface of the seal portion 234 (inverter case 202).
- a plurality of protrusions 234b are provided on the side surface. The protrusions 234a and 234b are arranged so as to be shifted from each other.
- the seal portions 235A and 235B are assembled to the input terminals 221A and 221B and are integrated with the seal portion 234 so as to be fitted to the notches 224A and 224B of the outer wall 204.
- the seal portions 235A and 235B are interposed between the input terminals 221A and 221B, the edges of the notches 224A and 224B in the inverter case 202, and the inverter cover 203.
- the seal portions 36A to 36C are assembled with the output terminals 27A to 27C and are integrated with the seal portion 234 so as to be fitted to the notches 28A to 28C of the inner wall 208.
- the seal portions 36A to 36C are interposed between the output terminals 27A to 27C, the edges of the notches 28A to 28C in the inverter case 202, and the inverter cover 203.
- the seal portions 235A and 235B have a U-shaped cross section that sandwiches the outer wall 204 from the inner side and the outer side of the outer wall 204 in a cross section perpendicular to the vertical direction (Z direction) of the inverter 201 (see FIG. 13).
- the seal portions 36A to 36C are U-shaped in a cross section that sandwiches the inner wall 208 from the inner side (outer wall 204 side) and the outer side (outer wall 205 side) of the inner wall 208 in a cross section cut perpendicular to the vertical direction of the inverter 201. (See FIG. 13).
- FIG. 16 is a flowchart showing a process of assembling the inverter 201 described above.
- an inverter case 202 to which a heat sink 220 is attached, an inverter cover 203, a main circuit board 211, and a control board 212 are prepared (step S101).
- the outer wall 204 provided with notches 224A and 224B that open to the upper surface 202a and allow the input terminals 221A and 221B to pass through, respectively, and the notches 228A to 228C that open to the upper surface 202a and pass the output terminals 227A to 227C, respectively.
- An inverter case 202 having an inner wall 208 is prepared.
- input terminals 221A and 221B, output terminals 227A to 227C, and seal rubber 233 are prepared (step S102).
- a seal portion 234 that seals between the upper surface 202a of the inverter case 202 and the inverter cover 203, and the seal portion 234 are integrated, and the input terminals 221A and 221B are connected between the inverter case 202 and the inverter cover 203.
- Seal rubber 233 which has seal portions 235A and 235B for sealing, and seal portions 236A to 236C which are integrated with the seal portion 234 and seal between the output terminals 227A to 227C and the inverter case 202 and the inverter cover 203, respectively.
- step S103 the main circuit board 211 is assembled to the inverter case 202 using a plurality of bolts 213.
- the bolt 213 is fastened from above the inverter case 202.
- the input terminals 221A and 221B, the output terminals 227A to 227C, and the seal rubber 233 are assembled to form the terminal and seal sub-assembly 237 (step S104).
- the input terminals 221A and 221B are fitted into the seal portions 235A and 235B of the seal rubber 233 from the front end side (external battery cable insertion side) of the input terminals 221A and 221B, respectively, and the front end side (motor terminal) of the output terminals 227A to 227C.
- the output terminals 227A to 227C are fitted into the seal portions 236A to 236C of the seal rubber 233 from the connection side).
- the sub assembly 237 is assembled to the inverter case 202 (step S105).
- the seal portion 234 is placed on the upper surface 202a of the inverter case 202, the seal portions 235A and 235B are fitted with the notches 224A and 224B of the outer wall 204, respectively, and the seal portions 236A to 236C are provided.
- the sub assembly 237 is disposed with respect to the inverter case 202 so as to be fitted to the notches 228A to 228C of the inner wall 208, respectively.
- the input terminals 221A and 221B are fixed to the heat sink 220 using a plurality of bolts 222, and the output terminals 27A to 27C are fixed to the heat sink 220 using a plurality of bolts 229.
- the bolts 222 and 229 are fastened from above the inverter case 202.
- the motor terminals 226A to 226C are connected to the output terminals 27A to 27C, respectively.
- control board 212 is assembled to the inverter case 202 to which the sub-assembly 237 is assembled using a plurality of bolts 214 (step S106). At this time, the bolt 214 is fastened from above the inverter case 202.
- the inverter cover 203 is assembled to the inverter case 202 on which the sub-assembly 237 and the control board 212 are assembled using a plurality of bolts 238 (step S107). At this time, the bolt 238 is fastened from above the inverter case 202.
- steps S101 and S103 are first preparation steps for preparing the inverter case 202 and the inverter cover 203 in which the main circuit board 211 is accommodated.
- Step S102 is a second preparation step in which a seal rubber 233, input terminals 221A and 221B, and output terminals 227A to 227C arranged between the inverter case 202 and the inverter cover 203 are prepared.
- Step S104 is a sub-assembly process for forming the sub-assembly 237 by assembling the input terminals 221A and 221B, the output terminals 227A to 227C, and the seal rubber 233.
- Step S105 is a sub-assembly assembly process for assembling the sub-assembly 237 to the inverter case 202.
- Steps S106 and S107 are cover assembling steps for assembling the inverter cover 203 to the inverter case 202 with the sub-assembly 237 assembled.
- the space between the upper surface 202 a of the inverter case 202 and the inverter cover 203 is sealed by the seal portion 234 of the seal rubber 233. Further, in a state where the seal portions 235A and 235B of the seal rubber 233 are assembled to the input terminals 221A and 221B, the seal portions 235A and 235B are fitted to the notches 224A and 224B provided on the outer wall 204 of the inverter case 202, respectively. Thus, the seals 235A and 235B seal the input terminals 221A and 221B and the inverter case 202 and the inverter cover 203, respectively.
- the seal portions 236A to 236C of the seal rubber 233 assembled to the output terminals 227A to 227C, the seal portions 236A to 236C are fitted to the notches 228A to 228C provided on the inner wall 208 of the inverter case 202, respectively.
- the output terminals 227A to 227C and the inverter case 202 and the inverter cover 203 are sealed by the seal portions 236A to 236C, respectively.
- the seal portions 235A and 235B and the seal portions 236A to 236C are integrated with the seal portion 234, only one seal rubber 233 is required. Thereby, the number of parts of the inverter 201 is reduced.
- the seal portions 235A and 235B have a U-shaped cross section that sandwiches the outer wall 204 from the inside and outside of the outer wall 204. Accordingly, the seal portions 235A and 235B are constrained in the extending direction of the input terminals 221A and 221B (the direction in which the input terminals 221A and 221B pass with respect to the cutout portions 224A and 224B), and therefore the input terminals 221A by the seal portions 235A and 235B. , 221B and the inverter case 202 are sufficiently sealed.
- the seal portions 236A to 236C have a U-shaped cross section so as to sandwich the inner wall 208 from the inner side and the outer side of the inner wall 208.
- the seal portions 236A to 236C are constrained in the extending direction of the output terminals 227A to 227C (the direction in which the output terminals 227A to 227C pass with respect to the notches 228A to 228C).
- the space between ⁇ 227C and the inverter case 202 is sufficiently sealed.
- the notches 224A and 224B through which the input terminals 221A and 221B are respectively passed are provided in the outer wall 204 of the inverter case 202, and the notches 228A to 228C through which the output terminals 227A to 227C are passed are respectively It is provided on the inner wall 208 of the inverter case 202. Therefore, when an external battery cable (not shown) is connected to the input terminals 221A and 221B, the external battery cable is prevented from interfering with the output terminals 227A to 227C, and the motor terminals 226A to 227A are connected to the output terminals 227A to 227C. When connecting 226C, the motor terminals 226A to 226C are prevented from interfering with the input terminals 221A and 221B. This facilitates the connection work between the external battery cable and the motor terminals 226A to 226C.
- the input terminals 221A and 221B, the output terminals 227A to 227C, and the seal rubber 233 are assembled to form the sub assembly 237, and the sub assembly 237 is assembled to the inverter case 202.
- the assembly of 221A, 221B, the output terminals 227A to 227C, and the seal rubber 233 can be easily performed.
- the assembly direction of the main circuit board 211 with respect to the inverter case 202 the assembly direction of the sub-assembly 237 with respect to the inverter case 202, the assembly direction of the control board 212 with respect to the inverter case 202, and the assembly of the inverter cover 203 with respect to the inverter case 202.
- the direction is the vertical direction of the inverter case 202 (Z direction).
- this form is not limited to the said embodiment.
- the notches 224A and 224B that pass through the input terminals 221A and 221B are provided on the outer wall 204
- the notches 228A and 228C that pass through the output terminals 227A to 227C are provided on the inner wall 208.
- the shape is not limited, and the cutout portion through which the output terminals 227A to 227C pass may be provided in any one of the outer walls 205 to 207, or the outer wall 204 may be provided in the same manner as the cutout portions 224A and 224B. It may be provided.
- the input terminals 221A and 221B are assembled to the seal portions 235A and 235B (second seal portion) of the seal rubber 233, respectively, and the output terminals 227A are connected to the seal portions 36A to 36C (second seal portion) of the seal rubber 233.
- ⁇ 227C are assembled, but the form is not particularly limited, and only one of the input terminals 221A and 221B and the output terminals 227A to 227C may be assembled to the second seal portion.
- the number of terminals assembled to the second seal portion may be one.
- the main circuit board 211 has a structure in which the MOS substrate 215 on which the MOS element 217 is mounted and the capacitor substrate 216 on which the capacitor 218 is mounted are stacked.
- the present invention is not particularly limited to this, and it may be composed of one substrate on which the MOS element 217 and the capacitor 218 are mounted.
- the inverter 201 is integrated with the motor.
- the inverter sealing structure and the inverter assembly method according to the present invention can be applied to an inverter separate from the motor.
- the motor unit described in JP-A-2016-146702 includes an electric motor unit and an electronic control unit (ECU) unit.
- the electric motor unit is composed of a motor housing and an electric motor housed in the motor housing.
- the electronic control unit is disposed on the side opposite to the output shaft in the axial direction of the motor housing, and is fixed integrally with the motor housing by a fixing bolt, and an electronic control group housed in the ECU housing It consists of a solid.
- a lid is fixed to the end surface of the ECU housing by a fixing bolt.
- the lid is provided with a connector terminal forming portion for supplying power, a connector terminal forming portion for a detection sensor, and a connector terminal forming portion for sending a control state.
- any connector terminal forming part is opened on the opposite side to the electric motor part in the axial direction of the electric motor part.
- the connector terminal forming portion for supplying power is longer in the axial direction of the electric motor portion than the connector terminal forming portion for the detection sensor and the connector terminal forming portion for sending the control state.
- a power supply connector is provided by the presence of a frame or the like on the front side of the electronic control unit (opposite side of the electric control unit with respect to the electronic control unit). If there is no working space for the terminal forming portion, the power supply connector cannot be attached to or detached from the connector terminal forming portion for supplying power. In this case, since it is necessary to mount the power supply connector on the connector terminal forming portion for supplying power in advance and then mount the motor unit on the vehicle, workability is deteriorated.
- An object of one embodiment of the present invention is to provide a motor unit that can improve workability.
- One embodiment of the present invention is a motor unit including a motor and an inverter that is integrated with the motor and controls the motor.
- the inverter is disposed in the inverter case, the inverter case, and the semiconductor element is mounted.
- substrate arrange
- the bus bar is disposed between the first substrate and the second substrate in the inverter case, and extends to the side wall of the inverter case in a direction perpendicular to the axial direction of the motor.
- a power input terminal to which a power cable is attached and detached is provided at the end of the bus bar on the side wall side in the extending direction of the bus bar. For this reason, the power cable is attached to and detached from the power input terminal along a direction perpendicular to the axial direction of the motor. Therefore, after the motor unit is mounted, the power cable can be attached to and detached from the power input terminal even when there is no work space on the front side of the inverter (the side opposite to the motor with respect to the inverter).
- bus bar is disposed between the first substrate and the second substrate so as to extend in a direction perpendicular to the axial direction of the motor, the space between the first substrate and the second substrate is effectively used. be able to.
- the inverter has a signal line connector to which an external connector is attached and detached, and the signal line connector may be open to the motor side in the motor axial direction.
- the external connector is attached to the signal line connector from the motor side toward the inverter side along the axial direction of the motor. Therefore, after the motor unit is mounted, the external connector can be attached to and detached from the signal line connector even when there is no work space on the front side of the inverter. As a result, it is not necessary to mount the motor unit after the external connector is previously attached to the signal line connector, so that the workability is further improved.
- At least one of a current sensor and a transformer may be mounted on the main surface of the second substrate on the first substrate side.
- the current sensor and the transformer are large parts. Such a large component is arranged in a space between the first board and the second board in a space-efficient manner, so that the inverter can be downsized in the axial direction of the motor.
- the first board is arranged on the motor side with respect to the second board, and the inverter is arranged in parallel with the first board between the first board and the second board in the inverter case, and a capacitor is mounted.
- a third substrate and a heat sink disposed on the motor side of the first substrate and dissipating heat from the first substrate, and the bus bar is disposed between the second substrate and the third substrate. Also good. In such a configuration, the space between the second substrate and the third substrate can be used effectively. Moreover, since the heat generated from the semiconductor element is dissipated by the heat sink, the first substrate is prevented from becoming hot.
- the capacitor may be mounted on the main surface of the third substrate on the first substrate side so as to face the heat sink in a direction perpendicular to the axial direction of the motor.
- the capacitor is a component having a large height. Since such a capacitor is disposed in a space efficient manner so as to face the heat sink in a direction perpendicular to the axial direction of the motor, the inverter can be downsized in the axial direction of the motor.
- FIG. 17 is a perspective view showing an appearance of a motor unit according to another embodiment.
- the motor unit 301 of this embodiment is mounted on an industrial vehicle such as a battery-type forklift.
- the motor unit 301 includes a motor 302 and an inverter 304 that is integrated with the motor 302 via a duct 303 and controls the motor 302.
- the motor 302 is a three-phase AC motor.
- the motor 302 has a motor main body 305 having a rotor and a stator, a motor case 306 that accommodates the motor main body 305, and motor terminals 335A to 335C (see FIG. 19) drawn from coils wound around the stator. is doing.
- a fan (not shown) for cooling the inverter 304 is integrally attached to the motor body 305. When the motor main body 305 rotates, the fan rotates.
- the duct 303 covers a portion of the motor case 306 on the inverter 304 side together with a fan.
- the duct 303 rectifies the flow of wind generated by the rotation of the fan.
- the inverter 304 is fixed to the motor 302 via a duct 303 with a plurality of bolts (not shown).
- the inverter 304 converts a direct current from a battery (not shown) into an alternating current, and controls the rotation operation of the motor main body 305 of the motor 302.
- FIG. 18 is a perspective view of the inverter 304.
- FIG. 19 is a rear view of inverter 304 shown in FIG. 20 is a cross-sectional view taken along line IV-IV in FIG. 21 is a cross-sectional view taken along line VV in FIG. 17 to 21,
- the inverter 304 includes an inverter case 307 and an inverter cover 308 that covers the inside of the inverter case 307.
- the inverter cover 308 is disposed on the opposite side of the motor 302 with respect to the inverter case 307.
- the inverter case 307 and the inverter cover 308 have a substantially rectangular shape in plan view.
- a substrate housing portion 310 In the inverter case 307, a substrate housing portion 310, a capacitor housing portion 311 and a motor terminal housing portion 312 are provided.
- the substrate housing portion 310 houses a MOS (Metal Oxide Semiconductor) substrate 313, a control substrate 314, and a capacitor substrate 315, which are semiconductor substrates.
- the MOS substrate 313 constitutes a first substrate on which the MOS elements 316 that are a plurality of semiconductor elements are mounted.
- the MOS element 316 includes a switching element and the like.
- the control board 314 constitutes a second board on which a plurality of electronic control components 317 are mounted.
- a current sensor 318, a transformer 319, and the like are also mounted on the control board 314.
- Capacitor substrate 315 constitutes a third substrate on which a plurality of capacitors 320 are mounted.
- the MOS substrate 313 is disposed closer to the motor 302 than the control substrate 314.
- the MOS substrate 313 is disposed such that the upper surface 313a and the lower surface 13b, which are main surfaces, are surfaces perpendicular to the axial direction of the motor 302 (direction A in FIGS. 17 and 18).
- the MOS substrate 313 is fixed to the inverter case 307 or the heat sink 324 (described later) by a plurality of bolts 321.
- the MOS element 316 is mounted on the upper surface 313a (the main surface on the inverter cover 308 side) of the MOS substrate 313.
- the control substrate 314 is arranged in parallel to the MOS substrate 313 on the inverter cover 308 side (the opposite side of the motor 302) from the MOS substrate 313.
- the term “parallel” is not limited to being completely parallel, but may be substantially parallel.
- the control board 314 is fixed to the inverter case 307 with a plurality of bolts 322.
- the electronic control component 317 is mounted on the upper surface 314a of the control board 314 (the main surface on the inverter cover 308 side).
- Components having large heights such as the current sensor 318 and the transformer 319 are mounted on the lower surface 314b of the control substrate 314 (the main surface on the MOS substrate 313 side).
- the capacitor substrate 315 is arranged in parallel with the MOS substrate 313 between the MOS substrate 313 and the control substrate 314. Note that the parallelism here is not limited to perfect parallelism, but may be substantially parallel.
- the capacitor substrate 315 is disposed close to the MOS substrate 313.
- the capacitor substrate 315 is arranged so as to be shifted to one side of the inverter case 307 with respect to the MOS substrate 313.
- the capacitor substrate 315 is fixed to the inverter case 307 with a plurality of bolts 323.
- the capacitor 320 is mounted on the lower surface 315b of the capacitor substrate 315 (the main surface on the MOS substrate 313 side).
- a heat sink 324 that dissipates heat from the MOS substrate 313 is disposed closer to the motor 302 than the MOS substrate 313.
- the heat sink 324 is attached to the inverter case 307 so as to be in contact with the lower surface 13b (the main surface on the motor 302 side) of the MOS substrate 313.
- the heat sink 324 has a plurality of heat radiation fins 324a. Heat generated from the MOS element 316 is radiated by the heat sink 324 through the MOS substrate 313.
- the power input extends to the side wall 307a on one side of the inverter case 307 (the shift side of the capacitor board 315 with respect to the MOS board 313) in a direction perpendicular to the axial direction of the motor 302.
- Bus bars 325A and 325B are disposed. That is, the power input bus bars 325 ⁇ / b> A and 325 ⁇ / b> B are disposed between the MOS substrate 313 and the control substrate 314.
- the power input bus bars 325A and 325B are fixed to the heat sink 324 via the relay terminals 327A and 327B and the MOS substrate 313 by a plurality of bolts 326, respectively.
- the power input bus bar 325A is a positive-side bus bar.
- the power input bus bar 325B is a negative-side bus bar.
- the power input bus bar 325 ⁇ / b> A is electrically connected to the positive electrode patterns of the MOS substrate 313, the control substrate 314, and the capacitor substrate 315.
- the power input bus bar 325 ⁇ / b> B is electrically connected to the negative electrode patterns of the MOS substrate 313, the control substrate 314, and the capacitor substrate 315.
- the heat sink 324, the MOS substrate 313, the capacitor substrate 315, the power input bus bars 325A and 325B, and the control substrate 314 are sequentially arranged in the substrate housing portion 310 from the motor 302 side to the inverter cover 308 side. It becomes.
- Power supply input terminals 330A and 330B to which power cables 329A and 329B are attached and detached in the extending direction of the power input bus bars 325A and 325B are provided at the front ends (ends on the side wall 307a side) of the power input bus bars 325A and 325B, respectively. Is provided.
- the power cables 329A and 329B are cables for supplying power to the inverter 304.
- the power input terminals 330A and 330B are provided integrally with the power input bus bars 325A and 325B, respectively.
- the power input terminals 330 ⁇ / b> A and 330 ⁇ / b> B protrude from the outer surface of the side wall 307 a of the inverter case 307.
- the power input terminals 330A and 330B have bolt holes 331A and 331B into which the bolts 345 are screwed, respectively.
- the front ends of the power cables 329A and 329B are connected to the power input terminals 330A and 330B by bolts 345, respectively.
- a sealing material 332 is interposed between the power input terminals 330A and 330B and the side wall 307a.
- the capacitor accommodating portion 311 accommodates a plurality of capacitors 320 mounted on the lower surface 315b of the capacitor substrate 315.
- the capacitor housing portion 311 is disposed adjacent to the heat sink 324 on the motor 302 side of the substrate housing portion 310 in the region on the side wall 307a side (power supply input terminals 330A and 330B side) of the inverter case 307. Accordingly, the capacitor 320 is mounted on the lower surface 315b of the capacitor substrate 315 so as to face the heat sink 324 with the inverter case 307 sandwiched in a direction perpendicular to the axial direction of the motor 302.
- a heat dissipating member 333 that dissipates heat from the capacitor 320 is disposed between the front end surface of the capacitor 320 and the inverter case 307.
- the heat generated from the capacitor 320 is radiated by the heat sink 324 through the heat radiating member 333 and the inverter case 307.
- the tip portions of the motor terminals 335A to 335C are accommodated.
- the motor terminal accommodating portion 312 is disposed on the opposite side of the power input terminals 330A and 330B with respect to the substrate accommodating portion 310.
- the motor terminals 335A to 335C are connected to motor output bus bars 336A to 336C, respectively.
- the motor output bus bars 336A to 336C extend from the motor terminal accommodating portion 312 to the substrate accommodating portion 310.
- the motor output bus bars 336A to 336C are fixed to the heat sink 324 through the relay terminals 338A to 338C and the MOS substrate 313 by a plurality of bolts 337 in the substrate housing portion 310, respectively.
- a support portion 339 protrudes from the other outer surface of the inverter case 307. Specifically, the support portion 339 protrudes from the outer surface on one side of the inverter case 307 in the direction perpendicular to the opposing direction of the power input terminals 330A and 330B and the motor terminals 335A to 335C.
- the support portion 339 is provided with a signal line connector 341 to which the external connector 340 is attached and detached.
- the external connector 340 is a connector plug for communicating with an external device (not shown).
- the signal line connector 341 is electrically connected to the signal pattern on the control board 314.
- the signal line connector 341 opens on the motor 302 side in the axial direction of the motor 302.
- the power input bus bars 325A and 325B are arranged between the MOS substrate 313 and the control substrate 314 in the inverter case 307, and are in a direction perpendicular to the axial direction of the motor 302.
- the inverter case 307 extends to the side wall 307a.
- power input terminals 330A and 330B to which power cables 329A and 329B are attached and detached are provided at the ends of the power input bus bars 325A and 325B on the side wall 307a side in the extending direction of the power input bus bars 325A and 325B. Yes.
- the power cables 329A and 329B are attached to and detached from the power input terminals 330A and 330B along a direction perpendicular to the axial direction of the motor 302. Therefore, after the motor unit 301 is mounted on an industrial vehicle, the power source can be used even when there is no work space because a frame or the like is disposed on the front side of the inverter 304 (opposite the motor 302 with respect to the inverter 304).
- the cables 329A and 329B can be attached to and detached from the power input terminals 330A and 330B. This eliminates the need to mount the motor unit 301 on an industrial vehicle after the power cables 329A and 329B have been previously attached to the power input terminals 330A and 330B, thereby improving workability.
- the power input bus bars 325A and 325B are arranged between the MOS substrate 313 and the control substrate 314 so as to extend in a direction perpendicular to the axial direction of the motor 302. Can be used effectively.
- the signal line connector 341 is open to the motor 302 side in the axial direction of the motor 302.
- the external connector 340 is attached to the signal line connector 341 from the motor 302 side toward the inverter 304 side along the axial direction of the motor 302. Therefore, the external connector 340 can be attached to and detached from the signal line connector 341 even when there is no work space on the front side of the inverter 304 after the motor unit 301 is mounted. Thereby, since it is not necessary to mount the motor unit 301 in an industrial vehicle after attaching the external connector 340 to the signal line connector 341 in advance, workability is further improved.
- a current sensor 318 and a transformer 319 are mounted on the main surface of the control substrate 314 on the MOS substrate 313 side. Therefore, since the current sensor 318 and the transformer 319 having a large height are arranged in a space between the MOS substrate 313 and the control substrate 314 in a space-efficient manner, the inverter 304 can be downsized in the axial direction of the motor 302. Can do.
- the MOS substrate 313 is disposed closer to the motor 302 than the control substrate 314, and the heat sink 324 that dissipates heat from the MOS substrate 313 is disposed closer to the motor 302 than the MOS substrate 313.
- the capacitor board 315 is disposed between the MOS board 313 and the control board 314 in the inverter case 307, and the power input bus bars 325A and 325B are provided between the control board 314 and the capacitor board 315. Is arranged. For this reason, the space between the control board 314 and the capacitor board 315 can be used effectively. Further, since the heat generated from the MOS element 316 is dissipated by the heat sink 324, the MOS substrate 313 is prevented from becoming hot.
- the capacitor 320 is mounted on the main surface of the capacitor substrate 315 on the MOS substrate 313 side so as to face the heat sink 324 in a direction perpendicular to the axial direction of the motor 302. Accordingly, since the capacitor 320 having a large height is disposed in a space-efficient manner so as to face the heat sink 324 in a direction perpendicular to the axial direction of the motor 302, the inverter 304 is further downsized in the axial direction of the motor 302. be able to.
- the present invention is not limited to the above embodiment.
- the current sensor 318 and the transformer 319 having a large height are mounted on the lower surface 314b of the control board 314.
- the present invention is not particularly limited thereto, and only one of the current sensor 318 and the transformer 319 is mounted. May be mounted on the lower surface 314b of the control board 314.
- components having a large height other than the current sensor 318 and the transformer 319 may be mounted on the lower surface 314b of the control board 314.
- the capacitor substrate 315 is disposed between the MOS substrate 313 and the control substrate 314 in the inverter case 307, and the power input bus bars 325A and 325B are disposed between the control substrate 314 and the capacitor substrate 315.
- the form is not particularly limited.
- the MOS substrate 313 and the capacitor substrate 315 are arranged side by side at the same position in the axial direction of the motor 302, and power input bus bars 325A and 325B are arranged between the control substrate 314, the MOS substrate 313, and the capacitor substrate 315. May be.
- the MOS element 316 and the capacitor 320 may be mounted on one common substrate, and the power input bus bars 325A and 325B may be disposed between the control substrate 314 and the common substrate.
- Japanese Patent Application Laid-Open Nos. 2016-146702 and 2010-124691 are known.
- Japanese Patent Application Laid-Open No. 2016-146702 describes an electronic control unit as an inverter that is used in an electric power steering device for a vehicle and integrated with an electric motor unit.
- the electronic control unit includes an ECU housing and an electronic control assembly housed in the ECU housing.
- a lid is fixed to the end surface of the ECU housing.
- the lid is provided with a connector terminal forming portion for supplying power, a connector terminal forming portion for a detection sensor, and a connector terminal forming portion for sending a control state.
- a power conversion device as an inverter described in Japanese Patent Application Laid-Open No. 2010-124691 includes a power module in which an inverter circuit is built, and a control circuit board that controls the inverter circuit.
- the power module has a base and a case attached to the base. On one side surface of the case, a positive side main electrode and a negative side main electrode are formed so as to protrude. Three AC side main electrodes protrude from the opposite side surface of the case.
- a positive side main electrode and a negative side main electrode protrude from one side surface of a case, and three AC side main electrodes protrude from a side surface on the opposite side of the case.
- a DC bus bar can be connected to the positive-side main electrode, the negative-side main electrode, and the AC-side main electrodes.
- the distance between the positive-side main electrode and the negative-side main electrode is short, it is difficult to connect the DC bus bar to the positive-side main electrode and the negative-side main electrode, and workability deteriorates.
- An object of one aspect of the present invention is to provide an inverter that can improve workability when connecting connecting members.
- An inverter includes an inverter case having two outer walls facing each other, an inverter cover covering the inside of the inverter case, a main circuit board disposed in the inverter case, and two inverter cases in the inverter case. Arranged so as to extend toward one side of the outer side wall, and arranged to extend toward the other side of the two outer walls in the inverter case, and a plurality of first terminals connected to the main circuit board And a plurality of second terminals connected to the main circuit board, wherein the first terminals and the second terminals are alternately arranged along a direction perpendicular to the opposing direction of the two outer walls. It is characterized by.
- the first terminal is arranged in the inverter case so as to extend toward one side of the two outer walls.
- the second terminal is arranged in the inverter case so as to extend toward the other side of the two outer walls.
- the first terminals and the second terminals are alternately arranged along a direction perpendicular to the opposing direction of the two outer walls. Therefore, since the distance between the first terminals is secured at least by the width of the second terminal, the operation of connecting the connection member to the first terminal is facilitated. Moreover, since the distance between each 2nd terminal is ensured at least by the width
- the first terminal is an input terminal to which a power cable for supplying power to the main circuit board is connected, and the second terminal is connected to a motor cable for outputting a signal from the main circuit board to the motor. It may be an output terminal. In such a configuration, it becomes easier to connect the power cable to the input terminal. In addition, it becomes easier to connect the motor cable to the output terminal.
- a power cable may be connected to the input terminal from one side of the two outer walls.
- the power cable can be connected to the input terminal even when the space on the inverter cover side is narrow.
- the motor cable may be connected to the output terminal from the opposite side of the inverter cover in the inverter case.
- the motor cable can be assembled to the output terminal in the same direction as the assembly direction of the input terminal and the output terminal with respect to the inverter case before the inverter is mounted on the vehicle or the like together with the motor.
- FIG. 22 is an exploded perspective view showing an inverter according to an embodiment of the present invention.
- FIG. 23 is a side view of the inverter shown in FIG. 24 is a cross-sectional view taken along line XXIV-XXIV in FIG. 25 is a cross-sectional view taken along the line XXV-XXV in FIG.
- the inverter 401 of this embodiment is integrated with a motor 440.
- Motor 440 is a three-phase AC motor.
- Such an inverter 401 with a motor is mounted on an industrial vehicle such as a battery-type forklift.
- Inverter 401 converts a direct current from a battery (not shown) into an alternating current to control motor 440.
- the inverter 401 includes an inverter case 402 opened on one side and an inverter cover 403 fixed to the upper surface 402a (opening surface) of the inverter case 402 so as to cover the inside of the inverter case 402.
- the motor 440 is disposed on the bottom surface side of the inverter case 402 (the side opposite to the inverter cover 403 with respect to the inverter case 402).
- the inverter case 402 and the inverter cover 403 have a substantially rectangular shape in plan view.
- the inverter case 402 has outer walls 404 to 407 and an inner wall 408.
- the outer side walls 404 and 405 are opposed to each other.
- the area of the outer side wall 404 is larger than the area of the outer side wall 405.
- the outer side wall 406 includes a large area region 406a connected to the outer wall 404, a small area region 406b connected to the outer wall 405, and a bent region 406c disposed between the large area region 406a and the small area region 406b.
- the outer side wall 407 includes a large area region 407a connected to the outer wall 404, a small area region 407b connected to the outer wall 405, and a bent region 407c disposed between the large area region 407a and the small area region 407b.
- the large area regions 406a and 407a of the outer side walls 406 and 407 face each other in a direction (Y direction) perpendicular to the facing direction (X direction) of the outer walls 404 and 405.
- the small area regions 406b and 407b of the outer side walls 406 and 407 face each other in a direction perpendicular to the facing direction of the outer side walls 404 and 405.
- the inner wall 408 is disposed in the inverter case 402.
- the inner wall 408 connects the connecting portion between the small area region 406b and the bent region 406c in the outer wall 406 and the connecting portion between the small area region 407b and the bent region 407c in the outer wall 407.
- the inner wall 408 is opposed to the outer walls 404 and 405.
- the internal space defined by the large area 406 a and the bent area 406 c of the outer wall 404 and the outer wall 406, the large area 407 a and the bent area 407 c of the outer wall 407, and the inner wall 408 forms a substrate housing portion 409. ing.
- the internal space defined by the outer wall 405, the small area 406 b of the outer wall 406, the small area 407 b of the outer wall 407, and the inner wall 408 forms a motor cable housing 410.
- the main circuit board 411 and the control board 412 are housed.
- the main circuit board 411 is fixed to the inverter case 402 with a plurality of bolts 413.
- the control board 412 is fixed to the inverter case 402 with a plurality of bolts 414.
- the main circuit board 411 has a structure in which a MOS (Metal Oxide Semiconductor) substrate 415 which is a semiconductor substrate and a capacitor substrate 416 are laminated. On the MOS substrate 415, a plurality of MOS elements 417 (not shown in FIG. 22) which are semiconductor elements are mounted. The MOS element includes a switching element and the like. A plurality of capacitors 418 are mounted on the capacitor substrate 416.
- the control board 412 is disposed closer to the inverter cover 403 than the main circuit board 411. A plurality of electronic control components 419 are mounted on the control board 412.
- a heat sink 420 that dissipates heat from the main circuit board 411 is disposed on the motor 440 side of the main circuit board 411.
- the heat sink 420 is attached to the inverter case 402 so as to be in contact with the lower surface of the MOS substrate 415 of the main circuit board 411.
- the heat sink 420 has a plurality of heat radiation fins 420a. The heat generated from the MOS element 417 is radiated by the heat sink 420 through the MOS substrate 415.
- the board accommodating portion 409 accommodates input terminals 421A and 421B having a bus bar structure (hereinafter, sometimes collectively referred to as input terminals 421).
- the input terminals 421A and 421B are first terminals connected to the main circuit board 411 and the control board 412.
- the input terminals 421A and 421B are arranged parallel to each other between the main circuit board 411 and the control board 412.
- the input terminals 421A and 421B extend in the opposing direction (X direction) of the outer walls 404 and 405.
- the input terminals 421 ⁇ / b> A and 421 ⁇ / b> B extend from the center portion of the substrate housing portion 409 toward the outer wall 404.
- the distal end portions of the input terminals 421A and 421B have a cylindrical shape, and the proximal end portions of the input terminals 421A and 421B have a substantially flat plate shape. Proximal end portions of the input terminals 421A and 421B are fixed to the inverter case 402 by a plurality of bolts 422 via the relay terminals 423A and 423B and the main circuit board 411, respectively.
- the input terminal 421A is a positive terminal.
- the input terminal 421B is a negative terminal.
- the input terminal 421A is electrically connected to the positive electrode patterns of the main circuit board 411 and the control board 412.
- the input terminal 421B is electrically connected to the negative electrode patterns of the main circuit board 411 and the control board 412.
- the outer wall 404 is provided with notches 424A and 424B that open to the upper surface 402a of the inverter case 402 and pass the input terminals 421A and 421B, respectively.
- the front ends of the input terminals 421A and 421B protrude to the outside of the outer wall 404.
- Insertion holes 425A and 425B into which the power cables 441A and 441B are respectively inserted are provided at the tip side portions of the input terminals 421A and 421B.
- the power cables 441A and 441B are connecting members for supplying power from a battery (not shown) to the main circuit board 411 and the control board 412.
- Female screws are formed in the insertion holes 425A and 425B.
- a male screw portion 442 is provided at the tip of the power cables 441A and 441B.
- the power cables 441A and 441B are connected to the input terminals 421A and 421B, respectively.
- the motor cable housing portion 410 houses the tip portions of the motor cables 426A to 426C drawn from the motor 440. 22 and 24, the motor cables 426A to 426C are omitted. Motor cables 426A to 426C are connected to output terminals 427A to 427C (hereinafter sometimes collectively referred to as output terminals 427) having a bus bar structure, and are connected to output control signals from main circuit board 411 to motor 440. It is a member.
- the output terminals 427A to 427C are second terminals connected to the main circuit board 411.
- the output terminals 427A to 427C are arranged in parallel with each other between the main circuit board 411 and the control board 412.
- the output terminals 427A to 427C extend in the opposing direction (X direction) of the outer walls 404 and 405.
- the output terminals 427A to 427C extend from the central portion of the substrate housing portion 409 toward the outer wall 405.
- the output terminals 427A to 427C have a flat plate shape. Proximal end portions of the output terminals 427A to 427C are fixed to the inverter case 402 by a plurality of bolts 429 via the relay terminals 430A to 430C and the main circuit board 411, respectively.
- the inner wall 408 of the inverter case 402 is provided with notches 428A to 428C that open to the upper surface 402a of the inverter case 402 and pass through the output terminals 427A to 427C, respectively. Accordingly, the output terminals 427A to 427C are accommodated across the board accommodating portion 409 and the motor cable accommodating portion 410.
- a male screw portion 443 is provided at the tip of the motor cables 426A to 426C.
- a round hole 444 through which the male screw portion 443 passes is provided at the tip of the output terminals 427A to 427C.
- the input terminal 421 and the output terminal 427 are alternately arranged along the opposing direction (Y direction) of the outer walls 406 and 407. Specifically, the input terminal 421 and the output terminal 427 are arranged in the order of the output terminal 427A, the input terminal 421A, the output terminal 427B, the input terminal 421B, and the output terminal 427C from the outer wall 406 side to the outer wall 407 side. ing.
- the intervals between adjacent input terminals 421 and output terminals 427 are all equal. Accordingly, the distance between the input terminals 421A and 421B, the distance between the output terminals 427A and 427B, and the distance between the output terminals 427B and 427C are all equal. Note that the intervals between adjacent input terminals 421 and output terminals 427 do not have to be the same.
- a signal line connector 431 to which an external connector (not shown) is attached and detached is provided on the outer wall surface of the outer wall 407 of the inverter case 402 via a support portion 432.
- the signal line connector 431 is electrically connected to the signal pattern on the control board 412.
- the signal line connector 431 is open on the motor 440 side in the axial direction of the motor 440.
- a seal rubber 433 is disposed between the inverter case 402 and the inverter cover 403.
- the seal rubber 433 includes a seal portion 434 that seals between the upper surface 402a of the inverter case 402 and the inverter cover 403, and a seal portion 435A that seals between the input terminals 421A and 421B and the inverter case 402 and the inverter cover 403, respectively.
- 435B, and seal portions 436A to 436C for sealing between the output terminals 427A to 427C and the inverter case 402 and the inverter cover 403, respectively.
- the seal portion 434 is interposed between the outer walls 404 to 407 and the inner wall 408 of the inverter case 402 and the inverter cover 403.
- the seal portions 435A and 435B are assembled with the input terminals 421A and 421B, and are integrated with the seal portion 434 so as to be fitted to the notches 424A and 424B of the outer wall 404.
- the seal portions 435A and 435B are interposed between the input terminals 421A and 421B, the edge portions of the notches 424A and 424B in the inverter case 402, and the inverter cover 403.
- the seal portions 436A to 436C are assembled with the output terminals 427A to 427C and are integrated with the seal portion 434 so as to be fitted to the notches 428A to 428C of the inner wall 408.
- the seal portions 436A to 436C are interposed between the output terminals 427A to 427C, the edges of the notches 428A to 428C in the inverter case 402, and the inverter cover 403.
- the seal portions 435A and 435B have a U-shaped cross section that sandwiches the outer wall 404 from the inner side and the outer side of the outer wall 404 in a cross section perpendicular to the vertical direction (Z direction) of the inverter 401 (see FIG. 24).
- the seal portions 436A to 436C are U-shaped in a cross-section that sandwiches the inner wall 408 from the inner side (outer wall 404 side) and the outer side (outer wall 405 side) of the inner wall 408 in a cross section cut in the vertical direction of the inverter 401. (See FIG. 24).
- the main circuit board 411 is assembled to the inverter case 402 using a plurality of bolts 413. At this time, the bolt 413 is fastened from above the inverter case 402.
- the input terminals 421A and 421B, the output terminals 427A to 427C, and the seal rubber 433 are assembled to form a sub-assembly 437.
- the sub assembly 437 is assembled to the inverter case 402. Specifically, first, the seal portion 434 is placed on the upper surface 402a of the inverter case 402, and the seal portions 435A and 435B are fitted to the notches 424A and 424B of the outer wall 404, respectively, and the seal portions 436A to 436C.
- the subassembly 437 is arranged with respect to the inverter case 402 so as to fit into the notches 428A to 428C of the inner wall 408, respectively.
- the input terminals 421A and 421B are fixed to the inverter case 402 using a plurality of bolts 422, and the output terminals 427A to 427C are fixed to the inverter case 402 using a plurality of bolts 429.
- the bolts 422 and 429 are fastened from above the inverter case 402.
- the motor cables 426A to 426C are connected to the output terminals 427A to 427C by the nuts 445 in a state where the male screw portions 43 of the motor cables 426A to 426C are passed through the round holes 444 of the output terminals 427A to 427C. To do. At this time, the nut 445 is tightened from above the inverter case 402.
- control board 412 is assembled to the inverter case 402 to which the sub-assembly 437 is assembled using a plurality of bolts 414.
- the bolt 414 is fastened from above the inverter case 402.
- the inverter cover 403 is assembled to the inverter case 402 in which the sub-assembly 437 and the control board 412 are assembled.
- the bolt 438 is fastened from above the inverter case 402.
- the input terminals 421A and 421B are arranged in the inverter case 402 so as to extend toward the outer wall 404 side.
- the output terminals 427A to 427C are arranged in the inverter case 402 so as to extend toward the outer wall 405 side.
- the input terminal 421 and the output terminal 427 are alternately arranged along a direction perpendicular to the opposing direction of the outer walls 404 and 405. Accordingly, since the distance between the input terminals 421 is secured at least by the width of the output terminal 427, the operation of connecting the power cables 441A and 441B to the input terminals 421A and 421B is facilitated.
- the power cables 441A and 441B are connected to the input terminals 421A and 421B from the side of the outer wall 404, respectively. Therefore, when the inverter 401 is mounted on the industrial vehicle, the power cables 441A and 441B can be connected to the input terminals 421A and 421B, respectively, even when the space on the inverter cover 403 side is narrow.
- motor cables 426A to 426C are connected to the output terminals 427A to 427C from the opposite side of the inverter cover 403 in the inverter case 402, respectively. Therefore, before the inverter 401 is mounted on the industrial vehicle together with the motor 440, the motor cables 426A to 426C are connected to the output terminal 427A to the inverter case 402 in the same direction as the assembly direction of the input terminals 421A and 421B and the output terminals 427A to 427C. Each can be assembled to 427C. Thereby, workability at the time of assembling the inverter 401 is improved.
- the input terminals 421A and 421B extend toward the outer wall 404, and the output terminals 427A to 427C extend toward the outer wall 405, so that the inverter 401 is reduced in the height direction.
- the power cables 441A and 441B are connected to the input terminals 421A and 421B from the side of the outer wall 404 of the inverter case 402.
- the present invention is not limited to this configuration, and for example, the power cables 441A and 441B are
- the inverter case 402 may be connected to the input terminals 421A and 421B from the bottom surface side.
- the motor cables 426A to 426C are connected to the output terminals 427A to 427C from the bottom surface side of the inverter case 402.
- the motor cables 426A to 426C are connected to the inverter case 402, for example.
- the output terminals 427A to 427C may be connected from the side of the outer wall 405.
- the inverter 401 is integrated with the motor 440, but the present invention can also be applied to an inverter separate from the motor.
- the inverter includes a plurality of first terminals extending toward one side of the two outer walls facing each other of the inverter case and a plurality of terminals extending toward the other side of the two outer walls facing each other of the inverter case.
- the first terminal and the second terminal may have a structure in which the first terminal and the second terminal are alternately arranged along a direction perpendicular to the opposing direction of the two outer walls.
- SYMBOLS 1 ... Motor unit, 2 ... Motor, 4 ... Inverter, 7 ... Fan, 8 ... Case, 12 ... MOS substrate (semiconductor substrate), 12b ... Lower surface (mounting surface), 13 ... Capacitor substrate, 13b ... Lower surface, 16 ... Heat sink 16a ... upper surface (mounting surface), 18 ... capacitor, 20 ... MOS element (semiconductor element), 31 ... heat dissipation member, 101 ... capacitor mounting structure, 110 ... capacitor substrate, 110a ... mounting surface, 120 ... capacitor, 130 ...
- heat sink 140: heat radiating member
- 150 fixing member
- 160 insulating member
- 170 battery terminal (pressing member)
- 201 inverter
- 202 inverter case
- 202a upper surface (opening surface)
- 203 inverter cover
- 204 outside Wall (side wall)
- 208 ... inner side wall (side wall)
- 211 ... main circuit board 221A, 221B
- Input terminals (terminals), 224A, 224B ... notches, 27A to 27C ... output terminals (terminals), 28A to 28C ... notches, 233 ... seal rubber (seal member), 234 ... seal part (first seal part), 235A , 235B ...
- Power input bus bar (bus bar), 329A, 329B ... Power cable, 330A, 330B ... Power input terminal, 340 ... External connector, 341 ... Signal line connector, 401 ... Inverter, 402 ... Inverter case, 403 ... Inverter Cover, 404 ... outer wall, 405 ... outer wall, 411 ... main circuit board, 421, 421A, 421B ... input terminal (first terminal), 426A to 426C ... motor cable, 427,427A to 427C ... output terminal (second) Terminal), 441A, 441B ... power cable.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
Abstract
モータと、モータと一体化され、モータを制御するインバータとを備えたモータユニットにおいて、インバータは、ケースと、ケース内に配置され、半導体素子が実装される半導体基板と、ケース内に配置され、コンデンサが実装されるコンデンサ基板と、半導体基板のモータ側の面に取り付けられ、半導体基板を冷却するヒートシンクと、を有し、コンデンサは、モータとインバータとの配列方向に垂直な方向においてヒートシンクと対向するように、コンデンサ基板のモータ側の面に実装されていることを特徴とする。
Description
本発明は、モータユニット、コンデンサ実装構造、インバータの封止構造、インバータの組立方法、及びインバータに関する。
従来のモータユニットとしては、例えば特許文献1に記載されている技術が知られている。特許文献1に記載のモータユニットは、回転電機と、この回転電機と一体化され、回転電機の駆動を制御する制御部とを備えている。制御部は、直流電源により供給される直流電流を交流電流に変換する電力変換器と、この電力変換器と並列に接続されたコンデンサと、電力変換器を制御する電子制御装置とを有している。電力変換器は、複数のパワー素子と複数の還流ダイオードとを有している。パワー素子は、フレーム上に実装されている。フレームにおけるパワー素子が接続された面と反対側の第1面には、第1放熱フィンが形成されている。電子制御装置は、筐体に収容された基板上に実装されている。筐体における電子制御装置が接続された面と反対側の第2面には、第2放熱フィンが形成されている。
しかしながら、上記従来技術においては、第1放熱フィン及び第2放熱フィンは、回転軸を中心として放射状に形成されている。このため、第1放熱フィン及び第2放熱フィンは、制御部の径方向に広い領域にわたって配置されることとなる。また、上記従来技術では、コンデンサの配置については特に考慮されていないが、例えばコンデンサがフレーム上にパワー素子と共に実装される場合には、制御部の寸法が回転電機の軸方向に対して大きくならざるを得ない。以上により、制御部(インバータ)の大型化につながる。
本発明の一態様における目的は、インバータの小型化を図ることができるモータユニットを提供することである。
本発明の一態様は、モータと、モータと一体化され、モータを制御するインバータとを備えたモータユニットにおいて、インバータは、ケースと、ケース内に配置され、半導体素子が実装される半導体基板と、ケース内に配置され、コンデンサが実装されるコンデンサ基板と、半導体基板のモータ側の面に取り付けられ、半導体基板を冷却するヒートシンクと、を有し、コンデンサは、モータとインバータとの配列方向に垂直な方向においてヒートシンクと対向するように、コンデンサ基板のモータ側の面に実装されていることを特徴とする。
本発明の一態様によれば、インバータの小型化を図ることができる。
[第1の形態]
本発明の一態様は、モータと、モータと一体化され、モータを制御するインバータとを備えたモータユニットにおいて、インバータは、ケースと、ケース内に配置され、半導体素子が実装される半導体基板と、ケース内に配置され、コンデンサが実装されるコンデンサ基板と、半導体基板のモータ側の面に取り付けられ、半導体基板を冷却するヒートシンクと、を有し、コンデンサは、モータとインバータとの配列方向に垂直な方向においてヒートシンクと対向するように、コンデンサ基板のモータ側の面に実装されていることを特徴とする。
本発明の一態様は、モータと、モータと一体化され、モータを制御するインバータとを備えたモータユニットにおいて、インバータは、ケースと、ケース内に配置され、半導体素子が実装される半導体基板と、ケース内に配置され、コンデンサが実装されるコンデンサ基板と、半導体基板のモータ側の面に取り付けられ、半導体基板を冷却するヒートシンクと、を有し、コンデンサは、モータとインバータとの配列方向に垂直な方向においてヒートシンクと対向するように、コンデンサ基板のモータ側の面に実装されていることを特徴とする。
このようなモータユニットにおいては、半導体素子は半導体基板に実装され、コンデンサはコンデンサ基板に実装される。ここでの半導体素子は、コンデンサよりも発熱しやすい。そこで、半導体基板のモータ側の面には、半導体基板を冷却するヒートシンクが取り付けられている。このとき、ヒートシンクは半導体基板のみを冷却すればよいため、ヒートシンクの寸法を必要以上に大きくしなくて済む。また、コンデンサは、モータとインバータとの配列方向に垂直な方向においてヒートシンクと対向するように、コンデンサ基板のモータ側の面に実装されている。従って、インバータの寸法がモータとインバータとの配列方向に大きくなることが防止される。以上により、インバータの小型化を図ることができる。
コンデンサとケースとの間には、放熱部材が配置されていてもよい。このような構成では、コンデンサから発生した熱が放熱部材によりケースに放熱される。
モータには、インバータを冷却するファンが取り付けられていてもよい。このような構成では、ファンによってインバータが冷却されるため、ヒートシンクが冷却されることとなる。
ヒートシンク及び半導体基板の互いに対向する取付面の外形寸法が同等であってもよい。このような構成では、ヒートシンクの取付面の外形寸法が必要最小限に抑えられるため、ヒートシンクの寸法を小さくすることができる。
以下、図面を参照して、本発明の実施形態を詳細に説明する。
図1は、本発明の一実施形態に係るモータユニットを示す分解斜視図である。図1において、本実施形態のモータユニット1は、モータ2と、このモータ2とダクト3を介して一体化され、モータ2を制御するインバータ4とを備えている。
モータ2は、三相交流モータである。モータ2は、ロータ及びステータを有するモータ本体32(図4参照)と、このモータ本体32を収容するモータケース5と、ステータに巻かれているコイルから引き出された3つのモータ端子6とを有している。モータ2には、インバータ4を冷却するファン7が取り付けられている。ファン7は、モータケース5よりもインバータ4側においてモータ本体32の回転軸32aにナット33により取り付けられている(図4参照)。回転軸32aの先端部の外周面には、ナット33と螺合するネジが切られている。従って、モータ本体32が回転すると、ファン7が回転する。
ダクト3は、モータケース5のインバータ4側の部分をファン7と共に覆う。インバータ4は、複数のボルト(図示せず)によりダクト3を介してモータ2に固定されている。インバータ4は、バッテリ(図示せず)からの直流電流を交流電流に変換して、モータ2のモータ本体32の回転動作を制御する。
図2は、インバータ4の全体構造を示す概略断面図である。図2において、インバータ4は、アルミニウム製のケース8を備えている。ケース8は、アルミダイカストにより形成されている。
ケース8におけるモータ2とは反対側には、ケース8内を覆うカバー9が取り付けられている。また、ケース8の一端部には、バッテリ(図示せず)と電気的に接続されたバッテリケーブル(図示せず)が取り付けられるバッテリケーブル取付部10が固定されている。
ケース8内には、モータ2の各モータ端子6が収容されるモータ端子収容部11と、半導体基板であるMOS(Metal Oxide Semiconductor)基板12、コンデンサ基板13及び制御基板14が収容される基板収容部15と、ヒートシンク16が収容されるヒートシンク収容部17と、コンデンサ18が収容されるコンデンサ収容部19とが設けられている。
モータ端子収容部11は、ケース8の他端側(バッテリケーブル取付部10とは反対側)に配置されている。基板収容部15は、モータ端子収容部11よりもバッテリケーブル取付部10側で且つカバー9側に配置されている。ヒートシンク収容部17は、バッテリケーブル取付部10側で且つモータ2側(カバー9とは反対側)に配置されている。コンデンサ収容部19は、モータ端子収容部11とヒートシンク収容部17との間に配置されている。
MOS基板12には、半導体素子であるMOS素子20が実装されている。MOS素子20には、スイッチング素子等が含まれる。コンデンサ基板13には、上記のコンデンサ18が実装されている。制御基板14には、電子制御部品21が実装されている。
MOS基板12は、複数のボルト22によりケース8に固定されている。MOS素子20は、MOS基板12の上面12a(カバー9側の面)に実装されている。また、MOS基板12の上面12aには、端子23を介してバスバー24が取り付けられている。端子23は、バッテリの端子(図示せず)と電気的に接続されている。バスバー24は、複数のボルト25により端子23及びMOS基板12を介してヒートシンク16に固定されている。バスバー24は、モータ端子収容部11と基板収容部15とを画成する壁部26を貫通してモータ端子収容部11まで延びて、モータ端子6と連結されている。
コンデンサ基板13は、MOS基板12よりもカバー9側に配置されている。つまり、コンデンサ基板13は、MOS基板12に対してモータ2の反対側に配置されている。また、コンデンサ基板13は、MOS基板12に対してモータ端子収容部11側にずれて配置されている。これにより、MOS基板12及びコンデンサ基板13をケース8内にスペース効率良く配置することができる。コンデンサ基板13は、複数のボルト27によりケース8に固定されている。コンデンサ18は、コンデンサ基板13の下面13b(モータ2側の面)に実装されている。
制御基板14は、コンデンサ基板13よりもカバー9側に配置されている。制御基板14は、複数のボルト28によりケース8に固定されている。電子制御部品21は、制御基板14の上面14a(カバー9側の面)及び下面14b(コンデンサ基板13側の面)に実装されている。なお、図2では、制御基板14の下面14bに実装された電子制御部品21のみが示されている。
ヒートシンク16は、MOS基板12の下面12b(モータ2側の面)に接触するように取り付けられ、MOS基板12を冷却する。ヒートシンク16は、ケース8の一部に嵌め込まれている。ヒートシンク16の材質は、ケース8と同様に、アルミニウムである。ヒートシンク16は、図3に示されるように、複数の放熱フィン29を有している。
ヒートシンク16の上面16a(モータ2とは反対側の面)の外形寸法は、MOS基板12の下面12bの外形寸法と同等である。なお、ここでいう同等とは、完全に等しい場合だけでなく、実質的に等しい場合も含む概念である。ヒートシンク16の上面16a及びMOS基板12の下面12bは、ヒートシンク16及びMOS基板12の互いに対向する取付面を構成している。
ヒートシンク16は、押出成形により形成されている。これにより、ヒートシンク16がダイカストにより形成される場合に比べて、放熱フィン29のピッチを狭くしたり、放熱フィン29の高さを大きくすることができる。その結果、ヒートシンク16の放熱性能を向上させることが可能となる。
ヒートシンク16は、図3に示されるように、複数のボルト22によりケース8に固定されている。このとき、ヒートシンク16は、ボルト22によりMOS基板12と一緒にケース8に締結されている。なお、ヒートシンク16及びMOS基板12は、ボルト22で共締めされていなくてもよい。このようにボルト22を用いることにより、ヒートシンク16とケース8との固定構造を安価に実現することができる。
ヒートシンク16とケース8との間には、シール部30が介在されている。シール部30は、シールゴムまたは液状シール剤等により形成されている。これにより、ヒートシンク16とケース8とが密封される。
コンデンサ18は、上述したように、コンデンサ基板13の下面13bに実装されている。このため、コンデンサ18は、モータ2側、つまりヒートシンク16と同じ側に延びている。このとき、コンデンサ18は、モータ2とインバータ4との配列方向(X方向)に垂直な方向においてケース8を挟んでヒートシンク16と対向するように配置されている。コンデンサ18の先端面とケース8との間には、コンデンサ18からの熱を放散する放熱部材31が配置されている。
以上のようなモータユニット1において、MOS素子20から発生した熱がMOS基板12を通ってヒートシンク16により放熱されるため、MOS基板12が熱くなりにくくなる。また、コンデンサ18から発生した熱が放熱部材31によりケース8に放熱されるため、コンデンサ18が熱くなりにくくなる。
さらに、図4に示されるように、ファン7の回転により発生した冷却風の流れによって、インバータ4が冷却される。なお、図4では、便宜上インバータ4の一部が省略されている。このとき、ヒートシンク16が冷却風により冷却されるため、MOS基板12が一層熱くなりにくくなる。また、ケース8におけるコンデンサ18の近傍部分及び放熱部材31が冷却風により冷却されるため、コンデンサ18が一層熱くなりにくくなる。
以上のように本実施形態にあっては、MOS素子20はMOS基板12に実装され、コンデンサ18はコンデンサ基板13に実装される。MOS素子20は、コンデンサ18よりも発熱しやすい。そこで、MOS基板12の下面12bには、MOS基板12を冷却するヒートシンク16が取り付けられている。このとき、ヒートシンク16はMOS基板12のみを冷却すればよいため、ヒートシンク16の寸法を必要以上に大きくしなくて済む。また、コンデンサ18は、モータ2とインバータ4との配列方向に垂直な方向においてヒートシンク16と対向するように、コンデンサ基板13の下面13bに実装されている。従って、インバータ4の寸法がモータ2とインバータ4との配列方向に大きくなることが防止される。以上により、インバータ4の小型化を図ることができる。
また、ケース8は、ダイカストにより形成されている。このため、ケース8の形状及び内部レイアウトの自由度が向上する。従って、インバータ4を更に小型化することが可能となる。
また、本実施形態では、コンデンサ18とケース8との間には、放熱部材31が配置されている。従って、コンデンサ18から発生した熱が放熱部材31によりケース8に放熱される。これにより、コンデンサ18を冷却することができる。
また、本実施形態では、モータ2には、インバータ4を冷却するファン7が取り付けられている。従って、ファン7によってインバータ4が冷却されるため、ヒートシンク16及び放熱部材31が冷却されることとなる。これにより、MOS基板12及びコンデンサ18をより冷却することができる。
また、本実施形態では、ヒートシンク16の上面16a及びMOS基板12の下面12bの外形寸法が同等である。従って、ヒートシンク16の上面16aの外形寸法が必要最小限に抑えられるため、ヒートシンク16の寸法を小さくすることができる。
なお、本形態は、上記実施形態には限定されない。例えば上記実施形態では、ボルト22によりヒートシンク16をケース8に固定しているが、特にその形態には限られず、接着剤等による化学的接合、或いは溶接や固相接合のような材料的接合を用いて、ヒートシンク16をケース8に固定してもよい。この場合には、ヒートシンク16とケース8との接合と同時に、ヒートシンク16とケース8とのシール性を確保することができる。また、ボルト22及びシール部30が不要となるため、インバータ4の簡素化を図ることができる。
また、上記実施形態では、ヒートシンク16の上面16aの外形寸法がMOS基板12の下面12bの外形寸法と同等であるが、特にその形態には限られず、ヒートシンク16の上面16aの外形寸法は、MOS基板12の下面12bの外形寸法と異なっていてもよい。この場合でも、ヒートシンク16はMOS基板12のみを冷却すればよいため、従来に比べてヒートシンク16の寸法を小さくすることができる。
また、上記実施形態では、ヒートシンク16がMOS基板12の下面12bに接触するように取り付けられているが、特にその形態には限られず、ヒートシンク16は、MOS基板12の下面12bに伝熱部材を介して取り付けられていてもよい。
さらに、上記実施形態では、コンデンサ基板13がMOS基板12に対してモータ2の反対側に配置されているが、特にその形態には限られず、コンデンサ基板13は、MOS基板12よりもモータ2側に配置されていてもよい。
[第2の形態]
従来のコンデンサ実装構造として、例えば特開2016-197684号公報に記載されている技術が知られている。特開2016-197684号公報に記載のコンデンサ実装構造は、基板と、複数のコンデンサと、ヒートシンクと、カバーと、複数のナットと、複数のねじとを備えている。コンデンサで発生した熱は、ねじ等を介してヒートシンク及びナットに放熱される。
従来のコンデンサ実装構造として、例えば特開2016-197684号公報に記載されている技術が知られている。特開2016-197684号公報に記載のコンデンサ実装構造は、基板と、複数のコンデンサと、ヒートシンクと、カバーと、複数のナットと、複数のねじとを備えている。コンデンサで発生した熱は、ねじ等を介してヒートシンク及びナットに放熱される。
ところで、本発明者らは、コンデンサとヒートシンクとの間に放熱部材を設け、この放熱部材によってコンデンサの熱をヒートシンクに伝導する構成を検討している。しかしながら、このような構成では、ねじによりコンデンサ基板の両端側部分がヒートシンクに固定されていると、放熱部材の反発力によってコンデンサ基板の中央部が撓む可能性がある。その結果、コンデンサと放熱部材との接触が不十分となり、コンデンサの放熱性が低下するおそれがある。
本発明の一態様は、放熱部材の反発力によってコンデンサ基板が撓むことを抑制することが可能なコンデンサ実装構造を提供することを目的とする。
本発明の一態様に係るコンデンサ実装構造は、実装面を有するコンデンサ基板と、コンデンサ基板の実装面上に実装された少なくとも1つのコンデンサと、コンデンサ基板の実装面側に配置され、コンデンサの熱を放出するヒートシンクと、コンデンサとヒートシンクとの間に配置され、コンデンサ及びヒートシンクに接触する放熱部材と、コンデンサ基板の両端側においてコンデンサ基板をヒートシンクに固定する複数の固定部材と、実装面とは反対側に配置され、電気的絶縁性を有する絶縁部材と、実装面とは反対側に配置され、絶縁部材をコンデンサ基板に対して押さえる押さえ部材と、を備える。
このコンデンサ実装構造では、コンデンサが実装されたコンデンサ基板の実装面とは反対側に、電気的絶縁性を有する絶縁部材と、絶縁部材をコンデンサ基板に対して押さえる押さえ部材とが配置されている。これにより、コンデンサ基板の両端側において複数の固定部材によりコンデンサ基板がヒートシンクに固定されていても、コンデンサ基板におけるコンデンサが実装された実装面とは反対側の面は、絶縁部材を介して押さえ部材によって押さえつけられた状態となる。したがって、放熱部材の反発力によってコンデンサ基板が撓むことを抑制することができる。
コンデンサは、コンデンサ基板の一端側からコンデンサ基板の他端側に沿って実装面上に複数実装されており、絶縁部材は、コンデンサ基板の一端側からコンデンサ基板の他端側に沿って延びていると共に、複数の固定部材によりコンデンサ基板と一緒にヒートシンクに固定されていてもよい。この構成によれば、絶縁部材をコンデンサ基板に固定するために新たに固定部材を追加する必要がない。したがって、絶縁部材をコンデンサ基板に固定する箇所を確保するためにコンデンサ基板の面積を拡大する必要がない。また、絶縁部材をコンデンサ基板に固定する箇所を確保するためにコンデンサ基板上に実装されるコンデンサの数を削減する必要もない。したがって、コンデンサ基板の大きさ及び静電容量を維持しつつ、放熱部材の反発力によってコンデンサ基板が撓むことを抑制することができる。
コンデンサ基板の押さえ部材は、ヒートシンクに固定された金属製のバッテリー端子であってもよい。この構成によれば、押さえ部材は金属製であるので、押さえ部材の剛性が高い。したがって、放熱部材の反発力によってコンデンサ基板が撓むことを効果的に抑制することができる。また、既存のバッテリー端子を押さえ部材として使用するので、押さえ部材を別途用意する必要がなく、コスト的に有利となる。
本発明の一態様によれば、放熱部材の反発力によってコンデンサ基板が撓むことを抑制することが可能なコンデンサ実装構造が提供される。
以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付し、重複する説明を省略する。
図5~図7を参照して、本実施形態に係るコンデンサ実装構造101について説明する。図5は、本発明の一実施形態に係るコンデンサ実装構造を示す平面図である。図6は、図5のVI-VI線に沿った断面図である。図7は、図5のVII- VII-線に沿った断面図である。
図5~図7に示されるコンデンサ実装構造101は、例えば交流モータ等を制御するインバータにおいて、コンデンサを実装するための構造である。図5~図7に示されるように、コンデンサ実装構造101は、コンデンサ基板110と、複数のコンデンサ120と、ヒートシンク130と、放熱部材140と、複数の固定部材150と、絶縁部材160と、バッテリー端子(押さえ部材)170と、を備えている。
コンデンサ基板110は、例えば矩形状の基板である。コンデンサ基板110は、コンデンサ120が実装される実装面110aと、実装面110aとは反対側の非実装面110bとを有している。
複数のコンデンサ120は、コンデンサ基板110の長手方向(X軸方向)におけるコンデンサ基板110の一端側からコンデンサ基板110の他端側に沿って、コンデンサ基板110の実装面110a上に実装されている。それぞれのコンデンサ120は端子121を有しており、端子121はコンデンサ基板110を貫通している。本実施形態においては、例えば合計15個のコンデンサ120がコンデンサ基板110に実装されている。複数のコンデンサ120は、X軸方向に直交するY軸方向の一端側において、Y軸方向に沿って2列に配列されている。
ヒートシンク130は、コンデンサ基板110の実装面110a側に配置されている。ヒートシンク130は、コンデンサ120の熱を放出する。ヒートシンク130は、複数のコンデンサ120を覆う放熱部131と、放熱部131と一体化され、バッテリー端子170が固定される固定部132と、を有している。ヒートシンク130は、複数の固定部材150によって、コンデンサ基板110に固定されている。ヒートシンク130は、例えばアルミ等の金属によって構成される。
ヒートシンク130の放熱部131は、複数のコンデンサ120を覆うドーム状に構成されている。放熱部131は、複数のコンデンサ120が配列される方向と同様に、X軸方向に沿ってコンデンサ基板110の一端側から他端側へ延びている。ヒートシンク130の固定部132は、コンデンサ基板110に沿って延びる平板状である。なお、ヒートシンク130は、放熱性を高めるための放熱フィンを有していてもよい。
放熱部材140は、複数のコンデンサ120とヒートシンク130の放熱部131との間に配置されている。放熱部材140は、複数のコンデンサ120及びヒートシンク130に接触しており、コンデンサ120で発生した熱をヒートシンク130に伝導する。ヒートシンク130に伝導された熱は、外部に放出される。放熱部材140は、例えば高い熱伝導率を有するゲル状の材料によって構成される。複数のコンデンサ120は放熱部材140に対して押さえつけられた状態となっており、コンデンサ120の一部が放熱部材140に埋まっている。なお、放熱部材140を構成する材料は高い熱伝導率を有していればよく、ゲル状でなくてもよい。
複数の固定部材150は、コンデンサ基板110のX軸方向の両端側にそれぞれ設けられ、ヒートシンク130の放熱部131とコンデンサ基板110とを固定している。固定部材150としては、例えばネジ又はボルト等が用いられ得る。
絶縁部材160は、コンデンサ120の実装面110aとは反対側(非実装面110b側)に配置され、コンデンサ基板110とバッテリー端子170との間に介在している。絶縁部材160は、X軸方向におけるコンデンサ基板110の一端側からコンデンサ基板110の他端側に沿って延びている。絶縁部材160は、X軸方向に沿って延び、バッテリー端子170に当接する本体部161と、本体部161からコンデンサ基板110の非実装面110bに向かってX軸方向及びY軸方向に直交するZ軸方向に突出する突出部162,163とを有している。突出部162は、Y軸方向における本体部161の一端側に設けられており、突出部162は、Y軸方向における本体部161の他端側に設けられている。突出部162,163は、共にX軸方向に沿って延びている。突出部162,163の本体部161とは反対側の端部は、コンデンサ基板110の非実装面110bに接触している。このような構造により、絶縁部材160は、コンデンサ基板110の非実装面110b側において複数のコンデンサ120の端子121を覆っている。絶縁部材160は、例えば電気的絶縁性を有する樹脂材料によって構成される。
本体部161のX軸方向の両端側には、絶縁部材160をコンデンサ基板110に固定するための複数の貫通孔がそれぞれ設けられている。それぞれの貫通孔は、固定部材150が配置される位置に対応している。絶縁部材160は、複数の固定部材150によりコンデンサ基板110と一緒にヒートシンク130に固定されている。
バッテリー端子170は、絶縁部材160をコンデンサ基板110に対して押さえる。バッテリー端子170は、コンデンサ基板110の実装面110aとは反対側(非実装面110b側)に配置されている。バッテリー端子170は、正極バッテリー端子170Aと、負極バッテリー端子170Bとを含む。正極バッテリー端子170A及び負極バッテリー端子170Bは、それぞれY軸方向に沿って延びている。また、正極バッテリー端子170Aと負極バッテリー端子170Bとは、X軸方向において互いに離間して配置されている。
正極バッテリー端子170A及び負極バッテリー端子170Bのそれぞれは、外部のケーブル等と接続される接続部171と、接続部171と一体化され、ヒートシンク130に固定される固定部172とを有している。接続部171は、円筒状を呈しており、開口部171aを有している。外部のケーブル等は、接続部171の開口部171aに挿入されることにより、バッテリー端子170(正極バッテリー端子170A又は負極バッテリー端子170B)と電気的に接続される。接続部171は、絶縁部材160に当接している。
固定部172は、接続部171の開口部171aとは反対側において接続部171に連続している。固定部172は例えば平板状である。固定部172には、バッテリー端子170をヒートシンク130に固定するための貫通孔が設けられている。固定部172とコンデンサ基板110との間には、スペーサ180が配置されている。また、コンデンサ基板110とヒートシンク130の固定部132との間には、スペーサ181が配置されている。正極バッテリー端子170A及び負極バッテリー端子170Bのそれぞれは、固定部172、スペーサ180、コンデンサ基板110、スペーサ181、及びヒートシンク130の固定部132を貫通する固定部材173によって固定されている。本実施形態では、正極バッテリー端子170A及び負極バッテリー端子170Bは、それぞれ2つの固定部材173によって固定されている。固定部材173としては、例えばネジ又はボルト等が用いられ得る。このような構造により、絶縁部材160は、正極バッテリー端子170A及び負極バッテリー端子170Bによってコンデンサ基板110に対して押しつけられている。
次に、図8~図10を参照して、コンデンサ実装構造101の効果について説明する。図8は、比較例に係るコンデンサ実装構造を示す断面図である。図9及び図10は、比較例に係るコンデンサ実装構造を示す平面図である。
図8に示されるように、比較例に係るコンデンサ実装構造200は、コンデンサ基板260と、複数のコンデンサ270と、ヒートシンク230と、放熱部材240と、固定部材250を備えている。しかしながら、コンデンサ実装構造200は、本実施形態に係るコンデンサ実装構造101のように、絶縁部材160と、絶縁部材160をコンデンサ基板110に対して押さえるバッテリー端子170とを備えていない。コンデンサ基板260は、コンデンサ基板110の両端側において固定部材250によりヒートシンク230に固定されている。このため、放熱部材240の反発力によってコンデンサ基板260の中央部が撓む可能性がある(2点鎖線参照)。その結果、コンデンサ270と放熱部材240との接触が不十分となり、コンデンサ270の放熱性が低下する。
また、図9及び図10に示されるように絶縁部材160及びバッテリー端子170を使用しない場合、コンデンサ基板260の撓みを防止するためには、コンデンサ基板260をヒートシンク230に固定する別の固定部材280を用いることが考えられ得る。この場合、図9に示されるように、固定部材280によってコンデンサ基板260をヒートシンク230に固定する箇所を確保するためにコンデンサ基板260の面積を拡大する必要がある(2点鎖線参照)。このため、コンデンサ基板260の大きさを維持することが困難である。また、図9に示されるようにコンデンサ基板260を拡大しない場合には、図10に示されるように、固定部材280によってコンデンサ基板260をヒートシンク230に固定する箇所を確保するために、コンデンサ基板260上に実装されるコンデンサ270の数を削減する必要がある。この場合、コンデンサ基板260の静電容量を維持することが困難である。
これに対し、本実施形態に係るコンデンサ実装構造101では、コンデンサ120が実装されたコンデンサ基板110の実装面110aとは反対側に、電気的絶縁性を有する絶縁部材160と、絶縁部材160をコンデンサ基板110に対して押さえるバッテリー端子170とが配置されている。これにより、コンデンサ基板110の両端側において複数の固定部材150によりコンデンサ基板110がヒートシンク130に固定されていても、コンデンサ基板110におけるコンデンサ120が実装された実装面110aとは反対側の非実装面110bは、絶縁部材160を介してバッテリー端子170によって押さえつけられた状態となる。したがって、放熱部材140の反発力によってコンデンサ基板110が撓むことを抑制することができる。
また、コンデンサ120は、コンデンサ基板110の一端側からコンデンサ基板110の他端側に沿って実装面110a上に複数実装されており、絶縁部材160は、コンデンサ基板110の一端側からコンデンサ基板110の他端側に沿って延びていると共に、複数の固定部材150によりコンデンサ基板110と一緒にヒートシンク130に固定されている。このため、絶縁部材160をコンデンサ基板110に固定するために新たに固定部材を追加する必要がない。したがって、絶縁部材160をコンデンサ基板110に固定する箇所を確保するためにコンデンサ基板110の面積を拡大する必要がない。また、絶縁部材160をコンデンサ基板110に固定する箇所を確保するためにコンデンサ基板110上に実装されるコンデンサ120の数を削減する必要もない。したがって、コンデンサ基板110の大きさ及び静電容量を維持しつつ、放熱部材140の反発力によってコンデンサ基板110が撓むことを抑制することができる。
また、絶縁部材160は、ヒートシンク130に固定された金属製のバッテリー端子170によってコンデンサ基板110に対して押さえられている。この場合、バッテリー端子170は金属製であるので、バッテリー端子170の剛性が高い。したがって、放熱部材140の反発力によってコンデンサ基板110が撓むことを効果的に抑制することができる。また、既存のバッテリー端子170を押さえ部材として使用するので、押さえ部材を別途用意する必要がなく、コスト的に有利となる。
以上、本形態の実施形態について説明してきたが、本形態は上記の実施形態に限定されず、種々の変更を行うことができる。例えば、絶縁部材160の形状は特に限定されず、アーチ状等、適宜変更可能である。また、上記の実施形態では、絶縁部材160がX軸方向におけるコンデンサ基板110の一端側からコンデンサ基板110の他端側に沿って延びている例について説明したが、絶縁部材160は、バッテリー端子170の位置に対応して配置された柱状等の部材であってもよい。
また、上記の実施形態では、複数のコンデンサ120がコンデンサ基板110に実装されている例について説明したが、コンデンサ基板110に実装されるコンデンサ120の数は1つであってもよい。
また、上記の実施形態では、絶縁部材160が複数の固定部材150によりコンデンサ基板110と一緒にヒートシンク130に固定されている例について説明したが、絶縁部材160は複数の固定部材150によりコンデンサ基板110と一緒にヒートシンクに固定されていなくてもよい。
また、上記の実施形態では、絶縁部材160をコンデンサ基板110に対して押さえる押さえ部材が複数のバッテリー端子170(正極バッテリー端子170A及び負極バッテリー端子170B)である例について説明したが、押さえ部材はバッテリー端子170でなくてもよい。また、押さえ部材は複数でなくてもよい。
[第3の形態]
従来におけるインバータの封止構造としては、例えば特開2013-201878号公報に記載されている技術が知られている。特開2013-201878号公報には、電動機と一体化された電力変換器ケースについて記載されている。電力変換器ケースは、外筒壁と、この外筒壁に接続される放熱壁とを備えている。外筒壁の外周端面には、Oリング等のシール材が取り付けられている。これにより、外筒壁と放熱壁との間が密封され、電力変換器ケース内の防水機能が確保される。また、放熱壁を信号線が貫通する穴は、パッキン等のシール材により密封されている。また、放熱壁の外周側には、DCケーブルを外に引き出すケーブル取付部が形成されている。ケーブル取付部で形成される空間は、シール材で密封されている。
従来におけるインバータの封止構造としては、例えば特開2013-201878号公報に記載されている技術が知られている。特開2013-201878号公報には、電動機と一体化された電力変換器ケースについて記載されている。電力変換器ケースは、外筒壁と、この外筒壁に接続される放熱壁とを備えている。外筒壁の外周端面には、Oリング等のシール材が取り付けられている。これにより、外筒壁と放熱壁との間が密封され、電力変換器ケース内の防水機能が確保される。また、放熱壁を信号線が貫通する穴は、パッキン等のシール材により密封されている。また、放熱壁の外周側には、DCケーブルを外に引き出すケーブル取付部が形成されている。ケーブル取付部で形成される空間は、シール材で密封されている。
しかしながら、上記従来技術においては、外筒壁と放熱壁との間を封止するシール材と、放熱壁と信号線との間を封止するシール材と、放熱壁とDCケーブルとの間を封止するシール材とが備えられている。このため、電力変換器ケース(インバータ)の部品点数が多くならざるを得ない。
本発明の一態様の目的は、インバータの部品点数を削減することができるインバータの封止構造及びインバータの組立方法を提供することである。
本発明の一態様は、主回路基板及び端子が収容されたインバータケースと、インバータケース内を覆うようにインバータケースの開口面に固定されたインバータカバーとを備えたインバータの封止構造であって、インバータケースとインバータカバーとの間に配置されたシール部材を備え、インバータケースの側壁には、開口面に開放し端子を通す切欠部が設けられており、シール部材は、インバータケースの開口面とインバータカバーとの間を封止する第1シール部と、端子に組み付けられると共に切欠部と嵌合するように第1シール部と一体化され、端子とインバータケース及びインバータカバーとの間を封止する第2シール部とを有することを特徴とする。
このようなインバータの封止構造においては、シール部材の第1シール部によってインバータケースの開口面とインバータカバーとの間が封止される。また、シール部材の第2シール部を端子に組み付けた状態で、第2シール部をインバータケースの側壁に設けられた切欠部と嵌合させることで、第2シール部によって端子とインバータケース及びインバータカバーとの間が封止される。このとき、第2シール部は第1シール部と一体化されているため、シール部材の数としては1つだけで済む。これにより、インバータの部品点数が削減される。
第2シール部は、側壁の内側及び外側から側壁を挟むような断面U字状を有していてもよい。このような構成では、第2シール部が切欠部に対して端子が通る方向に拘束されるため、第2シール部によって端子とインバータケースとの間が十分に封止される。
端子、切欠部及び第2シール部の数は、何れも複数であり、複数の端子のうち少なくとも1つの端子は、主回路基板に電力を供給するための入力端子であり、複数の端子のうち他の端子は、主回路基板から信号を出力するための出力端子であり、複数の切欠部のうち少なくとも1つの切欠部は、インバータケースの一の側壁に設けられていると共に、入力端子を通し、複数の切欠部のうち他の切欠部は、インバータケースの他の側壁に設けられていると共に、出力端子を通し、複数の第2シール部のうち少なくとも1つの第2シール部は、入力端子に組み付けられ、入力端子とインバータケース及びインバータカバーとの間を封止し、複数の第2シール部のうち他の第2シール部は、出力端子に組み付けられ、出力端子とインバータケース及びインバータカバーとの間を封止してもよい。このような構成では、入力端子に外部接続部材を接続する際には、外部接続部材が出力端子と干渉することが防止され、出力端子に外部接続部材を接続する際には、外部接続部材が入力端子と干渉することが防止される。これにより、外部接続部材の接続作業が行いやすくなる。
本発明の他の態様は、主回路基板及び端子が収容されたインバータケースと、インバータケース内を覆うようにインバータケースの開口面に固定されたインバータカバーとを備えたインバータの組立方法であって、主回路基板が収容されたインバータケースとインバータカバーとを用意する第1準備工程と、インバータケースとインバータカバーとの間に配置されるシール部材と端子とを用意する第2準備工程と、端子とシール部材とを組み付けてサブアッシーを形成するサブアッシー化工程と、インバータケースにサブアッシーを組み付けるサブアッシー組付工程と、サブアッシーが組み付けられたインバータケースにインバータカバーを組み付けるカバー組付工程とを含み、第1準備工程では、開口面に開放し端子を通す切欠部が設けられた側壁を有するインバータケースを用意し、第2準備工程では、インバータケースの開口面とインバータカバーとの間を封止する第1シール部と、第1シール部と一体化され、端子とインバータケース及びインバータカバーとの間を封止する第2シール部とを有するシール部材を用意し、サブアッシー化工程では、端子と第2シール部とを組み付け、サブアッシー組付工程では、第1シール部がインバータケースの開口面上に載置されると共に第2シール部が切欠部と嵌合するようにサブアッシーをインバータケースに組み付けることを特徴とする。
このようなインバータの組立方法においては、端子とシール部材の第2シール部とを組み付けてサブアッシーを形成し、第1シール部がインバータケースの開口面上に載置されると共に第2シール部がインバータケースの側壁に設けられた切欠部と嵌合するようにサブアッシーをインバータケースに組み付け、サブアッシーが組み付けられたインバータケースにインバータカバーを組み付ける。従って、シール部材の第1シール部によってインバータケースの開口面とインバータカバーとの間が封止される。また、シール部材の第2シール部によって端子とインバータケース及びインバータカバーとの間が封止される。このとき、第2シール部は第1シール部と一体化されているため、シール部材の数としては1つだけで済む。これにより、インバータの部品点数が削減される。
本発明の一態様によれば、インバータの部品点数を削減することができる。
図11は、他の実施形態に係るインバータの封止構造を備えたインバータを示す分解斜視図である。図12は、図11に示されたインバータの側面図である。図13は、図12のXIII-XIII線断面図である。図14は、図13のXIV-XIV線断面図である。
図11~図14において、本実施形態に係るインバータ201は、モータ(図示せず)と一体化されている。モータは、三相交流モータである。そのようなモータ付きのインバータ201は、例えばバッテリ式フォークリフト等の産業車両に搭載されている。インバータ201は、バッテリ(図示せず)からの直流電流を交流電流に変換してモータを制御する。
インバータ201は、一方側に開口したインバータケース202と、このインバータケース202内を覆うようにインバータケース202の上面202a(開口面)に固定されたインバータカバー203とを備えている。上記のモータは、インバータケース202の底面側に配置されている。インバータケース202及びインバータカバー203は、平面視略矩形状を有している。
インバータケース202は、外側壁204~207と、内側壁208とを有している。外側壁204,205同士は、互いに対向している。外側壁204の面積は、外側壁205の面積よりも大きい。外側壁206は、外側壁204と繋がる大面積領域206aと、外側壁205と繋がる小面積領域206bと、大面積領域206aと小面積領域206bとの間に配置された屈曲領域206cとを有している。外側壁207は、外側壁204と繋がる大面積領域207aと、外側壁205と繋がる小面積領域207bと、大面積領域207aと小面積領域207bとの間に配置された屈曲領域207cとを有している。外側壁206,207の大面積領域206a,207a同士は、外側壁204,205の対向方向に対して垂直な方向に互いに対向している。外側壁206,207の小面積領域206b,207b同士は、外側壁204,205の対向方向に対して垂直な方向に互いに対向している。
内側壁208は、インバータケース202内に配置されている。内側壁208は、外側壁206における小面積領域206bと屈曲領域206cとの接続部と、外側壁207における小面積領域207bと屈曲領域207cとの接続部とを繋いでいる。内側壁208は、外側壁204,205と互いに対向している。
外側壁204と外側壁206の大面積領域206a及び屈曲領域206cと外側壁207の大面積領域207a及び屈曲領域207cと内側壁208とで画成される内部空間は、基板収容部209を形成している。外側壁205と外側壁206の小面積領域206bと外側壁207の小面積領域207bと内側壁208とで画成される内部空間は、モータ端子収容部210を形成している。
基板収容部209には、主回路基板211と制御基板212とが収容されている。主回路基板211は、複数のボルト213によりインバータケース202に固定されている。制御基板212は、複数のボルト214によりインバータケース202に固定されている。
主回路基板211は、半導体基板であるMOS(Metal Oxide Semiconductor)基板215とコンデンサ基板216とが積層された構造を有している。MOS基板215には、複数の半導体素子であるMOS素子217(図11では省略)が実装されている。MOS素子には、スイッチング素子等が含まれる。コンデンサ基板216には、複数のコンデンサ218が実装されている。制御基板212は、主回路基板211よりもインバータカバー203側に配置されている。制御基板212には、複数の電子制御部品219が実装されている。
主回路基板211よりもモータ(前述)側には、主回路基板211からの熱を放熱するヒートシンク220が配置されている。ヒートシンク220は、主回路基板211のMOS基板215の下面に接触するようにインバータケース202に取り付けられている。ヒートシンク220は、複数の放熱フィン220aを有している。MOS素子217から発生した熱は、MOS基板215を通ってヒートシンク220により放熱される。
また、基板収容部209には、バスバー構造の入力端子221A,221Bが収容されている。入力端子221A,221Bは、バッテリ(図示せず)からの電力を主回路基板211及び制御基板212に供給するための端子である。入力端子221A,221Bは、主回路基板211と制御基板212との間に互いに平行に配置されている。入力端子221A,221Bは、外側壁204と内側壁208との対向方向に延在している。入力端子221A,221Bの基端側部分は、複数のボルト222によりそれぞれ中継端子223A,223B及び主回路基板211を介してヒートシンク220に固定されている。入力端子221Aは、正極側の端子である。入力端子221Bは、負極側の端子である。入力端子221Aは、主回路基板211及び制御基板212の正極パターンと電気的に接続されている。入力端子221Bは、主回路基板211及び制御基板212の負極パターンと電気的に接続されている。
インバータケース202の外側壁204には、インバータケース202の上面202aに開放し、入力端子221A,221Bをそれぞれ通す切欠部224A,224Bが設けられている。入力端子221A,221Bの先端部は、外側壁204の外側に突き出ている。入力端子221A,221Bの先端側部分には、外部接続部材である外部バッテリケーブル(図示せず)が差し込まれる挿入穴225A,225Bがそれぞれ設けられている。
モータ端子収容部210には、モータ(図示せず)から引き出されたモータ端子226A~226Cの先端部分が収容されている。モータ端子226A~226Cは、バスバー構造の出力端子227A~227Cとそれぞれ連結された外部接続部材である。インバータケース202の内側壁208には、インバータケース202の上面202aに開放し、出力端子27A~27Cをそれぞれ通す切欠部228A~228Cが設けられている。従って、出力端子227A~227Cは、基板収容部209及びモータ端子収容部210にわたって収容されている。
出力端子227A~227Cは、主回路基板211からモータに制御信号を出力するための端子である。出力端子227A~227Cは、主回路基板211と制御基板212との間に互いに平行に配置されている。出力端子227A~227Cは、外側壁204,205の対向方向に延在している。入力端子221A,221B及び出力端子27A~27Cは、交互に配列されている。出力端子227A~227Cの基端側部分は、複数のボルト229によりそれぞれ中継端子230A~230C及び主回路基板211を介してヒートシンク220に固定されている。
インバータケース202の外側壁207の外壁面には、外部コネクタ(図示せず)が着脱される信号線コネクタ231が支持部232を介して設けられている。信号線コネクタ231は、制御基板212の信号パターンと電気的に接続されている。信号線コネクタ231は、モータ(図示せず)の軸方向におけるモータ側に開口している。
インバータケース202とインバータカバー203との間には、シールゴム233(シール部材)が配置されている。シールゴム233は、インバータケース202の上面202aとインバータカバー203との間を封止するシール部234(第1シール部)と、入力端子221A,221Bとインバータケース202及びインバータカバー203との間をそれぞれ封止するシール部235A,235B(第2シール部)と、出力端子27A~27Cとインバータケース202及びインバータカバー203との間をそれぞれ封止するシール部36A~36C(第2シール部)とを有している。
シール部234は、インバータケース202の外側壁204~207及び内側壁208とインバータカバー203と間に介在されている。図15に示されるように、シール部234の上面(インバータカバー203側の面)には、複数の突起234aが設けられ(図15では1つのみ図示)、シール部234の下面(インバータケース202側の面)には、複数の突起234bが設けられている。突起234a,234bは、互いにずらして配置されている。これにより、シール部234とインバータケース202及びインバータカバー203との面圧が分散されるため、ゴム製のシール部234の反発力によるインバータケース202に対するインバータカバー203の浮きが低減される。
シール部235A,235Bは、入力端子221A,221Bに組み付けられると共に外側壁204の切欠部224A,224Bと嵌合するようにシール部234と一体化されている。シール部235A,235Bは、入力端子221A,221Bとインバータケース202における切欠部224A,224Bの縁部及びインバータカバー203との間に介在されている。シール部36A~36Cは、出力端子27A~27Cに組み付けられると共に内側壁208の切欠部28A~28Cと嵌合するようにシール部234と一体化されている。シール部36A~36Cは、出力端子27A~27Cとインバータケース202における切欠部28A~28Cの縁部及びインバータカバー203との間に介在されている。
シール部235A,235Bは、インバータ201の上下方向(Z方向)に垂直に切った断面において、外側壁204の内側及び外側から外側壁204を挟むような断面U字状を有している(図13参照)。シール部36A~36Cは、インバータ201の上下方向に垂直に切った断面において、内側壁208の内側(外側壁204側)及び外側(外側壁205側)から内側壁208を挟むような断面U字状を有している(図13参照)。
図16は、上述したインバータ201を組み立てる工程を示すフローチャートである。図16において、まずヒートシンク220が取り付けられたインバータケース202、インバータカバー203、主回路基板211及び制御基板212を用意する(工程S101)。このとき、上面202aに開放し入力端子221A,221Bをそれぞれ通す切欠部224A,224Bが設けられた外側壁204と、上面202aに開放し出力端子227A~227Cをそれぞれ通す切欠部228A~228Cが設けられた内側壁208とを有するインバータケース202を用意する。
また、入力端子221A,221B、出力端子227A~227C及びシールゴム233を用意する(工程S102)。このとき、インバータケース202の上面202aとインバータカバー203との間を封止するシール部234と、シール部234と一体化され、入力端子221A,221Bとインバータケース202及びインバータカバー203との間をそれぞれ封止するシール部235A,235Bと、シール部234と一体化され、出力端子227A~227Cとインバータケース202及びインバータカバー203との間をそれぞれ封止するシール部236A~236Cとを有するシールゴム233を用意する。
続いて、複数のボルト213を用いてインバータケース202に主回路基板211を組み付ける(工程S103)。このとき、インバータケース202の上方からボルト213を締結する。
続いて、図11に示されるように、入力端子221A,221B及び出力端子227A~227Cとシールゴム233とを組み付けて、端子及びシールのサブアッシー237を形成する(工程S104)。このとき、入力端子221A,221Bの先端側(外部バッテリケーブル差し込み側)から入力端子221A,221Bをシールゴム233のシール部235A,235Bにそれぞれ嵌め込むと共に、出力端子227A~227Cの先端側(モータ端子連結側)から出力端子227A~227Cをシールゴム233のシール部236A~236Cにそれぞれ嵌め込む。
続いて、インバータケース202にサブアッシー237を組み付ける(工程S105)。本工程では、まずシール部234がインバータケース202の上面202a上に載置されると共に、シール部235A,235Bが外側壁204の切欠部224A,224Bとそれぞれ嵌合し、シール部236A~236Cが内側壁208の切欠部228A~228Cとそれぞれ嵌合するように、サブアッシー237をインバータケース202に対して配置する。そして、その状態で、複数のボルト222を用いて入力端子221A,221Bをヒートシンク220に固定すると共に、複数のボルト229を用いて出力端子27A~27Cをヒートシンク220に固定する。このとき、インバータケース202の上方からボルト222,229を締結する。また、モータ端子226A~226Cを出力端子27A~27Cにそれぞれ連結する。
続いて、複数のボルト214を用いて、サブアッシー237が組み付けられたインバータケース202に制御基板212を組み付ける(工程S106)。このとき、インバータケース202の上方からボルト214を締結する。
続いて、複数のボルト238を用いて、サブアッシー237及び制御基板212が組み付けられたインバータケース202にインバータカバー203を組み付ける(工程S107)。このとき、インバータケース202の上方からボルト238を締結する。
以上において、工程S101,S103は、主回路基板211が収容されたインバータケース202とインバータカバー203とを用意する第1準備工程である。工程S102は、インバータケース202とインバータカバー203との間に配置されるシールゴム233と入力端子221A,221B及び出力端子227A~227Cとを用意する第2準備工程である。工程S104は、入力端子221A,221B及び出力端子227A~227Cとシールゴム233とを組み付けてサブアッシー237を形成するサブアッシー化工程である。工程S105は、インバータケース202にサブアッシー237を組み付けるサブアッシー組付工程である。工程S106,S107は、サブアッシー237が組み付けられたインバータケース202にインバータカバー203を組み付けるカバー組付工程である。
以上のように本実施形態にあっては、シールゴム233のシール部234によってインバータケース202の上面202aとインバータカバー203との間が封止される。また、シールゴム233のシール部235A,235Bを入力端子221A,221Bにそれぞれ組み付けた状態で、シール部235A,235Bをインバータケース202の外側壁204に設けられた切欠部224A,224Bとそれぞれ嵌合させることで、シール部235A,235Bによって入力端子221A,221Bとインバータケース202及びインバータカバー203との間がそれぞれ封止される。シールゴム233のシール部236A~236Cを出力端子227A~227Cにそれぞれ組み付けた状態で、シール部236A~236Cをインバータケース202の内側壁208に設けられた切欠部228A~228Cとそれぞれ嵌合させることで、シール部236A~236Cによって出力端子227A~227Cとインバータケース202及びインバータカバー203との間がそれぞれ封止される。このとき、シール部235A,235B及びシール部236A~236Cはシール部234と一体化されているため、シールゴム233の数としては1つだけで済む。これにより、インバータ201の部品点数が削減される。
また、本実施形態では、シール部235A,235Bは、外側壁204の内側及び外側から外側壁204を挟むような断面U字状を有している。従って、シール部235A,235Bが入力端子221A,221Bの延在方向(切欠部224A,224Bに対して入力端子221A,221Bが通る方向)に拘束されるため、シール部235A,235Bによって入力端子221A,221Bとインバータケース202との間がそれぞれ十分に封止される。シール部236A~236Cは、内側壁208の内側及び外側から内側壁208を挟むような断面U字状を有している。従って、シール部236A~236Cが出力端子227A~227Cの延在方向(切欠部228A~228Cに対して出力端子227A~227Cが通る方向)に拘束されるため、シール部236A~236Cによって出力端子227A~227Cとインバータケース202との間がそれぞれ十分に封止される。
また、本実施形態では、入力端子221A,221Bをそれぞれ通す切欠部224A,224Bは、インバータケース202の外側壁204に設けられており、出力端子227A~227Cをそれぞれ通す切欠部228A~228Cは、インバータケース202の内側壁208に設けられている。従って、入力端子221A,221Bに外部バッテリケーブル(図示せず)を接続する際には、外部バッテリケーブルが出力端子227A~227Cと干渉することが防止され、出力端子227A~227Cにモータ端子226A~226Cをそれぞれ接続する際には、モータ端子226A~226Cが入力端子221A,221Bと干渉することが防止される。これにより、外部バッテリケーブル及びモータ端子226A~226Cの接続作業が行いやすくなる。
さらに、本実施形態では、入力端子221A,221B及び出力端子227A~227Cとシールゴム233とを組み付けてサブアッシー237を形成し、そのサブアッシー237をインバータケース202に組み付けるので、インバータケース202に対する入力端子221A,221B、出力端子227A~227C及びシールゴム233の組み付けを容易に行うことができる。
また、本実施形態では、インバータケース202に対する主回路基板211の組み付け方向、インバータケース202に対するサブアッシー237の組み付け方向、インバータケース202に対する制御基板212の組み付け方向及びインバータケース202に対するインバータカバー203の組み付け方向は、何れもインバータケース202の上下方向(Z方向)である。これにより、インバータ201の組み立ての作業性が向上する。
なお、本形態は、上記実施形態には限定されない。例えば上記実施形態では、入力端子221A,221Bをそれぞれ通す切欠部224A,224Bは外側壁204に設けられ、出力端子227A~227Cをそれぞれ通す切欠部228A~228Cは内側壁208に設けられているが、特にその形態には限られず、出力端子227A~227Cを通す切欠部は、外側壁205~207の何れかに設けられていてもよいし、或いは切欠部224A,224Bと同様に外側壁204に設けられていてもよい。
また、上記実施形態では、シールゴム233のシール部235A,235B(第2シール部)に入力端子221A,221Bがそれぞれ組み付けられ、シールゴム233のシール部36A~36C(第2シール部)に出力端子227A~227Cがそれぞれ組み付けられているが、特にその形態には限られず、入力端子221A,221B及び出力端子227A~227Cの何れか一方のみが第2シール部に組み付けられていてもよい。また、第2シール部に組み付けられる端子の数は1つであってもよい。
また、上記実施形態では、主回路基板211は、MOS素子217が実装されたMOS基板215とコンデンサ218が実装されたコンデンサ基板216とが積層された構造を有しているが、主回路基板211としては特にそれには限られず、MOS素子217とコンデンサ218とが実装された1つの基板で構成されていてもよい。
また、上記実施形態では、インバータ201はモータと一体化されているが、本発明に係るインバータの封止構造及びインバータの組立方法は、モータとは別体のインバータにも適用可能である。
[第4の形態]
従来のモータユニットとしては、例えば特開2016-146702号公報に記載されている技術が知られている。特開2016-146702号公報に記載のモータユニットは、電動モータ部と、電子制御装置(ECU)部とを備えている。電動モータ部は、モータハウジングと、このモータハウジングの内部に収納された電動モータとから構成されている。電子制御装置部は、モータハウジングの軸方向の出力軸とは反対側に配置され、固定ボルトによってモータハウジングと一体的に固定されたECUハウジングと、このECUハウジングの内部に収納された電子制御組立体とから構成されている。ECUハウジングの端面には、蓋体が固定ボルトによって固定されている。蓋体には、電力供給用のコネクタ端子形成部、検出センサ用のコネクタ端子形成部及び制御状態送出用のコネクタ端子形成部が設けられている。
従来のモータユニットとしては、例えば特開2016-146702号公報に記載されている技術が知られている。特開2016-146702号公報に記載のモータユニットは、電動モータ部と、電子制御装置(ECU)部とを備えている。電動モータ部は、モータハウジングと、このモータハウジングの内部に収納された電動モータとから構成されている。電子制御装置部は、モータハウジングの軸方向の出力軸とは反対側に配置され、固定ボルトによってモータハウジングと一体的に固定されたECUハウジングと、このECUハウジングの内部に収納された電子制御組立体とから構成されている。ECUハウジングの端面には、蓋体が固定ボルトによって固定されている。蓋体には、電力供給用のコネクタ端子形成部、検出センサ用のコネクタ端子形成部及び制御状態送出用のコネクタ端子形成部が設けられている。
しかしながら、上記従来技術においては、以下の問題点が存在する。即ち、何れのコネクタ端子形成部も、電動モータ部の軸方向における電動モータ部とは反対側に開口している。また、電力供給用のコネクタ端子形成部は、検出センサ用のコネクタ端子形成部及び制御状態送出用のコネクタ端子形成部よりも電動モータ部の軸方向に長くなっている。このため、モータユニットが車両に搭載された際に、電子制御装置部の正面側(電子制御装置部に対して電動モータ部の反対側)にフレーム等が存在することで、電力供給用のコネクタ端子形成部に対する作業スペースがなくなると、電力供給用のコネクタ端子形成部に電力供給コネクタを着脱することができない。この場合には、電力供給用のコネクタ端子形成部に電力供給コネクタを予め装着してから、モータユニットを車両に搭載する必要があるため、作業性の悪化につながる。
本発明の一態様の目的は、作業性を向上させることができるモータユニットを提供することである。
本発明の一態様は、モータと、モータと一体化され、モータを制御するインバータとを備えたモータユニットにおいて、インバータは、インバータケースと、インバータケース内に配置され、半導体素子が実装される第1基板と、インバータケース内に第1基板と平行に配置され、電子制御部品が実装される第2基板と、インバータケース内における第1基板と第2基板との間に配置され、モータの軸方向に垂直な方向にインバータケースの側壁まで延在するバスバーと、を有し、バスバーの側壁側の端部には、バスバーの延在方向に電源ケーブルが着脱される電源入力端子が設けられていることを特徴とする。
このようなモータユニットにおいては、バスバーは、インバータケース内における第1基板と第2基板との間に配置され、モータの軸方向に垂直な方向にインバータケースの側壁まで延在している。そして、バスバーの側壁側の端部には、バスバーの延在方向に電源ケーブルが着脱される電源入力端子が設けられている。このため、電源ケーブルは、モータの軸方向に垂直な方向に沿って電源入力端子に着脱されることになる。従って、モータユニットの搭載後に、インバータの正面側(インバータに対してモータの反対側)に作業スペースがないような場合でも、電源ケーブルを電源入力端子に着脱することが可能となる。これにより、電源ケーブルを電源入力端子に予め装着してからモータユニットを搭載しなくて済むため、作業性が向上する。また、バスバーを第1基板と第2基板との間にモータの軸方向に垂直な方向に延在するように配置したので、第1基板と第2基板との間の空間を有効に利用することができる。
インバータは、外部コネクタが着脱される信号線コネクタを有し、信号線コネクタは、モータの軸方向におけるモータ側に開口していてもよい。このような構成では、外部コネクタは、モータの軸方向に沿ってモータ側からインバータ側に向けて信号線コネクタに装着されることになる。従って、モータユニットの搭載後に、インバータの正面側に作業スペースがないような場合でも、外部コネクタを信号線コネクタに着脱することが可能となる。これにより、外部コネクタを信号線コネクタに予め装着してからモータユニットを搭載しなくて済むため、作業性が更に向上する。
第2基板の第1基板側の主面には、電流センサ及びトランスの少なくとも一方が実装されていてもよい。電流センサ及びトランスは、高さの大きい部品である。そのような高さの大きい部品が第1基板と第2基板との間の空間にスペース効率良く配置されることになるため、インバータをモータの軸方向に小型化することができる。
第1基板は、第2基板よりもモータ側に配置されており、インバータは、インバータケース内における第1基板と第2基板との間に第1基板と平行に配置され、コンデンサが実装される第3基板と、第1基板よりもモータ側に配置され、第1基板からの熱を放熱するヒートシンクと、を有し、バスバーは、第2基板と第3基板との間に配置されていてもよい。このような構成では、第2基板と第3基板との間の空間を有効に利用することができる。また、半導体素子から発生した熱がヒートシンクにより放熱されるため、第1基板が熱くなることが防止される。
コンデンサは、モータの軸方向に垂直な方向にヒートシンクと対向するように、第3基板の第1基板側の主面に実装されていてもよい。コンデンサは、高さの大きい部品である。そのようなコンデンサがモータの軸方向に垂直な方向にヒートシンクと対向するようにスペース効率良く配置されることになるため、インバータをモータの軸方向に小型化することができる。
本発明の一態様によれば、作業性を向上させることができる。
図17は、他の実施形態に係るモータユニットの外観を示す斜視図である。図17において、本実施形態のモータユニット301は、例えばバッテリ式フォークリフト等の産業車両に搭載されている。モータユニット301は、モータ302と、このモータ302とダクト303を介して一体化され、モータ302を制御するインバータ304とを備えている。
モータ302は、三相交流モータである。モータ302は、ロータ及びステータを有するモータ本体305と、このモータ本体305を収容するモータケース306と、ステータに巻かれているコイルから引き出されたモータ端子335A~335C(図19参照)とを有している。モータ本体305には、インバータ304を冷却するファン(図示せず)が一体に取り付けられている。モータ本体305が回転すると、ファンが回転する。
ダクト303は、モータケース306のインバータ304側の部分をファンと共に覆う。ダクト303は、ファンの回転により発生する風の流れを整流する。
インバータ304は、複数のボルト(図示せず)によりダクト303を介してモータ302に固定されている。インバータ304は、バッテリ(図示せず)からの直流電流を交流電流に変換して、モータ302のモータ本体305の回転動作を制御する。
図18は、インバータ304の斜視図である。図19は、図18に示されたインバータ304の背面図である。図20は、図19のIV-IV線断面図である。図21は、図19のV-V線断面図である。図17~図21において、インバータ304は、インバータケース307と、このインバータケース307内を覆うインバータカバー308とを備えている。インバータカバー308は、インバータケース307に対してモータ302の反対側に配置されている。インバータケース307及びインバータカバー308は、平面視略矩形状を有している。
インバータケース307内には、基板収容部310と、コンデンサ収容部311と、モータ端子収容部312とが設けられている。
基板収容部310には、半導体基板であるMOS(Metal Oxide Semiconductor)基板313と、制御基板314と、コンデンサ基板315とが収容されている。MOS基板313は、複数の半導体素子であるMOS素子316が実装される第1基板を構成している。MOS素子316には、スイッチング素子等が含まれる。制御基板314は、複数の電子制御部品317が実装される第2基板を構成している。制御基板314には、電流センサ318及びトランス319等も実装されている。コンデンサ基板315は、複数のコンデンサ320が実装される第3基板を構成している。
MOS基板313は、制御基板314よりもモータ302側に配置されている。MOS基板313は、主面である上面313a及び下面13bがモータ302の軸方向(図17及び図18のA方向)に垂直な面となるように配置されている。MOS基板313は、複数のボルト321によりインバータケース307またはヒートシンク324(後述)に固定されている。MOS素子316は、MOS基板313の上面313a(インバータカバー308側の主面)に実装されている。
制御基板314は、MOS基板313よりもインバータカバー308側(モータ302の反対側)にMOS基板313と平行に配置されている。なお、ここでいう平行とは、完全な平行には限られず、略平行になっていればよい。制御基板314は、複数のボルト322によりインバータケース307に固定されている。電子制御部品317は、制御基板314の上面314a(インバータカバー308側の主面)に実装されている。電流センサ318及びトランス319といった高さの大きい部品は、制御基板314の下面314b(MOS基板313側の主面)に実装されている。
コンデンサ基板315は、MOS基板313と制御基板314との間にMOS基板313と平行に配置されている。なお、ここでいう平行も、完全な平行には限られず、略平行になっていればよい。コンデンサ基板315は、MOS基板313に近接して配置されている。コンデンサ基板315は、MOS基板313に対してインバータケース307の一方側にずれて配置されている。コンデンサ基板315は、複数のボルト323によりインバータケース307に固定されている。コンデンサ320は、コンデンサ基板315の下面315b(MOS基板313側の主面)に実装されている。
MOS基板313よりもモータ302側には、MOS基板313からの熱を放熱するヒートシンク324が配置されている。ヒートシンク324は、MOS基板313の下面13b(モータ302側の主面)に接触するようにインバータケース307に取り付けられている。ヒートシンク324は、複数の放熱フィン324aを有している。MOS素子316から発生した熱は、MOS基板313を通ってヒートシンク324により放熱される。
制御基板314とコンデンサ基板315との間には、モータ302の軸方向に垂直な方向にインバータケース307の一方側(MOS基板313に対するコンデンサ基板315のずれ側)の側壁307aまで延在する電力入力用バスバー325A,325Bが配置されている。つまり、電力入力用バスバー325A,325Bは、MOS基板313と制御基板314との間に配置されている。電力入力用バスバー325A,325Bは、複数のボルト326によりそれぞれ中継端子327A,327B及びMOS基板313を介してヒートシンク324に固定されている。
電力入力用バスバー325Aは、正極側のバスバーである。電力入力用バスバー325Bは、負極側のバスバーである。電力入力用バスバー325Aは、MOS基板313、制御基板314及びコンデンサ基板315の正極パターンと電気的に接続されている。電力入力用バスバー325Bは、MOS基板313、制御基板314及びコンデンサ基板315の負極パターンと電気的に接続されている。
以上により、基板収容部310には、モータ302側からインバータカバー308側に向かってヒートシンク324、MOS基板313、コンデンサ基板315、電力入力用バスバー325A,325B及び制御基板314が順に配置されていることとなる。
電力入力用バスバー325A,325Bの先端部(側壁307a側の端部)には、電力入力用バスバー325A,325Bの延在方向に電源ケーブル329A,329Bが着脱される電源入力端子330A,330Bがそれぞれ設けられている。電源ケーブル329A,329Bは、インバータ304に電力を供給するためのケーブルである。
電源入力端子330A,330Bは、電力入力用バスバー325A,325Bとそれぞれ一体的に設けられている。電源入力端子330A,330Bは、インバータケース307の側壁307aの外側面から突き出ている。電源入力端子330A,330Bは、ボルト345がねじ込まれるボルト穴331A,331Bをそれぞれ有している。電源入力端子330A,330Bには、電源ケーブル329A,329Bの先端部がボルト345によりそれぞれ接続される。電源入力端子330A,330Bと側壁307aとの間には、シール材332が介在されている。
コンデンサ収容部311には、コンデンサ基板315の下面315bに実装された複数のコンデンサ320が収容される。コンデンサ収容部311は、インバータケース307の側壁307a側(電源入力端子330A,330B側)の領域における基板収容部310よりもモータ302側にヒートシンク324に隣接して配置されている。従って、コンデンサ320は、モータ302の軸方向に垂直な方向にインバータケース307を挟んでヒートシンク324と対向するように、コンデンサ基板315の下面315bに実装されている。
コンデンサ320の先端面とインバータケース307との間には、コンデンサ320からの熱を放散する放熱部材333が配置されている。コンデンサ320から発生した熱は、放熱部材333及びインバータケース307を通ってヒートシンク324により放熱される。
モータ端子収容部312には、モータ端子335A~335Cの先端部分が収容される。モータ端子収容部312は、基板収容部310に対して電源入力端子330A,330Bの反対側に配置されている。モータ端子335A~335Cは、モータ出力用バスバー336A~336Cとそれぞれ連結されている。モータ出力用バスバー336A~336Cは、モータ端子収容部312から基板収容部310まで延びている。モータ出力用バスバー336A~336Cは、基板収容部310において複数のボルト337によりそれぞれ中継端子338A~338C及びMOS基板313を介してヒートシンク324に固定されている。
インバータケース307の他の一方側の外側面には、支持部339が突設されている。具体的には、支持部339は、インバータケース307における電源入力端子330A,330Bとモータ端子335A~335Cとの対向方向に垂直な方向の一方側の外側面に突設されている。
支持部339には、外部コネクタ340が着脱される信号線コネクタ341が設けられている。外部コネクタ340は、外部機器(図示せず)との通信を行うためのコネクタプラグである。信号線コネクタ341は、制御基板314の信号パターンと電気的に接続されている。信号線コネクタ341は、モータ302の軸方向におけるモータ302側に開口している。
以上のように本実施形態にあっては、電力入力用バスバー325A,325Bは、インバータケース307内におけるMOS基板313と制御基板314との間に配置され、モータ302の軸方向に垂直な方向にインバータケース307の側壁307aまで延在している。そして、電力入力用バスバー325A,325Bの側壁307a側の端部には、電力入力用バスバー325A,325Bの延在方向に電源ケーブル329A,329Bが着脱される電源入力端子330A,330Bが設けられている。このため、電源ケーブル329A,329Bは、モータ302の軸方向に垂直な方向に沿って電源入力端子330A,330Bに着脱されることになる。従って、モータユニット301を産業車両に搭載した後に、インバータ304の正面側(インバータ304に対してモータ302の反対側)にフレーム等が配置されているために作業スペースがないような場合でも、電源ケーブル329A,329Bを電源入力端子330A,330Bに着脱することが可能となる。これにより、電源ケーブル329A,329Bを電源入力端子330A,330Bに予め装着してからモータユニット301を産業車両に搭載しなくて済むため、作業性が向上する。
また、電力入力用バスバー325A,325BをMOS基板313と制御基板314との間にモータ302の軸方向に垂直な方向に延在するように配置したので、MOS基板313と制御基板314との間の空間を有効に利用することができる。
また、本実施形態では、信号線コネクタ341は、モータ302の軸方向におけるモータ302側に開口している。このため、外部コネクタ340は、モータ302の軸方向に沿ってモータ302側からインバータ304側に向けて信号線コネクタ341に装着されることになる。従って、モータユニット301の搭載後に、インバータ304の正面側に作業スペースがないような場合でも、外部コネクタ340を信号線コネクタ341に着脱することが可能となる。これにより、外部コネクタ340を信号線コネクタ341に予め装着してからモータユニット301を産業車両に搭載しなくて済むため、作業性が更に向上する。
また、本実施形態では、制御基板314のMOS基板313側の主面には、電流センサ318及びトランス319が実装されている。従って、高さの大きい電流センサ318及びトランス319がMOS基板313と制御基板314との間の空間にスペース効率良く配置されることになるため、インバータ304をモータ302の軸方向に小型化することができる。
また、本実施形態では、MOS基板313は、制御基板314よりもモータ302側に配置されており、MOS基板313よりもモータ302側には、MOS基板313からの熱を放熱するヒートシンク324が配置されており、インバータケース307内におけるMOS基板313と制御基板314との間には、コンデンサ基板315が配置されており、電力入力用バスバー325A,325Bは、制御基板314とコンデンサ基板315との間に配置されている。このため、制御基板314とコンデンサ基板315との間の空間を有効に利用することができる。また、MOS素子316から発生した熱がヒートシンク324により放熱されるため、MOS基板313が熱くなることが防止される。
また、本実施形態では、コンデンサ320は、モータ302の軸方向に垂直な方向にヒートシンク324と対向するように、コンデンサ基板315のMOS基板313側の主面に実装されている。従って、高さの大きいコンデンサ320がモータ302の軸方向に垂直な方向にヒートシンク324と対向するようにスペース効率良く配置されることになるため、インバータ304をモータ302の軸方向に更に小型化することができる。
なお、本発明は、上記実施形態には限定されない。例えば上記実施形態では、制御基板314の下面314bに、高さの大きい電流センサ318及びトランス319が実装されているが、特にその形態には限られず、電流センサ318及びトランス319の何れか一方のみが制御基板314の下面314bに実装されていてもよい。また、電流センサ318及びトランス319以外の高さの大きい部品が制御基板314の下面314bに実装されていてもよい。
また、上記実施形態では、インバータケース307内におけるMOS基板313と制御基板314との間にコンデンサ基板315が配置され、制御基板314とコンデンサ基板315との間に電力入力用バスバー325A,325Bが配置されているが、特にその形態には限られない。例えば、MOS基板313及びコンデンサ基板315がモータ302の軸方向の同じ位置に並んで配置されており、制御基板314とMOS基板313及びコンデンサ基板315との間に電力入力用バスバー325A,325Bが配置されていてもよい。また、1つの共通基板にMOS素子316及びコンデンサ320が実装されており、制御基板314と共通基板との間に電力入力用バスバー325A,325Bが配置されていてもよい。
[第5の形態]
従来のインバータとしては、例えば特開2016-146702号公報、特開2010-124691号公報に記載されている技術が知られている。特開2016-146702号公報には、車両の電動パワーステアリング装置に使用され、電動モータ部と一体化されたインバータとしての電子制御装置部について記載されている。電子制御装置部は、ECUハウジングと、このECUハウジングに収納された電子制御組立体とを備えている。ECUハウジングの端面には、蓋体が固定されている。蓋体には、電力供給用のコネクタ端子形成部と、検出センサ用のコネクタ端子形成部と、制御状態送出用のコネクタ端子形成部とが設けられている。
従来のインバータとしては、例えば特開2016-146702号公報、特開2010-124691号公報に記載されている技術が知られている。特開2016-146702号公報には、車両の電動パワーステアリング装置に使用され、電動モータ部と一体化されたインバータとしての電子制御装置部について記載されている。電子制御装置部は、ECUハウジングと、このECUハウジングに収納された電子制御組立体とを備えている。ECUハウジングの端面には、蓋体が固定されている。蓋体には、電力供給用のコネクタ端子形成部と、検出センサ用のコネクタ端子形成部と、制御状態送出用のコネクタ端子形成部とが設けられている。
特開2010-124691号公報に記載されたインバータとしての電力変換装置は、インバータ回路が内蔵されたパワーモジュールと、インバータ回路を制御する制御回路基板とを備えている。パワーモジュールは、ベースと、このベースに取り付けられたケースとを有している。ケースの一つの側面には、正極側主電極及び負極側主電極が突出されて形成されている。ケースの反対側の側面には、3つの交流側主電極が突出されて形成されている。
しかしながら、上記従来技術においては、以下の問題点が存在する。即ち、特開2016-146702号公報では、電動モータ部と一体化された電子制御装置部が車両に搭載された状態において、電子制御装置部の蓋体側のスペースが狭い場合には、電力供給用のコネクタ端子形成部に電源ケーブルを接続することが困難になり、作業性が悪化する。
特開2010-124691号公報では、正極側主電極及び負極側主電極がケースの一つの側面に突出され、3つの交流側主電極がケースの反対側の側面に突出されているため、パワーモジュールにおけるベースの反対側のスペースが狭い場合でも、正極側主電極、負極側主電極及び各交流側主電極に直流バスバーを接続することはできる。しかし、正極側主電極と負極側主電極との間の距離が短い場合には、正極側主電極及び負極側主電極に直流バスバーを接続する作業が行いにくく、作業性が悪化する。また、各交流側主電極間の距離が短い場合には、交流側主電極に直流バスバーを接続する作業が行いにくく、作業性が悪化する。
本発明一態様の目的は、接続部材を接続する際の作業性を向上させることができるインバータを提供することである。
本発明の一態様に係るインバータは、互いに対向する2つの外側壁を有するインバータケースと、インバータケース内を覆うインバータカバーと、インバータケース内に配置された主回路基板と、インバータケース内に2つの外側壁の一方の側に向けて延びるように配置されると共に、主回路基板と接続された複数の第1端子と、インバータケース内に2つの外側壁の他方の側に向けて延びるように配置されると共に、主回路基板と接続された複数の第2端子とを備え、第1端子及び第2端子は、2つの外側壁の対向方向に垂直な方向に沿って交互に配列されていることを特徴とする。
このようなインバータにおいては、第1端子は、インバータケース内に2つの外側壁の一方の側に向けて延びるように配置されている。第2端子は、インバータケース内に2つの外側壁の他方の側に向けて延びるように配置されている。そして、第1端子及び第2端子は、2つの外側壁の対向方向に垂直な方向に沿って交互に配列されている。従って、少なくとも第2端子の幅分だけ各第1端子間の距離が確保されるため、第1端子に接続部材を接続する作業が行いやすくなる。また、少なくとも第1端子の幅分だけ各第2端子間の距離が確保されるため、第2端子に接続部材を接続する作業が行いやすくなる。これにより、接続部材を接続する際の作業性が向上する。
第1端子は、主回路基板に電力を供給するための電源ケーブルが接続される入力端子であり、第2端子は、主回路基板からの信号をモータに出力するためのモータケーブルが接続される出力端子であってもよい。このような構成では、電源ケーブルを入力端子に接続する作業が行いやすくなる。また、モータケーブルを出力端子に接続する作業が行いやすくなる。
入力端子には、2つの外側壁の一方の側方から電源ケーブルが接続されてもよい。このような構成では、車両等にインバータが搭載された状態において、インバータカバー側のスペースが狭い場合でも、電源ケーブルを入力端子に接続することができる。
出力端子には、インバータケースにおけるインバータカバーの反対側からモータケーブルが接続されてもよい。このような構成では、車両等にインバータがモータと共に搭載される前に、インバータケースに対する入力端子及び出力端子の組み付け方向と同じ方向において、モータケーブルを出力端子に組み付けることができる。
本発明の一態様によれば、接続部材を接続する際の作業性を向上させることができる。
図22は、本発明の一実施形態に係るインバータを示す分解斜視図である。図23は、図22に示されたインバータの側面図である。図24は、図23のXXIV-XXIV線断面図である。図25は、図24のXXV-XXV線断面図である。
図22~図25において、本実施形態のインバータ401は、モータ440と一体化されている。モータ440は、三相交流モータである。そのようなモータ付きのインバータ401は、例えばバッテリ式フォークリフト等の産業車両に搭載されている。インバータ401は、バッテリ(図示せず)からの直流電流を交流電流に変換してモータ440を制御する。
インバータ401は、一方側に開口したインバータケース402と、このインバータケース402内を覆うようにインバータケース402の上面402a(開口面)に固定されたインバータカバー403とを備えている。上記のモータ440は、インバータケース402の底面側(インバータケース402に対してインバータカバー403の反対側)に配置されている。インバータケース402及びインバータカバー403は、平面視略矩形状を有している。
インバータケース402は、外側壁404~407と、内側壁408とを有している。外側壁404,405同士は、互いに対向している。外側壁404の面積は、外側壁405の面積よりも大きい。外側壁406は、外側壁404と繋がる大面積領域406aと、外側壁405と繋がる小面積領域406bと、大面積領域406aと小面積領域406bとの間に配置された屈曲領域406cとを有している。外側壁407は、外側壁404と繋がる大面積領域407aと、外側壁405と繋がる小面積領域407bと、大面積領域407aと小面積領域407bとの間に配置された屈曲領域407cとを有している。外側壁406,407の大面積領域406a,407a同士は、外側壁404,405の対向方向(X方向)に対して垂直な方向(Y方向)に互いに対向している。外側壁406,407の小面積領域406b,407b同士は、外側壁404,405の対向方向に対して垂直な方向に互いに対向している。
内側壁408は、インバータケース402内に配置されている。内側壁408は、外側壁406における小面積領域406bと屈曲領域406cとの接続部と、外側壁407における小面積領域407bと屈曲領域407cとの接続部とを繋いでいる。内側壁408は、外側壁404,405と互いに対向している。
外側壁404と外側壁406の大面積領域406a及び屈曲領域406cと外側壁407の大面積領域407a及び屈曲領域407cと内側壁408とで画成される内部空間は、基板収容部409を形成している。外側壁405と外側壁406の小面積領域406bと外側壁407の小面積領域407bと内側壁408とで画成される内部空間は、モータケーブル収容部410を形成している。
基板収容部409には、主回路基板411と制御基板412とが収容されている。主回路基板411は、複数のボルト413によりインバータケース402に固定されている。制御基板412は、複数のボルト414によりインバータケース402に固定されている。
主回路基板411は、半導体基板であるMOS(Metal Oxide Semiconductor)基板415とコンデンサ基板416とが積層された構造を有している。MOS基板415には、複数の半導体素子であるMOS素子417(図22では省略)が実装されている。MOS素子には、スイッチング素子等が含まれる。コンデンサ基板416には、複数のコンデンサ418が実装されている。制御基板412は、主回路基板411よりもインバータカバー403側に配置されている。制御基板412には、複数の電子制御部品419が実装されている。
主回路基板411よりもモータ440側には、主回路基板411からの熱を放熱するヒートシンク420が配置されている。ヒートシンク420は、主回路基板411のMOS基板415の下面に接触するようにインバータケース402に取り付けられている。ヒートシンク420は、複数の放熱フィン420aを有している。MOS素子417から発生した熱は、MOS基板415を通ってヒートシンク420により放熱される。
また、基板収容部409には、バスバー構造の入力端子421A,421B(以下、まとめて入力端子421ということがある)が収容されている。入力端子421A,421Bは、主回路基板411及び制御基板412と接続された第1端子である。入力端子421A,421Bは、主回路基板411と制御基板412との間に互いに平行に配置されている。入力端子421A,421Bは、外側壁404,405の対向方向(X方向)に延在している。入力端子421A,421Bは、基板収容部409の中央部から外側壁404に向かって延びている。
入力端子421A,421Bの先端側部分は円筒状を呈し、入力端子421A,421Bの基端側部分は略平板状を呈している。入力端子421A,421Bの基端側部分は、複数のボルト422によりそれぞれ中継端子423A,423B及び主回路基板411を介してインバータケース402に固定されている。
入力端子421Aは、正極側の端子である。入力端子421Bは、負極側の端子である。入力端子421Aは、主回路基板411及び制御基板412の正極パターンと電気的に接続されている。入力端子421Bは、主回路基板411及び制御基板412の負極パターンと電気的に接続されている。
外側壁404には、インバータケース402の上面402aに開放し、入力端子421A,421Bをそれぞれ通す切欠部424A,424Bが設けられている。入力端子421A,421Bの先端部は、外側壁404の外側に突き出ている。
入力端子421A,421Bの先端側部分には、電源ケーブル441A,441Bがそれぞれ差し込まれる挿入穴425A,425Bがそれぞれ設けられている。電源ケーブル441A,441Bは、バッテリ(図示せず)からの電力を主回路基板411及び制御基板412に供給するための接続部材である。挿入穴425A,425Bには、雌ネジが形成されている。電源ケーブル441A,441Bの先端部には、雄ネジ部442が設けられている。外側壁404の側方から電源ケーブル441A,441Bの雄ネジ部442を挿入穴425A,425Bにねじ込むことで、電源ケーブル441A,441Bが入力端子421A,421Bにそれぞれ接続される。
モータケーブル収容部410には、モータ440から引き出されたモータケーブル426A~426Cの先端部分が収容されている。なお、図22及び図24では、モータケーブル426A~426Cは省略されている。モータケーブル426A~426Cは、バスバー構造の出力端子427A~427C(以下、まとめて出力端子427ということがある)とそれぞれ連結され、主回路基板411からの制御信号をモータ440に出力するための接続部材である。
出力端子427A~427Cは、主回路基板411と接続された第2端子である。出力端子427A~427Cは、主回路基板411と制御基板412との間に互いに平行に配置されている。出力端子427A~427Cは、外側壁404,405の対向方向(X方向)に延在している。出力端子427A~427Cは、基板収容部409の中央部から外側壁405に向かって延びている。
出力端子427A~427Cは、平板状を呈している。出力端子427A~427Cの基端側部分は、複数のボルト429によりそれぞれ中継端子430A~430C及び主回路基板411を介してインバータケース402に固定されている。
インバータケース402の内側壁408には、インバータケース402の上面402aに開放し、出力端子427A~427Cをそれぞれ通す切欠部428A~428Cが設けられている。従って、出力端子427A~427Cは、基板収容部409及びモータケーブル収容部410にわたって収容されている。
モータケーブル426A~426Cの先端部には、雄ネジ部443が設けられている。出力端子427A~427Cの先端部には、雄ネジ部443が通る丸穴444が設けられている。インバータケース402の底面側(インバータカバー403とは反対側)からモータケーブル426A~426Cの雄ネジ部443を出力端子427A~427Cの丸穴444に通した状態で、ナット445を雄ネジ部43に締め付けることで、モータケーブル426A~426Cが出力端子427A~427Cにそれぞれ接続される。
入力端子421及び出力端子427は、外側壁406,407の対向方向(Y方向)に沿って交互に配列されている。具体的には、入力端子421及び出力端子427は、外側壁406側から外側壁407側に向かって、出力端子427A、入力端子421A、出力端子427B、入力端子421B及び出力端子427Cの順に配列されている。隣り合う入力端子421及び出力端子427同士の間隔は、全て等しい。従って、入力端子421A,421B間の距離、出力端子427A,427B間の距離、出力端子427B,427C間の距離は、全て等しい。なお、隣り合う入力端子421及び出力端子427同士の間隔は、全て等しい構成でなくてもよい。
インバータケース402の外側壁407の外壁面には、外部コネクタ(図示せず)が着脱される信号線コネクタ431が支持部432を介して設けられている。信号線コネクタ431は、制御基板412の信号パターンと電気的に接続されている。信号線コネクタ431は、モータ440の軸方向におけるモータ440側に開口している。
インバータケース402とインバータカバー403との間には、シールゴム433が配置されている。シールゴム433は、インバータケース402の上面402aとインバータカバー403との間を封止するシール部434と、入力端子421A,421Bとインバータケース402及びインバータカバー403との間をそれぞれ封止するシール部435A,435Bと、出力端子427A~427Cとインバータケース402及びインバータカバー403との間をそれぞれ封止するシール部436A~436Cとを有している。
シール部434は、インバータケース402の外側壁404~407及び内側壁408とインバータカバー403と間に介在されている。シール部435A,435Bは、入力端子421A,421Bに組み付けられると共に外側壁404の切欠部424A,424Bと嵌合するようにシール部434と一体化されている。シール部435A,435Bは、入力端子421A,421Bとインバータケース402における切欠部424A,424Bの縁部及びインバータカバー403との間に介在されている。シール部436A~436Cは、出力端子427A~427Cに組み付けられると共に内側壁408の切欠部428A~428Cと嵌合するようにシール部434と一体化されている。シール部436A~436Cは、出力端子427A~427Cとインバータケース402における切欠部428A~428Cの縁部及びインバータカバー403との間に介在されている。
シール部435A,435Bは、インバータ401の上下方向(Z方向)に垂直に切った断面において、外側壁404の内側及び外側から外側壁404を挟むような断面U字状を有している(図24参照)。シール部436A~436Cは、インバータ401の上下方向に垂直に切った断面において、内側壁408の内側(外側壁404側)及び外側(外側壁405側)から内側壁408を挟むような断面U字状を有している(図24参照)。
以上のようなインバータ401を組み立てるときは、まず複数のボルト413を用いてインバータケース402に主回路基板411を組み付ける。このとき、インバータケース402の上方からボルト413を締結する。
続いて、図22に示されるように、入力端子421A,421B及び出力端子427A~427Cとシールゴム433とを組み付けてサブアッシー437を形成する。
続いて、インバータケース402にサブアッシー437を組み付ける。具体的には、まずシール部434がインバータケース402の上面402a上に載置されると共に、シール部435A,435Bが外側壁404の切欠部424A,424Bとそれぞれ嵌合し、シール部436A~436Cが内側壁408の切欠部428A~428Cとそれぞれ嵌合するように、サブアッシー437をインバータケース402に対して配置する。そして、その状態で、複数のボルト422を用いて入力端子421A,421Bをインバータケース402に固定すると共に、複数のボルト429を用いて出力端子427A~427Cをインバータケース402に固定する。このとき、インバータケース402の上方からボルト422,429を締結する。
また、上述したように、モータケーブル426A~426Cの雄ネジ部43を出力端子427A~427Cの丸穴444に通した状態で、ナット445によりモータケーブル426A~426Cを出力端子427A~427Cにそれぞれ連結する。このとき、インバータケース402の上方からナット445を締め付ける。
続いて、複数のボルト414を用いて、サブアッシー437が組み付けられたインバータケース402に制御基板412を組み付ける。このとき、インバータケース402の上方からボルト414を締結する。
続いて、複数のボルト438を用いて、サブアッシー437及び制御基板412が組み付けられたインバータケース402にインバータカバー403を組み付ける。このとき、インバータケース402の上方からボルト438を締結する。
以上のように本実施形態にあっては、入力端子421A,421Bは、インバータケース402内に外側壁404側に向けて延びるように配置されている。出力端子427A~427Cは、インバータケース402内に外側壁405側に向けて延びるように配置されている。そして、入力端子421及び出力端子427は、外側壁404,405の対向方向に垂直な方向に沿って交互に配列されている。従って、少なくとも出力端子427の幅分だけ各入力端子421間の距離が確保されるため、入力端子421A,421Bに電源ケーブル441A,441Bをそれぞれ接続する作業が行いやすくなる。また、少なくとも入力端子421の幅分だけ各出力端子427間の距離が確保されるため、出力端子427A~427Cにモータケーブル426A~426Cをそれぞれ接続する作業が行いやすくなる。これにより、電源ケーブル441A,441B及びモータケーブル426A~426Cを接続する際の作業性が向上する。その結果、例えば電源ケーブル441A,441B同士のショートを確実に防ぐことが可能となる。
また、本実施形態では、入力端子421A,421Bには、外側壁404の側方から電源ケーブル441A,441Bがそれぞれ接続される。従って、産業車両にインバータ401が搭載された状態において、インバータカバー403側のスペースが狭い場合でも、電源ケーブル441A,441Bを入力端子421A,421Bにそれぞれ接続することができる。
また、本実施形態では、出力端子427A~427Cには、インバータケース402におけるインバータカバー403の反対側からモータケーブル426A~426Cがそれぞれ接続される。従って、産業車両にインバータ401がモータ440と共に搭載される前に、インバータケース402に対する入力端子421A,421B及び出力端子427A~427Cの組み付け方向と同じ方向において、モータケーブル426A~426Cを出力端子427A~427Cにそれぞれ組み付けることができる。これにより、インバータ401の組み立て作業を行う際の作業性が向上する。
さらに、本実施形態では、入力端子421A,421Bは外側壁404側に向けて延びており、出力端子427A~427Cは外側壁405側に向けて延びているので、インバータ401を高さ方向に小型化することができる。
なお、本形態は、上記実施形態には限定されない。例えば上記実施形態では、電源ケーブル441A,441Bがインバータケース402の外側壁404の側方から入力端子421A,421Bに接続されているが、特にその形態には限られず、例えば電源ケーブル441A,441Bがインバータケース402の底面側から入力端子421A,421Bに接続されていてもよい。また、モータケーブル426A~426Cがインバータケース402の底面側から出力端子427A~427Cに接続されているが、インバータ401に対するモータ440の配置箇所等によっては、例えばモータケーブル426A~426Cがインバータケース402の外側壁405の側方から出力端子427A~427Cに接続されていてもよい。
また、上記実施形態では、インバータ401はモータ440と一体化されているが、本発明は、モータとは別体のインバータにも適用可能である。この場合、インバータは、インバータケースの互いに対向する2つの外側壁の一方の側に向けて延びる複数の第1端子と、インバータケースの互いに対向する2つの外側壁の他方の側に向けて延びる複数の第2端子とを備え、第1端子及び第2端子が2つの外側壁の対向方向に垂直な方向に沿って交互に配列された構造を有していればよい。
1…モータユニット、2…モータ、4…インバータ、7…ファン、8…ケース、12…MOS基板(半導体基板)、12b…下面(取付面)、13…コンデンサ基板、13b…下面、16…ヒートシンク、16a…上面(取付面)、18…コンデンサ、20…MOS素子(半導体素子)、31…放熱部材、101…コンデンサ実装構造、110…コンデンサ基板、110a…実装面、120…コンデンサ、130…ヒートシンク、140…放熱部材、150…固定部材、160…絶縁部材、170…バッテリー端子(押さえ部材)、 201…インバータ、202…インバータケース、202a…上面(開口面)、203…インバータカバー、204…外側壁(側壁)、208…内側壁(側壁)、211…主回路基板、221A,221B…入力端子(端子)、224A,224B…切欠部、27A~27C…出力端子(端子)、28A~28C…切欠部、233…シールゴム(シール部材)、234…シール部(第1シール部)、235A,235B…シール部(第2シール部)、36A~36C…シール部(第2シール部)、237…サブアッシー、301…モータユニット、302…モータ、304…インバータ、307…インバータケース、307a…側壁、313…MOS基板(第1基板)、314…制御基板(第2基板)、314b…下面(主面)、315…コンデンサ基板(第3基板)、315b…下面(主面)、316…MOS素子(半導体素子)、317…電子制御部品、318…電流センサ、319…トランス、320…コンデンサ、324…ヒートシンク、325A,325B…電力入力用バスバー(バスバー)、329A,329B…電源ケーブル、330A,330B…電源入力端子、340…外部コネクタ、341…信号線コネクタ、401…インバータ、402…インバータケース、403…インバータカバー、404…外側壁、405…外側壁、411…主回路基板、421,421A,421B…入力端子(第1端子)、426A~426C…モータケーブル、427,427A~427C…出力端子(第2端子)、441A,441B…電源ケーブル。
Claims (20)
- モータと、前記モータと一体化され、前記モータを制御するインバータとを備えたモータユニットにおいて、
前記インバータは、
ケースと、
前記ケース内に配置され、半導体素子が実装される半導体基板と、
前記ケース内に配置され、コンデンサが実装されるコンデンサ基板と、
前記半導体基板の前記モータ側の面に取り付けられ、前記半導体基板を冷却するヒートシンクと、
を有し、
前記コンデンサは、前記モータと前記インバータとの配列方向に垂直な方向において前記ヒートシンクと対向するように、前記コンデンサ基板の前記モータ側の面に実装されていることを特徴とするモータユニット。 - 前記コンデンサと前記ケースとの間には、放熱部材が配置されていることを特徴とする請求項1記載のモータユニット。
- 前記モータには、前記インバータを冷却するファンが取り付けられていることを特徴とする請求項1または2記載のモータユニット。
- 前記ヒートシンク及び前記半導体基板の互いに対向する取付面の外形寸法が同等であることを特徴とする請求項1~3の何れか一項記載のモータユニット。
- 実装面を有するコンデンサ基板と、
前記コンデンサ基板の前記実装面上に実装された少なくとも1つのコンデンサと、
前記コンデンサ基板の前記実装面側に配置され、前記コンデンサの熱を放出するヒートシンクと、
前記コンデンサと前記ヒートシンクとの間に配置され、前記コンデンサ及び前記ヒートシンクに接触する放熱部材と、
前記コンデンサ基板の両端側において前記コンデンサ基板を前記ヒートシンクに固定する複数の固定部材と、
前記実装面とは反対側に配置され、電気的絶縁性を有する絶縁部材と、
前記実装面とは反対側に配置され、前記絶縁部材を前記コンデンサ基板に対して押さえる押さえ部材と、を備える、コンデンサ実装構造。 - 前記コンデンサは、前記コンデンサ基板の一端側から前記コンデンサ基板の他端側に沿って前記実装面上に複数実装されており、
前記絶縁部材は、前記コンデンサ基板の一端側から前記コンデンサ基板の他端側に沿って延びていると共に、前記複数の固定部材により前記コンデンサ基板と一緒に前記ヒートシンクに固定されている、請求項5に記載のコンデンサ実装構造。 - 前記押さえ部材は、前記ヒートシンクに固定された金属製のバッテリー端子である、請求項5又は6に記載のコンデンサ実装構造。
- 主回路基板及び端子が収容されたインバータケースと、前記インバータケース内を覆うように前記インバータケースの開口面に固定されたインバータカバーとを備えたインバータの封止構造であって、
前記インバータケースと前記インバータカバーとの間に配置されたシール部材を備え、
前記インバータケースの側壁には、前記開口面に開放し前記端子を通す切欠部が設けられており、
前記シール部材は、前記インバータケースの前記開口面と前記インバータカバーとの間を封止する第1シール部と、前記端子に組み付けられると共に前記切欠部と嵌合するように前記第1シール部と一体化され、前記端子と前記インバータケース及び前記インバータカバーとの間を封止する第2シール部とを有することを特徴とするインバータの封止構造。 - 前記第2シール部は、前記側壁の内側及び外側から前記側壁を挟むような断面U字状を有していることを特徴とする請求項8記載のインバータの封止構造。
- 前記端子、前記切欠部及び前記第2シール部の数は、何れも複数であり、
前記複数の端子のうち少なくとも1つの端子は、前記主回路基板に電力を供給するための入力端子であり、
前記複数の端子のうち他の端子は、前記主回路基板から信号を出力するための出力端子であり、
前記複数の切欠部のうち少なくとも1つの切欠部は、前記インバータケースの一の側壁に設けられていると共に、前記入力端子を通し、
前記複数の切欠部のうち他の切欠部は、前記インバータケースの他の側壁に設けられていると共に、前記出力端子を通し、
前記複数の第2シール部のうち少なくとも1つの第2シール部は、前記入力端子に組み付けられ、前記入力端子と前記インバータケース及び前記インバータカバーとの間を封止し、
前記複数の第2シール部のうち他の第2シール部は、前記出力端子に組み付けられ、前記出力端子と前記インバータケース及び前記インバータカバーとの間を封止することを特徴とする請求項8または9記載のインバータの封止構造。 - 主回路基板及び端子が収容されたインバータケースと、前記インバータケース内を覆うように前記インバータケースの開口面に固定されたインバータカバーとを備えたインバータの組立方法であって、
前記主回路基板が収容された前記インバータケースと前記インバータカバーとを用意する第1準備工程と、
前記インバータケースと前記インバータカバーとの間に配置されるシール部材と前記端子とを用意する第2準備工程と、
前記端子と前記シール部材とを組み付けてサブアッシーを形成するサブアッシー化工程と、
前記インバータケースに前記サブアッシーを組み付けるサブアッシー組付工程と、
前記サブアッシーが組み付けられた前記インバータケースに前記インバータカバーを組み付けるカバー組付工程とを含み、
前記第1準備工程では、前記開口面に開放し前記端子を通す切欠部が設けられた側壁を有する前記インバータケースを用意し、
前記第2準備工程では、前記インバータケースの前記開口面と前記インバータカバーとの間を封止する第1シール部と、前記第1シール部と一体化され、前記端子と前記インバータケース及び前記インバータカバーとの間を封止する第2シール部とを有する前記シール部材を用意し、
前記サブアッシー化工程では、前記端子と前記第2シール部とを組み付け、
前記サブアッシー組付工程では、前記第1シール部が前記インバータケースの前記開口面上に載置されると共に前記第2シール部が前記切欠部と嵌合するように前記サブアッシーを前記インバータケースに組み付けることを特徴とするインバータの組立方法。 - モータと、前記モータと一体化され、前記モータを制御するインバータとを備えたモータユニットにおいて、
前記インバータは、
インバータケースと、
前記インバータケース内に配置され、半導体素子が実装される第1基板と、
前記インバータケース内に前記第1基板と平行に配置され、電子制御部品が実装される第2基板と、
前記インバータケース内における前記第1基板と前記第2基板との間に配置され、前記モータの軸方向に垂直な方向に前記インバータケースの側壁まで延在するバスバーと、
を有し、
前記バスバーの前記側壁側の端部には、前記バスバーの延在方向に電源ケーブルが着脱される電源入力端子が設けられていることを特徴とするモータユニット。 - 前記インバータは、外部コネクタが着脱される信号線コネクタを有し、
前記信号線コネクタは、前記モータの軸方向における前記モータ側に開口していることを特徴とする請求項12記載のモータユニット。 - 前記第2基板の前記第1基板側の主面には、電流センサ及びトランスの少なくとも一方が実装されていることを特徴とする請求項12または13記載のモータユニット。
- 前記第1基板は、前記第2基板よりも前記モータ側に配置されており、
前記インバータは、前記インバータケース内における前記第1基板と前記第2基板との間に前記第1基板と平行に配置され、コンデンサが実装される第3基板と、前記第1基板よりも前記モータ側に配置され、前記第1基板からの熱を放熱するヒートシンクと、を有し、
前記バスバーは、前記第2基板と前記第3基板との間に配置されていることを特徴とする請求項12~14の何れか一項記載のモータユニット。 - 前記コンデンサは、前記モータの軸方向に垂直な方向に前記ヒートシンクと対向するように、前記第3基板の前記第1基板側の主面に実装されていることを特徴とする請求項15記載のモータユニット。
- 互いに対向する2つの外側壁を有するインバータケースと、
前記インバータケース内を覆うインバータカバーと、
前記インバータケース内に配置された主回路基板と、
前記インバータケース内に前記2つの外側壁の一方の側に向けて延びるように配置されると共に、前記主回路基板と接続された複数の第1端子と、
前記インバータケース内に前記2つの外側壁の他方の側に向けて延びるように配置されると共に、前記主回路基板と接続された複数の第2端子とを備え、
前記第1端子及び前記第2端子は、前記2つの外側壁の対向方向に垂直な方向に沿って交互に配列されていることを特徴とするインバータ。 - 前記第1端子は、前記主回路基板に電力を供給するための電源ケーブルが接続される入力端子であり、
前記第2端子は、前記主回路基板からの信号をモータに出力するためのモータケーブルが接続される出力端子であることを特徴とする請求項17記載のインバータ。 - 前記入力端子には、前記2つの外側壁の一方の側方から前記電源ケーブルが接続されることを特徴とする請求項18記載のインバータ。
- 前記出力端子には、前記インバータケースにおける前記インバータカバーの反対側から前記モータケーブルが接続されることを特徴とする請求項18または19記載のインバータ。
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-083916 | 2017-04-20 | ||
JP2017083916A JP6961990B2 (ja) | 2017-04-20 | 2017-04-20 | モータユニット |
JP2017155318A JP6926807B2 (ja) | 2017-08-10 | 2017-08-10 | コンデンサ実装構造 |
JP2017-155318 | 2017-08-10 | ||
JP2017197721A JP2019071753A (ja) | 2017-10-11 | 2017-10-11 | インバータの封止構造及びインバータの組立方法 |
JP2017-197721 | 2017-10-11 | ||
JP2017208489A JP6969285B2 (ja) | 2017-10-27 | 2017-10-27 | モータユニット |
JP2017-208489 | 2017-10-27 | ||
JP2018005615A JP2019126190A (ja) | 2018-01-17 | 2018-01-17 | インバータ |
JP2018-005615 | 2018-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193995A1 true WO2018193995A1 (ja) | 2018-10-25 |
Family
ID=63857011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/015585 WO2018193995A1 (ja) | 2017-04-20 | 2018-04-13 | モータユニット、コンデンサ実装構造、インバータの封止構造、インバータの組立方法、及びインバータ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018193995A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111193380A (zh) * | 2018-11-15 | 2020-05-22 | 中车株洲电力机车研究所有限公司 | 一种dcu控制盒 |
CN111835213A (zh) * | 2019-04-19 | 2020-10-27 | 日本电产艾莱希斯株式会社 | 逆变器单元 |
CN111835218A (zh) * | 2019-04-19 | 2020-10-27 | 日本电产艾莱希斯株式会社 | 逆变器单元 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008011661A (ja) * | 2006-06-30 | 2008-01-17 | Hitachi Ltd | 電動パワーステアリング用モータ及びレゾルバ装置 |
JP2008099553A (ja) * | 2007-12-27 | 2008-04-24 | Hitachi Ltd | 電力変換装置及びそれを備えた移動体 |
JP2010047238A (ja) * | 2008-08-25 | 2010-03-04 | Honda Motor Co Ltd | 電動パワーステアリング装置 |
JP2010124691A (ja) * | 2010-03-08 | 2010-06-03 | Hitachi Automotive Systems Ltd | 電力変換装置 |
JP2010178537A (ja) * | 2009-01-30 | 2010-08-12 | Mitsubishi Heavy Ind Ltd | インバータ収納部およびこれを備えているインバータ一体型電動圧縮機 |
JP2010288328A (ja) * | 2009-06-09 | 2010-12-24 | Mitsubishi Electric Corp | 電子制御装置 |
JP2011176998A (ja) * | 2009-06-24 | 2011-09-08 | Denso Corp | 駆動装置 |
JP2011205846A (ja) * | 2010-03-26 | 2011-10-13 | Denso Corp | 電力変換装置 |
JP3173511U (ja) * | 2011-11-25 | 2012-02-09 | 株式会社豊田自動織機 | 半導体装置 |
JP2012143036A (ja) * | 2010-12-28 | 2012-07-26 | Denso Corp | 駆動装置、および、これを用いた電動パワーステアリング装置 |
JP2014236660A (ja) * | 2013-06-05 | 2014-12-15 | 株式会社豊田自動織機 | インバータ一体型回転電機 |
JP2015126674A (ja) * | 2013-12-27 | 2015-07-06 | トヨタ自動車株式会社 | 電力変換装置 |
WO2016178352A1 (ja) * | 2015-05-07 | 2016-11-10 | 富士電機株式会社 | スタック放熱構造及び該スタック放熱構造を有するスタックを備えた電力変換装置 |
-
2018
- 2018-04-13 WO PCT/JP2018/015585 patent/WO2018193995A1/ja active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008011661A (ja) * | 2006-06-30 | 2008-01-17 | Hitachi Ltd | 電動パワーステアリング用モータ及びレゾルバ装置 |
JP2008099553A (ja) * | 2007-12-27 | 2008-04-24 | Hitachi Ltd | 電力変換装置及びそれを備えた移動体 |
JP2010047238A (ja) * | 2008-08-25 | 2010-03-04 | Honda Motor Co Ltd | 電動パワーステアリング装置 |
JP2010178537A (ja) * | 2009-01-30 | 2010-08-12 | Mitsubishi Heavy Ind Ltd | インバータ収納部およびこれを備えているインバータ一体型電動圧縮機 |
JP2010288328A (ja) * | 2009-06-09 | 2010-12-24 | Mitsubishi Electric Corp | 電子制御装置 |
JP2011176998A (ja) * | 2009-06-24 | 2011-09-08 | Denso Corp | 駆動装置 |
JP2010124691A (ja) * | 2010-03-08 | 2010-06-03 | Hitachi Automotive Systems Ltd | 電力変換装置 |
JP2011205846A (ja) * | 2010-03-26 | 2011-10-13 | Denso Corp | 電力変換装置 |
JP2012143036A (ja) * | 2010-12-28 | 2012-07-26 | Denso Corp | 駆動装置、および、これを用いた電動パワーステアリング装置 |
JP3173511U (ja) * | 2011-11-25 | 2012-02-09 | 株式会社豊田自動織機 | 半導体装置 |
JP2014236660A (ja) * | 2013-06-05 | 2014-12-15 | 株式会社豊田自動織機 | インバータ一体型回転電機 |
JP2015126674A (ja) * | 2013-12-27 | 2015-07-06 | トヨタ自動車株式会社 | 電力変換装置 |
WO2016178352A1 (ja) * | 2015-05-07 | 2016-11-10 | 富士電機株式会社 | スタック放熱構造及び該スタック放熱構造を有するスタックを備えた電力変換装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111193380A (zh) * | 2018-11-15 | 2020-05-22 | 中车株洲电力机车研究所有限公司 | 一种dcu控制盒 |
CN111835213A (zh) * | 2019-04-19 | 2020-10-27 | 日本电产艾莱希斯株式会社 | 逆变器单元 |
CN111835218A (zh) * | 2019-04-19 | 2020-10-27 | 日本电产艾莱希斯株式会社 | 逆变器单元 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101748639B1 (ko) | 전력 변환 장치 | |
JP6915633B2 (ja) | 電力変換装置 | |
JP5160185B2 (ja) | インバータ装置 | |
US8929097B2 (en) | Power conversion apparatus | |
US8724313B2 (en) | Power conversion apparatus | |
EP1657806A2 (en) | Power converter and semiconductor device mounting structure | |
US8687358B2 (en) | Power conversion apparatus | |
WO2013018620A1 (ja) | 電力変換装置 | |
WO2018193995A1 (ja) | モータユニット、コンデンサ実装構造、インバータの封止構造、インバータの組立方法、及びインバータ | |
WO2014020806A1 (ja) | 冷却構造体及び電力変換装置 | |
JP6161550B2 (ja) | 電力変換装置 | |
JP2017017975A (ja) | 電動コンプレッサ | |
JP4538474B2 (ja) | インバータ装置 | |
WO2014104121A1 (ja) | 電動モータおよび電動ポンプ | |
JP5160186B2 (ja) | インバータ装置 | |
JP5494421B2 (ja) | 電力変換装置 | |
WO2023286255A1 (ja) | 電力変換装置 | |
JP5011061B2 (ja) | インバータ装置 | |
JP5017970B2 (ja) | 電力変換装置 | |
JP4055643B2 (ja) | インバータ装置 | |
JP4547986B2 (ja) | 電子ユニット、車両用駆動装置および車両 | |
JP3651444B2 (ja) | 電力変換装置 | |
JP2013017335A (ja) | インバータ装置 | |
WO2017002693A1 (ja) | 電動コンプレッサ | |
JP2007060733A (ja) | パワーモジュール |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18788206 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18788206 Country of ref document: EP Kind code of ref document: A1 |