WO2018193809A1 - 高強度低熱膨張合金 - Google Patents

高強度低熱膨張合金 Download PDF

Info

Publication number
WO2018193809A1
WO2018193809A1 PCT/JP2018/013309 JP2018013309W WO2018193809A1 WO 2018193809 A1 WO2018193809 A1 WO 2018193809A1 JP 2018013309 W JP2018013309 W JP 2018013309W WO 2018193809 A1 WO2018193809 A1 WO 2018193809A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
alloy
thermal expansion
based composite
content
Prior art date
Application number
PCT/JP2018/013309
Other languages
English (en)
French (fr)
Inventor
孝 細田
中間 一夫
知哉 松岡
美里 草刈
Original Assignee
山陽特殊製鋼株式会社
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社, 住友電気工業株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to JP2018560236A priority Critical patent/JP6812460B2/ja
Publication of WO2018193809A1 publication Critical patent/WO2018193809A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the present invention relates to a high-strength, low-thermal-expansion alloy used for precision machine parts, molds and the like that may rise in temperature during use.
  • Patent Document 1 Japanese Patent Laid-Open No. 7-228947
  • C 0.1 to 0.4%
  • Si 0.2 to 1.5%
  • Mn 0.1 to 1.5%
  • Ni 33-42%
  • Co 5.0% or less
  • Cr 0.75-3.0%
  • V 0.2-3.0%
  • B 0.003% or less
  • O 0.003% or less
  • Al 0.1% or less
  • Mg 0.1% or less
  • Ti 0.1% or less
  • Ca 0.1% or less
  • balance from Fe and inevitable impurities having a relationship of 1.0% ⁇ V + Cr ⁇ 5.0% is disclosed.
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-256395
  • C 0.1 to 0.4%
  • V more than 0.5% to 3.0%
  • Ni 25 to 50% by mass.
  • the high-strength low thermal expansion alloy contains one or more of Al, Mo, Ti, Nb, Ta, Zr, Hf, W, and Cu in a total amount of 5% or less. It is disclosed that it is good.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-82439 discloses that by weight, C: 0.20 to 0.40%, Si: ⁇ 0.8%, Mn: ⁇ 1.0%, P: ⁇ 0.050%, S: ⁇ 0.015%, Cu: ⁇ 1.0%, Ni: 35-40%, Cr: ⁇ 0.5%, Mo: 1.5-6.0%, V: 0.05 to 1.0%, O: ⁇ 0.015%, N: ⁇ 0.03%, Mo / V ⁇ 1.0 and (0.3Mo + V) ⁇ 4C, and the balance Fe
  • the average coefficient of linear thermal expansion from 20 to 230 ° C. and from 230 to 290 ° C. is 3.7 ⁇ 10 ⁇ 6 or less and 10.8 ⁇ 10 ⁇ 6 or less, respectively.
  • Patent Documents 1 to 3 are hardened by precipitation hardening by aging heat treatment, but the optimum conditions for aging heat treatment (temperature and holding time of the temperature) Therefore, it is difficult to obtain the desired hardness because the optimum condition range for obtaining the maximum hardness is narrow.
  • the present invention is an alloy having the characteristics (for example, wear resistance, high strength, good ductility, low coefficient of thermal expansion, etc.) required as a high-strength low-thermal expansion alloy, and has a desired hardness at the time of manufacturing the alloy.
  • An object of the present invention is to provide an alloy that can be used in a wide range of conditions for the heat treatment to obtain the above.
  • the inventors By appropriately controlling the composition of the alloy, the composition of the carbides present in the crystal grains, the dispersion state of the carbides present in the crystal grains, etc., the inventors have obtained characteristics necessary for a high-strength low thermal expansion alloy (for example, , Wear resistance, high strength, good ductility, low coefficient of thermal expansion, etc.), and capable of realizing an alloy that can be used in a wide range of conditions for heat treatment to obtain a desired hardness during manufacture of the alloy As a result, the present invention has been completed.
  • a high-strength low thermal expansion alloy for example, Wear resistance, high strength, good ductility, low coefficient of thermal expansion, etc.
  • the present invention provides the following high strength and low thermal expansion alloys.
  • C 0.1% to 0.4%
  • Si 0.1% to 2.0%
  • Mn more than 0% to 2.0%
  • Ni 25% to 40%
  • % V: 0.5% to 3.0%
  • Mo 0.4% to 1.9%
  • Cr 0% to 3.0%
  • Co 0% to 3.0%
  • B 0% to 0.05%
  • Ca 0% to 0.05%
  • Mg 0% to 0.05%
  • Al 0% to 1.5%
  • Ti 0% or more 1.5% or less
  • Nb 0% to 1.5%
  • Zr 0% to 1.5%
  • Hf 0% to 1.5%
  • Ta 0% to 1.5%
  • W 0% to 1.5%
  • Cu 0% to 1.5%
  • O 0% to 0.005%
  • N 0% to 0.03%
  • the high-strength, low-thermal-expansion alloy according to (1) wherein a ratio of the number of the (Mo, V) C-based composite carbide is 50% or more.
  • the amounts of Mo, V and Cr contained in the alloy are [Mo], [V] and [Cr], respectively, the value of ([Mo] + [V]) / [Cr] is 1.2 or more.
  • Co more than 0%, including 3.0% or less, Any one of (1) to (3), wherein [Co] + [Ni] is not less than 35% and not more than 40% when the amounts of Co and Ni contained in the alloy are [Co] and [Ni], respectively.
  • B more than 0% 0.05% or less
  • Ca more than 0% 0.05% or less
  • Mg more than 0% 0.05% or less
  • the high-strength low thermal expansion alloy according to any one of (1) to (4).
  • (11) The high strength low thermal expansion alloy according to any one of (1) to (10), wherein an average linear thermal expansion coefficient at 25 ° C. to 100 ° C. is 6.5 ⁇ 10 ⁇ 6 / ° C. or less.
  • an alloy having characteristics necessary for a high-strength low thermal expansion alloy for example, wear resistance, high strength, good ductility, low thermal expansion coefficient, etc.
  • An alloy is provided that can be used in a wide range of conditions for heat treatment.
  • the alloy of the present invention is useful as a high-strength, low-thermal expansion alloy used in precision machine parts, molds, etc. that may increase in temperature during use, although it is desired to avoid dimensional and shape changes due to thermal expansion. .
  • FIG. 1 shows an example of a curve with the horizontal axis indicating the aging temperature and the vertical axis indicating the Vickers hardness when the heating time is fixed at 3 hours and the heating temperature is changed between 625 to 675 ° C.
  • FIG. FIG. 2 shows a curve in which the horizontal axis is the aging temperature and the vertical axis is the Vickers hardness when the heating temperature is fixed at 650 ° C. and the heating time is changed between 30 minutes and 5 hours. It is a conceptual diagram which shows an example.
  • C 0.1% or more and 0.4% or less C is an essential element of the alloy of the present invention.
  • C is effective for strengthening solid solution, precipitation hardening due to carbide formation, and strengthening thereof. From the viewpoint of effectively exhibiting such C effects, the C content is adjusted to 0.1% or more, preferably 0.13% or more, and more preferably 0.15% or more. On the other hand, when the content of C is excessive, ductility is lowered and the linear thermal expansion coefficient is increased. Therefore, the C content is adjusted to 0.4% or less, preferably 0.38% or less, and more preferably 0.36% or less.
  • Si 0.1% or more and 2.0% or less Si is an essential element of the alloy of the present invention. Si is effective for strengthening solid solution. From the viewpoint of effectively exhibiting the effect of Si, the Si content is adjusted to 0.1% or more, preferably 0.2% or more, and more preferably 0.3% or more. On the other hand, if the Si content is excessive, the linear thermal expansion coefficient increases. Accordingly, the Si content is adjusted to 2.0% or less, preferably 1.7% or less, and more preferably 1.3% or less.
  • Mn more than 0% and not more than 2.0% Mn is an essential element of the alloy of the present invention. Mn acts as a deoxidizer and is effective for strengthening solid solution. From the viewpoint of effectively exhibiting such an effect of Mn, the content of Mn is adjusted to more than 0%, preferably 0.1% or more, and more preferably 0.2% or more. On the other hand, if the Mn content is excessive, the linear thermal expansion coefficient increases. Therefore, the Mn content is adjusted to 2.0% or less, preferably 1.8% or less, and more preferably 1.3% or less.
  • Ni 25% or more and 40% or less
  • Ni is an essential element of the alloy of the present invention.
  • Ni is effective for realizing a low linear thermal expansion coefficient. From the viewpoint of effectively exhibiting such an effect of Ni, the Ni content is adjusted to 25% or more, preferably 30% or more, and more preferably 34% or more. On the other hand, if the Ni content is excessive, it is difficult to achieve a low linear thermal expansion coefficient, and the alloy cost increases. Therefore, the Ni content is adjusted to 40% or less, preferably 39% or less, and more preferably 38% or less.
  • V 0.5% to 3.0%
  • V is an essential element of the alloy of the present invention.
  • V is effective for precipitation hardening due to carbide formation and its strengthening, and is effective for avoiding ductile deterioration through suppressing coarsening of carbides in crystal grains and promoting fine precipitation of carbides in crystal grains.
  • the V content is adjusted to 0.5% or more, preferably 0.6% or more, and more preferably 0.7% or more.
  • the content of V is adjusted to 3.0% or less, preferably 2.8% or less, and more preferably 2.6% or less.
  • Mo 0.4% or more and 1.9% or less Mo is an essential element of the alloy of the present invention. Mo is effective for precipitation hardening by carbide formation and its strengthening, and is effective for preventing ductility deterioration through suppressing coarsening of carbides in crystal grains and promoting fine precipitation of carbides in crystal grains. From the viewpoint of effectively exhibiting such an effect of Mo, the Mo content is adjusted to 0.4% or more, preferably 0.5% or more, and more preferably 0.7% or more. On the other hand, when the content of Mo is excessive, the above effect is saturated, an increase in the effect commensurate with the increase in content cannot be obtained, and the linear thermal expansion coefficient increases. Therefore, the Mo content is adjusted to 1.9% or less, preferably 1.7% or less, and more preferably 1.5% or less.
  • the alloy of the present invention contains the above essential elements, and the balance consists of Fe and unavoidable impurities, but can contain one or more of the following optional elements and impurities as necessary.
  • Cr 0% to 3.0% Cr is an optional element of the alloy of the present invention. Cr is effective for strengthening solid solution. When it is desired to effectively exhibit such an effect of Cr, the Cr content is adjusted to more than 0%, preferably 0.1% or more, more preferably 0.3% or more. On the other hand, when the content of Cr is excessive, the formation of coarse carbides decreases the strength and ductility, and increases the linear thermal expansion coefficient. Therefore, the Cr content is adjusted to 3.0% or less, preferably 2.5% or less, and more preferably 2.0% or less.
  • the value of ([Mo] + [V]) / [Cr] is preferably 1.2 or more.
  • the value of ([Mo] + [V]) / [Cr] is adjusted to 1.2 or more, preferably 1.3 or more, and more preferably 1.5 or more.
  • the upper limit of the value of ([Mo] + [V]) / [Cr] is not particularly limited, but is preferably 8.0 or less, more preferably 6.0 or less.
  • Co 0% to 3.0%
  • Co is an optional element of the alloy of the present invention.
  • Co has the same effect as Ni and is effective in stabilizing the linear thermal expansion coefficient due to an increase in the Curie point.
  • the Co content is adjusted to more than 0%, preferably 0.1% or more, and more preferably 0.3% or more.
  • the Co content is adjusted to 3.0 or less, preferably 2.8 or less, and more preferably 2.5% or less.
  • [Co] + [Ni] is preferably 35% or more and 40% or less when the amount of Co and Ni contained in the alloy of the present invention is [Co] and [Ni], respectively.
  • [Co] + [Ni] is less than 35%, it is difficult to realize a low linear thermal expansion coefficient. Therefore, [Co] + [Ni] is adjusted to preferably 35% or more, more preferably 36% or more, and still more preferably 37% or more.
  • [Co] + [Ni] is 35% or more, a low linear thermal expansion coefficient can be realized.
  • [Co] + [Ni] exceeds 40%, it becomes difficult to realize a low coefficient of linear thermal expansion, and the alloy cost increases. Therefore, [Co] + [Ni] is adjusted to preferably 40% or less, more preferably 39.5% or less, and still more preferably 39% or less.
  • B 0% to 0.05%
  • B is an optional element of the alloy of the present invention.
  • B is effective for improving hot workability by strengthening grain boundaries and strengthening resistance to grain boundary oxidation.
  • the B content is adjusted to more than 0%, preferably 0.001% or more, more preferably 0.002% or more.
  • the B content is adjusted to 0.05% or less, preferably 0.03% or less, and more preferably 0.01% or less.
  • Ca 0% or more and 0.05% or less
  • Ca is an optional element of the alloy of the present invention.
  • Ca is effective in improving hot workability by S fixation.
  • the Ca content is adjusted to more than 0%, preferably 0.005% or more, and more preferably 0.01% or more.
  • the Ca content is adjusted to 0.05% or less, preferably 0.04% or less, and more preferably 0.03% or less.
  • Mg 0% or more and 0.05% or less
  • Mg is an optional element of the alloy of the present invention.
  • Mg is effective in improving hot workability by S fixation.
  • the content of Mg is adjusted to more than 0%, preferably 0.01% or more, more preferably 0.015% or more.
  • the Mg content is adjusted to 0.05% or less, preferably 0.045% or less, and more preferably% 0.04 or less.
  • Al 0% to 1.5%
  • Al is an optional element of the alloy of the present invention.
  • Al is effective for removal of oxide inclusions due to the deoxidation effect, strengthening of solid solution, precipitation hardening, and strengthening thereof.
  • the Al content is adjusted to more than 0%, preferably 0.005% or more, and more preferably 0.01% or more.
  • the Al content is adjusted to 1.5% or less, preferably 1.3% or less, and more preferably 1.0% or less.
  • Ti 0% to 1.5%
  • Ti is an optional element of the alloy of the present invention. Ti is effective for precipitation hardening and strengthening thereof, and can be used as an alternative element for V or Mo.
  • the Ti content is adjusted to more than 0%, preferably 0.001% or more, and more preferably 0.005% or more.
  • the Ti content is adjusted to 1.5% or less, preferably 1.3% or less, and more preferably 1.0% or less.
  • Nb 0% to 1.5%
  • Nb is an optional element of the alloy of the present invention.
  • Nb is effective for precipitation hardening and strengthening thereof, and can be used as an alternative element for V or Mo.
  • the content of Nb is adjusted to more than 0%, preferably 0.01% or more, more preferably 0.02% or more.
  • the Nb content is adjusted to 1.5% or less, preferably 1.3% or less, and more preferably 1.0% or less.
  • Zr 0% to 1.5%
  • Zr is an optional element of the alloy of the present invention.
  • Zr is effective for precipitation hardening and strengthening thereof, and can be used as an alternative element for V or Mo.
  • the Zr content is adjusted to be more than 0%, preferably 0.01% or more, more preferably 0.02% or more.
  • the Zr content is adjusted to 1.5% or less, preferably 1.3% or less, and more preferably 1.0% or less.
  • Hf 0% to 1.5%
  • Hf is an optional element of the alloy of the present invention.
  • Hf is effective for precipitation hardening and strengthening thereof, and can be used as an alternative element for V or Mo.
  • the content of Hf is adjusted to more than 0%, preferably 0.01% or more, more preferably 0.02% or more.
  • the content of Hf is adjusted to 1.5% or less, preferably 1.4% or less, and more preferably 1.3% or less.
  • Ta 0% to 1.5% Ta is an optional element of the alloy of the present invention. Ta is effective for precipitation hardening and strengthening thereof, and can be used as an alternative element for V or Mo. When it is desired to effectively exhibit such an effect of Ta, the content of Ta is adjusted to more than 0%, preferably 0.01% or more, more preferably 0.02% or more. On the other hand, when the content of Ta is excessive, a decrease in age hardening ability, a decrease in ductility, an increase in thermal expansion coefficient, and an increase in alloy cost occur. Therefore, the Ta content is adjusted to 1.5% or less, preferably 1.4% or less, and more preferably 1.3% or less.
  • W 0% to 1.5%
  • W is an optional element of the alloy of the present invention.
  • W is effective for precipitation hardening and strengthening thereof, and can be used as an alternative element for V or Mo.
  • the W content is adjusted to more than 0%, preferably 0.01% or more, more preferably 0.02% or more.
  • the W content is adjusted to 1.5% or less, preferably 1.4% or less, and more preferably 1.3% or less.
  • Cu 0% to 1.5%
  • Cu is an optional element of the alloy of the present invention.
  • Cu is effective for precipitation hardening and its strengthening by forming Cu particles and raises the Curie point.
  • the Cu content is adjusted to more than 0%, preferably 0.01% or more, more preferably 0.02% or more.
  • the Cu content is adjusted to 1.5% or less, preferably 1.3% or less, and more preferably 1.0% or less.
  • O 0% or more and 0.005% or less
  • O is an impurity of the alloy of the present invention. O reduces ductility due to oxide formation. Therefore, the content of O is adjusted to 0.005% or less, preferably 0.003% or less, and more preferably 0.001% or less.
  • N is an optional element of the alloy of the present invention.
  • N has the same effects as C, such as solid solution strengthening.
  • the N content is adjusted to more than 0%, preferably 0.01% or more.
  • the N content is adjusted to 0.03% or less, preferably 0.025% or less.
  • the alloy according to an embodiment of the present invention includes B: more than 0% and 0.05% or less, Ca: more than 0% and 0.05% or less, and Mg: more than 0% and 0.05% or less. Or 2 or more types are included.
  • An alloy according to another embodiment of the present invention includes Al: more than 0% and 1.5% or less, Ti: more than 0% and 1.5% or less, Nb: more than 0% and 1.5% or less, Zr: more than 0% 1.5% or less, Hf: more than 0% and 1.5% or less, Ta: more than 0% and 1.5% or less, W: more than 0% and 1.5% or less, and Cu: more than 0% and 1.5% One or more of the following are included.
  • the value of ⁇ Mo ⁇ / ⁇ V ⁇ is 0.2 or more and 4.0 or less. If the value of ⁇ Mo ⁇ / ⁇ V ⁇ is less than 0.2, Mo-deficient carbides are formed, hardness and strength are reduced, and intragranular carbides are formed and grown quickly in aging heat treatment, resulting in high hardness. In addition, the temperature range of aging heat treatment that can maintain high strength is narrowed, and high hardness and high strength cannot be obtained under aging conditions in a wide temperature range.
  • the value of ⁇ Mo ⁇ / ⁇ V ⁇ is adjusted to 0.2 or more, preferably 0.3 or more, and more preferably 0.4 or more.
  • the value of ⁇ Mo ⁇ / ⁇ V ⁇ is 0.2 or more, precipitation hardening and its strengthening can be optimized.
  • the value of ⁇ Mo ⁇ / ⁇ V ⁇ exceeds 4.0, V-deficient carbides are formed, the hardness and strength are reduced, and the formation and growth of intragranular carbides occur early in the aging heat treatment.
  • the temperature range of aging heat treatment that can maintain hardness and high strength is narrowed, and high hardness and high strength cannot be obtained under aging conditions in a wide temperature range.
  • the value of ⁇ Mo ⁇ / ⁇ V ⁇ is adjusted to 4.0 or less, preferably 3.7 or less, and more preferably 3.4 or less.
  • the value of ⁇ Mo ⁇ / ⁇ V ⁇ is 4.0 or less, precipitation hardening and its strengthening can be optimized.
  • the value of ⁇ Mo ⁇ / ⁇ V ⁇ is obtained as follows. A specimen is taken from the alloy and the cross section of the specimen is polished. The composition of carbides present inside the crystal grains is analyzed using a transmission electron microscope (TEM) and an energy dispersive X-ray fluorescence analyzer (EDX). Specifically, using TEM, the microstructure of the cross section of the polished specimen is observed, and using EDX, (Mo, V) C-based composite carbide existing inside the crystal grains is identified, and (Mo , V) The amount of Mo and V contained in the C-based composite carbide is measured, and the value of ⁇ Mo ⁇ / ⁇ V ⁇ is obtained.
  • TEM transmission electron microscope
  • EDX energy dispersive X-ray fluorescence analyzer
  • the density of (Mo, V) C-based composite carbide in the crystal grains is preferably 10 pieces / ⁇ m 2 or more. If the density of the (Mo, V) C-based composite carbide in the crystal grains is less than 10 pieces / ⁇ m 2 , the precipitates are few and the strength may be reduced, but the (Mo, V) C in the crystal grains may be low. When the density of the system composite carbide is 10 pieces / ⁇ m 2 or more, precipitation hardening and its strengthening can be optimized.
  • Ratio of the number of (Mo, V) C-based composite carbides having a diameter of 150 nm or less to the total number of (Mo, V) C-based composite carbides in the crystal grains (the presence of (Mo, V) C-based composite carbides having a diameter of 150 nm or less
  • the ratio is preferably 50% or more, more preferably 70% or more, and still more preferably 90% or more.
  • the ratio of the number of (Mo, V) C-based composite carbides having a diameter of 150 nm or less to the total number of (Mo, V) C-based composite carbides in the crystal grains is less than 50%, a large number of coarse particles are formed, although there is a risk of low strength, the ratio of the number of (Mo, V) C composite carbide having a diameter of 150 nm or less to the total number of (Mo, V) C composite carbide in the crystal grains is 50% or more. Precipitation hardening and its strengthening can be optimized.
  • the density of the (Mo, V) C-based composite carbide in the crystal grains and the abundance of the (Mo, V) C-based composite carbide having a diameter of 150 nm or less are measured as follows using TEM and EDX.
  • TEM the microstructure of the cross section of the polished specimen is observed, and (Mo, V) C-based composite carbide existing in the crystal grains is identified by composition analysis using electron diffraction and EDX.
  • the total number of (Mo, V) C-based composite carbides is counted from the TEM bright field images observed and photographed at a magnification of 5,000 to 200,000 according to the size of the carbides present in the crystal grains.
  • the number of (Mo, V) C-based composite carbides having a diameter of 150 nm or less existing in the field image is counted. Based on the observation area of the TEM bright field image and the total number of (Mo, V) C composite carbides present in the TEM bright field image, the density of (Mo, V) C composite carbide (pieces / ⁇ m). 2 ).
  • the total number of (Mo, V) C-based composite carbides counted by the above method Based on the total number of (Mo, V) C-based composite carbides counted by the above method and the number of (Mo, V) C-based composite carbides having a diameter of 150 nm or less, the total number of (Mo, V) C-based composite carbides The ratio of the number of (Mo, V) C-based composite carbides having a diameter of 150 nm or less to the number (the presence ratio of (Mo, V) C-based composite carbides of 150 nm or less) is determined.
  • the major axis of the (Mo, V) C-based composite carbide is defined as the diameter of the (Mo, V) C-based composite carbide.
  • the Vickers hardness of the alloy of the present invention is preferably 335 or more, more preferably 354 or more.
  • the Vickers hardness of the alloy of the present invention is measured as follows.
  • the cross section of the test piece prepared from the alloy is polished, the 20-point Vickers hardness of the polished cross-section is measured, the average value of the 20-point Vickers hardness is determined, and this is used as the Vickers hardness of the alloy.
  • the Vickers hardness of each point is measured according to JIS Z 2244, using a micro hardness measuring instrument (model number: FM-700) manufactured by Futuretech with a test force of 200 gf.
  • the tensile strength (TS) of the alloy of the present invention is preferably 800 MPa or more, more preferably 920 MPa or more.
  • the elongation (EL) of the alloy of the present invention is preferably 10% or more. TS and EL are measured by carrying out a tensile test according to JIS Z 2241 on a test piece prepared from an alloy.
  • the average linear thermal expansion coefficient of the alloy of the present invention from 25 ° C. to 100 ° C. is preferably 6.5 ⁇ 10 ⁇ 6 / ° C. or less, more preferably 6.0 ⁇ 10 ⁇ 6 / ° C. or less.
  • the average linear thermal expansion coefficient at 100 ° C. to 240 ° C. of the alloy of the present invention is preferably 8.0 ⁇ 10 ⁇ 6 / ° C. or less, more preferably 7.5 ⁇ 10 ⁇ 6 / ° C. or less.
  • the linear thermal expansion coefficient is measured as follows.
  • the displacement of the test piece during the temperature rising process was measured with a Formaster tester (Formastar-EDP, manufactured by Fuji Electric Koki Co., Ltd.), the average linear thermal expansion coefficient from room temperature (25 ° C) to 100 ° C, and 100 to 240 ° C. The average coefficient of linear thermal expansion of is measured.
  • the alloy of the present invention for example, melts steel having the alloy composition of the present invention, manufactures a steel ingot or bloom by ingot forming or continuous casting, and then rounds, squares, etc. by hot forging or hot rolling. To a steel material having the desired shape. Then, it can manufacture by implementing solution treatment and aging heat processing.
  • the solution treatment can be performed at a heating temperature of 1200 ° C. and a heating time of 30 minutes.
  • the solution treatment can be omitted if rapid cooling such as water cooling is performed immediately after the steel material manufacturing process by hot forging or hot rolling.
  • the aging heat treatment can be performed, for example, at a heating temperature of 625 ° C. and a heating time of 2 hours. It is preferable to cold work the steel after the solution treatment and before the aging heat treatment.
  • the steel having the alloy composition of the present invention has a wide range of aging heat treatment conditions (temperature and holding time of the temperature) for obtaining high hardness. Therefore, when imparting hardness by aging heat treatment, it is possible to avoid a decrease in hardness due to a change in manufacturing conditions (for example, material, heating temperature, heating time, etc.), poor control, and the like. In addition, in the aging heat treatment, even when an excessive heat treatment is performed, a significant decrease in hardness due to the excessive heat treatment can be avoided. Such stability is caused by precipitation of (Mo, V) C-based composite carbide having a value of ⁇ Mo ⁇ / ⁇ V ⁇ of 0.2 or more and 4.0 or less in the crystal grains in the aging heat treatment. It is an effect.
  • Ingots were obtained by melting 50 kg of alloys having the composition shown in Table 1 (Invention Examples No. 1 to 28) and Table 2 (Comparative Examples No. 29 to 51) in a vacuum induction melting furnace (VIM). .
  • the ingot was heated at 1200 ° C. for 1 hour and forged into a steel bar having a diameter of 20 mm.
  • the steel bar was subjected to a solution treatment under the conditions of a heating temperature of 1200 ° C. and a heating time of 30 minutes.
  • [Mo], [V] and [C] represent the amounts of Mo, V and C contained in the alloy, respectively.
  • test piece No. 10 test piece defined in JIS Z2241
  • a tensile pre-strain was applied to a test piece (No. 10 test piece defined in JIS Z2241) prepared from a bar steel after solution treatment by cold working at room temperature.
  • the test piece was pulled using a tensile tester (500 kN universal tester, manufactured by Shimadzu Corporation), and a tensile pre-strain was applied to a nominal strain of 50%.
  • the test piece after the cold working was subjected to an aging heat treatment under the conditions of a heating temperature of 500 to 1000 ° C. and a heating time of 30 minutes to 24 hours.
  • the test piece after the aging heat treatment was analyzed for the composition of carbides present in the crystal grains using a transmission electron microscope (TEM) and an energy dispersive X-ray fluorescence analyzer (EDX). Analysis by TEM and EDX was performed as follows. Using TEM, the microstructure of the cross section of the polished specimen is observed, and using EDX, (Mo, V) C-based composite carbide existing in the crystal grains is identified, and (Mo, V) C-based is identified. The amount of Mo and V contained in the composite carbide was measured, and the value of ⁇ Mo ⁇ / ⁇ V ⁇ was determined. The results are shown in Table 3 (Invention Examples Nos. 1 to 28) and Table 4 (Comparative Examples Nos. 29 to 51). In Tables 3 and 4, ⁇ Mo ⁇ and ⁇ V ⁇ represent the amounts of Mo and V contained in the (Mo, V) C-based composite carbide, respectively.
  • TEM transmission electron microscope
  • EDX energy dispersive X-ray fluorescence analyzer
  • the density of the (Mo, V) C type complex carbide which exists in a crystal grain was analyzed using TEM and EDX. Analysis by TEM and EDX was performed as follows. Using TEM, the microstructure of the cross section of the polished specimen was observed, and (Mo, V) C-based composite carbide existing inside the crystal grains was identified by composition analysis using electron diffraction and EDX. And the amount of Mo and V contained in the (Mo, V) C-based composite carbide was measured, and the value of ⁇ Mo ⁇ / ⁇ V ⁇ was determined. The value of ⁇ Mo ⁇ / ⁇ V ⁇ of the composite carbide targeted in the present invention is 0.2 to 4.0.
  • the total number of (Mo, V) C-based composite carbides is counted from a TEM bright field image observed and photographed at a magnification of 5,000 to 200,000 according to the size of carbides present in the crystal grains.
  • the number of (Mo, V) C-based composite carbides having a diameter of 150 nm or less present in the TEM bright field image was counted.
  • the density of (Mo, V) C composite carbide (pieces / ⁇ m). 2 ) was obtained.
  • the total number of (Mo, V) C-based composite carbides counted by the above method and the number of (Mo, V) C-based composite carbides having a diameter of 150 nm or less, the total number of (Mo, V) C-based composite carbides The ratio of the number of (Mo, V) C-based composite carbide having a diameter of 150 nm or less to the number (the presence ratio of (Mo, V) C-based composite carbide having a diameter of 150 nm or less) was determined.
  • the major axis of the (Mo, V) C-based composite carbide was defined as the diameter of the (Mo, V) C-based composite carbide.
  • a compression pre-strain was applied by cold working at room temperature to a cylindrical test piece having a diameter of 14 mm and a height of 21 mm produced from a bar steel after solution treatment. Specifically, the test piece was compressed by a compression tester (2000 kN universal tester, manufactured by Shimadzu Corporation), and a compression prestrain was applied to a nominal strain of 50%. The test piece after the cold working was subjected to an aging heat treatment under the conditions of a heating temperature of 625 to 675 ° C. and a heating time of 30 minutes to 5 hours.
  • the cross section of the test piece after the aging heat treatment was polished, the 20-point Vickers hardness of the polished cross-section was measured, and the average value of the 20-point Vickers hardness was determined.
  • Each steel material was subjected to aging heat treatment under the conditions of a heating temperature of 625 to 675 ° C. and a heating time of 30 minutes to 5 hours, and the hardness of the steel with the highest average value of the 20-point Vickers hardness was determined for each steel material.
  • Each “Vickers hardness after aging heat treatment” was used. Vickers hardness was measured in accordance with JIS Z 2244, using a Microhardness measuring instrument (model number: FM-700) manufactured by Futuretech with a test force of 200 gf.
  • a case where the Vickers hardness after aging heat treatment is 354 or more is “A: very good wear resistance”, a case where it is less than 354 and 335 or more is “B: good wear resistance” is a case where it is less than 335.
  • F Abrasion resistance is poor ”.
  • Table 5 Invention Examples Nos. 1 to 28
  • Table 6 Comparative Examples Nos. 29 to 51.
  • FIG. 1 shows a curve in which the horizontal axis is the aging temperature and the vertical axis is the Vickers hardness when the aging heat treatment is performed with the heating time fixed at 3 hours and the heating temperature varied between 625 and 675 ° C.
  • the temperature range in which a Vickers hardness of 95% or more of the maximum Vickers hardness (MAX3hr) can be secured is 40 ° C.
  • the horizontal axis represents the aging temperature and the vertical axis represents the Vickers hardness. It is an example of a curve. In this curve, the time range in which 95% or more of the maximum Vickers hardness (MAX 650 ° C.) can be secured is 4.1 hours.
  • the displacement of the test piece during the temperature rising process was measured with a Formaster tester (Formastar-EDP, manufactured by Fuji Electric Koki Co., Ltd.), the average linear thermal expansion coefficient from room temperature (25 ° C) to 100 ° C, and 100 to 240 ° C.
  • the average linear thermal expansion coefficient of was measured.
  • a case where the average linear thermal expansion coefficient at 25 ° C. to 100 ° C. is 6.0 ⁇ 10 ⁇ 6 / ° C. or less is evaluated as “A: the linear thermal expansion property is extremely low”, and 6.0 ⁇ 10 ⁇ 6 / ° C.
  • the case where the temperature is 6.5 ⁇ 10 ⁇ 6 / ° C.
  • comparative example No. 47 and no. No. 48 was not subjected to various evaluations because Ca and B were excessive, so that hot workability was poor, and many cracks were generated during forging, so that a test specimen for evaluation could not be produced.
  • Condition a satisfying the alloy composition of the present invention
  • Condition b (Mo, V) C-based composite carbide exists inside the crystal grains.
  • Condition c The value of ([Mo] +2.8 [V]) / [C] is 9.6 or more and 21.7 or less
  • Condition d The value of ⁇ Mo ⁇ / ⁇ V ⁇ is 0.2 or more and 4 0.0 or less
  • Condition e (Mo, V) C-based composite carbide has a density of 10 pieces / ⁇ m 2 or more in crystal grains and has a diameter of 150 nm or less (Mo, V) with respect to the total number of (Mo, V) C-based composite carbides.
  • V The ratio of the number of C-based composite carbides is 50% or more.
  • Condition f When the Cr content is more than 0%, the value of ([Mo] + [V]) / [Cr] is 1.2 or more.
  • Condition g When the content of Co is more than 0%, [Co] + [Ni] is 35% or more and 40% or less. All the characteristics required as a high-strength low thermal expansion alloy were rated A, that is, it had excellent wear resistance, high strength, good ductility and a low thermal expansion coefficient. Invention Example No. 1-No. No. 24 was excellent in aging stability (thermal aging stability and aging stability over time).
  • Invention Example No. 25-No. No. 28 satisfies all the conditions a to d and is generally excellent in wear resistance, high strength, good ductility, low thermal expansion coefficient and aging stability (thermal aging stability and aging stability over time). There is a B evaluation that does not satisfy any one of the conditions e to g and is slightly inferior to the A evaluation.
  • Comparative Example No. 29-No. No. 51 does not satisfy any one or more of conditions a to d, and is at least one of wear resistance, strength, ductility, coefficient of thermal expansion, and aging stability (thermal aging stability and aging stability over time)
  • the species was F rated and lacked the necessary properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本発明は、高強度低熱膨張合金として必要な特性を有する合金であって、合金の製造時、所望の硬度を得るための熱処理に広範囲の条件を使用可能な合金を提供することを目的し、かかる目的を達成するために、所定の合金組成と、(Mo,V)C系複合炭化物が内部に存在する結晶粒とを有する高強度低熱膨張合金であって、前記合金に含まれるMo、V及びCの量をそれぞれ[Mo]、[V]及び[C]としたとき、([Mo]+2.8[V])/[C]の値が9.6以上21.7以下であり、前記(Mo,V)C系複合炭化物に含まれるMo及びVの量をそれぞれ{Mo}及び{V}としたとき、{Mo}/{V}の値が0.2以上4.0以下である、前記高強度低熱膨張合金を提供する。

Description

高強度低熱膨張合金 関連出願の相互参照
 本出願は、2017年4月19日に出願された日本出願である特願2017-083018に基づく優先権を主張するものであり、それらの開示内容全体は、参照により本明細書に組み込まれる。
 本発明は、使用中に昇温する可能性のある精密機械部品、金型等に使用される高強度低熱膨張合金に関する。
 従来、種々の高強度低熱膨張合金が知られている。例えば、特許文献1(特開平7-228947号公報)には、重量比にして、C:0.1~0.4%、Si:0.2~1.5%、Mn:0.1~1.5%、Ni:33~42%、Co:5.0%以下、Cr:0.75~3.0%、V:0.2~3.0%、B:0.003%以下、O:0.003%以下、Al:0.1%以下、Mg:0.1%以下、Ti:0.1%以下、Ca:0.1%以下を含有し、残部がFeおよび不可避不純物からなり、かつ、1.0%≦V+Cr≦5.0%の関係を有することを特徴とする高強度低熱膨張合金が開示されている。
 また、特許文献2(特開2002-256395号公報)には、質量%で、C:0.1~0.4%、V:0.5%超~3.0%、Ni:25~50%、を含有し、2≦V/C≦9を満たし、残部Fe及び不可避的不純物からなることを特徴とする捻回特性に優れた高強度低熱膨張合金が開示されている。特許文献2には、高強度低熱膨張合金が、Al,Mo,Ti,Nb,Ta,Zr,Hf,W,Cu、のうちの1種又は2種以上を合計で5%以下含有してもよいことが開示されている。
 また、特許文献3(特開2003-82439号公報)には、重量%で、C:0.20~0.40%、Si:≦0.8%、Mn:≦1.0%、P:≦0.050%、S:≦0.015%、Cu:≦1.0%、Ni:35~40%、Cr:≦0.5%、Mo:1.5~6.0%、V:0.05~1.0%、O:≦0.015%、N:≦0.03%であって、Mo/V≧1.0、且つ、(0.3Mo+V)≧4Cであり、残部Fe及び不可避的不純物から成る組成を有し、20~230℃までの及び230~290℃までの平均線熱膨張係数が、それぞれ3.7×10-6以下,10.8×10-6以下であることを特徴とする強度,捻回特性に優れたインバー合金線が開示されている。
特開平7-228947号公報 特開2002-256395号公報 特開2003-82439号公報
 特許文献1~3に開示されるような従来の高強度低熱膨張合金では、時効熱処理により析出硬化させて高硬度化を実現するが、時効熱処理の最適な条件(温度及び該温度の保持時間)の範囲、例えば、最大硬さを得るために最適な条件の範囲が狭いため、所望の硬さを得ることが難しい。
 そこで、本発明は、高強度低熱膨張合金として必要な特性(例えば、耐摩耗性、高強度、良好な延性、低い熱膨張率等)を有する合金であって、合金の製造時、所望の硬度を得るための熱処理に広範囲の条件を使用可能な合金を提供することを目的とする。
 本発明者らは、合金の組成、結晶粒内に存在する炭化物の組成、結晶粒内に存在する炭化物の分散状態等を適切に制御することにより、高強度低熱膨張合金として必要な特性(例えば、耐摩耗性、高強度、良好な延性、低い熱膨張率等)を有する合金であって、合金の製造時、所望の硬度を得るための熱処理に広範囲の条件を使用可能な合金を実現できることを見出し、本発明を完成するに至った。
 本発明は、以下の高強度低熱膨張合金を提供する。
(1)質量%で、C:0.1%以上0.4%以下、Si:0.1%以上2.0%以下、Mn:0%超2.0%以下、Ni:25%以上40%以下、V:0.5%以上3.0%以下、Mo:0.4%以上1.9%以下、Cr:0%以上3.0%以下、Co:0%以上3.0%以下、B:0%以上0.05%以下、Ca:0%以上0.05%以下、Mg:0%以上0.05%以下、Al:0%以上1.5%以下、Ti:0%以上1.5%以下、Nb:0%以上1.5%以下、Zr:0%以上1.5%以下、Hf:0%以上1.5%以下、Ta:0%以上1.5%以下、W:0%以上1.5%以下、Cu:0%以上1.5%以下、O:0%以上0.005%以下、及びN:0%以上0.03%以下を含み、残部がFe及び不可避的不純物からなる高強度低熱膨張合金であって、
 前記合金の結晶粒内には、Mo及びVの両方を含む(Mo,V)C系複合炭化物が存在し、
 前記合金に含まれるMo、V及びCの量をそれぞれ[Mo]、[V]及び[C]としたとき、([Mo]+2.8[V])/[C]の値が9.6以上21.7以下であり、
 前記(Mo,V)C系複合炭化物に含まれるMo及びVの量をそれぞれ{Mo}及び{V}としたとき、{Mo}/{V}の値が0.2以上4.0以下である、前記高強度低熱膨張合金。
(2)前記結晶粒において、前記(Mo,V)C系複合炭化物の密度が10個/μm以上であり、かつ、前記(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の前記(Mo,V)C系複合炭化物の個数の割合が50%以上である、(1)に記載の高強度低熱膨張合金。
(3)質量%で、Cr:0%超3.0%以下を含み、
 前記合金に含まれるMo、V及びCrの量をそれぞれ[Mo]、[V]及び[Cr]としたとき、([Mo]+[V])/[Cr]の値が1.2以上である、(1)又は(2)に記載の高強度低熱膨張合金。
(4)質量%で、Co:0%超3.0%以下を含み、
 前記合金に含まれるCo及びNiの量をそれぞれ[Co]及び[Ni]としたとき、[Co]+[Ni]が35%以上40%以下である、(1)~(3)のいずれかに記載の高強度低熱膨張合金。
(5)質量%で、B:0%超0.05%以下、Ca:0%超0.05%以下、及び、Mg:0%超0.05%以下のうちの1種又は2種以上を含む、(1)~(4)のいずれかに記載の高強度低熱膨張合金。
(6)質量%で、Al:0%超1.5%以下、Ti:0%超1.5%以下、Nb:0%超1.5%以下、Zr:0%超1.5%以下、Hf:0%超1.5%以下、Ta:0%超1.5%以下、W:0%超1.5%以下、及び、Cu:0%超1.5%以下のうちの1種又は2種以上を含む、(1)~(5)のいずれかに記載の高強度低熱膨張合金。
(7)質量%で、N:0%超0.03%以下を含む、(1)~(6)のいずれかに記載の高強度低熱膨張合金。
(8)ビッカース硬さが335以上である、(1)~(7)のいずれかに記載の高強度低熱膨張合金。
(9)引張強さが800MPa以上である、(1)~(8)のいずれかに記載の高強度低熱膨張合金。
(10)伸びが10%以上である、(1)~(9)のいずれかに記載の高強度低熱膨張合金。
(11)25℃~100℃の平均線熱膨張係数が6.5×10-6/℃以下である、(1)~(10)のいずれかに記載の高強度低熱膨張合金。
(12)100℃~240℃の平均線熱膨張係数が8.0×10-6/℃以下である、(1)~(11)のいずれかに記載の高強度低熱膨張合金。
 本発明により、高強度低熱膨張合金として必要な特性(例えば、耐摩耗性、高強度、良好な延性、低い熱膨張率等)を有する合金であって、合金の製造時、所望の硬度を得るための熱処理に広範囲の条件を使用可能な合金が提供される。本発明の合金は、熱膨張による寸法及び形状変化の回避が望まれるが、使用中に昇温する可能性のある精密機械部品、金型等に使用される高強度低熱膨張合金として有用である。
図1は、加熱時間を3時間に固定し、加熱温度を625~675℃の間で変化させて時効熱処理を行った場合の、横軸を時効温度、縦軸をビッカース硬さとする曲線の一例を示す概念図である。 図2は、加熱温度を650℃に固定し、加熱時間を30分~5時間の間で変化させて時効熱処理を行った場合の、横軸を時効温度、縦軸をビッカース硬さとする曲線の一例を示す概念図である。
<合金組成>
 以下、本発明の合金の組成について説明する。なお、本明細書において、「%」は別段規定される場合を除き、質量%を意味する。
C:0.1%以上0.4%以下
 Cは、本発明の合金の必須元素である。Cは、固溶の強化、並びに、炭化物形成による析出硬化及びその強化に有効である。このようなCの効果を有効に発揮させる観点から、Cの含有量は、0.1%以上、好ましくは0.13%以上、さらに好ましくは0.15%以上に調整される。一方、Cの含有量が過剰であると、延性が低下するとともに、線熱膨張係数が増大する。したがって、Cの含有量は、0.4%以下、好ましくは0.38%以下、さらに好ましくは0.36%以下に調整される。
Si:0.1%以上2.0%以下
 Siは、本発明の合金の必須元素である。Siは、固溶の強化に有効である。このようなSiの効果を有効に発揮させる観点から、Siの含有量は、0.1%以上、好ましくは0.2%以上、さらに好ましくは0.3%以上に調整される。一方、Siの含有量が過剰であると、線熱膨張係数が増大する。したがって、Siの含有量は、2.0%以下、好ましくは1.7%以下、さらに好ましくは1.3%以下に調整される。
Mn:0%超2.0%以下
 Mnは、本発明の合金の必須元素である。Mnは、脱酸剤として作用するとともに、固溶の強化に有効である。このようなMnの効果を有効に発揮させる観点から、Mnの含有量は、0%超、好ましくは0.1%以上、さらに好ましくは0.2%以上に調整される。一方、Mnの含有量が過剰であると、線熱膨張係数が増大する。したがって、Mnの含有量は、2.0%以下、好ましくは1.8%以下、さらに好ましくは1.3%以下に調整される。
Ni:25%以上40%以下
 Niは、本発明の合金の必須元素である。Niは、低い線熱膨張係数の実現に有効である。このようなNiの効果を有効に発揮させる観点から、Niの含有量は、25%以上、好ましくは30%以上、さらに好ましくは34%以上に調整される。一方、Niの含有量が過剰であると、低い線熱膨張係数の実現が困難となるとともに、合金コストが増加する。したがって、Niの含有量は、40%以下、好ましくは39%以下、さらに好ましくは38%以下に調整される。
V:0.5%以上3.0%以下
 Vは、本発明の合金の必須元素である。Vは、炭化物形成による析出硬化及びその強化に有効であるとともに、結晶粒内炭化物の粗大化抑制及び結晶粒内炭化物の微細析出促進を通じた延性劣化回避に有効である。このようなVの効果を有効に発揮させる観点から、Vの含有量は、0.5%以上、好ましくは0.6%以上、さらに好ましくは0.7%以上に調整される。一方、Vの含有量が過剰であると、上記効果が飽和し、含有量の増加に見合う効果の増加が得られないとともに、線熱膨張係数が増大する。したがって、Vの含有量は、3.0%以下、好ましくは2.8%以下、さらに好ましくは2.6%以下に調整される。
Mo:0.4%以上1.9%以下
 Moは、本発明の合金の必須元素である。Moは、炭化物形成による析出硬化及びその強化に有効であるとともに、結晶粒内炭化物の粗大化抑制及び結晶粒内炭化物の微細析出促進を通じた延性劣化回避に有効である。このようなMoの効果を有効に発揮させる観点から、Moの含有量は、0.4%以上、好ましくは0.5%以上、さらに好ましくは0.7%以上に調整される。一方、Moの含有量が過剰であると、上記効果が飽和し、含有量の増加に見合う効果の増加が得られないとともに、線熱膨張係数が増大する。したがって、Moの含有量は、1.9%以下、好ましくは1.7%以下、さらに好ましくは1.5%以下に調整される。
([Mo]+2.8[V])/[C]の値
 本発明の合金に含まれるMo、V及びCの量をそれぞれ[Mo]、[V]及び[C]としたとき、([Mo]+2.8[V])/[C]の値は、9.6以上21.7以下である。([Mo]+2.8[V])/[C]の値が9.6未満であると、Cの含有量が相対的に過剰となり、延性が低下する。したがって、([Mo]+2.8[V])/[C]の値は、9.6以上、好ましくは10.0以上、さらに好ましくは10.8以上に調整される。([Mo]+2.8[V])/[C]の値が9.6以上であると、炭化物形成による析出硬化及びその強化を実現できるとともに、延性を最適化できる。一方、([Mo]+2.8[V])/[C]の値が21.7を超えると、Vの含有量及びMoの含有量が相対的に過剰となり、V及びMoの効果が飽和し、含有量の増加に見合う効果の増加が得られないとともに、線熱膨張係数が増大する。したがって、([Mo]+2.8[V])/[C]の値は、21.7以下、好ましくは21.3以下、さらに好ましくは21.0以下に調整される。
 本発明の合金は、上記必須元素を含み、残部がFe及び不可避的不純物からなるが、必要に応じて、下記任意元素及び不純物のうちの1種又は2種以上を含むことができる。
Cr:0%以上3.0%以下
 Crは、本発明の合金の任意元素である。Crは、固溶の強化に有効である。このようなCrの効果を有効に発揮させることが望まれる場合、Crの含有量は、0%超、好ましくは0.1%以上、さらに好ましくは0.3%以上に調整される。一方、Crの含有量が過剰であると、粗大な炭化物の形成により強度及び延性が低下するとともに、線熱膨張係数が増大する。したがって、Crの含有量は、3.0%以下、好ましくは2.5%以下、さらに好ましくは2.0%以下に調整される。
 本発明の合金に含まれるMo、V及びCrの量をそれぞれ[Mo]、[V]及び[Cr]としたとき、([Mo]+[V])/[Cr]の値は、好ましくは1.2以上である。([Mo]+[V])/[Cr]の値が1.2未満であると、Crの含有量が相対的に過剰となり、粗大な炭化物の形成により析出硬化が阻害されるとともに、延性が低下する。したがって、([Mo]+[V])/[Cr]の値は、1.2以上、好ましくは1.3以上、さらに好ましくは1.5以上に調整される。([Mo]+[V])/[Cr]の値の上限値は特に限定されないが、好ましくは8.0以下、さらに好ましくは6.0以下である。
Co:0%以上3.0%以下
 Coは、本発明の合金の任意元素である。Coは、Niと同様の効果を有するとともに、キュリー点の上昇による線熱膨張係数の安定化に有効である。このようなCoの効果を有効に発揮させることが望まれる場合、Coの含有量は、0%超、好ましくは0.1%以上、さらに好ましくは0.3%以上に調整される。一方、Coの含有量が過剰であると、合金コストが増加するとともに、線熱膨張係数が増大する。したがって、Coの含有量は、3.0以下、好ましくは2.8以下、さらに好ましくは2.5%以下に調整される。
 本発明の合金に含まれるCo及びNiの量をそれぞれ[Co]及び[Ni]としたとき、[Co]+[Ni]は、好ましくは35%以上40%以下である。[Co]+[Ni]が35%未満であると、低い線熱膨張係数の実現が困難となる。したがって、[Co]+[Ni]は、好ましくは35%以上、さらに好ましくは36%以上、さらに一層好ましくは37%以上に調整される。[Co]+[Ni]が35%以上であると、低い線熱膨張係数を実現できる。一方、[Co]+[Ni]が40%を超えると、低い線熱膨張係数の実現が困難となるとともに、合金コストが増加する。したがって、[Co]+[Ni]は、好ましくは40%以下、さらに好ましくは39.5%以下、さらに一層好ましくは39%以下に調整される。
B:0%以上0.05%以下
 Bは、本発明の合金の任意元素である。Bは、粒界強化による熱間加工性の向上及び耐粒界酸化性の強化に有効である。このようなBの効果を有効に発揮させることが望まれる場合、Bの含有量は、0%超、好ましくは0.001%以上、さらに好ましくは0.002%以上に調整される。一方、Bの含有量が過剰であると、熱間加工性が低下する。したがって、Bの含有量は、0.05%以下、好ましくは0.03%以下、さらに好ましくは0.01%以下に調整される。
Ca:0%以上0.05%以下
 Caは、本発明の合金の任意元素である。Caは、S固定による熱間加工性の向上に有効である。このようなCaの効果を有効に発揮させることが望まれる場合、Caの含有量は、0%超、好ましくは0.005%以上、さらに好ましくは0.01%以上に調整される。一方、Caの含有量が過剰であると、熱間加工性が低下する。したがって、Caの含有量は、0.05%以下、好ましくは0.04%以下、さらに好ましくは0.03%以下に調整される。
Mg:0%以上0.05%以下
 Mgは、本発明の合金の任意元素である。Mgは、S固定による熱間加工性の向上に有効である。このようなMgの効果を有効に発揮させることが望まれる場合、Mgの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.015%以上に調整される。一方、Mgの含有量が過剰であると、熱間加工性が低下する。したがって、Mgの含有量は、0.05%以下、好ましくは0.045%以下、さらに好ましくは%0.04以下に調整される。
Al:0%以上1.5%以下
 Alは、本発明の合金の任意元素である。Alは、脱酸効果による酸化物系介在物の除去、固溶の強化、並びに、析出硬化及びその強化に有効である。このようなAlの効果を有効に発揮させることが望まれる場合、Alの含有量は、0%超、好ましくは0.005%以上、さらに好ましくは0.01%以上に調整される。一方、Alの含有量が過剰であると、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Alの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
Ti:0%以上1.5%以下
 Tiは、本発明の合金の任意元素である。Tiは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなTiの効果を有効に発揮させることが望まれる場合、Tiの含有量は、0%超、好ましくは0.001%以上、さらに好ましくは0.005%以上に調整される。一方、Tiの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Tiの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
Nb:0%以上1.5%以下
 Nbは、本発明の合金の任意元素である。Nbは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなNbの効果を有効に発揮させることが望まれる場合、Nbの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Nbの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Nbの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
Zr:0%以上1.5%以下
 Zrは、本発明の合金の任意元素である。Zrは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなZrの効果を有効に発揮させることが望まれる場合、Zrの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Zrの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Zrの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
Hf:0%以上1.5%以下
 Hfは、本発明の合金の任意元素である。Hfは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなHfの効果を有効に発揮させることが望まれる場合、Hfの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Hfの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Hfの含有量は、1.5%以下、好ましくは1.4%以下、さらに好ましくは1.3%以下に調整される。
Ta:0%以上1.5%以下
 Taは、本発明の合金の任意元素である。Taは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなTaの効果を有効に発揮させることが望まれる場合、Taの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Taの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Taの含有量は、1.5%以下、好ましくは1.4%以下、さらに好ましくは1.3%以下に調整される。
W:0%以上1.5%以下
 Wは、本発明の合金の任意元素である。Wは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなWの効果を有効に発揮させることが望まれる場合、Wの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Wの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Wの含有量は、1.5%以下、好ましくは1.4%以下、さらに好ましくは1.3%以下に調整される。
Cu:0%以上1.5%以下
 Cuは、本発明の合金の任意元素である。Cuは、Cu粒子形成により析出硬化及びその強化に有効であるとともに、キュリー点を上昇させる。このようなCuの効果を有効に発揮させることが望まれる場合、Cuの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Cuの含有量が過剰であると、熱間加工性の低下、合金コストの増加が生じる。したがって、Cuの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
O:0%以上0.005%以下
 Oは、本発明の合金の不純物である。Oは、酸化物形成により延性を低下させる。したがって、Oの含有量は、0.005%以下、好ましくは0.003%以下、さらに好ましくは0.001%以下に調整される。
N:0%以上0.03%以下
 Nは、本発明の合金の任意元素である。Nは、固溶の強化等、Cと同様の効果を有する。このようなNの効果を有効に発揮させることが望まれる場合、Nの含有量は、0%超、好ましくは0.01%以上に調整される。一方、Nの含有量が過剰であると、窒化物形成により延性が低下する。したがって、Nの含有量は、0.03%以下、好ましくは0.025%以下に調整される
 本発明の一実施形態に係る合金は、B:0%超0.05%以下、Ca:0%超0.05%以下、及び、Mg:0%超0.05%以下のうちの1種又は2種以上を含む。
 本発明の別の実施形態に係る合金は、Al:0%超1.5%以下、Ti:0%超1.5%以下、Nb:0%超1.5%以下、Zr:0%超1.5%以下、Hf:0%超1.5%以下、Ta:0%超1.5%以下、W:0%超1.5%以下、及び、Cu:0%超1.5%以下のうちの1種又は2種以上を含む。
<合金組織>
 以下、本発明の合金の組織について説明する。
 本発明の合金の結晶粒内には、Mo及びVの両方を含む(Mo,V)C系複合炭化物(以下「複合炭化物」という場合がある)が存在する。
 (Mo,V)C系複合炭化物に含まれるMo及びVの量をそれぞれ{Mo}及び{V}としたとき、{Mo}/{V}の値は0.2以上4.0以下である。{Mo}/{V}の値が0.2未満であると、Mo不足の炭化物が形成され、硬度及び強度が低下するとともに、時効熱処理において粒内炭化物の形成及び成長が早く生じ、高硬度及び高強度を維持できる時効熱処理の温度範囲が狭くなり、広い温度範囲の時効条件で高硬度及び高強度が得られない。したがって、{Mo}/{V}の値は、0.2以上、好ましくは0.3以上、さらに好ましくは0.4以上に調整される。{Mo}/{V}の値が0.2以上であると、析出硬化及びその強化を最適化できる。一方、{Mo}/{V}の値が4.0を超えると、V不足の炭化物が形成され、硬度及び強度が低下するとともに、時効熱処理において粒内炭化物の形成及び成長が早く生じ、高硬度及び高強度を維持できる時効熱処理の温度範囲が狭くなり、広い温度範囲の時効条件で高硬度及び高強度が得られない。したがって、{Mo}/{V}の値は、4.0以下、好ましくは3.7以下、さらに好ましくは3.4以下に調整される。{Mo}/{V}の値が4.0以下であると、析出硬化及びその強化を最適化できる。
 {Mo}/{V}の値は、次の通り求められる。合金から試験片を採取し、試験片の断面を研磨する。結晶粒内部に存在する炭化物の組成を、透過型電子顕微鏡(TEM)及びエネルギー分散型蛍光X線分析装置(EDX)を使用して分析する。具体的には、TEMを使用して、研磨した試験片の断面をミクロ組織観察し、EDXを使用して、結晶粒内部に存在する(Mo,V)C系複合炭化物を同定し、(Mo,V)C系複合炭化物に含まれるMo及びVの量を測定し、{Mo}/{V}の値を求める。
 結晶粒内における(Mo,V)C系複合炭化物の密度は、好ましくは10個/μm以上である。結晶粒内における(Mo,V)C系複合炭化物の密度が10個/μm未満であると、析出物が少なく、低強度になるおそれがあるが、結晶粒内における(Mo,V)C系複合炭化物の密度が10個/μm以上であると、析出硬化及びその強化を最適化できる。
 結晶粒内における(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の(Mo,V)C系複合炭化物の個数の割合(直径150nm以下の(Mo,V)C系複合炭化物の存在率)は、好ましくは50%以上、さらに好ましくは70%以上、さらに一層好ましくは90%以上である。結晶粒内における(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の(Mo,V)C系複合炭化物の個数の割合が50%未満であると、多数の粗大粒子が形成され、低強度になるおそれがあるが、結晶粒における(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の(Mo,V)C系複合炭化物の個数の割合が50%以上であると、析出硬化及びその強化を最適化できる。
 結晶粒内における(Mo,V)C系複合炭化物の密度及び直径150nm以下の(Mo,V)C系複合炭化物の存在率は、TEM及びEDXを使用して、次の通り測定される。TEMを使用して、研磨した試験片の断面をミクロ組織観察し、電子線回折及びEDXを使用した組成分析により、結晶粒内部に存在する(Mo,V)C系複合炭化物を同定する。また、結晶粒内に存在する炭化物サイズに合わせて5千~20万の倍率で観察、撮影したTEM明視野像から(Mo,V)C系複合炭化物の総個数をカウントするとともに、同TEM明視野像中に存在する直径150nm以下の(Mo,V)C系複合炭化物の個数をカウントする。TEM明視野像の観察面積と、同TEM明視野像中に存在する(Mo,V)C系複合炭化物の総個数とに基づいて、(Mo,V)C系複合炭化物の密度(個/μm)を求める。そして、上記方法でカウントした(Mo,V)C系複合炭化物の総個数及び直径150nm以下の(Mo,V)C系複合炭化物の個数に基づいて、(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の(Mo,V)C系複合炭化物の個数の割合(150nm以下の(Mo,V)C系複合炭化物の存在率)を求める。なお、(Mo,V)C系複合炭化物の長径(すなわち、(Mo,V)C系複合炭化物に外接する円の直径)を、(Mo,V)C系複合炭化物の直径とする。
<合金特性>
 本発明の合金のビッカース硬さは、好ましくは335以上、さらに好ましくは354以上である。
 本発明の合金のビッカース硬さは、次の通り測定される。合金から作製した試験片の断面を研磨し、研磨した断面の20点のビッカース硬さを測定し、20点のビッカース硬さの平均値を求め、これを合金のビッカース硬さとする。各点のビッカース硬さの測定は、JIS Z 2244に準拠し、フューチャーテック社のミクロ硬さ測定器(型番:FM-700)を使用して、試験力200gfにて実施する。
 本発明の合金の引張強さ(TS)は、好ましくは800MPa以上、さらに好ましくは920MPa以上である。本発明の合金の伸び(EL)は、好ましくは10%以上である。TS及びELは、合金から作製した試験片に対して、JIS Z 2241に従って引張試験を実施することにより測定される。
 本発明の合金の25℃~100℃の平均線熱膨張係数は、好ましくは6.5×10-6/℃以下、さらに好ましくは6.0×10-6/℃以下である。本発明の合金の100℃~240℃の平均線熱膨張係数は、好ましくは8.0×10-6/℃以下、さらに好ましくは7.5×10-6/℃以下である。線熱膨張係数の測定は、次の通り実施される。フォーマスター試験機(Formastor-EDP、富士電波工機社製)にて、昇温過程における試験片の変位を計測し、室温(25℃)~100℃の平均線熱膨張係数及び100~240℃の平均線熱膨張係数を測定する。
<合金の製造方法>
 本発明の合金は、例えば、本発明の合金組成を有する鋼を溶製し、造塊又は連続鋳造により鋼塊やブルームを製造した後、熱間鍛造又は熱間圧延にて丸棒、角材等の目的の形状を有した鋼材へ成形する。その後、溶体化処理及び時効熱処理を実施することにより製造することができる。例えば、溶体化処理は加熱温度1200℃、加熱時間30分間で実施することができる。なお、溶体化処理は、熱間鍛造又は熱間圧延での鋼材製造工程の後、即座に水冷等の急冷を行えば省略することができる。時効熱処理は、例えば、加熱温度625℃、加熱時間2時間で実施することができる。溶体化処理の後であって時効熱処理の前に、鋼材に冷間加工を施すことが好ましい。
 本発明の合金組成を有する鋼は、高硬度が得られる時効熱処理の条件(温度及び該温度の保持時間)の範囲が広い。したがって、時効熱処理により硬度付与する際、製造条件(例えば、材料、加熱温度、加熱時間等)の変更、制御不良等に起因する硬度低下を回避することができる。また、時効熱処理において、過剰な熱処理が施されても、過剰な熱処理に起因する著しい硬度低下を回避することができる。このような安定性は、時効熱処理において、{Mo}/{V}の値が0.2以上4.0以下である(Mo,V)C系複合炭化物が結晶粒内部に析出することにより生じる効果である。
 以下、実施例に基づいて、本発明をさらに詳細に説明する。
 表1(本発明例No.1~28)及び表2(比較例No.29~51)に示す成分組成を有する50kgの合金を真空誘導溶解炉(VIM)で溶製してインゴットを得た。このインゴットを1200℃で1時間加熱し、直径20mmの棒鋼に鍛伸した。この棒鋼に対して、加熱温度1200℃、加熱時間30分間の条件で溶体化処理を実施した。なお、表1及び表2中、[Mo]、[V]及び[C]は、それぞれ、合金に含まれるMo、V及びCの量を表す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[時効熱処理後の結晶粒内炭化物の評価]
 溶体化処理後の棒鋼から作製した試験片(JIS Z2241に規定される10号試験片)に対して、JIS Z 2241に準拠して、室温での冷間加工により引張予ひずみを付与した。具体的には、引張試験機(500kN万能試験機、島津製作所社製)を使用して試験片を引張り、公称ひずみ50%まで引張予ひずみを付与した。冷間加工後の試験片を、加熱温度500~1000℃、加熱時間30分間~24時間の条件で時効熱処理した。
 時効熱処理後の試験片について、結晶粒内部に存在する炭化物の組成を、透過型電子顕微鏡(TEM)及びエネルギー分散型蛍光X線分析装置(EDX)を使用して分析した。TEM及びEDXによる分析は、次の通り実施した。TEMを使用して、研磨した試験片の断面をミクロ組織観察し、EDXを使用して、結晶粒内部に存在する(Mo,V)C系複合炭化物を同定し、(Mo,V)C系複合炭化物に含まれるMo及びVの量を測定し、{Mo}/{V}の値を求めた。結果を表3(本発明例No.1~28)及び表4(比較例No.29~51)に示す。なお、表3及び表4中、{Mo}及び{V}は、それぞれ、(Mo,V)C系複合炭化物に含まれるMo及びVの量を表す。
 時効熱処理後の試験片について、結晶粒内部に存在する(Mo,V)C系複合炭化物の密度を、TEM及びEDXを使用して分析した。TEM及びEDXによる分析は、次の通り実施した。TEMを使用して、研磨した試験片の断面をミクロ組織観察し、電子線回折およびEDXを使用した組成分析により、結晶粒内部に存在する(Mo,V)C系複合炭化物を同定した。そして(Mo,V)C系複合炭化物に含まれるMo及びVの量を測定し、{Mo}/{V}の値を求めた。本発明で狙いとする複合炭化物の{Mo}/{V}の値は0.2~4.0である。分散状態の定量については、結晶粒内に存在する炭化物サイズに合わせて5千~20万の倍率で観察、撮影したTEM明視野像から(Mo,V)C系複合炭化物の総個数をカウントするとともに、同TEM明視野像中に存在する直径150nm以下の(Mo,V)C系複合炭化物の個数をカウントした。TEM明視野像の観察面積と、同TEM明視野像中に存在する(Mo,V)C系複合炭化物の総個数とに基づいて、(Mo,V)C系複合炭化物の密度(個/μm)を求めた。そして、上記方法でカウントした(Mo,V)C系複合炭化物の総個数及び直径150nm以下の(Mo,V)C系複合炭化物の個数に基づいて、(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の(Mo,V)C系複合炭化物の個数の割合(150nm以下の(Mo,V)C系複合炭化物の存在率)を求めた。なお、(Mo,V)C系複合炭化物の長径(すなわち、(Mo,V)C系複合炭化物に外接する円の直径)を、(Mo,V)C系複合炭化物の直径とした。(Mo,V)C系複合炭化物の{Mo}/{V}の値が0.2~4.0を満たすと同時に、密度が10個/μm以上、かつ、直径150nm以下の(Mo,V)C系複合炭化物の存在率が50%以上である場合を「A:狙いの複合炭化物が存在し、かつ分散状態が良好」、(Mo,V)C系複合炭化物の{Mo}/{V}の値が0.2~4.0を満たすが、密度が10個/μm未満、又は、直径150nm以下の(Mo,V)C系複合炭化物の存在率が50%未満である場合を「B:狙いの複合炭化物が存在するが、分散状態は不良」、(Mo,V)C系複合炭化物の{Mo}/{V}の値が0.2~4.0を満たさない場合を「F:複合炭化物不良」と評価した。評価Fは本発明の範囲外となる。結果を表3(本発明例No.1~28)及び表4(比較例No.29~51)に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
[時効熱処理後のビッカース硬さの評価]
 溶体化処理後の棒鋼から作製した直径14mm、高さ21mmの円筒状試験片に対して、室温での冷間加工により圧縮予ひずみを付与した。具体的には、試験片を圧縮試験機(2000kN万能試験機、島津製作所社製)により圧縮し、公称ひずみ50%まで圧縮予ひずみを付与した。冷間加工後の試験片を、加熱温度625~675℃、加熱時間30分間~5時間の条件で時効熱処理した。時効熱処理後の試験片の断面を研磨し、研磨した断面の20点のビッカース硬さを測定し、20点のビッカース硬さの平均値を求めた。各鋼材において、加熱温度625~675℃、加熱時間30分間~5時間の条件にて時効熱処理を施したものの中で、20点のビッカース硬さの平均値が最も高かったものの硬さを各鋼材それぞれの「時効熱処理後のビッカース硬さ」とした。ビッカース硬さの測定は、JIS Z 2244に準拠し、フューチャーテック社のミクロ硬さ測定器(型番:FM-700)を使用して、試験力200gfにて実施した。時効熱処理後のビッカース硬さが354以上である場合を「A:耐摩耗性がきわめて良好」、354未満335以上である場合を「B:耐摩耗性が良好」、335未満である場合を「F:耐摩耗性が不良」と評価した。結果を表5(本発明例No.1~28)及び表6(比較例No.29~51)に示す。ここでA又はBと評価された場合には以下の評価を行ったが、ここでFと評価された場合には以下の評価は行わなかった。
[熱的時効安定性の評価]
 上記と同様にして、溶体化処理後の棒鋼から作製した試験片に対して、圧縮予ひずみを付与した後、加熱時間を3時間に固定し、加熱温度を625~675℃の間で変化させて時効熱処理を行った。時効処理前と時効熱処理後の試験片の断面を研磨し、研磨した断面の20点のビッカース硬さを測定し、20点のビッカース硬さの平均値を求めた。横軸を時効温度、縦軸をビッカース硬さとする曲線を作成し(図1参照)、この曲線に基づいて、最大ビッカース硬さ(MAX3hr)の95%以上のビッカース硬さを確保できる温度範囲を求めた。最大ビッカース硬さ(MAX3hr)の95%以上のビッカース硬さを確保できる温度範囲が35℃以上である場合を「A:熱的時効安定性が良好」、35℃未満である場合を「F:熱的時効安定性が不良」と評価した。結果を表5(本発明例No.1~28)及び表6(比較例No.29~51)に示す。なお、図1は、加熱時間を3時間に固定し、加熱温度を625~675℃の間で変化させて時効熱処理を行った場合の、横軸を時効温度、縦軸をビッカース硬さとする曲線の一例であり、この曲線では、最大ビッカース硬さ(MAX3hr)の95%以上のビッカース硬さを確保できる温度範囲が40℃である。
[経時的時効安定性の評価]
 上記と同様にして、溶体化処理後の棒鋼から作製した試験片に対して、圧縮予ひずみを付与した後、加熱温度を650℃に固定し、加熱時間を30分~5時間の間で変化させて時効熱処理を行った。時効処理前と時効熱処理後の試験片の断面を研磨し、研磨した断面の20点のビッカース硬さを測定し、20点のビッカース硬さの平均値を求めた。横軸を時効温度、縦軸をビッカース硬さとする曲線を作成し(図2参照)、この曲線に基づいて、最大ビッカース硬さ(MAX650℃)の95%以上のビッカース硬さを確保できる時間範囲を求めた。最高ビッカース硬さ(MAX650℃)の95%以上のビッカース硬さを確保できる時間範囲が3.5時間以上である場合を「A:経時的時効安定性が良好」、3.5時間未満である場合を「F:経時的時効安定性が不良」と評価した。結果を表5(本発明例No.1~28)及び表6(比較例No.29~51)に示す。なお、図2は、加熱温度を650℃に固定し、加熱時間を30分~5時間の間で変化させて時効熱処理を行った場合の、横軸を時効温度、縦軸をビッカース硬さとする曲線の一例であり、この曲線では、最大ビッカース硬さ(MAX650℃)の95%以上のビッカース硬さを確保できる時間範囲が4.1時間である。
 熱的時効安定性の評価及び経時的時効安定性がともにAと評価された場合には以下の評価を行ったが、いずれかがFと評価された場合には以下の評価は行わなかった。
[時効熱処理後の引張特性の評価]
 上記と同様にして、溶体化処理後の棒鋼から作製した試験片に対して、引張予ひずみを付与した後、時効熱処理した。時効熱処理後の試験片に対して、JIS Z 2241に従って引張試験を実施し、引張強さ(TS)及び伸び(EL)を測定した。TSが920MPa以上、かつ、ELが10%以上である場合を「A:引張特性がきわめて良好」、TSが920MPa未満、800MPa以上、かつELが10%以上である場合を「B:引張特性が良好」、TSが800MPa未満、又は、ELが10%未満である場合を「F:引張特性が不良」と評価した。結果を表5(本発明例No.1~28)及び表6(比較例No.29~51)に示す。ここでA又はBと評価された場合には以下の評価を行ったが、ここでFと評価された場合には以下の評価は行わなかった。
[時効熱処理後の線熱膨張係数の評価]
 上記と同様にして、溶体化処理後の棒鋼から作製した試験片に対して、引張予ひずみを付与した後、時効熱処理を施した。時効熱処理後の試験片から直径3mm、高さ10mmの円筒状試験片(熱膨張率測定用試験片)を採取し、熱膨張率測定用試験片にて室温(25℃)~100℃の平均線熱膨張係数及び100~240℃の平均線熱膨張係数を測定した。線熱膨張係数の測定は、次の通り実施した。フォーマスター試験機(Formastor―EDP、富士電波工機社製)にて、昇温過程における試験片の変位を計測し、室温(25℃)~100℃の平均線熱膨張係数及び100~240℃の平均線熱膨張係数を測定した。25℃~100℃の平均線熱膨張係数が6.0×10-6/℃以下である場合を「A:線熱膨張性がきわめて低い」と評価し、6.0×10-6/℃を超えて6.5×10-6/℃以下である場合を「B:線熱膨張性が低い」と評価し、6.5×10-6/℃を超える場合を「F:線熱膨張性が高い」と評価した。また、100℃~240℃の平均線熱膨張係数が7.5×10-6/℃以下である場合を「A:線熱膨張性がきわめて低い」と評価し、7.5×10-6/℃を超えて8.0×10-6/℃以下である場合を「B:線熱膨張性が低い」と評価し、8.0×10-6/℃を超える場合を「F:線熱膨張性が高い」と評価した。結果を表5(本発明例No.1~28)及び表6(比較例No.29~51)に示す。
 なお、比較例No.47及びNo.48は、Ca及びBが過剰であるため、熱間加工性が悪く、鍛造時に割れが多数発生したため、評価用試験片が作製できなかったため、各種評価を行わなかった。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 本発明例No.1~No.24は、
 条件a:本発明の合金組成を満たす、
 条件b:結晶粒内部に(Mo,V)C系複合炭化物が存在する、
 条件c:([Mo]+2.8[V])/[C]の値が9.6以上21.7以下である、 条件d:{Mo}/{V}の値が0.2以上4.0以下である、
 条件e:結晶粒において、(Mo,V)C系複合炭化物の密度が10個/μm以上であり、かつ、(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の(Mo,V)C系複合炭化物の個数の割合が50%以上である、
 条件f:Crの含有量が0%超である場合、([Mo]+[V])/[Cr]の値が1.2以上である、
 条件g:Coの含有量が0%超である場合、[Co]+[Ni]が35%以上40%以下である、
を全て満たし、高強度低熱膨張合金として必要な特性が全てA評価であり、すなわち、優れた耐摩耗性、高強度、良好な延性及び低い熱膨張率を兼ね備えていた。また、本発明例No.1~No.24は、時効安定性(熱的時効安定性及び経時的時効安定性)に優れていた。
 また、本発明例No.25~No.28は、条件a~dを全て満たし、耐摩耗性、高強度、良好な延性、低い熱膨張率及び時効安定性(熱的時効安定性及び経時的時効安定性)は概ね優れているが、条件e~gのいずれか1種を満たさず、いずれかにおいてA評価よりもやや劣るB評価がある。
 一方、比較例No.29~No.51は、条件a~dのいずれか1種以上を満たさず、耐摩耗性、強度、延性、熱膨張率及び時効安定性(熱的時効安定性及び経時的時効安定性)の少なくともいずれか1種がF評価であり、必要な特性を欠いていた。

Claims (7)

  1.  質量%で、
     C:0.1%以上0.4%以下、
     Si:0.1%以上2.0%以下、
     Mn:0%超2.0%以下、
     Ni:25%以上40%以下、
     V:0.5%以上3.0%以下、
     Mo:0.4%以上1.9%以下、
     Cr:0%以上3.0%以下、
     Co:0%以上3.0%以下、
     B:0%以上0.05%以下、
     Ca:0%以上0.05%以下、
     Mg:0%以上0.05%以下、
     Al:0%以上1.5%以下、
     Ti:0%以上1.5%以下、
     Nb:0%以上1.5%以下、
     Zr:0%以上1.5%以下、
     Hf:0%以上1.5%以下、
     Ta:0%以上1.5%以下、
     W:0%以上1.5%以下、
     Cu:0%以上1.5%以下、
     O:0%以上0.005%以下、及び
     N:0%以上0.03%以下
    を含み、残部がFe及び不可避的不純物からなる高強度低熱膨張合金であって、
     前記合金の結晶粒内には、Mo及びVの両方を含む(Mo,V)C系複合炭化物が存在し、
     前記合金に含まれるMo、V及びCの量をそれぞれ[Mo]、[V]及び[C]としたとき、([Mo]+2.8[V])/[C]の値が9.6以上21.7以下であり、
     前記(Mo,V)C系複合炭化物に含まれるMo及びVの量をそれぞれ{Mo}及び{V}としたとき、{Mo}/{V}の値が0.2以上4.0以下である、前記高強度低熱膨張合金。
  2.  前記結晶粒において、前記(Mo,V)C系複合炭化物の密度が10個/μm以上であり、かつ、前記(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の前記(Mo,V)C系複合炭化物の個数の割合が50%以上である、請求項1に記載の高強度低熱膨張合金。
  3.  質量%で、Cr:0%超3.0%以下を含み、
     前記合金に含まれるMo、V及びCrの量をそれぞれ[Mo]、[V]及び[Cr]としたとき、([Mo]+[V])/[Cr]の値が1.2以上である、請求項1又は2に記載の高強度低熱膨張合金。
  4.  質量%で、Co:0%超3.0%以下を含み、
     前記合金に含まれるCo及びNiの量をそれぞれ[Co]及び[Ni]としたとき、[Co]+[Ni]が35%以上40%以下である、請求項1~3のいずれか一項に記載の高強度低熱膨張合金。
  5.  質量%で、B:0%超0.05%以下、Ca:0%超0.05%以下、及び、Mg:0%超0.05%以下のうちの1種又は2種以上を含む、請求項1~4のいずれか一項に記載の高強度低熱膨張合金。
  6.  質量%で、Al:0%超1.5%以下、Ti:0%超1.5%以下、Nb:0%超1.5%以下、Zr:0%超1.5%以下、Hf:0%超1.5%以下、Ta:0%超1.5%以下、W:0%超1.5%以下、及び、Cu:0%超1.5%以下のうちの1種又は2種以上を含む、請求項1~5のいずれか一項に記載の高強度低熱膨張合金。
  7.  質量%で、N:0%超0.03%以下を含む、請求項1~6のいずれか一項に記載の高強度低熱膨張合金。
PCT/JP2018/013309 2017-04-19 2018-03-29 高強度低熱膨張合金 WO2018193809A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018560236A JP6812460B2 (ja) 2017-04-19 2018-03-29 高強度低熱膨張合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017083018 2017-04-19
JP2017-083018 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018193809A1 true WO2018193809A1 (ja) 2018-10-25

Family

ID=63855680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013309 WO2018193809A1 (ja) 2017-04-19 2018-03-29 高強度低熱膨張合金

Country Status (2)

Country Link
JP (1) JP6812460B2 (ja)
WO (1) WO2018193809A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725895A (zh) * 2021-08-26 2023-03-03 宝武特种冶金有限公司 一种抗拉强度≥1600MPa的低膨胀Fe-Ni因瓦合金线材及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256395A (ja) * 2001-03-02 2002-09-11 Sanyo Special Steel Co Ltd 捻回特性に優れた高強度低熱膨張合金およびその合金線
JP2003082439A (ja) * 2001-09-13 2003-03-19 Daido Steel Co Ltd 強度,捻回特性に優れたインバー合金線及びその製造方法
JP2015160983A (ja) * 2014-02-27 2015-09-07 新日鐵住金株式会社 低熱膨張合金
JP2015178672A (ja) * 2014-02-27 2015-10-08 新日鐵住金株式会社 低熱膨張合金
JP2017171969A (ja) * 2016-03-22 2017-09-28 新日鐵住金株式会社 低熱膨張合金

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100447275C (zh) * 2005-09-23 2008-12-31 宝山钢铁股份有限公司 一种高强度因瓦合金及其合金线材的生产方法
CN105039850A (zh) * 2015-08-11 2015-11-11 河北钢铁股份有限公司 高强度低膨胀的热轧因瓦合金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002256395A (ja) * 2001-03-02 2002-09-11 Sanyo Special Steel Co Ltd 捻回特性に優れた高強度低熱膨張合金およびその合金線
JP2003082439A (ja) * 2001-09-13 2003-03-19 Daido Steel Co Ltd 強度,捻回特性に優れたインバー合金線及びその製造方法
JP2015160983A (ja) * 2014-02-27 2015-09-07 新日鐵住金株式会社 低熱膨張合金
JP2015178672A (ja) * 2014-02-27 2015-10-08 新日鐵住金株式会社 低熱膨張合金
JP2017171969A (ja) * 2016-03-22 2017-09-28 新日鐵住金株式会社 低熱膨張合金

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115725895A (zh) * 2021-08-26 2023-03-03 宝武特种冶金有限公司 一种抗拉强度≥1600MPa的低膨胀Fe-Ni因瓦合金线材及其制造方法
CN115725895B (zh) * 2021-08-26 2023-11-14 宝武特种冶金有限公司 一种抗拉强度≥1600MPa的低膨胀Fe-Ni因瓦合金线材及其制造方法

Also Published As

Publication number Publication date
JP6812460B2 (ja) 2021-01-13
JPWO2018193809A1 (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6812461B2 (ja) 高強度低熱膨張合金線
TWI491745B (zh) 具優異耐熱塌性之高強度不鏽鋼線、高強度彈簧及其製造方法
KR101418775B1 (ko) 저탄성 고강도 베타형 타이타늄 합금
US10400311B2 (en) Wrought material comprising Cu—Al—Mn-based alloy excellent in stress corrosion resistance and use thereof
JP6889418B2 (ja) Ni基超耐熱合金の製造方法およびNi基超耐熱合金
WO2014042160A1 (ja) 安定した超弾性を示すCu-Al-Mn系合金材とその製造方法
RU2695852C2 (ru) α-β ТИТАНОВЫЙ СПЛАВ
JP4424503B2 (ja) 棒鋼・線材
JP6826766B1 (ja) Ni基超耐熱合金の製造方法およびNi基超耐熱合金
WO2021182518A1 (ja) Fe-Co系合金棒材の製造方法およびFe-Co系合金棒材
JP5592600B2 (ja) 熱間型鍛造用の生体用Co基合金素材及びその製造方法
WO2018193809A1 (ja) 高強度低熱膨張合金
JP2017002390A (ja) チタン合金鍛造材
JP4121300B2 (ja) 高温リラクセーション特性に優れた高強度pc鋼棒およびその製造方法
JP2017218660A (ja) チタン合金鍛造材
JP2018053313A (ja) α+β型チタン合金棒およびその製造方法
JP2017002373A (ja) チタン合金鍛造材
JP2005154850A (ja) 高強度β型チタン合金
WO2024048138A1 (ja) Fe-Co系合金棒材の製造方法およびFe-Co系合金棒材
TWI806526B (zh) 機械構造零件用鋼線及其製造方法
JP7141944B2 (ja) 非調質鍛造部品および非調質鍛造用鋼
JP4103513B2 (ja) 冷間加工性および磁気特性に優れた極低炭素鋼線材
WO2023042279A1 (ja) Fe-Co系合金棒材
JP6686796B2 (ja) Fe−Ni系合金、軟磁性素材、軟磁性材料及び軟磁性材料の製造方法
WO2023042278A1 (ja) Fe-Co系合金棒材

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018560236

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18787225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18787225

Country of ref document: EP

Kind code of ref document: A1