JP6812460B2 - 高強度低熱膨張合金 - Google Patents
高強度低熱膨張合金 Download PDFInfo
- Publication number
- JP6812460B2 JP6812460B2 JP2018560236A JP2018560236A JP6812460B2 JP 6812460 B2 JP6812460 B2 JP 6812460B2 JP 2018560236 A JP2018560236 A JP 2018560236A JP 2018560236 A JP2018560236 A JP 2018560236A JP 6812460 B2 JP6812460 B2 JP 6812460B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- alloy
- thermal expansion
- content
- based composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000956 alloy Substances 0.000 title claims description 112
- 229910045601 alloy Inorganic materials 0.000 title claims description 112
- 229910052750 molybdenum Inorganic materials 0.000 claims description 91
- 229910052720 vanadium Inorganic materials 0.000 claims description 91
- 239000002131 composite material Substances 0.000 claims description 69
- 150000001247 metal acetylides Chemical class 0.000 claims description 53
- 239000013078 crystal Substances 0.000 claims description 30
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 229910052758 niobium Inorganic materials 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 229910052735 hafnium Inorganic materials 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 description 68
- 230000032683 aging Effects 0.000 description 57
- 238000012360 testing method Methods 0.000 description 35
- 230000000694 effects Effects 0.000 description 30
- 238000005728 strengthening Methods 0.000 description 24
- 238000004881 precipitation hardening Methods 0.000 description 18
- 229910000831 Steel Inorganic materials 0.000 description 16
- 239000010959 steel Substances 0.000 description 16
- 238000011156 evaluation Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 13
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 238000003878 thermal aging Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 230000002431 foraging effect Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005482 strain hardening Methods 0.000 description 4
- 238000005299 abrasion Methods 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000002003 electron diffraction Methods 0.000 description 2
- 238000005242 forging Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- 238000003483 aging Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Description
(1)質量%で、C:0.1%以上0.4%以下、Si:0.1%以上2.0%以下、Mn:0%超2.0%以下、Ni:25%以上40%以下、V:0.5%以上3.0%以下、Mo:0.4%以上1.9%以下、Cr:0%以上3.0%以下、Co:0%以上3.0%以下、B:0%以上0.05%以下、Ca:0%以上0.05%以下、Mg:0%以上0.05%以下、Al:0%以上1.5%以下、Ti:0%以上1.5%以下、Nb:0%以上1.5%以下、Zr:0%以上1.5%以下、Hf:0%以上1.5%以下、Ta:0%以上1.5%以下、W:0%以上1.5%以下、Cu:0%以上1.5%以下、O:0%以上0.005%以下、及びN:0%以上0.03%以下を含み、残部がFe及び不可避的不純物からなる高強度低熱膨張合金であって、
前記合金の結晶粒内には、Mo及びVの両方を含む(Mo,V)C系複合炭化物が存在し、
前記合金に含まれるMo、V及びCの量をそれぞれ[Mo]、[V]及び[C]としたとき、([Mo]+2.8[V])/[C]の値が9.6以上21.7以下であり、
前記(Mo,V)C系複合炭化物に含まれるMo及びVの量をそれぞれ{Mo}及び{V}としたとき、{Mo}/{V}の値が0.2以上4.0以下である、前記高強度低熱膨張合金。
(2)前記結晶粒において、前記(Mo,V)C系複合炭化物の密度が10個/μm2以上であり、かつ、前記(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の前記(Mo,V)C系複合炭化物の個数の割合が50%以上である、(1)に記載の高強度低熱膨張合金。
(3)質量%で、Cr:0%超3.0%以下を含み、
前記合金に含まれるMo、V及びCrの量をそれぞれ[Mo]、[V]及び[Cr]としたとき、([Mo]+[V])/[Cr]の値が1.2以上である、(1)又は(2)に記載の高強度低熱膨張合金。
(4)質量%で、Co:0%超3.0%以下を含み、
前記合金に含まれるCo及びNiの量をそれぞれ[Co]及び[Ni]としたとき、[Co]+[Ni]が35%以上40%以下である、(1)〜(3)のいずれかに記載の高強度低熱膨張合金。
(5)質量%で、B:0%超0.05%以下、Ca:0%超0.05%以下、及び、Mg:0%超0.05%以下のうちの1種又は2種以上を含む、(1)〜(4)のいずれかに記載の高強度低熱膨張合金。
(6)質量%で、Al:0%超1.5%以下、Ti:0%超1.5%以下、Nb:0%超1.5%以下、Zr:0%超1.5%以下、Hf:0%超1.5%以下、Ta:0%超1.5%以下、W:0%超1.5%以下、及び、Cu:0%超1.5%以下のうちの1種又は2種以上を含む、(1)〜(5)のいずれかに記載の高強度低熱膨張合金。
(7)質量%で、N:0%超0.03%以下を含む、(1)〜(6)のいずれかに記載の高強度低熱膨張合金。
(8)ビッカース硬さが335以上である、(1)〜(7)のいずれかに記載の高強度低熱膨張合金。
(9)引張強さが800MPa以上である、(1)〜(8)のいずれかに記載の高強度低熱膨張合金。
(10)伸びが10%以上である、(1)〜(9)のいずれかに記載の高強度低熱膨張合金。
(11)25℃〜100℃の平均線熱膨張係数が6.5×10−6/℃以下である、(1)〜(10)のいずれかに記載の高強度低熱膨張合金。
(12)100℃〜240℃の平均線熱膨張係数が8.0×10−6/℃以下である、(1)〜(11)のいずれかに記載の高強度低熱膨張合金。
以下、本発明の合金の組成について説明する。なお、本明細書において、「%」は別段規定される場合を除き、質量%を意味する。
Cは、本発明の合金の必須元素である。Cは、固溶の強化、並びに、炭化物形成による析出硬化及びその強化に有効である。このようなCの効果を有効に発揮させる観点から、Cの含有量は、0.1%以上、好ましくは0.13%以上、さらに好ましくは0.15%以上に調整される。一方、Cの含有量が過剰であると、延性が低下するとともに、線熱膨張係数が増大する。したがって、Cの含有量は、0.4%以下、好ましくは0.38%以下、さらに好ましくは0.36%以下に調整される。
Siは、本発明の合金の必須元素である。Siは、固溶の強化に有効である。このようなSiの効果を有効に発揮させる観点から、Siの含有量は、0.1%以上、好ましくは0.2%以上、さらに好ましくは0.3%以上に調整される。一方、Siの含有量が過剰であると、線熱膨張係数が増大する。したがって、Siの含有量は、2.0%以下、好ましくは1.7%以下、さらに好ましくは1.3%以下に調整される。
Mnは、本発明の合金の必須元素である。Mnは、脱酸剤として作用するとともに、固溶の強化に有効である。このようなMnの効果を有効に発揮させる観点から、Mnの含有量は、0%超、好ましくは0.1%以上、さらに好ましくは0.2%以上に調整される。一方、Mnの含有量が過剰であると、線熱膨張係数が増大する。したがって、Mnの含有量は、2.0%以下、好ましくは1.8%以下、さらに好ましくは1.3%以下に調整される。
Niは、本発明の合金の必須元素である。Niは、低い線熱膨張係数の実現に有効である。このようなNiの効果を有効に発揮させる観点から、Niの含有量は、25%以上、好ましくは30%以上、さらに好ましくは34%以上に調整される。一方、Niの含有量が過剰であると、低い線熱膨張係数の実現が困難となるとともに、合金コストが増加する。したがって、Niの含有量は、40%以下、好ましくは39%以下、さらに好ましくは38%以下に調整される。
Vは、本発明の合金の必須元素である。Vは、炭化物形成による析出硬化及びその強化に有効であるとともに、結晶粒内炭化物の粗大化抑制及び結晶粒内炭化物の微細析出促進を通じた延性劣化回避に有効である。このようなVの効果を有効に発揮させる観点から、Vの含有量は、0.5%以上、好ましくは0.6%以上、さらに好ましくは0.7%以上に調整される。一方、Vの含有量が過剰であると、上記効果が飽和し、含有量の増加に見合う効果の増加が得られないとともに、線熱膨張係数が増大する。したがって、Vの含有量は、3.0%以下、好ましくは2.8%以下、さらに好ましくは2.6%以下に調整される。
Moは、本発明の合金の必須元素である。Moは、炭化物形成による析出硬化及びその強化に有効であるとともに、結晶粒内炭化物の粗大化抑制及び結晶粒内炭化物の微細析出促進を通じた延性劣化回避に有効である。このようなMoの効果を有効に発揮させる観点から、Moの含有量は、0.4%以上、好ましくは0.5%以上、さらに好ましくは0.7%以上に調整される。一方、Moの含有量が過剰であると、上記効果が飽和し、含有量の増加に見合う効果の増加が得られないとともに、線熱膨張係数が増大する。したがって、Moの含有量は、1.9%以下、好ましくは1.7%以下、さらに好ましくは1.5%以下に調整される。
本発明の合金に含まれるMo、V及びCの量をそれぞれ[Mo]、[V]及び[C]としたとき、([Mo]+2.8[V])/[C]の値は、9.6以上21.7以下である。([Mo]+2.8[V])/[C]の値が9.6未満であると、Cの含有量が相対的に過剰となり、延性が低下する。したがって、([Mo]+2.8[V])/[C]の値は、9.6以上、好ましくは10.0以上、さらに好ましくは10.8以上に調整される。([Mo]+2.8[V])/[C]の値が9.6以上であると、炭化物形成による析出硬化及びその強化を実現できるとともに、延性を最適化できる。一方、([Mo]+2.8[V])/[C]の値が21.7を超えると、Vの含有量及びMoの含有量が相対的に過剰となり、V及びMoの効果が飽和し、含有量の増加に見合う効果の増加が得られないとともに、線熱膨張係数が増大する。したがって、([Mo]+2.8[V])/[C]の値は、21.7以下、好ましくは21.3以下、さらに好ましくは21.0以下に調整される。
Crは、本発明の合金の任意元素である。Crは、固溶の強化に有効である。このようなCrの効果を有効に発揮させることが望まれる場合、Crの含有量は、0%超、好ましくは0.1%以上、さらに好ましくは0.3%以上に調整される。一方、Crの含有量が過剰であると、粗大な炭化物の形成により強度及び延性が低下するとともに、線熱膨張係数が増大する。したがって、Crの含有量は、3.0%以下、好ましくは2.5%以下、さらに好ましくは2.0%以下に調整される。
Coは、本発明の合金の任意元素である。Coは、Niと同様の効果を有するとともに、キュリー点の上昇による線熱膨張係数の安定化に有効である。このようなCoの効果を有効に発揮させることが望まれる場合、Coの含有量は、0%超、好ましくは0.1%以上、さらに好ましくは0.3%以上に調整される。一方、Coの含有量が過剰であると、合金コストが増加するとともに、線熱膨張係数が増大する。したがって、Coの含有量は、3.0以下、好ましくは2.8以下、さらに好ましくは2.5%以下に調整される。
Bは、本発明の合金の任意元素である。Bは、粒界強化による熱間加工性の向上及び耐粒界酸化性の強化に有効である。このようなBの効果を有効に発揮させることが望まれる場合、Bの含有量は、0%超、好ましくは0.001%以上、さらに好ましくは0.002%以上に調整される。一方、Bの含有量が過剰であると、熱間加工性が低下する。したがって、Bの含有量は、0.05%以下、好ましくは0.03%以下、さらに好ましくは0.01%以下に調整される。
Caは、本発明の合金の任意元素である。Caは、S固定による熱間加工性の向上に有効である。このようなCaの効果を有効に発揮させることが望まれる場合、Caの含有量は、0%超、好ましくは0.005%以上、さらに好ましくは0.01%以上に調整される。一方、Caの含有量が過剰であると、熱間加工性が低下する。したがって、Caの含有量は、0.05%以下、好ましくは0.04%以下、さらに好ましくは0.03%以下に調整される。
Mgは、本発明の合金の任意元素である。Mgは、S固定による熱間加工性の向上に有効である。このようなMgの効果を有効に発揮させることが望まれる場合、Mgの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.015%以上に調整される。一方、Mgの含有量が過剰であると、熱間加工性が低下する。したがって、Mgの含有量は、0.05%以下、好ましくは0.045%以下、さらに好ましくは%0.04以下に調整される。
Alは、本発明の合金の任意元素である。Alは、脱酸効果による酸化物系介在物の除去、固溶の強化、並びに、析出硬化及びその強化に有効である。このようなAlの効果を有効に発揮させることが望まれる場合、Alの含有量は、0%超、好ましくは0.005%以上、さらに好ましくは0.01%以上に調整される。一方、Alの含有量が過剰であると、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Alの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
Tiは、本発明の合金の任意元素である。Tiは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなTiの効果を有効に発揮させることが望まれる場合、Tiの含有量は、0%超、好ましくは0.001%以上、さらに好ましくは0.005%以上に調整される。一方、Tiの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Tiの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
Nbは、本発明の合金の任意元素である。Nbは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなNbの効果を有効に発揮させることが望まれる場合、Nbの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Nbの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Nbの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
Zrは、本発明の合金の任意元素である。Zrは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなZrの効果を有効に発揮させることが望まれる場合、Zrの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Zrの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Zrの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
Hfは、本発明の合金の任意元素である。Hfは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなHfの効果を有効に発揮させることが望まれる場合、Hfの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Hfの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Hfの含有量は、1.5%以下、好ましくは1.4%以下、さらに好ましくは1.3%以下に調整される。
Taは、本発明の合金の任意元素である。Taは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなTaの効果を有効に発揮させることが望まれる場合、Taの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Taの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Taの含有量は、1.5%以下、好ましくは1.4%以下、さらに好ましくは1.3%以下に調整される。
Wは、本発明の合金の任意元素である。Wは、析出硬化及びその強化に有効であり、V又はMoの代替元素として使用可能である。このようなWの効果を有効に発揮させることが望まれる場合、Wの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Wの含有量が過剰であると、時効硬化能の低下、延性の低下、熱膨張係数の増加及び合金コストの増加が生じる。したがって、Wの含有量は、1.5%以下、好ましくは1.4%以下、さらに好ましくは1.3%以下に調整される。
Cuは、本発明の合金の任意元素である。Cuは、Cu粒子形成により析出硬化及びその強化に有効であるとともに、キュリー点を上昇させる。このようなCuの効果を有効に発揮させることが望まれる場合、Cuの含有量は、0%超、好ましくは0.01%以上、さらに好ましくは0.02%以上に調整される。一方、Cuの含有量が過剰であると、熱間加工性の低下、合金コストの増加が生じる。したがって、Cuの含有量は、1.5%以下、好ましくは1.3%以下、さらに好ましくは1.0%以下に調整される。
Oは、本発明の合金の不純物である。Oは、酸化物形成により延性を低下させる。したがって、Oの含有量は、0.005%以下、好ましくは0.003%以下、さらに好ましくは0.001%以下に調整される。
Nは、本発明の合金の任意元素である。Nは、固溶の強化等、Cと同様の効果を有する。このようなNの効果を有効に発揮させることが望まれる場合、Nの含有量は、0%超、好ましくは0.01%以上に調整される。一方、Nの含有量が過剰であると、窒化物形成により延性が低下する。したがって、Nの含有量は、0.03%以下、好ましくは0.025%以下に調整される
以下、本発明の合金の組織について説明する。
本発明の合金の結晶粒内には、Mo及びVの両方を含む(Mo,V)C系複合炭化物(以下「複合炭化物」という場合がある)が存在する。
本発明の合金のビッカース硬さは、好ましくは335以上、さらに好ましくは354以上である。
本発明の合金は、例えば、本発明の合金組成を有する鋼を溶製し、造塊又は連続鋳造により鋼塊やブルームを製造した後、熱間鍛造又は熱間圧延にて丸棒、角材等の目的の形状を有した鋼材へ成形する。その後、溶体化処理及び時効熱処理を実施することにより製造することができる。例えば、溶体化処理は加熱温度1200℃、加熱時間30分間で実施することができる。なお、溶体化処理は、熱間鍛造又は熱間圧延での鋼材製造工程の後、即座に水冷等の急冷を行えば省略することができる。時効熱処理は、例えば、加熱温度625℃、加熱時間2時間で実施することができる。溶体化処理の後であって時効熱処理の前に、鋼材に冷間加工を施すことが好ましい。
表1(本発明例No.1〜28)及び表2(比較例No.29〜51)に示す成分組成を有する50kgの合金を真空誘導溶解炉(VIM)で溶製してインゴットを得た。このインゴットを1200℃で1時間加熱し、直径20mmの棒鋼に鍛伸した。この棒鋼に対して、加熱温度1200℃、加熱時間30分間の条件で溶体化処理を実施した。なお、表1及び表2中、[Mo]、[V]及び[C]は、それぞれ、合金に含まれるMo、V及びCの量を表す。
溶体化処理後の棒鋼から作製した試験片(JIS Z2241に規定される10号試験片)に対して、JIS Z 2241に準拠して、室温での冷間加工により引張予ひずみを付与した。具体的には、引張試験機(500kN万能試験機、島津製作所社製)を使用して試験片を引張り、公称ひずみ50%まで引張予ひずみを付与した。冷間加工後の試験片を、加熱温度500〜1000℃、加熱時間30分間〜24時間の条件で時効熱処理した。
溶体化処理後の棒鋼から作製した直径14mm、高さ21mmの円筒状試験片に対して、室温での冷間加工により圧縮予ひずみを付与した。具体的には、試験片を圧縮試験機(2000kN万能試験機、島津製作所社製)により圧縮し、公称ひずみ50%まで圧縮予ひずみを付与した。冷間加工後の試験片を、加熱温度625〜675℃、加熱時間30分間〜5時間の条件で時効熱処理した。時効熱処理後の試験片の断面を研磨し、研磨した断面の20点のビッカース硬さを測定し、20点のビッカース硬さの平均値を求めた。各鋼材において、加熱温度625〜675℃、加熱時間30分間〜5時間の条件にて時効熱処理を施したものの中で、20点のビッカース硬さの平均値が最も高かったものの硬さを各鋼材それぞれの「時効熱処理後のビッカース硬さ」とした。ビッカース硬さの測定は、JIS Z 2244に準拠し、フューチャーテック社のミクロ硬さ測定器(型番:FM−700)を使用して、試験力200gfにて実施した。時効熱処理後のビッカース硬さが354以上である場合を「A:耐摩耗性がきわめて良好」、354未満335以上である場合を「B:耐摩耗性が良好」、335未満である場合を「F:耐摩耗性が不良」と評価した。結果を表5(本発明例No.1〜28)及び表6(比較例No.29〜51)に示す。ここでA又はBと評価された場合には以下の評価を行ったが、ここでFと評価された場合には以下の評価は行わなかった。
上記と同様にして、溶体化処理後の棒鋼から作製した試験片に対して、圧縮予ひずみを付与した後、加熱時間を3時間に固定し、加熱温度を625〜675℃の間で変化させて時効熱処理を行った。時効処理前と時効熱処理後の試験片の断面を研磨し、研磨した断面の20点のビッカース硬さを測定し、20点のビッカース硬さの平均値を求めた。横軸を時効温度、縦軸をビッカース硬さとする曲線を作成し(図1参照)、この曲線に基づいて、最大ビッカース硬さ(MAX3hr)の95%以上のビッカース硬さを確保できる温度範囲を求めた。最大ビッカース硬さ(MAX3hr)の95%以上のビッカース硬さを確保できる温度範囲が35℃以上である場合を「A:熱的時効安定性が良好」、35℃未満である場合を「F:熱的時効安定性が不良」と評価した。結果を表5(本発明例No.1〜28)及び表6(比較例No.29〜51)に示す。なお、図1は、加熱時間を3時間に固定し、加熱温度を625〜675℃の間で変化させて時効熱処理を行った場合の、横軸を時効温度、縦軸をビッカース硬さとする曲線の一例であり、この曲線では、最大ビッカース硬さ(MAX3hr)の95%以上のビッカース硬さを確保できる温度範囲が40℃である。
上記と同様にして、溶体化処理後の棒鋼から作製した試験片に対して、圧縮予ひずみを付与した後、加熱温度を650℃に固定し、加熱時間を30分〜5時間の間で変化させて時効熱処理を行った。時効処理前と時効熱処理後の試験片の断面を研磨し、研磨した断面の20点のビッカース硬さを測定し、20点のビッカース硬さの平均値を求めた。横軸を時効温度、縦軸をビッカース硬さとする曲線を作成し(図2参照)、この曲線に基づいて、最大ビッカース硬さ(MAX650℃)の95%以上のビッカース硬さを確保できる時間範囲を求めた。最高ビッカース硬さ(MAX650℃)の95%以上のビッカース硬さを確保できる時間範囲が3.5時間以上である場合を「A:経時的時効安定性が良好」、3.5時間未満である場合を「F:経時的時効安定性が不良」と評価した。結果を表5(本発明例No.1〜28)及び表6(比較例No.29〜51)に示す。なお、図2は、加熱温度を650℃に固定し、加熱時間を30分〜5時間の間で変化させて時効熱処理を行った場合の、横軸を時効温度、縦軸をビッカース硬さとする曲線の一例であり、この曲線では、最大ビッカース硬さ(MAX650℃)の95%以上のビッカース硬さを確保できる時間範囲が4.1時間である。
上記と同様にして、溶体化処理後の棒鋼から作製した試験片に対して、引張予ひずみを付与した後、時効熱処理した。時効熱処理後の試験片に対して、JIS Z 2241に従って引張試験を実施し、引張強さ(TS)及び伸び(EL)を測定した。TSが920MPa以上、かつ、ELが10%以上である場合を「A:引張特性がきわめて良好」、TSが920MPa未満、800MPa以上、かつELが10%以上である場合を「B:引張特性が良好」、TSが800MPa未満、又は、ELが10%未満である場合を「F:引張特性が不良」と評価した。結果を表5(本発明例No.1〜28)及び表6(比較例No.29〜51)に示す。ここでA又はBと評価された場合には以下の評価を行ったが、ここでFと評価された場合には以下の評価は行わなかった。
上記と同様にして、溶体化処理後の棒鋼から作製した試験片に対して、引張予ひずみを付与した後、時効熱処理を施した。時効熱処理後の試験片から直径3mm、高さ10mmの円筒状試験片(熱膨張率測定用試験片)を採取し、熱膨張率測定用試験片にて室温(25℃)〜100℃の平均線熱膨張係数及び100〜240℃の平均線熱膨張係数を測定した。線熱膨張係数の測定は、次の通り実施した。フォーマスター試験機(Formastor―EDP、富士電波工機社製)にて、昇温過程における試験片の変位を計測し、室温(25℃)〜100℃の平均線熱膨張係数及び100〜240℃の平均線熱膨張係数を測定した。25℃〜100℃の平均線熱膨張係数が6.0×10−6/℃以下である場合を「A:線熱膨張性がきわめて低い」と評価し、6.0×10−6/℃を超えて6.5×10−6/℃以下である場合を「B:線熱膨張性が低い」と評価し、6.5×10−6/℃を超える場合を「F:線熱膨張性が高い」と評価した。また、100℃〜240℃の平均線熱膨張係数が7.5×10−6/℃以下である場合を「A:線熱膨張性がきわめて低い」と評価し、7.5×10−6/℃を超えて8.0×10−6/℃以下である場合を「B:線熱膨張性が低い」と評価し、8.0×10−6/℃を超える場合を「F:線熱膨張性が高い」と評価した。結果を表5(本発明例No.1〜28)及び表6(比較例No.29〜51)に示す。
条件a:本発明の合金組成を満たす、
条件b:結晶粒内部に(Mo,V)C系複合炭化物が存在する、
条件c:([Mo]+2.8[V])/[C]の値が9.6以上21.7以下である、 条件d:{Mo}/{V}の値が0.2以上4.0以下である、
条件e:結晶粒において、(Mo,V)C系複合炭化物の密度が10個/μm2以上であり、かつ、(Mo,V)C系複合炭化物の総個数に対する直径150nm以下の(Mo,V)C系複合炭化物の個数の割合が50%以上である、
条件f:Crの含有量が0%超である場合、([Mo]+[V])/[Cr]の値が1.2以上である、
条件g:Coの含有量が0%超である場合、[Co]+[Ni]が35%以上40%以下である、
を全て満たし、高強度低熱膨張合金として必要な特性が全てA評価であり、すなわち、優れた耐摩耗性、高強度、良好な延性及び低い熱膨張率を兼ね備えていた。また、本発明例No.1〜No.24は、時効安定性(熱的時効安定性及び経時的時効安定性)に優れていた。
Claims (6)
- 質量%で、
C:0.1%以上0.4%以下、
Si:0.1%以上2.0%以下、
Mn:0%超2.0%以下、
Ni:25%以上40%以下、
V:0.5%以上3.0%以下、
Mo:0.4%以上1.9%以下、
Cr:0%以上3.0%以下、
Co:0%以上3.0%以下、
B:0%以上0.05%以下、
Ca:0%以上0.05%以下、
Mg:0%以上0.05%以下、
Al:0%以上1.5%以下、
Ti:0%以上1.5%以下、
Nb:0%以上1.5%以下、
Zr:0%以上1.5%以下、
Hf:0%以上1.5%以下、
Ta:0%以上1.5%以下、
W:0%以上1.5%以下、
Cu:0%以上1.5%以下、
O:0%以上0.005%以下、及び
N:0%以上0.03%以下
を含み、残部がFe及び不可避的不純物からなる高強度低熱膨張合金であって、
前記合金の結晶粒内には、Mo及びVの両方を含む(Mo,V)C系複合炭化物が存在し、
前記合金に含まれるMo、V及びCの量をそれぞれ[Mo]、[V]及び[C]としたとき、([Mo]+2.8[V])/[C]の値が9.6以上21.7以下であり、
前記(Mo,V)C系複合炭化物に含まれるMo及びVの量をそれぞれ{Mo}及び{V}としたとき、{Mo}/{V}の値が0.2以上4.0以下である、前記高強度低熱膨張合金。 - 質量%で、Cr:0%超3.0%以下を含み、
前記合金に含まれるMo、V及びCrの量をそれぞれ[Mo]、[V]及び[Cr]としたとき、([Mo]+[V])/[Cr]の値が1.2以上である、請求項1に記載の高強度低熱膨張合金。 - 質量%で、Co:0%超3.0%以下を含み、
前記合金に含まれるCo及びNiの量をそれぞれ[Co]及び[Ni]としたとき、[Co]+[Ni]が35%以上40%以下である、請求項1又は2に記載の高強度低熱膨張合金。 - 質量%で、B:0%超0.05%以下、Ca:0%超0.05%以下、及び、Mg:0%超0.05%以下のうちの1種又は2種以上を含む、請求項1〜3のいずれか一項に記載の高強度低熱膨張合金。
- 質量%で、Al:0%超1.5%以下、Ti:0%超1.5%以下、Nb:0%超1.5%以下、Zr:0%超1.5%以下、Hf:0%超1.5%以下、Ta:0%超1.5%以下、W:0%超1.5%以下、及び、Cu:0%超1.5%以下のうちの1種又は2種以上を含む、請求項1〜4のいずれか一項に記載の高強度低熱膨張合金。
- 質量%で、N:0%超0.03%以下を含む、請求項1〜5のいずれか一項に記載の高強度低熱膨張合金。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017083018 | 2017-04-19 | ||
JP2017083018 | 2017-04-19 | ||
PCT/JP2018/013309 WO2018193809A1 (ja) | 2017-04-19 | 2018-03-29 | 高強度低熱膨張合金 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018193809A1 JPWO2018193809A1 (ja) | 2019-04-25 |
JP6812460B2 true JP6812460B2 (ja) | 2021-01-13 |
Family
ID=63855680
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018560236A Active JP6812460B2 (ja) | 2017-04-19 | 2018-03-29 | 高強度低熱膨張合金 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6812460B2 (ja) |
WO (1) | WO2018193809A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115725895B (zh) * | 2021-08-26 | 2023-11-14 | 宝武特种冶金有限公司 | 一种抗拉强度≥1600MPa的低膨胀Fe-Ni因瓦合金线材及其制造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3842053B2 (ja) * | 2001-03-02 | 2006-11-08 | 山陽特殊製鋼株式会社 | 捻回特性に優れた高強度低熱膨張合金およびその合金線 |
JP4797305B2 (ja) * | 2001-09-13 | 2011-10-19 | 住友電気工業株式会社 | 強度,捻回特性に優れたインバー合金線及びその製造方法 |
CN100447275C (zh) * | 2005-09-23 | 2008-12-31 | 宝山钢铁股份有限公司 | 一种高强度因瓦合金及其合金线材的生产方法 |
JP6372348B2 (ja) * | 2014-02-27 | 2018-08-15 | 新日鐵住金株式会社 | 低熱膨張合金 |
JP6244979B2 (ja) * | 2014-02-27 | 2017-12-13 | 新日鐵住金株式会社 | 低熱膨張合金 |
CN105039850A (zh) * | 2015-08-11 | 2015-11-11 | 河北钢铁股份有限公司 | 高强度低膨胀的热轧因瓦合金 |
JP6634912B2 (ja) * | 2016-03-22 | 2020-01-22 | 日本製鉄株式会社 | 低熱膨張合金 |
-
2018
- 2018-03-29 JP JP2018560236A patent/JP6812460B2/ja active Active
- 2018-03-29 WO PCT/JP2018/013309 patent/WO2018193809A1/ja active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JPWO2018193809A1 (ja) | 2019-04-25 |
WO2018193809A1 (ja) | 2018-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6812461B2 (ja) | 高強度低熱膨張合金線 | |
US11118255B2 (en) | Cu-Al-Mn-based alloy material, method of producing the same, and rod material or sheet material using the same | |
JP6889418B2 (ja) | Ni基超耐熱合金の製造方法およびNi基超耐熱合金 | |
US10400311B2 (en) | Wrought material comprising Cu—Al—Mn-based alloy excellent in stress corrosion resistance and use thereof | |
JP5567093B2 (ja) | 安定した超弾性を示すCu−Al−Mn系合金材とその製造方法 | |
KR101418775B1 (ko) | 저탄성 고강도 베타형 타이타늄 합금 | |
US12000021B2 (en) | α+β type titanium alloy wire and manufacturing method of α+β type titanium alloy wire | |
JP5103107B2 (ja) | 高弾性合金 | |
TW201346044A (zh) | 具優異耐熱塌性之高強度不鏽鋼線、高強度彈簧及其製造方法 | |
JP2009138218A (ja) | チタン合金部材及びチタン合金部材の製造方法 | |
JP2017048459A (ja) | 機械構造部品用鋼線 | |
JP5592600B2 (ja) | 熱間型鍛造用の生体用Co基合金素材及びその製造方法 | |
WO2021182518A1 (ja) | Fe-Co系合金棒材の製造方法およびFe-Co系合金棒材 | |
WO2014157146A1 (ja) | オーステナイト系ステンレス鋼板およびそれを用いた高強度鋼材の製造方法 | |
JP6812460B2 (ja) | 高強度低熱膨張合金 | |
JP6673121B2 (ja) | α+β型チタン合金棒およびその製造方法 | |
JP2017002390A (ja) | チタン合金鍛造材 | |
JP4121300B2 (ja) | 高温リラクセーション特性に優れた高強度pc鋼棒およびその製造方法 | |
JP2017218660A (ja) | チタン合金鍛造材 | |
JP2017002373A (ja) | チタン合金鍛造材 | |
JP2005154850A (ja) | 高強度β型チタン合金 | |
WO2024048138A1 (ja) | Fe-Co系合金棒材の製造方法およびFe-Co系合金棒材 | |
JP4103513B2 (ja) | 冷間加工性および磁気特性に優れた極低炭素鋼線材 | |
TWI806526B (zh) | 機械構造零件用鋼線及其製造方法 | |
JP2018044235A (ja) | 機械構造部品用鋼線 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190213 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191217 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200717 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200911 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200911 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200923 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20200925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6812460 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |