WO2018193720A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2018193720A1
WO2018193720A1 PCT/JP2018/007271 JP2018007271W WO2018193720A1 WO 2018193720 A1 WO2018193720 A1 WO 2018193720A1 JP 2018007271 W JP2018007271 W JP 2018007271W WO 2018193720 A1 WO2018193720 A1 WO 2018193720A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
power conversion
conversion device
temperature
frequency
Prior art date
Application number
PCT/JP2018/007271
Other languages
English (en)
French (fr)
Inventor
櫻井 直樹
貴史 小川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to DE112018001405.3T priority Critical patent/DE112018001405T5/de
Publication of WO2018193720A1 publication Critical patent/WO2018193720A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis

Definitions

  • This invention relates to the power converter device provided with the temperature measurement function of a semiconductor switching element.
  • Power conversion devices such as inverter devices are used in various fields such as motor drive, solar power generation, and wind power generation.
  • the life (5 to 10 years) of this power converter is shorter than that of motors, solar panels, wind power generators, etc. connected to the power converter (20 years or more). For this reason, the life extension of the power converter is required.
  • the main factor that determines the life of the power converter is a failure of a power semiconductor switching element that constitutes the main circuit of the power converter, for example, an insulated gate bipolar transistor (hereinafter abbreviated as IGBT).
  • IGBT insulated gate bipolar transistor
  • the emitter electrode of the IGBT is connected to the emitter wiring of the package by wire bonding using aluminum or copper.
  • the collector electrode of the IGBT is connected to the collector wiring of the package by solder.
  • the relationship between the magnitude of this temperature change and the number of cycles of temperature change until failure is provided as an empirical formula (described in the reliability manual, application manual, etc.) by the IGBT manufacturer. Therefore, if the temperature of the IGBT can be measured, the lifetime of the IGBT can be predicted. Then, according to the predicted lifetime of the IGBT, it is possible to extend the life of the power conversion device by reviewing the operation method of the power conversion device or systematically replacing the IGBT.
  • Patent Document 1 As a conventional technique for measuring the temperature of the IGBT, techniques described in Patent Document 1 and Patent Document 2 are known.
  • a temperature detection diode is provided on a semiconductor substrate of an IGBT chip, and the temperature of the IGBT is detected using the temperature dependence of the forward voltage of the diode.
  • the IGBT temperature is detected by using the temperature dependence of the duration of the mirror plateau stage in the gate-emitter voltage during the switch-off stage of the IGBT device.
  • the present invention provides a power conversion device capable of detecting the temperature of a semiconductor switching element such as an IGBT with high accuracy without causing an increase in size and cost of the device.
  • a power conversion device includes a main circuit unit that performs power conversion by turning on and off a semiconductor switching element, and is based on a frequency characteristic of a current flowing through the main circuit unit. And a temperature determination unit for determining the temperature of the semiconductor switching element.
  • the detection accuracy of the semiconductor switching element can be improved without increasing the size and cost of the device.
  • the structure of the power converter device which is Example 1 is shown.
  • the gate voltage waveform, emitter current waveform, and current frequency characteristic at the time of turn-off in Example 1 are shown.
  • 3 is a flowchart illustrating an operation for determining the temperature of an IGBT according to the first embodiment.
  • the structure of the power converter device which is Example 2 is shown.
  • 6 is a flowchart illustrating an operation for determining the temperature of an IGBT according to a second embodiment.
  • the structure of the power converter device which is Example 3 is shown. In Example 3, the gate voltage waveform, the DC bus current waveform, and the current frequency characteristics of the detected current are shown.
  • the structure of the power converter device which is Example 4 is shown.
  • Example 4 The gate voltage waveform in Example 4, the current waveform detected by the current sensor, and the current frequency characteristic of the detected current are shown.
  • the structure of the power converter device which is Example 5 is shown.
  • the structure of the power converter device which is Example 6 is shown.
  • 14 is a flowchart illustrating an operation for determining the temperature of an IGBT according to a sixth embodiment.
  • the current waveform sampling data in Example 6 is typically shown.
  • FIG. 1 shows a configuration of a power conversion apparatus that is Embodiment 1 of the present invention.
  • the power conversion device receives three-phase AC power (R, S, T), converts the received three-phase AC power into three-phase AC power of variable voltage / variable frequency, and three-phase AC power. Output to motor (U, V, W).
  • the three-phase AC power to be received is, for example, three-phase AC power having a constant voltage and a constant frequency supplied from a commercial power source.
  • the diodes 1a to 1f constitute a rectifier circuit composed of a three-phase diode bridge circuit.
  • the anode of the diode 1a and the cathode of the diode 1b are connected to the R-phase input on the power receiving side.
  • the anode of the diode 1c and the cathode of the diode 1d are connected to the S-phase input
  • the anode of the diode 1e and the cathode of the diode 1f are connected to the T-phase input.
  • the received three-phase AC power is full-wave rectified by a rectifier circuit composed of diodes 1a to 1f, and further, a ripple component is removed by a smoothing capacitor 2 and converted to DC power.
  • IGBTs 3a to 3f constitute a three-phase inverter circuit.
  • the cathodes of the diodes 4a to 4f are connected to the collectors of the IGBTs 3a to 3f, respectively, and the anodes of the diodes 4a to 4f are connected to the emitters of the IGBTs 3a to 3f, respectively. Accordingly, the diodes 4a to 4f function as so-called free-wheeling diodes.
  • the collectors of the IGBTs 3a, 3c, 3e are connected to the high potential side of both ends of the smoothing capacitor 2 together with the cathodes of the diodes 1a, 1c, 1e.
  • the emitters of the IGBTs 3b, 3d, and 3f are connected to the low potential side of both ends of the smoothing capacitor 2 together with the anodes of the diodes 1b, 1d, and 1f.
  • Gate drive circuits (5a to 5f in FIG. 4) (not shown) are connected to the gates of the IGBTs 3a to 3f, respectively.
  • the emitter of IGBT 3 a and the collector of IGBT 3 b are connected to the W phase of three-phase AC motor 5.
  • the emitter of IGBT 3c and the collector of IGBT 3d are connected to the V phase of three-phase AC motor 5
  • the emitter of IGBT 3e and the collector of IGBT 3f are connected to the U phase of three-phase AC motor 5.
  • the IGBTs 3a to 3f are controlled to be turned on / off by the gate drive circuit, thereby converting the DC power input from the rectifier circuit side into the three-phase AC power of variable voltage / variable frequency. Output to the U phase, V phase and W phase of the motor 5. As a result, the three-phase AC motor 5 is driven at a variable speed.
  • the current sensor 10 is provided at the emitter of the IGBT 3b in the W-phase lower arm.
  • the emitter current of the IGBT 3b is detected by the current sensor 10.
  • the signal from the current sensor 10 is input to the A / D converter 11.
  • the output of the A / D converter 11 is input to the frequency converter 12.
  • the frequency converter 12 calculates the frequency characteristics of the detected emitter current based on the digital signal indicating the emitter current output from the A / D converter 11.
  • the memory device 14 stores data indicating the relationship between the frequency characteristics of the current flowing through the IGBT 3b and the temperature of the IGBT 3b.
  • the calculator 13 calculates the temperature of the IGBT 3b by comparing the frequency characteristic of the detected emitter current of the IGBT 3b output from the frequency converter 12 and the data stored in the memory device 14.
  • the frequency characteristic of the current flowing through the IGBT has temperature dependence. Therefore, according to the first embodiment, by detecting the temperature of the IGBT based on the frequency characteristics, the device configuration of the IGBT and the circuit configuration of the power conversion device are not particularly changed. The temperature of the IGBT can be measured with high accuracy without incurring cost.
  • FIG. 2 shows a gate voltage waveform, an emitter current waveform, and a current frequency characteristic at turn-off for the IGBT 3b in the first embodiment.
  • the IGBT 3b When the gate voltage exceeds the threshold voltage, the IGBT 3b is turned on and the emitter current starts to flow.
  • the recovery current of the W-phase upper arm diode 4a is superimposed on the W-phase current of the three-phase AC motor 5, so the emitter current waveform has a peak.
  • the IGBT 3b is turned off and the emitter current is reduced.
  • the waveform shown by the solid line is the emitter current waveform when the temperature of the IGBT 3b is Ta
  • the waveform shown by the dotted line is the emitter current waveform when the temperature of the IGBT 3b is Tb (> temperature Ta). It is.
  • the turn-off time (fall time) tf at the temperature Ta is less than the turn-off time (fall time) tf 'at the temperature Tb.
  • the frequency conversion device 12 (FIG. 1). Assuming that the time during which the emitter current is constant is tp, the current value (dB) of the emitter current at the turn-off time of the IGBT 3b has a constant value from DC to the frequency 1 / ( ⁇ tp) and is 1 / ( ⁇ tp) or more. The frequency decreases at a slope of 20 dB / dec (20 dB change at 10 times the frequency) according to the frequency.
  • the current value (dB) has a frequency of 1 / ( ⁇ tf) or higher and a slope of 40 dB / dec (40 dB change at 10 times the frequency). Decrease accordingly.
  • the current value (dB) decreases according to the frequency with a frequency of 1 / ( ⁇ tf ′) ( ⁇ 1 / ( ⁇ tf)) or more and a slope of 40 dB / dec. .
  • the frequency characteristics of the emitter current at the turn-off time of the IGBT have the temperature dependency as described above. Therefore, in the first embodiment, in the frequency characteristic, the relationship between the frequency and temperature at which the slope of the decrease in the current value changes from 20 dB / dec to 40 dB / dec is obtained in advance by measurement or the like, and the memory device 14 (FIG. 1). In advance as data.
  • the calculator 13 (FIG. 1) calculates a frequency at which the slope of the decrease in the detected current value is changed from 20 dB / dec to 40 dB / dec from the frequency characteristic of the detected current calculated by the frequency converter 12 (FIG. 1). The calculated frequency is compared with the data stored in the memory device 14 (FIG. 1) to determine the temperature corresponding to the calculated frequency.
  • the frequency characteristic of the current value (dB) excluding temperature dependence corresponds to a so-called trapezoidal wave frequency spectrum.
  • FIG. 3 is a flowchart showing the operation of determining the temperature of the IGBT in the first embodiment.
  • step (1) When the operation is started (step (1)), the current waveform at the time of current switching of the IGBT 3b is converted into a voltage signal by the current sensor 10 (step (2)).
  • the voltage signal from the current sensor 10, that is, the analog signal indicating the current is converted into a digital signal by the A / D converter 11 (step (3)).
  • the current waveform indicated by the digital signal from the A / D converter 11 is converted into a frequency characteristic of current by the frequency converter 12 (step (4)).
  • the computing unit 13 refers to the relationship between the frequency characteristics of the current accumulated in the memory device 14 and the temperature, and in the first embodiment, the relationship between the frequency and the temperature at which the current value starts decreasing at an inclination of 40 dB / dec.
  • the frequency characteristic of the detected current calculated by the frequency converter 12 is calculated (Step (6)).
  • the arithmetic unit 13 compares the data accumulated in the memory device 14 with the frequency characteristic of the detected current, and in the first embodiment, the calculated value of the frequency at which the current value starts decreasing at a slope of 40 dB / dec.
  • the temperature of the IGBT is determined according to the comparison result (step (7)).
  • the temperature of the IGBT can be measured with high accuracy without causing an increase in size and cost of the apparatus.
  • the temperature of the IGBT is determined based on the current frequency characteristic at the time of turn-off.
  • the temperature of the IGBT may be determined based on the current frequency characteristic at the time of turn-on.
  • the above-described fall time tf may be replaced with the rise time tr.
  • the temperature is determined using the IGBT 3b as a representative of the IGBTs constituting the inverter circuit, but any of the other IGBTs 3a and 3c to 3f may be used as a representative. Further, a current sensor may be provided in each of the IGBTs 3a to 3f, and the temperature may be individually determined. Thereby, since only IGBT with high possibility of failure can be replaced
  • the parallel circuit of the IGBT and the diode in the upper and lower arms may be a parallel circuit of a plurality of IGBT chips connected in parallel and a plurality of diode chips connected in parallel.
  • the upper and lower arms may be constituted by so-called IGBT modules. In the case of an IGBT module, the temperature of the representative IGBT is determined, and the IGBT module is replaced when the period (time) until failure is less than a predetermined value.
  • Example 2 of the present invention will be described with reference to FIGS. Note that differences from the first embodiment will be mainly described.
  • FIG. 4 shows a configuration of a power conversion device that is Embodiment 2 of the present invention.
  • the microcomputer 6 determines the IGBTs 3a to 3f based on the torque command value (not shown) from the outside (for example, the host controller) and the motor current information detected by the current sensors 8a and 8b.
  • a PWM signal for driving is created.
  • the PWM signal is transmitted from the microcomputer 6 to the gate drive circuits 5a to 5f via the photocouplers 7a to 7f.
  • Gate drive circuits 5a to 5f output gate drive voltage signals to the gates of IGBTs 3a to 3f, respectively, according to the PWM signal.
  • the IGBTs 3a to 3f are on / off controlled. That is, the microcomputer 6 functions as a control unit that creates a gate drive voltage signal for on / off control of the IGBTs 3a to 3f.
  • photocouplers 7a to 7f are provided to electrically isolate and isolate the PWM signal between the microcomputer 6 side and the gate drive circuits 5a to 5f.
  • the trigger signal from the microcomputer 6 is input to the frequency converter 12 as a trigger for starting frequency conversion.
  • the trigger signal is output at a timing when the IGBT is turned on or turned off according to the PWM signal. That is, the frequency converter 12 starts frequency conversion, that is, calculation of the frequency characteristics of the emitter current of the IGBT 3b in synchronization with the gate drive voltage signal.
  • FIG. 5 is a flowchart showing the operation of determining the temperature of the IGBT in the second embodiment.
  • the turn-on current waveform or the turn-off current waveform indicated by the digital signal from the A / D converter 11 is converted by the frequency converter 12. It is converted into a frequency characteristic of the current (step (4)).
  • the frequency conversion device 12 can determine which of the turn-on current waveform and the turn-off current waveform is taken in, and execute the conversion process of one of the current waveforms. For this reason, the processing load of the frequency converter 12 and the A / D converter 11 is reduced. Therefore, the time required for processing can be shortened, and the inexpensive frequency converter 12 and A / D converter 11 can be applied.
  • Embodiment 3 of the present invention will be described with reference to FIGS. Note that differences from the second embodiment will be mainly described.
  • FIG. 6 shows a configuration of a power conversion device that is Embodiment 3 of the present invention.
  • the current sensor 10 is provided between the low potential end of the smoothing capacitor 2 and the emitters of the IGBTs 3b, 3d, 3f on the lower arm side, that is, the low potential side of the DC input of the inverter circuit. . Therefore, the current sensor 10 detects the DC bus current.
  • FIG. 7 shows the gate voltage waveform of the IGBT 3b, the DC bus current waveform detected by the current sensor 10, and the current frequency characteristic of the detected current in the third embodiment.
  • the frequency characteristics of the DC bus current detected by the current sensor 10 show peak values at several frequencies with the transient vibration of the current.
  • the frequency indicating the peak value has a temperature dependency such that when the temperature becomes higher (Ta ⁇ Tb (> Ta)) as shown in FIG. 7, the frequency shifts to the low frequency side.
  • the relationship between such frequency characteristics and temperature that is, the relationship between the temperature and the frequency indicating the current peak value is acquired in advance by actual measurement or the like and stored in the memory device 14.
  • the temperature can be determined from the current detected by the current sensor 10 by the temperature determination operation shown in FIG.
  • the waveform of the DC bus current detected by the current sensor 10 changes like the current waveform shown in FIG. 7 at the turn-on and turn-off timing of each of the IGBTs 3a to 3f. Therefore, by generating a trigger signal at the timing when the gate drive signal of each IGBT constituting the inverter circuit is turned on or off, it is possible to determine which IGBT turn-on current waveform or turn-off current waveform is taken from among the IGBTs 3a to 3f. it can. Therefore, the temperature of each IGBT can be determined by one current sensor 10.
  • the current sensor 10 for example, a shunt resistor is used.
  • the current sensor 10 may also serve as a DC bus current detection sensor used when detecting the motor current by a so-called single shunt method.
  • Example 4 of the present invention will be described with reference to FIGS. Note that differences from the third embodiment will be mainly described.
  • FIG. 8 shows a configuration of a power conversion apparatus that is Embodiment 4 of the present invention.
  • one end of the X capacitor 20 is connected to the low potential side (N side) of the DC input of the inverter circuit as a filter for removing noise.
  • the other end of the X capacitor 20 is connected to the ground via the current sensor 10. Therefore, the X capacitor 20 removes noise, that is, transient vibration components at the turn-on / turn-off time of each IGBT, from the DC bus current. This transient vibration component flows to the ground via the X capacitor 20 and is detected by the current sensor 10.
  • FIG. 9 shows the gate voltage waveform of the IGBT 3b, the current waveform detected by the current sensor 10, and the current frequency characteristic of the detected current in the fourth embodiment.
  • the frequency characteristics of the current detected by the current sensor 10 show peak values at several frequencies as in FIG. 7 (Example 3), and when the temperature increases (Ta ⁇ Tb (> Ta)), having a temperature dependency such that the frequency indicating the peak value shifts to the low frequency side. Accordingly, the temperature of each IGBT can be determined in the same manner as in the third embodiment.
  • the detected current of the current sensor 10 is obtained by removing the DC component of the DC bus current, that is, the current component that flows according to the motor current. ing. Therefore, the maximum current value that can be detected can be reduced as the performance of the current sensor 10. That is, the current sensor 10 can be reduced in size or cost.
  • Example 5 of the present invention will be described with reference to FIG. Note that differences from the fourth embodiment will be mainly described.
  • FIG. 10 shows a configuration of a power conversion apparatus that is Embodiment 5 of the present invention.
  • Y capacitors 21a and 21b are connected as filter capacitors to the DC input side of the inverter circuit in order to remove common mode noise from the DC bus current.
  • One end of the Y capacitor 21a is connected to the low potential side (N side) of the DC input of the inverter circuit, and the other end of the Y capacitor 21a is connected to one end of the Y capacitor 21b.
  • the other end of the Y capacitor 21b is connected to the high potential side (P side) of the DC input of the inverter circuit.
  • the connection point of the Y capacitors 21a and 21b is connected to the ground.
  • the Y capacitors 21a and 21b remove common mode noise, that is, transient vibration components at the turn-on / turn-off time of each IGBT, from the DC bus current. This transient vibration component flows to the ground and is detected by the current sensor 10.
  • the frequency characteristic of the current detected by the current sensor 10 has temperature dependence as in FIG. 7 (third embodiment) and FIG. 9 (fourth embodiment). Similarly to 3 and 4, the temperature of each IGBT can be determined (see FIG. 5).
  • the current sensor 10 can be reduced in size or cost as in the fourth embodiment (FIG. 8).
  • FIG. 11 shows a configuration of a power conversion apparatus that is Embodiment 6 of the present invention.
  • a trigger circuit 30 that generates a trigger signal in accordance with a gate drive voltage signal created by the microcomputer 6 is provided.
  • a trigger signal generated by the trigger circuit 30 is given to the A / D converter 11.
  • a determination circuit 40 and a memory 50 are provided between the A / D converter 11 and the frequency conversion device 12.
  • the memory 50 accumulates digital data of the current output from the A / D converter 11 in time series. That is, the memory 50 accumulates current waveform data.
  • the A / D converter 11 captures current waveform data by sampling current values at predetermined time intervals in a predetermined period. Then, as will be described later, such current waveform capturing in a predetermined period is repeated a plurality of times.
  • FIG. 12 is a flowchart illustrating the operation of determining the temperature of the IGBT according to the sixth embodiment.
  • the operation added to the determination operation (FIG. 5) of the fifth embodiment by the trigger circuit 30, the determination circuit 40, and the memory 50 is as follows.
  • the trigger circuit 30 generates a sampling trigger of the A / D converter 11 while synchronizing with the gate drive signal created by the microcomputer 6 (step (9)).
  • the determination circuit 40 determines whether the number of sampling repetitions in the predetermined period for capturing the current waveform as described above, that is, whether the current waveform capturing count has reached the predetermined count (step (10)).
  • step (10) When the number of sampling repetitions reaches the predetermined number (Yes in step (10)), that is, when the current waveform data is fetched a predetermined number of times, the current waveform data accumulated in the memory 50 by the frequency converter 12 The frequency characteristic of the current is calculated from (digital signal) (step (4)).
  • Step (11) the current data A / D converted by the A / D converter 11 is accumulated in the memory 50 (Step (11)), and sampling is performed.
  • the trigger start time is delayed by a predetermined time ⁇ t shorter than the sampling interval (step (12)), a sampling trigger is generated again by the trigger circuit 30 (step (9)), and the current sensor is detected by the A / D converter 11.
  • Ten current detection signals are A / D converted.
  • FIG. 13 schematically shows sampling data of a current waveform in the sixth embodiment.
  • the black circle plot indicates the first sampling data
  • the black square plot indicates the second sampling data
  • the black triangle plot indicates the third sampling data
  • the current waveform detection accuracy is improved by delaying the sampling trigger start time by a predetermined time ⁇ t shorter than the sampling interval and capturing the waveform data a plurality of times. At this time, waveform data substantially equivalent to sampling at a sampling rate higher than the sampling rate of the A / D converter 11 is obtained. Therefore, accurate waveform data can be obtained even if a low-cost A / D converter is used.
  • the noise is a high-frequency current (about 1 MHz or more)
  • the rotation speed of the motor is generally about 100 Hz or less
  • the switching carrier frequency of the IGBT is 1 kHz or more.
  • the noise is generated at a frequency of 10 times or more with respect to a change in the motor current.
  • the temperature of the IGBT depends on the current flowing through the main circuit of the power converter, that is, the motor current, and therefore the frequency of temperature change is 1/10 or less of the frequency of noise generation. That is, the temperature is substantially constant while the noise current waveform is captured several times. Therefore, according to the sixth embodiment, since accurate waveform data can be obtained by capturing waveform data a plurality of times, the temperature of the IGBT can be determined with high accuracy.
  • the A / D converter 11, the frequency converter 12, the arithmetic unit 13, and the memory device 14 are integrated on the same semiconductor chip as the microcomputer 6. May be.
  • the A / D converter 11, the frequency converter 12, the arithmetic unit 13, the memory device 14, the trigger circuit 30, the determination circuit 40, and the memory 50 are formed on the same semiconductor chip as the microcomputer 6. It may be integrated. Such integration can reduce the size or cost of the control unit of the power converter.
  • various AC motors such as induction machines and synchronous machines can be applied.
  • the load driven by the inverter circuit is not limited to a three-phase AC motor, and may be another AC load.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

装置の大型化や高コスト化を招くことなく、IGBTなどの半導体スイッチング素子の温度を高精度で検出できる電力変換装置が開示される。電力変換装置は、半導体スイッチング素子(3a~3f)のオン・オフにより電力変換を行う主回路部を備えるものであって、主回路部に流れる電流の周波数特性に基づいて、半導体スイッチング素子の温度を判定する温度判定部(10,11,12,13,14)を備える。

Description

電力変換装置
 本発明は、半導体スイッチング素子の温度測定機能を備える電力変換装置に関する。
 インバータ装置などの電力変換装置は、モータ駆動、太陽光発電、風力発電など、様々な分野で用いられている。この電力変換装置の寿命(5~10年)は、電力変換装置に接続されるモータ、太陽光パネル、風力発電機などの寿命(20年以上)に比べて短い。このため、電力変換装置の長寿命化が要求されている。
 電力変換装置の寿命を決める主たる要因は、電力変換装置の主回路を構成する電力用半導体スイッチング素子、例えば、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:以下IGBTと略記する)の故障である。
 IGBTのエミッタ電極は、アルミや銅を使ったワイヤボンディングによりパッケージのエミッタ配線と接続されている。また、IGBTのコレクタ電極は、半田によりパッケージのコレクタ配線と接続されている。ところで、IGBTのエミッタ電極およびコレクタ電極には100A/cm以上の大電流が流れる。このため、ワイヤとエミッタ電極間あるいは半田とコレクタ電極間には、IGBTの動作パターンに応じて頻繁に温度変化が起きる。この温度変化により、ワイヤとエミッタ電極接合部、あるいは、半田とコレクタ電極接合部に金属疲労による亀裂が発生し、IGBTは故障に至る。
 この温度変化の大きさと、故障までの温度変化のサイクル数との関係は、IGBT製造メーカから実験式(信頼性マニュアルやアプリケーションマニュアルなどに記載)として提供されている。従って、IGBTの温度を測定できれば、IGBTの寿命を予測することができる。そして、予測されるIGBTの寿命に応じ、電力変換装置の運転方法を見直したり、計画的にIGBTを交換したりすることで、電力変換装置の長寿命化が図れる。
 IGBTの温度を測定する従来技術として、特許文献1および特許文献2に記載の技術が知られている。
 特許文献1に記載の技術では、IGBTチップの半導体基板に温度検知用ダイオードを設け、ダイオードの順電圧の温度依存性を利用して、IGBTの温度を検知する。
 特許文献2に記載の技術では、IGBTデバイスのスイッチオフ段階中において、ゲート・エミッタ電圧におけるミラープラトー段階の持続時間の温度依存性を利用して、IGBTの温度を検知する。
特開平9-36356号公報 特開2013-142704号公報
 特許文献1に記載の技術では、IGBTチップ内にセンサを設けるため、IGBTの製造プロセスが複雑になるとともに、チップサイズが大きくなる。このため、電力変換装置の大型化や高コスト化を招く。
 特許文献2に記載の技術では、IGBTを高速にスイッチングさせると、ミラープラトー期間が短くなるため、温度の測定精度が低下する。
 そこで、本発明は、装置の大型化や高コスト化を招くことなく、IGBTなどの半導体スイッチング素子の温度を高精度で検出できる電力変換装置を提供する。
 上記課題を解決するために、本発明による電力変換装置は、半導体スイッチング素子のオン・オフにより電力変換を行う主回路部を備えるものであって、主回路部に流れる電流の周波数特性に基づいて、半導体スイッチング素子の温度を判定する温度判定部を備える。
 本発明によれば、電流の周波数特性に基づいて、半導体スイッチング素子の温度を判定することにより、装置の大型化や高コスト化を招くことなく、半導体スイッチング素子の検出精度を向上できる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
実施例1である電力変換装置の構成を示す。 実施例1における、ゲート電圧波形、エミッタ電流波形、並びにターンオフ時における電流周波数特性を示す。 実施例1におけるIGBTの温度の判定動作を示すフローチャートである。 実施例2である電力変換装置の構成を示す。 実施例2におけるIGBTの温度の判定動作を示すフローチャートである。 実施例3である電力変換装置の構成を示す。 実施例3における、ゲート電圧波形、直流母線電流波形、並びに検出電流の電流周波数特性を示す。 実施例4である電力変換装置の構成を示す。 実施例4における、ゲート電圧波形、電流センサによって検出される電流波形、並びに検出電流の電流周波数特性を示す。 実施例5である電力変換装置の構成を示す。 実施例6である電力変換装置の構成を示す。 実施例6におけるIGBTの温度の判定動作を示すフローチャートである。 実施例6における電流波形のサンプリングデータを模式的に示す。
 以下、本発明の実施形態について、図面を用いて説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
 図1は、本発明の実施例1である電力変換装置の構成を示す。
 本実施例1の電力変換装置は、3相交流電力を受電し(R,S,T)、受電した3相交流電力を可変電圧・可変周波数の3相交流電力に変換して、3相交流モータへ出力する(U,V,W)。受電する3相交流電力は、例えば、商用電源から供給される、一定電圧・一定周波数の3相交流電力である。
 まず、電力変換装置が備える主回路部について説明する。
 ダイオード1a~1fは、3相ダイオードブリッジ回路からなる整流回路を構成する。
ダイオード1aのアノードと、ダイオード1bのカソードは、受電側のR相入力と接続される。同様に、ダイオード1cのアノードと、ダイオード1dのカソードは、S相入力に接続され、ダイオード1eのアノードと、ダイオード1fのカソードは、T相入力に接続される。受電した3相交流電力は、ダイオード1a~1fによって構成される整流回路によって全波整流され、さらに平滑コンデンサ2によりリップル成分が取り除かれ直流電力に変換される。
 IGBT3a~3fは、3相インバータ回路を構成する。IGBT3a~3fのコレクタには、それぞれダイオード4a~4fのカソードが接続され、IGBT3a~3fのエミッタには、それぞれダイオード4a~4fのアノードが接続される。従って、ダイオード4a~4fは、いわゆる環流ダイオードとして機能する。IGBT3a,3c,3eのコレクタは、ダイオード1a,1c,1eの各カソードとともに、平滑コンデンサ2の両端の内の高電位側に接続される。また、IGBT3b,3d,3fのエミッタは、ダイオード1b,1d,1fの各アノードとともに、平滑コンデンサ2の両端の内の低電位側に接続される。IGBT3a~3fのゲートには、それぞれ、図示されないゲート駆動回路(図4における5a~5f)が接続される。IGBT3aのエミッタとIGBT3bのコレクタは、3相交流モータ5のW相に接続される。同様に、IGBT3cのエミッタとIGBT3dのコレクタは3相交流モータ5のV相に接続され、IGBT3eのエミッタとIGBT3fのコレクタは3相交流モータ5のU相と接続される。
 3相インバータ回路は、IGBT3a~3fがゲート駆動回路によってオン・オフ制御されることにより、整流回路側から入力する直流電力を可変電圧・可変周波数の3相交流電力に変換して、3相交流モータ5のU相、V相およびW相へ出力する。これにより、3相交流モータ5は可変速駆動される。
 次に、電力変換装置が備える温度判定部について説明する。
 W相下アームにおけるIGBT3bのエミッタには、電流センサ10が設けられている。電流センサ10によって、IGBT3bのエミッタ電流が検出される。電流センサ10の信号は、A/Dコンバータ11に入力される。A/Dコンバータ11の出力は、周波数変換装置12に入力される。周波数変換装置12は、A/Dコンバータ11が出力する、エミッタ電流を示すデジタル信号に基づいて、検出されたエミッタ電流の周波数特性を算出する。また、メモリ装置14には、IGBT3bに流れる電流の周波数特性とIGBT3bの温度との関係を示すデータが蓄積されている。演算器13は、周波数変換装置12が出力する、検出されたIGBT3bのエミッタ電流の周波数特性と、メモリ装置14に蓄積されるデータを比較して、IGBT3bの温度を演算する。
 本発明者の検討によれば、後述するように、IGBTに流れる電流の周波数特性は温度依存性を有している。従って、本実施例1によれば、周波数特性に基づいてIGBTの温度を検出することにより、IGBTの素子構成や電力変換装置の回路構成を特段変更することなく、従って、装置の大型化や高コスト化を招くことなく、高精度でIGBTの温度を計測することができる。
 次に、本実施例1の動作について、図2および図3を用いて説明する。
 図2は、実施例1におけるIGBT3bについて、ゲート電圧波形、エミッタ電流波形、並びにターンオフ時における電流周波数特性を示す。ゲート電圧がしきい値電圧を超えるとIGBT3bはターンオンし、エミッタ電流が流れ始める。ターンオン初期には、W相上アームのダイオード4aのリカバリ電流が3相交流モータ5のW相電流に重畳されるため、エミッタ電流波形はピークを有する。ターンオフ時において、ゲート電圧がしきい値電圧を下回るとIGBT3bはターンオフし、エミッタ電流が減少する。
 図2のエミッタ電流波形の内、実線で示す波形は、IGBT3bの温度がTaのときのエミッタ電流波形であり、点線で示す波形はIGBT3bの温度がTb(>温度Ta)のときのエミッタ電流波形である。図2に示すように、温度Taでのターンオフ時間(下降時間)tf<温度Tbでのターンオフ時間(下降時間)tf’、となる。
 図2に示す電流周波数特性は、同図2に示すエミッタ電流波形を周波数変換(例えば、フーリエ変換)して得られる。このような周波数変換は、周波数変換装置12(図1)によって実行される。エミッタ電流が一定である時間をtpとすると、IGBT3bのターンオフ時のエミッタ電流の電流値(dB)は、DCから周波数1/(πtp)までは一定の値を有し、1/(πtp)以上の周波数では、20dB/dec(周波数10倍で20dB変化)の傾きで、周波数に応じて減少する。さらに、本発明者の検討によれば、温度Taの場合、電流値(dB)は、周波数が1/(πtf)以上で、40dB/dec(周波数10倍で40dB変化)の傾きで、周波数に応じて減少する。また、温度Tb(>Ta)の場合、電流値(dB)は、周波数が1/(πtf’)(<1/(πtf))以上で、40dB/decの傾きで、周波数に応じて減少する。
 このように、本発明者の検討によれば、IGBTのターンオフ時におけるエミッタ電流の周波数特性は、上述のような温度依存性を有する。そこで、本実施例1においては、周波数特性において、電流値の減少の傾きが20dB/decから40dB/decに変わる周波数と温度との関係を予め測定などにより求めて、メモリ装置14(図1)にデータとして予め蓄積する。演算器13(図1)は、周波数変換装置12(図1)によって演算される検出電流の周波数特性から検出電流値の減少の傾きが20dB/decから40dB/decに代わる周波数を演算し、演算された周波数を、メモリ装置14(図1)に蓄積されるデータと比較して、演算された周波数に対応する温度を判定する。
 なお、温度依存性を除く電流値(dB)の周波数特性は、いわゆる台形波の周波数スペクトルに対応する。
 図3は、実施例1におけるIGBTの温度の判定動作を示すフローチャートである。
 動作が開始されると(ステップ(1))、IGBT3bの電流スイッチング時の電流波形が、電流センサ10により電圧信号に変換される(ステップ(2))。
 電流センサ10からの電圧信号すなわち電流を示すアナログ信号は、A/Dコンバータ11によって、デジタル信号に変換される(ステップ(3))。
 A/Dコンバータ11からのデジタル信号が示す電流波形が、周波数変換装置12によって、電流の周波数特性に変換される(ステップ(4))。
 次に、演算器13によって、メモリ装置14に蓄積される電流の周波数特性と温度の関係、本実施例1では、傾き40dB/decでの電流値減少が始まる周波数と温度の関係が参照される(ステップ(5))とともに、周波数変換装置12によって算出される検出電流の周波数特性において、傾き40dB/decでの電流値減少が始まる周波数が演算される(ステップ(6))。
 次に、演算器13によって、メモリ装置14に蓄積されるデータと、検出電流の周波数特性、本実施例1では、傾き40dB/decでの電流値減少が始まる周波数の演算値とが比較され、比較結果に応じてIGBTの温度が判定される(ステップ(7))。
 上述のように、本実施例1によれば、装置の大型化や高コスト化を招くことなく、高精度でIGBTの温度を計測することができる。なお、本実施例1においては、ターンオフ時の電流周波数特性に基づいてIGBTの温度が判定されるが、ターンオン時の電流周波数特性に基づいてIGBTの温度が判定されても良い。この場合、上述の下降時間tfを上昇時間trに置き換えればよい。
 なお、本実施例1においては、インバータ回路を構成するIGBTの内、IGBT3bを代表として温度を判定しているが、他のIGBT3a,3c~3fの内のいずれかを代表としても良い。また、IGBT3a~3fの各々に電流センサを設けて個別に温度を判定しても良い。これにより、故障する可能性が高いIGBTだけを交換することができるので、容易に、あるいは低コストで、電力変換装置の長寿命化が図れる。また、IGBTのコレクタ電流の周波数特性に基づいて、IGBTの温度を判定しても良い。
 また、上下アームにおけるIGBTとダイオードの並列回路は、並列接続される複数のIGBTチップと、並列接続される複数のダイオードチップとの並列回路でも良い。例えば、上下アームをいわゆるIGBTモジュールによって構成しても良い。IGBTモジュールの場合、代表IGBTの温度を判定し、故障に到るまでの期間(時間)が所定値を下回ったら、IGBTモジュールが交換される。
 次に、本発明の実施例2について、図4および図5を用いて説明する。なお、主に、実施例1と異なる点について説明する。
 図4は、本発明の実施例2である電力変換装置の構成を示す。
 本実施例2において、マイクロコンピュータ6は、外部(例えば、上位制御装置)からのトルク指令値(図示せず)と電流センサ8a,8bによって検出されるモータ電流情報に基づいて、IGBT3a~3fを駆動するためのPWM信号を作成する。PWM信号は、マイクロコンピュータ6から、フォトカプラ7a~7fを介して、ゲート駆動回路5a~5fに送信される。ゲート駆動回路5a~5fは、PWM信号に応じてゲート駆動電圧信号を、それぞれIGBT3a~3fのゲートへ出力する。これにより、IGBT3a~3fは、オン・オフ制御される。すなわち、マイクロコンピュータ6は、IGBT3a~3fをオン・オフ制御するためのゲート駆動電圧信号を作成する制御部として機能する。
 なお、フォトカプラ7a~7fは、マイクロコンピュータ6側と、ゲート駆動回路5a~5fとの間を、PWM信号を伝送しながらも、電気的に絶縁分離するために設けられる。
 周波数変換装置12には、周波数変換を開始するトリガとして、マイクロコンピュータ6からのトリガ信号が入力される。トリガ信号は、PWM信号に応じて、IGBTがターンオンあるいはターンオフするタイミングで出力される。すなわち、周波数変換装置12は、ゲート駆動電圧信号に同期して、周波数変換、すなわちIGBT3bのエミッタ電流の周波数特性の算出を開始する。
 図5は、実施例2におけるIGBTの温度の判定動作を示すフローチャートである。
 本実施例2においては、マイクロコンピュータ6からのトリガ信号に応じて(ステップ(8))、A/Dコンバータ11からのデジタル信号が示すターンオン電流波形あるいはターンオフ電流波形が、周波数変換装置12によって、電流の周波数特性に変換される(ステップ(4))。
 これにより、周波数変換装置12は、ターンオン電流波形あるいはターンオフ電流波形のどちらを取り込んでいるかを判別して、どちらか一方の電流波形の変換処理を実行することができる。このため、周波数変換装置12やA/Dコンバータ11の処理負荷が低減される。従って、処理に要する時間が短縮されたり、安価な周波数変換装置12やA/Dコンバータ11が適用できたりする。
 次に、本発明の実施例3について、図6および図7を用いて説明する。なお、主に、実施例2と異なる点について説明する。
 図6は、本発明の実施例3である電力変換装置の構成を示す。
 本実施例3において、電流センサ10は、平滑コンデンサ2の低電位端と、下アーム側のIGBT3b,3d,3fのエミッタ、すなわちインバータ回路の直流入力の低電位側との間に設けられている。従って、電流センサ10は、いわば直流母線電流を検出する。
 図7は、本実施例3における、IGBT3bのゲート電圧波形、電流センサ10によって検出される直流母線電流波形、並びに検出電流の電流周波数特性を示す。
 ゲート電圧の立ち上がり時、すなわちIGBT3bのターンオン時には、リカバリ電流が流れると共に、IGBT3bの寄生容量を介して過渡的に電流が流れる。これらの電流は、配線寄生インダクタンス、IGBT3bの寄生容量、配線の寄生容量を通って、整流回路側に流れ込む。このため、図7に示すように、電流センサ10による検出電流は過渡的に振動する。また、ゲート電圧の立ち下がり時、すなわちIGBT3bのターンオフ時においても、寄生容量を介して過渡的に電流が流れるため、ターンオン時と同様に、電流センサ10による検出電流は振動する。
 さらに、図7に示すように、電流センサ10によって検出される直流母線電流の周波数特性は、電流の過渡的振動に伴い、いくつかの周波数においてピーク値を示す。本発明者の検討によれば、ピーク値を示す周波数は、図7に示すように温度が高くなると(Ta→Tb(>Ta))、低周波側へずれるような、温度依存性を有する。
 ここで、寄生容量をCsとし、ターンオン時あるいはターンオフ時のIGBTのコレクタ・エミッタ間電圧変化をdV/dtとすると、過渡的に流れる電流は、Cs×(dV/dt)と表される。この(dV/dt)は温度が高くなると小さくなり、電流の変化が緩やかになる。このため、図7において、温度Taにおける周波数特性(実線)と温度Tb(>Ta)における周波数特性(点線)を比較すると判るように、温度Taの場合のピーク値に対して、温度Tb(>Ta)の場合のピーク値は、いずれも周波数が低くなる方へずれている。
 本実施例3においては、このような周波数特性と温度との関係、すなわち、温度と、電流ピーク値を示す周波数との関係が、実測などにより予め取得され、メモリ装置14に格納される。そして、前述の図5に示す温度の判定動作によって、電流センサ10による検出電流から温度を判定することができる。
 ここで、電流センサ10で検出される直流母線電流の波形は、IGBT3a~3fの各々のターンオンおよびターンオフのタイミングで、図7に示す電流波形のように変化する。従って、インバータ回路を構成する各IGBTのゲート駆動信号がオンあるいはオフするタイミングでトリガ信号を発生することで、IGBT3a~3fの内、どのIGBTのターンオン電流波形あるいはターンオフ電流波形を取り込んでいるかが判別できる。従って、一つの電流センサ10によって、各IGBTの温度を判定することができる。
 電流センサ10としては、例えば、シャント抵抗器が用いられる。なお、電流センサ10は、いわゆる1シャント方式でモータ電流を検出する時に用いられる直流母線電流検出用のセンサを兼ねても良い。
 次に、本発明の実施例4について、図8および図9を用いて説明する。なお、主に、実施例3と異なる点について説明する。
 図8は、本発明の実施例4である電力変換装置の構成を示す。
 本実施例4においては、ノイズを除去するフィルタとして、インバータ回路の直流入力の低電位側(N側)に、Xコンデンサ20の一端が接続される。Xコンデンサ20の他端は電流センサ10を介してグランドに接続されている。従って、Xコンデンサ20によって、直流母線電流から、ノイズすなわち各IGBTのターンオン・ターンオフ時における過渡的振動成分が除去される。この過渡的振動成分は、Xコンデンサ20を介して、グランドに流れ、電流センサ10によって検出される。
 図9は、本実施例4における、IGBT3bのゲート電圧波形、電流センサ10によって検出される電流波形、並びに検出電流の電流周波数特性を示す。
 図9が示すように、電流センサ10によって検出される電流の周波数特性は、図7(実施例3)と同様に、いくつかの周波数においてピーク値を示し、かつ、温度が高くなると(Ta→Tb(>Ta))、ピーク値を示す周波数が低周波側へずれるような温度依存性を有する。従って、前述の実施例3と同様に、各IGBTの温度を判定できる。
 また、図7と図9の電流波形および周波数特性から判るように、本実施例4において、電流センサ10の検出電流は、直流母線電流の直流成分すなわちモータ電流に応じて流れる電流成分が除去されている。従って、電流センサ10が有する性能として、検出可能な最大電流値を低減できる。すなわち、電流センサ10を小型化あるいは低コスト化できる。
 次に、本発明の実施例5について、図10を用いて説明する。なお、主に、実施例4と異なる点について説明する。
 図10は、本発明の実施例5である電力変換装置の構成を示す。
 本実施例5においては、直流母線電流からコモンモードノイズを除去するために、インバータ回路の直流入力側に、フィルタコンデンサとして、Yコンデンサ21a,21bが接続される。Yコンデンサ21aの一端が、インバータ回路の直流入力の低電位側(N側)に接続され、Yコンデンサ21aの他端がYコンデンサ21bの一端に接続される。Yコンデンサ21bの他端が、インバータ回路の直流入力の高電位側(P側)に接続される。さらに、Yコンデンサ21a,21bの接続点がグランドに接続されている。従って、Yコンデンサ21a,21bによって、直流母線電流から、コモンモードノイズすなわち各IGBTのターンオン・ターンオフ時における過渡的振動成分が除去される。この過渡的振動成分は、グランドに流れ、電流センサ10によって検出される。
 本実施例5においても、電流センサ10によって検出される電流の周波数特性は、図7(実施例3)や図9(実施例4)と同様に、温度依存性を有するので、前述の実施例3,4と同様に、各IGBTの温度を判定できる(図5参照)。
 また、本実施例5においても、前述の実施例4(図8)と同様に、電流センサ10を小型化あるいは低コスト化できる。
 次に、本発明の実施例6について、図11~12を用いて説明する。なお、主に、実施例5と異なる点について説明する。
 図11は、本発明の実施例6である電力変換装置の構成を示す。
 本実施例6においては、マイクロコンピュータ6が作成するゲート駆動電圧信号に応じてトリガ信号を発生するトリガ回路30が設けられる。トリガ回路30が発生するトリガ信号は、A/Dコンバータ11に与えられる。また、A/Dコンバータ11と周波数変換装置12の間に、判定回路40およびメモリ50が設けられる。メモリ50は、A/Dコンバータ11が出力する電流のデジタルデータを時系列に蓄積する。すなわち、メモリ50は電流波形データを蓄積する。なお、本実施例6において、A/Dコンバータ11は、所定期間において、所定時間間隔で、電流値をサンプリングすることにより、電流波形データを取り込む。そして、後述するように、このような、所定期間における電流波形取り込みが複数回繰り返される。
 図12は、実施例6におけるIGBTの温度の判定動作を示すフローチャートである。
本実施例6において、トリガ回路30、判定回路40およびメモリ50によって、実施例5の判定動作(図5)に付加される動作は次のとおりである。
 トリガ回路30によって、マイクロコンピュータ6が作成するゲート駆動信号と同期をとりながら、A/Dコンバータ11のサンプリングトリガが発生される(ステップ(9))。
 また、判定回路40によって、上述のような電流波形取り込みのための所定期間でのサンプリングの繰り返し回数が、すなわち電流波形取り込み回数が、所定回数に達したかが判定される(ステップ(10))。
 サンプリング繰り返し回数が所定回数に達している場合(ステップ(10)のYes)、すなわち電流波形データの取り込みが所定回数実行された場合、周波数変換装置12によって、メモリ50に蓄積されている電流波形データ(デジタル信号)から電流の周波数特性が演算される(ステップ(4))。
 サンプリング繰り返し回数が所定回数に達していない場合(ステップ(10)のNo)、A/Dコンバータ11でA/D変換した電流のデータがメモリ50に蓄積されるとともに(ステップ(11))、サンプリングトリガ開始時間を、サンプリング間隔よりも短い所定時間Δtだけ遅らせて(ステップ(12))、再度、トリガ回路30回路によりサンプリングトリガを発生させ(ステップ(9))、A/Dコンバータ11により電流センサ10の電流検出信号がA/D変換される。
 図13は、本実施例6における電流波形のサンプリングデータを模式的に示す。
 図13中、黒丸のプロットは1回目のサンプリングデータ、黒四角のプロットは2回目のサンプリングデータ、黒三角のプロットは3回目のサンプリングデータを示す。
 図13に示すように、サンプリングトリガ開始時間をサンプリング間隔よりも短い所定時間Δtだけ遅らせて、複数回、波形データを取り込むことにより、電流波形の検出精度が向上する。このとき、実質的に、A/Dコンバータ11が有するサンプリングレイトよりも高いサンプリングレイトでサンプリングしたのと同等な波形データが得られる。従って、低コストなA/D変換器を用いても、正確な波形データが得られる。
 ここで、ノイズ(過渡的振動成分)は高周波電流(1MHz程度以上)であるのに対し、一般的に、モータの回転数は100Hz程度以下、IGBTのスイッチングキャリア周波数は1kHz以上である。この場合、ノイズは、IGBTのスイッチング時に発生するので、モータの電流の変化に対して10倍以上の頻度で発生する。ここで、IGBTの温度は、電力変換装置の主回路に流れる電流すなわちモータ電流に依存するので、温度変化の頻度は、ノイズの発生頻度に対して1/10以下である。すなわち、ノイズ電流波形を数回程度取り込む間は、温度はほぼ一定である。従って、本実施例6によれば、複数回の波形データを取り込むことにより正確な波形データが得られるので、IGBTの温度を高精度に判定できる。
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
 例えば、実施例2~5(図4,6,8,10)において、A/Dコンバータ11、周波数変換装置12、演算器13およびメモリ装置14が、マイクロコンピュータ6と同じ半導体チップに集積化されても良い。また、実施例6(図11)において、A/Dコンバータ11、周波数変換装置12、演算器13、メモリ装置14、トリガ回路30、判定回路40およびメモリ50は、マイクロコンピュータ6と同じ半導体チップに集積化されても良い。このような集積化により、電力変換装置の制御部を小型化あるいは低コスト化できる。
 また、3相交流モータ5としては、誘導機や同期機など、種々の交流モータが適用できる。
 また、インバータ回路によって駆動される負荷は、3相交流モータに限らず、他の交流負荷でも良い。
1a~1f:ダイオード、2:平滑コンデンサ、3a~3f:IGBT、4a~4f:ダイオード、5a~5f:ゲート駆動回路、5:3相交流モータ、6:マイクロコンピュータ6、7a~7f:フォトカプラ、10:電流センサ、11:A/Dコンバータ、12:周波数変換装置、13:演算器、14:メモリ装置、20:Xコンデンサ、21a,21b:Yコンデンサ、30:トリガ回路、40:判定回路、50:メモリ

Claims (14)

  1.  半導体スイッチング素子のオン・オフにより電力変換を行う主回路部を備える電力変換装置において、
     前記主回路部に流れる電流の周波数特性に基づいて、前記半導体スイッチング素子の温度を判定する温度判定部を備えること特徴とする電力変換装置。
  2.  請求項1に記載の電力変換装置において、
     前記温度判定部は、
     前記主回路部に流れる電流を検出し、
     検出される前記電流の周波数特性を算出し、
     算出される前記周波数特性に基づいて、
     前記半導体スイッチング素子の温度を判定することを特徴とする電力変換装置。
  3.  請求項1に記載の電力変換装置において、
     前記電流は、前記半導体スイッチング素子に流れる電流であることを特徴とする電力変換装置。
  4.  請求項1に記載の電力変換装置において、
     前記温度判定部は、
     前記電流を検出する電流センサと、
     前記電流センサの出力信号をデジタル信号に変換するA/Dコンバータと、
     前記A/Dコンバータが出力する前記デジタル信号に基づいて、前記電流の周波数特性を算出する周波数変換装置と、
     前記電流の周波数特性と前記半導体スイッチング素子の温度との関係を示すデータを蓄積するメモリ装置と、
     前記周波数変換装置によって算出される前記電流の周波数特性と、前記周波数変換装置に蓄積される前記データとを比較することにより、前記半導体スイッチング素子の温度を判定する演算器と、
    を備えることを特徴とする電力変換装置。
  5.  請求項1に記載の電力変換装置において、
     前記温度判定部は、
     前記電流の周波数特性において、前記電流の減少の傾きが、20dB/decから40dB/decに変わる周波数に基づいて前記半導体スイッチング素子の温度を判定すること特徴とする電力変換装置。
  6.  請求項2に記載の電力変換装置において、
     前記温度判定部は、前記半導体スイッチング素子のオン・オフを制御する駆動信号に同期して、前記電流の周波数特性の算出を開始することを特徴とする電力変換装置。
  7.  請求項4に記載の電力変換装置において、
     前記周波数変換装置は、前記半導体スイッチング素子のオン・オフを制御する駆動信号に同期して、前記電流の周波数特性を算出することを特徴とする電力変換装置。
  8.  請求項1に記載の電力変換装置において、
     前記電流は、直流母線電流であることを特徴とする電力変換装置。
  9.  請求項8に記載の電力変換装置において、
     前記温度判定部は、前記半導体スイッチング素子のターンオン時またはターンオフ時における前記直流母線電流の過渡的振動成分に応じて、前記周波数特性において電流ピーク値が生じる周波数に基づいて、前記半導体スイッチング素子の温度を判定することを特徴とする電力変換装置。
  10.  請求項1に記載の電力変換装置において、
     前記電流は、前記半導体スイッチング素子のターンオン時またはターンオフ時における直流母線電流の過渡的振動成分あることを特徴とする電力変換装置。
  11.  請求項10に記載の電力変換装置において、
     前記温度判定部は、前記過渡的振動成分に応じて前記周波数特性において電流ピーク値が生じる周波数に基づいて、前記半導体スイッチング素子の温度を判定することを特徴とする電力変換装置。
  12.  請求項10に記載の電力変換装置において、
     前記温度判定部は、
     前記直流母線電流のノイズを除去するフィルタコンデンサとグランド間を流れる前記過渡的振動成分を検出することを特徴とする電力変換装置。
  13.  請求項4に記載の電力変換装置において、
     前記A/Dコンバータによって所定時間間隔で前記電流をサンプリングすることにより前記電流の波形が複数回取り込まれ、
     前記電流の波形を取り込むごとに、前記サンプリングの開始を所定時間遅らすことを特徴とする電力変換装置。
  14.  請求項4に記載の電力変換装置において、
     前記A/Dコンバータと、前記周波数変換装置と、前記メモリ装置と、前記演算器とが、前記半導体スイッチング素子のオン・オフを制御する駆動信号を作成する制御部を構成する半導体チップに集積化されていることを特徴とする電力変換装置。
PCT/JP2018/007271 2017-04-19 2018-02-27 電力変換装置 WO2018193720A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112018001405.3T DE112018001405T5 (de) 2017-04-19 2018-02-27 Leistungsumsetzvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-082909 2017-04-19
JP2017082909A JP6861079B2 (ja) 2017-04-19 2017-04-19 電力変換装置

Publications (1)

Publication Number Publication Date
WO2018193720A1 true WO2018193720A1 (ja) 2018-10-25

Family

ID=63857049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007271 WO2018193720A1 (ja) 2017-04-19 2018-02-27 電力変換装置

Country Status (3)

Country Link
JP (1) JP6861079B2 (ja)
DE (1) DE112018001405T5 (ja)
WO (1) WO2018193720A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112752560A (zh) 2018-09-26 2021-05-04 株式会社Gc 牙科用组合物
AT523994B1 (de) * 2020-06-16 2022-07-15 Avl List Gmbh Messanordnung für einen Umrichter und Umrichteranordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556553A (ja) * 1991-08-20 1993-03-05 Okuma Mach Works Ltd Igbtのゲートドライブ回路
JP2008125157A (ja) * 2006-11-08 2008-05-29 Nissan Motor Co Ltd 電力変換装置
JP2009168527A (ja) * 2008-01-11 2009-07-30 Alpine Electronics Inc 温度検出装置及び方法、並びに回路
JP2012005278A (ja) * 2010-06-18 2012-01-05 Mitsubishi Electric Corp 半導体装置
JP2015206734A (ja) * 2014-04-22 2015-11-19 トヨタ自動車株式会社 温度算出装置
JP2017123704A (ja) * 2016-01-05 2017-07-13 株式会社日立製作所 電力変換装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936356A (ja) 1995-07-18 1997-02-07 Fuji Electric Co Ltd 温度検知部内蔵型バイポーラ半導体素子の使用方法
US7522434B2 (en) * 2005-10-27 2009-04-21 Wisconsin Alumni Research Foundation Temperature estimation based on a signal oscillation
EP2615467B1 (en) 2012-01-11 2014-06-18 ABB Research Ltd. System and method for monitoring in real time the operating state of an IGBT device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556553A (ja) * 1991-08-20 1993-03-05 Okuma Mach Works Ltd Igbtのゲートドライブ回路
JP2008125157A (ja) * 2006-11-08 2008-05-29 Nissan Motor Co Ltd 電力変換装置
JP2009168527A (ja) * 2008-01-11 2009-07-30 Alpine Electronics Inc 温度検出装置及び方法、並びに回路
JP2012005278A (ja) * 2010-06-18 2012-01-05 Mitsubishi Electric Corp 半導体装置
JP2015206734A (ja) * 2014-04-22 2015-11-19 トヨタ自動車株式会社 温度算出装置
JP2017123704A (ja) * 2016-01-05 2017-07-13 株式会社日立製作所 電力変換装置

Also Published As

Publication number Publication date
JP2018179878A (ja) 2018-11-15
DE112018001405T5 (de) 2019-12-19
JP6861079B2 (ja) 2021-04-21

Similar Documents

Publication Publication Date Title
US9935577B2 (en) Semiconductor device and fault detecting method
US8148929B2 (en) Power electronic module IGBT protection method and system
JP5118258B2 (ja) 電力変換装置
US20080007318A1 (en) Adaptive gate drive for switching devices of inverter
JP4942804B2 (ja) 半導体電力変換装置
JP6398949B2 (ja) 半導体素子の駆動装置
EP2197111A1 (en) A gate driver circuit, switch assembly and switch system
JP2016220481A (ja) 電力変換装置
US11757444B2 (en) Semiconductor element drive device and power conversion apparatus
WO2018193720A1 (ja) 電力変換装置
KR102520851B1 (ko) Igbt 모듈의 정션 온도 추정 장치
JP2015033149A (ja) 半導体素子の駆動装置及びそれを用いた電力変換装置
KR102362713B1 (ko) 열 소손 방지 기능을 포함하는 전력 변환 장치
JP5656695B2 (ja) 電動機駆動装置および空気調和装置
US10432128B2 (en) Frequency converter
JP2015033222A (ja) 半導体素子の駆動装置およびそれを用いる電力変換装置
JP7051008B2 (ja) 並列駆動装置及び電力変換装置
JPWO2017158867A1 (ja) 電力変換装置
JP2019187089A (ja) 診断装置及び診断システム
JP4848714B2 (ja) 半導体電力変換装置
CN111630401B (zh) 半导体装置以及电力变换装置
JP7455273B2 (ja) 電力変換装置、モータ駆動装置、及び空気調和機
KR100557715B1 (ko) 전력변환장치의 열화진단 방법 및 장치
JP2020065386A (ja) 電力変換装置及び電力変換装置の診断方法
WO2020213317A1 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18788078

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18788078

Country of ref document: EP

Kind code of ref document: A1