WO2018193537A1 - 空気調和機及び空気調和機のファン速制御方法 - Google Patents
空気調和機及び空気調和機のファン速制御方法 Download PDFInfo
- Publication number
- WO2018193537A1 WO2018193537A1 PCT/JP2017/015676 JP2017015676W WO2018193537A1 WO 2018193537 A1 WO2018193537 A1 WO 2018193537A1 JP 2017015676 W JP2017015676 W JP 2017015676W WO 2018193537 A1 WO2018193537 A1 WO 2018193537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- outdoor
- compressor
- temperature
- difference
- condensation temperature
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B13/00—Compression machines, plants or systems, with reversible cycle
Definitions
- the present invention relates to an air conditioner and a fan speed control method of the air conditioner, and more particularly to a multi-type air conditioner having a plurality of refrigeration cycle circuits and a fan speed control method of the air conditioner. It is.
- multi-type air conditioners in which a plurality of indoor units are connected to one outdoor unit, and the plurality of indoor units can be individually operated and controlled.
- the capacity when the maximum number of indoor units can be connected is set as the maximum capacity. It must be secured to the outdoor unit. Therefore, it becomes necessary to mount a large compressor on the outdoor unit.
- a large compressor When a large compressor is installed in an outdoor unit, if only one indoor unit is in operation and the air conditioning load in the room where the indoor unit is installed is small, the unit must be operated at the lowest frequency allowed by the compressor. It becomes.
- the operation capacity of the compressor becomes large with respect to the air conditioning load. As a result, intermittent operation of the compressor is performed, and there is a concern that comfort may be impaired.
- Patent Document 1 discloses that an outdoor heat exchanger includes two compressors, two four-way valves, and two throttle portions in one outdoor unit.
- a multi-type air conditioner having two refrigerant circuits is described by dividing the above into two systems.
- the multi-type air conditioner having two independent refrigeration cycles described in Patent Document 1 in the outdoor heat exchanger having a plurality of paths through which the refrigerant of the refrigeration cycle flows, the paths of different refrigeration cycles are strip-shaped fins Are alternately arranged in the length direction.
- the air conditioner described in Patent Document 2 is a multi-type air conditioner combined with a plurality of outdoor heat exchangers, and each outdoor heat exchanger has a plurality of strip-shaped laminated fins. And the fin is divided into the 1st heat exchanger tube part and the 2nd heat exchanger tube part with respect to the length direction of a fin.
- the present invention has been made in order to solve the above-described problems, and is an air conditioner having a plurality of refrigeration cycles, which balances the refrigeration cycles of each system with simple control, and provides air conditioning. It is an object of the present invention to provide an air conditioner capable of stable operation throughout the machine and a fan speed control method for the air conditioner.
- An air conditioner includes an outdoor unit and a plurality of indoor units, and the outdoor unit includes a plurality of compressors, a plurality of outdoor heat exchangers, a plurality of flow path switching devices, and a plurality of expansions.
- a valve a single fan that sends air to the plurality of outdoor heat exchangers, a single fan motor that drives the single fan, and an outdoor unit control unit that controls the outdoor unit,
- Each of the plurality of indoor units includes an indoor heat exchanger, and the compressor, the outdoor heat exchanger, the flow path switching device, the expansion valve, and some of the plurality of indoor units.
- the air conditioner has a plurality of refrigeration cycle circuits connected to the indoor heat exchanger by refrigerant piping, and the outdoor unit control means is configured such that the refrigeration cycle circuits of the plurality of systems are operated simultaneously.
- Each of the refrigeration cycle circuits of the plurality of systems when The target condensation temperature of the refrigerant in the outdoor heat exchanger is acquired, the difference between the target condensation temperatures of the refrigeration cycle circuits of the plurality of systems is calculated, and the rotation speed of the single fan motor is calculated based on the difference Is to control.
- the fan speed control method for an air conditioner includes an outdoor unit and a plurality of indoor units, and the outdoor unit includes a plurality of compressors, a plurality of outdoor heat exchangers, and a plurality of flow paths.
- a switching device, a plurality of expansion valves, a single fan that sends air to the plurality of outdoor heat exchangers, and a single fan motor that drives the single fan, the compressor and the outdoor An air conditioner having a plurality of refrigeration cycle circuits in which a heat exchanger, the flow path switching device, the expansion valve, and indoor heat exchangers of some of the plurality of indoor units are connected by refrigerant piping And when the plurality of refrigeration cycle circuits are operated simultaneously, a setting step for setting a target condensation temperature of the refrigerant of the air conditioner, and a rotation of the single fan motor based on the target condensation temperature. Motor control step to control It contains.
- the air conditioner and the fan speed control method of the air conditioner according to the present invention even when the air conditioning loads of the refrigeration cycle circuits of a plurality of systems are different from each other, the supercooling degree is excessively applied in each system. Or, a state in which the degree of supercooling is insufficient is not caused. As a result, in each system, an operation with excessive capacity or an operation with insufficient capacity is prevented, and a balanced cooling operation can be performed in the entire air conditioner.
- FIG. 1 is a configuration diagram of an air conditioner according to an embodiment of the present invention.
- the air conditioner of the present embodiment includes an outdoor unit X as a heat source unit, and an indoor unit Y1, an indoor unit Y2, an indoor unit Y3, and an indoor unit Y4 as usage units connected in parallel to the outdoor unit X. I have.
- the outdoor unit X includes a compressor 1A and a compressor 1B, a four-way valve 2A and a four-way valve 2B, an outdoor heat exchanger 3A and an outdoor heat exchanger 3B, an outdoor fan 4, an outdoor fan motor 5, and an expansion valve 6A1.
- the expansion valve 6A2, the expansion valve 6B1, and the expansion valve 6B2, the liquid side valve 10A and the liquid side valve 10B, and the gas side valve 11A and the gas side valve 11B are provided.
- the outdoor unit X includes a temperature detection unit 12A and a temperature detection unit 12B, a temperature detection unit 13A and a temperature detection unit 13B, a temperature detection unit 14, a temperature detection unit 15A and a temperature detection unit 15B, and an outdoor unit control unit. 19.
- the outdoor unit control means 19 is a controller that controls the outdoor unit X as a whole.
- the compressor 1A and the compressor 1B are, for example, compressors capable of changing the frequency.
- the expansion valves 6A1 and 6A2 and the expansion valves 6B1 and 6B2 have a structure capable of variably controlling the opening degree.
- the flow direction of the gas refrigerant discharged from the compressor 1A and the compressor 1B is switched by the four-way valve 2A and the four-way valve 2B.
- the outdoor heat exchanger 3A and the outdoor heat exchanger 3B are heat exchangers that perform heat exchange between the outside air and the refrigerant.
- the outdoor fan 4 is a blower that blows outside air to the outdoor heat exchanger 3A and the outdoor heat exchanger 3B.
- the outdoor fan 4 is rotationally driven by an outdoor fan motor 5.
- the expansion valve 6A1, the expansion valve 6A2, the expansion valve 6B1, and the expansion valve 6B2 are valves that depressurize the refrigerant.
- the discharge temperature of the compressor 1A is detected by the temperature detection means 12A, and the discharge temperature of the compressor 1B is detected by the temperature detection means 12B.
- the refrigerant saturation temperature of the outdoor heat exchanger 3A is detected by the temperature detection means 13A, and the refrigerant saturation temperature of the outdoor heat exchanger 3B is detected by the temperature detection means 13B.
- the temperature of the outside air is detected by the temperature detection means 14.
- the temperature of the outdoor heat exchanger 3A is detected by the temperature detection means 15A, and the temperature of the outdoor heat exchanger 3B is detected by the temperature detection means 15B.
- the alphabet after the reference numerals of the components of the outdoor unit X may be omitted, but in this case, the components are collectively shown.
- the indoor units Y1, Y2, Y3, and Y4 are supplied with cooling or heating air from the outdoor unit X and supply cooling air or heating air to the air-conditioning target area.
- the number after the indoor unit Y may be omitted, but in this case, the indoor units Y1, Y2, Y3, and Y4 are collectively shown.
- Y1 is added after the code of each device of the indoor unit Y1, Y2 is added after the code of each device of the indoor unit Y2, Y3 is added after the code of each device of the indoor unit Y3, and the indoor unit Y4.
- Y4 is added after the reference numerals of the respective devices. In the description of each of these devices, the number after the Y symbol may be omitted, but the respective devices of the indoor units Y1, Y2, Y3, and Y4 are collectively shown.
- the indoor unit Y includes an indoor heat exchanger 7Y, an indoor fan 8Y, an indoor fan motor 9Y, a temperature detection unit 16Y, a temperature detection unit 17Y, and an indoor unit control unit 18Y.
- the indoor unit control means 18Y is a controller that controls the indoor unit Y as a whole.
- the refrigerant saturation temperature of the indoor heat exchanger 7Y is detected by the temperature detection means 16Y.
- the temperature of the air in the room where the indoor unit Y is installed is detected by the temperature detection means 17Y.
- the air conditioner has a first system A and a second system B as a refrigeration cycle.
- the first system A of the refrigeration cycle includes a compressor 1A, a four-way valve 2A, an outdoor heat exchanger 3A, an expansion valve 6A1, an expansion valve 6A2, a liquid side valve 10A, a gas side valve 11A, an indoor heat exchanger 7Y1, and indoor heat. It is comprised by the exchanger 7Y2.
- the indoor heat exchanger 7Y1 and the indoor heat exchanger 7Y2 are connected by piping in parallel.
- the second system B of the refrigeration cycle includes a compressor 1B, a four-way valve 2B, an outdoor heat exchanger 3B, an expansion valve 6B1, an expansion valve 6B2, a liquid side valve 10B, a gas side valve 11B, an indoor heat exchanger 7Y3, and indoor heat. It is comprised by the exchanger 7Y4.
- the indoor heat exchanger 7Y3 and the indoor heat exchanger 7Y4 are connected by piping in parallel.
- a low-temperature and low-pressure gas refrigerant is compressed by the compressor 1 and discharged as a high-temperature and high-pressure gas refrigerant.
- the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 goes to the four-way valve 2.
- the flow path of the four-way valve 2 during the cooling operation is set in the direction indicated by the solid line in FIG.
- the high-temperature and high-pressure gas refrigerant passes through the four-way valve 2 and flows into the outdoor heat exchanger 3.
- the gas refrigerant is condensed and liquefied while dissipating heat to the outdoor air blown from the outdoor fan 4, and becomes a high-pressure liquid refrigerant.
- the high-pressure liquid refrigerant is decompressed by the expansion valve 6, enters a low-pressure two-phase state, and flows into the indoor heat exchanger 7Y.
- the indoor heat exchanger 7Y the low-pressure two-phase refrigerant absorbs heat from the indoor air blown to the indoor heat exchanger 7Y by the indoor fan 8Y, and becomes a low-pressure gas refrigerant.
- the low-pressure gas refrigerant returns to the compressor 1 through the four-way valve 2.
- the user issues a cooling operation request to the indoor unit Y1 of the first system A by remote control operation.
- the room temperature of the room in which the indoor unit Y1 is attached is detected by the temperature detection means 17Y1.
- the indoor unit control means 18Y1 calculates the difference between the room temperature detected by the temperature detection means 17Y1 and the set temperature set by the user, and transmits the difference to the outdoor unit control means 19 of the outdoor unit X.
- the outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1A based on the transmitted difference, and operates the compressor 1A. For example, it is assumed that the room temperature detected by the temperature detection means 17Y1 is 27 ° C., the set temperature set by the user is 23 ° C., and the operating frequency of the compressor 1A is 60 Hz.
- the outdoor unit control means 19 controls the rotational speed of the outdoor fan motor 5 so that the refrigerant saturation temperature of the outdoor heat exchanger 3A detected by the temperature detection means 13A, that is, the condensation temperature becomes the target value.
- the condensing temperature required for the outdoor heat exchanger 3 is set as the target condensing temperature corresponding to the operating frequency of the compressor 1. For example, when the operating frequency of the compressor 1A is 60 Hz, the target condensation temperature is 38 ° C. Table 1 shows the relationship between the operating frequency bandwidth of the compressor and the target condensation temperature.
- the indoor unit control means 18Y1 calculates the difference between the room temperature detected by the temperature detection means 17Y1 and the set temperature set by the user, and transmits the difference to the outdoor unit control means 19 of the outdoor unit X.
- the outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1A based on the transmitted difference, and operates the compressor 1A. For example, it is assumed that the room temperature detected by the temperature detecting means 17Y1 is 30 ° C., the set temperature set by the user is 16 ° C., and the operating frequency of the compressor 1A is 80 Hz.
- the indoor unit control means 18Y3 of the indoor unit Y3 detects the indoor temperature of the room in which the indoor unit Y3 is attached via the temperature detection means 17Y3.
- the indoor unit control means 18Y3 calculates the difference between the indoor temperature detected by the temperature detection means 17Y3 and the set temperature set by the user, and transmits the difference to the outdoor unit control means 19 of the outdoor unit X.
- the outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1B based on the transmitted difference, and operates the compressor 1B. For example, it is assumed that the room temperature detected by the temperature detecting means 17Y3 is 26 ° C., the set temperature set by the user is 24 ° C., and the operating frequency of the compressor 1B is 30 Hz.
- the frequencies of the compressor 1A and the compressor 1B are greatly different, and the respective targets in the first system A and the second system B are different.
- the condensation temperature will be different. For example, when the operation frequency of the compressor 1A is 80 Hz, the target condensation temperature is 39 ° C., and when the operation frequency of the compressor 1B is 30 Hz, the target condensation temperature is 36 ° C.
- the necessary supercooling degree is, for example, 10 ° C.
- the necessary supercooling degree is, for example, 3 ° C. Since the outdoor unit is a single outdoor unit X, the outdoor air temperature is the same. Therefore, when the rotation speed of the outdoor fan motor 5 is set to the rotation speed matching the first system A, the second system B side is in a state of excessive supercooling and tends to have excessive capacity. On the other hand, when the rotational speed of the outdoor fan 4 is set to the rotational speed that matches the second system B, the supercooling degree is insufficient on the first system A side, and the operation is insufficient.
- the target condensation temperature when simultaneously operating the first system A and the second system B is based on the target condensation temperature of the system having the highest operating frequency of the compressor from the viewpoint of high pressure protection.
- the difference between the reference target condensing temperature and the target condensing temperature of the system having the lowest operating frequency of the compressor is calculated, and a correction value for the reference target condensing temperature is determined based on the difference.
- strain with the highest operating frequency of a compressor is correct
- the rotation speed of the outdoor fan 4 is controlled so that the condensing temperature of the compressor of each system becomes the corrected target condensing temperature.
- the operation when operating one system is as follows.
- the user issues a cooling operation request to the indoor unit Y1 of the first system A by remote control operation.
- the indoor unit control means 18Y1 of the indoor unit Y1 sends the difference between the indoor temperature of the room in which the indoor unit Y1 is installed and the set temperature set by the user to the outdoor unit control means 19 of the outdoor unit X.
- the outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1A based on the transmitted difference, and operates the compressor 1A.
- the room temperature detected by the temperature detecting means 17Y1 is 27 ° C.
- the set temperature is 23 ° C.
- the operating frequency of the compressor 1A is 60 Hz.
- the target condensation temperature at this time is, for example, 38 ° C., and corresponds to the frequency band 4 of the target condensation temperature in Table 1 described above.
- the outdoor unit control means 19 adjusts the rotational speed of the outdoor fan motor 5 so that the condensation temperature of the refrigerant detected by the temperature detection means 13A becomes 38 ° C.
- the user issues a cooling operation request to the indoor unit Y1 of the first system A by remote control operation.
- the indoor unit control means 18Y1 of the indoor unit Y1 sends the difference between the indoor temperature of the room in which the indoor unit Y1 is installed and the set temperature set by the user to the outdoor unit control means 19 of the outdoor unit X.
- the outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1A based on the transmitted difference, and operates the compressor 1A.
- the indoor temperature detected by the temperature detecting means 17Y1 is 30 ° C.
- the set temperature is 16 ° C.
- the operating frequency of the compressor 1A is 80 Hz.
- the target condensation temperature at this time is, for example, 38 ° C., and corresponds to the frequency band 4 of the target condensation temperature in Table 1 described above.
- the user issues a cooling operation request to the indoor unit Y3 of the second system B by remote control operation.
- the indoor unit control means 18Y3 of the indoor unit Y3 sends the difference between the room temperature of the room in which the indoor unit Y3 is installed and the set temperature set by the user to the outdoor unit control means 19 of the outdoor unit X.
- the outdoor unit control means 19 of the outdoor unit X determines the operating frequency of the compressor 1B based on the transmitted difference, and operates the compressor 1B. For example, it is assumed that the indoor temperature detected by the temperature detecting means 17Y3 is 26 ° C., the set temperature is 24 ° C., and the operating frequency of the compressor 1B is 30 Hz.
- the target condensation temperature at this time is, for example, 36 ° C., and corresponds to the frequency band 2 of the target condensation temperature in Table 1 described above.
- the outdoor unit control means 19 of the outdoor unit X has a target condensation temperature of the first system A of 38 ° C. and belongs to the frequency band 4, and a target condensation temperature of the second system B of 36 ° C. and the frequency band 2 Recognize that it belongs.
- the target condensation temperature of the first system A is 38 ° C. and the operating frequency of the compressor 1A is 80 Hz
- the target condensation temperature of the second system B is 36 ° C. and the operating frequency of the compressor 1B. Is 30 Hz
- the operating frequency of the compressor 1A is higher than the operating frequency of the compressor 1B. Therefore, the outdoor unit control means 19 is based on the target condensation temperature of the first system A, that is, 38 ° C.
- the outdoor unit control means 19 calculates a frequency band difference between the first system A and the second system B, and determines a correction value according to the difference.
- Table 2 is a table showing the relationship between the frequency band difference and the target condensing temperature correction value in the present embodiment.
- the temperature detection means 13 After starting the operation of the compressor 1, the temperature detection means 13 detects the refrigerant saturation temperature of the outdoor heat exchanger 3 that is a condenser, that is, the condensation temperature.
- the rotational speed of the outdoor fan 4 is set so that the condensation temperature of the outdoor heat exchanger 3 detected by the temperature detection means 13 reaches the target condensation temperature corrected as described above. That is, after the operation of the compressor 1 is started, the refrigerant temperature of the outdoor heat exchanger 3A and the refrigerant temperature of the outdoor heat exchanger 3B detected by the temperature detector 13B are corrected by the temperature detector 13A.
- the outdoor unit control means 19 sets the rotation speed of the outdoor fan 4 so that the target condensation temperature is 39 ° C. Then, the rotational speed of the outdoor fan motor 5 is adjusted based on the set rotational speed of the outdoor fan 4.
- FIG. 2 is a graph showing the relationship between the current condensation temperature, the target condensation temperature, and the stable rotational speed of the outdoor fan motor.
- the horizontal axis represents the current condensation temperature Tc
- the vertical axis represents the stable rotational speed N of the outdoor fan motor 5.
- the line L21 is the target condensation temperature Tcm is 36 ° C.
- the line L22 is the target condensation temperature Tcm is 38 ° C.
- the line L23 is the condensation temperature Tc and the stable rotation when the target condensation temperature Tcm is 40 ° C.
- the relationship with the number N is shown.
- the control of the rotational speed of the outdoor fan 4, that is, the control of the rotational speed of the outdoor fan motor 5 is executed in stages.
- the control interval at which the outdoor unit control means 19 receives the condensation temperature of the outdoor heat exchanger 3 detected by the temperature detection means 13 and determines the rotational speed of the outdoor fan motor 5 is, for example, 60 seconds. Since the amount of air passing through the outdoor heat exchanger 3 changes according to the set rotational speed of the outdoor fan 4, the current condensing temperature changes.
- the rotational speed change of the outdoor fan motor 5 is provided with hysteresis.
- FIG. 3 is a diagram illustrating the relationship between the difference between the current condensation temperature and the target condensation temperature and the stable rotational speed of the outdoor fan motor.
- the horizontal axis represents ⁇ Tc, which is the difference between the condensation temperature Tc and the target condensation temperature Tcm
- the vertical axis represents the stable rotational speed N of the outdoor fan motor 5.
- the stable rotational speed N of the outdoor fan motor 5 is controlled to change stepwise in accordance with the change in the difference ⁇ Tc.
- the change in the stable rotational speed N of the outdoor fan motor 5 is provided with hysteresis.
- FIG. 4 is a flowchart showing a processing procedure of fan speed control according to the embodiment of the present invention.
- step S1 a cooling operation start process is executed.
- FIG. 5 is a flowchart showing the procedure of the cooling operation start process.
- the indoor unit control means 18Y receives an operation start command in step S1-1.
- the indoor unit control means 18Y that has received the operation start command starts the operation of the indoor fan motor 9Y in step S1-2.
- step S1-3 the outdoor unit control means 19 receives an operation start command from the indoor unit control means 18Y. Thereafter, the process proceeds to step S2 in FIG.
- step S2 a process of extracting the system of the indoor unit that is in operation is executed.
- FIG. 6 is a flowchart showing a procedure of processing for extracting the system of the indoor unit that is operating.
- the outdoor unit control means 19 specifies the system of the refrigeration cycle circuit that is operating based on the received operation start command. If the operation start command is received from the indoor unit control means 18Y1 or the indoor control means 18Y2, the outdoor unit control means 19 specifies that the first system A is in operation. If the operation start command is received from the indoor unit control means 18Y3 or the indoor control means 18Y4, the outdoor unit control means 19 specifies that the second system B is operating.
- step S2-2 the outdoor unit control means 19 executes an adjustment process at the start of operation.
- the adjustment process at the start of operation refers to adjustment of the operation start frequency of the compressor 1, adjustment of the rotational speed of the outdoor fan motor 5, adjustment of the flow path of the four-way valve 2, opening of the expansion valve 6. Adjustment. Thereafter, the process proceeds to step S3 in FIG.
- step S3 it is checked whether or not the operating refrigeration cycle is one system.
- the process proceeds to step S4. If the operating refrigeration cycle is a plurality of systems, the process proceeds to step S6.
- step S4 the outdoor unit control means 19 detects the current operating frequency of the compressor 1, and determines the target condensing temperature from the correspondence table of Table 1 described above based on the detected operating frequency. Specify the frequency band. Subsequently, it progresses to step S5 and determines target condensation temperature.
- FIG. 7 is a flowchart showing the procedure for determining the target condensing temperature.
- step S5-1 the outdoor unit control means 19 extracts the current condensation temperature Tc based on the refrigerant saturation temperature of the outdoor heat exchanger 3 detected by the temperature detection means 13.
- step S5-2 the outdoor unit control means 19 determines a target condensation temperature Tcm set in the frequency band specified in step S4. Thereafter, the process proceeds to step S10 in FIG.
- step S6 the current operating frequency of the compressor 1 is detected for each system of the operating refrigeration cycle, and based on the detected operating frequency, the target table is selected from the correspondence table in Table 1 above.
- a frequency band for determining the condensation temperature Tcm is specified.
- the outdoor unit control means 19 specifies the frequency band of the correspondence table of Table 1 based on the operating frequency of the compressor 1A for the first system A, and the compressor 1B for the second system B. Based on the operation frequency, the frequency band of the correspondence table of Table 1 is specified.
- step S7 the process proceeds to step S7.
- step S7 the outdoor unit control means 19 performs a band difference calculation process.
- FIG. 8 is a flowchart illustrating a processing procedure for calculating a band difference.
- step S7-1 the outdoor unit control means 19 extracts the frequency band having the largest value from the frequency bands specified in step S6 and sets it as the reference band.
- step 7-2 the process proceeds to step 7-2, and the frequency band having the smallest value is extracted from the frequency bands specified in step S6.
- the difference between the reference band determined in step S7-1 and the frequency band having the smallest value, that is, the frequency band difference is calculated.
- a refrigeration cycle system in which the operating frequency of the compressor 1 belongs to the reference band is defined as a reference system.
- the process proceeds to step S8 in FIG.
- step S8 the outdoor unit control means 19 determines the correction value Tcmh of the target condensing temperature corresponding to the frequency band difference calculated in step S7-2 based on the above-described Table 2. Subsequently, it progresses to step S9 and the outdoor unit control means 19 sets target condensation temperature.
- FIG. 9 is a flowchart showing a processing procedure for setting the target condensing temperature.
- step S9-1 the outdoor unit control means 19 determines the current condensation temperature Tc based on the refrigerant saturation temperature of the outdoor heat exchanger 3 detected by the temperature detection means 13 for each operating refrigeration cycle system. To extract.
- the case of proceeding to step S9-1 is a case where the first system A and the second system B are in operation as described above.
- the outdoor unit control means 19 extracts the current condensation temperature Tca of the outdoor heat exchanger 3A for the first system A based on the refrigerant saturation temperature detected by the temperature detection means 13A.
- the current condensation temperature Tcb of the outdoor heat exchanger 3B is extracted based on the refrigerant saturation temperature detected by the temperature detection means 13B.
- the operating frequency band of the compressor 1 sets the condensing temperature of the refrigeration cycle system set as the reference system in step S7-1 as the system condensing temperature Tc, and uses it in the subsequent processing. That is, the condensation temperature Tc of the system is the condensation temperature Tca or Tcb.
- step S9-2 the outdoor unit control means 19 sets a target condensation temperature base Tcm_base of the system.
- step S7-1 the target condensing temperature of the system of the refrigeration cycle identified as the operating frequency of the compressor 1 belonging to the reference band is set as the target condensing temperature base Tcm_base of the system. That is, the target condensation temperature of the system of the refrigeration cycle belonging to the band with the highest operating frequency of the compressor 1 is set as the target condensation temperature base Tcm_base of the system.
- the target condensation temperature base Tcm_base of the system is used for subsequent control.
- step S9-3 the outdoor unit control means 19 corrects the target condensation temperature base Tcm_base of the system with the correction value Tcmh determined in step S8, and sets the target condensation temperature Tcm. Specifically, the correction value Tcmh is added to the target condensation temperature base Tcm_base. Thereafter, the process proceeds to step S10 in FIG.
- step S10 the outdoor unit control means 19 calculates a difference ⁇ Tc between the current system condensation temperature Tc and the target condensation temperature Tcm.
- the target condensation temperature Tcm calculated at step S5 is used to calculate the difference ⁇ Tc.
- the difference ⁇ Tc is calculated at step S9.
- the target condensation temperature Tcm set at -3 is used.
- the condensing temperature Tc is the condensing temperature obtained by the temperature detection means 13 in the refrigeration cycle system set as the reference system in step S7-1.
- step S11 the rotational speed of the outdoor fan motor 5 is determined.
- FIG. 10 is a flowchart showing a processing procedure for determining the rotational speed of the outdoor fan motor.
- the outdoor unit control means 19 determines a condensation temperature difference band based on the difference ⁇ Tc calculated in step S10.
- the condensation temperature difference band is defined in stages corresponding to the band of the difference ⁇ Tc between the condensation temperature Tc and the target condensation temperature Tcm.
- Table 3 is a table showing the threshold value of the temperature difference width used for setting the condensation temperature difference band in the present embodiment.
- Table 4 is a table associating a difference band between the condensation temperature Tc and the target condensation temperature Tcm with a condensation temperature difference band.
- the condensation temperature difference band 1 corresponds to a band of Tc ⁇ Tcm ⁇ 5. That is, the condensation temperature difference band 1 corresponds to a temperature difference band when the current condensation temperature Tc is significantly lower than the target condensation temperature Tcm.
- the condensation temperature difference band 7 corresponds to a band of Tcm + 5 ⁇ Tc. That is, the condensation temperature difference band 7 corresponds to a temperature difference band in which the current condensation temperature Tc is significantly higher than the target condensation temperature Tcm.
- the condensation temperature difference band 4 corresponds to a band of Tcm ⁇ 1 ⁇ Tc ⁇ Tcm + 1. That is, the condensation temperature difference band 4 corresponds to a band where the current condensation temperature Tc approximates the target condensation temperature Tcm. Between the condensation temperature difference band 1 and the condensation temperature difference band 4, a zone where the current condensation temperature Tc is lower than the target condensation temperature Tcm is defined in a stepwise manner. Between the condensation temperature difference band 4 and the condensation temperature difference band 7, a band in which the current condensation temperature Tc is higher than the target condensation temperature Tcm is defined in stages.
- step S11-2 the outdoor unit control means 19 determines the rotational speed step of the outdoor fan motor 5.
- FIG. 11 is a graph of the rotational speed step showing the control of the rotational speed of the outdoor fan motor.
- the horizontal axis represents the condensation temperature difference band shown in Table 4, and the vertical axis represents the rotational speed of the outdoor fan motor 5.
- the rotational speed of the outdoor fan motor 5 is set in a stepwise manner corresponding to the increase / decrease in the condensation temperature difference band. That is, as the condensation temperature difference band increases from 1 to 7, the rotational speed of the outdoor fan motor 5 increases stepwise, and as the condensation temperature difference band decreases from 7 to 1, the outdoor fan motor 5 The number of rotations is gradually reduced.
- the rotational speed of the outdoor fan motor 5 is controlled with hysteresis. That is, the upper step and the lower step are set for the rotation speed step corresponding to each condensation temperature difference band.
- the rotation speed of the upper step n (upper) of the condensation temperature difference band 4 and the rotation speed of the lower step n + 1 of the condensation temperature difference band 5 are the same, and the lower step n (lower) of the condensation temperature difference band 4 ) And the number of revolutions n-1 in the upper stage of the condensation temperature difference band 4 are the same.
- the initial position of the rotation speed step is set at the lower stage of the rotation speed step corresponding to the condensation temperature difference band.
- the rotation speed step is n + 1 (lower), which is the lower stage.
- step S11-3 the outdoor unit control means 19 rotates the outdoor fan motor 5 at a rotational speed corresponding to the rotational speed step set in step S11-2, and determines the rotational speed of the outdoor fan 4.
- step S12 the process proceeds to step S12 in FIG. 4 to check whether or not a predetermined time, for example, 60 seconds has elapsed.
- a predetermined time for example, 60 seconds has elapsed.
- the process proceeds to step S13.
- step S13 a process for changing the rotational speed of the outdoor fan 4 is executed.
- FIG. 12 is a flowchart showing a processing procedure for changing the rotational speed of the outdoor fan motor.
- step S13-1 the outdoor unit control means 19 extracts the condensation temperature difference band and the hysteresis position where the rotational speed of the outdoor fan motor 5 is stable.
- step S13-2 the outdoor unit control means 19 calculates a difference ⁇ Tc between the current condensation temperature Tc and the target condensation temperature Tcm.
- the condensation temperature Tc is the condensation temperature obtained by the temperature detection means 13 in the refrigeration cycle system set as the reference system in step S7-1.
- the outdoor unit control means 19 changes the above-mentioned condensation temperature difference band according to ⁇ Tc.
- step S13-3 the outdoor unit control means 19 changes the rotational speed of the outdoor fan motor 5 in the following four modes according to the results of step S13-1 and step S13-2.
- step S13-1 it is confirmed that the current rotational speed of the outdoor fan motor 5 is above the hysteresis of the rotational speed step shown in FIG. 11, and in step S13-2, the condensation temperature difference band is a smaller number band. That is, if it is confirmed that the lower band has been shifted, the rotational speed of the outdoor fan motor 5 is lowered and moved to the lower stage of the hysteresis of the rotational speed step.
- the current rotation speed of the outdoor fan motor 5 is n + 1 (upper), and ⁇ Tc calculated in step S13-2 is calculated from the condensation temperature difference band 5 as a condensation temperature difference.
- the rotational speed of the outdoor fan motor 5 is lowered and moved to n + 1 (down).
- step S13-2 If it is confirmed in step S13-2 that the condensation temperature difference band has shifted to a lower number band, that is, a lower band, the rotational speed of the outdoor fan motor 5 is increased, and the upper stage of the hysteresis of the rotational speed step is increased. Move to.
- the difference ⁇ Tc calculated in step S13-2 is in the condensation temperature difference band corresponding to any of the rotation speed steps n-1 to n-3, and there is no change in the condensation temperature difference band for 60 seconds.
- the rotational speed of the outdoor fan motor 5 is decreased.
- step S13-2 when the difference ⁇ Tc calculated in step S13-2 is in the condensation temperature difference band corresponding to any one of the rotation speed steps n + 1 to n + 3 and the state in which the condensation temperature difference band is not changed has passed for 60 seconds, Increase the rotational speed of the outdoor fan motor 5.
- step S14 it is checked whether or not there is a change in the number of indoor units Y operated or the number of operating systems of the refrigeration cycle. When it is confirmed that there is a change in the number of indoor units Y operated or the number of operating systems of the refrigeration cycle, the process proceeds to step S2 in FIG. When it is confirmed that there is no change in the number of indoor units Y operated or the number of operating systems of the refrigeration cycle, the process proceeds to step S12.
- the rotational speed of the outdoor fan motor 5 is controlled as described above.
- a state in which the degree of supercooling is excessively applied in each system or a state in which the degree of supercooling is insufficient is not caused.
- an operation with excessive capacity or an operation with insufficient capacity is prevented, and a balanced cooling operation can be performed in the entire air conditioner.
- the cooling operation of the first system A and the second system B can be improved by the single outdoor fan 4 and the single outdoor fan motor 5. Therefore, it is not necessary to provide an outdoor fan and an outdoor fan motor in each of the first system A and the second system B, and complicated control is not required.
- the hysteresis is changed when the rotational speed of the outdoor fan motor 5 is changed based on the difference between the current condensation temperature of the outdoor heat exchanger 3 and the target condensation temperature every 60 seconds after the operation is started. Is controlled. Accordingly, hunting can be prevented in driving the outdoor fan motor 5.
- This embodiment has a configuration in which a single outdoor unit X has two refrigeration cycles, but is not limited thereto. Even in a configuration in which a single outdoor unit X has three or more refrigeration cycles, the outdoor unit control means 19 performs the same processing as described above, and exhibits the same effect.
- the present embodiment has a configuration in which two indoor units Y are connected in each system of the refrigeration cycle, but is not limited thereto.
- the number of indoor units Y connected to each system of the refrigeration cycle may be one or three or more.
- the control by the outdoor unit control means 19 described above is more effective.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
1つの室外機に複数の室内機が接続されている空気調和機において、室外機は2つの圧縮機と2つの室外熱交換器と1つの室外ファンと1つの室外ファンモーターとを有する。空気調和機は、一方の圧縮機と一方の室外熱交換器と一部の室内機とが接続された冷凍サイクル回路の系統と、他方の圧縮機と他方の室外熱交換器と残りの室内機とが接続された冷凍サイクル回路の系統とを有する。2つの冷凍サイクル回路が同時に運転しているとき、圧縮機の回転周波数の高い系統の目標凝縮温度を基準値とする。2つの系統の目標凝縮温度の差を算出し、目標凝縮温度の補正値を算出する。基準値を補正値で補正する。2つの系統の室外熱交換器の凝縮温度が補正された目標凝縮温度となるよう、室外ファンモーターの回転数を制御する。
Description
本発明は、空気調和機及び空気調和機のファン速制御方法に関するものであり、より詳しくは、複数の冷凍サイクル回路を有するマルチタイプの空気調和機及びその空気調和機のファン速制御方法に関するものである。
従来、1台の室外機に複数台の室内機を接続し、複数台の室内機を個別に運転し、制御することが可能なマルチタイプの空気調和機が存在する。マルチタイプの空気調和機においては、接続可能な室内機の台数が増え、室外機に必要とされる能力帯が大きくなると、接続される室内機の台数が最大となる時の能力を最大能力として室外機に担保しなければならない。そのため、室外機に大型の圧縮機を搭載する必要が出てくる。大型の圧縮機を室外機に搭載した場合、運転する室内機が1台のみで、当該室内機の設置されている部屋の空調負荷が小さいと、圧縮機の許容する最低周波数で運転をすることとなる。しかしながら、大型の圧縮機の場合、空調負荷に対して圧縮機の運転能力が大きくなってしまう可能性がある。その結果、圧縮機の断続運転が行われ、快適性が損なわれることが懸念される。
このような問題を解決する手段として、特許文献1には、1台の室外機の中に、2つの圧縮機と、2つの四方弁と、2つの絞り部とを搭載し、室外熱交換器を2系統に分割することにより、2系統の冷媒回路を備えたマルチタイプの空気調和機が記載されている。特許文献1に記載されている、独立した2つの冷凍サイクルを有するマルチタイプの空気調和機では、冷凍サイクルの冷媒が流れるパスを複数有する室外熱交換器において、異なる冷凍サイクルのパスが帯状のフィンの長さ方向に交互に配置されている。また、特許文献2に記載の空気調和機は、複数の室外熱交換器を有するマルチ型の冷暖房兼用空気調和機であり、個々の室外熱交換器は複数の帯状の積層されたフィンを有し、かつフィンはフィンの長さ方向に対して第一熱交管部と第二熱交管部に区切られている。
特許文献1及び特許文献2の空気調和機のように、室外熱交換器を2つの系統に分割する構成を採用すると、1系統当たりで発揮すべき能力は半分で済むため、圧縮機の最大能力を確保しつつ、室内機の個別運転時の圧縮機の最小能力を低くすることができる。しかしながら、特許文献1及び特許文献2に示される空気調和機では、2系統を同時に運転する際の、室外熱交換器に空気を供給するファンのファン速制御について考慮がなされていない。従って、それぞれ空調負荷の異なる系統の冷凍サイクルを同時に制御するのが困難となってしまう。
2系統の冷凍サイクル回路では、系統ごとに適切な冷媒の安定状態が存在する。例えば冷房運転では、それぞれの系統における室外熱交換器での必要な過冷却度は空調負荷によって異なる。従って、室外熱交換器において、それぞれの系統において適正な過冷却度を保つためには、系統ごとに個別の室外熱交換器用のファンとファンモーターとを備えてなければならない。すなわち、特許文献1及び特許文献2のような2系統の冷凍サイクルを有するマルチタイプの空気調和機においては、全体としてファンとファンモーターとが2個ずつ必要になる。そのため、制御が複雑となるという問題がある。
本発明は、上記のような課題を解決するためになされたものであり、複数系統の冷凍サイクルを有する空気調和機であって、簡易な制御で各系統の冷凍サイクルのバランスをとり、空気調和機全体で安定した運転ができる空気調和機及び空気調和機のファン速制御方法を提供することを目的とする。
本発明に係る空気調和機は、室外機と複数の室内機とを備え、前記室外機は、複数の圧縮機と、複数の室外熱交換器と、複数の流路切替装置と、複数の膨張弁と、前記複数の室外熱交換器に空気を送る単一のファンと、前記単一のファンを駆動する単一のファンモーターと、前記室外機を制御する室外機制御手段とを有し、前記複数の室内機は、それぞれ室内熱交換器を有し、前記圧縮機と前記室外熱交換器と前記流路切換装置と前記膨張弁と前記複数の室内機のうちの一部の室内機の前記室内熱交換器とが冷媒配管で接続された冷凍サイクル回路が複数系統構成されている空気調和機であって、前記室外機制御手段は、前記複数系統の前記冷凍サイクル回路が同時に運転されているとき、前記複数系統の前記冷凍サイクル回路のそれぞれの前記室外熱交換器における冷媒の目標凝縮温度を取得し、前記複数系統の前記冷凍サイクル回路のそれぞれの前記目標凝縮温度の差分を算出し、前記差分に基づいて前記単一のファンモーターの回転数を制御するものである。
また、本発明に係る空気調和機のファン速制御方法は、室外機と複数の室内機とを備え、前記室外機は、複数の圧縮機と、複数の室外熱交換器と、複数の流路切替装置と、複数の膨張弁と、前記複数の室外熱交換器に空気を送る単一のファンと、前記単一のファンを駆動する単一のファンモーターと有し、前記圧縮機と前記室外熱交換器と前記流路切換装置と前記膨張弁と前記複数の室内機のうちの一部の室内機の室内熱交換器とが冷媒配管で接続された冷凍サイクル回路を複数系統有する空気調和機において、前記複数系統の冷凍サイクル回路が同時に運転されているとき、前記空気調和機の冷媒の目標凝縮温度を設定する設定ステップと、前記目標凝縮温度に基づいて前記単一のファンモーターの回転を制御するモーター制御ステップとを含んでいる。
本発明に係る空気調和機及び空気調和機のファン速制御方法によれば、複数系統の冷凍サイクル回路のそれぞれの空調負荷が異なる場合であっても、各系統において過冷却度が付きすぎの状態、若しくは過冷却度が不足する状態を招くことがない。その結果、各系統において、能力過多の運転、若しくは能力不足気味の運転が防止され、空気調和機全体でバランスのとれた冷房運転を実行することができる。
以下に、本発明における空気調和機の実施の形態を図面に基づいて詳細に説明する。尚、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさは実際の装置とは異なる場合がある。
実施の形態.
図1は、本発明の実施の形態における空気調和機の構成図である。本実施の形態の空気調和機は、熱源機としての室外機Xと、室外機Xに並列に接続された利用ユニットとしての室内機Y1、室内機Y2、室内機Y3、及び室内機Y4とを備えている。
図1は、本発明の実施の形態における空気調和機の構成図である。本実施の形態の空気調和機は、熱源機としての室外機Xと、室外機Xに並列に接続された利用ユニットとしての室内機Y1、室内機Y2、室内機Y3、及び室内機Y4とを備えている。
室外機Xは、圧縮機1A及び圧縮機1Bと、四方弁2A及び四方弁2Bと、室外熱交換器3A及び室外熱交換器3Bと、室外ファン4と、室外ファンモーター5と、膨張弁6A1、膨張弁6A2、膨張弁6B1、及び膨張弁6B2と、液側バルブ10A及び液側バルブ10Bと、ガス側バルブ11A及びガス側バルブ11Bとを有している。また、室外機Xは、温度検出手段12A及び温度検出手段12Bと、温度検出手段13A及び温度検出手段13Bと、温度検出手段14と、温度検出手段15A及び温度検出手段15Bと、室外機制御手段19とを有している。
室外機制御手段19は、室外機Xを全体的に制御するコントローラである。圧縮機1A及び圧縮機1Bは、例えば周波数変化可能な圧縮機である。膨張弁6A1及び6A2、並びに膨張弁6B1及び6B2は、開度を可変に制御することができる構造となっている。四方弁2A及び四方弁2Bにより、圧縮機1A及び圧縮機1Bから吐出されたガス冷媒の流通方向が切り替えられる。室外熱交換器3A及び室外熱交換器3Bは、外気と冷媒との間で熱交換を行う熱交換器である。室外ファン4は、室外熱交換器3A及び室外熱交換器3Bに外気を送風する送風機である。室外ファン4は、室外ファンモーター5により回転駆動される。膨張弁6A1、膨張弁6A2、膨張弁6B1、及び膨張弁6B2は、冷媒を減圧する弁である。圧縮機1Aの吐出温度は温度検出手段12Aにより検出され、圧縮機1Bの吐出温度は温度検出手段12Bにより検出される。室外熱交換器3Aの冷媒飽和温度は温度検出手段13Aにより検出され、室外熱交換器3Bの冷媒飽和温度は温度検出手段13Bにより検出される。外気の温度は温度検出手段14により検出される。室外熱交換器3Aの温度は温度検出手段15Aにより検出され、室外熱交換器3Bの温度は温度検出手段15Bにより検出される。尚、以降の説明では、室外機Xの各構成要素の符号の後のアルファベットを省略する場合があるが、その場合は各構成要素を総称して示すものである。
室内機Y1、Y2、Y3、及びY4は、室外機Xからの冷熱又は温熱の供給を受けて空調対象域に冷房空気又は暖房空気を供給するものである。尚、以降の説明においては、室内機Yの後の数字を省略する場合があるが、その場合は室内機Y1、Y2、Y3、及びY4を総称して示すものである。また、室内機Y1の各機器の符号の後にY1を付加し、室内機Y2の各機器の符号の後にY2を付加し、室内機Y3の各機器の符号の後にY3を付加し、室内機Y4の各機器の符号の後にY4を付加して図示している。これらの各機器の説明においても、Y符号の後の数字を省略する場合があるが、室内機Y1、Y2、Y3、及びY4のそれぞれの機器を総称して示すものである。
室内機Yは、室内熱交換器7Yと、室内ファン8Yと、室内ファンモーター9Yと、温度検出手段16Yと、温度検出手段17Yと、室内機制御手段18Yとを有している。室内機制御手段18Yは、室内機Yを全体的に制御するコントローラである。室内熱交換器7Yの冷媒飽和温度は温度検出手段16Yにより検出される。室内機Yが設置されている室内の空気温度は温度検出手段17Yにより検出される。
本実施の形態において、空気調和機は、冷凍サイクルとして第1系統Aと第2系統Bを有している。冷凍サイクルの第1系統Aは、圧縮機1A、四方弁2A、室外熱交換器3A、膨張弁6A1、膨張弁6A2、液側バルブ10A、ガス側バルブ11A、室内熱交換器7Y1、及び室内熱交換器7Y2で構成されている。室内熱交換器7Y1と室内熱交換器7Y2は、並列に配管接続されている。冷凍サイクルの第2系統Bは、圧縮機1B、四方弁2B、室外熱交換器3B、膨張弁6B1、膨張弁6B2、液側バルブ10B、ガス側バルブ11B、室内熱交換器7Y3、及び室内熱交換器7Y4で構成されている。室内熱交換器7Y3と室内熱交換器7Y4は、並列に配管接続されている。
次に、本実施の形態に係る空気調和機により冷房運転を実施する場合の動作を説明する。低温低圧のガス冷媒が圧縮機1によって圧縮され、高温高圧のガス冷媒となって吐出される。圧縮機1から吐出された高温高圧のガス冷媒は、四方弁2へと向かう。冷房運転時の四方弁2の流路は図1において実線で示す方向へ設定されている。高温高圧のガス冷媒は四方弁2を通り、室外熱交換器3へ流入する。このとき、ガス冷媒は、室外ファン4から送風される室外の空気に放熱しながら凝縮液化し、高圧の液冷媒となる。その後、高圧の液冷媒は膨張弁6で減圧され、低圧二相状態となり、室内熱交換器7Yへ流入する。室内熱交換器7Yにおいて、低圧二相状態の冷媒は、室内ファン8Yにより室内熱交換器7Yへ送風された室内空気から吸熱し、低圧のガス冷媒となる。その後、低圧のガス冷媒は四方弁2を介して圧縮機1へ戻る。このような冷房運転により、室内機Yが設置されている室内の空気の温度を下げることができる。
上述の冷房運転において、1系統の冷凍サイクルが運転しているときの動作の一例を示す。ユーザーがリモコン操作により、第1系統Aの室内機Y1に対して冷房運転の要求を出す。室内機Y1が取り付けられている部屋の室内温度は、温度検出手段17Y1により検出される。そして、室内機制御手段18Y1は、温度検出手段17Y1により検出された室内温度とユーザーにより設定された設定温度との差分を算出し、室外機Xの室外機制御手段19へその差分を送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Aの運転周波数を決定し、圧縮機1Aを運転する。例えば、温度検出手段17Y1により検出された室内温度が27℃、ユーザーにより設定された設定温度が23℃であるとし、圧縮機1Aの運転周波数が60Hzであるとする。
このとき、室外機制御手段19は、温度検出手段13Aにより検出される室外熱交換器3Aの冷媒飽和温度、すなわち凝縮温度が目標値になるよう、室外ファンモーター5の回転数を制御している。本明細書では、圧縮機1の運転周波数に対応して、室外熱交換器3に要求される凝縮温度を目標凝縮温度とする。例えば、圧縮機1Aの運転周波数が60Hzである場合は、目標凝縮温度は38℃である。圧縮機の運転周波数の帯域幅と目標凝縮温度との関係を、表1に示す。
次に、第1系統Aの冷凍サイクル及び第2系統Bの冷凍サイクルが同時に運転しているときの現象について説明する。ユーザーがリモコン操作により、第1系統Aの室内機Y1に対して冷房運転の要求を出すと、以下の制御が行われる。室内機Y1が取り付けられている部屋の室内温度は、温度検出手段17Y1により検出される。そして、室内機制御手段18Y1は、温度検出手段17Y1により検出された室内温度とユーザーにより設定された設定温度との差分を算出し、室外機Xの室外機制御手段19へその差分を送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Aの運転周波数を決定し、圧縮機1Aを運転する。例えば、温度検出手段17Y1により検出された室内温度が30℃、ユーザーにより設定された設定温度が16℃であるとし、圧縮機1Aの運転周波数が80Hzであるとする。
ユーザーがリモコン操作により、第2系統Bの室内機Y3に対して冷房運転の要求を出すと、以下の制御が行われる。室内機Y3の室内機制御手段18Y3は、温度検出手段17Y3を介して、室内機Y3が取り付けられている部屋の室内温度を検出する。そして、室内機制御手段18Y3は、温度検出手段17Y3により検出された室内温度とユーザーにより設定された設定温度との差分を算出し、室外機Xの室外機制御手段19へその差分を送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Bの運転周波数を決定し、圧縮機1Bを運転する。例えば、温度検出手段17Y3により検出された室内温度が26℃、ユーザーにより設定された設定温度が24℃であるとし、圧縮機1Bの運転周波数が30Hzであるとする。
このように、第1系統Aと第2系統Bとで部屋の空調負荷が大きく異なる場合、圧縮機1Aと圧縮機1Bの周波数が大きく異なり、第1系統A及び第2系統Bにおけるそれぞれの目標凝縮温度は異なることとなる。例えば、圧縮機1Aの運転周波数が80Hzである場合、目標凝縮温度は39℃であり、圧縮機1Bの運転周波数が30Hzである場合、目標凝縮温度は36℃である。
このような運転状態の場合、第1系統Aでは、必要な過冷却度は例えば10℃となり、第2系統Bでは、必要な過冷却度は例えば3℃となる。室外機は単一の室外機Xであるため、室外の空気温度は同一である。従って、室外ファンモーター5の回転数を第1系統Aに合わせた回転数にすると、第2系統B側は過冷却度が付きすぎの状態となり、能力過多となり易い。逆に、室外ファン4の回転数を第2系統Bに合わせた回転数にすると、第1系統A側で過冷却度が不足し、能力不足気味の運転となる。
そこで、本実施の形態では、第1系統Aと第2系統Bを同時に運転するときの目標凝縮温度は、高圧圧力保護の観点から、圧縮機の運転周波数が最も高い系統の目標凝縮温度を基準とする。基準の目標凝縮温度と、圧縮機の運転周波数が最も低い系統の目標凝縮温度との差分を算出し、その差分に基づいて、基準の目標凝縮温度の補正値を決定する。そして、圧縮機の運転周波数が最も高い系統の目標凝縮温度を補正値で補正する。さらに、各系統の圧縮機の凝縮温度が補正された目標凝縮温度となるよう、室外ファン4の回転数を制御する。これにより、系統ごとの冷凍サイクルのバランスをとることができ、システム全体で安定した運転ができるようになる。
具体的な制御の一例について説明する。1系統を運転させるときの動作は以下の通りである。ユーザーがリモコン操作により、第1系統Aの室内機Y1に対して冷房運転の要求を出す。上述のように、室内機Y1の室内機制御手段18Y1は、室内機Y1が設置されている部屋の室内温度とユーザーにより設定された設定温度との差分を室外機Xの室外機制御手段19へ送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Aの運転周波数を決定し、圧縮機1Aを運転する。例えば、温度検出手段17Y1により検出される室内温度が27℃、設定温度が23℃であるとし、圧縮機1Aの運転周波数が60Hzであるとする。このときの目標凝縮温度は例えば38℃であり、上述の表1における目標凝縮温度の周波数バンド4に相当する。室外機制御手段19は、温度検出手段13Aにより検出される冷媒の凝縮温度が38℃になるように室外ファンモーター5の回転数を調整する。
次に、2系列を同時に運転させる際の一例を示す。ユーザーがリモコン操作により、第1系統Aの室内機Y1に対して冷房運転の要求を出す。上述のように、室内機Y1の室内機制御手段18Y1は、室内機Y1が設置されている部屋の室内温度とユーザーにより設定された設定温度との差分を室外機Xの室外機制御手段19へ送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Aの運転周波数を決定し、圧縮機1Aを運転する。例えば、温度検出手段17Y1により検出される室内温度が30℃、設定温度が16℃であるとし、圧縮機1Aの運転周波数が80Hzであるとする。このときの目標凝縮温度は例えば38℃であり、上述の表1における目標凝縮温度の周波数バンド4に相当する。
さらに、ユーザーがリモコン操作により、第2系統Bの室内機Y3に対して冷房運転の要求を出す。上述のように、室内機Y3の室内機制御手段18Y3は、室内機Y3が設置されている部屋の室内温度とユーザーにより設定された設定温度との差分を室外機Xの室外機制御手段19へ送信する。室外機Xの室外機制御手段19は、送信された差分に基づいて圧縮機1Bの運転周波数を決定し、圧縮機1Bを運転する。例えば、温度検出手段17Y3により検出される室内温度が26℃、設定温度が24℃であるとし、圧縮機1Bの運転周波数が30Hzであるとする。このときの目標凝縮温度は例えば36℃であり、上述の表1における目標凝縮温度の周波数バンド2に相当する。
このようなとき、室外機Xの室外機制御手段19は、第1系統Aの目標凝縮温度は38℃で周波数バンド4に属し、第2系統Bの目標凝縮温度は36℃で周波数バンド2に属すると認識する。ここで、第1系統Aの目標凝縮温度は38℃であり、圧縮機1Aの運転周波数80Hzであるのに対し、第2系統Bの目標凝縮温度は36℃であり、圧縮機1Bの運転周波数は30Hzであり、圧縮機1Aの運転周波数の方が圧縮機1Bの運転周波数よりも高い。従って、室外機制御手段19は、第1系統Aの目標凝縮温度、すなわち38℃を基準とする。室外機制御手段19は、第1系統Aと第2系統Bの周波数バンド差を算出し、その差に応じて補正値を決定する。表2は、本実施の形態における、周波数バンド差と目標凝縮温度の補正値との関係を示す表である。
上述の例では、周波数バンド差は4-2=2となり、目標凝縮温度の補正値は+1.0℃である。従って、室外機制御手段19により、基準値である第1系統Aの目標凝縮温度は38℃から38℃+1.0℃=39℃に補正される。
圧縮機1の運転開始後、温度検出手段13によって凝縮器である室外熱交換器3の冷媒飽和温度、つまり凝縮温度を検出する。温度検出手段13によって検出された室外熱交換器3の凝縮温度が、上述のように補正を加えた目標凝縮温度に到達するように、室外ファン4の回転数を設定する。すなわち、圧縮機1の運転開始後、温度検出手段13Aにより室外熱交換器3Aの冷媒の凝縮温度、及び温度検出手段13Bにより検出される室外熱交換器3Bの冷媒の凝縮温度が、補正された目標凝縮温度39℃になるよう、室外機制御手段19は室外ファン4の回転数を設定する。そして、設定された室外ファン4の回転数に基づいて室外ファンモーター5の回転数を調整する。
現在の凝縮温度をTcとし、目標凝縮温度をTcmとすると、Tcが大きければ大きいほど、凝縮温度Tcと目標凝縮温度Tcmとの差が大きくなるため、熱交換に必要な風量は大きくなることとなり、室外ファン4の必要回転数、換言すると安定回転数が大きくなる。図2は、現在の凝縮温度、目標凝縮温度、及び室外ファンモーターの安定回転数との関係を示すグラフである。横軸に現在の凝縮温度Tcをとり、縦軸に室外ファンモーター5の安定回転数Nをとっている。図2中、線L21は目標凝縮温度Tcmが36℃の場合、線L22は目標凝縮温度Tcmが38℃の場合、線L23は目標凝縮温度Tcmが40℃の場合の、凝縮温度Tcと安定回転数Nとの関係を示している。
本実施の形態では、冷凍サイクルの状態をより安定化させるため、室外ファン4の回転数の制御、すなわち室外ファンモーター5の回転数の制御は段階的に実行される。そして、温度検出手段13によって検出される室外熱交換器3の凝縮温度を室外機制御手段19が受信し、室外ファンモーター5の回転数を決定する制御間隔は、例えば60秒としている。設定される室外ファン4の回転数に応じて室外熱交換器3を通過する風量が変化するため、現在の凝縮温度は変化する。本実施の形態では、現在の凝縮温度の変化に対してハンチングを起こしにくくするために、室外ファンモーター5の回転数変化にはヒステリシスを持たせている。図3は、現在の凝縮温度と目標凝縮温度との差分と、室外ファンモーターの安定回転数との関係を示す図である。図3中、横軸に凝縮温度Tcと目標凝縮温度Tcmとの差分のΔTcをとり、縦軸に室外ファンモーター5の安定回転数Nをとっている。図3中、実線で示すように、差分ΔTcの変化に応じて、室外ファンモーター5の安定回転数Nはステップ状に変化するよう制御される。さらに、図3中、点線矢印で示すように、室外ファンモーター5の安定回転数Nの変化にはヒステリシスを持たせている。
図4は、本発明の実施の形態に係るファン速制御の処理手順を示すフローチャートである。ステップS1で冷房運転の開始処理が実行される。図5は、冷房運転の開始処理の手順を示すフローチャートである。ユーザーがリモコン操作することにより室内機Yに対し冷房運転の要求を出すと、ステップS1-1で、室内機制御手段18Yは運転開始指令を受信する。運転開始指令を受信した室内機制御手段18Yは、ステップS1-2において室内ファンモーター9Yの運転を開始する。次いで、ステップS1-3で、室外機制御手段19は、室内機制御手段18Yから運転開始指令を受信する。その後、処理は図4のステップS2に進む。
ステップS2では運転している室内機の系統を抽出する処理が実行される。図6は、運転している室内機の系統を抽出する処理の手順を示すフローチャートである。ステップS2-1において、室外機制御手段19は、受信した運転開始命令に基づいて運転している冷凍サイクル回路の系統を特定する。運転開始命令が室内機制御手段18Y1若しくは室内制御手段18Y2から受信したものであれば、室外機制御手段19は、運転しているのは第1系統Aが運転であると特定する。また、運転開始命令が室内機制御手段18Y3若しくは室内制御手段18Y4から受信したものであれば、室外機制御手段19は、運転しているのは第2系統Bであると特定する。次いで、ステップS2-2において、室外機制御手段19は、運転開始時の調整処理を実行する。本実施の形態において、運転開始時の調整処理とは、圧縮機1の運転開始周波数の調整、室外ファンモーター5の回転数の調整、四方弁2の流路の調整、膨張弁6の開度の調整である。その後、処理は図4のステップS3へ進む。
ステップS3では、運転中の冷凍サイクルが1系統であるか否かチェックされる。運転中の冷凍サイクルが1系統である場合、処理はステップS4へ進む。運転中の冷凍サイクルが複数系統である場合、処理はステップS6へ進む。
ステップS4では、室外機制御手段19は、現在の圧縮機1の運転周波数を検出し、検出された運転周波数に基づいて、上述の表1の対応表の中から、目標凝縮温度を決定するための周波数バンドを特定する。次いでステップS5へ進み、目標凝縮温度を決定する。図7は、目標凝縮温度の決定処理の手順を示すフローチャートである。ステップS5-1において、室外機制御手段19は、温度検出手段13により検出された室外熱交換器3の冷媒飽和温度に基づいて、現在の凝縮温度Tcを抽出する。次いでステップS5-2において、室外機制御手段19は、ステップS4で特定した周波数バンドに設定されている目標凝縮温度Tcmを決定する。その後、処理は図4のステップS10へ進む。
一方、ステップS6では、運転している冷凍サイクルの系統ごとに、現在の圧縮機1の運転周波数を検出し、検出された運転周波数に基づいて、上述の表1の対応表の中から、目標凝縮温度Tcmを決定するための周波数バンドを特定する。ステップS6に進む場合とは、本実施の形態では第1系統A及び第2系統Bが運転中の場合である。従って、ステップS6において、室外機制御手段19は、第1系統Aについては圧縮機1Aの運転周波数に基づいて、表1の対応表の周波数バンドを特定し、第2系統Bについては圧縮機1Bの運転周波数に基づいて、表1の対応表の周波数バンドを特定する。次いでステップS7へ進む。ステップS7では、室外機制御手段19は、バンド差の算出処理を行う。図8は、バンド差を算出する処理の手順を示すフローチャートである。ステップS7-1において、室外機制御手段19は、ステップS6で特定された周波数バンドのうち最も値の大きい周波数バンドを抽出し、基準バンドとする。次いで、ステップ7-2へ進み、ステップS6で特定された周波数バンドのうち最も値の小さい周波数バンドを抽出する。そして、ステップS7-1で決定された基準バンドと、最も値の小さい周波数バンドとの差分、すなわち周波数バンド差を算出する。また、圧縮機1の運転周波数が基準バンドに属する冷凍サイクルの系統を基準系統とする。その後、処理は図4のステップS8へ進む。
ステップS8では、室外機制御手段19は、ステップS7-2で算出した周波数バンド差に対応する目標凝縮温度の補正値Tcmhを上述の表2に基づいて決定する。次いで、ステップS9へ進み、室外機制御手段19は、目標凝縮温度の設定を行う。図9は、目標凝縮温度を設定する処理の手順を示すフローチャートである。ステップS9-1において、室外機制御手段19は、運転している冷凍サイクルの系統毎に、温度検出手段13により検出される室外熱交換器3の冷媒飽和温度に基づいて、現在の凝縮温度Tcを抽出する。ステップS9-1に進む場合とは、上述のように第1系統A及び第2系統Bが運転中である場合である。従って、ステップS9-1では、室外機制御手段19は、第1系統Aについては、温度検出手段13Aにより検出される冷媒飽和温度に基づいて、室外熱交換器3Aの現在の凝縮温度Tcaを抽出し、第2系統Bについては、温度検出手段13Bにより検出される冷媒飽和温度に基づいて、室外熱交換器3Bの現在の凝縮温度Tcbを抽出する。また、圧縮機1の運転周波数のバンドが、ステップS7-1で基準系統に設定された冷凍サイクルの系統の凝縮温度をシステムの凝縮温度Tcとして設定し、以降の処理で使用する。すなわち、システムの凝縮温度Tcは、凝縮温度Tca若しくはTcbである。
次いで、ステップS9-2において、室外機制御手段19は、システムの目標凝縮温度ベースTcm_baseを設定する。ステップS7-1において圧縮機1の運転周波数が基準バンドに属すると特定された冷凍サイクルの系統の目標凝縮温度をシステムの目標凝縮温度ベースTcm_baseとして設定する。すなわち、圧縮機1の運転周波数が最も大きいバンドに属する冷凍サイクルの系統の目標凝縮温度が、システムの目標凝縮温度ベースTcm_baseとして設定される。システムの目標凝縮温度ベースTcm_baseは、以降の制御に使用される。
次いで、ステップS9-3において、室外機制御手段19は、システムの目標凝縮温度ベースTcm_baseを、ステップS8で決定された補正値Tcmhで補正し、目標凝縮温度Tcmを設定する。具体的には、目標凝縮温度ベースTcm_baseに補正値Tcmhを加える。その後、処理は図4のステップS10へ進む。
ステップS10では、室外機制御手段19は、現在のシステムの凝縮温度Tcと目標凝縮温度Tcmの差分ΔTcを算出する。運転中の冷凍サイクルが1系統の場合、差分ΔTcの算出にはステップS5で算出された目標凝縮温度Tcmが用いられ、運転中の冷凍サイクルが2系統の場合、差分ΔTcの算出にはステップS9-3で設定された目標凝縮温度Tcmが用いられる。また、運転中の冷凍サイクルが2系統の場合、凝縮温度Tcは、ステップS7-1で基準系統に設定された冷凍サイクルの系統において、温度検出手段13により得られる凝縮温度である。
次いでステップS11において、室外ファンモーター5の回転数を決定する。図10は、室外ファンモーターの回転数決定の処理手順を示すフローチャートである。ステップS11-1において、室外機制御手段19は、ステップS10で算出された差分ΔTcに基づいて、凝縮温度差バンドを決定する。凝縮温度差バンドは、凝縮温度Tcと目標凝縮温度Tcmとの差分ΔTcの帯域に対応して段階的に規定されている。表3は、本実施の形態において、凝縮温度差バンドの設定に用いられる温度差の幅の閾値を示す表である。また、表4は、凝縮温度Tcと目標凝縮温度Tcmとの差分の帯域と、凝縮温度差バンドとを対応付ける表である。
表3の閾値を表4の凝縮温度差バンド1に当てはめると、凝縮温度差バンド1はTc≦Tcm-5という帯域に対応している。すなわち、凝縮温度差バンド1は、現在の凝縮温度Tcが目標凝縮温度Tcmよりも大幅に低い場合の温度差の帯域に対応している。表3の閾値を表4の凝縮温度差バンド7に当てはめると、凝縮温度差バンド7はTcm+5<Tcという帯域に対応している。すなわち、凝縮温度差バンド7は、現在の凝縮温度Tcが目標凝縮温度Tcmよりも大幅に高い温度差の帯域に対応している。表3の閾値を表4の凝縮温度差バンド4に当てはめると、凝縮温度差バンド4は、Tcm-1<Tc≦Tcm+1という帯域に対応している。すなわち、凝縮温度差バンド4は、現在の凝縮温度Tcが目標凝縮温度Tcmに近似している帯域に対応している。凝縮温度差バンド1と凝縮温度差バンド4との間は、現在の凝縮温度Tcが目標凝縮温度Tcmより低い帯域が段階的に規定されている。凝縮温度差バンド4と凝縮温度差バンド7との間は、現在の凝縮温度Tcが目標凝縮温度Tcmより高い帯域が段階的に規定されている。
上述の例では、目標凝縮温度Tcmは39℃に補正されている。現在の凝縮温度Tcが41℃だとすると、TcとTcmの差分は41℃-39℃=2℃となる。従って、表4より凝縮温度差バンドは5となる。
次いで、ステップS11-2において、室外機制御手段19は、室外ファンモーター5の回転数ステップを決定する。図11は、室外ファンモーターの回転数の制御を示す回転数ステップのグラフである。図11中、横軸には表4に示す凝縮温度差バンドをとり、縦軸には室外ファンモーター5の回転数をとっている。室外ファンモーター5の回転数は、凝縮温度差バンドの増減に対応して段階的に設定されている。すなわち、凝縮温度差バンドが1から7へ向けて大きくなるにつれ、室外ファンモーター5の回転数は段階的に大きくなり、凝縮温度差バンドが7から1へ向けて小さくなるにつれ、室外ファンモーター5の回転数は段階的に小さくなっている。さらに、室外ファンモーター5の回転数の制御にはヒステリシスをもたせている。すなわち、凝縮温度差バンドのそれぞれに対応する回転数ステップには上段と下段のステップが設定されている。例えば、凝縮温度差バンド4の上段のステップn(上)の回転数と、凝縮温度差バンド5の下段のステップn+1の回転数は同一であり、凝縮温度差バンド4の下段のステップn(下)の回転数と、凝縮温度差バンド4の上段の回転数ステップn-1の回転数は同一である。本実施の形態において、回転数ステップの初期位置は、凝縮温度差バンドに対応する回転数ステップの下段に設定される。
例えば、上述のように凝縮温度Tcが41℃、目標凝縮温度Tcmが39℃であり、ΔTcが2℃、凝縮温度差バンドが5の場合、回転数ステップはn+1の下段であるn+1(下)に設定される。
ステップS11-3では、室外機制御手段19は、ステップS11-2で設定された回転数ステップに対応する回転数で室外ファンモーター5を回転させ、室外ファン4の回転数を決定する。
次いで、図4のステップS12へ進み、所定時間、例えば60秒が経過したか否かをチェックする。所定時間が経過したらステップS13へ進む。ステップS13では、室外ファン4の回転数を変更する処理が実行される。図12は、室外ファンモーターの回転数変更の処理手順を示すフローチャートである。ステップS13-1において、室外機制御手段19は、室外ファンモーター5の回転数が安定している凝縮温度差バンドとヒステリシスの位置を抽出する。次いで、ステップS13-2において、室外機制御手段19は、現在の凝縮温度Tcと目標凝縮温度Tcmとの差ΔTcを算出する。運転中の冷凍サイクルが2系統の場合、凝縮温度Tcは、ステップS7-1で基準系統に設定された冷凍サイクルの系統において、温度検出手段13により得られる凝縮温度である。そして、室外機制御手段19は、ΔTcに応じて上述の凝縮温度差バンドを変更する。
次いでステップS13-3へ進み、室外機制御手段19は、ステップS13-1及びステップS13-2の結果に応じて、室外ファンモーター5の回転数を以下の4つの態様で変更する。
ステップS13-1で、現在の室外ファンモーター5の回転数が図11に示す回転数ステップのヒステリシスの上段にあることが確認され、ステップS13-2で、凝縮温度差バンドがより小さい数字のバンド、すなわち下のバンドへ移行したことが確認された場合、室外ファンモーター5の回転数をダウンさせ、回転数ステップのヒステリシスの下段へ移動させる。例えば、ステップS13-1で現在の室外ファンモーター5の回転数がn+1(上)に存在していることが確認され、ステップS13-2で算出されたΔTcが凝縮温度差バンド5から凝縮温度差バンド4へ移行していることが確認されたら、室外ファンモーター5の回転数をダウンさせ、n+1(下)へ移動させる。
また、ステップS13-2で凝縮温度差バンドがより小さい数字のバンド、すなわち下のバンドへ移行したことが確認された場合、室外ファンモーター5の回転数をアップさせ、回転数ステップのヒステリシスの上段へ移動させる。
また、ステップS13-2で算出された差ΔTcが、回転数ステップn-1からn-3のいずれかに対応する凝縮温度差バンドにあり、かつ凝縮温度差バンドに変更がない状態が60秒間経過した場合、室外ファンモーター5の回転数をダウンさせる。
また、ステップS13-2で算出された差ΔTcが、回転数ステップn+1からn+3のいずれかに対応する凝縮温度差バンドにあり、かつ凝縮温度差バンドに変更がない状態が60秒間経過した場合、室外ファンモーター5の回転数をアップさせる。
ステップS13-3で上述の4つの制御のいずれかが実行されたら、図4のステップS14へ進む。ステップS14では、室内機Yの運転台数若しくは冷凍サイクルの運転系統数に変化があったか否かがチェックされる。室内機Yの運転台数若しくは冷凍サイクルの運転系統数に変化があったことが確認されると、処理は図4のステップS2へ移行する。室内機Yの運転台数若しくは冷凍サイクルの運転系統数に変化がないことが確認されると処理はステップS12へ移行する。
以上のように、本実施の形態によれば、第1系統A及び第2系統Bのそれぞれの空調負荷が異なる場合であっても、室外ファンモーター5の回転数を上述のように制御することで、各系統において過冷却度が付きすぎの状態、若しくは過冷却度が不足する状態を招くことがない。その結果、各系統において、能力過多の運転、若しくは能力不足気味の運転が防止され、空気調和機全体でバランスのとれた冷房運転を実行することができる。
本実施の形態によれば、単一の室外ファン4及び単一の室外ファンモーター5により、第1系統A及び第2系統Bの冷房運転を良好なものとすることができる。従って、第1系統A及び第2系統Bのそれぞれに室外ファン及び室外ファンモーターを備える必要がなく、複雑な制御を必要としない。
本実施の形態では、運転開始後、60秒が経過するたびに室外熱交換器3の現在の凝縮温度と目標凝縮温度との差分に基づいて室外ファンモーター5の回転数を変化させるとき、ヒステリシスを持たせて制御している。従って、室外ファンモーター5の駆動においてハンチングを防止することができる。
本実施の形態は、単一の室外機Xが2系統の冷凍サイクルを有する構成を有しているがこれに限るものではない。単一の室外機Xが3系統以上の冷凍サイクルを有する構成においても、室外機制御手段19により上述と同様の処理が実行され、同様の効果を発揮する。
本実施の形態は、冷凍サイクルの各系統において室内機Yが2台接続されている構成を有しているがこれに限るものではない。冷凍サイクルの各系統に接続される室内機Yの台数は1台でもよく、3台以上でもよい。尚、1つの系統に複数の室内機Yが接続される構成において、上述の室外機制御手段19による制御はより効果的である。
1 圧縮機、1A 圧縮機、1B 圧縮機、2 四方弁、2A 四方弁、2B 四方弁、3 室外熱交換器、3A 室外熱交換器、3B 室外熱交換器、4 室外ファン、5 室外ファンモーター、6 膨張弁、6A1 膨張弁、6A2 膨張弁、6B1 膨張弁、6B2 膨張弁、7 凝縮温度差バンド、7Y 室内熱交換器、7Y1 室内熱交換器、7Y2 室内熱交換器、7Y3 室内熱交換器、7Y4 室内熱交換器、8Y 室内ファン、9Y 室内ファンモーター、10A 液側バルブ、10B 液側バルブ、11A ガス側バルブ、11B ガス側バルブ、12A 温度検出手段、12B 温度検出手段、13 温度検出手段、13A 温度検出手段、13B 温度検出手段、14 温度検出手段、15A 温度検出手段、15B 温度検出手段、16Y 温度検出手段、17Y 温度検出手段、17Y1 温度検出手段、17Y3 温度検出手段、18Y 室内機制御手段、18Y1 室内機制御手段、18Y2 室内制御手段、18Y3 室内機制御手段、18Y4 室内制御手段、19 室外機制御手段、A 第1系統、B 第2系統、N 安定回転数、Tc 凝縮温度、Tca 凝縮温度、Tcb 凝縮温度、Tcm 目標凝縮温度、Tcm_base 目標凝縮温度ベース、Tcmh 補正値、X 室外機、Y 室内機、Y1 室内機、Y2 室内機、Y3 室内機、Y4 室内機、ΔTc 差分。
Claims (8)
- 室外機と複数の室内機とを備え、
前記室外機は、複数の圧縮機と、複数の室外熱交換器と、複数の流路切替装置と、複数の膨張弁と、前記複数の室外熱交換器に空気を送る単一のファンと、前記単一のファンを駆動する単一のファンモーターと、前記室外機を制御する室外機制御手段とを有し、
前記複数の室内機は、それぞれ室内熱交換器を有し、
前記圧縮機と前記室外熱交換器と前記流路切換装置と前記膨張弁と前記複数の室内機のうちの一部の室内機の前記室内熱交換器とが冷媒配管で接続された冷凍サイクル回路が複数系統構成されている空気調和機であって、
前記室外機制御手段は、
前記複数系統の前記冷凍サイクル回路が同時に運転されているとき、
前記複数系統の前記冷凍サイクル回路のそれぞれの前記室外熱交換器における冷媒の目標凝縮温度を取得し、
前記複数系統の前記冷凍サイクル回路のそれぞれの前記目標凝縮温度の差分を算出し、
前記差分に基づいて前記単一のファンモーターの回転数を制御する空気調和機。 - 前記室外機制御手段は、
前記複数系統の前記冷凍サイクル回路毎に、前記圧縮機の運転周波数を取得し、
前記複数系統の前記冷凍サイクル回路毎に、前記圧縮機の運転周波数の帯域の高低に対応して段階的に規定されている複数の周波数バンドと、前記複数の周波数バンド毎に規定されている前記室外熱交換器の目標凝縮温度の中から、取得した前記圧縮機の運転周波数に基づいて前記周波数バンド及び前記目標凝縮温度を特定し、
運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドと、運転周波数が最も小さい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドとの差分を算出し、
前記周波数バンドの差分に対応して段階的に規定されている複数の前記目標凝縮温度の補正値の中から、算出された前記周波数バンドの差分に基づいて、前記補正値を決定し、
運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記目標凝縮温度を前記補正値で補正し、
前記室外熱交換器の凝縮温度が前記補正値で補正された前記目標凝縮温度となるよう、前記室外ファンモーターの回転数を制御する請求項1に記載の空気調和機。 - 前記補正値は、前記周波数バンドの差分が大きくなるにつれ、より大きくなるよう規定されている請求項2に記載の空気調和機。
- 前記室外機制御手段は、
前記室外熱交換器の現在の凝縮温度と、補正された前記目標凝縮温度との差分に基づいて前記室外ファンモーターの回転数を制御するとき、ヒステリシスを持たせて前記室外機ファンモーターの回転数を制御する請求項2又は3に記載の空気調和機。 - 室外機と複数の室内機とを備え、
前記室外機は、複数の圧縮機と、複数の室外熱交換器と、複数の流路切替装置と、複数の膨張弁と、前記複数の室外熱交換器に空気を送る単一のファンと、前記単一のファンを駆動する単一のファンモーターと有し、
前記圧縮機と前記室外熱交換器と前記流路切換装置と前記膨張弁と前記複数の室内機のうちの一部の室内機の室内熱交換器とが冷媒配管で接続された冷凍サイクル回路を複数系統有する空気調和機において、
前記複数系統の冷凍サイクル回路が同時に運転されているとき、
前記空気調和機の冷媒の目標凝縮温度を設定する設定ステップと、
前記目標凝縮温度に基づいて前記単一のファンモーターの回転を制御するモーター制御ステップとを含んでいる空気調和機のファン速制御方法。 - 前記設定ステップは、
前記複数系統の前記冷凍サイクル回路毎に、前記圧縮機の運転周波数を取得し、
前記圧縮機の運転周波数の帯域の高低に対応して段階的に規定されている複数の周波数バンドと、前記複数の周波数バンド毎に規定されている、前記室外熱交換器の目標凝縮温度の中から、前記複数系統の前記冷凍サイクル回路毎に、取得した前記圧縮機の運転周波数に基づいて前記周波数バンド及び前記目標凝縮温度を特定する特定ステップと、
運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドと、運転周波数が最も小さい前記圧縮機を有する前記冷凍サイクル回路の前記周波数バンドとの差分を算出するバンド差分算出ステップと、
前記周波数バンドの差分に対応して段階的に規定されている複数の前記目標凝縮温度の補正値の中から、前記バンド差分算出ステップで算出された前記周波数バンドの前記差分に基づいて、前記補正値を決定する補正値決定ステップと、
運転周波数が最も大きい前記圧縮機を有する前記冷凍サイクル回路の前記目標凝縮温度を前記補正値で補正する補正ステップとを含んでいる請求項5に記載の空気調和機のファン速制御方法。 - 前記モーター制御ステップは、
前記室外熱交換器の現在の凝縮温度と、前記補正ステップで補正された前記目標凝縮温度との差分を検出する温度差分検出ステップと、
前記温度差分検出ステップで検出された前記差分に基づいて、前記室外熱交換器の凝縮温度が前記補正ステップで補正された前記目標凝縮温度となるよう前記室外ファンモーターの回転数を制御する回転数制御ステップとを含んでいる請求項6に記載の空気調和機のファン速制御方法。 - 前記回転数制御ステップにおいて、前記室外ファンモーターの回転数はヒステリシスを持たせて制御される請求項7に記載の空気調和機のファン速制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019513129A JP6707189B2 (ja) | 2017-04-19 | 2017-04-19 | 空気調和機及び空気調和機のファン速制御方法 |
PCT/JP2017/015676 WO2018193537A1 (ja) | 2017-04-19 | 2017-04-19 | 空気調和機及び空気調和機のファン速制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/015676 WO2018193537A1 (ja) | 2017-04-19 | 2017-04-19 | 空気調和機及び空気調和機のファン速制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018193537A1 true WO2018193537A1 (ja) | 2018-10-25 |
Family
ID=63855779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/015676 WO2018193537A1 (ja) | 2017-04-19 | 2017-04-19 | 空気調和機及び空気調和機のファン速制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6707189B2 (ja) |
WO (1) | WO2018193537A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110454934A (zh) * | 2019-08-05 | 2019-11-15 | 广东美的制冷设备有限公司 | 空调器及其控制方法、控制装置 |
CN111578482A (zh) * | 2020-05-28 | 2020-08-25 | 广东美的制冷设备有限公司 | 多联机空调器及其控制方法、装置、设备和存储介质 |
JP2021025690A (ja) * | 2019-08-02 | 2021-02-22 | ヒューグル開発株式会社 | 機器 |
CN112393453A (zh) * | 2020-11-30 | 2021-02-23 | 珠海格力电器股份有限公司 | 一种多系统空调机组及防凝露控制方法 |
CN115111791A (zh) * | 2022-06-24 | 2022-09-27 | 深圳市酷凌时代科技有限公司 | 冷水机、冷凝器的积灰检测方法、装置及可读存储介质 |
CN117433194A (zh) * | 2023-12-20 | 2024-01-23 | 珠海格力电器股份有限公司 | 一种制冷系统的控制方法、装置、制冷系统及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06193983A (ja) * | 1992-12-25 | 1994-07-15 | Zexel Corp | 冷凍冷蔵庫のコンデンサファン制御装置 |
JP2543868Y2 (ja) * | 1991-10-17 | 1997-08-13 | 株式会社富士通ゼネラル | 空気調和機 |
JP2012067985A (ja) * | 2010-09-27 | 2012-04-05 | Mitsubishi Electric Corp | 冷凍機、冷凍装置及び空気調和装置 |
WO2014103028A1 (ja) * | 2012-12-28 | 2014-07-03 | 三菱電機株式会社 | 空気調和装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000008422A (ko) * | 1998-07-13 | 2000-02-07 | 윤종용 | 멀티형 냉난방겸용 공조기기 |
JP2006153333A (ja) * | 2004-11-26 | 2006-06-15 | Matsushita Electric Ind Co Ltd | 空気調和機 |
-
2017
- 2017-04-19 WO PCT/JP2017/015676 patent/WO2018193537A1/ja active Application Filing
- 2017-04-19 JP JP2019513129A patent/JP6707189B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2543868Y2 (ja) * | 1991-10-17 | 1997-08-13 | 株式会社富士通ゼネラル | 空気調和機 |
JPH06193983A (ja) * | 1992-12-25 | 1994-07-15 | Zexel Corp | 冷凍冷蔵庫のコンデンサファン制御装置 |
JP2012067985A (ja) * | 2010-09-27 | 2012-04-05 | Mitsubishi Electric Corp | 冷凍機、冷凍装置及び空気調和装置 |
WO2014103028A1 (ja) * | 2012-12-28 | 2014-07-03 | 三菱電機株式会社 | 空気調和装置 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021025690A (ja) * | 2019-08-02 | 2021-02-22 | ヒューグル開発株式会社 | 機器 |
JP7399448B2 (ja) | 2019-08-02 | 2023-12-18 | ヒューグル開発株式会社 | 機器 |
CN110454934A (zh) * | 2019-08-05 | 2019-11-15 | 广东美的制冷设备有限公司 | 空调器及其控制方法、控制装置 |
CN111578482A (zh) * | 2020-05-28 | 2020-08-25 | 广东美的制冷设备有限公司 | 多联机空调器及其控制方法、装置、设备和存储介质 |
CN111578482B (zh) * | 2020-05-28 | 2022-02-25 | 广东美的制冷设备有限公司 | 多联机空调器及其控制方法、装置、设备和存储介质 |
CN112393453A (zh) * | 2020-11-30 | 2021-02-23 | 珠海格力电器股份有限公司 | 一种多系统空调机组及防凝露控制方法 |
CN112393453B (zh) * | 2020-11-30 | 2023-11-07 | 珠海格力电器股份有限公司 | 一种多系统空调机组及防凝露控制方法 |
CN115111791A (zh) * | 2022-06-24 | 2022-09-27 | 深圳市酷凌时代科技有限公司 | 冷水机、冷凝器的积灰检测方法、装置及可读存储介质 |
CN115111791B (zh) * | 2022-06-24 | 2024-02-09 | 深圳市酷凌时代科技有限公司 | 冷水机、冷凝器的积灰检测方法、装置及可读存储介质 |
CN117433194A (zh) * | 2023-12-20 | 2024-01-23 | 珠海格力电器股份有限公司 | 一种制冷系统的控制方法、装置、制冷系统及存储介质 |
CN117433194B (zh) * | 2023-12-20 | 2024-04-05 | 珠海格力电器股份有限公司 | 一种制冷系统的控制方法、装置、制冷系统及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018193537A1 (ja) | 2019-11-14 |
JP6707189B2 (ja) | 2020-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018193537A1 (ja) | 空気調和機及び空気調和機のファン速制御方法 | |
JP6479162B2 (ja) | 空気調和装置 | |
JP5182358B2 (ja) | 冷凍装置 | |
US10371407B2 (en) | Air conditioning apparatus | |
CN105222441A (zh) | 制冷系统的控制方法和装置 | |
JP6448775B2 (ja) | 空気調和装置 | |
AU2014387521B2 (en) | Heat source side unit and air-conditioning apparatus | |
AU2015364970B2 (en) | Air conditioning apparatus | |
US11262108B2 (en) | Refrigeration cycle apparatus | |
JP2014238179A (ja) | 空気調和機の制御装置 | |
WO2019058464A1 (ja) | 空気調和装置 | |
WO2020003490A1 (ja) | 空気調和装置 | |
JPH1114125A (ja) | 多室型空気調和機 | |
JP2019020093A (ja) | 空気調和機 | |
CN113531651A (zh) | 一种空调器和导风板的控制方法 | |
JP2015124958A (ja) | 空気調和機 | |
JP2016211772A (ja) | 空気調和機 | |
JP2010210222A (ja) | 空気調和機およびその制御方法 | |
JP2017062082A (ja) | マルチ型空気調和装置 | |
JP7254103B2 (ja) | 空気調和システム | |
KR101064483B1 (ko) | 주파수 보정 기능을 갖는 멀티형 공기조화기 및 멀티형공기조화기의 인버터 압축기의 주파수 보정 방법 | |
JP2005283078A (ja) | 空気調和機 | |
JP2003042505A (ja) | 空調装置およびその運転制御方法 | |
KR101065082B1 (ko) | 멀티형 공기조화기의 장배관의 냉매량 조절 방법 | |
WO2019038804A1 (ja) | 空気調和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17906324 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019513129 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17906324 Country of ref document: EP Kind code of ref document: A1 |