WO2014103028A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2014103028A1
WO2014103028A1 PCT/JP2012/084125 JP2012084125W WO2014103028A1 WO 2014103028 A1 WO2014103028 A1 WO 2014103028A1 JP 2012084125 W JP2012084125 W JP 2012084125W WO 2014103028 A1 WO2014103028 A1 WO 2014103028A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
refrigerant
temperature
side unit
heat exchanger
Prior art date
Application number
PCT/JP2012/084125
Other languages
English (en)
French (fr)
Inventor
博幸 岡野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/443,429 priority Critical patent/US10323862B2/en
Priority to PCT/JP2012/084125 priority patent/WO2014103028A1/ja
Priority to CN201280077495.7A priority patent/CN104838211B/zh
Priority to EP12891184.9A priority patent/EP2940395B1/en
Priority to JP2014554017A priority patent/JP6053826B2/ja
Publication of WO2014103028A1 publication Critical patent/WO2014103028A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • F25B2313/02531Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/025Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
    • F25B2313/0253Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
    • F25B2313/02533Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/111Fan speed control of condenser fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/19Refrigerant outlet condenser temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to a multi-type air conditioner capable of performing a cooling operation or a heating operation in each of a plurality of indoor units (load-side units) (hereinafter, referred to as a mixed cooling / heating operation), and particularly consumes power.
  • the present invention relates to a reduction control method.
  • an air conditioner in which an evaporation temperature and a condensation temperature, which are control target temperatures in a refrigeration cycle, are variable according to a load (see Patent Document 1).
  • This air conditioner has variable values for the evaporating temperature and the condensing temperature, which are control target temperatures, according to the air conditioning load estimated from the operation mode and the difference between the set temperature and the suction temperature, It operates at a low compression ratio at low loads, reducing power consumption.
  • the temperature and the evaporation temperature are controlled to be constant.
  • the difference between the suction temperature and the set temperature is monitored, and if the “suction temperature-set temperature” falls below a predetermined value, it is determined that the air conditioning load is small.
  • the frequency of the compressor can be lowered and the power consumption can be reduced.
  • a frequency can be lowered
  • JP 2012-107840 A (see, for example, [0014] to [0069], FIGS. 1 to 10)
  • the capacity of the heat source side heat exchanger is controlled according to the load so as to match the target evaporation temperature and condensation temperature.
  • controlling only one of them controlling only one of the temperatures is not sufficient.
  • the power consumption of the compressor is relatively low. The power consumption of the blower increased, and as a result, there was a problem that the energy saving effect was reduced.
  • the present invention has been made in order to solve the above-described problems, and is an air conditioner that increases the energy saving effect by controlling both the evaporation temperature and the condensation temperature in a multi-type capable of mixed heating and heating operation. It is intended to provide.
  • An air conditioner includes an outdoor heat exchanger provided with a compressor and an air blower connected in series, and a heat source side unit that supplies heat via a refrigerant, an indoor heat exchanger, and an indoor expansion device And a plurality of load-side units to which heat is supplied from the heat source side unit via the refrigerant, and a refrigerant control unit that switches the flow of the refrigerant according to an operation state,
  • the heat source side unit and the refrigerant control unit are piped in series, the refrigerant control unit and the load side unit are piped in series, and the load side units are piped in parallel, and the load side
  • Each of the units is an air conditioner that performs a cooling operation or a heating operation, and the heat source side unit is used to obtain a condensation temperature and an evaporation temperature of the refrigerant.
  • the load side unit has a load detection unit used for obtaining a load during operation, and the load side unit has the temperature detection unit according to the load of the load side unit obtained using the load detection unit.
  • the target condensation temperature and the target evaporation temperature of the refrigerant are changed so that the condensation temperature obtained using the temperature detection means matches the target condensation temperature and the evaporation temperature obtained using the temperature detection means is
  • the operating frequency of the compressor and the rotational speed of the blower are controlled so as to coincide with the target evaporation temperature.
  • the air conditioner according to the present invention can increase the energy saving effect by controlling both the evaporation temperature and the condensation temperature.
  • FIG. 1 is a schematic configuration diagram illustrating an example of a refrigerant circuit configuration of an air-conditioning apparatus 500 according to an embodiment of the present invention. Based on FIG. 1, the refrigerant circuit structure of the air conditioning apparatus 500 is demonstrated. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
  • This air conditioner 500 is installed in a building, a condominium or the like, and can perform a cooling and heating mixed operation by using a refrigeration cycle (heat pump cycle) for circulating a refrigerant.
  • the air conditioner 500 includes a heat source side unit 100, a refrigerant control unit 200, and a plurality of (two in FIG. 1) load side units 300 (300a, 300b).
  • the heat source side unit 100 and the refrigerant control unit 200 are connected by a low pressure pipe 401 and a high pressure pipe 402, and the refrigerant control unit 200 and the load side unit 300 are connected by gas pipes 405a and 405b and liquid pipes 406a and 406b. And form a refrigeration cycle.
  • the heat source side unit 100 has a function of supplying cold or warm heat to the load side unit 300.
  • “a” or “b” is added after the reference numerals of some devices included in the “heat source side unit 100”.
  • “a” and “b” added after the reference may be omitted. In that case, the description includes both the devices “a” and “b”. Needless to say.
  • the heat source side unit 100 is connected in series with a compressor 101, a four-way switching valve 102 as a flow path switching means, an on-off valve 105, an outdoor heat exchanger 103 provided with a blower 106, and an accumulator 104. It is mounted so as to constitute a main refrigerant circuit.
  • outdoor heat exchanger units the location where the on-off valve 105a and the outdoor heat exchanger 103a are connected in series, and the location where the on-off valve 105b and the outdoor heat exchanger 103b are connected in series are referred to as outdoor heat exchanger units, respectively.
  • check valves 107 to 115 are provided so that the flow of the refrigerant can be in a certain direction.
  • a check valve 112 is provided in the low-pressure pipe 401 between the refrigerant control unit 200 and the four-way switching valve 102, and a check valve 108 is provided in the connection pipe 403 between the four-way switching valve 102 and the on-off valve 105, and the outdoor heat exchanger 103a.
  • check valves 107a and 107b are respectively provided in the connecting pipe 404 between the two and the outdoor heat exchangers 103a and 103b.
  • a check valve 109 is provided in the connection pipe 404 between the junction of the two outdoor heat exchangers 103a and 103b and the refrigerant control unit 200, and the junction of the two outdoor heat exchangers 103a and 103b and the refrigerant control unit 200.
  • Check valves 113 are provided in the high-pressure pipe 402 between the two.
  • the low pressure pipe 401 and the high pressure pipe 402 include a first connection pipe 120 that connects the downstream side of the check valve 112 and the downstream side of the check valve 113, and an upstream side of the check valve 112 and the check valve 113. It is connected with the 2nd connection piping 121 which connects the upper stream side.
  • the connection pipe 403 and the connection pipe 404 include a third connection pipe 122 that connects the downstream side of the check valve 108 and the downstream side of the check valve 109, and an upstream side of the check valve 108 and the check valve 109. It is connected by the 4th connection piping 123 which connects with the upstream side.
  • the first connection pipe 120 is provided with a check valve 115 that allows the refrigerant to flow only in the direction from the low pressure pipe 401 to the high pressure pipe 402, and the second connection pipe 121 is also connected to the high pressure pipe 402 from the low pressure pipe 401.
  • a check valve 114 that allows the refrigerant to flow only in the direction is provided.
  • the third connection pipe 122 is provided with a check valve 110 that allows the refrigerant to flow only in the direction from the connection pipe 404 to the connection pipe 403, and is connected to the fourth connection pipe 123 from the connection pipe 404.
  • a check valve 111 that allows the refrigerant to flow only in the direction of the pipe 403 is provided.
  • a high pressure sensor 141 is provided between the compressor 101 and the four-way switching valve 102. Further, a low pressure sensor 142 is provided between the four-way switching valve 102 and the accumulator 104.
  • the compressor 101 sucks in a low-temperature / low-pressure gas refrigerant, compresses the refrigerant into a high-temperature / high-pressure gas refrigerant, and circulates the refrigerant in the system to perform an air-conditioning operation.
  • the compressor 101 may be composed of, for example, an inverter type compressor capable of capacity control.
  • the compressor 101 is not limited to an inverter type compressor capable of capacity control, and may be a constant speed type compressor or a compressor combined with an inverter type and a constant speed type.
  • the four-way switching valve 102 is provided on the discharge side of the compressor 101, and switches the refrigerant flow path between the cooling operation and the heating operation.
  • the outdoor heat exchanger 103 is an evaporator or a condenser depending on the operation mode. The flow of the refrigerant is controlled so as to function as
  • the outdoor heat exchanger 103 exchanges heat between a heat medium (for example, ambient air or water) and a refrigerant, evaporates and gasifies the refrigerant as an evaporator during heating operation, and a condenser (heat radiator) during cooling operation. ) To condense and liquefy the refrigerant.
  • a heat medium for example, ambient air or water
  • a condenser heat radiator
  • the outdoor heat exchanger 103 is an air-cooled heat exchanger, it is generally provided with a blower 106.
  • the condensation capacity or evaporation capacity is controlled by the value or the like.
  • one blower 106 is provided for the two outdoor heat exchangers 103 a and 103 b, but a blower 106 may be provided for each outdoor heat exchanger 103.
  • the condensation capacity or the evaporation capacity is controlled by the rotational speed of the blower 106.
  • the accumulator 104 is provided on the suction side of the compressor 101 and has a function of storing surplus refrigerant and a function of separating liquid refrigerant and gas refrigerant.
  • the accumulator 104 should just be a container which can store an excessive refrigerant
  • the on-off valve 105a is provided in the upstream part of the outdoor heat exchanger 103a, and the on-off valve 105b is provided in the upstream part of the outdoor heat exchanger 103a. It is. That is, the on-off valves 105a and 105b adjust the refrigerant flow to the outdoor heat exchanger 103 by controlling the opening and closing.
  • the first connection pipe 120 connects the high pressure pipe 402 on the downstream side of the check valve 113 and the low pressure pipe 401 on the downstream side of the check valve 112.
  • the second connection pipe 121 connects the high pressure pipe 402 on the upstream side of the check valve 113 and the low pressure pipe 401 on the upstream side of the check valve 112.
  • the junction part of the 2nd connection piping 121 and the high pressure piping 402 is the junction part a
  • the junction part of the 1st connection pipe 120 and the high pressure pipe 402 is the junction part b (downstream from the junction part a)
  • the 2nd connection pipe 121 are shown as a joint part c
  • a joint part between the first connection pipe 120 and the low-pressure pipe 401 is shown as a joint part d (downstream from the joint part c).
  • the check valve 112 is provided between the merging portion c and the merging portion d, and allows the refrigerant to flow only in the direction from the merging portion c to the merging portion d.
  • the check valve 113 is provided between the merging portion a and the merging portion b, and allows the refrigerant to flow only in the direction from the merging portion a to the merging portion b.
  • the check valve 115 is provided in the first connection pipe 120 and allows the refrigerant to flow only in the direction from the joining part d to the joining part b.
  • the check valve 114 is provided in the second connection pipe 121 and allows the refrigerant to flow only in the direction from the junction c to the junction a.
  • the third connection pipe 122 connects the high-pressure pipe 402 on the downstream side of the check valve 109 and the connection pipe 403 on the downstream side of the check valve 108.
  • the fourth connection pipe 123 connects the connection pipe 404 on the upstream side of the check valve 109 and the connection pipe 403 on the upstream side of the check valve 108.
  • the junction part of the 4th connection pipe 123 and the connection pipe 404 is the junction part e
  • the junction part of the 4th connection pipe 123 and the high pressure pipe 402 is the junction part f (downstream from the junction part e)
  • the joining portion between the connecting pipe 403 and the connecting pipe 403 is shown as a joining portion g
  • the joining portion between the third connecting pipe 122 and the connecting pipe 403 is shown as a joining portion h (downstream from the joining portion g).
  • the check valve 108 is provided between the merging portion g and the merging portion h, and allows the refrigerant to flow only in the direction from the merging portion g to the merging portion h.
  • the check valve 109 is provided between the merging portion e and the merging portion f, and allows the refrigerant to flow only in the direction from the merging portion e to the merging portion f.
  • the check valve 110 is provided in the third connection pipe 122 and allows the flow of the refrigerant only in the direction from the joining part f to the joining part h.
  • the check valve 111 is provided in the fourth connection pipe 123, and allows the refrigerant to flow only in the direction from the merging portion e to the merging portion g.
  • the check valve 107 is provided between the outdoor heat exchanger 103 and the junction, and allows the refrigerant to flow only from the outdoor heat exchanger 103 to the junction e.
  • the high pressure sensor 141 is provided on the discharge side of the compressor 101 and detects the pressure of the refrigerant discharged from the compressor 101, and the low pressure sensor 142 is provided on the suction side of the compressor 101 and is sucked into the compressor 101.
  • the pressure of the refrigerant to be detected is detected.
  • the high-pressure sensor 141 and the low-pressure sensor 142 are used as temperature detection means for obtaining a refrigerant condensation temperature Tc and an evaporation temperature Te, which will be described later.
  • the pressure information detected by these temperature detection means is sent to the control device 124 that controls the operation of the air conditioner 500, and controls the operation frequency of the compressor 101, the rotational speed of the blower 106, and the switching of the four-way switching valve 102. Will be used.
  • the refrigerant control unit 200 is interposed between the heat source side unit 100 and the load side unit 300, and switches the flow of the refrigerant according to the operation state of the load side unit 300.
  • “a” or “b” is added after the reference numerals of some devices included in the “refrigerant control unit 200”. This indicates whether it is connected to “load side unit 300a” described later or “load side unit 300b”.
  • “a” and “b” added after the reference may be omitted. In this case, any of the “load-side unit 300a” or “load-side unit 300b” is connected. Needless to say, the explanation also includes the equipment.
  • the refrigerant control unit 200 is connected to the heat source side unit 100 by a high pressure pipe 402 and a low pressure pipe 401, and is connected to the load side unit 300 by a liquid pipe 406 and a gas pipe 405.
  • the refrigerant control unit 200 includes a gas-liquid separator 211, a first on-off valve 212 (first on-off valves 212a and 212b), a second on-off valve 213 (second on-off valves 213a and 213b), and a first throttle device. 214, the 2nd expansion device 215, the 1st refrigerant
  • connection pipe 221 is provided on the primary side of the first refrigerant heat exchanger 216 and the second refrigerant heat exchanger 217
  • a connection pipe 220 is provided on the secondary side.
  • the primary side of the first refrigerant heat exchanger 216 and the second refrigerant heat exchanger 217 is the side on which the liquid refrigerant separated by the gas-liquid separator 211 flows
  • the secondary side is the refrigerant flowing on the primary side. This is the side on which the refrigerant for supercooling flows through the first expansion device 214 and the second expansion device 215.
  • the gas-liquid separator 211 is provided at a connection portion between the high-pressure pipe 402 and the connection pipe 221 and has a function of separating the two-phase refrigerant flowing through the high-pressure pipe 402 into a gas refrigerant and a liquid refrigerant.
  • the gas refrigerant separated by the gas-liquid separator 211 is supplied to the first on-off valve 212 via the connection pipe 221 and the liquid refrigerant is supplied to the first refrigerant heat exchanger 216, respectively.
  • the first on-off valve 212 is for controlling the supply of the refrigerant to the load side unit 300 for each operation mode, and is provided between the connection pipe 221 and the gas pipe 405.
  • one of the first on-off valves 212 is connected to the gas-liquid separator 211 and the other is connected to the indoor heat exchanger 312 of the load side unit 300, and the opening and closing is controlled to conduct the refrigerant. There is nothing to do.
  • the second on-off valve 213 is for controlling the supply of the refrigerant to the load side unit 300 for each operation mode, and is provided between the connection pipe 220 and the gas pipe 405. That is, one of the second on-off valves 213 is connected to the first refrigerant heat exchanger 216, and the other is connected to the indoor heat exchanger 312 of the load-side unit 300, and the opening / closing is controlled to conduct the refrigerant. Or not.
  • the first expansion device 214 is provided between the first refrigerant heat exchanger 216 and the second refrigerant heat exchanger 217 in the connection pipe 221 and has a function as a pressure reducing valve or an expansion valve. It is expanded under reduced pressure.
  • the first throttle device 214 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control device using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the second expansion device 215 is provided on the upstream side of the connection pipe 220 on the secondary side of the second refrigerant heat exchanger 217, has a function as a pressure reducing valve or an expansion valve, and expands by decompressing the refrigerant. It is something to be made. Similar to the first throttle device 214, the second throttle device 215 can control the opening degree variably, for example, a precise flow control device using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, etc. It is good to comprise.
  • the first refrigerant heat exchanger 216 performs heat exchange between the refrigerant flowing on the primary side and the refrigerant flowing on the secondary side.
  • the second refrigerant heat exchanger 217 performs heat exchange between the refrigerant flowing on the primary side and the refrigerant flowing on the secondary side.
  • the refrigerant control unit 200 performs heat exchange between the refrigerant flowing on the primary side and the refrigerant flowing on the secondary side by the first refrigerant heat exchanger 216 and the second refrigerant heat exchanger 217, and the refrigerant flowing through the primary side Supercooling can be taken. Further, the primary of the second refrigerant heat exchanger 217 is determined by the opening of the second expansion device 215 so that proper supercooling can be obtained at the primary outlet of the first refrigerant heat exchanger 216 by the opening of the first expansion device 214. The bypass amount is controlled so that proper supercooling can be obtained at the side outlet.
  • the load side unit 300 receives a supply of cold or warm heat from the heat source side unit 100 and takes charge of a cooling load or a heating load.
  • “a” is added after the code of each device provided in the “load side unit 300 a”
  • “b” is added after the code of each device provided in the “load side unit 300 b”. This is shown in the figure.
  • “a” and “b” after the reference may be omitted, but it goes without saying that both the load-side unit 300a and the load-side unit 300b are equipped with each device. Yes.
  • An indoor heat exchanger 312 (indoor heat exchangers 312a and 312b) and an indoor expansion device 311 (indoor expansion devices 311a and 311b) are mounted in series on the load side unit 300. Further, a temperature sensor 313 (temperature sensors 313a and 313b) is provided between the indoor heat exchanger 312 and the first on-off valve 212 and the second on-off valve 213, and the indoor expansion device 311 and the indoor heat exchanger 312 are provided.
  • temperature sensors 314 temperature sensors 314a and 314b
  • temperature sensors 315 (temperature sensors 315a and 315b) are provided in or near the indoor heat exchanger 312.
  • a blower (not shown) for supplying air to the indoor heat exchanger 312 may be provided in the vicinity of the indoor heat exchanger 312.
  • the indoor throttle device 311 has a function as a pressure reducing valve or an expansion valve, and expands the refrigerant by reducing the pressure.
  • the indoor throttle device 311 may be configured by a device whose opening degree can be variably controlled, for example, a precise flow rate control device using an electronic expansion valve, an inexpensive refrigerant flow rate control means such as a capillary tube, or the like.
  • the indoor heat exchanger 312 performs heat exchange between the heat medium (for example, ambient air and water) and the refrigerant, condenses and liquefies the refrigerant as a condenser (heat radiator) during heating operation, and evaporates during cooling operation. As a vessel, the refrigerant is evaporated and gasified.
  • the indoor heat exchanger 312 is generally provided with a blower (not shown), and the condensation capacity or evaporation capacity is controlled by the rotation speed of the blower, the command frequency given to the blower, the power consumption of the blower, the current value flowing through the blower, and the like. Is done. In this embodiment, the condensation capacity or the evaporation capacity is controlled by the rotational speed of the blower.
  • the temperature sensor 313 detects the temperature of the refrigerant pipe between the indoor heat exchanger 312, the first on-off valve 212, and the second on-off valve 213.
  • the temperature sensor 314 detects the temperature of the refrigerant pipe between the indoor expansion device 311 and the indoor heat exchanger 312.
  • the temperature sensor 315 detects the load side suction temperature Ta of indoor air in the indoor heat exchanger 312 described later. Further, information (temperature information) detected by the temperature sensors 313 to 315 as load detecting means is sent to the control device 124 that controls the operation of the air conditioning apparatus 500 and used for controlling various actuators. That is, the information from the temperature sensors 313 to 315 is used for controlling the opening degree of the indoor expansion device 311 provided in the load side unit 300, the rotational speed of the blower (not shown), and the like.
  • the compressor 101 is not particularly limited as long as it can compress the sucked refrigerant into a high pressure state.
  • the compressor 101 can be configured using various types such as reciprocating, rotary, scroll, or screw.
  • the type of refrigerant used in the air conditioner 500 is not particularly limited.
  • natural refrigerants such as carbon dioxide, hydrocarbons and helium, alternative refrigerants not containing chlorine such as HFC410A, HFC407C, and HFC404A, or existing refrigerants Any of chlorofluorocarbon refrigerants such as R22 and R134a used in products may be used.
  • FIG. 1 shows an example in which the control device 124 that controls the operation of the air conditioner 500 is mounted on the heat source side unit 100, but either the refrigerant control unit 200 or the load side unit 300 is used. You may make it provide.
  • the control device 124 may be provided outside the heat source side unit 100, the refrigerant control unit 200, and the load side unit 300.
  • the control device 124 may be divided into a plurality according to the function and provided in each of the heat source side unit 100, the refrigerant control unit 200, and the load side unit 300. In this case, each control device is preferably connected wirelessly or by wire so that communication is possible.
  • each mode performed by the air conditioning apparatus 500 for example, a cooling operation request and a heating operation request from a remote controller installed indoors are received and air conditioning operation is performed, and there are four operation modes according to these requests.
  • all the load-side units 300 are all cooling operation requests that are cooling operation requests, cooling operation requests and heating operation requests are mixed, and there are many loads to be processed by the cooling operation (cooling operation).
  • the cooling main operation mode, the cooling operation request, and the heating operation request are determined to be mixed), where the sum of the loads of the load side unit 300 that performs the operation is larger than the sum of the loads of the load side unit 300 that performs the heating operation.
  • the load to be processed by the heating operation is large (the sum of the loads of the load-side unit 300 that performs the heating operation is larger than the sum of the loads of the load-side unit 300 that performs the cooling operation).
  • FIG. 2 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 500 according to the embodiment of the present invention is in the heating only operation mode. Based on FIG. 2, the operation
  • a low temperature / low pressure refrigerant is compressed by the compressor 101 and discharged as a high temperature / high pressure gas refrigerant.
  • the high-temperature / high-pressure gas refrigerant discharged from the compressor 101 passes through the check valve 115 through the four-way switching valve 102, flows through the high-pressure pipe 402, flows out of the heat source side unit 100, and flows to the refrigerant control unit 200. It reaches.
  • the gas refrigerant that has flowed into the refrigerant control unit 200 flows into the gas-liquid separator 211, flows through the connection pipe 221, and reaches the first on-off valve 212. At this time, the first on-off valve 212 is opened, and the second on-off valve 213 is closed.
  • the high-temperature and high-pressure gas refrigerant that has been conducted through the first on-off valve 212 flows through the gas pipe 405, flows out of the refrigerant control unit 200, and reaches the load-side unit 300.
  • the gas refrigerant that has flowed into the load side unit 300 flows into the indoor heat exchanger 312 (the indoor heat exchanger 312a and the indoor heat exchanger 312b). Since the indoor heat exchanger 312 works as a condenser, the refrigerant exchanges heat with ambient air to condense and liquefy. At this time, the refrigerant radiates heat to the surroundings to heat the air-conditioning target space such as the room. Thereafter, the liquid refrigerant flowing out of the indoor heat exchanger 312 is decompressed by the indoor expansion device 311 (the indoor expansion device 311a and the indoor expansion device 311b), flows through the liquid pipe 406 (the liquid pipe 406a and the liquid pipe 406b), and is loaded. It flows out of the unit 300 and reaches the refrigerant control unit 200.
  • the indoor heat exchanger 312 works as a condenser
  • the refrigerant exchanges heat with ambient air to condense and liquefy.
  • the refrigerant radiate
  • the liquid refrigerant flowing into the refrigerant control unit 200 is conducted through the second expansion device 215, flows through the connection pipe 220, and reaches the low-pressure pipe 401. Then, the liquid refrigerant flows through the low-pressure pipe 401, flows out of the refrigerant control unit 200, and returns to the heat source side unit 100.
  • the refrigerant that has returned to the heat source side unit 100 passes through the check valve 114 and the check valve 110 and reaches the outdoor heat exchanger 103 (the outdoor heat exchanger 103a and the outdoor heat exchanger 103b). At this time, the on-off valve 105 is opened and closed. Since the outdoor heat exchanger 103 functions as an evaporator, the refrigerant exchanges heat with the surrounding air, and the refrigerant evaporates and gasifies. Thereafter, the gas refrigerant flowing out of the outdoor heat exchanger 103 flows into the accumulator 104 via the four-way switching valve 102. The compressor 101 sucks the gas refrigerant in the accumulator 104 and circulates it in the system, so that a refrigeration cycle is established. With the above flow, the air conditioner 500 executes the heating only operation mode.
  • the operation frequency of the compressor 101 is detected by the high pressure sensor 141 which is a temperature detection means, and the condensation temperature Tc calculated from the discharge pressure (of the refrigerant discharged from the compressor 101) is the target condensation temperature. Controlled to match Tcm. Further, the rotational speed of the blower 106 is controlled so that the evaporation temperature Te calculated from the suction pressure (of the refrigerant sucked by the compressor 101) detected by the low-pressure sensor 142 which is a temperature detection means matches the target evaporation temperature Tem. Has been. Therefore, if the heating load increases with the operation frequency of the compressor 101 being constant, the condensation temperature Tc decreases.
  • the heating capacity is increased.
  • the condensation temperature Tc is increased. Therefore, by lowering the target condensing temperature Tcm and lowering the operating frequency of the compressor 101 so that the condensing temperature Tc matches the Tcm, an operation for lowering the heating capacity is performed, and power consumption can be reduced.
  • the load of the load side unit 300 is calculated
  • inhalation temperature Ta of indoor air in the indoor heat exchanger 312 detected by the temperature sensor 315 which is a load detection means, and set temperature To, heating load When it becomes smaller, the load side suction temperature Ta and the set temperature To approach each other. Therefore, when the temperature difference ⁇ Th To ⁇ Ta during the heating operation is smaller than the predetermined value ⁇ Th ( ⁇ Th ⁇ Tho), it is determined that the load is small, and the target condensation temperature initial value Tcm0 is changed to the target condensation temperature change value Tcm1. To do.
  • Tcm1 may be a fixed value or may be a function of the temperature difference ⁇ Th, but Tcm0> Tcm1.
  • Ta may be an arithmetic average when a plurality of load-side units 300 are operating, or may be a weighted average according to the ability.
  • the load side unit 300 which takes the largest temperature difference (DELTA) Th among the connected load side units 300 can also be represented.
  • Tcm0 becomes Tcm1 ( ⁇ Tcm0), and the operating frequency of the compressor 101 decreases according to the target, so that power consumption can be reduced.
  • the outdoor heat exchanger 103 is configured to be able to control the flow of the refrigerant flowing through the outdoor heat exchanger 103 by the opening / closing operation of the opening / closing valve 105.
  • the outdoor heat exchanger 103 has two divided configurations of the outdoor heat exchangers 103 a and 103 b, but the on-off valve 105 and the check valve 107 are arranged before and after the outdoor heat exchanger 103. It is also possible to provide a configuration with two or more divisions.
  • each on-off valve 105 is controlled according to the load of the load-side unit 300, and the volume of the outdoor heat exchanger 103 that performs heat exchange (the number of outdoor heat exchangers 103 into which refrigerant flows) is selected. As the number of divisions increases, the number that can be selected also increases.
  • the maximum volume of the outdoor heat exchanger 103 may be selected. That is, in FIG. 2, the on-off valves 105a and 105b are opened to increase the heat exchange volume. In this way, when the heating load is small, the evaporation temperature Te can be matched with the target evaporation temperature Tem even if the rotation speed of the blower 106 is minimized, so that the power consumption of the blower 106 can be reduced.
  • the operating frequency of the compressor 101 is controlled so that the condensation temperature Tc matches the target condensation temperature Tcm, and the rotation speed of the blower 106 is controlled so that the evaporation temperature Te matches the target evaporation temperature Tem. Yes. Therefore, when the heating load is reduced with the operation frequency of the compressor 101 being constant, the condensation temperature Tc increases. Therefore, by lowering the target condensing temperature Tcm and lowering the operating frequency of the compressor 101 so that the condensing temperature Tc matches the Tcm, an operation for lowering the heating capacity is performed, and power consumption can be reduced. Further, when the heating load is small, the load-side suction temperature Ta and the set temperature To are close to each other.
  • the air-cooling type is used as an example, but the rotation speed of the blower 106 is used.
  • the water pump control value (frequency, power consumption, current) is monitored to control the on-off valves 105a and 105b. It is good. By controlling as described above, the air-conditioning apparatus 500 having a high energy saving effect can be obtained.
  • the operation request given to the air conditioner 500 is a mixture of the cooling operation and the heating operation, and it is determined that the load to be processed by the heating operation is larger, the operation in the heating main operation mode is performed. It becomes a mode.
  • FIG. 3 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 500 according to the embodiment of the present invention is in the heating main operation mode. Based on FIG. 3, the operation
  • the heating main operation mode when there is a heating request from the load side unit 300a and a cooling request from the load side unit 300b will be described.
  • requirement is the same as the time of all heating operation mode, description is abbreviate
  • the liquid refrigerant flowing through the liquid pipe 406a is supercooled by the second refrigerant heat exchanger 217, and then flows through the liquid pipe 406b to the load-side unit 300b that requires cooling.
  • the liquid refrigerant that has flowed into the load side unit 300b is decompressed by the indoor expansion device 311b.
  • the liquid refrigerant decompressed by the indoor expansion device 311b flows into the indoor heat exchanger 312b. Since the indoor heat exchanger 312b functions as an evaporator, the liquid refrigerant evaporates by exchanging heat with the surrounding air and gasifies. At this time, the refrigerant cools the room by absorbing heat from the surroundings.
  • the gas refrigerant that has flowed out of the load-side unit 300b conducts the second on-off valve 213b and flows through the connection pipe 220.
  • This gas refrigerant joins the refrigerant that has flowed through the connection pipe 220 through the first expansion device 214 and the second expansion device 215 in order to perform supercooling in the second refrigerant heat exchanger 217, and thus the gas-liquid After the phase is reached, it flows through the low-pressure pipe 401, flows out of the refrigerant control unit 200, and returns to the heat source side unit 100.
  • the gas-liquid two-phase refrigerant returned to the heat source side unit 100 is conducted through the check valve 114 and the check valve 110 and reaches the outdoor heat exchanger 103 (the outdoor heat exchanger 103a and the outdoor heat exchanger 103b). At this time, the on-off valve 105a is opened. Since the outdoor heat exchanger 3 functions as an evaporator, the gas-liquid two-phase refrigerant exchanges heat with the surrounding air, and the refrigerant evaporates and gasifies. Thereafter, the gas refrigerant flowing out of the outdoor heat exchanger 103 flows into the accumulator 104 via the four-way switching valve 102. The compressor 101 sucks the gas refrigerant in the accumulator 104 and circulates it in the system, so that a refrigeration cycle is established. With the above flow, the air conditioner 500 executes the warm main cell operation mode.
  • the power consumption can be reduced by changing the target condensing temperature Tcm and the target evaporation temperature Tem in accordance with the heating load, as in the heating only operation mode.
  • the air-conditioning apparatus 500 having a high energy saving effect can be obtained.
  • the present embodiment an example is shown in which one heat source side unit 100, one refrigerant control unit 200, and two load side units 300 are shown, but the number of each unit is not particularly limited. Further, in the present embodiment, the case where the present invention is applied to the air conditioner 500 has been described as an example, but the present invention is also applied to other systems that configure a refrigerant circuit using a refrigeration cycle such as a refrigeration system. Can be applied.
  • FIG. 4 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 500 according to the embodiment of the present invention is in the cooling only operation mode. Based on FIG. 4, the operation
  • a low temperature / low pressure refrigerant is compressed by the compressor 101 and discharged as a high temperature / high pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the four-way switching valve 102 and conducts the check valve 108 to the on-off valve 105.
  • the on-off valve 105 is opened.
  • the gas refrigerant that has passed through the on-off valve 105 flows to the outdoor heat exchanger 103. Since the outdoor heat exchanger 103 functions as a condenser, the gas refrigerant exchanges heat with ambient air to condense and liquefy.
  • the high-pressure liquid refrigerant that has flowed out of the outdoor heat exchanger 103 flows through the connection pipe 404, conducts the check valve 109 and the check valve 113, flows through the high-pressure pipe 402, and flows out of the heat source side unit 100.
  • the refrigerant control unit 200 To the refrigerant control unit 200.
  • the liquid refrigerant that has flowed into the refrigerant control unit 200 flows into the gas-liquid separator 211 and flows into the primary side of the first refrigerant heat exchanger 216. Therefore, the liquid refrigerant is supercooled by the refrigerant flowing on the secondary side of the first refrigerant heat exchanger 216.
  • the liquid refrigerant whose degree of supercooling has been increased is throttled to an intermediate pressure by the first throttle device 214. And this liquid refrigerant flows into the 2nd refrigerant
  • the liquid refrigerant flowing into the load side unit 300 is decompressed by the indoor expansion device 311 (the indoor expansion device 311a and the indoor expansion device 311b), and becomes a low-temperature gas-liquid two-phase refrigerant.
  • This low-temperature gas-liquid two-phase refrigerant flows into the indoor heat exchanger 312 (the indoor heat exchanger 312a and the indoor heat exchanger 312b). Since the indoor heat exchanger 312 functions as an evaporator, the refrigerant exchanges heat with ambient air to evaporate and gasify. At this time, the refrigerant cools the room by absorbing heat from the surroundings. Thereafter, the gas refrigerant flowing out of the indoor heat exchanger 312 flows through the gas pipe 405 (gas pipe 405a and gas pipe 405b), flows out of the load side unit 300, and reaches the refrigerant control unit 200.
  • the gas refrigerant that has flowed into the refrigerant control unit 200 reaches the second on-off valve 213.
  • the second on-off valve 213 is opened, and the first on-off valve 212 is closed.
  • the gas refrigerant that has passed through the second on-off valve 213 flows through the connection pipe 220 through the first throttle device 214 and the second throttle device 215 for supercooling by the second refrigerant heat exchanger 217.
  • the refrigerant flows through the low-pressure pipe 401 and flows out of the refrigerant control unit 200 and returns to the heat source unit 100.
  • the gas refrigerant that has returned to the heat source side unit 100 conducts the check valve 112 and flows into the accumulator 104 via the four-way switching valve 102.
  • the compressor 101 sucks the gas refrigerant in the accumulator 104 and circulates it in the system, so that a refrigeration cycle is established. With the above flow, the air conditioner 500 executes the cooling only operation mode.
  • the operating frequency of the compressor 101 is detected by the low pressure sensor 142 as temperature detecting means, and the evaporation temperature Te calculated from the suction pressure (of the refrigerant sucked by the compressor 101) is the target evaporation temperature. Controlled to match Tem. Further, the rotation speed of the blower 106 is controlled so that the condensation temperature Tc calculated from the discharge pressure (of the refrigerant discharged from the compressor 101) detected by the high-pressure sensor 141 serving as the temperature detection means matches the target condensation temperature Tcm. Has been. Therefore, when the cooling load increases with the operation frequency of the compressor 101 being constant, the evaporation temperature Te increases.
  • the target evaporating temperature Tem is lowered, and the operation frequency of the compressor 101 is increased so that the evaporating temperature Te coincides with the Tem, thereby increasing the cooling capacity.
  • the evaporation temperature Te decreases. Therefore, by raising the target evaporation temperature Tem and lowering the operating frequency of the compressor 101 so that the evaporation temperature Te coincides with the Tem, the operation for lowering the cooling capacity is performed, and the power consumption can be reduced.
  • Tem1 may be a fixed value or may be a function of the temperature difference ⁇ Tr, but Tem0 ⁇ Tem1.
  • Ta may be an arithmetic average when a plurality of load-side units 300 are operating, or may be a weighted average according to the ability.
  • the load side unit 300 which takes the largest temperature difference (DELTA) Tr among the connected load side units 300 can also be represented.
  • Tem0 becomes Tem1 (> Tem0), and the operating frequency of the compressor 101 decreases according to the target, so that power consumption can be reduced.
  • the maximum volume of the outdoor heat exchanger 103 may be selected. That is, in FIG. 4, the on-off valves 105a and 105b are opened to increase the heat exchange volume. In this way, when the cooling load is small, the condensing temperature Tc can be matched with the target condensing temperature Tcm even when the rotational speed of the blower 106 is minimized, so that the power consumption of the blower 106 can be reduced.
  • the operating frequency of the compressor 101 is controlled so that the evaporation temperature Te matches the target evaporation temperature Tem, and the rotation speed of the blower 106 is controlled so that the condensation temperature Tc matches the target condensation temperature Tcm. Yes. Therefore, when the cooling load is reduced with the operation frequency of the compressor 101 being constant, the evaporation temperature Te is lowered. Therefore, by raising the target evaporation temperature Tem and lowering the operating frequency of the compressor 101 so that the evaporation temperature Te coincides with the Tem, the operation for lowering the cooling capacity is performed, and the power consumption can be reduced. Further, when the cooling load is small, the load-side suction temperature Ta and the set temperature To are close to each other.
  • FIG. 5 is a refrigerant circuit diagram illustrating a refrigerant flow when the air-conditioning apparatus 500 according to the embodiment of the present invention is in the cooling main operation mode. Based on FIG. 5, the operation
  • the cooling main operation mode when there is a cooling request from the load side unit 300a and a heating request from the load side unit 300b will be described.
  • a low temperature / low pressure refrigerant is compressed by the compressor 101 and discharged as a high temperature / high pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the four-way switching valve 102 and conducts the check valve 108 to the on-off valve 105.
  • the on-off valve 105 is opened.
  • the gas refrigerant that has passed through the on-off valve 105 flows to the outdoor heat exchanger 103. Since the outdoor heat exchanger 103 functions as a condenser, the gas refrigerant exchanges heat with ambient air to condense and liquefy.
  • the high-pressure gas-liquid two-phase refrigerant that has flowed out of the outdoor heat exchanger 103 flows through the connection pipe 404, conducts the check valve 109 and the check valve 113, flows through the high-pressure pipe 402, and the heat source side unit 100. And flows out to the refrigerant control unit 200.
  • the gas-liquid two-phase refrigerant that has flowed into the refrigerant control unit 200 flows into the gas-liquid separator 211 and is separated into a gas refrigerant and a liquid refrigerant by the gas-liquid separator 211. After the separation, the gas refrigerant flows out from the gas-liquid separator 211, flows through the connection pipe 221, and reaches the first on-off valve 212. At this time, the first on-off valve 212a is closed, and the first on-off valve 212b is opened. And the gas refrigerant which conducted the 1st on-off valve 212b flows through gas pipe 405b, and flows in into load side unit 300b.
  • the gas refrigerant flowing into the load-side unit 300b radiates heat to the surroundings by the indoor heat exchanger 312b, thereby heating the air-conditioned space and condensing and liquefying itself. At this time, the refrigerant cools the room by absorbing heat from the surroundings. Thereafter, the liquid refrigerant flowing out of the indoor heat exchanger 312b is throttled to an intermediate pressure by the indoor throttle device 311b.
  • the liquid refrigerant of intermediate pressure throttled by the indoor throttle device 311b flows through the liquid pipe 406b and flows into the second refrigerant heat exchanger 217. Therefore, it is separated by the gas-liquid separator 211, flows through the first refrigerant heat exchanger 216, conducts through the first expansion device 214, and merges with the liquid refrigerant flowing into the second refrigerant heat exchanger 217. Then, the liquid refrigerant whose degree of supercooling is further increased in the second refrigerant heat exchanger 217 flows through the liquid pipe 406a, flows out of the refrigerant control unit 200, and reaches the load side unit 300a.
  • the liquid refrigerant that has flowed into the load side unit 300 is decompressed by the indoor expansion device 311a, and becomes a low-temperature gas-liquid two-phase refrigerant.
  • This low-temperature gas-liquid two-phase refrigerant flows into the indoor heat exchanger 312a. Since the indoor heat exchanger 312a functions as an evaporator, the refrigerant evaporates by exchanging heat with the surrounding air and gasifies. At this time, the refrigerant cools the room by absorbing heat from the surroundings. Thereafter, the gas refrigerant flowing out of the indoor heat exchanger 312a flows through the gas pipe 405a, flows out of the load side unit 300, and reaches the refrigerant control unit 200.
  • the gas refrigerant that has flowed into the refrigerant control unit 200 reaches the second on-off valve 213.
  • the second on-off valve 213a is opened, and the second on-off valve 213b is closed.
  • the gas refrigerant that has passed through the second on-off valve 213a flows through the connection pipe 220 through the first throttle device 214 and the second throttle device 215 in order to supercool the second refrigerant heat exchanger 217.
  • the refrigerant flows through the low-pressure pipe 401 and flows out of the refrigerant control unit 200 and returns to the heat source unit 100.
  • the gas refrigerant that has returned to the heat source side unit 100 conducts the check valve 112 and flows into the accumulator 104 via the four-way switching valve 102.
  • the compressor 101 sucks the gas refrigerant in the accumulator 104 and circulates it in the system, so that a refrigeration cycle is established. With the above flow, the air conditioner 500 executes the cooling main operation mode.
  • the rotational speed of the blower 106 is controlled toward the target condensation temperature Tcm.
  • Tcm1 may be a fixed value or may be a function of the temperature difference ⁇ T, but Tcm0> Tcm1.
  • Ta may be an arithmetic average when a plurality of load-side units 300 are operating, or may be a weighted average according to the ability.
  • the load side unit 300 which takes the largest temperature difference (DELTA) Tc among the connected load side units 300 can also be represented. In any case, Tcm0 becomes Tcm1 ( ⁇ Tcm0).
  • the volume of the outdoor heat exchanger 103 controls the on-off valve 105b according to the target condensation temperature Tcm.
  • the condensation temperature Tc is maintained high by reducing the heat transfer area of the outdoor heat exchanger 103, it is necessary to increase the rotational speed of the blower 106 when the load is small. It is desirable to increase the heat area.
  • FIG. 6 is an explanatory diagram showing blower control of the air-conditioning apparatus according to the embodiment of the present invention.
  • the on-off valve 105 b is closed, the heat transfer area of the outdoor heat exchanger 103 is reduced, the rotational speed of the blower 106 is decreased, and the heating load is reduced.
  • the on-off valve 105b is opened, and the heat transfer area of the outdoor heat exchanger 103 is increased so that the 106 rotation speed of the blower is reduced.
  • the on-off valve 105a is opened in any case.
  • 100 heat source side unit 101 compressor, 102 four-way switching valve, 103 outdoor heat exchanger, 103a outdoor heat exchanger, 103b outdoor heat exchanger, 104 accumulator, 105 open / close valve, 105a open / close valve, 105b open / close valve, 106 blower, 107 check valve, 107a check valve, 107b check valve, 108 check valve, 109 check valve, 110 check valve, 111 check valve, 112 check valve, 113 check valve, 114 check valve, 115 check valve, 120 first connection piping, 121 second connection piping, 122 third connection piping, 123 fourth connection piping, 124 control device, 141 high pressure sensor, 142 low pressure sensor, 200 refrigerant control unit, 211 gas-liquid separation 212, first on-off valve, 212a first on-off valve, 212b first on-off valve, 21 2nd on-off valve, 213a 2nd on-off valve, 213b 2nd on-off valve, 214 1st expansion device, 2

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

 負荷検知手段315を用いて求めた負荷側ユニット300の負荷に応じて目標凝縮温度と目標蒸発温度とを変更し、温度検知手段を用いて求めた凝縮温度が前記目標凝縮温度と一致するように、かつ、温度検知手段を用いて求めた蒸発温度が目標蒸発温度と一致するように、圧縮機101の運転周波数と、送風機106の回転数とを制御するものである。

Description

空気調和装置
 本発明は、複数台の室内ユニット(負荷側ユニット)のそれぞれで冷房運転又は暖房運転を実行する運転(以下、冷暖房混在運転と称する)が可能なマルチ型の空気調和装置に関し、特に消費電力を低減する制御方法に関するものである。
 従来、冷凍サイクルにおける制御目標の温度である蒸発温度、凝縮温度を負荷に応じて可変とする空気調和装置が存在する(特許文献1参照)。この空気調和装置は、運転モードと、設定温度と吸込み温度との差とから推定される空調の負荷に応じて、制御目標の温度である蒸発温度、凝縮温度を可変の値とすることで、低負荷時に低圧縮比の運転を行い、消費電力を低減している。
 また、マルチ型であるため複数台の室内ユニットがそれぞれの負荷条件の中で同時に運転をしており、個別の室内機に対して冷媒の吹き出し温度を制御するような方式ではなく、冷媒の凝縮温度、蒸発温度を一定に制御する方式である。
 この方式では、吸込み温度と設定温度との差をモニタし、「吸込み温度-設定温度」が所定の値以下になった場合には空調の負荷が小さいと判断し、冷房であれば制御目標の蒸発温度を上げることで圧縮機の周波数を低下させ、消費電力を低減できる。また、暖房運転であれば、制御目標の凝縮温度を下げることで周波数を低下させ、消費電力を低減できる。
特開2012-107840号公報(たとえば、[0014]~[0069]、図1~図10参照)
 しかしながら、特許文献1に記載の冷暖房混在運転が可能なマルチ型の空気調和装置のように、負荷に応じて熱源側熱交換器の容量を制御し、目標の蒸発温度、凝縮温度と一致するように制御する場合、それらのうち一方の温度だけを制御するのでは効果としては充分でない。
 また、制御目標の凝縮温度、蒸発温度に沿うよう制御するために、凝縮器・蒸発器それぞれにおける送風機回転数が高い状態で運転することになれば、圧縮機の消費電力に比べて相対的に送風機の消費電力が増加してしまい、その結果、省エネ効果が低減するという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、冷暖房混在運転が可能なマルチ型において、蒸発温度、凝縮温度の両方の温度を制御して省エネ効果を高める空気調和装置を提供することを目的としている。
 本発明に係る空気調和装置は、圧縮機、及び送風機が備えられた室外熱交換器が直列に配管接続され、冷媒を介して熱を供給する熱源側ユニットと、室内熱交換器と室内絞り装置とが直列に配管接続され、前記熱源側ユニットから前記冷媒を介して熱が供給される複数の負荷側ユニットと、運転状況に応じて前記冷媒の流れを切り替える冷媒制御ユニットと、を有し、前記熱源側ユニットと前記冷媒制御ユニットとは直列に配管接続され、前記冷媒制御ユニットと前記負荷側ユニットとは直列に配管接続され、前記負荷側ユニット同士はそれぞれ並列に配管接続され、前記負荷側ユニットのそれぞれで冷房運転又は暖房運転を実行する空気調和装置であって、前記熱源側ユニットは、前記冷媒の凝縮温度及び蒸発温度を求めるために用いられる温度検知手段を有し、前記負荷側ユニットは、運転時の負荷を求めるために用いられる負荷検知手段を有し、前記負荷検知手段を用いて求めた前記負荷側ユニットの負荷に応じて前記冷媒の目標凝縮温度と目標蒸発温度とを変更し、前記温度検知手段を用いて求めた凝縮温度が前記目標凝縮温度と一致するように、かつ、前記温度検知手段を用いて求めた蒸発温度が前記目標蒸発温度と一致するように、前記圧縮機の運転周波数と、前記送風機の回転数とを制御するものである。
 本発明に係る空気調和装置によれば、蒸発温度、凝縮温度の両方の温度を制御して省エネ効果を高めることができる。
本発明の実施の形態に係る空気調和装置の冷媒回路構成の一例を示す概略構成図である。 本発明の実施の形態に係る空気調和装置の全暖房運転モード時の冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の暖房主体運転モード時の冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の全冷房運転モード時の冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の冷房主体運転モード時の冷媒の流れを示す冷媒回路図である。 本発明の実施の形態に係る空気調和装置の送風機制御を示す説明図である。
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態.
 図1は、本発明の実施の形態に係る空気調和装置500の冷媒回路構成の一例を示す概略構成図である。図1に基づいて、空気調和装置500の冷媒回路構成について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 この空気調和装置500は、ビルやマンション等に設置され、冷媒を循環させる冷凍サイクル(ヒートポンプサイクル)を利用することで、冷暖混在運転を実行できるものである。空気調和装置500は、熱源側ユニット100と、冷媒制御ユニット200と、複数台(図1では2台)の負荷側ユニット300(300a、300b)とで構成されている。
 また、熱源側ユニット100と冷媒制御ユニット200とが低圧配管401、及び高圧配管402で接続され、冷媒制御ユニット200と負荷側ユニット300とがガス管405a、405b、及び液管406a、406bで接続され、冷凍サイクルを形成している。
[熱源側ユニット100]
 熱源側ユニット100は、負荷側ユニット300に冷熱又は温熱を供給する機能を有している。
 なお、図1では、「熱源側ユニット100」に備えられているいくつかの機器の符号の後に「a」又は「b」を付加して図示している。そして、以下の説明においては、符号の後に付加した「a」、「b」を省略する場合があるが、その場合は「a」、「b」のいずれの機器も含んで説明していることは言うまでもない。
 熱源側ユニット100には、圧縮機101と、流路切替え手段である四方切替え弁102と、開閉弁105と、送風機106が設けられた室外熱交換器103と、アキュムレータ104と、が直列に接続されてメインの冷媒回路を構成するように搭載されている。
 なお、開閉弁105aと室外熱交換器103aとが直列に接続されている箇所、及び開閉弁105bと室外熱交換器103bとが直列に接続されている箇所、をそれぞれ室外熱交換器ユニットと称する。
 また、熱源側ユニット100では、冷媒の流れを一定方向にすることができるように、逆止弁107~115が設けられている。
 冷媒制御ユニット200と四方切替え弁102との間における低圧配管401に逆止弁112が、四方切替え弁102と開閉弁105との間における接続配管403に逆止弁108が、室外熱交換器103aと2つの室外熱交換器103a、103bの合流部との間における接続配管404に逆止弁107a、107bが、それぞれ設けられている。
 さらに、2つの室外熱交換器103a、103bの合流部と冷媒制御ユニット200との間における接続配管404に逆止弁109が、2つの室外熱交換器103a、103bの合流部と冷媒制御ユニット200との間における高圧配管402に逆止弁113が、それぞれ設けられている。
 そして、低圧配管401と高圧配管402とは、逆止弁112の下流側と逆止弁113の下流側とを接続する第1接続配管120と、逆止弁112の上流側と逆止弁113の上流側とを接続する第2接続配管121とで接続されている。
 また、接続配管403と接続配管404とは、逆止弁108の下流側と逆止弁109の下流側とを接続する第3接続配管122と、逆止弁108の上流側と逆止弁109の上流側とを接続する第4接続配管123とで接続されている。
 第1接続配管120には、低圧配管401から高圧配管402の方向のみに冷媒の流通を許容する逆止弁115が設けられており、第2接続配管121にも、低圧配管401から高圧配管402の方向のみに冷媒の流通を許容する逆止弁114が設けられている。
 また、第3接続配管122には、接続配管404から接続配管403の方向のみに冷媒の流通を許容する逆止弁110が設けられており、第4接続配管123にも、接続配管404から接続配管403の方向のみに冷媒の流通を許容する逆止弁111が設けられている。
 また、熱源側ユニット100には、圧縮機101と四方切替え弁102との間に高圧センサ141が設けられている。また、四方切替え弁102とアキュムレータ104との間に低圧センサ142が設けられている。
 圧縮機101は、低温・低圧のガス冷媒を吸入し、その冷媒を圧縮して高温・高圧のガス冷媒とし、系内に冷媒を循環させることによって空調運転させるものである。圧縮機101は、たとえば容量制御可能なインバータタイプの圧縮機等で構成するとよい。ただし、圧縮機101を容量制御可能なインバータタイプの圧縮機に限定するものではなく、一定速のタイプの圧縮機や、またインバータタイプと一定速タイプと組み合わせた圧縮機であってもよい。
 四方切替え弁102は、圧縮機101の吐出側に設けられ、冷房運転時と暖房運転時とで冷媒流路を切替えるものであり、室外熱交換器103が運転モードに応じて蒸発器もしくは凝縮器として機能するよう、冷媒の流れを制御している。
 室外熱交換器103は、熱媒体(たとえば、周囲空気や水等)と冷媒との間で熱交換を行ない、暖房運転時には蒸発器として冷媒を蒸発・ガス化し、冷房運転時には凝縮器(放熱器)として冷媒を凝縮・液化させるものである。室外熱交換器103は、空冷式熱交換器であれば一般的に送風機106が合わせて設けられ、送風機106の回転数、送風機106に与える指令周波数、送風機106の消費電力、送風機106に流れる電流値等によって凝縮能力又は蒸発能力が制御される。
 なお、本実施の形態では2つの室外熱交換器103a、103bに対して1つの送風機106が設けられているが、室外熱交換器103毎に送風機106を設けてもよい。
 また、本実施の形態では、凝縮能力又は蒸発能力を送風機106の回転数によって制御するものとする。
 アキュムレータ104は、圧縮機101の吸入側に設けられ、余剰冷媒を貯留する機能と液冷媒とガス冷媒とを分離する機能とを有している。なお、アキュムレータ104は、過剰な冷媒を貯留できる容器であればよい。
 開閉弁105aは室外熱交換器103aの上流部に、開閉弁105bは室外熱交換器103aの上流部にそれぞれ設けられており、開閉が制御されることで冷媒を同通したりしなかったりするものである。すなわち、開閉弁105a、105bは、開閉が制御されることで室外熱交換器103への冷媒流れを調整する。
 第1接続配管120は、逆止弁113の下流側における高圧配管402と逆止弁112の下流側における低圧配管401とを接続するものである。
 第2接続配管121は、逆止弁113の上流側における高圧配管402と逆止弁112の上流側における低圧配管401とを接続するものである。
 なお、第2接続配管121と高圧配管402との合流部を合流部a、第1接続配管120と高圧配管402との合流部を合流部b(合流部aより下流)、第2接続配管121と低圧配管401との合流部を合流部c、第1接続配管120と低圧配管401との合流部を合流部d(合流部cより下流)として図示している。
 逆止弁112は、合流部cと合流部dとの間に設けられており、合流部cから合流部dへの方向のみに冷媒の流れを許容する。逆止弁113は、合流部aと合流部bとの間に設けられており、合流部aから合流部bへの方向のみに冷媒の流れを許容する。逆止弁115は、第1接続配管120に設けられており、合流部dから合流部bの方向へのみに冷媒の流れを許容する。逆止弁114は、第2接続配管121に設けられており、合流部cから合流部aの方向へのみに冷媒の流れを許容する。
 第3接続配管122は、逆止弁109の下流側における高圧配管402と逆止弁108の下流側における接続配管403とを接続するものである。
 第4接続配管123は、逆止弁109の上流側における接続配管404と逆止弁108の上流側における接続配管403とを接続するものである。
 なお、第4接続配管123と接続配管404との合流部を合流部e、第4接続配管123と高圧配管402との合流部を合流部f(合流部eより下流)、第4接続配管123と接続配管403との合流部を合流部g、第3接続配管122と接続配管403との合流部を合流部h(合流部gより下流)として図示している。
 逆止弁108は、合流部gと合流部hとの間に設けられており、合流部gから合流部hへの方向のみに冷媒の流れを許容する。逆止弁109は、合流部eと合流部fとの間に設けられており、合流部eから合流部fへの方向のみに冷媒の流れを許容する。逆止弁110は、第3接続配管122に設けられており、合流部fから合流部hの方向へのみに冷媒の流れを許容する。逆止弁111は、第4接続配管123に設けられており、合流部eから合流部gの方向へのみに冷媒の流れを許容する。逆止弁107は、室外熱交換器103と合流部との間に設けられており、室外熱交換器103から合流部eの方向のみに冷媒の流れを許容する。
 高圧センサ141は圧縮機101の吐出側に設けられ、圧縮機101から吐出された冷媒の圧力を検知するものであり、低圧センサ142は圧縮機101の吸入側に設けられ、圧縮機101に吸入される冷媒の圧力を検知するものである。
 これら高圧センサ141及び低圧センサ142は、後述する冷媒の凝縮温度Tc及び蒸発温度Teを求めるための温度検知手段として用いられる。
 これら温度検知手段で検知された圧力情報は、空気調和装置500の動作を制御する制御装置124に送られ、圧縮機101の運転周波数や、送風機106の回転数、四方切替え弁102の切り替えの制御に利用されることになる。
[冷媒制御ユニット200]
 冷媒制御ユニット200は、熱源側ユニット100と負荷側ユニット300との間に介在し、負荷側ユニット300の運転状況に応じて冷媒の流れを切り替えるものである。
 なお、図1では、「冷媒制御ユニット200」に備えられているいくつかの機器の符号の後に「a」又は「b」を付加して図示している。これは、後に説明する「負荷側ユニット300a」に接続しているか、「負荷側ユニット300b」に接続しているか、を表している。そして、以下の説明においては、符号の後に付加した「a」、「b」を省略する場合があるが、その場合は「負荷側ユニット300a」又は「負荷側ユニット300b」に接続されているいずれの機器も含んで説明していることは言うまでもない。
 冷媒制御ユニット200は、高圧配管402と低圧配管401とで熱源側ユニット100に接続され、液管406とガス管405とで負荷側ユニット300に接続されている。 冷媒制御ユニット200には、気液分離器211と、第1開閉弁212(第1開閉弁212a、212b)と、第2開閉弁213(第2開閉弁213a、213b)と、第1絞り装置214と、第2絞り装置215と、第1冷媒熱交換器216と、第2冷媒熱交換器217と、が搭載されている。また、第1冷媒熱交換器216及び第2冷媒熱交換器217の一次側には接続配管221が、二次側には接続配管220がそれぞれ設けられている。なお、第1冷媒熱交換器216と第2冷媒熱交換器217とにおける一次側は、気液分離器211で分離された液冷媒が流れる側であり、二次側は、一次側を流れる冷媒の過冷却をとるための冷媒が第1絞り装置214と第2絞り装置215とを介して流れる側である。
 気液分離器211は、高圧配管402と接続配管221との接続部に設けられ、高圧配管402を流れてくる二相冷媒をガス冷媒と液冷媒とに分離する機能を有している。気液分離器211で分離されたガス冷媒は接続配管221を介して第1開閉弁212に、液冷媒は第1冷媒熱交換器216に、それぞれ供給される。
 第1開閉弁212は、運転モードごとに負荷側ユニット300への冷媒の供給を制御するためのものであり、接続配管221とガス管405との間に設けられている。つまり、第1開閉弁212は、一方が気液分離器211に、他方が負荷側ユニット300の室内熱交換器312にそれぞれ接続されており、開閉が制御されることで冷媒を導通したりしなかったりするものである。
 第2開閉弁213は、運転モードごとに負荷側ユニット300への冷媒の供給を制御するためのものであり、接続配管220とガス管405との間に設けられている。つまり、第2開閉弁213は、一方が第1冷媒熱交換器216に、他方が負荷側ユニット300の室内熱交換器312にそれぞれ接続されており、開閉が制御されることで冷媒を導通したりしなかったりするものである。
 第1絞り装置214は、接続配管221の、第1冷媒熱交換器216と第2冷媒熱交換器217との間に設けられており、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。この第1絞り装置214は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御装置や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 第2絞り装置215は、接続配管220の、第2冷媒熱交換器217の二次側における上流側に設けられており、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。この第2絞り装置215は、第1絞り装置214と同様に、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御装置や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 第1冷媒熱交換器216は、一次側を流れる冷媒と、二次側を流れる冷媒との間で熱交換を実行するものである。
 第2冷媒熱交換器217は、一次側を流れる冷媒と、二次側を流れる冷媒との間で熱交換を実行するものである。
 冷媒制御ユニット200は、第1冷媒熱交換器216と第2冷媒熱交換器217とによって一次側を流れる冷媒と二次側を流れる冷媒との間で熱交換を行い、一次側を流れる冷媒の過冷却をとれるようになっている。
 また、第1絞り装置214の開度によって第1冷媒熱交換器216の一次側出口において適正な過冷却がとれるように、第2絞り装置215の開度によって第2冷媒熱交換器217の一次側出口において適正な過冷却がとれるように、それぞれバイパス量を制御するようになっている。
[負荷側ユニット300]
 負荷側ユニット300は、熱源側ユニット100からの冷熱又は温熱の供給を受けて冷房負荷又は暖房負荷を担当するものである。
 なお、図1では、「負荷側ユニット300a」に備えられている各機器の符号の後に「a」を付加し、「負荷側ユニット300b」に備えられている各機器の符号の後に「b」を付加して図示している。そして、以下の説明においては、符号の後の「a」、「b」を省略する場合があるが、負荷側ユニット300a、負荷側ユニット300bのいずれにも各機器が備えられていることは言うまでもない。
 負荷側ユニット300には、室内熱交換器312(室内熱交換器312a、312b)と、室内絞り装置311(室内絞り装置311a、311b)とが、直列に接続されて搭載されている。
 また、室内熱交換器312と第1開閉弁212、第2開閉弁213との間には温度センサ313(温度センサ313a、313b)が設けられており、室内絞り装置311と室内熱交換器312との間には温度センサ314(温度センサ314a、314b)が設けられており、室内熱交換器312、又はその近傍には温度センサ315(温度センサ315a、315b)が設けられている。
 なお、室内熱交換器312の近傍に、室内熱交換器312に空気を供給するための図示省略の送風機を設けるとよい。
 室内絞り装置311は、減圧弁や膨張弁としての機能を有し、冷媒を減圧して膨張させるものである。この室内絞り装置311は、開度が可変に制御可能なもの、たとえば電子式膨張弁による緻密な流量制御装置や、毛細管等の安価な冷媒流量調節手段等で構成するとよい。
 室内熱交換器312は、熱媒体(たとえば、周囲空気や水等)と冷媒との間で熱交換を行ない、暖房運転時には凝縮器(放熱器)として冷媒を凝縮・液化し、冷房運転時には蒸発器として冷媒を蒸発・ガス化させるものである。室内熱交換器312は、一般的に図示省略の送風機が合わせて設けられ、送風機の回転数、送風機に与える指令周波数、送風機の消費電力、送風機に流れる電流値等によって凝縮能力又は蒸発能力が制御される。
 なお、本実施の形態では、凝縮能力又は蒸発能力を送風機の回転数によって制御するものとする。
 温度センサ313は、室内熱交換器312と第1開閉弁212、第2開閉弁213との間における冷媒配管の温度を検知する。
 温度センサ314は、室内絞り装置311と室内熱交換器312との間における冷媒配管の温度を検知する。
 温度センサ315は、後述する室内熱交換器312における室内空気の負荷側吸込み温度Taを検知する。
 また、これら負荷検知手段である温度センサ313~315で検知された情報(温度情報)は、空気調和装置500の動作を制御する制御装置124に送られて各種アクチュエーターの制御に利用される。つまり、温度センサ313~315からの情報は、負荷側ユニット300に設けられている室内絞り装置311の開度、図示省略の送風機の回転数等の制御に利用されることになる。
 なお、圧縮機101は、吸入した冷媒を高圧状態に圧縮できるものであればよく、特にタイプを限定するものではない。たとえば、レシプロ、ロータリー、スクロールあるいはスクリューなどの各種タイプを利用して圧縮機101を構成することができる。さらに、空気調和装置500に使用する冷媒の種類を特に限定するものではなく、たとえば二酸化炭素や炭化水素、ヘリウムなどの自然冷媒、HFC410AやHFC407C、HFC404Aなどの塩素を含まない代替冷媒、若しくは既存の製品に使用されているR22やR134aなどのフロン系冷媒のいずれを使用してもよい。
 また、図1では、空気調和装置500の動作を制御する制御装置124を熱源側ユニット100に搭載した場合を例に示しているが、冷媒制御ユニット200、又は、負荷側ユニット300のいずれかに設けるようにしてもよい。また、制御装置124を、熱源側ユニット100、冷媒制御ユニット200、及び、負荷側ユニット300の外部に設けるようにしてもよい。また、制御装置124を機能に応じて複数に分けて、熱源側ユニット100、冷媒制御ユニット200、負荷側ユニット300のそれぞれに設けるようにしてもよい。この場合、各制御装置を無線又は有線で接続し、通信可能にしておくとよい。
 ここでは、空気調和装置500が実行する各モードの運転動作について説明する。
 空気調和装置500においては、例えば室内に設置されたリモートコントローラなどからの冷房運転要求、暖房運転要求を受信し空調運転するが、それらの要求に応じて4つの運転モードが存在する。4つの運転モードとしては、全ての負荷側ユニット300が全て冷房運転要求である全冷房運転モード、冷房運転要求と暖房運転要求が混在しており、かつ冷房運転により処理すべき負荷が多い(冷房運転を実行する負荷側ユニット300の各負荷の和が暖房運転を実行する負荷側ユニット300の各負荷の和より大きい)と判断される冷房主体運転モード、冷房運転要求と暖房運転要求が混在しており、かつ暖房運転により処理すべき負荷が多い(暖房運転を実行する負荷側ユニット300の各負荷の和が冷房運転を実行する負荷側ユニット300の各負荷の和より大きい)と判断される暖房主体運転モード、全ての負荷側ユニット300が全て暖房運転要求である全暖房運転モードがある。
[全暖房運転モード]
 図2は、本発明の実施の形態に係る空気調和装置500の全暖房運転モード時の冷媒の流れを示す冷媒回路図である。図2に基づいて、空気調和装置500の全暖房運転モード時の運転動作について説明する。
 低温・低圧の冷媒が圧縮機101によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機101から吐出された高温・高圧のガス冷媒は、四方切替え弁102を経由し、逆止弁115を導通し、高圧配管402を流れて熱源側ユニット100から流出し、冷媒制御ユニット200へ至る。
 冷媒制御ユニット200へ流入したガス冷媒は、気液分離器211へ流入し、接続配管221を流れて第1開閉弁212へ至る。このとき、第1開閉弁212は開放されており、第2開閉弁213は閉止されている。そして、第1開閉弁212を導通した高温・高圧のガス冷媒は、ガス管405を流れて冷媒制御ユニット200から流出し、負荷側ユニット300へ至る。
 負荷側ユニット300へ流入したガス冷媒は、室内熱交換器312(室内熱交換器312a及び室内熱交換器312b)へ流入する。室内熱交換器312は凝縮器として働いているので、冷媒は、周囲の空気と熱交換して凝縮し、液化する。このとき冷媒が周囲に放熱することによって室内等の空調対象空間は暖房される。その後、室内熱交換器312から流出した液冷媒は、室内絞り装置311(室内絞り装置311a及び室内絞り装置311b)で減圧され、液管406(液管406a及び液管406b)を流れて負荷側ユニット300から流出し、冷媒制御ユニット200へ至る。
 冷媒制御ユニット200へ流入した液冷媒は、第2絞り装置215を導通して接続配管220を流れて低圧配管401へ至る。そして、液冷媒は低圧配管401を流れて冷媒制御ユニット200から流出し、熱源側ユニット100へ戻る。
 熱源側ユニット100に戻った冷媒は、逆止弁114、逆止弁110を導通して室外熱交換器103(室外熱交換器103a及び室外熱交換器103b)へ至る。このとき、開閉弁105は開閉されている。室外熱交換器103は蒸発器として働いているので、冷媒は、周囲の空気と熱交換して冷媒は蒸発し、ガス化する。その後、室外熱交換器103から流出したガス冷媒は、四方切替え弁102を経由してアキュムレータ104へ流入する。そして、アキュムレータ104内のガス冷媒を圧縮機101が吸入し、系内を循環させることで冷凍サイクルが成り立っている。
 以上の流れで、空気調和装置500は全暖房運転モードを実行する。
 全暖房運転モード時において、圧縮機101の運転周波数は、温度検知手段である高圧センサ141で検知する(圧縮機101が吐出した冷媒の)吐出圧力から演算される凝縮温度Tcが、目標凝縮温度Tcmと一致するように制御される。また、送風機106の回転数は、温度検知手段である低圧センサ142で検知する(圧縮機101が吸入した冷媒の)吸入圧力から演算される蒸発温度Teが目標蒸発温度Temと一致するように制御されている。
 そのため、圧縮機101の運転周波数を一定として暖房負荷が大きくなると、凝縮温度Tcが下がる。そこで、目標凝縮温度Tcmを上げて、凝縮温度TcがそのTcmと一致するように圧縮機101の運転周波数を増加させることで、暖房能力を上げる動作となる。
 反対に、圧縮機101の運転周波数を一定として暖房負荷が小さくなると、凝縮温度Tcが上がる。そこで、目標凝縮温度Tcmを下げて、凝縮温度TcがそのTcmと一致するように圧縮機101の運転周波数を低下させることで、暖房能力を下げる動作となり、消費電力を低減できる。
 また、負荷検知手段である温度センサ315で検知した室内熱交換器312における室内空気の負荷側吸込み温度Taと設定温度Toとの差ΔThで負荷側ユニット300の負荷を求められるが、暖房負荷が小さくなると、負荷側吸込み温度Taと設定温度Toとが近接する。そこで、暖房運転時における温度差ΔTh=To-Taが所定の値ΔThoよりも小さい(ΔTh<ΔTho)場合に負荷が小さいと判断し、目標凝縮温度初期値Tcm0を目標凝縮温度変更値Tcm1に変更する。このとき、Tcm1は固定の値であってもよいし、温度差ΔThの関数となっていてもよいが、Tcm0>Tcm1となる。ここで、Taは複数の負荷側ユニット300が運転している場合には算術平均としてもよいし、能力に応じた加重平均としてもよい。また、接続された負荷側ユニット300のうち、最大の温度差ΔThをとる負荷側ユニット300を代表とすることもできる。
 いずれの場合においても、Tcm0がTcm1(<Tcm0)となり、圧縮機101の運転周波数は目標に従って低下するため、消費電力を低減できる。
 なお、室外熱交換器103は、開閉弁105の開閉動作によって室外熱交換器103に流れる冷媒の流れを制御可能なように構成されている。本実施の形態では、図2に示すように室外熱交換器103を室外熱交換器103a、103bの2つの分割構成としているが、室外熱交換器103の前後に開閉弁105と逆止弁107とを設けることで、2分割以上の構成とすることもできる。
 つまり、負荷側ユニット300の負荷に応じて各開閉弁105の開閉を制御し、熱交換を行う室外熱交換器103の容積(冷媒を流入させる室外熱交換器103の数)を選択するが、分割数が増えると、その選択できる数も増える。
 また、暖房負荷が小さいときは、室外熱交換器103の容積は最大を選択しておくとよい。つまり、図2において、開閉弁105a、及び105bを開状態として、熱交換容積を大きくする。こうすることで、暖房負荷が小さいときは送風機106の回転数を最小としても蒸発温度Teを目標蒸発温度Temと一致させることができるため、送風機106の消費電力を低減できる。
 以上より、圧縮機101の運転周波数は、凝縮温度Tcが目標凝縮温度Tcmと一致するように制御され、送風機106の回転数は、蒸発温度Teが目標蒸発温度Temと一致するように制御されている。
 そのため、圧縮機101の運転周波数を一定として暖房負荷が小さくなると、凝縮温度Tcが上がる。そこで、目標凝縮温度Tcmを下げて、凝縮温度TcがそのTcmと一致するように圧縮機101の運転周波数を低下させることで、暖房能力を下げる動作となり、消費電力を低減できる。
 また、暖房負荷が小さいとき、負荷側吸込み温度Taと設定温度Toが近接するため、暖房運転における温度差ΔTh=To-Taが所定の値ΔThoよりも小さい場合に負荷が小さいと判断し、目標凝縮温度初期値Tcm0を目標凝縮温度変更値Tcm1(<Tcm0)に変更する。そうすることで、圧縮機101の運転周波数は目標に従って低下するため、消費電力を低減できる。
 また、暖房負荷が小さいときは、室外熱交換器103の容積は最大を選択しておくことで、暖房負荷が小さいときは送風機106の回転数を最小としても蒸発温度Teを目標蒸発温度Temと一致させることができるため、送風機106の消費電力を低減できる。
 なお、暖房負荷が大きいときでも、圧縮機101の運転周波数を低下させることで消費電力を低減できるが、同時に暖房能力も下がってしまうため、暖房負荷が小さく暖房能力が必要ない場合を判断し、その際に効率的な運転を実施するようにしている。
 また、本実施の形態では、空冷式を例にとって送風機106の回転数としたが、水冷式で水ポンプ制御値(周波数、消費電力、電流)をモニタして開閉弁105a、105bを制御することとしてもよい。
 以上のように制御することで、省エネ効果の高い空気調和装置500を得ることができる。
 また、空気調和装置500に与えられた運転要求として、冷房運転と暖房運転とが混在しており、かつ暖房運転により処理すべき負荷の方が大きいと判断される場合、暖房主体運転モードによる運転モードとなる。
[暖房主体運転モード]
 図3は、本発明の実施の形態に係る空気調和装置500の暖房主体運転モード時の冷媒の流れを示す冷媒回路図である。図3に基づいて、空気調和装置500の暖房主体運転モード時の運転動作について説明する。ここでは、負荷側ユニット300aから暖房要求、負荷側ユニット300bから冷房要求があった時の暖房主体運転モードを説明する。
 なお、暖房要求のある負荷側ユニット300aまでの冷媒の流れは全暖房運転モード時と同じであるため説明を省略する。
 液管406aを流れる液冷媒は、第2冷媒熱交換器217によって過冷却をつけられ、その後、液管406bを流れて冷房要求のある負荷側ユニット300bへ至る。負荷側ユニット300bに流入した液冷媒は、室内絞り装置311bで減圧される。室内絞り装置311bで減圧された液冷媒は、室内熱交換器312bに流入する。室内熱交換器312bは蒸発器として働いているので、液冷媒は、周囲の空気と熱交換して蒸発し、ガス化する。このとき、冷媒が周囲から吸熱することによって室内は冷房される。その後、負荷側ユニット300bから流出したガス冷媒は、第2開閉弁213bを導通し、接続配管220を流れる。このガス冷媒は、第2冷媒熱交換器217で過冷却をとるために第1絞り装置214と第2絞り装置215とを導通して接続配管220を流れてきた冷媒と合流して気液二相となった後、低圧配管401を流れて冷媒制御ユニット200から流出し、熱源側ユニット100へ戻る。
 熱源側ユニット100に戻った気液二相冷媒は、逆止弁114、逆止弁110を導通して室外熱交換器103(室外熱交換器103a及び室外熱交換器103b)へ至る。このとき、開閉弁105aは開放されている。室外熱交換器3は蒸発器として働いているので、気液二相冷媒は、周囲の空気と熱交換して冷媒は蒸発し、ガス化する。その後、室外熱交換器103から流出したガス冷媒は、四方切替え弁102を経由してアキュムレータ104へ流入する。そして、アキュムレータ104内のガス冷媒を圧縮機101が吸入し、系内を循環させることで冷凍サイクルが成り立っている。以上の流れで、空気調和装置500は暖主房運転モードを実行する。
暖房主体運転モードにおいても全暖房運転モードと同様に、暖房負荷に応じて目標凝縮温度Tcmと目標蒸発温度Temとを変更することで、消費電力を低減できる。
以上のように制御することで、省エネ効果の高い空気調和装置500を得ることができる。
 なお、本実施の形態では、熱源側ユニット100が1台、冷媒制御ユニット200が1台、負荷側ユニット300が2台の例を示したが、各ユニットの台数を特に限定するものではない。また、本実施の形態では、本発明を空気調和装置500に適用した場合を例に説明したが、冷凍システムをはじめとする冷凍サイクルを用いて冷媒回路を構成する他のシステムにも本発明を適用することができる。
[全冷房運転モード]
 図4は、本発明の実施の形態に係る空気調和装置500の全冷房運転モード時の冷媒の流れを示す冷媒回路図である。図4に基づいて、空気調和装置500の全冷房運転モード時の運転動作について簡単に説明する。
 低温・低圧の冷媒が圧縮機101によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機101から吐出された高温・高圧のガス冷媒は、四方切替え弁102を経由し、逆止弁108を導通して開閉弁105へ至る。このとき、開閉弁105は開放されている。そして、開閉弁105を導通したガス冷媒は、室外熱交換器103へ流れる。室外熱交換器103は凝縮器として働いているので、ガス冷媒は、周囲の空気と熱交換して凝縮し、液化する。その後、室外熱交換器103から流出した高圧の液冷媒は、接続配管404を流れて、逆止弁109と逆止弁113とを導通し、高圧配管402を流れて熱源側ユニット100から流出し、冷媒制御ユニット200へ至る。
 冷媒制御ユニット200へ流入した液冷媒は、気液分離器211へ流入し、第1冷媒熱交換器216の一次側に流入する。そこで液冷媒は、第1冷媒熱交換器216の二次側を流れる冷媒によって過冷却をつけられる。この過冷却度が大きくなった液冷媒は、第1絞り装置214にて中間圧まで絞られる。そして、この液冷媒は、第2冷媒熱交換器217に流れ、さらに過冷却をつけられる。その後、液冷媒は分流して、一部が液管406(液管406a及び液管406b)を流れて冷媒制御ユニット200から流出し、負荷側ユニット300へ至る。
 負荷側ユニット300へ流入した液冷媒は、室内絞り装置311(室内絞り装置311a及び室内絞り装置311b)で減圧され、低温の気液二相冷媒となる。この低温の気液二相冷媒は、室内熱交換器312(室内熱交換器312a及び室内熱交換器312b)へ流入する。室内熱交換器312は蒸発器として働いているので、冷媒は、周囲の空気と熱交換して蒸発し、ガス化する。このとき、冷媒が周囲から吸熱することによって室内は冷房される。その後、室内熱交換器312から流出したガス冷媒は、ガス管405(ガス管405a及びガス管405b)を流れて負荷側ユニット300を流出し、冷媒制御ユニット200へ至る。
 冷媒制御ユニット200へ流入したガス冷媒は、第2開閉弁213へ至る。このとき、第2開閉弁213は開放されており、第1開閉弁212は閉止されている。そして、第2開閉弁213を導通したガス冷媒は、第2冷媒熱交換器217で過冷却をとるために第1絞り装置214と第2絞り装置215とを導通して接続配管220を流れてきた冷媒と合流した後、低圧配管401を流れて冷媒制御ユニット200から流出し、熱源側ユニット100へ戻る。
 熱源側ユニット100に戻ったガス冷媒は、逆止弁112を導通し、四方切替え弁102を経由し、アキュムレータ104へ流入する。そして、アキュムレータ104内のガス冷媒を圧縮機101が吸入し、系内を循環させることで冷凍サイクルが成り立っている。以上の流れで、空気調和装置500は全冷房運転モードを実行する。
 全冷房運転モード時において、圧縮機101の運転周波数は、温度検知手段である低圧センサ142で検知する(圧縮機101が吸入した冷媒の)吸入圧力から演算される蒸発温度Teが、目標蒸発温度Temと一致するように制御される。また、送風機106の回転数は、温度検知手段である高圧センサ141で検知する(圧縮機101が吐出した冷媒の)吐出圧力から演算される凝縮温度Tcが目標凝縮温度Tcmと一致するように制御されている。
 そのため、圧縮機101の運転周波数を一定として冷房負荷が大きくなると、蒸発温度Teが上がる。そこで、目標蒸発温度Temを下げて、蒸発温度TeがそのTemと一致するように圧縮機101の運転周波数を増加させることで、冷房能力を上げる動作となる。
 反対に、圧縮機101の運転周波数を一定として冷房負荷が小さくなると、蒸発温度Teが下がる。そこで、目標蒸発温度Temを上げて、蒸発温度TeがそのTemと一致するように圧縮機101の運転周波数を低下させることで、冷房能力を下げる動作となり、消費電力を低減できる。
 負荷検知手段である温度センサ315で検知した室内空気の負荷側吸込み温度Taと設定温度Toとの差ΔTcで負荷側ユニット300の負荷を求められるが、暖房負荷が小さくなると、負荷側吸込み温度Taと設定温度Toとが近接する。そこで、冷房運転における温度差ΔTr=Ta-Toが所定の値ΔTroよりも小さい(ΔTr<ΔTro)場合に負荷が小さいと判断し、目標蒸発温度初期値Tem0を目標蒸発温度変更値Tem1に変更する。このとき、Tem1は固定の値であってもよいし、温度差ΔTrの関数となっていてもよいが、Tem0<Tem1となる。ここで、Taは複数の負荷側ユニット300が運転している場合には算術平均としてもよいし、能力に応じた加重平均としてもよい。また、接続された負荷側ユニット300のうち、最大の温度差ΔTrをとる負荷側ユニット300を代表とすることもできる。いずれの場合においても、Tem0がTem1(>Tem0)となり、圧縮機101の運転周波数は目標に従って低下するため、消費電力を低減できる。
 また、冷房負荷が小さいときは、室外熱交換器103の容積は最大を選択しておくとよい。つまり、図4において、開閉弁105a、及び105bを開状態として、熱交換容積を大きくする。こうすることで、冷房負荷が小さいときは送風機106の回転数を最小としても凝縮温度Tcを目標凝縮温度Tcmと一致させることができるため、送風機106の消費電力を低減することができる。
 以上より、圧縮機101の運転周波数は、蒸発温度Teが目標蒸発温度Temと一致するように制御され、送風機106の回転数は、凝縮温度Tcが目標凝縮温度Tcmと一致するように制御されている。
 そのため、圧縮機101の運転周波数を一定として冷房負荷が小さくなると、蒸発温度Teが下がる。そこで、目標蒸発温度Temを上げて、蒸発温度TeがそのTemと一致するように圧縮機101の運転周波数を低下させることで、冷房能力を下げる動作となり、消費電力を低減できる。
 また、冷房負荷が小さいとき、負荷側吸込み温度Taと設定温度Toが近接するため、冷房運転における温度差ΔTr=To-Taが所定の値ΔTroよりも小さい場合に負荷が小さいと判断し、目標蒸発温度初期値Tem0を目標蒸発温度変更値Tem1(>Tem0)に変更する。そうすることで、圧縮機101の運転周波数は目標に従って低下するため、消費電力を低減できる。
 また、冷房負荷が小さいときは、室外熱交換器103の容積は最大を選択しておくことで、冷房負荷が小さいときは送風機106の回転数を最小としても凝縮温度Tcを目標凝縮温度Tcmと一致させることができるため、送風機106の消費電力を低減することができる。
 なお、冷房負荷が大きいときでも、圧縮機101の運転周波数を低下させることで消費電力を低減できるが、同時に冷房能力も下がってしまうため、冷房負荷が小さく冷房能力が必要ない場合を判断し、その際に効率的な運転を実施するようにしている。
 以上のように制御することで、省エネ効果の高い空気調和装置500を得ることができる。
[冷房主体運転モード]
 図5は、本発明の実施の形態に係る空気調和装置500の冷房主体運転モード時の冷媒の流れを示す冷媒回路図である。図5に基づいて、空気調和装置500の冷房主体運転モード時の運転動作について説明する。ここでは、負荷側ユニット300aから冷房要求、負荷側ユニット300bから暖房要求があった時の冷房主体運転モードを説明する。
 低温・低圧の冷媒が圧縮機101によって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機101から吐出された高温・高圧のガス冷媒は、四方切替え弁102を経由し、逆止弁108を導通して開閉弁105へ至る。このとき、開閉弁105は開放されている。そして、開閉弁105を導通したガス冷媒は、室外熱交換器103へ流れる。室外熱交換器103は凝縮器として働いているので、ガス冷媒は、周囲の空気と熱交換して凝縮し、液化する。その後、室外熱交換器103から流出した高圧の気液二相冷媒は、接続配管404を流れて、逆止弁109と逆止弁113とを導通し、高圧配管402を流れて熱源側ユニット100から流出し、冷媒制御ユニット200へ至る。
 冷媒制御ユニット200へ流入した気液二相冷媒は、気液分離器211へ流入し、気液分離器211でガス冷媒と液冷媒とに分離される。分離後、ガス冷媒は気液分離器211から流出し、接続配管221を流れて第1開閉弁212へ至る。このとき、第1開閉弁212aは閉止されており、第1開閉弁212bは開放されている。そして、第1開閉弁212bを導通したガス冷媒は、ガス管405bを流れ、負荷側ユニット300bに流入する。負荷側ユニット300bに流入したガス冷媒は、室内熱交換器312bで周囲に放熱することで空調空間を暖房するとともに、自身は凝縮し、液化する。このとき、冷媒が周囲から吸熱することによって室内は冷房される。その後、室内熱交換器312bから流出した液冷媒は、室内絞り装置311bで中間圧力まで絞られる。
 室内絞り装置311bで絞られた中間圧力の液冷媒は、液管406bを流れて第2冷媒熱交換器217へ流入する。そこで、気液分離器211で分離され、第1冷媒熱交換器216を流れ、第1絞り装置214を導通し、第2冷媒熱交換器217へ流入してきた液冷媒と合流する。そして、第2冷媒熱交換器217でさらに過冷却度が大きくなった液冷媒は、液管406aを流れて冷媒制御ユニット200から流出し、負荷側ユニット300aへ至る。
 負荷側ユニット300へ流入した液冷媒は、室内絞り装置311aで減圧され、低温の気液二相冷媒となる。この低温の気液二相冷媒は、室内熱交換器312aへ流入する。室内熱交換器312aは蒸発器として働いているので、冷媒は、周囲の空気と熱交換して蒸発し、ガス化する。このとき、冷媒が周囲から吸熱することによって室内は冷房される。その後、室内熱交換器312aから流出したガス冷媒は、ガス管405aを流れて負荷側ユニット300から流出し、冷媒制御ユニット200へ至る。
 冷媒制御ユニット200へ流入したガス冷媒は、第2開閉弁213へ至る。このとき、第2開閉弁213aは開放されており、第2開閉弁213bは閉止されている。そして、第2開閉弁213aを導通したガス冷媒は、第2冷媒熱交換器217で過冷却をとるために第1絞り装置214と第2絞り装置215とを導通して接続配管220を流れてきた冷媒と合流した後、低圧配管401を流れて冷媒制御ユニット200から流出し、熱源側ユニット100へ戻る。
 熱源側ユニット100に戻ったガス冷媒は、逆止弁112を導通し、四方切替え弁102を経由し、アキュムレータ104へ流入する。そして、アキュムレータ104内のガス冷媒を圧縮機101が吸入し、系内を循環させることで冷凍サイクルが成り立っている。以上の流れで、空気調和装置500は冷房主体運転モードを実行する。
冷主モード時、送風機106の回転数は目標凝縮温度Tcmに向けて制御される。
暖房負荷が小さいとき、暖房運転中の負荷側吸込み温度Taと設定温度Toとが近接する。従って、全暖房運転モード同様に温度差ΔTh=To-Taが所定の値ΔThoよりも小さい場合に負荷が小さいと判断して、目標凝縮温度初期値Tcm0を目標凝縮温度変更値Tcm1に変更する。このとき、Tcm1は固定の値であってもよいし、温度差ΔTの関数となっていてもよいが、Tcm0>Tcm1となる。ここで、Taは複数の負荷側ユニット300が運転している場合には算術平均としてもよいし、能力に応じた加重平均としてもよい。また接続された負荷側ユニット300のうち、最大の温度差ΔTcをとる負荷側ユニット300を代表とすることもできる。いずれにしてもTcm0はTcm1(<Tcm0)となる。
 このとき、室外熱交換器103の容積は、目標凝縮温度Tcmに応じて開閉弁105bの制御を実施する。室外熱交換器103の伝熱面積を小さくすることで凝縮温度Tcは高く維持されるが、負荷が小さい場合には送風機106の回転数を増加する必要があるため、室外熱交換器103の伝熱面積は大きくする方が望ましい。
 図6は、本発明の実施の形態に係る空気調和装置の送風機制御を示す説明図である。
 例えば図6に示すように、暖房負荷が大きいと判断される場合には開閉弁105bを閉止し、室外熱交換器103の伝熱面積を小さくして送風機106の回転数を低下させ、暖房負荷が小さいと判断される場合には開閉弁105bを開放し、室外熱交換器103の伝熱面積を大きくして送風機の106回転数を低下させるように制御する。
なお、開閉弁105aはいずれの場合も開放されているものとする。
以上のように制御することで、省エネ効果の高い空気調和装置500を得ることができる。
 100 熱源側ユニット、101 圧縮機、102 四方切替え弁、103 室外熱交換器、103a 室外熱交換器、103b 室外熱交換器、104 アキュムレータ、105 開閉弁、105a 開閉弁、105b 開閉弁、106 送風機、107 逆止弁、107a 逆止弁、107b 逆止弁、108 逆止弁、109 逆止弁、110 逆止弁、111 逆止弁、112 逆止弁、113 逆止弁、114 逆止弁、115 逆止弁、120 第1接続配管、121 第2接続配管、122 第3接続配管、123 第4接続配管、124 制御装置、141 高圧センサ、142 低圧センサ、200 冷媒制御ユニット、211 気液分離器、212 第1開閉弁、212a 第1開閉弁、212b 第1開閉弁、213 第2開閉弁、213a 第2開閉弁、213b 第2開閉弁、214 第1絞り装置、215 第2絞り装置、216 第1冷媒熱交換器、217 第2冷媒熱交換器、220 接続配管、221 接続配管、300 負荷側ユニット、300a 負荷側ユニット、300b 負荷側ユニット、311 室内絞り装置、311a 室内絞り装置、311b 室内絞り装置、312 室内熱交換器、312a 室内熱交換器、312b 室内熱交換器、313 温度センサ、313a 温度センサ、313b 温度センサ、314 温度センサ、314a 温度センサ、314b 温度センサ、315 温度センサ、315a 温度センサ、315b 温度センサ、300 負荷側ユニット、300a 負荷側ユニット、300b 負荷側ユニット、401 低圧配管、402 高圧配管、403 接続配管、404 接続配管、405 ガス管、405a ガス管、405b ガス管、406 液管、406a 液管、406b 液管、500 空気調和装置、a 合流部、b 合流部、c 合流部、d 合流部、e 合流部、f 合流部、g 合流部、h 合流部。

Claims (7)

  1.  圧縮機、及び送風機が備えられた室外熱交換器が直列に配管接続され、冷媒を介して熱を供給する熱源側ユニットと、
     室内熱交換器と室内絞り装置とが直列に配管接続され、前記熱源側ユニットから前記冷媒を介して熱が供給される複数の負荷側ユニットと、
     運転状況に応じて前記冷媒の流れを切り替える冷媒制御ユニットと、を有し、
     前記熱源側ユニットと前記冷媒制御ユニットとは直列に配管接続され、前記冷媒制御ユニットと前記負荷側ユニットとは直列に配管接続され、前記負荷側ユニット同士はそれぞれ並列に配管接続され、
     前記負荷側ユニットのそれぞれで冷房運転又は暖房運転を実行する空気調和装置であって、
     前記熱源側ユニットは、前記冷媒の凝縮温度及び蒸発温度を求めるために用いられる温度検知手段を有し、
     前記負荷側ユニットは、運転時の負荷を求めるために用いられる負荷検知手段を有し、
     前記負荷検知手段を用いて求めた前記負荷側ユニットの負荷に応じて前記冷媒の目標凝縮温度と目標蒸発温度とを変更し、
     前記温度検知手段を用いて求めた凝縮温度が前記目標凝縮温度と一致するように、かつ、
     前記温度検知手段を用いて求めた蒸発温度が前記目標蒸発温度と一致するように、
     前記圧縮機の運転周波数と、前記送風機の回転数とを制御する
     ことを特徴とする空気調和装置。
  2.  前記温度検知手段は、
     前記熱源側ユニットに設けられた、前記圧縮機から吐出される前記冷媒の吐出圧力を検知する高圧センサと、前記圧縮機に吸入される前記冷媒の吸入圧力を検知する低圧センサと、から構成され、
     前記高圧センサで検知された吐出圧力から前記凝縮温度を演算し、
     前記低圧センサで検知された吸入圧力から前記蒸発温度を演算する
     ことを特徴とする請求項1に記載の空気調和装置。
  3.  前記負荷検知手段は、
     前記負荷側ユニットに設けられた、負荷側吸込み温度を検知する温度センサで構成され、
     前記負荷側吸込み温度と設定温度との差とから前記負荷側ユニットの負荷を検知する
     ことを特徴とする請求項1又は2に記載の空気調和装置。
  4.  全ての前記負荷側ユニットが暖房運転を実行する全暖房運転モード、及び、
     暖房運転を実行する前記負荷側ユニットと冷房運転を実行する前記負荷側ユニットとが混在し、暖房運転を実行する前記負荷側ユニットの各負荷の和が冷房運転を実行する前記負荷側ユニットの各負荷の和よりも大きい暖房主体運転モードにおいて、
     前記高圧センサで検知する前記吐出圧力から前記凝縮温度を演算し、前記目標凝縮温度と一致するように前記圧縮機の運転周波数を制御し、
     前記低圧センサで検知する前記吸入圧力から前記蒸発温度を演算し、前記目標蒸発温度と一致するように前記送風機の回転数を制御する
     ことを特徴とする請求項2又は3に記載の空気調和装置。
  5.  全ての前記負荷側ユニットが冷房運転を実行する全冷房運転モード、及び、
     暖房運転を実行する前記負荷側ユニットと冷房運転を実行する前記負荷側ユニットとが混在し、冷房運転を実行する前記負荷側ユニットの各負荷の和が暖房運転を実行する前記負荷側ユニットの各負荷の和よりも大きい冷房主体運転モードにおいて、
     前記高圧センサで検知する前記吐出圧力から前記蒸発温度を演算し、前記目標蒸発温度と一致するように前記圧縮機の運転周波数を制御し、
     前記低圧センサで検知する前記吸入圧力から前記凝縮温度を演算し、前記目標凝縮温度と一致するように前記送風機の回転数を制御する
     ことを特徴とする請求項2又は3に記載の空気調和装置。
  6.  前記熱源側ユニットは、
     開閉弁、及び前記送風機が備えられた前記室外熱交換器を複数有し、
     前記開閉弁、及び前記送風機が備えられた前記室外熱交換器が直列に配管接続された室外熱交換器ユニット同士は並列に配管接続され、
     前記全暖房運転モード、及び暖房主体運転モードにおいて、
     前記目標凝縮温度に応じて前記開閉弁を制御する
     ことを特徴とする請求項4に記載の空気調和装置。
  7.  前記熱源側ユニットは、
     開閉弁、及び前記送風機が備えられた前記室外熱交換器を複数有し、
     前記開閉弁、及び前記送風機が備えられた前記室外熱交換器が直列に配管接続された室外熱交換器ユニット同士は並列に配管接続され、
     前記全冷房運転モード、及び冷房主体運転モードにおいて、
     前記目標蒸発温度に応じて前記開閉弁を制御する
     ことを特徴とする請求項5に記載の空気調和装置。
PCT/JP2012/084125 2012-12-28 2012-12-28 空気調和装置 WO2014103028A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/443,429 US10323862B2 (en) 2012-12-28 2012-12-28 Air conditioning unit having dynamic target condensing and evaporating values based on load requirements
PCT/JP2012/084125 WO2014103028A1 (ja) 2012-12-28 2012-12-28 空気調和装置
CN201280077495.7A CN104838211B (zh) 2012-12-28 2012-12-28 空气调节装置
EP12891184.9A EP2940395B1 (en) 2012-12-28 2012-12-28 Air conditioner
JP2014554017A JP6053826B2 (ja) 2012-12-28 2012-12-28 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084125 WO2014103028A1 (ja) 2012-12-28 2012-12-28 空気調和装置

Publications (1)

Publication Number Publication Date
WO2014103028A1 true WO2014103028A1 (ja) 2014-07-03

Family

ID=51020178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084125 WO2014103028A1 (ja) 2012-12-28 2012-12-28 空気調和装置

Country Status (5)

Country Link
US (1) US10323862B2 (ja)
EP (1) EP2940395B1 (ja)
JP (1) JP6053826B2 (ja)
CN (1) CN104838211B (ja)
WO (1) WO2014103028A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6048549B1 (ja) * 2015-08-07 2016-12-21 ダイキン工業株式会社 冷凍装置
WO2017068640A1 (ja) * 2015-10-20 2017-04-27 三菱電機株式会社 運転制御装置
EP3208550A4 (en) * 2014-10-22 2018-07-11 Daikin Industries, Ltd. Air conditioning apparatus
EP3208547A4 (en) * 2015-05-25 2018-08-01 GD Midea Heating & Ventilating Equipment Co., Ltd. Outdoor unit for heat recovery multi-split air conditioning system and heat recovery multi-split air conditioning system
WO2018193537A1 (ja) * 2017-04-19 2018-10-25 三菱電機株式会社 空気調和機及び空気調和機のファン速制御方法
JP2019060601A (ja) * 2019-01-24 2019-04-18 三菱電機株式会社 異常検知システム、冷凍サイクル装置、及び異常検知方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015140827A1 (ja) * 2014-03-17 2015-09-24 三菱電機株式会社 ヒートポンプ装置
CN105899884B (zh) * 2014-03-20 2018-12-14 三菱电机株式会社 热源侧单元以及空调装置
CN104776630B (zh) * 2015-04-28 2017-05-03 广东美的暖通设备有限公司 多联机系统
EP3392589B1 (en) * 2015-12-17 2023-09-06 Mitsubishi Electric Corporation Heat exchanger and freezing cycle device
KR102460483B1 (ko) * 2016-02-04 2022-10-31 엘지전자 주식회사 인공지능 기능을 수반하는 공기 조화기 및 그 제어방법
US11669061B2 (en) * 2016-06-30 2023-06-06 Johnson Controls Tyco IP Holdings LLP Variable refrigerant flow system with predictive control
JP2018013286A (ja) * 2016-07-20 2018-01-25 三菱重工サーマルシステムズ株式会社 制御装置、空気調和機及び制御方法
JP2018087658A (ja) * 2016-11-29 2018-06-07 三菱重工サーマルシステムズ株式会社 チリングユニットシステム、温度管理システム、リモートコントローラ及び制御方法
CN106801920A (zh) * 2017-02-17 2017-06-06 海信科龙电器股份有限公司 一种换热循环系统及其控制方法、空调
US10816235B2 (en) 2017-04-27 2020-10-27 Johnson Controls Technology Company Building energy system with predictive control of battery and green energy resources
CN107525217B (zh) * 2017-07-27 2021-03-16 青岛海尔空调器有限总公司 一种空调器控制方法、控制装置及空调器
JP6451798B1 (ja) * 2017-07-31 2019-01-16 ダイキン工業株式会社 空気調和装置
CN107726683B (zh) * 2017-09-04 2020-02-04 珠海格力电器股份有限公司 冷水机组及其控制方法和装置
CN107606834B (zh) * 2017-09-12 2020-09-04 广东美的暖通设备有限公司 多联机系统的控制方法及多联机系统
CN108375175B (zh) 2018-02-08 2019-09-24 珠海格力电器股份有限公司 空调系统控制方法及装置
CN108397853B (zh) * 2018-02-11 2019-11-01 珠海格力电器股份有限公司 空调机组控制方法和装置
EP3859244A4 (en) * 2018-09-28 2021-09-15 Mitsubishi Electric Corporation AIR CONDITIONER
CN109114758B (zh) * 2018-10-08 2021-11-02 广东美的暖通设备有限公司 空调系统控制方法及空调器
JP7150135B2 (ja) * 2019-02-28 2022-10-07 三菱電機株式会社 冷凍サイクル装置
WO2020245918A1 (ja) * 2019-06-04 2020-12-10 三菱電機株式会社 冷凍サイクル装置
CN111023402B (zh) * 2019-12-31 2021-08-06 宁波奥克斯电气股份有限公司 一种空调系统的自适应调节方法及空调器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207191A (ja) * 2002-01-18 2003-07-25 Sanyo Electric Co Ltd 空気調和装置
JP2008215678A (ja) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp 空気調和システムの運転制御方法並びに空気調和システム
JP2011112233A (ja) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp 空気調和装置
JP2012097910A (ja) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp 冷凍サイクル装置及び冷凍サイクル制御方法
JP2012107840A (ja) 2010-11-19 2012-06-07 Mitsubishi Electric Corp 制御装置、制御方法及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB849158A (en) * 1955-12-20 1960-09-21 Heat X Inc Refrigeration
JPS5899665A (ja) * 1981-12-09 1983-06-14 株式会社システム・ホ−ムズ ヒ−トポンプ式給湯装置
AU636726B2 (en) * 1990-03-19 1993-05-06 Mitsubishi Denki Kabushiki Kaisha Air conditioning system
JP4013318B2 (ja) * 1997-07-17 2007-11-28 株式会社デンソー 車両用冷凍サイクル装置
US6845629B1 (en) * 2003-07-23 2005-01-25 Davis Energy Group, Inc. Vertical counterflow evaporative cooler
US8322155B2 (en) 2006-08-15 2012-12-04 American Power Conversion Corporation Method and apparatus for cooling
KR101488390B1 (ko) * 2008-02-05 2015-01-30 엘지전자 주식회사 공기조화장치의 냉매량 판단 방법
CN105180497B (zh) * 2008-10-29 2017-12-26 三菱电机株式会社 空气调节装置
CN101498297B (zh) * 2009-02-19 2012-05-23 浙江工业大学 制冷压缩机连续过载测试系统
JP5734205B2 (ja) 2009-12-15 2015-06-17 三菱電機株式会社 空気調和装置
JP4701303B1 (ja) * 2010-01-19 2011-06-15 積水化学工業株式会社 空調システム、及び建物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003207191A (ja) * 2002-01-18 2003-07-25 Sanyo Electric Co Ltd 空気調和装置
JP2008215678A (ja) * 2007-03-01 2008-09-18 Mitsubishi Electric Corp 空気調和システムの運転制御方法並びに空気調和システム
JP2011112233A (ja) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp 空気調和装置
JP2012097910A (ja) * 2010-10-29 2012-05-24 Mitsubishi Electric Corp 冷凍サイクル装置及び冷凍サイクル制御方法
JP2012107840A (ja) 2010-11-19 2012-06-07 Mitsubishi Electric Corp 制御装置、制御方法及びプログラム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3208550A4 (en) * 2014-10-22 2018-07-11 Daikin Industries, Ltd. Air conditioning apparatus
EP3208547A4 (en) * 2015-05-25 2018-08-01 GD Midea Heating & Ventilating Equipment Co., Ltd. Outdoor unit for heat recovery multi-split air conditioning system and heat recovery multi-split air conditioning system
US10260785B2 (en) 2015-05-25 2019-04-16 Gd Midea Heating & Ventilating Equipment Co., Ltd. Outdoor unit for heat recovery VRF air conditioning system and heat recovery VRF air conditioning system
JP6048549B1 (ja) * 2015-08-07 2016-12-21 ダイキン工業株式会社 冷凍装置
WO2017026115A1 (ja) * 2015-08-07 2017-02-16 ダイキン工業株式会社 冷凍装置
WO2017068640A1 (ja) * 2015-10-20 2017-04-27 三菱電機株式会社 運転制御装置
JPWO2017068640A1 (ja) * 2015-10-20 2018-04-26 三菱電機株式会社 運転制御装置
GB2557826A (en) * 2015-10-20 2018-06-27 Mitsubishi Electric Corp Operation control device
GB2557826B (en) * 2015-10-20 2020-09-30 Mitsubishi Electric Corp Operation control device and method for operation control
WO2018193537A1 (ja) * 2017-04-19 2018-10-25 三菱電機株式会社 空気調和機及び空気調和機のファン速制御方法
JPWO2018193537A1 (ja) * 2017-04-19 2019-11-14 三菱電機株式会社 空気調和機及び空気調和機のファン速制御方法
JP2019060601A (ja) * 2019-01-24 2019-04-18 三菱電機株式会社 異常検知システム、冷凍サイクル装置、及び異常検知方法

Also Published As

Publication number Publication date
EP2940395A1 (en) 2015-11-04
JP6053826B2 (ja) 2016-12-27
EP2940395B1 (en) 2021-01-20
JPWO2014103028A1 (ja) 2017-01-12
CN104838211B (zh) 2018-09-04
CN104838211A (zh) 2015-08-12
US10323862B2 (en) 2019-06-18
US20150292777A1 (en) 2015-10-15
EP2940395A4 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6053826B2 (ja) 空気調和装置
US9683768B2 (en) Air-conditioning apparatus
US9958171B2 (en) Air-conditioning apparatus
WO2017203606A1 (ja) 空気調和装置
JP6033297B2 (ja) 空気調和装置
JP6067178B2 (ja) 熱源側ユニット及び空気調和装置
JP2011112233A (ja) 空気調和装置
WO2015097787A1 (ja) 空気調和装置
KR100569554B1 (ko) 공기 조화 장치의 열원 유닛 및 공기 조화 장치
AU2009248466A1 (en) Refrigeration Apparatus
US11187447B2 (en) Refrigeration cycle apparatus
US20130061622A1 (en) Refrigerating and air-conditioning apparatus
JP2010276239A (ja) 冷凍空気調和装置
CN114151935A (zh) 一种空调系统
WO2016189739A1 (ja) 空気調和装置
JPWO2014038059A1 (ja) 空気調和装置
WO2015182484A1 (ja) 冷凍装置
JP2011058749A (ja) 空気調和装置
WO2015177852A1 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891184

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14443429

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012891184

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014554017

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE